WO2022102721A1 - Depression-state-determining program - Google Patents
Depression-state-determining program Download PDFInfo
- Publication number
- WO2022102721A1 WO2022102721A1 PCT/JP2021/041602 JP2021041602W WO2022102721A1 WO 2022102721 A1 WO2022102721 A1 WO 2022102721A1 JP 2021041602 W JP2021041602 W JP 2021041602W WO 2022102721 A1 WO2022102721 A1 WO 2022102721A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- information
- depression
- association
- degree
- sign
- Prior art date
Links
- 230000009471 action Effects 0.000 claims abstract description 8
- 238000013473 artificial intelligence Methods 0.000 claims description 37
- 238000004458 analytical method Methods 0.000 claims description 24
- 238000013528 artificial neural network Methods 0.000 claims description 17
- 208000024891 symptom Diseases 0.000 claims description 9
- 230000000877 morphologic effect Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 7
- 238000000034 method Methods 0.000 abstract description 57
- 208000020401 Depressive disease Diseases 0.000 description 47
- 230000000994 depressogenic effect Effects 0.000 description 33
- 230000008921 facial expression Effects 0.000 description 19
- 230000008569 process Effects 0.000 description 17
- 235000012054 meals Nutrition 0.000 description 15
- 230000006872 improvement Effects 0.000 description 11
- 230000006399 behavior Effects 0.000 description 8
- 210000004556 brain Anatomy 0.000 description 8
- 238000004891 communication Methods 0.000 description 7
- 230000000875 corresponding effect Effects 0.000 description 7
- 238000011156 evaluation Methods 0.000 description 7
- 238000013135 deep learning Methods 0.000 description 6
- 230000005611 electricity Effects 0.000 description 5
- 238000010191 image analysis Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 230000001815 facial effect Effects 0.000 description 3
- 230000004630 mental health Effects 0.000 description 3
- 238000012549 training Methods 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 238000002582 magnetoencephalography Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 235000019645 odor Nutrition 0.000 description 2
- 206010010144 Completed suicide Diseases 0.000 description 1
- 125000002066 L-histidyl group Chemical group [H]N1C([H])=NC(C([H])([H])[C@](C(=O)[*])([H])N([H])[H])=C1[H] 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 208000001431 Psychomotor Agitation Diseases 0.000 description 1
- 206010038743 Restlessness Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000036760 body temperature Effects 0.000 description 1
- 230000003930 cognitive ability Effects 0.000 description 1
- 230000003001 depressive effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000010813 municipal solid waste Substances 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B10/00—Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/16—Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/369—Electroencephalography [EEG]
- A61B5/372—Analysis of electroencephalograms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L15/00—Speech recognition
- G10L15/08—Speech classification or search
- G10L15/10—Speech classification or search using distance or distortion measures between unknown speech and reference templates
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/27—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique
- G10L25/30—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 characterised by the analysis technique using neural networks
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/48—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use
- G10L25/51—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination
- G10L25/66—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00 specially adapted for particular use for comparison or discrimination for extracting parameters related to health condition
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10L—SPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
- G10L25/00—Speech or voice analysis techniques not restricted to a single one of groups G10L15/00 - G10L21/00
- G10L25/90—Pitch determination of speech signals
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/20—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N21/00—Selective content distribution, e.g. interactive television or video on demand [VOD]
- H04N21/40—Client devices specifically adapted for the reception of or interaction with content, e.g. set-top-box [STB]; Operations thereof
- H04N21/43—Processing of content or additional data, e.g. demultiplexing additional data from a digital video stream; Elementary client operations, e.g. monitoring of home network or synchronising decoder's clock; Client middleware
- H04N21/442—Monitoring of processes or resources, e.g. detecting the failure of a recording device, monitoring the downstream bandwidth, the number of times a movie has been viewed, the storage space available from the internal hard disk
Definitions
- the present invention relates to a depression state determination program capable of determining the depression state of a performer such as a media suffering from stress or human relations and determining in advance that the performer falls into the depression state.
- the present invention has been devised in view of the above-mentioned problems, and an object thereof is to determine the depressed state of a performer appearing in the media with high accuracy by a relatively simple method.
- the purpose is to provide a possible depression state determination program.
- Another object of the present invention is to provide a depression sign discrimination program capable of automatically and accurately discriminating the signs of depression of a subject.
- the depression state determination program is a depression state determination program for determining the depression state of a performer appearing in the media, and includes an information acquisition step for acquiring moving image information consisting of the moving image of the performer and a human operation. Using the degree of association between the reference moving image information previously captured as a moving image and the level of depression at three or more levels, the reference moving image information and depression according to the moving image information acquired in the above information acquisition step. It is characterized in that the computer executes the depression state determination step for determining the depression state of the performer based on the degree of association with the state level in three or more stages.
- FIG. 1 It is a block diagram which shows the whole structure of the system to which this invention is applied. It is a figure which shows the specific configuration example of a search device. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is a figure for demonstrating the operation of this invention. It is
- FIG. 1 is a block diagram showing an overall configuration of a depression state determination system 1 to which a depression state determination program to which the present invention is applied is implemented.
- the depression state determination system 1 includes an information acquisition unit 9, a determination device 2 connected to the information acquisition unit 9, and a database 3 connected to the determination device 2.
- the information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like.
- the information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like.
- the information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the estimation device 2 described later. The information acquisition unit 9 outputs the detected information to the estimation device 2.
- the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be configured by a communication interface for acquiring data about the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
- Database 3 stores various information necessary for determining the depression state.
- Information necessary for determining the depression state includes reference moving image information in which human movements are captured in advance as moving images, reference audio information in which human voice is recorded, and reference text in which text data is categorized in advance.
- a data set with improvement measures is stored.
- the database 3 contains one or more of reference audio information, reference text information, reference schedule information, and reference appearance frequency information, and is in a depressed state or improved.
- the measures are linked to each other and remembered.
- any one or more of the reference text information, the reference schedule information, and the reference appearance frequency information, and the depressed state or improvement measures are stored in association with each other. There is.
- the discrimination device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted. The user can obtain a search solution by the discrimination device 2.
- PC personal computer
- FIG. 2 shows a specific configuration example of the discrimination device 2.
- the discrimination device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire discrimination device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like.
- a communication unit 26 for the purpose, an estimation unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. ..
- a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
- the control unit 24 is a so-called central control unit for controlling each component mounted in the discrimination device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
- the operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user.
- the operation unit 25 notifies the control unit 24 of the execution command.
- the control unit 24, including the estimation unit 27, executes a desired processing operation in cooperation with each component.
- the operation unit 25 may be embodied as the information acquisition unit 9 described above.
- the estimation unit 27 estimates the search solution.
- the estimation unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the estimation operation.
- the estimation unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technique.
- the display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24.
- the display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
- the storage unit 28 When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
- the reference moving image is information obtained by capturing all movements and facial expressions of a person as a moving image.
- the facial expression, movement, etc. of a person may be patterned by analyzing the moving image and analyzing the feature amount or the like by a deep learning technique or the like.
- Behaviors that show signs of depression include, for example, poor involvement with others, agitated attitude, looking at someone else's complexion, abnormal dietary attachment, and serious restlessness. Behaviors are categorized and patterned in advance.
- the pattern is that the neck sways back and forth or the limbs are poorly shaken as a sign that the attitude is frightening, it is determined through the analysis of the moving image whether or not it applies to the pattern. In this discrimination process, existing image analysis techniques and deep learning techniques may be used. Then, when an action applied to this pattern is detected, it is applied to the reference moving image information classified according to each action pattern.
- a trained model is created by similarly forming a degree of association between such reference moving image information and the level of depression. Then, when actually determining the depressed state of the performer, by performing image analysis in the same manner from the moving image of the performer, the image is applied to various types of pre-patterned behaviors, and this is applied to the moving image. It is information.
- the type of behavior pattern to be applied in this moving image information shall be in accordance with the above-mentioned reference moving image information.
- the process of determining the possibility of abuse is the same as the process of determining the possibility of abuse based on the image information shown in FIG. 3 described above.
- the level of depression is an individual depression that is objectively evaluated.
- this depressed state for example, it may be based on evaluation data, medical care data, medical examination results, etc., in which the depressed state is objectively evaluated by a doctor or a specialist having specialized knowledge.
- the evaluator of this depression is not limited to those who have specialized knowledge about mentality, and includes those who do not have that specialized knowledge. In other words, the evaluator of the depressed state may be evaluated by a third party other than the person himself / herself.
- Examples of evaluation of depression include, for example, severe depression, mild depression, normal, slightly depressed, and distracted attention, but the present invention is not limited to these, and for example, depression is 0 points.
- depression is 0 points.
- the normal score is 100 points, the score may be evaluated numerically in 100 steps between 0 and 100 points.
- the input data is, for example, reference moving images P01 to P03.
- the reference moving images P01 to P03 as such input data are connected to the output.
- the depressed state as the output solution is displayed.
- the reference moving images are associated with each other through three or more levels of association with the level of depression as the output solution.
- the reference moving images are arranged on the left side through this degree of association, and each depression state is arranged on the right side through this degree of association.
- the degree of association indicates which depression state is more relevant to the reference moving images arranged on the left side. In other words, this degree of association is an indicator of what kind of depression each reference video is likely to be associated with, and is used to select the most probable depression from the reference video. It shows the accuracy. In the example of FIG. 3, w13 to w19 are shown as the degree of association.
- w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the depression state as an output. On the contrary, the closer to one point, the lower the degree of relevance of each combination as an intermediate node to the price as an output.
- the discrimination device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data sets and analyzes which of the reference moving image and the depressed state in that case is adopted and evaluated in discriminating the actual search solution. , The degree of association shown in FIG. 3 is created by analysis.
- the reference moving image has a frightened facial expression, which is a sign of depression, detected four times in a row.
- a frightened facial expression which is a sign of depression
- strong depression is often evaluated.
- This analysis may be performed by artificial intelligence.
- analysis is performed from various data as a result of evaluating the past depression state.
- the data set may be extracted by performing a text mining analysis from the electronic data of the diagnosis result or the evaluation result in the workplace.
- the degree of association that leads to the evaluation of this "strong depression” is set higher, and the case of "slightly depressed”. If there are many, set a higher degree of association that leads to the evaluation of this depression.
- the degree of association of w13 that leads to “strong depression state” is 7 points.
- the degree of association of w14, which leads to "slightly depressed” is set to 2 points.
- the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
- the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
- Such degree of association is what is called learned data in artificial intelligence.
- the above-mentioned learned data will be used to search for the depressed state in actually determining the depressed state for the performers.
- the moving image is subjectively evaluated by the performer to be discriminated, or the moving image is newly acquired by asking through an interview or the like.
- the newly acquired moving image is input by the above-mentioned information acquisition unit 9.
- the information acquisition unit 9 may obtain the information by recording the TV program, or the moving image posted on various video posting sites may be obtained. In some cases, it may be obtained from there.
- the depressed state of the performer is determined.
- the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to.
- "normal” is associated with w15 and “slightly depressed” is associated with the association degree w16 through the association degree.
- "normal” with the highest degree of association is selected as the optimum solution.
- an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
- this depressive state is not limited to the case where it is merely a state evaluation, and it also mentions how to care for the performers, that is, to propose improvement measures for working styles for the depressive state. It may be the one that is.
- the reference moving image information and the moving image information have been described by taking the case of a moving image in which a plurality of still images are continuously connected in chronological order as an example, but the description is limited to this. It's not something.
- the reference voice information includes all voice data recorded by the voice emitted by the performer.
- This reference voice information may be composed of text data when the voice spoken by the subject who determines the sign of depression is converted into text data, and the text data is subjected to morphological analysis or syntactic analysis. It may be composed of data.
- this reference voice information may be composed of information indicating how much pronouns are included in the text data.
- the subject says, "I will go to Osaka with Fujimoto tomorrow by 13:00 on the Shinkansen,” and "I will go to Osaka tomorrow.
- the meaning of the former is clearer, while the meaning of the latter is unclear.
- a patient with depression has a high proportion of pronouns in the text data of his / her voice, he / she extracts this in units of text data to obtain voice information for reference.
- the reference voice information may be configured by measuring the interval time until the subject who receives the question from another person answers.
- the reference voice information is information related to voice tones extracted from past subjects.
- the tone of this voice refers to, for example, the pitch of the sound (the number of vibrations per second of the sound wave, that is, the frequency), the sound itself, or the strength of the sound.
- the tone of the voice may be detected and analyzed by detecting the height and the strength of the voice through a general voice detector.
- the reference voice information may be linked with the extracted text data. For example, in the phrase "I will go to Osaka with Mr. Fujimoto tomorrow by 13:00 on the Shinkansen", for each noun phrase (case component) such as "Tomorrow” and "with Mr. Fujimoto". , Each voice tone may be associated and used as reference voice information.
- Such reference audio information and reference video information are lined up.
- the input data is, for example, reference moving images P01 to P03 and reference audio information P14 to 17.
- the intermediate node shown in FIG. 4 is a combination of reference audio information and reference video as such input data.
- Each intermediate node is further linked to the output. In this output, the depressed state as the output solution is displayed.
- Each combination (intermediate node) of the reference moving image and the reference audio information is associated with each other through three or more levels of association with the depressed state as this output solution.
- the reference moving image and the reference audio information are arranged on the left side through this degree of association, and the depressed state is arranged on the right side through this degree of association.
- the degree of association indicates the degree of relevance to the depressed state with respect to the reference moving image and the reference audio information arranged on the left side.
- this degree of association is an index showing what kind of depression each reference moving image and reference audio information are likely to be associated with, and is the most from the reference moving image and reference audio information. It shows the accuracy in selecting a probable depression. Depression to be evaluated will differ depending on the actual state of attendance and departure, in addition to the degree of mental health that the performer subjectively inputs. Therefore, the optimum depression state is searched for by combining these reference moving images and reference audio information.
- w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
- the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference moving image, the reference audio information, and the depressed state in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 4 is created.
- the reference moving image in the actual case in the past has 5 consecutive signs of frightening and normal signs every other day.
- the reference voice information is a sign of tone down for three consecutive days. In such a case, if there are many "slightly depressed" depressed states, these are learned as a data set and defined in the form of the above-mentioned degree of association.
- This analysis may be performed by artificial intelligence.
- the depressive state is analyzed from the past data.
- the degree of association leading to this "normal” is set higher, and when there are many cases of "distracted attention” and few cases of “normal”, the degree of association is set higher. Set the degree of association that leads to "distracted attention” high and the degree of association that leads to "normal” low.
- the degree of association of w13 that leads to "depressed state” is set to 7 points, and w14 that leads to "normal”.
- the degree of association is set to 2 points.
- the degree of association shown in FIG. 4 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
- the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
- the node 61b is a node of the combination of the reference audio information P14 with respect to the reference moving image P01, the degree of association of "slightly depressed” is w15, and "immediate hospitalization”.
- the degree of association of "a level of severe depression that requires” is w16.
- the node 61c is a node of a combination of reference audio information P15 and P17 with respect to the reference moving image P02, and the degree of association of "normal” is w17 and the degree of association of "distracted attention" is w18. There is.
- Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the depressed state of the performer from now on, the above-mentioned learned data will be used. In such a case, the moving image and the audio information are actually acquired from the performer to be discriminated.
- the audio information corresponds to the reference audio information, and the performer records the audio generated in the moving image uploaded to the TV program, the radio program, or the video posting site.
- the degree of association shown in FIG. 4 (Table 1) acquired in advance is referred to.
- the node 61d is associated via the degree of association, and this node.
- “slightly depressed” is associated with w19
- "attention distracted state” is associated with a degree of association w20.
- the “slightly depressed” with the highest degree of association is selected as the optimum solution.
- Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
- the intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the degrees of association w1 to w12 may all have the same value, and the weights in the selection of the intermediate node 61 may all be the same.
- FIG. 5 shows an example in which a combination of the above-mentioned reference moving image, reference text information, and a depression state with respect to the combination are set to three or more levels of association.
- the reference text information is categorized in advance for text data. For example, words that correspond to false accusation or slander are categorized in advance. Then, it may indicate whether or not it corresponds to the categorized wording. Further, the degree of accusation may be indicated in a level, and the wording according to the level may be categorized in advance.
- the input data is, for example, reference moving images P01 to P03 and reference text information P18 to 21.
- the intermediate node shown in FIG. 5 is a combination of reference text information and reference video as such input data.
- Each intermediate node is further linked to the output. In this output, the depressed state as the output solution is displayed.
- Each combination (intermediate node) of the reference moving image and the reference text information is associated with each other through three or more levels of association with the depressed state as this output solution.
- the reference moving image and the reference text information are arranged on the left side through this degree of association, and the depressed state is arranged on the right side through this degree of association.
- the degree of association indicates the degree of relevance to the depressed state with respect to the reference moving image and the reference text information arranged on the left side.
- this degree of association is an index showing what kind of depression each reference moving image and reference text information is likely to be associated with, and is the most from the reference moving image and reference text information. It shows the accuracy in selecting a probable depression. Depression to be evaluated will differ depending on what the actual income situation is, in addition to the degree of mental health that the performer subjectively inputs. Therefore, the optimum depression state is searched for by combining these reference moving images and reference text information.
