Nothing Special   »   [go: up one dir, main page]

WO2022110305A1 - 定子铁芯、定子、永磁同步电机、压缩机和制冷设备 - Google Patents

定子铁芯、定子、永磁同步电机、压缩机和制冷设备 Download PDF

Info

Publication number
WO2022110305A1
WO2022110305A1 PCT/CN2020/134803 CN2020134803W WO2022110305A1 WO 2022110305 A1 WO2022110305 A1 WO 2022110305A1 CN 2020134803 W CN2020134803 W CN 2020134803W WO 2022110305 A1 WO2022110305 A1 WO 2022110305A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
tooth
inner hole
punches
punch
Prior art date
Application number
PCT/CN2020/134803
Other languages
English (en)
French (fr)
Inventor
徐飞
邱小华
江波
Original Assignee
安徽美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽美芝精密制造有限公司 filed Critical 安徽美芝精密制造有限公司
Publication of WO2022110305A1 publication Critical patent/WO2022110305A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information

Definitions

  • the present application relates to the technical field of compressors, and in particular, to a stator iron core, a stator, a permanent magnet synchronous motor, a compressor, and a refrigeration device.
  • the motor in the rotary DC variable frequency compressor, the motor generally adopts a built-in permanent magnet motor.
  • the stator magnetic field interacts with the rotor magnetic field, which will generate a synthetic magnetic field, resulting in Vibration noise.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application proposes a stator core.
  • a second aspect of the present application proposes a stator.
  • a third aspect of the present application proposes a permanent magnet synchronous motor.
  • a fourth aspect of the present application proposes a compressor.
  • a fifth aspect of the present application provides a refrigeration apparatus.
  • a first aspect of the present application provides a stator core, comprising: a stator inner hole for passing a rotor; a plurality of stator punches, each of which has a thickness, and the plurality of stator punches along the
  • the axial stacking arrangement of the inner hole of the stator, the stator punching piece includes a stator yoke and a plurality of stator teeth distributed along the circumferential direction of the stator yoke, and the stator teeth include: a tooth root, which is connected with the stator yoke; a tooth crown, which is away from the stator yoke from the tooth root.
  • each stator punch has a thickness along the axial direction of the inner hole of the stator, at least one tooth crown on at least one stator punch is provided with a magnetic permeability groove, along the circumferential direction of the stator yoke, the magnetic permeability The groove separates the surface of the tooth crown away from the tooth root into a first tooth crown surface and a second tooth crown surface, and the area of the first tooth crown surface is smaller than that of the second tooth crown surface.
  • a stator inner hole is arranged in the stator iron core, and the rotor of the motor can pass through the stator inner hole and rotate in the stator inner hole.
  • the stator iron core includes a stator punch, and the stator punch is provided with a plurality of stator teeth facing the inner hole of the stator, the stator tooth includes a tooth root and a tooth crown, and the plurality of stator teeth are distributed on the inner circumference of the stator punch, so that a plurality of The tooth crowns are arranged around each other and constitute the inner hole of the stator.
  • a magnetic guide groove is also provided on the tooth crown, and the "opening" of the magnetic guide groove is disposed toward the inner hole of the stator.
  • the tooth crown of the stator tooth is divided into the first tooth crown surface of the tooth crown and the second tooth crown surface of the tooth crown, wherein the first tooth crown surface of the tooth crown is on the area facing the inner hole of the stator.
  • the area is smaller than the area of the second tooth crown surface of the tooth crown on the area facing the inner hole of the stator, that is, the magnetic permeability groove is not provided on the "symmetric center line" of the stator teeth.
  • the magnetic permeability grooves are opened along the radial direction of the stator punching sheet, which can effectively "hedge” the vibration deformation generated by the stator core and reduce electrical noise.
  • Radial electromagnetic force waves are generated when the magnetic field harmonics and the rotor harmonics act in the same direction, thereby reducing the stator punch and the shape variation of the entire stator core.
  • the radial electromagnetic force waves generated when the harmonics of the armature magnetic field and the rotor harmonics act in the direction can be reduced, which is beneficial to suppress the duality of the armature magnetic field.
  • Sub-harmonics thereby reducing the stator punch and the shape variation of the entire stator core, so it can significantly improve the vibration and noise in the key frequency bands of the motor, and improve the hearing sense of the motor and compressor.
  • stator core in the above technical solution provided by the present application may also have the following additional technical features:
  • the number of stator punches is multiple, and the plurality of stator punches includes: at least one first stator punch; at least one second stator punch, the first stator punch and the second stator punch
  • the punching pieces are stacked and arranged along the axial direction of the inner hole of the stator, and the second stator punching piece is provided with a magnetic guide groove.
  • the stator iron core of the motor includes a plurality of stacked stator punches, wherein the plurality of stator punches include at least one first stator punch and at least one second stator punch.
  • the first stator punch and the second stator punch are stacked along the axial direction of the inner hole of the stator.
  • first stator punch-second stator punch-first stator punch can be stacked at intervals in the manner of first stator punch-second stator punch-first stator punch, or after stacking a plurality of first stator punches, and then stacking a plurality of first stator punches
  • the two stator punches are stacked, and can also be stacked in random order.
  • the embodiment of the present application does not limit the stacking manner of the first stator punch and the second stator punch.
  • the second stator punching piece is provided with the above-mentioned magnetic permeability groove, and the first stator punching piece is not provided with the magnetically conductive groove. That is, a magnetic permeability groove is provided on part of the stator punches, and a magnetic permeability groove is provided on the upper part of another part of the stator punch.
  • stator punching structures are used, namely the first stator punching and the second stator punching, which is beneficial to improve the low-frequency energy efficiency of the motor, and at the same time, it can reduce the difficulty of the production process, which is beneficial to improve the product yield and reduce the product cost.
  • the stacking height of the first stator punch is the first height
  • the stacking height of the second stator punch is the second height
  • the first height is the same as the second height.
  • the ratio of height is greater than or equal to 0.004, and the ratio is less than or equal to 0.01.
  • the simultaneous use of two punching structures is beneficial to improve the low-frequency energy efficiency of the motor, and also to improve the mass production manufacturability.
  • the stacking direction of the plurality of stator punches the stacking height L1 of all the first stator punches in the plurality of stator punches and the stacking of all the second stator punches in the plurality of stator punches
  • the height L2 satisfies the following relationship: 0.004 ⁇ L2/L1 ⁇ 0.01.
  • the two stator punches are assembled according to different axial thicknesses, specifically, the number of the first stator punches is limited to be greater than the number of the second stator punches, which is conducive to improving the The space volume of the magnetic guide groove, on the one hand, reduces the vibration noise of the motor at the end frequency, and on the other hand can take into account the operating energy efficiency of the motor.
  • stator punches of the same stator core the shape and size of the first stator punch and the second stator punch are the same.
  • the first stator punches and the second stator punches are alternately stacked.
  • the first stator punches and the second stator punches are alternately superimposed at random, as long as the number of the second stator punches is greater than the number of the first stator punches.
  • the second stator punch is provided with a magnetic guide groove. Therefore, the more the second stator punch, the better the noise reduction effect. Therefore, setting more second stator punch is beneficial to improve the gap between the stator and the rotor. Therefore, the radial electromagnetic force wave generated by the interaction of the armature magnetic field harmonics and the rotor magnetic field harmonics is reduced, the deformation of the stator core is reduced, the vibration and noise in the key frequency bands of the motor are significantly improved, and the hearing of the compressor is effectively improved.
  • a plurality of first stator punching pieces are continuously stacked to form a first punching segment
  • a plurality of second stator punching pieces are continuously stacked to form a second stator punching segment
  • the first punching segment Alternately stacked with second stator punch segments.
  • a plurality of first stator punching pieces are stacked together to form a first punching segment, so as to form a circumferentially extending communicating recess on the inner peripheral wall of the first punching segment, and a plurality of second stator punching pieces are formed Stacking together to form a second stator punch segment, and then butt-stacking at least one first punch segment and at least one second stator punch segment, can also achieve the purpose of reducing vibration and noise of the motor.
  • the magnetic permeability groove includes at least one of the following: arc-shaped magnetic permeability groove, square magnetic permeability groove, trapezoidal magnetic permeability groove, and parallelogram magnetic permeability groove.
  • the magnetic permeability grooves include arc-shaped magnetic permeability grooves.
  • the bottom wall of the arc-shaped magnetic permeability groove is arc-shaped, and in some embodiments, at least one side wall of the arc-shaped magnetic permeability groove is arc-shaped.
  • the magnetic guide groove also includes a square magnetic guide groove.
  • the bottom wall of the square magnetic guide groove is a straight bottom wall
  • the side walls of the square magnetic guide groove are also straight side walls, and the side walls are the same as the side walls.
  • the included angle between the bottom walls is a right angle.
  • the magnetic guide groove also includes a trapezoidal magnetic guide groove.
  • the bottom wall of the trapezoidal magnetic guide groove is a straight bottom wall
  • the side walls of the trapezoidal magnetic guide groove are also straight side walls, and the side walls are the same as the flat side walls.
  • the included angle between the bottom walls is a non-right angle.
  • the magnetic guide groove also includes a parallelogram magnetic guide groove. Specifically, the two opposite side walls of the parallelogram magnetic guide groove are parallel, the bottom wall and the opening face parallel, and the angle between the side wall and the bottom wall is Right angle or non-right angle.
  • various magnetic permeability grooves may be symmetrical or asymmetrical structures, and the specific form of the magnetic permeability grooves is not limited in the embodiments of the present application.
  • parameters such as inductance of the motor can be reduced according to different motor parameters or rotor models, thereby improving the energy efficiency of the motor.
  • the inner peripheral wall of the stator punching piece includes arc segments and/or straight segments.
  • the inner peripheral wall of the stator punching piece can be composed of straight line segments, circular arc segments, or straight line segments and circular arc segments.
  • Splicing composition can be in the shape of an arc, can also be composed of a plurality of straight segments, and can be in the shape of a "polygon", or can be composed of a combination of arc segments and straight segments. For example, in the form of a line segment at one end connecting an arc at one end.
  • stator slots are formed around two adjacent stator teeth, and slots of the stator slots are formed between tooth crowns of two adjacent stator teeth.
  • a stator slot forming a fan-shaped structure is surrounded by two adjacent stator teeth, and a slot of the stator slot is formed between the tooth crowns of the two adjacent stator teeth.
  • the wire can be wound on the tooth root of the stator teeth along the notch of the stator slot, which is beneficial to reduce the difficulty of the production process of the motor, thereby reducing the production cost.
  • At least one tooth crown on at least one stator punch is provided with at least one groove portion and/or at least one magnetic conduction hole, and the groove portion and/or the magnetic conduction hole are located in the first tooth crown.
  • one or more groove parts are further provided on the stator punching piece, and the groove parts include at least one of the following: a circular arc groove part, a square groove part, a trapezoidal groove part, a parallelogram groove part.
  • the shape and size of the groove portion are similar to or the same as the magnetic permeability groove, so the function of the groove portion is also the same as that of the magnetic conductive groove.
  • the grooves are provided along the radial direction of the stator punching sheet, which can effectively "hedge” the vibration deformation generated by the stator iron core and reduce the radial electromagnetic force waves generated when the armature magnetic field harmonics and the rotor harmonics act in the same direction, thereby reducing the Stator blanks, and the type variables of the entire stator core.
  • a magnetic conduction hole is also opened, and the axis of the "hole” of the magnetic conduction hole, It is parallel to the axis of the inner hole of the stator, and there is no direct communication between the magnetic conduction hole and the inner hole of the stator, that is to say, the magnetic conduction hole does not penetrate the surface of the tooth crown toward the inner hole of the stator, which is the surface of the stator punch.
  • the sheet is "punched" in the radial direction.
  • the radial electromagnetic force waves generated when the armature magnetic field harmonics and the rotor harmonics act in the direction can be reduced, which is beneficial to Suppress the even harmonics of the armature magnetic field, thereby reducing the stator punch and the shape variation of the entire stator core, so it can significantly improve the vibration and noise of the key frequency bands of the motor, and improve the hearing sense of the motor and compressor.
  • a second aspect of the present application provides a stator, which includes the stator core provided by any of the technical solutions of the first aspect. Therefore, the stator provided by the present application has all the benefits of the stator core provided by any of the technical solutions of the first aspect. The effect, in order to avoid repetition, will not be repeated here.
  • the stator further includes: windings wound on the tooth roots of the stator core.
  • a plurality of tooth roots are evenly distributed along the circumferential direction of the stator iron core, and the windings are wound on the tooth roots of the stator iron core.
  • the winding When the winding is energized, the winding generates a uniform magnetic field.
  • the tooth crown can prevent the coil from falling off, so that the center of mass of the rotor will not deviate from the rotation axis during the rotation process, so as to maintain the dynamic balance of the motor, reduce the phenomenon of local wear and tear of the support structure, and ensure that the motor structure is more stable. stable.
  • the windings are set as concentrated windings, so that the polarities of the adjacent two groups of windings are the same.
  • the adjacent salient poles return to form a closed magnetic circuit.
  • the number of windings can be set to 9 or 12 according to the actual situation and usage requirements.
  • a third aspect of the present application provides a permanent magnet synchronous motor, which includes the stator provided in any of the technical solutions of the second aspect above, and a rotor, and the rotor is inserted into a stator inner hole of the stator iron core.
  • the motor includes the stator provided in any one of the technical solutions in the second aspect. Therefore, the motor provided by the present application has all the beneficial effects of the stator provided in any one of the technical solutions in the second aspect. To avoid repetition, it is not repeated here. Too much elaboration.
  • Di is the diameter of the inner hole of the stator
  • T is the rated torque of the motor
  • TPV is the torque per unit volume of the rotor
  • the unit of the rated torque T of the motor is N m
  • the unit of the inner diameter Di of the stator core is mm
  • the unit of the torque TPV per unit volume of the rotor is kN ⁇ m ⁇ m -3 .
  • the rated torque of the motor is T
  • the diameter of the shaft hole of the stator that is, the inner diameter of the stator core is Di
  • the torque per unit volume of the rotor is TPV
  • the value range of TPV per unit volume torque is 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 , which limits the rated torque of the motor
  • the value range of the combined variable of T, the diameter Di of the shaft hole and the torque per unit volume of the rotor TPV enables the motor to meet the power requirements of the compressor.
  • the rotor can be effectively reduced Magnetic flux leakage, increase the utilization rate of permanent magnets, and improve the efficiency of the motor.
  • a fourth aspect of the present application provides a compressor, the compressor includes the stator according to any one of the technical solutions in the second aspect, or the permanent magnet synchronous motor as in any one of the technical solutions in the third aspect, therefore, the compressor Including all the beneficial effects of the stator and the permanent magnet synchronous motor in any of the above technical solutions, in order to avoid repetition, it will not be repeated here.
  • a fifth aspect of the present application provides a refrigeration device, the refrigeration device comprising the stator according to any of the technical solutions in the second aspect, or the permanent magnet synchronous motor as in any of the technical solutions in the third aspect, or as in the fourth aspect
  • the compressor in any of the technical solutions therefore, the refrigeration equipment includes all the beneficial effects of the stator, the permanent magnet synchronous motor and the compressor in any of the above-mentioned technical solutions.
  • refrigeration equipment includes refrigerators, freezers, freezers, refrigerated rooms, split air conditioners, integrated air conditioners, window air conditioners, central air conditioners, ice machines, ice cream machines and other different product forms.
  • refrigeration equipment may refer to any electrical equipment with refrigeration capability, and the embodiment of the present application does not limit the specific product form of the refrigeration equipment.
  • FIG. 1 shows one of the schematic structural diagrams of the stator core according to an embodiment of the present application
  • FIG. 2 shows the second schematic diagram of the structure of the stator core according to the embodiment of the present application
  • FIG. 3 shows the third schematic diagram of the structure of the stator core according to the embodiment of the present application.
  • FIG. 4 shows the fourth schematic diagram of the structure of the stator core according to the embodiment of the present application.
  • Fig. 5 shows the fifth schematic diagram of the structure of the stator core according to the embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a compressor according to an embodiment of the present application.
  • stator teeth 110 stator teeth, 112 tooth roots, 114 tooth crowns, 120 stator inner holes, 130 stator slots;
  • 300 compressor 310 stator, 320 rotor, 330 crankshaft, 340 main bearing, 350 cylinder, 360 piston, 370 auxiliary bearing.
  • stator core a stator
  • stator a permanent magnet synchronous motor
  • compressor a compressor
  • refrigeration apparatus a refrigeration apparatus
  • FIG. 1 shows one of the schematic structural diagrams of the stator iron core according to the embodiment of the present application
  • FIG. 2 shows the second schematic structural diagram of the stator iron core according to the embodiment of the present application, wherein, as shown in FIG. 1 and FIG. 2 , the stator iron core, including: stator inner hole 120 for passing through the rotor.
  • a plurality of stator punching pieces each stator punching piece has a thickness
  • the plurality of stator punching pieces are stacked and arranged along the axial direction of the stator inner hole 120
  • the stator punching piece includes a stator yoke and a plurality of stator teeth 110 distributed along the circumferential direction of the stator yoke
  • the stator teeth 110 include: a tooth root 112, which is connected with the stator yoke; a tooth crown 114, which is connected with an end of the tooth root 112 away from the stator yoke; wherein, each stator punch has a thickness along the axial direction of the stator inner hole 120, At least one tooth crown 114 on at least one stator punching piece is provided with a magnetic guide groove 1142.
  • the magnetic guide groove 1142 separates the tooth crown 114 away from the surface of the tooth root 112 into a first tooth crown surface 1144 and the second tooth crown surface 1146, the area of the first tooth crown surface 1144 is smaller than the area of the second tooth crown surface 1146.
  • the stator core is provided with a stator inner hole 120 , and the rotor of the motor can pass through the stator inner hole 120 and rotate in the stator inner hole 120 .
  • the stator iron core includes stator punching pieces.
  • the stator punching pieces are provided with a plurality of stator teeth 110 facing the stator inner hole 120.
  • the stator teeth 110 include tooth roots 112 and tooth crowns 114.
  • the plurality of stator teeth 110 are arranged in the inner circumferential direction of the stator punching pieces.
  • the tooth crowns 114 are distributed and arranged so that a plurality of tooth crowns 114 are surrounded by each other, and constitute the above-mentioned stator inner hole 120 .
  • the tooth crown 114 is also provided with a magnetic guide groove 1142 , and the “opening” of the magnetic guide groove 1142 is disposed toward the inner hole 120 of the stator.
  • the tooth crown 114 of the stator tooth 110 is divided into a first tooth crown surface 1144 of the tooth crown, and a second tooth crown surface 1146 of the tooth crown, wherein the first tooth crown surface 1144 of the tooth crown faces the stator.
  • the area of the inner hole 120 is smaller than the area of the second tooth crown surface 1146 of the tooth crown in the area facing the stator inner hole 120 , that is, the magnetic permeability groove 1142 is not opened on the “centerline” of the stator teeth 110 .
  • the center of the inner hole 120 of the stator is O
  • the center of the circle O is taken as the starting point to connect the two ends of the tooth crown 114 and the two ends of the magnetic guide groove 1142 respectively, and connect the tooth crown The upper of the two-tooth crown is separated.
  • the area of the second tooth crown surface 1146 of the tooth crown facing the stator inner hole 120 is AB
  • the area of the first tooth crown surface 1144 of the tooth crown facing the stator inner hole 120 is CD, AB>CD.
  • the magnetic permeability grooves 1142 are provided along the radial direction of the stator punching sheet, which can effectively "hedge” the vibration deformation generated by the stator core and reduce the The radial electromagnetic force wave generated when the armature magnetic field harmonics and the rotor harmonics act in the same direction, thereby reducing the stator punch and the shape variation of the entire stator core.
  • the radial electromagnetic force waves generated when the armature magnetic field harmonics and the rotor harmonics act in the direction can be reduced, which is beneficial to suppress the armature magnetic field. Therefore, it can significantly improve the vibration and noise of the key frequency band of the motor, and improve the hearing sense of the motor and the compressor.
  • the magnetic guide groove 1142 is located on the shoe surface of the tooth crown 114 , and along the axial direction of the stator teeth 110 , the magnetic guide groove 1142 is a non-through structure.
  • the magnetic guide groove 1142 is formed on the shoe surface of the tooth crown 114 , wherein the shoe surface is the outer surface of the tooth crown 114 facing the inner hole of the stator.
  • the magnetic conductive grooves are non-penetrating structures, that is to say, the magnetic conductive grooves 1142 do not penetrate the stator teeth 110 along the axial direction of the stator teeth 110 , which can effectively improve the stability of the stator teeth 110 .
  • Structural strength at the same time, it is beneficial to suppress the even harmonics of the armature magnetic field, thereby reducing the stator punch and the shape variation of the entire stator core, so it can significantly improve the vibration and noise in the key frequency bands of the motor, and improve the hearing of the motor and compressor. .
  • the number of stator punches is multiple, and the plurality of stator punches includes: at least one first stator punch 100; at least one second stator punch, the first stator punch 100 and the second stator punching piece are stacked and disposed along the axial direction of the stator inner hole 120 , and the second stator punching piece is provided with a magnetic guide groove 1142 .
  • the stator core of the motor includes a plurality of stacked stator punches, wherein the plurality of stator punches include at least one first stator punch 100 and at least one second stator punch.
  • the first stator punch 100 and the second stator punch are stacked along the axial direction of the stator inner hole 120 .
  • first stator punches 100 - the second stator punches - the first stator punches 100 may be stacked at intervals, or a plurality of first stator punches 100 may be stacked, and then A plurality of second stator punching pieces are stacked, and can also be stacked in random order.
  • the embodiment of the present application does not limit the stacking manner of the first stator punch 100 and the second stator punch.
  • the second stator punching piece is provided with the above-mentioned magnetic permeability groove 1142, and the first stator punching piece 100 is not provided with the magnetically conductive groove 1142. That is, a magnetic permeability groove 1142 is provided on a part of the stator punch, and a magnetic permeability groove 1142 is provided on the upper part of another part of the stator punch.
  • stator punching structures are used, namely the first stator punching plate 100 and the second stator punching plate, which is beneficial to improve the low-frequency energy efficiency of the motor, and at the same time, it can reduce the difficulty of the production process, which is beneficial to improve the product yield and reduce the product cost.
  • the stacking height of the first stator punch 100 is the first height
  • the stacking height of the second stator punch is the second height
  • the first height is greater than or equal to 0.004, and the ratio is less than or equal to 0.01.
  • using two punching structures at the same time is beneficial to improve the low-frequency energy efficiency of the motor, and also to improve the mass production manufacturability.
  • the stacking height L1 of all the first stator punches 100 in the plurality of stator punches and the height L1 of all the second stator punches in the plurality of stator punches The stacking height L2 satisfies the following relation: 0.004 ⁇ L2/L1 ⁇ 0.01.
  • the two stator punches are assembled according to different axial thicknesses, specifically, the number of the first stator punches 100 is limited to be greater than the number of the second stator punches, which is beneficial to By increasing the space volume of the magnetic guide groove, on the one hand, the vibration noise of the motor at the end frequency is reduced, and on the other hand, the energy efficiency of the motor can be taken into account.
  • stator punches of the same stator core the first stator punch 100 and the second stator punch have the same shape and size.
  • the thicker the stacking thickness L1 of the first stator punch 100 is, the better the noise improvement effect is; the thicker the stacking thickness L2 of the second stator punch 100 is, the larger the space occupied by the concave portion is, and the higher the motor energy efficiency is. Sheets can be assembled according to actual needs.
  • stator punches of the same stator core the first stator punch 100 and the second stator punch have the same shape and size, and the difference is that the first stator punch 100 is provided with a concave portion. Among them, the thickness of the stator punch is 0.3mm-0.5mm.
  • the first stator punches 100 and the second stator punches are alternately stacked.
  • the first stator punches 100 and the second stator punches are alternately superimposed at random, as long as the number of the second stator punches is greater than the number of the first stator punches 100 .
  • the second stator punch is provided with a magnetic guide groove. Therefore, the more the second stator punch, the better the noise reduction effect. Therefore, setting more second stator punch is beneficial to improve the gap between the stator and the rotor.
  • a plurality of first stator punches 100 are continuously stacked to form a first punch segment
  • a plurality of second stator punches are continuously stacked to form a second stator punch segment
  • the first The punch segments and the second stator punch segments are alternately stacked and arranged.