- w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relation between each combination as an intermediate node with the depression state as an output, and vice versa. The closer it is to one point, the lower the degree of association between each combination as an intermediate node and the depression state as an output.
- the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference moving image, the reference text information, and the depression state in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
- This analysis may be performed by artificial intelligence.
- the depressive state is analyzed from the past data.
- the degree of association that leads to this "slightly depressed” is set higher, and there are many cases of "distracted attention", and cases of "slightly depressed”. If the number is low, the degree of association that leads to "distracted attention” is set high, and the degree of association that leads to "slightly depressed” is set low.
- the intermediate node 61a it is linked to the output of "mild depression” and "normal", but from the previous case, the degree of association of w13 that leads to "mild depression” is set to 7 points, and "normal". The degree of association of w14 that leads to "" is set to 2 points.
- the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
- the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
- the node 61b is a node of the combination of the reference text information P18 with respect to the reference moving image P01, the degree of association of "slightly depressed” is w15, and "immediate hospitalization”.
- the degree of association of "a level of severe depression that requires” is w16.
- the node 61c is a node in which the reference text information P19 and P21 are combined with respect to the reference moving image P02, and the degree of association of "normal” is w17 and the degree of association of "distracted attention" is w18. There is.
- Such degree of association is what is called learned data in artificial intelligence.
- the above-mentioned trained data After creating such trained data, when actually searching for a depressed state from now on, the above-mentioned trained data will be used.
- the text information is composed of text data acquired from writing to various information sites and SNS on the Internet.
- the acquired text data is analyzed based on well-known morphological analysis techniques and syntactic analysis techniques, and which separation of the pre-categorized reference text information includes the words and words contained therein. Determine.
- the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to.
- the node 61d is associated via the degree of association, and this node.
- “slightly depressed” is associated with w19
- "attention distracted state” is associated with a degree of association w20.
- the “slightly depressed” with the highest degree of association is selected as the optimum solution.
- FIG. 6 shows an example in which the combination of the above-mentioned reference moving image, the reference schedule information, and the depression state with respect to the combination are set to three or more levels of association.
- the reference schedule information includes not only the program appearance schedule of the performers but also information on all work schedules.
- the reference schedule information shows how the autograph session, lecture, other interview time, working time, travel time, practice time, training time, etc. are organized in chronological order. Since this reference schedule information is only reference information, it may be categorized by replacing it with the schedule of not only people who are engaged in talent activities such as performers but also ordinary people. In such a case, for example, in a one-week schedule, various schedules such as working hours, break times, traveling times, meeting hours, and free hours are acquired as learning data.
- the input data is, for example, reference moving images P01 to P03 and reference schedule information P22 to 25.
- the intermediate node shown in FIG. 6 is a combination of the reference moving image and the reference schedule information as such input data.
- Each intermediate node is further linked to the output. In this output, the depressed state as the output solution is displayed.
- Each combination (intermediate node) of the reference moving image and the reference schedule information is associated with each other through three or more levels of association with the depressed state as this output solution.
- the reference moving image and the reference schedule information are arranged on the left side through this degree of association, and the depressed state is arranged on the right side through this degree of association.
- the degree of association indicates the degree of relevance to the depressed state with respect to the reference moving image and the reference schedule information arranged on the left side.
- this degree of association is an index showing what kind of depression each reference moving image and reference schedule information are likely to be associated with, and is the most from the reference moving image and reference schedule information. It shows the accuracy in selecting a probable depression.
- w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relation between each combination as an intermediate node with the depression state as an output, and vice versa. The closer it is to one point, the lower the degree of association between each combination as an intermediate node and the depression state as an output.
- the discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference moving image, the reference schedule information, and the depression state in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 6 is created.
- This analysis may be performed by artificial intelligence.
- the depression state is analyzed from the past data.
- the degree of association that leads to this "slightly depressed” is set higher, and there are many cases of "distracted attention", and cases of "slightly depressed”. If the number is low, the degree of association that leads to "distracted attention” is set high, and the degree of association that leads to "slightly depressed” is set low.
- the degree of association of w13 that leads to "depression” is set to 7 points and becomes “normal”.
- the degree of association of the connected w14 is set to 2 points.
- the degree of association shown in FIG. 6 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
- the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
- the node 61b is a node in which the reference schedule information P22 is combined with the reference moving image P01, the degree of association of "slightly depressed” is w15, and "immediate hospitalization".
- the degree of association of "a level of severe depression that requires” is w16.
- the node 61c is a node in which the reference schedule information P23 and P25 are combined with respect to the reference moving image P02, and the "normal” association degree is w17 and the "attention distracted state” association degree is w18. There is.
- Such degree of association is what is called learned data in artificial intelligence.
- the above-mentioned trained data After creating such trained data, when actually searching for a depressed state from now on, the above-mentioned trained data will be used. In such a case, the moving image of the performer whose depression state is actually determined and the schedule information are acquired.
- the schedule information may be manually input or directly acquired from the attribute data of the performers managed by the company.
- the degree of association shown in FIG. 6 (Table 1) acquired in advance is referred to.
- the node 61d is associated via the degree of association, and this node.
- “slightly depressed” is associated with w19
- "attention distracted state” is associated with a degree of association w20.
- the “slightly depressed” with the highest degree of association is selected as the optimum solution.
- the reference schedule information shown in FIG. 6 may be replaced with reference appearance frequency information.
- the reference appearance frequency information referred to here is information on appearance frequency in TV programs and radio programs, and for example, appearance time, appearance frequency, etc. per unit time (for example, one week, one month, one year, etc.). It can be shown by frequency data.
- the appearance frequency information for reference may be categorized as appearance frequency data, for example, less than once a week, less than once or twice a week, twice a week to less than three times a week, and the like. May be. In particular, talents can tell whether or not they have a lot of work depending on the frequency of appearances, and depression may be controlled accordingly. Therefore, this reference appearance frequency information is also added to the explanatory variables.
- the present invention is not limited to the above-described embodiment, and as shown in FIG. 7, for example, instead of the reference moving image information, there are three or more stages of reference audio information and a level of depression. You may try to use the degree of association of. In such a case, the depressed state of the performer is determined based on the degree of association between the reference voice information according to the newly acquired voice information and the level of the depressed state at three or more levels.
- the reference moving image information not only one of the reference audio information, the reference text information, the reference schedule information, and the reference appearance frequency information, but also any two or more, and depression.
- the state or improvement measures may be stored in association with each other.
- the reference voice information not only one of the reference text information, the reference schedule information, and the reference appearance frequency information, but also any two or more, the depressed state, or the improvement measures are linked to each other. It may be remembered.
- the depression state or improvement can be achieved by combining with other data.
- the measures may be linked and memorized.
- the depressed state or improvement measures are linked to each other. It may be remembered.
- the solution search is performed based on the above-mentioned method.
- the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used.
- this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
- the above-mentioned input data and output data may not be completely the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
- FIG. 8 is an example of using three or more levels of association between the reference moving image information and the level of depression. Focusing only on this degree of association, it is the same as in FIG. 3, but in this example, other reference information different from the reference moving image information is further associated with the level of depression as this search solution.
- the level of depression required through the degree of association may be further modified based on reference information, or the weighting may be changed.
- the reference information referred to here includes the above-mentioned reference voice information, reference text information, reference schedule information, reference appearance frequency information, and the like.
- the level of depression is often high.
- the "strong depression state" searched from the property information via the degree of association is subjected to a process of increasing the weighting, in other words, a process of leading to a search solution having a high level of depression. Is set in advance.
- the reference information G is an analysis result suggesting a higher level of depression
- the reference information F is an analysis result suggesting a lower level of depression.
- the obtained search solution may be modified based on the reference information F to H.
- how to modify the level of depression as a search solution based on the reference information F to H will reflect what was designed on the system side each time.
- the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information.
- the higher the level of depression suggested by the reference information is, the higher the level of depression as the search solution obtained through the degree of association is corrected, and the reference information is corrected.
- the lower the level of depression suggested by the lower the level of depression as a search solution obtained through the degree of association.
- the optimum solution search is performed through the degree of association set in three or more stages.
- the degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
- the degree of association can be determined. It is also possible to search and display in descending order. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
- the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
- the above-mentioned degree of association may be updated.
- This update may reflect information provided, for example, via a public communication network such as the Internet.
- a public communication network such as the Internet.
- the degree of association is determined accordingly. Raise or lower.
- this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
- this update of the degree of association is done by the system side or the user side based on the contents of research data, papers, conference presentations, newspaper articles, books, etc. by experts, except when it is based on information that can be obtained from the public communication network. It may be updated artificially or automatically. Artificial intelligence may be utilized in these update processes.
- the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like.
- unsupervised learning instead of reading and training the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
- the reference pronoun frequency information is information indicating how much the pronoun is included in the text data when the voice spoken by the subject who determines the sign of depression is converted into text data. For example, the subject says, “I will go to Osaka with Fujimoto tomorrow by 13:00 on the Shinkansen,” and “I will go to Osaka tomorrow. The meaning of the former is clearer, while the meaning of the latter is unclear. Depressed patients have a higher proportion of pronouns in their spoken textual data. By extracting this in units of text data, it becomes reference pronoun frequency information.
- the volume of the entire text data should be detected by counting the number of phrases, words, case components, noun phrases, and characters in the text data. You may do it. Then, the volume of the pronouns included in the volume of the entire text data is similarly counted via the number of clauses, the number of words, the number of case components, the number of noun phrases, the number of characters, and the like. Then, the ratio of the volume of the pronoun to the volume of the entire text data is detected as the frequency described above. It is premised that the units (number of phrases, number of words, number of case components, number of noun phrases, number of characters, etc.) for measuring the entire text data and the volume of pronouns are shared with each other.
- the input of the voice of the past subject is accepted. This input may be accepted via a microphone or the like. Then, the voice of the subject is converted into text data and morphologically analyzed to extract the pronoun included in the text data. For pronouns, words such as “that”, “it”, and “kore” are extracted by morphological analysis. Similarly, morphological analysis is used when extracting phrase structures (case components, noun phrases, etc.).
- Reference tone information is information related to voice tones extracted from past subjects.
- the tone of this voice refers to, for example, the pitch of the sound (the number of vibrations per second of the sound wave, that is, the frequency), the sound itself, or the strength of the sound.
- the tone of the voice may be detected and analyzed by detecting the height and the strength of the voice through a general voice detector.
- the reference tone information may be linked with the text data in the reference pronoun frequency information. For example, in the phrase “I'm going to Osaka tomorrow, that, that, that,” the voice tone is associated with each noun phrase (case component) such as “tomorrow” and “that." It may be used as reference tone information.
- the intermediate node 61 shown in FIG. 9 is a combination of the reference pronoun frequency information and the reference tone information as such input data.
- Each intermediate node 61 is further connected to an output.
- the discriminant types A to E of the signs of depression are displayed.
- This discriminant type of sign of depression indicates all types of signs of depression, respectively.
- the types of discrimination of signs of depression are, for example, A is "no abnormality", B is "severe depression", and C is "a preliminary group that is not depressed but has signs of depression”.
- the discriminant type of the sign of depression may indicate the magnitude and degree of the symptom of depression.
- Each combination (intermediate node) of the reference pronoun frequency information and the reference tone information is associated with each other through three or more levels of association with the discrimination type of the sign of depression as this output solution. ..
- the search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference pronoun frequency information, the reference tone information, and the discrimination type of the sign of depression in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 9 is created.
- this learning data it is not limited to the case of actually extracting data from the subject, but assuming a fictitious subject, a certain reference pronoun frequency information and a reference tone. If it is information, it may be determined what kind of depressive sign discrimination type is actually applied to it, and it may be converted into data and learned.
- the degree of association shown in FIG. 9 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association.
- the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
- tone information is acquired in addition to pronoun frequency information from a new subject who newly proposes a discrimination type of signs of depression.
- the method of acquiring tone information is the same as the above-mentioned reference pronoun frequency information and reference tone information.
- the optimum type of discrimination for signs of depression is searched for.
- the degree of association shown in FIG. 9 (Table 1) acquired in advance is referred to.
- the node 61d is associated via the degree of association.
- the node 61d is associated with a depression sign discrimination type C at w19 and a depression sign discrimination type D at a degree of association w20.
- the discriminant type C of the sign of depression with the highest degree of association is selected as the optimum solution.
- the combination of the reference pronoun frequency information and the reference facial expression image information and the discrimination type of the sign of depression for the combination may be set to three or more levels of association.
- the reference facial expression image information is information related to the facial expression image of the subject who acquires the reference pronoun frequency information.
- the reference facial expression image information may be obtained by analyzing the image data obtained by capturing the facial expression of the subject with a camera to extract a characteristic portion for detecting the depression. .. Assuming that a depressed patient may show a peculiar smile in his facial expression, the presence or absence of the peculiar smile may be detected by analyzing a facial image.
- the facial expression image information for reference may be composed of not only a still image but also a moving image. In the case of a moving image, it may be linked with the text data in the reference pronoun frequency information.
- the content of the video is in chronological order for each noun phrase (case component) such as "tomorrow” and "that". It may be associated with the target and used as reference facial expression image information.
- the method of capturing such reference facial expression image information and facial expression image information may be, if necessary, using deep learning technology, automatically discriminating based on the feature amount of the analyzed image, and converting it into data. ..
- the discrimination type is searched based on the newly acquired pronoun frequency information and facial expression image information in this way. Since the actual search method is the same as described above, the description below will be omitted.
- This reference intent information is information managed in each processing operation unit included in the text data, and defines an action name.
- An intent usually defines an action that specifies a business process (processing operation). For example, all actions such as “throw in the trash”, “eat rice”, “watch TV”, “go shopping”, “ride the train”, “listen to music” are defined as intents.
- the text data is morphologically analyzed and intents are assigned to each of them.
- This intent allocation refers to the intent table created and saved in advance.
- the intent table defines which intent contains the wording of the morphological analysis. For example, in the case of the intent “go shopping”, the morphologically analyzed wording included in this is “go shopping”, “go shopping”, “go shopping”, and “procure” in addition to “go shopping”. Various things such as “come” are included. Similarly, in the case of the intent “get on the train”, there are various morphologically analyzed words included in this, such as “go on the Yamanote line”, “get on the Chuo line”, “use the train”, and “use the train”. Things are included.
- intent information and facial expression image information are newly extracted from the subject, and the signs of depression as a search solution are analyzed via the corresponding reference intent information.
- the combination of the reference intent information and the reference tone information and the discrimination type of the sign of depression as the output data are related to each other through the degree of association of the intermediate node 61 and learned. , When the intent information and the tone information are newly input from the subject, it is possible to search the search solution in the same manner.
- three or more levels of association between the combination with the reference EEG information described below and the discrimination type of the sign of depression for the combination may be set. ..
- the reference brain wave information is information related to the brain wave of the subject.
- the electroencephalogram of the subject can be measured from a commercially available electroencephalograph. Since it may be possible to grasp the signs of depression by making a judgment by combining such reference EEG information, this is added as an explanatory variable.
- This reference electroencephalogram information may be composed of information that captures changes over time. In such a case, it may be linked with the text data in the reference pronoun frequency information. For example, in the phrase "I will go to Osaka tomorrow, that, that,", the changes in brain waves over time for each noun phrase (case component) such as "tomorrow” and "that". May be associated with and used as reference pronoun frequency information.
- the sign of depression is discriminated based on the pronoun frequency information newly acquired from the subject to be examined and the electroencephalogram information.
- Reference attribute information is information indicating the attributes of the subject.
- the attributes of the subject are the subject's age, gender, occupation, current social activities, information on behaviors and behaviors related to depression from the past to the present, various diseases other than depression, etc. Information about is also included.
- the present invention is not limited to the case of searching for a discrimination type as a search solution, and as shown in FIG. 10, the prescription can be used as a search solution by learning a prescription according to the discrimination type in advance. Can be output. After verifying in advance what kind of prescription is effective for what kind of discrimination type, an effective prescription is associated with each discrimination type. Then, the discriminant type may be searched in the same manner as described above, and the prescription associated with the searched discriminant type may be output together with the discriminant type or as a substitute for the discriminant type. Further, as an alternative to the discrimination type, the prescription itself may be trained as a data set with the above-mentioned reference information. As a result, when the input data acquired from the subject is input, a more effective prescription will be output straight.
- FIG. 10 shows an example in which the degree of association is formed by combining the reference synonym frequency information and the reference tone information, but the present invention is not limited to this, and all the above-mentioned reference information can be used.
- the degree of association as input data, it is of course possible to train the prescription itself as a data set with the above-mentioned reference information.
- the discrimination type of the sign of depression is discriminated only from the reference pronoun frequency information. For example, as shown in FIG. 11, the degree of association between the reference pronoun frequency information acquired in the past and the discrimination type of the sign of depression actually discriminated in the past is used.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the pronoun frequency information is newly acquired.
- the acquisition method is the same as that of the first and second embodiments.
- the discrimination type of the sign of depression is discriminated.
- the degree of association shown in FIG. 11 acquired in advance is referred to. Since the specific method for estimating the type of discrimination of signs of depression is the same as that of the first and second embodiments, the description below will be omitted.