  • a plurality of first stator punching pieces 100 are stacked together to form a first punching segment, so as to form a circumferentially extending communication recess on the inner peripheral wall of the first punching segment, and a plurality of second stator punching pieces 100 are formed.
  • the punching pieces are superimposed together to form a second stator punching segment, and then at least one first punching segment and at least one second stator punching segment are butted and stacked, so that the gap between the stator and the rotor can be enlarged, and the stator teeth 110 and the rotor magnetic poles can be changed.
  • the air-gap reluctance between them can reduce the vibration and noise of the motor while ensuring the performance of the motor.
  • At least one first punch segment and at least one second stator punch can also be superimposed.
  • the magnetic permeability groove 1142 includes at least one of the following: a circular arc magnetic conductive groove, a square magnetic conductive groove, a trapezoidal magnetic conductive groove, and a parallelogram Magnetic groove.
  • the magnetic guide groove 1142 includes an arc-shaped magnetic guide groove 1142 .
  • the bottom wall of the arc-shaped magnetic permeability groove is arc-shaped, and in some embodiments, at least one side wall of the arc-shaped magnetic permeability groove is arc-shaped.
  • the magnetic guide groove 1142 also includes a square magnetic guide groove.
  • the bottom wall of the square magnetic guide groove is a straight bottom wall, and the side walls of the square magnetic guide groove are also straight side walls, and the side walls are the same.
  • the included angle with the bottom wall is a right angle.
  • the magnetic guide groove 1142 also includes a trapezoidal magnetic guide groove.
  • the bottom wall of the trapezoidal magnetic guide groove is a flat bottom wall, and the side walls of the trapezoidal magnetic guide groove are also straight side walls, and the side walls are the same.
  • the included angle with the bottom wall is a non-right angle.
  • FIG. 3 shows the third schematic structural diagram of the stator core according to the embodiment of the present application.
  • the magnetic permeability groove 1142 further includes a parallelogram magnetic permeability groove.
  • the parallelogram magnetic permeability grooves are opposite to each other.
  • the two side walls are parallel, the bottom wall and the opening face are parallel, and the included angle between the side wall and the bottom wall is a right angle or a non-right angle.
  • the magnetic permeability grooves 1142 By setting different shapes of the magnetic permeability grooves 1142, it is possible to reduce parameters such as inductance of the motor for different motor parameters or rotor models, thereby improving the energy efficiency of the motor.
  • the inner peripheral wall of the stator punching piece includes arc segments and/or straight segments.
  • the inner peripheral wall of the stator punching piece may be composed of straight line segments, circular arc segments, or straight line segments and circular segments.
  • Arc segment splicing composition for example, the inner peripheral wall can be in the shape of an arc, can also be composed of a plurality of straight segments, and can be in the shape of a "polygon", or can be composed of a combination of arc segments and straight segments. For example, in the form of a line segment at one end connecting an arc at one end.
  • a stator slot 130 is formed around two adjacent stator teeth 110 , and a slot of the stator slot 130 is formed between tooth crowns 114 of two adjacent stator teeth 110 .
  • stator slots 130 Two adjacent stator teeth 110 are surrounded by stator slots 130 forming a fan-shaped structure, and a slot of the stator slot 130 is formed between tooth crowns 114 of two adjacent stator teeth 110 .
  • winding can be performed on the tooth roots 112 of the stator teeth 110 along the notch of the stator slot 130 , which is beneficial to reduce the difficulty of the production process of the motor, thereby reducing the production cost.
  • FIG. 4 shows the fourth schematic diagram of the structure of the stator iron core according to the embodiment of the present application
  • FIG. 5 shows the fifth schematic diagram of the structure of the stator iron core according to the embodiment of the present application.
  • Ground, at least one tooth crown 114 on at least one stator punch is provided with at least one groove portion 1148 and/or at least one magnetic conduction hole 1149, and the groove portion 1148 and/or the magnetic conduction hole 1149 are located in the first tooth Crown 1144.
  • one or more groove parts 1148 are further provided on the stator punching piece, and the groove parts 1148 include at least one of the following: a circular arc groove part 1148 , a square groove The groove part 1148 , the trapezoidal groove part 1148 , and the parallelogram groove part 1148 .
  • the shape and size of the groove portion 1148 are similar to or the same as the magnetic permeability groove 1142 , so the function of the groove portion 1148 is the same as that of the magnetic conductive groove 1142 .
  • the groove portion 1148 is provided along the radial direction of the stator punching piece, which can effectively "hedge” the vibration deformation generated by the stator iron core, and reduce the radial electromagnetic force wave generated when the armature magnetic field harmonics and the rotor harmonics act in the direction, thereby Reduce the stator punch, and the type variable of the entire stator core.
  • a magnetic conduction hole 1149 is also opened, and the magnetic conduction hole 1149 is further opened.
  • the axis of the "hole” of the hole 1149 is parallel to the axis of the inner hole of the stator, and there is no direct communication between the magnetic conduction hole 1149 and the inner hole of the stator, that is, the magnetic conduction hole 1149 will not penetrate the tooth crown toward the stator
  • the surface on one side of the inner hole is "punched" in the radial direction of the stator punch.
  • the radial electromagnetic force waves generated when the armature magnetic field harmonics and the rotor harmonics act in the direction can be reduced, It is beneficial to suppress the even-order harmonics of the armature magnetic field, thereby reducing the stator punch and the shape variation of the entire stator core, so it can significantly improve the vibration and noise of the key frequency bands of the motor, and improve the hearing of the motor and compressor.
  • a stator is provided, and the stator includes the stator iron core provided by any of the technical solutions of the first aspect. Therefore, the stator provided by the present application has the stator iron provided by any of the technical solutions of the first aspect. All the beneficial effects of the core will not be repeated here in order to avoid repetition.
  • the stator also includes: a winding, which is wound on the tooth root of the stator iron core.
  • a plurality of tooth roots are evenly distributed along the circumferential direction of the stator iron core, and the windings are wound on the tooth roots of the stator iron core.
  • the windings When the windings are energized, the windings generate a uniform magnetic field.
  • the tooth crown can prevent the coil from falling off, so that the rotor will not have the center of mass deviating from the rotation axis during the rotation process, so as to maintain the dynamic balance of the motor, reduce the phenomenon of local wear and tear of the support structure, and ensure that the motor structure is more stable. for stability.
  • the windings are set as concentrated windings, so that the polarities of the adjacent two groups of windings are the same.
  • the adjacent salient poles return to form a closed magnetic circuit.
  • the number of windings can be set to 9 or 12 according to the actual situation and usage requirements.
  • the stator includes a stator iron core, and the stator iron core is arranged around the outside of the rotor; a plurality of tooth roots are arranged on the side of the stator iron core facing the rotor iron core, and the plurality of tooth roots are arranged along the circumferential direction of the stator iron core, A stator slot is defined between adjacent tooth roots; the coil is wound on the tooth roots, and the rotor includes: the stator tooth crown includes a first tooth crown and a second tooth crown extending to both sides in the circumferential direction; the second tooth crown faces the rotor The circumferential area of the first tooth crown is smaller than the circumferential area of the first tooth crown facing the rotor; a magnetic permeability groove facing the rotor is arranged between the first tooth crown and the second tooth crown.
  • stator structure is conducive to suppressing the even harmonics of the armature magnetic field, significantly reducing the radial electromagnetic force waves generated by the interaction of the armature magnetic field harmonics and the rotor magnetic field harmonics, thereby improving the vibration and noise in the key frequency bands of the compressor. , effectively improve the compressor's sense of hearing.
  • a plurality of first stator punches and a plurality of second stator punches, a plurality of first stator punches and a plurality of second stator punches are stacked to form a stator core; magnetic
  • the guide groove is arranged on the second stator punching piece.
  • the second tooth crown surface of the tooth crown is located on the opposite side of the rotation direction of the rotor.
  • the setting of the second tooth crown surface of the tooth crown on the opposite side is more conducive to improving the vibration and noise of the compressor in the key frequency band, and is conducive to improving the listening feeling of the compressor.
  • the stacking height of the first stator punches along the motor axis is L1
  • the stacking height of the second stator punches along the motor axis is L2, satisfying: 0.004 ⁇ L1/L2 ⁇ 0.01.
  • Assembling two kinds of stator punches according to different axial thicknesses can obtain different compressor vibration and noise improvement effects. Among them, the thicker the second stator punching plate, the better the noise improvement effect, and the thicker the first punching plate, the better the energy efficiency of the motor. High, two punches can be assembled according to actual needs.
  • the second stator punches are sandwiched between the first sub-stator punches.
  • the second stator punches are sandwiched between the second stator punches.
  • the first stator punches are sandwiched between the second stator punches.
  • the side of the plurality of tooth roots facing the rotor core forms an inner side wall of the stator, and the ratio of the diameter of the inner side wall of the stator to the diameter of the outer side wall of the stator core is greater than 0.5 and less than or equal to 0.5 0.58.
  • the stator punching structure that satisfies this ratio range is beneficial to further improve the vibration.
  • a permanent magnet synchronous motor is provided, the motor includes the stator provided in any of the technical solutions of the second aspect, and a rotor, and the rotor is inserted into the inner hole of the stator of the stator iron core .
  • the motor includes the stator provided in any one of the technical solutions in the second aspect. Therefore, the motor provided by the present application has all the beneficial effects of the stator provided in any one of the technical solutions in the second aspect. To avoid repetition, it is not repeated here. Too much elaboration.
  • Di is the diameter of the inner hole of the stator
  • T is the rated torque of the motor
  • TPV is the torque per unit volume of the rotor
  • the unit of the rated torque T of the motor is N m
  • the unit of the inner diameter Di of the stator core is mm
  • the unit of the torque TPV per unit volume of the rotor is kN ⁇ m ⁇ m -3 .
  • the rated torque of the motor is T
  • the diameter of the shaft hole of the stator that is, the inner diameter of the stator core is Di
  • the torque per unit volume of the rotor is TPV
  • the value range of unit volume torque TPV is 5kN ⁇ m ⁇ m -3 ⁇ TPV ⁇ 45kN ⁇ m ⁇ m -3 , which limits the rated rotation speed of the motor.
  • the value range of the combined variable of the torque T, the diameter Di of the shaft hole and the torque TPV per unit volume of the rotor enables the motor to meet the power requirements of the compressor.
  • it can effectively reduce the The rotor flux leakage increases the utilization rate of permanent magnets and improves the efficiency of the motor.
  • FIG. 6 shows a schematic structural diagram of a compressor according to an embodiment of the present application
  • the compressor 300 provided by the present application includes the stator provided in any of the above embodiments, or as in any of the above-mentioned embodiments.
  • the permanent magnet synchronous motor provided in the embodiment therefore, the compressor 300 includes all the beneficial effects of the stator and the permanent magnet synchronous motor in any of the above-mentioned embodiments. To avoid repetition, details are not repeated here.
  • the compressor 300 further includes: a stator 310 , a crankshaft 330 and a power part (not shown in the figure).
  • the crankshaft 330 penetrates through the rotor iron core of the rotor 320 and is connected to the rotor iron core.
  • the power part is connected with the shaft, that is, the crankshaft 330 is connected with the rotor core and the power part, and can drive the crankshaft 330 to rotate and then drive the rotor core to rotate when the power part works.
  • the crankshaft 330 of the compressor 300 is connected to the rotor iron core through the central hole of the rotor iron core.
  • the compressor 300 further includes a main bearing 340 , an auxiliary bearing 370 , a cylinder 350 and a piston 360 .
  • a refrigeration device in some embodiments of the present application, includes a stator as provided in any of the foregoing embodiments, or a permanent magnet synchronous motor as provided in any of the foregoing embodiments, or as provided in any of the foregoing embodiments.
  • the compressor provided in one embodiment therefore, the refrigeration equipment includes all the beneficial effects of the stator, the permanent magnet synchronous motor and the compressor as in any of the above-mentioned embodiments. To avoid repetition, the details are not repeated here.
  • refrigeration equipment includes refrigerators, freezers, freezers, refrigerated rooms, split air conditioners, integrated air conditioners, window air conditioners, central air conditioners, ice machines, ice cream machines and other different product forms.
  • refrigeration equipment may refer to any electrical equipment with refrigeration capability, and the embodiment of the present application does not limit the specific product form of the refrigeration equipment.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or through an intermediate medium. indirectly connected.
  • description of the terms “one embodiment,” “some embodiments,” “a specific embodiment,” etc. means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in this application at least one embodiment or example of .
  • schematic representations of the above terms do not necessarily refer to the same embodiment or instance.
  • the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