- the discrimination type of the sign of depression may be discriminated only from the reference intent information.
- the degree of association between the reference intent information acquired in the past and the discrimination type of the sign of depression actually discriminated in the past is used.
- Such degree of association is what is called learned data in artificial intelligence.
- the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, intent information is newly acquired.
- the acquisition method is the same as that of the first and second embodiments.
- the type of discrimination of signs of depression is discriminated.
- the degree of association shown in FIG. 12 acquired in advance is referred to. Since the specific method for estimating the type of discrimination of signs of depression is the same as that of the first and second embodiments, the description below will be omitted.
- the discrimination type of the sign of depression may be discriminated only from the reference tone information.
- the degree of association between the reference tone information acquired in the past and the discrimination type of the sign of depression actually discriminated in the past is used.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, tone information is newly acquired.
- the acquisition method is the same as that of the first and second embodiments.
- the discrimination type of the sign of depression is discriminated.
- the degree of association shown in FIG. 13 acquired in advance is referred to. Since the specific method for estimating the type of discrimination of signs of depression is the same as that of the first and second embodiments, the description below will be omitted.
- the search solution is not limited to the case of searching for the discrimination type, and the prescription is output as the search solution by learning the prescription according to the discrimination type in advance. Of course, you may do so.
- both the first embodiment to the third embodiment are not limited to the above-described embodiments, and as shown in FIG. 13, for example, reference information as a keynote and a type for discriminating signs of depression. You may use the degree of association of 3 or more levels. In such a case, the solution search will be performed based on the degree of association with the discrimination type of the sign of depression according to the newly acquired information in three or more stages.
- the underlying reference information is, for example, reference pronoun frequency information, etc., but is not limited thereto, and any reference information (reference pronoun frequency information, reference) in the first to third embodiments. Tone information for reference, facial expression image information, intent information for reference, brain wave information for reference, attribute information for reference, etc.) can also be applied.
- the solution search is performed based on the above-mentioned method.
- the search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed, as shown in FIG.
- the other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
- the search solution B as the discrimination type of the sign of depression is processed to increase the weight, in other words, the sign of depression. It is set in advance to perform a process that leads to the search solution B as the discrimination type of.
- the other reference information G is an analysis result suggesting a search solution C as a discriminant type of a sign of more depression
- the reference information F is a search as a discriminant type of a sign of more depression. It is assumed that the analysis result suggests the solution D.
- the weighting of the search solution C as a discrimination type of the sign of depression is increased. Perform processing.
- the process of increasing the weighting of the search solution D as the discrimination type of the sign of depression is performed.
- the degree of association itself leading to the discrimination type of the sign of depression may be controlled based on the reference information F to H.
- the obtained search solution may be modified based on the reference information F to H.
- how to modify the discrimination type of the sign of depression as a search solution based on the reference information F to H should reflect the one designed on the system side each time. Become.
- the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the discrimination type with the sign of depression suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made. ..
- the reference information is any reference information (reference pronoun frequency information, reference tone information, facial expression image information, reference intent information, reference brain wave information, reference attribute information) in the first to third embodiments. Etc.) are also applicable.
- Other reference information includes any reference information in the first to third embodiments other than the underlying reference information.
- the other reference information includes any reference information in the other 1st to 3rd embodiments.
- the discrimination type of signs of depression by performing a solution search in the same manner.
- the signs of depression are discriminated from the search solution obtained through the degree of association through further reference information (reference information F, G, H, etc.). You may try to modify the type.
- the degree of association may be learned by combining not only one but also two or more other reference information.
- a prescription for depression may be searched as a search solution as an alternative to the type of discrimination of signs of depression.
- the search solution can be similarly obtained by preparing data associated with the prescription of depression for the combination of the above-mentioned basic reference information and other reference information through three or more levels of association. Can be explored.
- reference magnetoencephalogram information obtained by performing a magnetoencephalogram examination on a past subject.
- This reference magnetoencephalogram information may be composed of image data obtained by MEG (magnetoencephalography examination), or may be composed of MRI data scanned for the brain.
- the reference magnetoencephalogram information may be further composed of data obtained by extracting characteristic portions by using a deep learning technique known for these image data. Since the degree of depression and these magnetoencephalographic information are considered to be correlated, the above-mentioned degree of association is constructed in advance by learning the data sets in which they are associated with each other.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the magnetoencephalogram information is newly acquired.
- the newly acquired magnetoencephalogram information is acquired from a subject who newly discriminates a sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference magnetoencephalogram information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- reference meal content information regarding the meal content of the subject in the past.
- This reference meal content information is the content of the meal actually ingested by the subject in the past (meal, etc.), the amount of the meal, the time of the meal, the time interval for taking three meals, and the number of nutrients and calories ingested.
- This reference meal content may be obtained by dividing it into periods such as one day, one week, and one month.
- the above-mentioned degree of association is constructed in advance by learning the data sets in which they are associated with each other.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, new meal content information is acquired.
- the newly acquired meal content information is acquired from the subject who newly determines the sign of depression, and the type and acquisition method of the information is the same as the above-mentioned reference meal content information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- reference sleep information regarding the sleep state of the subject in the past.
- This reference sleep information is all information about the sleep actually performed by the subject in the past, for example, sleep time, sleep depth, number of times of waking up during sleep and time zone, body movement during sleep. Contains all the data about. Since patients with depression have data such as sleep division and abundant awakenings, the above-mentioned degree of association is constructed in advance by learning a data set in which these are associated with each other.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, sleep information is newly acquired.
- the newly acquired sleep information is acquired from a subject who newly determines a sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference meal content information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- reference exercise information regarding the exercise state of the subject in the past.
- This reference exercise information is all information related to the exercise actually performed by the subject in the past, and is composed of, for example, the number of steps per unit time, the time of going out, the number of times of going out, the distance walked, the distance traveled, and the like. May be good.
- the reference exercise information may be composed of information obtained by measuring the swing of the arm, the movement of the foot, the walking speed, etc. through the acceleration sensor actually attached to the subject.
- the reference exercise information may indicate the heart rate detected through a heart rate monitor worn on the body, and may indicate the actual activity range via the position information detected through GPS or the like.
- the above-mentioned degree of association is constructed in advance by learning a data set in which these are associated with each other.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, exercise information is newly acquired.
- the newly acquired exercise information is acquired from a subject who newly determines the signs of depression, and the type and acquisition method of the information is the same as the above-mentioned reference exercise information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- reference life time information regarding the life time zone of the subject in the past.
- This reference life time information is any information about the life time actually performed by the subject in the past, and for example, the time zone of the toilet may be acquired through the electricity usage time of the toilet.
- the time actually awake and the time of sleep may be detected through the time of electricity usage in the room. Further, it may be possible to detect which room and how many hours have been stayed through the door open / close sensor.
- the electricity usage time may be detected via an electricity usage meter set in a house, or may be detected via an electricity meter installed in a so-called smart house or the like.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, new life time information is acquired.
- the newly acquired life time information is acquired from the subject who newly determines the sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference life time information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- reference operation information As an example of the reference information that serves as the keynote, there is reference operation information related to various operations in the subject's house in the past.
- This reference operation information includes electrical appliances (TVs, air conditioners, PCs, videos, vacuum cleaners, refrigerators, washing machines), lighting switches, bath gas switches, and system kitchens that past subjects actually have in their homes. Anything that any resident of a house can operate, such as the operation buttons and levers of the house, the operation of windows that open and close with a push button, is targeted.
- These reference operation information may be detected through IoT sensors installed on push buttons such as electric appliances, lighting switches in homes, gas switches for baths, operation buttons and levers in system kitchens, and the like. It may be detected via an electric meter installed in a so-called smart house or the like.
- Depressed patients are considered to have a correlation with the frequency of pressing mistakes, pressing time, pressing strength, etc. when operating buttons, etc., so by learning the data sets associated with each other, the above-mentioned Build the degree of association in advance.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the operation information is newly acquired.
- the newly acquired operation information is acquired from a subject who newly determines a sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference operation information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- reference line-of-sight image information regarding the movement of the line-of-sight of the subject in the past.
- This reference line-of-sight image information is an image of the line-of-sight of the subject in the past for the question given.
- a deep learning technique may be used to automatically determine the image based on the feature amount of the analyzed image and convert it into data.
- an infrared camera may be used to detect the movement of the subject's line of sight to a high degree.
- Questions to be asked include, for example, displaying figures of various shapes at the same time, counting how many of the same things exist, analyzing the line of sight when moving the mark displayed on the screen, or It may be a problem that tests spatial cognitive ability, judgment, etc., such as a problem that causes a so-called mistaken search.
- Depressed patients are thought to have characteristic gaze movements for such problems, so by training the datasets in which they are associated with each other, the above-mentioned degree of association is pre-constructed. ..
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the line-of-sight image information is newly acquired.
- the newly acquired operation information is an image of the movement of the line of sight with respect to the problem given to the subject who newly determines the sign of depression, and the type and acquisition method of the information are the above-mentioned reference operations. Similar to information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- the unit time may be any time unit such as 1 minute, 10 minutes, 60 minutes, 3 hours, and one day.
- the conversation volume may be simply composed of the time during which the voice is emitted, that is, the time during which the voice exceeding a predetermined volume is detected divided by the unit time.
- the amount of conversation is the amount of each part of speech (verb, adjective, object, pronoun, adverb, etc.) in the text data when the subject's voice is converted into text data. It may be configured with.
- the volume of the entire text data may be detected by converting the voice into text data and counting the number of phrases, the number of words, the number of case components, the number of noun phrases, and the number of characters. Then, the amount of the volume of the entire text data per unit time may be used as the conversation amount. It is premised that the units (number of phrases, number of words, number of case components, number of noun phrases, number of characters, etc.) for measuring the entire text data and the volume of pronouns are shared with each other.
- the degree of symptoms of a depressed patient may be related to such conversational volume
- the above-mentioned degree of association is constructed in advance by learning a data set in which these are associated with each other.
- Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the conversation volume information is newly acquired.
- the voice of the subject who newly determines the sign of depression is converted into text data, and the conversation amount per unit time is obtained in the same manner as described above. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
- both the first to fourth embodiments are not limited to the above-described embodiments, and as shown in FIG. 13, for example, reference information as a keynote and a type for discriminating signs of depression. You may use the degree of association of 3 or more levels. In such a case, the solution search will be performed based on the degree of association with the discrimination type of the sign of depression according to the newly acquired information in three or more stages.
- the underlying reference information is, for example, reference pronoun frequency information, etc., but is not limited thereto, and any reference information (reference pronoun frequency information, reference) in the first to fourth embodiments.
- Tone information for reference facial image information, intent information for reference, brain wave information for reference, attribute information for reference, encephalogram information for reference, meal content information for reference, sleep information for reference, driving information for reference, operation information for reference.
- Reference line-of-sight image information, reference conversation volume information, reference life time information, etc. are also applicable.
- the solution search is performed based on the above-mentioned method.
- the search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed.
- the other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
- the search solution B as the discrimination type of the sign of depression is processed to increase the weight, in other words, the depression. It is set in advance to perform a process that leads to the search solution B as a symptom discrimination type.
- the other reference information G is an analysis result suggesting a search solution C as a discriminant type of a sign of more depression
- the reference information F is a search as a discriminant type of a sign of more depression. It is assumed that the analysis result suggests the solution D.
- the weighting of the search solution C as a discrimination type of the sign of depression is increased. Perform processing.
- the process of increasing the weighting of the search solution D as the discrimination type of the sign of depression is performed.
- the degree of association itself leading to the discrimination type of the sign of depression may be controlled based on the reference information F to H.
- the obtained search solution may be modified based on the reference information F to H.
- how to modify the discrimination type of the sign of depression as a search solution based on the reference information F to H should reflect the one designed on the system side each time. Become.
- the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the discrimination type with the sign of depression suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made. ..
- the reference information is any reference information (reference pronoun frequency information, reference tone information, facial image image information, reference intent information, reference brain wave information, reference attribute information) in the first to fourth embodiments.
- Reference electroencephalogram information, reference meal content information, reference sleep information, reference driving information, reference operation information, reference line-of-sight image information, reference conversation volume information, reference life time information, etc.) are also applicable.
- Other reference information includes any reference information in the first to fourth embodiments other than the underlying reference information.
- the other reference information includes any reference information in the other 1st to 4th embodiments.
- the discrimination type of signs of depression by performing a solution search in the same manner.
- the signs of depression are discriminated from the search solution obtained through the degree of association through further reference information (reference information F, G, H, etc.). You may try to modify the type.
- the degree of association may be learned by combining not only one but also two or more other reference information.
- a prescription for depression may be searched as a search solution as an alternative to the type of discrimination of signs of depression.
- the search solution can be similarly obtained by preparing data associated with the prescription of depression for the combination of the above-mentioned basic reference information and other reference information through three or more levels of association. Can be explored.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Medical Informatics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Surgery (AREA)
- Molecular Biology (AREA)
- Computational Linguistics (AREA)
- Heart & Thoracic Surgery (AREA)
- Acoustics & Sound (AREA)
- Human Computer Interaction (AREA)
- Audiology, Speech & Language Pathology (AREA)
- Biophysics (AREA)
- Psychology (AREA)
- Databases & Information Systems (AREA)
- Epidemiology (AREA)
- Psychiatry (AREA)
- Child & Adolescent Psychology (AREA)
- Educational Technology (AREA)
- Evolutionary Computation (AREA)
- Artificial Intelligence (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Developmental Disabilities (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Hospice & Palliative Care (AREA)
- Social Psychology (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Primary Health Care (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
Abstract
[Problem] To determine, to a high degree of accuracy, the depression state of a performer using a relatively simple method. [Solution] A depression-state-determining program for determining the depression state of a performer appearing in the media, the depression-state-determining program being characterized in causing a computer to execute: an information acquisition step for acquiring video image information comprising a video image of the performer; and a depression-state-determining step for using the degree of association, of three or more levels, between reference video image information in which an action of a person is imaged in advance as a video image and the level of a depression state, and determining the depression state of the performer on the basis of the degree of association, of three or more levels, between reference video image information corresponding to the video image information acquired in the information acquisition step and the level of a depression state.
Description
本発明は、ストレスや人間関係において悩むメディアなどの出演者のうつ状態を判別し、うつ状態に陥るのを事前に判別することが可能なうつ状態判別プログラムに関する。
The present invention relates to a depression state determination program capable of determining the depression state of a performer such as a media suffering from stress or human relations and determining in advance that the performer falls into the depression state.
現代社会では、心のストレスが問題となっている。中でもメディア等に出演するタレント等の出演者は、ストレス等により、うつ状態に陥ってしまう場合もあり、特には自殺まで及んでしまう場合も報告されている。このような出演者のうつ状態に陥るのを防止するために、出演者のうつ状態を監視し、うつ状態に陥る危険性があるか否かを事前に確認することが望ましい。しかしながら、従来においては、比較的簡易な方法でタレント等の出演者のうつ状態を高精度に判別することが可能なシステムが未だに提案されていないのが現状であった。
In modern society, mental stress is a problem. In particular, it has been reported that performers such as talents who appear in the media may fall into a depressed state due to stress or the like, and in particular, they may even commit suicide. In order to prevent such a performer from becoming depressed, it is desirable to monitor the performer's depression and confirm in advance whether or not there is a risk of becoming depressed. However, in the past, the current situation has not been proposed as a system capable of discriminating the depressed state of a performer such as a talent with high accuracy by a relatively simple method.
またタレントに限らず、近年、うつ病の患者が増加している。うつ病に陥る際には、本人が自覚をしていなくとも外部に兆候として表れる場合がある。仮にうつ病になりえる兆候を事前に検知することができれば、その段階で様々な処方を施すことで、本格的なうつ病に陥る危険性を回避することができる。しかしながら、従来において、このようなうつ病の兆候を自動的かつ高精度に判別するシステムは提案されていないのが現状であった。
In recent years, the number of patients with depression is increasing, not limited to personalities. When depression occurs, it may appear as a sign to the outside even if the person is not aware of it. If the signs of possible depression can be detected in advance, various prescriptions can be given at that stage to avoid the risk of full-scale depression. However, in the past, no system has been proposed for automatically and highly accurately discriminating such signs of depression.
そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、比較的簡易な方法でメディアに出演する出演者のうつ状態を高精度に判別することが可能なうつ状態判別プログラムを提供することにある。また、被検者のうつ病の兆候を自動的かつ高精度に判別することが可能なうつ病兆候判別プログラムを提供することにある。
Therefore, the present invention has been devised in view of the above-mentioned problems, and an object thereof is to determine the depressed state of a performer appearing in the media with high accuracy by a relatively simple method. The purpose is to provide a possible depression state determination program. Another object of the present invention is to provide a depression sign discrimination program capable of automatically and accurately discriminating the signs of depression of a subject.