一种定子铁芯、定子(310)、永磁同步电机、压缩机(300)和制冷设备,其中,定子铁芯包括:定子内孔(120),用于穿设转子(320);定子冲片(100),定子冲片(100)上设置有沿周向分布的多个定子齿(110),定子齿(110)包括齿根(112)和连接于齿根(112)的齿冠(114),多个齿冠(114)围设形成定子内孔(120);磁导凹槽(1142),设置于齿冠(114)上,磁导凹槽(1142)朝向定子内孔(120)设置,磁导凹槽(1142)将齿冠(114)朝向定子内孔(120)的表面区域,分隔为齿冠第一齿冠面(1144)和齿冠第二齿冠面(1146),齿冠第二齿冠面(1146)朝向定子内孔(120)的区域面积,大于齿冠第一齿冠面(1144)朝向定子内孔(120)的区域面积。该方案有利于抑制电枢磁场的偶次谐波,从而减少定子冲片(100),以及整个定子铁芯的型变量,因此能够显著改善电机关键频段的振动噪音,改善电机及压缩机(300)的听感。

Description

定子铁芯、定子、永磁同步电机、压缩机和制冷设备
本申请要求于2020年11月30日向中国国家知识产权局提交的申请号为“202011376606.7”,申请名称为“定子铁芯、定子、永磁同步电机、压缩机和制冷设备”的中国专利申请,于2020年12月07日向中国国家知识产权局提交的申请号为“202011415704.7”,申请名称为“定子铁芯、定子、永磁同步电机、压缩机和制冷设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩机技术领域,具体而言,涉及一种定子铁芯、一种定子、一种永磁同步电机、一种压缩机和一种制冷设备。
背景技术
相关技术中,在旋转式直流变频压缩机中,电机普遍采用内置式永磁电动机,在高功率密度的电机设计中,电机通电后,定子磁场与转子磁场相互作用,会产生合成磁场,导致产生振动噪音。
如何处理合成磁场导致的振动噪音以改善听感,是亟待解决的技术问题。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出一种定子铁芯。
本申请的第二方面提出一种定子。
本申请的第三方面提出一种永磁同步电机。
本申请的第四方面提出一种压缩机。
本申请的第五方面提出一种制冷设备。
有鉴于此,本申请的第一方面提供了一种定子铁芯,包括:定子内孔,用于穿设转子;多个定子冲片,每个定子冲片具有厚度,多个定子冲片沿定子内孔的轴向堆叠设置,定子冲片包括定子轭和沿定子轭周向分布的多个定子齿,定子齿包括:齿根,与定子轭相连接;齿冠,与齿根背离定子轭的一端相连接;其中,每个定子冲片具有沿定子内孔的轴向的厚度,至少一个定子冲片上的至少一个齿冠上设置有磁导凹槽,沿定子轭的周向,磁导凹槽将齿冠背离齿根的表面,分隔为第一齿冠面和第二齿冠面,第一齿冠面的面积小于第二齿冠面的面积。
在该技术方案中,定子铁芯中设置有定子内孔,电机的转子能够穿设在定子内孔中,并在定子内孔内旋转。
定子铁芯包括定子冲片,定子冲片上设置有多个朝向定子内孔的定子齿,定子齿包括齿根和齿冠,多个定子齿在定子冲片的内周向上分布设置,使得多个齿冠相互围设,构成为上述定子内孔。
其中,在齿冠上还设置有磁导凹槽,磁导凹槽的“开口”朝向定子内孔设置。以磁导凹槽为界,定子齿的齿冠被分隔成齿冠第一齿冠面,以及齿冠第二齿冠面,其中齿冠第一齿冠面在朝向定子内孔的区域上的面积,小于齿冠第二齿冠面在朝向定子内孔的区域上的面积,也即磁导凹槽不开设在定子齿的“对称中心线”上。
由于径向分量使定子铁芯产生的振动变形是电磁噪声的主要来源,因此在沿定子冲片的径向上开设磁导凹槽,能够有效的“对冲”定子铁芯产生的振动变形,减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,从而减少定子冲片,以及整个定子铁芯的型变量。
应用了本申请提供的实施例,通过在定子齿上设置磁导凹槽,能够减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,有利于抑制电枢磁场的偶次谐波,从而减少定子冲片,以及整个定子铁芯的型变量,因此能够显著改善电机关键频段的振动噪音,改善电机及压缩机的听感。
另外,本申请提供的上述技术方案中的定子铁芯还可以具有如下附加技术特征:
在上述技术方案中,定子冲片的设置数量为多个,多个定子冲片包括:至少一个第一定子冲片;至少一个第二定子冲片,第一定子冲片和第二定子冲片沿定子内孔的轴向堆叠设置,第二定子冲片上设置有磁导凹槽。
在该技术方案中,电机的定子铁芯包括多个堆叠设置的定子冲片,其中,多个定子冲片中包括有至少一个第一定子冲片和至少一个第二定子冲片。第一定子冲片和第二定子冲片,沿定子内孔的轴向堆叠。
具体地,可以按照第一定子冲片-第二定子冲片-第一定子冲片的方式,间隔堆叠,还可以将多个第一定子冲片进行堆叠后,再将多个第二定子冲片进行堆叠,还可以按照乱序堆叠。本申请实施例对第一定子冲片和第二定子冲片的堆叠方式不做限定。
其中,在第二定子冲片上,设置有上述磁导凹槽,在第一定子冲片上则不设置该磁导凹槽。也即,在部分定子冲片上设置磁导凹槽,在另一部分定子冲片上部设置磁导凹槽。
同时采用两种定子冲片结构,也即第一定子冲片和第二定子冲片,有利于改善电机的低频能效,同时能够降低生产工艺难度,有利于提高产品良品率和降低产品成本。
在上述任一技术方案中,沿定子内孔的轴向,第一定子冲片的堆叠高度为第一高度,第二定子冲片的堆叠高度为第二高度,其中第一高度与第二高度的比值大于等于0.004,且比值小于等于0.01。
在该技术方案中,同时采用两种冲片结构有利于改善电机的低频能效,兼顾改善量产制造性。沿轴孔的轴向,也即多个定子冲片的堆叠方向,多个定子冲片中全部第一定子冲片的堆叠高度L1和多个定子冲片中全部第二定子冲片的堆叠高度L2,满足以下关系式:0.004≤L2/L1≤0.01。
通过优化两种定子冲片的对接方式,使得两种定子冲片按不同轴向厚 度进行组装,具体为限定第一定子冲片的数量大于第二定子冲片的数量的方式,有利于提升磁导凹槽的空间体积,一方面降低电机在终点频率上的振动噪音,另一方面能够兼顾电机的运行能效。
可以理解的是,作为同一个定子铁芯的定子冲片,第一定子冲片与第二定子冲片的形状与尺寸相同。
在上述任一技术方案中,沿定子内孔的轴向,第一定子冲片与第二定子冲片交替堆叠设置。
在该技术方案中,第一定子冲片与第二定子冲片随机交替叠加,只要实现第二定子冲片的数量大于第一定子冲片的数量即可。具体地,第二定子冲片上设置有磁导凹槽,因此第二定子冲片的数量越多,降噪效果越好,因此设置更多的第二定子冲片有利于提升定子与转子之间的间隙,从而降低电枢磁场谐波与转子磁场谐波相作用所产生的径向电磁力波,减小定子铁芯的形变,显著改善电机关键频段的振动噪音,有效改善压缩机听感。
在上述任一技术方案中,沿转子的轴向,多个第一定子冲片连续堆叠形成第一冲片段,多个第二定子冲片连续堆叠形成第二定子冲片段,第一冲片段与第二定子冲片段交替堆叠设置。
在该技术方案中,将多个第一定子冲片叠加在一起形成第一冲片段,以在第一冲片段的内周壁上形成周向延伸的连通凹陷,将多个第二定子冲片叠加在一起形成第二定子冲片段,然后将至少一个第一冲片段与至少一个第二定子冲片段进行对接叠加,同样能够达到降低电机的振动噪音的目的。
在上述任一技术方案中,磁导凹槽包括以下中的至少一种:圆弧形磁导凹槽、方形磁导凹槽、梯形磁导凹槽、平行四边形磁导凹槽。
在该技术方案中,磁导凹槽包括圆弧型磁导凹槽。具体地,圆弧形磁导凹槽的底壁为圆弧型,在一些实施方式中,圆弧形磁导凹槽的至少一个侧壁为圆弧形。
磁导凹槽还包括方形磁导凹槽,具体地,方形磁导凹槽的底壁为平直的底壁,方形磁导凹槽的侧壁同为平直的侧壁,且侧壁与底壁之间的夹角为直角。
磁导凹槽还包括梯形磁导凹槽,具体地,梯形磁导凹槽的底壁为平直的底壁,梯形磁导凹槽的侧壁同为平直的侧壁,且侧壁与底壁之间的夹角为非直角。
磁导凹槽还包括平行四边形磁导凹槽,具体地,平行四边形磁导凹槽相对的两个侧壁相平行,底壁与开口面向平行,且侧壁与底壁之间的夹角为直角或非直角。
能够理解的是,上述提到的多种磁导凹槽,其可以为对称结果或非对称结构,本申请实施例对磁导凹槽的具体形态不做限定。
通过设置不同形状的磁导凹槽,能够针对不同的电机参数或转子型号,从而降低电机的电感量等参数,进而提高电机能效。
在上述任一技术方案中,沿定子内孔的径向,定子冲片的内周壁包括弧线段和/或直线段。
在该技术方案中,沿轴孔的径向,定子冲片的内周壁,也包括齿冠的内周壁,可以由直线段组成,或由圆弧段组成,又或由直线段和圆弧段拼接组成。例如,内周壁可以呈现圆弧状,也可以由多段直线段构成,并呈现为“多边形”的形状,还可以由圆弧段和直线段组合构成。如一端线段连接一端圆弧的形式。通过将定子冲片的内周壁设置为不同形式,有利于提高电机的能效,并降低电机在重点频段上的噪音,改善电机的听感。
在上述任一技术方案中,相邻两个定子齿围设形成定子槽,相邻两个定子齿的齿冠之间形成定子槽的槽口。
相邻两个定子齿围设形成扇形结构的定子槽,相邻两个定子齿的齿冠之间形成定子槽的槽口。在将定子铁芯组合成电机时,可以沿定子槽的槽口,在定子齿的齿根上进行绕线,有利于降低电机的生产工艺难度,进而 降低生产成本。
在上述任一技术方案中,至少一个定子冲片上的至少一个齿冠上设置有至少一个凹槽部和/或至少一个磁导通孔,凹槽部和/或磁导通孔均位于第一齿冠面。
在该技术方案中,定子冲片上还设置有一个或多个凹槽部,凹槽部包括以下中的至少一种:圆弧形凹槽部、方形凹槽部、梯形凹槽部、平行四边形凹槽部。
具体地,该凹槽部的形状和尺寸,均与磁导凹槽相近或相同,因此,该凹槽部的作用与磁导凹槽也相同。
在沿定子冲片的径向上开设凹槽部,能够有效的“对冲”定子铁芯产生的振动变形,减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,从而减少定子冲片,以及整个定子铁芯的型变量。
在一些实施方式中,在齿冠上,具体为第一齿冠面的范围内,在沿转子的轴向方向上,还开设有磁导通孔,磁导通孔的“孔”的轴线,与定子内孔的轴线平行,且磁导通孔与定子内孔之间不会直接连通,也就是说,磁导通孔不会贯穿齿冠朝向定子内孔一侧的表面,是在定子冲片的径向上“打孔”。
应用了本申请提供的实施例,通过在定子齿上设置凹槽部和/或磁导通孔,能够减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,有利于抑制电枢磁场的偶次谐波,从而减少定子冲片,以及整个定子铁芯的型变量,因此能够显著改善电机关键频段的振动噪音,改善电机及压缩机的听感。
本申请第二方面提供了一种定子,该定子包括第一方面任一技术方案提供的定子铁芯,因此,本申请提供的定子具有第一方面任一技术方案提供的定子铁芯的全部有益效果,为避免重复,在此不再过多赘述。