本発明に係るうつ状態判別プログラムは、メディアに出演する出演者のうつ状態を判別するうつ状態判別プログラムにおいて、上記出演者の動画像からなる動画像情報を取得する情報取得ステップと、人の動作を動画像として予め撮像した参照用動画像情報と、うつ状態のレベルとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した動画像情報に応じた参照用動画像情報とうつ状態のレベルとの3段階以上の連関度に基づき、上記出演者のうつ状態を判別するうつ状態判別ステップとをコンピュータに実行させることを特徴とする。
The depression state determination program according to the present invention is a depression state determination program for determining the depression state of a performer appearing in the media, and includes an information acquisition step for acquiring moving image information consisting of the moving image of the performer and a human operation. Using the degree of association between the reference moving image information previously captured as a moving image and the level of depression at three or more levels, the reference moving image information and depression according to the moving image information acquired in the above information acquisition step. It is characterized in that the computer executes the depression state determination step for determining the depression state of the performer based on the degree of association with the state level in three or more stages.
特段のスキルや経験が無くても、比較的簡易な方法で出演者のうつ状態を高精度に判別することが可能となる。
Even if you do not have any special skills or experience, it is possible to determine the depressed state of a performer with high accuracy using a relatively simple method.
以下、本発明を適用したうつ状態判別プログラムについて、図面を参照しながら詳細に説明をする。
Hereinafter, the depression state determination program to which the present invention is applied will be described in detail with reference to the drawings.
第1実施形態
図1は、本発明を適用したうつ状態判別プログラムが実装されるうつ状態判別システム1の全体構成を示すブロック図である。うつ状態判別システム1は、情報取得部9と、情報取得部9に接続された判別装置2と、判別装置2に接続されたデータベース3とを備えている。 The first embodiment FIG. 1 is a block diagram showing an overall configuration of a depressionstate determination system 1 to which a depression state determination program to which the present invention is applied is implemented. The depression state determination system 1 includes an information acquisition unit 9, a determination device 2 connected to the information acquisition unit 9, and a database 3 connected to the determination device 2.
図1は、本発明を適用したうつ状態判別プログラムが実装されるうつ状態判別システム1の全体構成を示すブロック図である。うつ状態判別システム1は、情報取得部9と、情報取得部9に接続された判別装置2と、判別装置2に接続されたデータベース3とを備えている。 The first embodiment FIG. 1 is a block diagram showing an overall configuration of a depression
情報取得部9は、本システムを活用する者が各種コマンドや情報を入力するためのデバイスであり、具体的にはキーボードやボタン、タッチパネル、マウス、スイッチ等により構成される。情報取得部9は、テキスト情報を入力するためのデバイスに限定されるものではなく、マイクロフォン等のような音声を検知してこれをテキスト情報に変換可能なデバイスで構成されていてもよい。また情報取得部9は、カメラ等の画像を撮影可能な撮像装置として構成されていてもよい。情報取得部9は、紙媒体の書類から文字列を認識できる機能を備えたスキャナで構成されていてもよい。また情報取得部9は、後述する推定装置2と一体化されていてもよい。情報取得部9は、検知した情報を推定装置2へと出力する。また情報取得部9は地図情報をスキャニングすることで位置情報を特定する手段により構成されていてもよい。また情報取得部9は、温度センサ、湿度センサ、風向センサ、を測るための照度センサで構成されていてもよい。また情報取得部9は、天候についてのデータを気象庁や民間の天気予報会社から取得する通信インターフェースで構成されていてもよい。また情報取得部9は身体に装着して身体のデータを検出するための身体センサで構成されていてもよく、この身体センサは、例えば体温、心拍数、血圧、歩数、歩く速度、加速度を検出するためのセンサで構成されていてもよい。また情報取得部9は図面等の情報をスキャニングしたり、或いはデータベースから読み出すことで取得するデバイスとして構成されていてもよい。情報取得部9は、これら以外に臭気や香りを検知する臭気センサにより構成されていてもよい。
The information acquisition unit 9 is a device for a person using this system to input various commands and information, and specifically, is composed of a keyboard, buttons, a touch panel, a mouse, a switch, and the like. The information acquisition unit 9 is not limited to a device for inputting text information, and may be configured by a device such as a microphone that can detect voice and convert it into text information. Further, the information acquisition unit 9 may be configured as an image pickup device capable of taking an image of a camera or the like. The information acquisition unit 9 may be configured by a scanner having a function of recognizing a character string from a paper-based document. Further, the information acquisition unit 9 may be integrated with the estimation device 2 described later. The information acquisition unit 9 outputs the detected information to the estimation device 2. Further, the information acquisition unit 9 may be configured by means for specifying the position information by scanning the map information. Further, the information acquisition unit 9 may be composed of an illuminance sensor for measuring a temperature sensor, a humidity sensor, and a wind direction sensor. Further, the information acquisition unit 9 may be configured by a communication interface for acquiring data about the weather from the Japan Meteorological Agency or a private weather forecast company. Further, the information acquisition unit 9 may be composed of a body sensor that is attached to the body to detect body data, and the body sensor detects, for example, body temperature, heart rate, blood pressure, number of steps, walking speed, and acceleration. It may be composed of a sensor for the purpose. Further, the information acquisition unit 9 may be configured as a device for acquiring information such as drawings by scanning or reading from a database. In addition to these, the information acquisition unit 9 may be configured by an odor sensor that detects odors and scents.
データベース3は、うつ状態判別を行う上で必要な様々な情報が蓄積される。うつ状態判別を行う上で必要な情報としては、人の動作を動画像として予め撮像した参照用動画像情報、人の音声を録音した参照用音声情報、予めテキストデータを類型化した参照用テキスト情報、予めスケジュールデータを類型化した参照用スケジュール情報、予め出演頻度データを類型化した参照用出演頻度情報と、これらに対して実際に判断がなされるうつ状態、そのうつ状態を改善するための改善施策とのデータセットが記憶されている。
Database 3 stores various information necessary for determining the depression state. Information necessary for determining the depression state includes reference moving image information in which human movements are captured in advance as moving images, reference audio information in which human voice is recorded, and reference text in which text data is categorized in advance. Information, reference schedule information that categorizes schedule data in advance, reference appearance frequency information that categorizes appearance frequency data in advance, a depressed state in which a judgment is actually made for these, and to improve the depressed state. A data set with improvement measures is stored.
つまり、データベース3には、このような参照用動画像情報に加え、参照用音声情報、参照用テキスト情報、参照用スケジュール情報、参照用出演頻度情報の何れか1以上と、うつ状態、又は改善施策が互いに紐づけられて記憶されている。またデータベース3には、参照用音声情報に加え、参照用テキスト情報、参照用スケジュール情報、参照用出演頻度情報の何れか1以上と、うつ状態、又は改善施策が互いに紐づけられて記憶されている。
That is, in addition to such reference moving image information, the database 3 contains one or more of reference audio information, reference text information, reference schedule information, and reference appearance frequency information, and is in a depressed state or improved. The measures are linked to each other and remembered. Further, in the database 3, in addition to the reference voice information, any one or more of the reference text information, the reference schedule information, and the reference appearance frequency information, and the depressed state or improvement measures are stored in association with each other. There is.
判別装置2は、例えば、パーソナルコンピュータ(PC)等を始めとした電子機器で構成されているが、PC以外に、携帯電話、スマートフォン、タブレット型端末、ウェアラブル端末等、他のあらゆる電子機器で具現化されるものであってもよい。ユーザは、この判別装置2による探索解を得ることができる。
The discrimination device 2 is composed of, for example, an electronic device such as a personal computer (PC), but is embodied in any other electronic device such as a mobile phone, a smartphone, a tablet terminal, a wearable terminal, etc., in addition to the PC. It may be the one to be converted. The user can obtain a search solution by the discrimination device 2.
図2は、判別装置2の具体的な構成例を示している。この判別装置2は、判別装置2全体を制御するための制御部24と、操作ボタンやキーボード等を介して各種制御用の指令を入力するための操作部25と、有線通信又は無線通信を行うための通信部26と、各種判断を行う推定部27と、ハードディスク等に代表され、実行すべき検索を行うためのプログラムを格納するための記憶部28とが内部バス21にそれぞれ接続されている。さらに、この内部バス21には、実際に情報を表示するモニタとしての表示部23が接続されている。
FIG. 2 shows a specific configuration example of the discrimination device 2. The discrimination device 2 performs wired communication or wireless communication with a control unit 24 for controlling the entire discrimination device 2 and an operation unit 25 for inputting various control commands via an operation button, a keyboard, or the like. A communication unit 26 for the purpose, an estimation unit 27 for making various judgments, and a storage unit 28 for storing a program for performing a search to be executed represented by a hard disk or the like are connected to the internal bus 21, respectively. .. Further, a display unit 23 as a monitor that actually displays information is connected to the internal bus 21.
制御部24は、内部バス21を介して制御信号を送信することにより、判別装置2内に実装された各構成要素を制御するためのいわゆる中央制御ユニットである。また、この制御部24は、操作部25を介した操作に応じて各種制御用の指令を内部バス21を介して伝達する。
The control unit 24 is a so-called central control unit for controlling each component mounted in the discrimination device 2 by transmitting a control signal via the internal bus 21. Further, the control unit 24 transmits various control commands via the internal bus 21 according to the operation via the operation unit 25.
操作部25は、キーボードやタッチパネルにより具現化され、プログラムを実行するための実行命令がユーザから入力される。この操作部25は、上記実行命令がユーザから入力された場合には、これを制御部24に通知する。この通知を受けた制御部24は、推定部27を始め、各構成要素と協調させて所望の処理動作を実行していくこととなる。この操作部25は、前述した情報取得部9として具現化されるものであってもよい。
The operation unit 25 is embodied by a keyboard or a touch panel, and an execution command for executing a program is input from the user. When the execution command is input by the user, the operation unit 25 notifies the control unit 24 of the execution command. Upon receiving this notification, the control unit 24, including the estimation unit 27, executes a desired processing operation in cooperation with each component. The operation unit 25 may be embodied as the information acquisition unit 9 described above.
推定部27は、探索解を推定する。この推定部27は、推定動作を実行するに当たり、必要な情報として記憶部28に記憶されている各種情報や、データベース3に記憶されている各種情報を読み出す。この推定部27は、人工知能により制御されるものであってもよい。この人工知能はいかなる周知の人工知能技術に基づくものであってもよい。
The estimation unit 27 estimates the search solution. The estimation unit 27 reads out various information stored in the storage unit 28 and various information stored in the database 3 as necessary information when executing the estimation operation. The estimation unit 27 may be controlled by artificial intelligence. This artificial intelligence may be based on any well-known artificial intelligence technique.
表示部23は、制御部24による制御に基づいて表示画像を作り出すグラフィックコントローラにより構成されている。この表示部23は、例えば、液晶ディスプレイ(LCD)等によって実現される。
The display unit 23 is configured by a graphic controller that creates a display image based on the control by the control unit 24. The display unit 23 is realized by, for example, a liquid crystal display (LCD) or the like.
記憶部28は、ハードディスクで構成される場合において、制御部24による制御に基づき、各アドレスに対して所定の情報が書き込まれるとともに、必要に応じてこれが読み出される。また、この記憶部28には、本発明を実行するためのプログラムが格納されている。このプログラムは制御部24により読み出されて実行されることになる。
When the storage unit 28 is composed of a hard disk, predetermined information is written to each address based on the control by the control unit 24, and is read out as needed. Further, the storage unit 28 stores a program for executing the present invention. This program will be read and executed by the control unit 24.
上述した構成からなるうつ状態判別システム1における動作について説明をする。
The operation in the depression state determination system 1 having the above-mentioned configuration will be described.
うつ状態判別システム1では、例えば図3に示すように、参照用動画像と、うつ状態との3段階以上の連関度が予め設定され、取得されていることが前提となる。参照用動画像は、人のあらゆる動作や表情を動画像として撮像した情報である。参照用動画像情報は、動画像を解析し、特徴量等をディープラーニング技術等により解析することにより、人の表情や動作等をパターン化するようにしてもよい。うつの兆候が表れる行動として、例えば、他者とうまく関われない、態度がおどおどしている、他人の顔色をうかがう、食事に異常な執着を示す、ひどく落ち着きがない等が考えられる場合、このような行動を類型化し予めパターン化しておく。
In the depression state determination system 1, for example, as shown in FIG. 3, it is premised that the degree of association between the reference moving image and the depression state is set and acquired in advance. The reference moving image is information obtained by capturing all movements and facial expressions of a person as a moving image. As the reference moving image information, the facial expression, movement, etc. of a person may be patterned by analyzing the moving image and analyzing the feature amount or the like by a deep learning technique or the like. Behaviors that show signs of depression include, for example, poor involvement with others, agitated attitude, looking at someone else's complexion, abnormal dietary attachment, and terrible restlessness. Behaviors are categorized and patterned in advance.
態度がおどおどしている兆候として、首が前後に揺れる、或いは手足を貧乏ゆすりする等がそのパターンであれば、そのパターンに当てはめるか否かを動画像の解析を通じて判別する。この判別の過程では、既存の画像解析技術やディープラーニング技術を利用してもよい。そして、このパターンに当てはめるアクションを検知した場合には、個々の行動パターンに応じて分類した参照用動画像情報に当てはめる。
If the pattern is that the neck sways back and forth or the limbs are poorly shaken as a sign that the attitude is frightening, it is determined through the analysis of the moving image whether or not it applies to the pattern. In this discrimination process, existing image analysis techniques and deep learning techniques may be used. Then, when an action applied to this pattern is detected, it is applied to the reference moving image information classified according to each action pattern.
このような参照用動画像情報と、うつ状態のレベルとの間で同様に連関度を形成することで学習済みモデルを作っておく。そして、実際に出演者のうつ状態の判別をする場合には、その出演者を撮像した動画像から同様に画像解析を行うことにより、予めパターン化した各種行動の類型に当てはめ、これを動画像情報とする。この動画像情報において当てはめるべき行動パターンの類型は、上述した参照用動画像情報に準じるようにしておく。
A trained model is created by similarly forming a degree of association between such reference moving image information and the level of depression. Then, when actually determining the depressed state of the performer, by performing image analysis in the same manner from the moving image of the performer, the image is applied to various types of pre-patterned behaviors, and this is applied to the moving image. It is information. The type of behavior pattern to be applied in this moving image information shall be in accordance with the above-mentioned reference moving image information.
このようにして画像情報から抽出した行動パターン情報に基づいて、参照用行動パターン情報と虐待可能性との間で形成した連関度を参照し、実際の虐待可能性を判別することが可能となる。虐待可能性の判別プロセスは、上述した図3に示す画像情報に基づく虐待可能性の判別プロセスと同様である。
Based on the behavior pattern information extracted from the image information in this way, it is possible to determine the actual possibility of abuse by referring to the degree of association formed between the reference behavior pattern information and the possibility of abuse. .. The process of determining the possibility of abuse is the same as the process of determining the possibility of abuse based on the image information shown in FIG. 3 described above.
うつ状態のレベルとは、客観的に評価された個々のうつ状態である。このうつ状態の例としては、例えば専門的な知識を持った医師や専門家によりうつ状態を客観的に評価された評価データや診療データ、診察結果等に基づくものであってもよい。またこのうつ状態の評価者はメンタルに関する専門的知識を必ずしも有している場合に限定されるものではなく、その専門的知識を有さない者も含まれる。つまりうつ状態の評価者は本人以外の第三者による評価であればよい。
The level of depression is an individual depression that is objectively evaluated. As an example of this depressed state, for example, it may be based on evaluation data, medical care data, medical examination results, etc., in which the depressed state is objectively evaluated by a doctor or a specialist having specialized knowledge. In addition, the evaluator of this depression is not limited to those who have specialized knowledge about mentality, and includes those who do not have that specialized knowledge. In other words, the evaluator of the depressed state may be evaluated by a third party other than the person himself / herself.
うつ状態の評価例としては、例えば強度のうつ状態、軽度のうつ状態、正常、やや落ち込み気味、注意力散漫状態等であるが、これらに限定されるものではなく、例えばうつ状態が0点、正常が100点としたとき、その0~100点の間で100段階で数値で評価されるものであってもよい。
Examples of evaluation of depression include, for example, severe depression, mild depression, normal, slightly depressed, and distracted attention, but the present invention is not limited to these, and for example, depression is 0 points. When the normal score is 100 points, the score may be evaluated numerically in 100 steps between 0 and 100 points.
図3の例では、入力データとして例えば参照用動画像P01~P03であるものとする。このような入力データとしての参照用動画像P01~P03は、出力に連結している。この出力においては、出力解としての、うつ状態が表示されている。
In the example of FIG. 3, it is assumed that the input data is, for example, reference moving images P01 to P03. The reference moving images P01 to P03 as such input data are connected to the output. In this output, the depressed state as the output solution is displayed.
参照用動画像は、この出力解としてのうつ状態のレベルに対して3段階以上の連関度を通じて互いに連関しあっている。参照用動画像がこの連関度を介して左側に配列し、各うつ状態が連関度を介して右側に配列している。連関度は、左側に配列された参照用動画像に対して、何れのうつ状態と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用動画像が、いかなるうつ状態に紐付けられる可能性が高いかを示す指標であり、参照用動画像から最も確からしいうつ状態を選択する上での的確性を示すものである。図3の例では、連関度としてw13~w19が示されている。このw13~w19は以下の表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのうつ状態と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としての値段と互いに関連度合いが低いことを示している。
The reference moving images are associated with each other through three or more levels of association with the level of depression as the output solution. The reference moving images are arranged on the left side through this degree of association, and each depression state is arranged on the right side through this degree of association. The degree of association indicates which depression state is more relevant to the reference moving images arranged on the left side. In other words, this degree of association is an indicator of what kind of depression each reference video is likely to be associated with, and is used to select the most probable depression from the reference video. It shows the accuracy. In the example of FIG. 3, w13 to w19 are shown as the degree of association. These w13 to w19 are shown in 10 stages as shown in Table 1 below, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the depression state as an output. On the contrary, the closer to one point, the lower the degree of relevance of each combination as an intermediate node to the price as an output.
判別装置2は、このような図3に示す3段階以上の連関度w13~w19を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用動画像と、その場合のうつ状態の何れが採用、評価されたか、過去のデータセットを蓄積しておき、これらを分析、解析することで図3に示す連関度を作り上げておく。
The discrimination device 2 acquires in advance the degree of association w13 to w19 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data sets and analyzes which of the reference moving image and the depressed state in that case is adopted and evaluated in discriminating the actual search solution. , The degree of association shown in FIG. 3 is created by analysis.
例えば、参照用動画像が、4回連続でうつの兆候である怯える表情が検出されているものとする。このような参照用動画像に対するうつ状態のレベルとしては、強いうつ状態が多く評価されたものとする。このようなデータセットを集めて分析することにより、参照用動画像(4回連続で「怯える表情」)と、うつ状態(強いうつ状態)との連関度が強くなる。
For example, it is assumed that the reference moving image has a frightened facial expression, which is a sign of depression, detected four times in a row. As the level of depression for such a reference moving image, it is assumed that strong depression is often evaluated. By collecting and analyzing such a data set, the degree of association between the reference moving image (“frightened facial expression” four times in a row) and the depressed state (strong depressed state) becomes stronger.
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用動画像P01である場合に、過去のうつ状態の評価を行った結果の各種データから分析する。これは例えば、診断結果の電子データや職場での評価結果からテキストマイニング分析を行うことでデータセットを抽出するようにしてもよい。参照用動画像P01である場合に、「強度のうつ状態」の事例が多い場合には、この「強度のうつ状態」の評価につながる連関度をより高く設定し、「やや落ち込み気味」の事例が多い場合には、このうつ状態の評価につながる連関度をより高く設定する。例えば参照用問題点情報P01の例では、「強度のうつ状態」と、「やや落ち込み気味」にリンクしているが、以前の事例から「強度のうつ状態」につながるw13の連関度を7点に、「やや落ち込み気味」につながるw14の連関度を2点に設定している。
This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference moving image P01, analysis is performed from various data as a result of evaluating the past depression state. For example, the data set may be extracted by performing a text mining analysis from the electronic data of the diagnosis result or the evaluation result in the workplace. In the case of the reference moving image P01, if there are many cases of "strong depression", the degree of association that leads to the evaluation of this "strong depression" is set higher, and the case of "slightly depressed". If there are many, set a higher degree of association that leads to the evaluation of this depression. For example, in the example of the problem information P01 for reference, it is linked to "strong depression state" and "slightly depressed", but from the previous case, the degree of association of w13 that leads to "strong depression state" is 7 points. In addition, the degree of association of w14, which leads to "slightly depressed", is set to 2 points.
また、この図3に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
Further, the degree of association shown in FIG. 3 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たに出演者に対してうつ状態の判別を行う上で、上述した学習済みデータを利用してうつ状態を探索することとなる。かかる場合には、実際に判別対象の出演者から動画像を主観的に評価してもらい、あるいはインタビューなどを通じて聞き出すことで、これを新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, the above-mentioned learned data will be used to search for the depressed state in actually determining the depressed state for the performers. In such a case, the moving image is subjectively evaluated by the performer to be discriminated, or the moving image is newly acquired by asking through an interview or the like.
新たに取得する動画像は、上述した情報取得部9により入力される。情報取得部9は、出演者が実際にテレビ番組に出演している場合には、そのテレビ番組を録画することで得るようにしてもよいし、各種動画投稿サイトに投稿されている動画像がある場合には、そこから取得するようにしてもよい。
The newly acquired moving image is input by the above-mentioned information acquisition unit 9. When the performer is actually appearing on a TV program, the information acquisition unit 9 may obtain the information by recording the TV program, or the moving image posted on various video posting sites may be obtained. In some cases, it may be obtained from there.
このようにして新たに取得した動画像に基づいて、その出演者のうつ状態を判別する。かかる場合には、予め取得した図3(表1)に示す連関度を参照する。例えば、新たに取得した動画像がP02と同一かこれに類似するものである場合には、連関度を介して「正常」がw15、「やや落ち込み気味」が連関度w16で関連付けられている。かかる場合には、連関度の最も高い「正常」を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる「やや落ち込み気味」を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
Based on the newly acquired moving image in this way, the depressed state of the performer is determined. In such a case, the degree of association shown in FIG. 3 (Table 1) acquired in advance is referred to. For example, when the newly acquired moving image is the same as or similar to P02, "normal" is associated with w15 and "slightly depressed" is associated with the association degree w16 through the association degree. In such a case, "normal" with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and it is also possible to select "slightly depressed" as the optimum solution, although the degree of association is low but the association itself is recognized. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
このようにして、新たに取得する動画像から、最も好適なうつ状態を探索し、ユーザに表示することができる。この探索結果を見ることにより、ユーザは、探索されたうつ状態に基づいて出演者に対するケア、即ち、心の健康度を回復させるための様々な改善施策のアプローチ指針を得ることができる。ちなみにこのうつ状態は、単なる状態評価に終始する場合に限定されるものではなく、更にそのうつ状態に対してどのように出演者に対するケア、即ち働き方についての改善施策を提案するかまで言及されているものであってもよい。
In this way, the most suitable depression state can be searched for and displayed to the user from the newly acquired moving image. By looking at this search result, the user can obtain an approach guideline for various improvement measures for caring for the performer, that is, for restoring mental health, based on the searched depression state. By the way, this depressive state is not limited to the case where it is merely a state evaluation, and it also mentions how to care for the performers, that is, to propose improvement measures for working styles for the depressive state. It may be the one that is.
なお、参照用動画像情報、動画像情報は、上述した実施の形態においては、複数枚の静止画像を時系列的に連続させた動画像の場合を例にとり説明をしたが、これに限定されるものでは無い。参照用動画像情報、動画像情報を構成する個々の静止画像から特徴や各種パターンを抽出し、これらとうつ状体のレベルとを紐付けて学習させるようにしてもよいことは勿論である。
In the above-described embodiment, the reference moving image information and the moving image information have been described by taking the case of a moving image in which a plurality of still images are continuously connected in chronological order as an example, but the description is limited to this. It's not something. Of course, it is also possible to extract features and various patterns from the reference moving image information and the individual still images constituting the moving image information, and to learn by associating these with the level of the depressed body.
図4の例では、参照用動画像情報と、参照用音声情報との組み合わせが形成されていることが前提となる。参照用音声情報とは、出演者が発した音声を録音したあらゆる音声データが含まれる。
In the example of FIG. 4, it is premised that a combination of the reference moving image information and the reference audio information is formed. The reference voice information includes all voice data recorded by the voice emitted by the performer.
この参照用音声情報は、うつ病の兆候を判別する被験者が話をした音声をテキストデータに変換したときのテキストデータで構成されていてもよいし、そのテキストデータを形態素解析や構文解析を行ったデータで構成されていてもよい。
This reference voice information may be composed of text data when the voice spoken by the subject who determines the sign of depression is converted into text data, and the text data is subjected to morphological analysis or syntactic analysis. It may be composed of data.
例えば形態素解析を行った結果、当該テキストデータ内に代名詞がどの程度含まれているかを示す情報でこの参照用音声情報を構成してもよい。例えば、被検者が「私は、明日、藤本君と、新幹線で、13時までに、大阪へ、行く」という話をするのと「私は、明日、あれと、あれで、大阪へ行く」というのでは、前者の方が意味が明確であるのに対して、後者は意味が不明確になってしまう。うつ病の患者は、自らが発する音声のテキストデータ中における代名詞の割合が高くなる場合には、これをテキストデータ単位で抽出することで、参照用音声情報とする。
For example, as a result of performing morphological analysis, this reference voice information may be composed of information indicating how much pronouns are included in the text data. For example, the subject says, "I will go to Osaka with Fujimoto tomorrow by 13:00 on the Shinkansen," and "I will go to Osaka tomorrow. The meaning of the former is clearer, while the meaning of the latter is unclear. When a patient with depression has a high proportion of pronouns in the text data of his / her voice, he / she extracts this in units of text data to obtain voice information for reference.
また、参照用音声情報としては、他人から質問を受けた被験者が回答するまでのインターバル時間を測定したもので構成してもよい。
Further, the reference voice information may be configured by measuring the interval time until the subject who receives the question from another person answers.
参照用音声情報としては、これ以外に、過去の被検者から抽出した音声のトーンに関する情報である。この音声のトーンは、例えば、音の高低(音波の1秒間あたりの振動回数、つまり周波数)や音そのもの、或いは音の強弱を指す。音声のトーンは、一般的な音声検出器を通じて、その高低や強弱を検出し、解析するようにしてもよい。
In addition to this, the reference voice information is information related to voice tones extracted from past subjects. The tone of this voice refers to, for example, the pitch of the sound (the number of vibrations per second of the sound wave, that is, the frequency), the sound itself, or the strength of the sound. The tone of the voice may be detected and analyzed by detecting the height and the strength of the voice through a general voice detector.
参照用音声情報は、抽出したテキストデータと連動させ、紐付けておくようにしてもよい。例えば、「私は、明日、藤本君と、新幹線で、13時までに、大阪へ、行く」という文言において、「明日」、「藤本君と」等の各名詞句(格成分)に対して、それぞれ音声のトーンが紐付けられ、参照用音声情報とされていてもよい。
The reference voice information may be linked with the extracted text data. For example, in the phrase "I will go to Osaka with Mr. Fujimoto tomorrow by 13:00 on the Shinkansen", for each noun phrase (case component) such as "Tomorrow" and "with Mr. Fujimoto". , Each voice tone may be associated and used as reference voice information.
入力データとしては、このような参照用音声情報と、参照用動画像情報が並んでいる。図4の例では、入力データとして例えば参照用動画像P01~P03、参照用音声情報P14~17であるものとする。このような入力データとしての、参照用動画像に対して、参照用音声情報が組み合わさったものが、図4に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、うつ状態が表示されている。
As input data, such reference audio information and reference video information are lined up. In the example of FIG. 4, it is assumed that the input data is, for example, reference moving images P01 to P03 and reference audio information P14 to 17. The intermediate node shown in FIG. 4 is a combination of reference audio information and reference video as such input data. Each intermediate node is further linked to the output. In this output, the depressed state as the output solution is displayed.
参照用動画像と参照用音声情報との各組み合わせ(中間ノード)は、この出力解としての、うつ状態に対して3段階以上の連関度を通じて互いに連関しあっている。参照用動画像と参照用音声情報がこの連関度を介して左側に配列し、うつ状態が連関度を介して右側に配列している。連関度は、左側に配列された参照用動画像と参照用音声情報に対して、うつ状態と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用動画像と参照用音声情報が、いかなるうつ状態に紐付けられる可能性が高いかを示す指標であり、参照用動画像と参照用音声情報から最も確からしいうつ状態を選択する上での的確性を示すものである。出演者が主観的に入力する心の健康度合いに加え、実際の出退勤の状況がいかなるものかに応じて、評価すべきうつ状態は異なるものとなる。このため、これらの参照用動画像と参照用音声情報の組み合わせで、最適なうつ状態を探索していくこととなる。
Each combination (intermediate node) of the reference moving image and the reference audio information is associated with each other through three or more levels of association with the depressed state as this output solution. The reference moving image and the reference audio information are arranged on the left side through this degree of association, and the depressed state is arranged on the right side through this degree of association. The degree of association indicates the degree of relevance to the depressed state with respect to the reference moving image and the reference audio information arranged on the left side. In other words, this degree of association is an index showing what kind of depression each reference moving image and reference audio information are likely to be associated with, and is the most from the reference moving image and reference audio information. It shows the accuracy in selecting a probable depression. Depression to be evaluated will differ depending on the actual state of attendance and departure, in addition to the degree of mental health that the performer subjectively inputs. Therefore, the optimum depression state is searched for by combining these reference moving images and reference audio information.
図4の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力と互いに関連度合いが低いことを示している。
In the example of FIG. 4, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relevance of each combination as an intermediate node to the output, and conversely, 1 point. The closer they are, the less relevant each combination as an intermediate node is to the output.
判別装置2は、このような図4に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用動画像と、参照用音声情報、並びにその場合のうつ状態が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図4に示す連関度を作り上げておく。
The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference moving image, the reference audio information, and the depressed state in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 4 is created.
例えば、過去にあった実際の事例における参照用動画像が、怯える兆候と正常な兆候が一日おきに5連続で連続するものであるとする。また参照用音声情報が3日連続でトーンダウンの兆候であるものとする。かかる場合に、「やや落ち込み気味」のうつ状態が多い場合には、これらをデータセットとして学習させ、上述した連関度という形で定義しておく。
For example, it is assumed that the reference moving image in the actual case in the past has 5 consecutive signs of frightening and normal signs every other day. Further, it is assumed that the reference voice information is a sign of tone down for three consecutive days. In such a case, if there are many "slightly depressed" depressed states, these are learned as a data set and defined in the form of the above-mentioned degree of association.
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用動画像P01で、参照用音声情報P16である場合に、そのうつ状態を過去のデータから分析する。うつ状態が「正常」の事例が多い場合には、この「正常」につながる連関度をより高く設定し、「注意力散漫状態」の事例が多く、「正常」の事例が少ない場合には、「注意力散漫状態」につながる連関度を高くし、「正常」につながる連関度を低く設定する。例えば中間ノード61aの例では、「うつ状態」と「正常」の出力にリンクしているが、以前の事例から「うつ状態」につながるw13の連関度を7点に、「正常」につながるw14の連関度を2点に設定している。
This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference moving image P01 and the reference audio information P16, the depressive state is analyzed from the past data. When there are many cases of "normal" depression, the degree of association leading to this "normal" is set higher, and when there are many cases of "distracted attention" and few cases of "normal", the degree of association is set higher. Set the degree of association that leads to "distracted attention" high and the degree of association that leads to "normal" low. For example, in the example of the intermediate node 61a, it is linked to the output of "depressed state" and "normal", but from the previous case, the degree of association of w13 that leads to "depressed state" is set to 7 points, and w14 that leads to "normal". The degree of association is set to 2 points.
また、この図4に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
Further, the degree of association shown in FIG. 4 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
図4に示す連関度の例で、ノード61bは、参照用動画像P01に対して、参照用音声情報P14の組み合わせのノードであり、「やや落ち込み気味」の連関度がw15、「即座に入院が必要なレベルの激しいうつ状態」の連関度がw16となっている。ノード61cは、参照用動画像P02に対して、参照用音声情報P15、P17の組み合わせのノードであり、「正常」の連関度がw17、「注意力散漫状態」の連関度がw18となっている。
In the example of the degree of association shown in FIG. 4, the node 61b is a node of the combination of the reference audio information P14 with respect to the reference moving image P01, the degree of association of "slightly depressed" is w15, and "immediate hospitalization". The degree of association of "a level of severe depression that requires" is w16. The node 61c is a node of a combination of reference audio information P15 and P17 with respect to the reference moving image P02, and the degree of association of "normal" is w17 and the degree of association of "distracted attention" is w18. There is.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから出演者のうつ状態を判別する際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際に判別対象の出演者から動画像と、音声情報とを取得する。音声情報は、参照用音声情報に対応し、出演者がテレビ番組やラジオ番組、動画投稿サイトにアップされた動画像において発生した音声を録音する。
Such degree of association is what is called learned data in artificial intelligence. After creating such learned data, when actually determining the depressed state of the performer from now on, the above-mentioned learned data will be used. In such a case, the moving image and the audio information are actually acquired from the performer to be discriminated. The audio information corresponds to the reference audio information, and the performer records the audio generated in the moving image uploaded to the TV program, the radio program, or the video posting site.
このようにして新たに取得した動画像、音声情報に基づいて、最適なうつ状態を探索する。かかる場合には、予め取得した図4(表1)に示す連関度を参照する。例えば、新たに取得した動画像がP02と同一かこれに類似するものである場合であって、音声情報がP17である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、「やや落ち込み気味」がw19、「注意力散漫状態」が連関度w20で関連付けられている。かかる場合には、連関度の最も高い「やや落ち込み気味」を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる「注意力散漫状態」を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
Search for the optimal depression state based on the newly acquired moving image and audio information in this way. In such a case, the degree of association shown in FIG. 4 (Table 1) acquired in advance is referred to. For example, when the newly acquired moving image is the same as or similar to P02 and the audio information is P17, the node 61d is associated via the degree of association, and this node. In 61d, "slightly depressed" is associated with w19, and "attention distracted state" is associated with a degree of association w20. In such a case, the “slightly depressed” with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the "distracted attention state" in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
また、入力から伸びている連関度w1~w12の例を以下の表2に示す。
Table 2 below shows an example of the degree of association w1 to w12 extending from the input.