在上述技术方案中,定子还包括:绕组,绕设在定子铁芯的齿根上。
在该技术方案中,多个齿根沿定子铁芯的周向均匀地分布,绕组绕设在定子铁芯的齿根上,对绕组进行通电时使得绕组产生均匀的磁场,同时,定子铁芯的齿冠能够起到防止线圈脱落的作用,使得转子在转动过程中不会存在质心偏离旋转轴心的情况,以维持电机的动平衡,减少支撑结构的局部磨损加剧的现象,确保电机结构更为稳固。
进一步地,在定子应用在电动机时,将绕组设置为集中式绕组,以使相邻的两组绕组的极性的相同的,正是由于同性相斥的原理,使定子绕组形成的磁场经相邻的凸极返回构成闭合磁路。并且根据实际情况和使用需求可以将绕组的数量设置为9个或12个。
本申请第三方面提供了一种永磁同步电机,该电机包括上述第二方面中任一技术方案中提供的定子,以及转子,转子穿设于定子铁芯的定子内孔内。该电机包括如第二方面中任一技术方案中提供的定子,因此,本申请提供的电机具有第二方面中任一技术方案中提供的定子的全部有益效果,为避免重复,在此不再过多赘述。
在上述技术方案中,电机的参数满足以下关系式:
5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6
5≤TPV≤45;
其中,Di为定子内孔的直径,T为电机的额定转矩,TPV为转子的单位体积转矩,其中电机的额定转矩T的单位为N·m,定子铁芯的内径Di的单位为mm,转子的单位体积转矩TPV的单位为kN·m·m -3
在该技术方案中,电机的额定转矩为T,定子的轴孔的直径,也即定子铁芯的内径为Di,转子的单位体积转矩为TPV,且满足5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,单位体积转矩TPV的取值范围为5kN·m·m -3≤TPV≤45kN·m·m -3,通过限定了电机的额定转矩T、轴孔的直径Di和转子的单位体积转矩TPV的组合变量的取值范围,使得该电机可以满足压缩机的动力需求,此外,对于采用该转子的电机及压缩机,可有效降 低转子漏磁,增加永磁体利用率,提升电机效率。
本申请第四方面提供了一种压缩机,该压缩机包括如第二方面中任一技术方案的定子,或如第三方面中任一技术方案中的永磁同步电机,因此,该压缩机包括如上述任一技术方案中的定子和永磁同步电机的全部有益效果,为避免重复,在此不再过多赘述。
本申请第五方面提供了一种制冷设备,该制冷设备包括如第二方面中任一技术方案的定子,或如第三方面中任一技术方案中的永磁同步电机,或如第四方面中任一技术方案中的压缩机,因此,该制冷设备包括如上述任一技术方案中的定子、永磁同步电机和压缩机的全部有益效果,为避免重复,在此不再过多赘述。
能够理解的是,制冷设备包括冰箱、冰柜、冷柜、冷藏室、分体式空调、一体式空调、窗式空调、中央空调、制冰机、冰淇淋机等不同的产品形式,本申请实施例中“制冷设备”可以指代任一种具有制冷能力的电器设备,本申请实施例对制冷设备的具体产品形态不做限定。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请实施例的定子铁芯的结构示意图之一;
图2示出了根据本申请实施例的定子铁芯的结构示意图之二;
图3示出了根据本申请实施例的定子铁芯的结构示意图之三;
图4示出了根据本申请实施例的定子铁芯的结构示意图之四;
图5示出了根据本申请实施例的定子铁芯的结构示意图之五;
图6示出了根据本申请实施例的压缩机的结构示意图。
其中,图1至图6中附图标记与部件名称之间的对应关系为:
100第一定子冲片;
110定子齿,112齿根,114齿冠,120定子内孔,130定子槽;
1142磁导凹槽,1144第一齿冠面,1146第二齿冠面,1148凹槽部,1149磁导通孔;
300压缩机,310定子,320转子,330曲轴,340主轴承,350气缸,360活塞,370副轴承。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图6描述根据本申请一些实施例定子铁芯、定子、永磁同步电机、压缩机和制冷设备。
实施例一
图1示出了根据本申请实施例的定子铁芯的结构示意图之一,图2示出了根据本申请实施例的定子铁芯的结构示意图之二,其中,如图1和图2所示,定子铁芯,包括:定子内孔120,用于穿设转子。
多个定子冲片,每个定子冲片具有厚度,多个定子冲片沿定子内孔120的轴向堆叠设置,定子冲片包括定子轭和沿定子轭周向分布的多个定子齿110,定子齿110包括:齿根112,与定子轭相连接;齿冠114,与齿根112背离定子轭的一端相连接;其中,每个定子冲片具有沿定子内孔120的轴向的厚度,至少一个定子冲片上的至少一个齿冠114上设置有磁导凹槽 1142,沿定子轭的周向,磁导凹槽1142将齿冠114背离齿根112的表面,分隔为第一齿冠面1144和第二齿冠面1146,第一齿冠面1144的面积小于第二齿冠面1146的面积。
在本申请实施例中,定子铁芯中设置有定子内孔120,电机的转子能够穿设在定子内孔120中,并在定子内孔120内旋转。定子铁芯包括定子冲片,定子冲片上设置有多个朝向定子内孔120的定子齿110,定子齿110包括齿根112和齿冠114,多个定子齿110在定子冲片的内周向上分布设置,使得多个齿冠114相互围设,构成为上述定子内孔120。
其中,在齿冠114上还设置有磁导凹槽1142,磁导凹槽1142的“开口”朝向定子内孔120设置。以磁导凹槽1142为界,定子齿110的齿冠114被分隔成齿冠第一齿冠面1144,以及齿冠第二齿冠面1146,其中齿冠第一齿冠面1144在朝向定子内孔120的区域上的面积,小于齿冠第二齿冠面1146在朝向定子内孔120的区域上的面积,也即磁导凹槽1142不开设在定子齿110的“中心线”上。
具体地,如图2所示,定子内孔120的圆心为O,以圆心O为起点,分别向齿冠114的两端,以及磁导凹槽1142的两端做连线,将齿冠第二齿冠面的靴面进行分隔。其中齿冠第二齿冠面1146朝向定子内孔120的区域面积为AB,齿冠第一齿冠面1144朝向定子内孔120的区域面积为CD,AB>CD。
由于径向分量使定子铁芯产生的振动变形是电磁噪声的主要来源,因此在沿定子冲片的径向上开设磁导凹槽1142,能够有效的“对冲”定子铁芯产生的振动变形,减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,从而减少定子冲片,以及整个定子铁芯的型变量。
应用了本申请提供的实施例,通过在定子齿110上设置磁导凹槽1142,能够减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,有利于抑制电枢磁场的偶次谐波,从而减少定子冲片,以及整个定子铁芯的型变 量,因此能够显著改善电机关键频段的振动噪音,改善电机及压缩机的听感。
实施例二
在本申请的一些实施例中,如图1所示,磁导凹槽1142位于齿冠114的靴面上,且沿定子齿110的轴向方向上,磁导凹槽1142为非贯通结构。
在本申请实施例中,磁导凹槽1142开设与齿冠114的靴面上,其中,靴面即齿冠114朝向定子内孔一侧的外表面。同时,沿定子齿110的轴向方向上,导磁槽为非贯通结构,也就是说,磁导凹槽1142不会沿定子齿110的轴向贯通定子齿110,能够有效提高定子齿110的结构强度,同时有利于抑制电枢磁场的偶次谐波,从而减少定子冲片,以及整个定子铁芯的型变量,因此能够显著改善电机关键频段的振动噪音,改善电机及压缩机的听感。
实施例三
在本申请的一些实施例中,定子冲片的设置数量为多个,多个定子冲片包括:至少一个第一定子冲片100;至少一个第二定子冲片,第一定子冲片100和第二定子冲片沿定子内孔120的轴向堆叠设置,第二定子冲片上设置有磁导凹槽1142。
在本申请实施例中,电机的定子铁芯包括多个堆叠设置的定子冲片,其中,多个定子冲片中包括有至少一个第一定子冲片100和至少一个第二定子冲片。第一定子冲片100和第二定子冲片,沿定子内孔120的轴向堆叠。
具体地,可以按照第一定子冲片100-第二定子冲片-第一定子冲片100的方式,间隔堆叠,还可以将多个第一定子冲片100进行堆叠后,再将多个第二定子冲片进行堆叠,还可以按照乱序堆叠。本申请实施例对第一定子冲片100和第二定子冲片的堆叠方式不做限定。
其中,在第二定子冲片上,设置有上述磁导凹槽1142,在第一定子冲 片100上则不设置该磁导凹槽1142。也即,在部分定子冲片上设置磁导凹槽1142,在另一部分定子冲片上部设置磁导凹槽1142。
同时采用两种定子冲片结构,也即第一定子冲片100和第二定子冲片,有利于改善电机的低频能效,同时能够降低生产工艺难度,有利于提高产品良品率和降低产品成本。
实施例四
在本申请的一些实施例中,沿定子内孔120的轴向,第一定子冲片100的堆叠高度为第一高度,第二定子冲片的堆叠高度为第二高度,其中第一高度与第二高度的比值大于等于0.004,且比值小于等于0.01。
在本申请实施例中,同时采用两种冲片结构有利于改善电机的低频能效,兼顾改善量产制造性。沿轴孔的轴向,也即多个定子冲片的堆叠方向,多个定子冲片中全部第一定子冲片100的堆叠高度L1和多个定子冲片中全部第二定子冲片的堆叠高度L2,满足以下关系式:0.004≤L2/L1≤0.01。
通过优化两种定子冲片的对接方式,使得两种定子冲片按不同轴向厚度进行组装,具体为限定第一定子冲片100的数量大于第二定子冲片的数量的方式,有利于提升磁导凹槽的空间体积,一方面降低电机在终点频率上的振动噪音,另一方面能够兼顾电机的运行能效。
可以理解的是,作为同一个定子铁芯的定子冲片,第一定子冲片100与第二定子冲片的形状与尺寸相同。
其中,第一定子冲片100的堆叠厚度L1越厚,噪音改善效果越好,第二定子冲片的堆叠厚度L2越厚,凹陷部所占空间越大,电机能效越高,两种冲片可以按实际需要进行组装。
可以理解的是,作为同一个定子铁芯的定子冲片,第一定子冲片100与第二定子冲片的形状与尺寸相同,区别在于第一定子冲片100上设有凹陷部。其中,定子冲片的厚度为0.3mm~0.5mm。
实施例五
在本申请的一些实施例中,沿定子内孔120的轴向,第一定子冲片100与第二定子冲片交替堆叠设置。
在本申请实施例中,第一定子冲片100与第二定子冲片随机交替叠加,只要实现第二定子冲片的数量大于第一定子冲片100的数量即可。具体地,第二定子冲片上设置有磁导凹槽,因此第二定子冲片的数量越多,降噪效果越好,因此设置更多的第二定子冲片有利于提升定子与转子之间的间隙,从而降低电枢磁场谐波与转子磁场谐波相作用所产生的径向电磁力波,减小定子铁芯的形变,进而防止电磁泄漏,显著改善电机关键频段的振动噪音,有效改善压缩机听感。
实施例六
在本申请的一些实施例中,沿转子的轴向,多个第一定子冲片100连续堆叠形成第一冲片段,多个第二定子冲片连续堆叠形成第二定子冲片段,第一冲片段与第二定子冲片段交替堆叠设置。