この入力から伸びている連関度w1~w12に基づいて中間ノード61が選択されていてもよい。つまり連関度w1~w12が大きいほど、中間ノード61の選択における重みづけを重くしてもよい。しかし、この連関度w1~w12は何れも同じ値としてもよく、中間ノード61の選択における重みづけは何れも全て同一とされていてもよい。
The intermediate node 61 may be selected based on the degree of association w1 to w12 extending from this input. That is, the larger the degree of association w1 to w12, the heavier the weighting in the selection of the intermediate node 61 may be. However, the degrees of association w1 to w12 may all have the same value, and the weights in the selection of the intermediate node 61 may all be the same.
図5は、上述した参照用動画像と、参照用テキスト情報との組み合わせと、当該組み合わせに対するうつ状態との3段階以上の連関度が設定されている例を示している。
FIG. 5 shows an example in which a combination of the above-mentioned reference moving image, reference text information, and a depression state with respect to the combination are set to three or more levels of association.
参照用テキスト情報とは、予めテキストデータを類型化したものであり、例えば、誹謗中傷や悪口に当たるような文言を予め類型化しておく。そしてその類型化した文言に当たるのか否かを示すようにしてもよい。また誹謗中傷の度合をレベル的に示すようにしてもよく、そのレベルに応じた文言を予め類型化しておくようにしてもよい。
The reference text information is categorized in advance for text data. For example, words that correspond to false accusation or slander are categorized in advance. Then, it may indicate whether or not it corresponds to the categorized wording. Further, the degree of accusation may be indicated in a level, and the wording according to the level may be categorized in advance.
図5の例では、入力データとして例えば参照用動画像P01~P03、参照用テキスト情報P18~21であるものとする。このような入力データとしての、参照用動画像に対して、参照用テキスト情報が組み合わさったものが、図5に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、うつ状態が表示されている。
In the example of FIG. 5, it is assumed that the input data is, for example, reference moving images P01 to P03 and reference text information P18 to 21. The intermediate node shown in FIG. 5 is a combination of reference text information and reference video as such input data. Each intermediate node is further linked to the output. In this output, the depressed state as the output solution is displayed.
参照用動画像と参照用テキスト情報との各組み合わせ(中間ノード)は、この出力解としての、うつ状態に対して3段階以上の連関度を通じて互いに連関しあっている。参照用動画像と参照用テキスト情報がこの連関度を介して左側に配列し、うつ状態が連関度を介して右側に配列している。連関度は、左側に配列された参照用動画像と参照用テキスト情報に対して、うつ状態と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用動画像と参照用テキスト情報が、いかなるうつ状態に紐付けられる可能性が高いかを示す指標であり、参照用動画像と参照用テキスト情報から最も確からしいうつ状態を選択する上での的確性を示すものである。出演者が主観的に入力する心の健康度合いに加え、実際の所得の状況がいかなるものかに応じて、評価すべきうつ状態は異なるものとなる。このため、これらの参照用動画像と参照用テキスト情報の組み合わせで、最適なうつ状態を探索していくこととなる。
Each combination (intermediate node) of the reference moving image and the reference text information is associated with each other through three or more levels of association with the depressed state as this output solution. The reference moving image and the reference text information are arranged on the left side through this degree of association, and the depressed state is arranged on the right side through this degree of association. The degree of association indicates the degree of relevance to the depressed state with respect to the reference moving image and the reference text information arranged on the left side. In other words, this degree of association is an index showing what kind of depression each reference moving image and reference text information is likely to be associated with, and is the most from the reference moving image and reference text information. It shows the accuracy in selecting a probable depression. Depression to be evaluated will differ depending on what the actual income situation is, in addition to the degree of mental health that the performer subjectively inputs. Therefore, the optimum depression state is searched for by combining these reference moving images and reference text information.
図5の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのうつ状態と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としてのうつ状態と互いに関連度合いが低いことを示している。
In the example of FIG. 5, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relation between each combination as an intermediate node with the depression state as an output, and vice versa. The closer it is to one point, the lower the degree of association between each combination as an intermediate node and the depression state as an output.
判別装置2は、このような図5に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用動画像と、参照用テキスト情報、並びにその場合のうつ状態が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図5に示す連関度を作り上げておく。
The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference moving image, the reference text information, and the depression state in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 5 is created.
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用動画像P01で、参照用テキスト情報P20である場合に、そのうつ状態を過去のデータから分析する。うつ状態が「やや落ち込み気味」の事例が多い場合には、この「やや落ち込み気味」につながる連関度をより高く設定し、「注意力散漫状態」の事例が多く、「やや落ち込み気味」の事例が少ない場合には、「注意力散漫状態」につながる連関度を高くし、「やや落ち込み気味」につながる連関度を低く設定する。例えば中間ノード61aの例では、「軽度のうつ状態」と「正常」の出力にリンクしているが、以前の事例から「軽度のうつ状態」につながるw13の連関度を7点に、「正常」につながるw14の連関度を2点に設定している。
This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference moving image P01 and the reference text information P20, the depressive state is analyzed from the past data. When there are many cases of depression being "slightly depressed", the degree of association that leads to this "slightly depressed" is set higher, and there are many cases of "distracted attention", and cases of "slightly depressed". If the number is low, the degree of association that leads to "distracted attention" is set high, and the degree of association that leads to "slightly depressed" is set low. For example, in the example of the intermediate node 61a, it is linked to the output of "mild depression" and "normal", but from the previous case, the degree of association of w13 that leads to "mild depression" is set to 7 points, and "normal". The degree of association of w14 that leads to "" is set to 2 points.
また、この図5に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
Further, the degree of association shown in FIG. 5 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
図5に示す連関度の例で、ノード61bは、参照用動画像P01に対して、参照用テキスト情報P18の組み合わせのノードであり、「やや落ち込み気味」の連関度がw15、「即座に入院が必要なレベルの激しいうつ状態」の連関度がw16となっている。ノード61cは、参照用動画像P02に対して、参照用テキスト情報P19、P21の組み合わせのノードであり、「正常」の連関度がw17、「注意力散漫状態」の連関度がw18となっている。
In the example of the degree of association shown in FIG. 5, the node 61b is a node of the combination of the reference text information P18 with respect to the reference moving image P01, the degree of association of "slightly depressed" is w15, and "immediate hospitalization". The degree of association of "a level of severe depression that requires" is w16. The node 61c is a node in which the reference text information P19 and P21 are combined with respect to the reference moving image P02, and the degree of association of "normal" is w17 and the degree of association of "distracted attention" is w18. There is.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれからうつ状態の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にそのうつ状態の判別対象の出演者の動画像と、テキスト情報とを取得する。テキスト情報は、インターネット上の各種情報サイトやSNSへの書き込みから取得したテキストデータで構成される。取得したテキストデータは、周知の形態素解析技術、構文解析技術に基づいて解析が行われ、これに含まれる単語や文言が、予め類型化された参照用テキスト情報の何れの分離に含まれるかを判別する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, when actually searching for a depressed state from now on, the above-mentioned trained data will be used. In such a case, the moving image of the performer whose depression state is actually determined and the text information are acquired. The text information is composed of text data acquired from writing to various information sites and SNS on the Internet. The acquired text data is analyzed based on well-known morphological analysis techniques and syntactic analysis techniques, and which separation of the pre-categorized reference text information includes the words and words contained therein. Determine.
このようにして新たに取得した動画像と、テキスト情報に基づいて、最適なうつ状態を探索する。かかる場合には、予め取得した図5(表1)に示す連関度を参照する。例えば、新たに取得した動画像がP02と同一かこれに類似するものである場合であって、テキスト情報がP21である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、「やや落ち込み気味」がw19、「注意力散漫状態」が連関度w20で関連付けられている。かかる場合には、連関度の最も高い「やや落ち込み気味」を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる「注意力散漫状態」を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
Search for the optimal depression state based on the newly acquired moving image and text information in this way. In such a case, the degree of association shown in FIG. 5 (Table 1) acquired in advance is referred to. For example, when the newly acquired moving image is the same as or similar to P02 and the text information is P21, the node 61d is associated via the degree of association, and this node. In 61d, "slightly depressed" is associated with w19, and "attention distracted state" is associated with a degree of association w20. In such a case, the “slightly depressed” with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the "distracted attention state" in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
図6は、上述した参照用動画像と、参照用スケジュール情報との組み合わせと、当該組み合わせに対するうつ状態との3段階以上の連関度が設定されている例を示している。
FIG. 6 shows an example in which the combination of the above-mentioned reference moving image, the reference schedule information, and the depression state with respect to the combination are set to three or more levels of association.
参照用スケジュール情報とは、出演者の番組出演予定のみならず、仕事の全てのスケジュールに関する情報を含む。つまり参照用スケジュール情報は、サイン会や講演会、その他インタビューの時間や執務時間、移動時間、練習時間、稽古時間等が時系列的にどのように組まれているかを示すものである。この参照用スケジュール情報は、あくまで参照用の情報であることから、出演者のようなタレント活動を営んでいる人のみならず一般人のスケジュールに置き換えて類型化してもよい。かかる場合には、例えば1週間のスケジュールにおいて、労働時間、休憩時間、移動時間、会議時間、自由時間等、様々なスケジュールを学習データとして取得する。
The reference schedule information includes not only the program appearance schedule of the performers but also information on all work schedules. In other words, the reference schedule information shows how the autograph session, lecture, other interview time, working time, travel time, practice time, training time, etc. are organized in chronological order. Since this reference schedule information is only reference information, it may be categorized by replacing it with the schedule of not only people who are engaged in talent activities such as performers but also ordinary people. In such a case, for example, in a one-week schedule, various schedules such as working hours, break times, traveling times, meeting hours, and free hours are acquired as learning data.
図6の例では、入力データとして例えば参照用動画像P01~P03、参照用スケジュール情報P22~25であるものとする。このような入力データとしての、参照用動画像に対して、参照用スケジュール情報が組み合わさったものが、図6に示す中間ノードである。各中間ノードは、更に出力に連結している。この出力においては、出力解としての、うつ状態が表示されている。
In the example of FIG. 6, it is assumed that the input data is, for example, reference moving images P01 to P03 and reference schedule information P22 to 25. The intermediate node shown in FIG. 6 is a combination of the reference moving image and the reference schedule information as such input data. Each intermediate node is further linked to the output. In this output, the depressed state as the output solution is displayed.
参照用動画像と参照用スケジュール情報との各組み合わせ(中間ノード)は、この出力解としての、うつ状態に対して3段階以上の連関度を通じて互いに連関しあっている。参照用動画像と参照用スケジュール情報がこの連関度を介して左側に配列し、うつ状態が連関度を介して右側に配列している。連関度は、左側に配列された参照用動画像と参照用スケジュール情報に対して、うつ状態と関連性が高いかの度合いを示すものである。換言すれば、この連関度は、各参照用動画像と参照用スケジュール情報が、いかなるうつ状態に紐付けられる可能性が高いかを示す指標であり、参照用動画像と参照用スケジュール情報から最も確からしいうつ状態を選択する上での的確性を示すものである。
Each combination (intermediate node) of the reference moving image and the reference schedule information is associated with each other through three or more levels of association with the depressed state as this output solution. The reference moving image and the reference schedule information are arranged on the left side through this degree of association, and the depressed state is arranged on the right side through this degree of association. The degree of association indicates the degree of relevance to the depressed state with respect to the reference moving image and the reference schedule information arranged on the left side. In other words, this degree of association is an index showing what kind of depression each reference moving image and reference schedule information are likely to be associated with, and is the most from the reference moving image and reference schedule information. It shows the accuracy in selecting a probable depression.
図6の例では、連関度としてw13~w22が示されている。このw13~w22は表1に示すように10段階で示されており、10点に近いほど、中間ノードとしての各組み合わせが出力としてのうつ状態と互いに関連度合いが高いことを示しており、逆に1点に近いほど中間ノードとしての各組み合わせが出力としてのうつ状態と互いに関連度合いが低いことを示している。
In the example of FIG. 6, w13 to w22 are shown as the degree of association. As shown in Table 1, these w13 to w22 are shown in 10 stages, and the closer to 10 points, the higher the degree of relation between each combination as an intermediate node with the depression state as an output, and vice versa. The closer it is to one point, the lower the degree of association between each combination as an intermediate node and the depression state as an output.
判別装置2は、このような図6に示す3段階以上の連関度w13~w22を予め取得しておく。つまり判別装置2は、実際の探索解の判別を行う上で、参照用動画像と、参照用スケジュール情報、並びにその場合のうつ状態が何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図6に示す連関度を作り上げておく。
The discrimination device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the discriminating device 2 accumulates past data as to which of the reference moving image, the reference schedule information, and the depression state in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 6 is created.
この分析、解析は人工知能により行うようにしてもよい。かかる場合には、例えば参照用動画像P01で、参照用スケジュール情報P24である場合に、そのうつ状態を過去のデータから分析する。うつ状態が「やや落ち込み気味」の事例が多い場合には、この「やや落ち込み気味」につながる連関度をより高く設定し、「注意力散漫状態」の事例が多く、「やや落ち込み気味」の事例が少ない場合には、「注意力散漫状態」につながる連関度を高くし、「やや落ち込み気味」につながる連関度を低く設定する。例えば中間ノード61aの例では、「軽度のうつ状態」と「正常」の出力にリンクしているが、以前の事例から「うつ状態」につながるw13の連関度を7点に、「正常」につながるw14の連関度を2点に設定している。
This analysis may be performed by artificial intelligence. In such a case, for example, in the case of the reference moving image P01 and the reference schedule information P24, the depression state is analyzed from the past data. When there are many cases of depression being "slightly depressed", the degree of association that leads to this "slightly depressed" is set higher, and there are many cases of "distracted attention", and cases of "slightly depressed". If the number is low, the degree of association that leads to "distracted attention" is set high, and the degree of association that leads to "slightly depressed" is set low. For example, in the example of the intermediate node 61a, it is linked to the output of "mild depression" and "normal", but from the previous case, the degree of association of w13 that leads to "depression" is set to 7 points and becomes "normal". The degree of association of the connected w14 is set to 2 points.
また、この図6示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
Further, the degree of association shown in FIG. 6 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
図6に示す連関度の例で、ノード61bは、参照用動画像P01に対して、参照用スケジュール情報P22の組み合わせのノードであり、「やや落ち込み気味」の連関度がw15、「即座に入院が必要なレベルの激しいうつ状態」の連関度がw16となっている。ノード61cは、参照用動画像P02に対して、参照用スケジュール情報P23、P25の組み合わせのノードであり、「正常」の連関度がw17、「注意力散漫状態」の連関度がw18となっている。
In the example of the degree of association shown in FIG. 6, the node 61b is a node in which the reference schedule information P22 is combined with the reference moving image P01, the degree of association of "slightly depressed" is w15, and "immediate hospitalization". The degree of association of "a level of severe depression that requires" is w16. The node 61c is a node in which the reference schedule information P23 and P25 are combined with respect to the reference moving image P02, and the "normal" association degree is w17 and the "attention distracted state" association degree is w18. There is.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれからうつ状態の探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、実際にそのうつ状態の判別対象の出演者の動画像と、スケジュール情報とを取得する。スケジュール情報は手入力又は会社が管理する出演者の属性データから直接取得するようにしてもよい。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, when actually searching for a depressed state from now on, the above-mentioned trained data will be used. In such a case, the moving image of the performer whose depression state is actually determined and the schedule information are acquired. The schedule information may be manually input or directly acquired from the attribute data of the performers managed by the company.
このようにして新たに取得した動画像と、スケジュール情報に基づいて、最適なうつ状態を探索する。かかる場合には、予め取得した図6(表1)に示す連関度を参照する。例えば、新たに取得した動画像がP02と同一かこれに類似するものである場合であって、スケジュール情報がP25である場合には、連関度を介してノード61dが関連付けられており、このノード61dは、「やや落ち込み気味」がw19、「注意力散漫状態」が連関度w20で関連付けられている。かかる場合には、連関度の最も高い「やや落ち込み気味」を最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められる「注意力散漫状態」を最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
Search for the optimal depression state based on the newly acquired moving image and schedule information in this way. In such a case, the degree of association shown in FIG. 6 (Table 1) acquired in advance is referred to. For example, when the newly acquired moving image is the same as or similar to P02 and the schedule information is P25, the node 61d is associated via the degree of association, and this node. In 61d, "slightly depressed" is associated with w19, and "attention distracted state" is associated with a degree of association w20. In such a case, the “slightly depressed” with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimum solution, and the "distracted attention state" in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
なお、図6に示す参照用スケジュール情報は、参照用出演頻度情報に置き換えてもよい。ここでいう参照用出演頻度情報は、テレビ番組、ラジオ番組への出演頻度に関する情報であり、例えば、単位時間(例えば1週間、1ヵ月、1年等)あたりにおける出演時間、出演回数等の出演頻度データで示すことができる。この参照用出演頻度情報は、出演頻度データを類型化したもので構成してもよく、例えば、週1回未満、週1~2回未満、週2回から週3回未満等で類型化されていてもよい。特にタレントは、出演頻度によって仕事がたくさん来ているか否かが分かり、これに応じてうつ状態も支配される可能性がある。このため、この参照用出演頻度情報も説明変数に加えている。
The reference schedule information shown in FIG. 6 may be replaced with reference appearance frequency information. The reference appearance frequency information referred to here is information on appearance frequency in TV programs and radio programs, and for example, appearance time, appearance frequency, etc. per unit time (for example, one week, one month, one year, etc.). It can be shown by frequency data. The appearance frequency information for reference may be categorized as appearance frequency data, for example, less than once a week, less than once or twice a week, twice a week to less than three times a week, and the like. May be. In particular, talents can tell whether or not they have a lot of work depending on the frequency of appearances, and depression may be controlled accordingly. Therefore, this reference appearance frequency information is also added to the explanatory variables.
かかる場合には、参照用動画像情報と、予め出演頻度データを類型化した参照用出演頻度情報を有する組み合わせと、うつ状態のレベルとの3段階以上の連関度を予め作っておく。そして、新たに出演者の各種メディアへの出演頻度に関する出演頻度情報する。この出演頻度情報のデータとしての種類は、上述した参照用出演頻度情報と同様である。そして、取得した動画像情報に応じた参照用動画像情報と出演頻度情報に応じた参照用出演頻度情報とを有する組み合わせと、うつ状態のレベルとの3段階以上の連関度に基づき、上記出演者のうつ状態を判別する。
In such a case, create in advance three or more levels of association between the reference moving image information, the combination having the reference appearance frequency information categorized in advance, and the level of depression. Then, the appearance frequency information regarding the appearance frequency of the performers in various media is newly provided. The type of the appearance frequency information as data is the same as the above-mentioned reference appearance frequency information. Then, based on the combination of the reference moving image information according to the acquired moving image information and the reference appearance frequency information according to the appearance frequency information, and the degree of association between the depression level and the above-mentioned appearance. Determine the depressed state of a person.
なお、本発明は、上述した実施の形態に限定されるものでは無く、例えば図7に示すように、参照用動画像情報の代わりに、参照用音声情報とうつ状態のレベルとの3段階以上の連関度を利用するようにしてもよい。かかる場合には、新たに取得した音声情報に応じた参照用音声情報とうつ状態のレベルとの3段階以上の連関度に基づき、上記出演者のうつ状態を判別することになる。
The present invention is not limited to the above-described embodiment, and as shown in FIG. 7, for example, instead of the reference moving image information, there are three or more stages of reference audio information and a level of depression. You may try to use the degree of association of. In such a case, the depressed state of the performer is determined based on the degree of association between the reference voice information according to the newly acquired voice information and the level of the depressed state at three or more levels.
図示していないが、参照用動画像情報に加え、参照用音声情報、参照用テキスト情報、参照用スケジュール情報、参照用出演頻度情報の何れか1つのみならず、何れか2以上と、うつ状態、又は改善施策が互いに紐づけられて記憶されていてもよい。また参照用音声情報に加え、参照用テキスト情報、参照用スケジュール情報、参照用出演頻度情報の何れか1つのみならず、何れか2以上と、うつ状態、又は改善施策が互いに紐づけられて記憶されていてもよい。また、参照用動画像情報に加え、参照用音声情報、参照用テキスト情報、参照用スケジュール情報、参照用出演頻度情報の何れか1以上に加え、他のデータと組み合わせて、うつ状態、又は改善施策が互いに紐づけられて記憶されていてもよい。また参照用音声情報に加え、参照用テキスト情報、参照用スケジュール情報、参照用出演頻度情報の何れか1以上に加え、他のデータと組み合わせて、うつ状態、又は改善施策が互いに紐づけられて記憶されていてもよい。
Although not shown, in addition to the reference moving image information, not only one of the reference audio information, the reference text information, the reference schedule information, and the reference appearance frequency information, but also any two or more, and depression. The state or improvement measures may be stored in association with each other. In addition to the reference voice information, not only one of the reference text information, the reference schedule information, and the reference appearance frequency information, but also any two or more, the depressed state, or the improvement measures are linked to each other. It may be remembered. In addition to the reference moving image information, in addition to any one or more of the reference audio information, the reference text information, the reference schedule information, and the reference appearance frequency information, the depression state or improvement can be achieved by combining with other data. The measures may be linked and memorized. In addition to the reference voice information, in addition to any one or more of the reference text information, the reference schedule information, and the reference appearance frequency information, in combination with other data, the depressed state or improvement measures are linked to each other. It may be remembered.
これらの場合も同様に、学習用データとして用いられた参照用情報に応じた情報が入力された場合に、上述した方法に基づいて解探索が行われることとなる。
Similarly, in these cases, when the information corresponding to the reference information used as the learning data is input, the solution search is performed based on the above-mentioned method.
上述した連関度においては、10段階評価で連関度を表現しているが、これに限定されるものではなく、3段階以上の連関度で表現されていればよく、逆に3段階以上であれば100段階でも1000段階でも構わない。一方、この連関度は、2段階、つまり互いに連関しているか否か、1又は0の何れかで表現されるものは含まれない。
In the above-mentioned degree of association, the degree of association is expressed by a 10-step evaluation, but it is not limited to this, and it may be expressed by a degree of association of 3 or more levels, and conversely, it may be expressed by 3 or more levels. For example, 100 steps or 1000 steps may be used. On the other hand, this degree of association does not include those expressed in two stages, that is, whether or not they are related to each other, either 1 or 0.
上述した構成からなる本発明によれば、特段のスキルや経験が無くても、誰でも手軽にうつ状態、改善施策の探索を行うことができる。また本発明によれば、この探索解の判断を、人間が行うよりも高精度に行うことが可能となる。更に、上述した連関度を人工知能(ニューラルネットワーク等)で構成することにより、これを学習させることでその判別精度を更に向上させることが可能となる。
According to the present invention having the above-mentioned configuration, anyone can easily search for depression and improvement measures without any special skill or experience. Further, according to the present invention, it is possible to make a judgment of this search solution with higher accuracy than that made by a human being. Further, by configuring the above-mentioned degree of association with artificial intelligence (neural network or the like), it is possible to further improve the discrimination accuracy by learning this.
なお、上述した入力データ、及び出力データは、学習させる過程で完全に同一のものが存在しない場合も多々あることから、これらの入力データと出力データを類型別に分類した情報であってもよい。つまり、入力データを構成する情報P01、P02、・・・・P15、16、・・・は、その情報の内容に応じて予めシステム側又はユーザ側において分類した基準で分類し、その分類した入力データと出力データとの間でデータセットを作り、学習させるようにしてもよい。
Note that the above-mentioned input data and output data may not be completely the same in the process of learning, so that the input data and the output data may be classified by type. That is, the information P01, P02, ... P15, 16, ... That constitute the input data are classified according to the criteria classified in advance on the system side or the user side according to the content of the information, and the classified inputs. A dataset may be created between the data and the output data and trained.
図8の例では、参照用動画像情報とうつ状態のレベルとの3段階以上の連関度を利用する例である。この連関度のみに着目した場合、図3と同様であるが、この例では更に、参照用動画像情報とは異なる他の参照用情報がこの探索解としてのうつ状態のレベルに紐付いている。
The example of FIG. 8 is an example of using three or more levels of association between the reference moving image information and the level of depression. Focusing only on this degree of association, it is the same as in FIG. 3, but in this example, other reference information different from the reference moving image information is further associated with the level of depression as this search solution.
連関度を通じて求められるうつ状態のレベルは、更に、参照用情報に基づいて修正され、或いは重み付けを変化させるようにしてもよい。
The level of depression required through the degree of association may be further modified based on reference information, or the weighting may be changed.
ここでいう参照用情報とは、上述した参照用音声情報、参照用テキスト情報、参照用スケジュール情報、参照用出演頻度情報等が含まれる。
The reference information referred to here includes the above-mentioned reference voice information, reference text information, reference schedule information, reference appearance frequency information, and the like.
例えば、参照用情報の一つとして、参照用テキスト情報において、その出演者を誹謗中傷する書き込みが多かったものとする。このような場合であれば、うつ状態のレベルが高くなる場合が多い。このとき、物件情報から連関度を介して探索された「強度のうつ状態」に対して、重み付けを上げる処理を行い、換言すればうつ状態のレベルが高い探索解につながるようにする処理を行うように予め設定しておく。
For example, as one of the reference information, it is assumed that there were many writings in the reference text information that slandered the performer. In such cases, the level of depression is often high. At this time, the "strong depression state" searched from the property information via the degree of association is subjected to a process of increasing the weighting, in other words, a process of leading to a search solution having a high level of depression. Is set in advance.
例えば、参照用情報Gが、よりうつ状態が高いレベルを示唆するような分析結果であり、参照用情報Fが、よりうつ状態が低いレベルを示唆するような分析結果であるものとする。このように参照用情報との間での設定の後、実際に取得した情報が参照用情報Gと同一又は類似する場合には、うつ状態が高いレベルの重み付けを上げる処理を行う。これに対して、実際に取得した情報が参照用情報Fと同一又は類似する場合には、うつ状態が低いレベルの重み付けを上げる処理を行う。つまり、うつ状態のレベルにつながる連関度そのものを、この参照用情報F~Hに基づいてコントロールするようにしてもよい。或いは、うつ状態のレベルを上述した連関度のみで決定した後、この求めた探索解に対して参照用情報F~Hに基づいて修正を加えるようにしてもよい。後者の場合において、参照用情報F~Hに基づいてどのように探索解としてのうつ状態のレベルにいかなるウェートで修正を加えるかは、都度システム側において設計したものを反映させることとなる。
For example, it is assumed that the reference information G is an analysis result suggesting a higher level of depression, and the reference information F is an analysis result suggesting a lower level of depression. After the setting with the reference information in this way, if the actually acquired information is the same as or similar to the reference information G, a process of increasing the weighting at a high level of depression is performed. On the other hand, when the actually acquired information is the same as or similar to the reference information F, a process of increasing the weighting at a low level of depression is performed. That is, the degree of association itself leading to the level of depression may be controlled based on the reference information F to H. Alternatively, after the level of depression is determined only by the above-mentioned degree of association, the obtained search solution may be modified based on the reference information F to H. In the latter case, how to modify the level of depression as a search solution based on the reference information F to H will reflect what was designed on the system side each time.
また参照用情報は、何れか1種で構成される場合に限定されるものではなく、2種以上の参照用情報に基づいて解探索するようにしてもよい。かかる場合も同様に、参照用情報の示唆するうつ状態のレベルがより高いものにつながるケースほど、連関度を介して求められた探索解としてのうつ状態のレベルをより高く修正し、参照用情報の示唆するうつ状態のレベルがより低いものにつながるケースほど、連関度を介して求められた探索解としてのうつ状態のレベルをより低く修正する。
Further, the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the higher the level of depression suggested by the reference information is, the higher the level of depression as the search solution obtained through the degree of association is corrected, and the reference information is corrected. The lower the level of depression suggested by, the lower the level of depression as a search solution obtained through the degree of association.
また、本発明によれば、3段階以上に設定されている連関度を介して最適な解探索を行う点に特徴がある。連関度は、上述した10段階以外に、例えば0~100%までの数値で記述することができるが、これに限定されるものではなく3段階以上の数値で記述できるものであればいかなる段階で構成されていてもよい。
Further, according to the present invention, there is a feature that the optimum solution search is performed through the degree of association set in three or more stages. The degree of association can be described by, for example, a numerical value from 0 to 100% in addition to the above-mentioned 10 steps, but is not limited to this, and any step can be described as long as it can be described by a numerical value of 3 or more steps. It may be configured.
このような3段階以上の数値で表される連関度に基づいて最も確からしいうつ状態、改善施策を判別することで、探索解の可能性の候補として複数考えられる状況下において、当該連関度の高い順に探索して表示することも可能となる。このように連関度の高い順にユーザに表示できれば、より確からしい探索解を優先的に表示することも可能となる。
By discriminating the most probable depression state and improvement measures based on the degree of association expressed by such numerical values of three or more stages, in a situation where there are multiple possible candidates for search solutions, the degree of association can be determined. It is also possible to search and display in descending order. If the user can be displayed in descending order of the degree of association in this way, it is possible to preferentially display more probable search solutions.
これに加えて、本発明によれば、連関度が1%のような極めて低い出力の判別結果も見逃すことなく判断することができる。連関度が極めて低い判別結果であっても僅かな兆候として繋がっているものであり、何十回、何百回に一度は、その判別結果として役に立つ場合もあることをユーザに対して注意喚起することができる。
In addition to this, according to the present invention, it is possible to judge without overlooking the discrimination result of the extremely low output such as 1% of the degree of association. It warns the user that even a judgment result with an extremely low degree of association is connected as a slight sign, and may be useful as the judgment result once every tens or hundreds of times. be able to.
更に本発明によれば、このような3段階以上の連関度に基づいて探索を行うことにより、閾値の設定の仕方で、探索方針を決めることができるメリットがある。閾値を低くすれば、上述した連関度が1%のものであっても漏れなく拾うことができる反面、より適切な判別結果を好適に検出できる可能性が低く、ノイズを沢山拾ってしまう場合もある。一方、閾値を高くすれば、最適な探索解を高確率で検出できる可能性が高い反面、通常は連関度は低くてスルーされるものの何十回、何百回に一度は出てくる好適な解を見落としてしまう場合もある。いずれに重きを置くかは、ユーザ側、システム側の考え方に基づいて決めることが可能となるが、このような重点を置くポイントを選ぶ自由度を高くすることが可能となる。
Further, according to the present invention, there is a merit that the search policy can be determined by the method of setting the threshold value by performing the search based on the degree of association of three or more stages. If the threshold value is lowered, even if the above-mentioned degree of association is 1%, it can be picked up without omission, but it is unlikely that a more appropriate discrimination result can be detected favorably, and a lot of noise may be picked up. be. On the other hand, if the threshold value is raised, there is a high possibility that the optimum search solution can be detected with high probability, but the degree of association is usually low and it is passed through, but it is suitable to appear once in tens or hundreds of times. Sometimes the solution is overlooked. It is possible to decide which one should be emphasized based on the ideas of the user side and the system side, but it is possible to increase the degree of freedom in selecting the points to be emphasized.
更に本発明では、上述した連関度を更新させるようにしてもよい。この更新は、例えばインターネットを始めとした公衆通信網を介して提供された情報を反映させるようにしてもよい。また参照用動画像、参照用音声情報、参照用テキスト情報、参照用スケジュール情報等を取得し、これらに対するうつ状態、改善施策に関する知見、情報、データを取得した場合、これらに応じて連関度を上昇させ、或いは下降させる。
Further, in the present invention, the above-mentioned degree of association may be updated. This update may reflect information provided, for example, via a public communication network such as the Internet. In addition, when moving images for reference, audio information for reference, text information for reference, schedule information for reference, etc. are acquired, and when knowledge, information, and data regarding depression and improvement measures for these are acquired, the degree of association is determined accordingly. Raise or lower.
つまり、この更新は、人工知能でいうところの学習に相当する。新たなデータを取得し、これを学習済みデータに反映させることを行っているため、学習行為といえるものである。
In other words, this update is equivalent to learning in terms of artificial intelligence. It can be said that it is a learning act because it acquires new data and reflects it in the learned data.
また、この連関度の更新は、公衆通信網から取得可能な情報に基づく場合以外に、専門家による研究データや論文、学会発表や、新聞記事、書籍等の内容に基づいてシステム側又はユーザ側が人為的に、又は自動的に更新するようにしてもよい。これらの更新処理においては人工知能を活用するようにしてもよい。
In addition, this update of the degree of association is done by the system side or the user side based on the contents of research data, papers, conference presentations, newspaper articles, books, etc. by experts, except when it is based on information that can be obtained from the public communication network. It may be updated artificially or automatically. Artificial intelligence may be utilized in these update processes.
また学習済モデルを最初に作り上げる過程、及び上述した更新は、教師あり学習のみならず、教師なし学習、ディープラーニング、強化学習等を用いるようにしてもよい。教師なし学習の場合には、入力データと出力データのデータセットを読み込ませて学習させる代わりに、入力データに相当する情報を読み込ませて学習させ、そこから出力データに関連する連関度を自己形成させるようにしてもよい。
In addition, the process of first creating a trained model and the above-mentioned update may use not only supervised learning but also unsupervised learning, deep learning, reinforcement learning, and the like. In the case of unsupervised learning, instead of reading and training the data set of input data and output data, information corresponding to the input data is read and trained, and the degree of association related to the output data is self-formed from there. You may let it.
第2実施形態
第2実施形態では、例えば図9に示すように、参照用代名詞頻度情報と、参照用トーン情報との組み合わせが形成されていることが前提となる。 2nd Embodiment In the 2nd embodiment, it is premised that a combination of the reference pronoun frequency information and the reference tone information is formed, for example, as shown in FIG.
第2実施形態では、例えば図9に示すように、参照用代名詞頻度情報と、参照用トーン情報との組み合わせが形成されていることが前提となる。 2nd Embodiment In the 2nd embodiment, it is premised that a combination of the reference pronoun frequency information and the reference tone information is formed, for example, as shown in FIG.