在本申请实施例中,将多个第一定子冲片100叠加在一起形成第一冲片段,以在第一冲片段的内周壁上形成周向延伸的连通凹陷,将多个第二定子冲片叠加在一起形成第二定子冲片段,然后将至少一个第一冲片段与至少一个第二定子冲片段进行对接叠加,从而能够扩大定子与转子之间的间隙,改变定子齿110与转子磁极之间的气隙磁阻,在保证电机性能的同时,达到降低电机的振动噪音的目的。
可以理解的是,还可以至少一个第一冲片段与至少一个第二定子冲片进行叠加。
实施例七
在本申请的一些实施例中,如图1所示,磁导凹槽1142包括以下中的至少一种:圆弧形磁导凹槽、方形磁导凹槽、梯形磁导凹槽、平行四边形磁导凹槽。
在本申请实施例中,磁导凹槽1142包括圆弧型磁导凹槽1142。具体 地,圆弧形磁导凹槽的底壁为圆弧型,在一些实施方式中,圆弧形磁导凹槽的至少一个侧壁为圆弧形。
磁导凹槽1142还包括方形磁导凹槽,具体地,方形磁导凹槽的底壁为平直的底壁,方形磁导凹槽的侧壁同为平直的侧壁,且侧壁与底壁之间的夹角为直角。
磁导凹槽1142还包括梯形磁导凹槽,具体地,梯形磁导凹槽的底壁为平直的底壁,梯形磁导凹槽的侧壁同为平直的侧壁,且侧壁与底壁之间的夹角为非直角。
图3示出了根据本申请实施例的定子铁芯的结构示意图之三,如图3所示,磁导凹槽1142还包括平行四边形磁导凹槽,具体地,平行四边形磁导凹槽相对的两个侧壁相平行,底壁与开口面向平行,且侧壁与底壁之间的夹角为直角或非直角。
能够理解的是,上述提到的多种磁导凹槽1142,其可以为对称结果或非对称结构,本申请实施例对磁导凹槽1142的具体形态不做限定。
通过设置不同形状的磁导凹槽1142,能够针对不同的电机参数或转子型号,从而降低电机的电感量等参数,进而提高电机能效。
实施例八
在本申请的一些实施例中,如图1所示,沿定子内孔120的径向,定子冲片的内周壁包括弧线段和/或直线段。
在本申请实施例中,沿轴孔的径向,定子冲片的内周壁,也包括齿冠114的内周壁,可以由直线段组成,或由圆弧段组成,又或由直线段和圆弧段拼接组成。例如,内周壁可以呈现圆弧状,也可以由多段直线段构成,并呈现为“多边形”的形状,还可以由圆弧段和直线段组合构成。如一端线段连接一端圆弧的形式。通过将定子冲片的内周壁设置为不同形式,有利于提高电机的能效,并降低电机在重点频段上的噪音,改善电机的听感。
实施例九
在本申请的一些实施例中,如图1所示,相邻两个定子齿110围设形成定子槽130,相邻两个定子齿110的齿冠114之间形成定子槽130的槽口。
相邻两个定子齿110围设形成扇形结构的定子槽130,相邻两个定子齿110的齿冠114之间形成定子槽130的槽口。在将定子铁芯组合成电机时,可以沿定子槽130的槽口,在定子齿110的齿根112上进行绕线,有利于降低电机的生产工艺难度,进而降低生产成本。
实施例十
在本申请的一些实施例中,图4示出了根据本申请实施例的定子铁芯的结构示意图之四,图5示出了根据本申请实施例的定子铁芯的结构示意图之五,具体地,至少一个定子冲片上的至少一个齿冠114上设置有至少一个凹槽部1148和/或至少一个磁导通孔1149,凹槽部1148和/或磁导通孔1149均位于第一齿冠面1144。
在本申请实施例中,如图4所示,定子冲片上还设置有一个或多个凹槽部1148,凹槽部1148包括以下中的至少一种:圆弧形凹槽部1148、方形凹槽部1148、梯形凹槽部1148、平行四边形凹槽部1148。
具体地,该凹槽部1148的形状和尺寸,均与磁导凹槽1142相近或相同,因此,该凹槽部1148的作用与磁导凹槽1142也相同。
在沿定子冲片的径向上开设凹槽部1148,能够有效的“对冲”定子铁芯产生的振动变形,减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,从而减少定子冲片,以及整个定子铁芯的型变量。
在一些实施方式中,如图5所示,在齿冠上,具体为第一齿冠面1144的范围内,在沿转子的轴向方向上,还开设有磁导通孔1149,磁导通孔1149的“孔”的轴线,与定子内孔的轴线平行,且磁导通孔1149与定子内孔之间不会直接连通,也就是说,磁导通孔1149不会贯穿齿冠朝向定子内孔一侧的表面,是在定子冲片的径向上“打孔”。
应用了本申请提供的实施例,通过在定子齿上设置凹槽部1148和/或磁导通孔1149,能够减少电枢磁场谐波与转子谐波向作用时产生的径向电磁力波,有利于抑制电枢磁场的偶次谐波,从而减少定子冲片,以及整个定子铁芯的型变量,因此能够显著改善电机关键频段的振动噪音,改善电机及压缩机的听感。
实施例十一
在本申请的一些实施例中,提供了一种定子,该定子包括第一方面任一技术方案提供的定子铁芯,因此,本申请提供的定子具有第一方面任一技术方案提供的定子铁芯的全部有益效果,为避免重复,在此不再过多赘述。
定子还包括:绕组,绕设在定子铁芯的齿根上。
在本申请实施例中,多个齿根沿定子铁芯的周向均匀地分布,绕组绕设在定子铁芯的齿根上,对绕组进行通电时使得绕组产生均匀的磁场,同时,定子铁芯的齿冠能够起到防止线圈脱落的作用,使得转子在转动过程中不会存在质心偏离旋转轴心的情况,以维持电机的动平衡,减少支撑结构的局部磨损加剧的现象,确保电机结构更为稳固。
进一步地,在定子应用在电动机时,将绕组设置为集中式绕组,以使相邻的两组绕组的极性的相同的,正是由于同性相斥的原理,使定子绕组形成的磁场经相邻的凸极返回构成闭合磁路。并且根据实际情况和使用需求可以将绕组的数量设置为9个或12个。
实施例十二
在本申请的一些实施例中,通过对上述定子铁芯和定子的多种实施例进行结合,来对本申请的完整技术方案进行说明。
具体地,定子包括定子铁芯,定子铁芯围设于转子的外部;多个齿根,设置在定子铁芯朝向转子铁芯的一侧,多个齿根沿定子铁芯的周向设置,相邻齿根之间限定出定子槽隙;线圈,绕设在齿根上,转子包括:定子齿 冠包括向周向两侧延伸的第一齿冠和第二齿冠;第二齿冠朝向转子的周向区域小于第一齿冠朝向转子的周向区域;第一齿冠和第二齿冠之间设置朝向转子的磁导凹槽。采用这种定子结构,有利于抑制电枢磁场的偶次谐波,显著降低电枢磁场谐波与转子磁场谐波相作用所产生的径向电磁力波,进而改善压缩机关键频段的振动噪音,有效改善压缩机听感。
在本申请的一些实施方式中,多个第一定子冲片和多个第二定子冲片,多个第一定子冲片和多个第二定子冲片堆叠以构成定子铁芯;磁导凹槽设置第二定子冲片上。同时采用两种冲片结构有利于改善电机的低频能效,兼顾改善量产制造性。
在本申请的一些实施方式中,齿冠第二齿冠面位于转子旋转方向的反侧。齿冠第二齿冠面设置在反侧更有利于改善压缩机在关键频段上的振动噪音,有利于改善压缩机听感。
在本申请的一些实施方式中,第一定子冲片沿电机轴向堆叠高度为L1,第二定子冲片沿电机轴向堆叠高度为L2,满足:0.004≤L1/L2≤0.01。
将两种定子冲片按不同轴向厚度组装,可以获得不同的压缩机振动噪音改善效果,其中,第二定子冲片越厚,噪音改善效果越好,第一冲片越厚,电机能效越高,两种冲片可以按实际需要进行组装。
在本申请的一些实施方式中,第二定子冲片夹设于第一子定子冲片之间。
在本申请的一些实施方式中,第二定子冲片夹设于第二子定子冲片之间。
在本申请的一些实施方式中,第一定子冲片夹设于第二子定子冲片之间。
在本申请的一些实施方式中,多个齿根朝向转子铁芯的一侧合围成定子的内侧壁,定子的内侧壁的直径与定子铁芯的外侧壁的直径的比值大于0.5,且小于等于0.58。满足该比值范围的定子冲片结构有利于进一步改善 振动。
实施例十三
在本申请的一些实施例中,提供了一种永磁同步电机,该电机包括上述第二方面中任一技术方案中提供的定子,以及转子,转子穿设于定子铁芯的定子内孔内。该电机包括如第二方面中任一技术方案中提供的定子,因此,本申请提供的电机具有第二方面中任一技术方案中提供的定子的全部有益效果,为避免重复,在此不再过多赘述。
其中,电机的参数满足以下关系式:
5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6
5≤TPV≤45;
其中,Di为定子内孔的直径,T为电机的额定转矩,TPV为转子的单位体积转矩,其中电机的额定转矩T的单位为N·m,定子铁芯的内径Di的单位为mm,转子的单位体积转矩TPV的单位为kN·m·m -3
在本申请实施例中,电机的额定转矩为T,定子的轴孔的直径,也即定子铁芯的内径为Di,转子的单位体积转矩为TPV,且满足5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6,单位体积转矩TPV的取值范围为5kN·m·m -3≤TPV≤45kN·m·m -3,通过限定了电机的额定转矩T、轴孔的直径Di和转子的单位体积转矩TPV的组合变量的取值范围,使得该电机可以满足压缩机的动力需求,此外,对于采用该转子的电机及压缩机,可有效降低转子漏磁,增加永磁体利用率,提升电机效率。
实施例十四
在本申请的一些实施例中,图6示出了根据本申请实施例的压缩机的结构示意图,本申请提供的压缩机300包括如上述任一实施例中提供的定子,或如上述任一实施例中提供的永磁同步电机,因此,该压缩机300包括如上述任一实施例中的定子和永磁同步电机的全部有益效果,为避免重复,在此不再过多赘述。
进一步地,压缩机300还包括:定子310,曲轴330和动力部(图中未示出),曲轴330穿设于转子320的转子铁芯,并与转子铁芯相连接。动力部与轴相连接,也即曲轴330连接转子铁芯和动力部,进而在动力部工作时能够带动曲轴330转动进而带动转子铁芯转动。具体地,压缩机300的曲轴330通过转子铁芯的中心孔与转子铁芯相连接。
具体地,压缩机300还包括主轴承340、副轴承370、气缸350和活塞360,曲轴330一端穿设于转子320内,另一端依次穿过主轴承340、气缸350、副轴承370。
实施例十五
在本申请的一些实施例中,提供了一种制冷设备,该制冷设备包括如上述任一实施例中提供的定子,或如上述任一实施例中提供的永磁同步电机,或如上述任一实施例中提供的压缩机,因此,该制冷设备包括如上述任一实施例中的定子、永磁同步电机和压缩机的全部有益效果,为避免重复,在此不再过多赘述。
能够理解的是,制冷设备包括冰箱、冰柜、冷柜、冷藏室、分体式空调、一体式空调、窗式空调、中央空调、制冰机、冰淇淋机等不同的产品形式,本申请实施例中“制冷设备”可以指代任一种具有制冷能力的电器设备,本申请实施例对制冷设备的具体产品形态不做限定。
本申请的描述中,术语“多个”则指两个或两个以上,除非另有明确的限定,术语“上”、“下”等指示的方位或位置关系为基于附图所述的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的 具体含义。
在本申请的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本申请中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (15)

  1. 一种定子铁芯,其中,包括:
    定子内孔,用于穿设转子;
    多个定子冲片,每个所述定子冲片具有厚度,多个所述定子冲片沿所述定子内孔的轴向堆叠设置,所述定子冲片包括定子轭和沿所述定子轭周向分布的多个定子齿,所述定子齿包括:
    齿根,与所述定子轭相连接;
    齿冠,与所述齿根背离所述定子轭的一端相连接;
    其中,每个所述定子冲片具有沿所述定子内孔的轴向的厚度,至少一个所述定子冲片上的至少一个所述齿冠上设置有磁导凹槽,沿所述定子轭的周向,所述磁导凹槽将所述齿冠背离所述齿根的表面,分隔为第一齿冠面和第二齿冠面,所述第一齿冠面的面积小于所述第二齿冠面的面积。
  2. 根据权利要求1所述的定子铁芯,其中,所述定子冲片的设置数量为多个,多个所述定子冲片包括:
    至少一个第一定子冲片;
    至少一个第二定子冲片,所述第一定子冲片和所述第二定子冲片沿所述定子内孔的轴向堆叠设置,所述第二定子冲片上设置有所述磁导凹槽。
  3. 根据权利要求2所述的定子铁芯,其中,
    沿所述定子内孔的轴向,所述第一定子冲片的堆叠总高度为第一高度,所述第二定子冲片的堆叠总高度为第二高度,其中所述第一高度与所述第二高度的比值大于等于0.001,且所述比值小于等于0.9。
  4. 根据权利要求3所述的定子铁芯,其中,
    沿所述定子内孔的轴向,所述第一定子冲片与所述第二定子冲片交替堆叠设置。
  5. 根据权利要求3或4所述的定子铁芯,其中,
    沿所述转子的轴向,多个所述第一定子冲片连续堆叠形成第一冲片段,多个所述第二定子冲片连续堆叠形成第二定子冲片段,所述第一冲片段与所述第二定子冲片段交替堆叠设置。
  6. 根据权利要求1所述的定子铁芯,其中,所述磁导凹槽包括以下中的至少一种:
    圆弧形磁导凹槽、方形磁导凹槽、梯形磁导凹槽、平行四边形磁导凹槽。
  7. 根据权利要求1所述的定子铁芯,其中,
    沿所述定子内孔的径向,所述定子冲片的内周壁包括弧线段和/或直线段。
  8. 根据权利要求1所述的定子铁芯,其中,
    相邻两个所述定子齿围设形成定子槽,相邻两个所述定子齿的所述齿冠之间形成所述定子槽的槽口。
  9. 根据权利要求1所述的定子铁芯,其中,至少一个所述定子冲片上的至少一个所述齿冠上设置有至少一个凹槽部和/或至少一个磁导通孔,所述凹槽部和/或所述磁导通孔均位于所述第一齿冠面。
  10. 一种定子,其中,包括:
    如权利要求1至9中任一项所述的定子铁芯。
  11. 根据权利要求10所述的定子,其中,还包括:
    绕组,绕设在所述定子铁芯的齿根上。
  12. 一种永磁同步电机,其中,包括:
    如权利要求10或11所述的定子;
    转子,穿设于所述定子铁芯的定子内孔内。
  13. 根据权利要求12所述的永磁同步电机,其中,所述电机的参数满足以下关系式:
    5.18×10 -7≤T×Di -3×TPV -1≤1.17×10 -6
    5≤TPV≤45;
    其中,Di为所述定子内孔的直径,T为所述电机的额定转矩,TPV为所述转子的单位体积转矩,其中所述电机的额定转矩T的单位为N·m,所述定子铁芯的内径Di的单位为mm,所述转子的单位体积转矩TPV的单位为kN·m·m -3
  14. 一种压缩机,其中,包括:
    如权利要求10或11所述的定子;或
    如权利要求12或13所述的永磁同步电机。
  15. 一种制冷设备,其中,包括:
    如权利要求10或11所述的定子;或
    如权利要求12或13所述的永磁同步电机;或
    如权利要求14所述的压缩机。
PCT/CN2020/134803 2020-11-30 2020-12-09 定子铁芯、定子、永磁同步电机、压缩机和制冷设备 WO2022110305A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011376606.7 2020-11-30
CN202011376606 2020-11-30
CN202011415704.7A CN112564321A (zh) 2020-11-30 2020-12-07 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN202011415704.7 2020-12-07

Publications (1)

Publication Number Publication Date
WO2022110305A1 true WO2022110305A1 (zh) 2022-06-02

Family

ID=75058975

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134803 WO2022110305A1 (zh) 2020-11-30 2020-12-09 定子铁芯、定子、永磁同步电机、压缩机和制冷设备

Country Status (2)

Country Link
CN (1) CN112564321A (zh)
WO (1) WO2022110305A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107800205A (zh) * 2017-11-28 2018-03-13 深圳市优必选科技有限公司 电机内芯片及电机
CN108512320A (zh) * 2018-05-30 2018-09-07 广东威灵电机制造有限公司 定子铁芯和旋转电机
US20190190332A1 (en) * 2016-10-13 2019-06-20 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Rotor structure, motor and compressor
CN210120439U (zh) * 2019-08-26 2020-02-28 安徽美芝精密制造有限公司 电机、压缩机及制冷设备
CN110875679A (zh) * 2018-08-30 2020-03-10 广东美芝精密制造有限公司 永磁同步电机和压缩机
CN212033842U (zh) * 2020-06-11 2020-11-27 江苏美的清洁电器股份有限公司 定子组件和电机结构

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106253507B (zh) * 2016-08-23 2019-02-05 广东威灵电机制造有限公司 单向旋转电机及用于单向旋转电机的定子
CN106385154A (zh) * 2016-09-26 2017-02-08 上海特波电机有限公司 外转子无刷永磁电机
CN106787282A (zh) * 2016-12-30 2017-05-31 浙江众邦机电科技有限公司 一种永磁电机
CN208190359U (zh) * 2018-05-30 2018-12-04 广东威灵电机制造有限公司 定子铁芯和旋转电机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190190332A1 (en) * 2016-10-13 2019-06-20 Gree Green Refrigeration Technology Center Co., Ltd. Of Zhuhai Rotor structure, motor and compressor
CN107800205A (zh) * 2017-11-28 2018-03-13 深圳市优必选科技有限公司 电机内芯片及电机
CN108512320A (zh) * 2018-05-30 2018-09-07 广东威灵电机制造有限公司 定子铁芯和旋转电机
CN110875679A (zh) * 2018-08-30 2020-03-10 广东美芝精密制造有限公司 永磁同步电机和压缩机
CN210120439U (zh) * 2019-08-26 2020-02-28 安徽美芝精密制造有限公司 电机、压缩机及制冷设备
CN212033842U (zh) * 2020-06-11 2020-11-27 江苏美的清洁电器股份有限公司 定子组件和电机结构

Also Published As

Publication number Publication date
CN112564321A (zh) 2021-03-26

Similar Documents

Publication Publication Date Title
JP2003125567A (ja) 同期誘導電動機のロータ及び同期誘導電動機及びファンモータ及び圧縮機及び空気調和機及び冷蔵庫
CN112467897B (zh) 电机、压缩机和制冷设备
CN213521426U (zh) 电机、压缩机和制冷设备
CN112564317B (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
WO2022110306A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
WO2023103638A1 (zh) 定子、电机、压缩机和电器设备
WO2022110303A1 (zh) 定子冲片、定子铁芯、电机、压缩机和制冷设备
CN113765252B (zh) 电机、压缩机及制冷设备
JP2004301038A (ja) 密閉型電動圧縮機
CN110875679A (zh) 永磁同步电机和压缩机
WO2022110305A1 (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
CN112583143B (zh) 定子铁芯、定子、永磁同步电机、压缩机和制冷设备
JP2009106002A (ja) 電磁回転機械
CN213602456U (zh) 定子冲片、定子铁芯、永磁同步电机、压缩机和制冷设备
CN112564318B (zh) 定子冲片、定子铁芯、电机、压缩机和制冷设备
CN216290376U (zh) 电机、压缩机和电器设备
JP4464584B2 (ja) 圧縮機
CN216356120U (zh) 定子、电机、压缩机和电器设备
WO2023097916A1 (zh) 电机、压缩机和制冷设备
WO2023103696A1 (zh) 电机、压缩机和电器设备
CN112448491A (zh) 定子铁芯、定子结构、电机和压缩机以及具有其的电器
JP2004260918A (ja) 電動機の回転子
CN114079333B (zh) 电机、压缩机和电器设备
CN219554685U (zh) 电机、压缩机和车辆
WO2021114141A1 (zh) 电机、压缩机及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20963193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20963193

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20963193

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-11-2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20963193

Country of ref document: EP

Kind code of ref document: A1