参照用代名詞頻度情報は、うつ病の兆候を判別する被験者が話をした音声をテキストデータに変換したとき、当該テキストデータ内に代名詞がどの程度含まれているかを示す情報である。例えば、被検者が「私は、明日、藤本君と、新幹線で、13時までに、大阪へ、行く」という話をするのと「私は、明日、あれと、あれで、大阪へ行く」というのでは、前者の方が意味が明確であるのに対して、後者は意味が不明確になってしまう。うつ病の患者は、自らが発する音声のテキストデータ中における代名詞の割合が高くなる。これをテキストデータ単位で抽出することで、参照用代名詞頻度情報とする。
The reference pronoun frequency information is information indicating how much the pronoun is included in the text data when the voice spoken by the subject who determines the sign of depression is converted into text data. For example, the subject says, "I will go to Osaka with Fujimoto tomorrow by 13:00 on the Shinkansen," and "I will go to Osaka tomorrow. The meaning of the former is clearer, while the meaning of the latter is unclear. Depressed patients have a higher proportion of pronouns in their spoken textual data. By extracting this in units of text data, it becomes reference pronoun frequency information.
実際にテキストデータ内の代名詞の頻度を定量化する上で、テキストデータの文節数、単語数、格成分の数、名詞句の数、文字数をカウントすることでテキストデータ全体のボリュームを検出するようにしてもよい。そして、このテキストデータ全体のボリュームに対して、これに含まれる代名詞のボリュームを同様に、文節数、単語数、格成分の数、名詞句の数、文字数等を介してカウントする。そして、テキストデータ全体のボリュームに対する代名詞のボリュームの比率を上述した頻度として検出する。これらのテキストデータ全体並びに代名詞のボリュームを計測する上での単位(文節数、単語数、格成分の数、名詞句の数、文字数等)は互いに共通化させることが前提となる。
In actually quantifying the frequency of pronouns in text data, the volume of the entire text data should be detected by counting the number of phrases, words, case components, noun phrases, and characters in the text data. You may do it. Then, the volume of the pronouns included in the volume of the entire text data is similarly counted via the number of clauses, the number of words, the number of case components, the number of noun phrases, the number of characters, and the like. Then, the ratio of the volume of the pronoun to the volume of the entire text data is detected as the frequency described above. It is premised that the units (number of phrases, number of words, number of case components, number of noun phrases, number of characters, etc.) for measuring the entire text data and the volume of pronouns are shared with each other.
本発明においては、この参照用代名詞頻度情報を検出する上で、過去の被検者の音声の入力を受け付ける。この入力はマイクロフォン等を介して受け付けるようにしてもよい。そして、この被検者の声をテキストデータに変換してこれを形態素解析することにより、当該テキストデータに含まれる代名詞を抽出する。代名詞は、「あれ」、「それ」、「これ」等の文言を形態素解析により抽出する。また、文節構造体(格成分、名詞句等)を抽出する際も同様に形態素解析を利用する。
In the present invention, in detecting the reference pronoun frequency information, the input of the voice of the past subject is accepted. This input may be accepted via a microphone or the like. Then, the voice of the subject is converted into text data and morphologically analyzed to extract the pronoun included in the text data. For pronouns, words such as "that", "it", and "kore" are extracted by morphological analysis. Similarly, morphological analysis is used when extracting phrase structures (case components, noun phrases, etc.).
参照用トーン情報とは、過去の被検者から抽出した音声のトーンに関する情報である。この音声のトーンは、例えば、音の高低(音波の1秒間あたりの振動回数、つまり周波数)や音そのもの、或いは音の強弱を指す。音声のトーンは、一般的な音声検出器を通じて、その高低や強弱を検出し、解析するようにしてもよい。
Reference tone information is information related to voice tones extracted from past subjects. The tone of this voice refers to, for example, the pitch of the sound (the number of vibrations per second of the sound wave, that is, the frequency), the sound itself, or the strength of the sound. The tone of the voice may be detected and analyzed by detecting the height and the strength of the voice through a general voice detector.
参照用トーン情報は、参照用代名詞頻度情報におけるテキストデータと連動させ、紐付けておくようにしてもよい。例えば、「私は、明日、あれと、あれで、大阪へ行く」という文言において、「明日」、「あれと」等の各名詞句(格成分)に対して、それぞれ音声のトーンが紐付けられ、参照用トーン情報とされていてもよい。
The reference tone information may be linked with the text data in the reference pronoun frequency information. For example, in the phrase "I'm going to Osaka tomorrow, that, that, that," the voice tone is associated with each noun phrase (case component) such as "tomorrow" and "that". It may be used as reference tone information.
入力データとしては、このような参照用代名詞頻度情報と、参照用トーン情報が並んでいる。このような入力データとしての、参照用代名詞頻度情報に対して、参照用トーン情報が組み合わさったものが、図9に示す中間ノード61である。各中間ノード61は、更に出力に連結している。この出力においては、うつ病の兆候の判別類型A~Eが表示されている。このうつ病の兆候の判別類型は、それぞれうつ病の兆候のあらゆる類型を示すものである。うつ病の兆候の判別類型は、例えばAは、「異常なし」、Bは、「重度のうつ病」、Cは、「うつ病ではないが、その兆候がある予備群」等である。うつ病の兆候の判別類型は、これ以外に、うつ病の症状の大きさや程度を示すものであってもよい。
As input data, such reference pronoun frequency information and reference tone information are lined up. The intermediate node 61 shown in FIG. 9 is a combination of the reference pronoun frequency information and the reference tone information as such input data. Each intermediate node 61 is further connected to an output. In this output, the discriminant types A to E of the signs of depression are displayed. This discriminant type of sign of depression indicates all types of signs of depression, respectively. The types of discrimination of signs of depression are, for example, A is "no abnormality", B is "severe depression", and C is "a preliminary group that is not depressed but has signs of depression". In addition to this, the discriminant type of the sign of depression may indicate the magnitude and degree of the symptom of depression.
参照用代名詞頻度情報と、参照用トーン情報との各組み合わせ(中間ノード)は、この出力解としての、うつ病の兆候の判別類型に対して3段階以上の連関度を通じて互いに連関しあっている。
Each combination (intermediate node) of the reference pronoun frequency information and the reference tone information is associated with each other through three or more levels of association with the discrimination type of the sign of depression as this output solution. ..
探索装置2は、このような図9に示す3段階以上の連関度w13~w22を予め取得しておく。つまり探索装置2は、実際の探索解の判別を行う上で参照用代名詞頻度情報と参照用トーン情報、並びにその場合のうつ病の兆候の判別類型の何れが好適であったか、過去のデータを蓄積しておき、これらを分析、解析することで図9に示す連関度を作り上げておく。
The search device 2 acquires in advance the degree of association w13 to w22 of three or more stages shown in FIG. That is, the search device 2 accumulates past data as to which of the reference pronoun frequency information, the reference tone information, and the discrimination type of the sign of depression in that case was suitable for discriminating the actual search solution. By analyzing and analyzing these, the degree of association shown in FIG. 9 is created.
これらのデータを蓄積する過程では、実際にうつ病を患った過去の被検者、又はうつ病には陥っていない過去の被検者、更にはうつ病になっていないが、その予備群になっている過去の被検者から、それぞれ参照用代名詞頻度情報と、参照用トーン情報を検出する。これと共に、実際にその被検者が、うつ病の兆候について専門家や医師により判別された結果を、予め規定された判別類型に当てはめ、これをデータ化し、これと、上述した参照用代名詞頻度情報と、参照用トーン情報とのデータセットを学習させるようにしてもよい。
In the process of accumulating these data, past subjects who actually suffered from depression, past subjects who did not suffer from depression, and even those who did not have depression, were placed in the preliminary group. Reference synonym frequency information and reference tone information are detected from the past subjects who have become. At the same time, the subject actually applied the result of discrimination of the signs of depression by a specialist or a doctor to a predetermined discrimination type, digitized this, and the above-mentioned reference pronoun frequency. You may want to train a dataset of information and reference tone information.
なお、この学習データを構築する過程において、実際に被検者からデータを抽出する場合に限定されるものではなく、架空の被検者を想定し、ある参照用代名詞頻度情報と、参照用トーン情報であった場合に、実際にどのようなうつ病の兆候の判別類型に当てはめるかを判断してデータ化し、これを学習させるようにしてもよい。
In the process of constructing this learning data, it is not limited to the case of actually extracting data from the subject, but assuming a fictitious subject, a certain reference pronoun frequency information and a reference tone. If it is information, it may be determined what kind of depressive sign discrimination type is actually applied to it, and it may be converted into data and learned.
この分析、解析は人工知能により行うようにしてもよい。また、この図9に示す連関度は、人工知能におけるニューラルネットワークのノードで構成されるものであってもよい。即ち、このニューラルネットワークのノードが出力に対する重み付け係数が、上述した連関度に対応することとなる。またニューラルネットワークに限らず、人工知能を構成するあらゆる意思決定因子で構成されるものであってもよい。
This analysis may be performed by artificial intelligence. Further, the degree of association shown in FIG. 9 may be composed of the nodes of the neural network in artificial intelligence. That is, the weighting coefficient for the output of the node of this neural network corresponds to the above-mentioned degree of association. Further, the network is not limited to a neural network, and may be composed of all decision-making factors constituting artificial intelligence.
このような学習済みデータを作った後に、実際にこれからうつ病の兆候の判別類型提案のための探索を行う際において、上述した学習済みデータを利用して行うこととなる。かかる場合には、新たにうつ病の兆候の判別類型の提案を行う、新たな被検者から代名詞頻度情報に加え、トーン情報を取得する。このような代名詞頻度情報に加え、トーン情報の取得方法は、上述した参照用代名詞頻度情報、参照用トーン情報と同様である。
After creating such learned data, the above-mentioned learned data will be used in the actual search for proposing the type of discrimination of signs of depression. In such a case, tone information is acquired in addition to pronoun frequency information from a new subject who newly proposes a discrimination type of signs of depression. In addition to such pronoun frequency information, the method of acquiring tone information is the same as the above-mentioned reference pronoun frequency information and reference tone information.
このようにして新たに取得した代名詞頻度情報、トーン情報に基づいて、最適なうつ病の兆候の判別類型を探索する。かかる場合には、予め取得した図9(表1)に示す連関度を参照する。例えば、新たに取得した代名詞頻度情報がP02と同一かこれに類似するものである場合であって、トーン情報がP17と同一かこれに類似する場合には、連関度を介してノード61dが関連付けられており、このノード61dは、うつ病の兆候の判別類型Cがw19、うつ病の兆候の判別類型Dが連関度w20で関連付けられている。かかる場合には、連関度の最も高いうつ病の兆候の判別類型Cを最適解として選択する。但し、最も連関度の高いものを最適解として選択することは必須ではなく、連関度は低いものの連関性そのものは認められるうつ病の兆候の判別類型Dを最適解として選択するようにしてもよい。また、これ以外に矢印が繋がっていない出力解を選択してもよいことは勿論であり、連関度に基づくものであれば、その他いかなる優先順位で選択されるものであってもよい。
Based on the newly acquired pronoun frequency information and tone information in this way, the optimum type of discrimination for signs of depression is searched for. In such a case, the degree of association shown in FIG. 9 (Table 1) acquired in advance is referred to. For example, when the newly acquired pronoun frequency information is the same as or similar to P02 and the tone information is the same as or similar to P17, the node 61d is associated via the degree of association. The node 61d is associated with a depression sign discrimination type C at w19 and a depression sign discrimination type D at a degree of association w20. In such a case, the discriminant type C of the sign of depression with the highest degree of association is selected as the optimum solution. However, it is not essential to select the one with the highest degree of association as the optimal solution, and the discriminant type D of the signs of depression in which the degree of association itself is recognized although the degree of association is low may be selected as the optimum solution. .. In addition to this, it goes without saying that an output solution to which the arrows are not connected may be selected, and any other output solution may be selected in any other priority as long as it is based on the degree of association.
なお、参照用代名詞頻度情報と、参照用表情画像情報との組み合わせと、当該組み合わせに対するうつ病の兆候の判別類型との3段階以上の連関度を設定するものであってもよい。
It should be noted that the combination of the reference pronoun frequency information and the reference facial expression image information and the discrimination type of the sign of depression for the combination may be set to three or more levels of association.
参照用表情画像情報は、参照用代名詞頻度情報を取得する被検者の表情の画像に関する情報である。参照用表情画像情報は、カメラにより被検者の表情を撮像することで得られた画像データを解析することで、そのうつ病を検知する上で特徴的な部分を抽出するようにしてもよい。仮にうつ病の患者が表情において特有の笑みを見せる場合があると仮定したとき、その特有の笑みを顔画像を解析することで、その有無を検出するようにしてもよい。また、この参照用表情画像情報は、静止画のみならず動画で構成してもよい。動画の場合には、参照用代名詞頻度情報におけるテキストデータと連動させ、紐付けておくようにしてもよい。例えば、「私は、明日、あれと、あれで、大阪へ行く」という文言において、「明日」、「あれと」等の各名詞句(格成分)に対して、それぞれ動画の内容が時系列的に紐付けられ、参照用表情画像情報とされていてもよい。このような参照用表情画像情報、表情画像情報の取り込み方法は、画像解析以外に、必要に応じてディープラーニング技術を利用し、解析画像の特徴量に基づいて自動判別し、データ化してもよい。
The reference facial expression image information is information related to the facial expression image of the subject who acquires the reference pronoun frequency information. The reference facial expression image information may be obtained by analyzing the image data obtained by capturing the facial expression of the subject with a camera to extract a characteristic portion for detecting the depression. .. Assuming that a depressed patient may show a peculiar smile in his facial expression, the presence or absence of the peculiar smile may be detected by analyzing a facial image. Further, the facial expression image information for reference may be composed of not only a still image but also a moving image. In the case of a moving image, it may be linked with the text data in the reference pronoun frequency information. For example, in the phrase "I will go to Osaka tomorrow, that, that,", the content of the video is in chronological order for each noun phrase (case component) such as "tomorrow" and "that". It may be associated with the target and used as reference facial expression image information. In addition to image analysis, the method of capturing such reference facial expression image information and facial expression image information may be, if necessary, using deep learning technology, automatically discriminating based on the feature amount of the analyzed image, and converting it into data. ..
このようにして新たに取得した代名詞頻度情報、表情画像情報に基づいて、判別類型を探索する。実際の探索方法は上述と同様であるため、以下での説明を省略する。
The discrimination type is searched based on the newly acquired pronoun frequency information and facial expression image information in this way. Since the actual search method is the same as described above, the description below will be omitted.
なお、参照用代名詞頻度情報の代替として、以下に説明する参照用インテント情報を利用するようにしてもよい。この参照用インテント情報とは、テキストデータに含まれる処理動作単位で管理される情報であり、アクション名を規定するものである。
As an alternative to the reference pronoun frequency information, the reference intent information described below may be used. This reference intent information is information managed in each processing operation unit included in the text data, and defines an action name.
インテントは、通常、業務処理(処理動作)を特定するアクションを規定するものである。例えば、「ゴミ箱に捨てる」、「ご飯を食べる」、「テレビを見る」、「買い物に行く」、「電車に乗る」、「音楽を聴く」等、あらゆるアクションがインテントとして規定されている。
An intent usually defines an action that specifies a business process (processing operation). For example, all actions such as "throw in the trash", "eat rice", "watch TV", "go shopping", "ride the train", "listen to music" are defined as intents.
テキストデータを形態素解析し、これらに対してそれぞれインテントを割り当てる。このインテントの割り当ては、予め作成して保存したインテントテーブルを参照する。
The text data is morphologically analyzed and intents are assigned to each of them. This intent allocation refers to the intent table created and saved in advance.
インテントテーブルには、形態素解析をした文言がいずれのインテントに含まれるかが定義されている。例えばインテント「買い物に行く」であれば、これに含まれる形態素解析した文言として「買い物に行く」以外に「物買いに行く」「お使いに行って来る」「買いに行く」「調達してくる」等、様々なものが含まれる。同様にインテント「電車に乗る」であれば、これに含まれる形態素解析した文言としては「山手線で行く」「中央線に乗る」「電車を使う」「電車を利用する」等、様々なものが含まれる。
The intent table defines which intent contains the wording of the morphological analysis. For example, in the case of the intent "go shopping", the morphologically analyzed wording included in this is "go shopping", "go shopping", "go shopping", and "procure" in addition to "go shopping". Various things such as "come" are included. Similarly, in the case of the intent "get on the train", there are various morphologically analyzed words included in this, such as "go on the Yamanote line", "get on the Chuo line", "use the train", and "use the train". Things are included.
インテントテーブルには、このような各インテントに対して形態素解析した様々な文言が紐付けられて記録されており、これを読み出すことで、形態素解析した文言それぞれにインテントを割り当てることが可能となる。
In the intent table, various words that have been morphologically analyzed are associated and recorded for each such intent, and by reading this, it is possible to assign intents to each of the words that have been morphologically analyzed. Will be.
このような各インテントからなる参照用インテント情報と、参照用表情画像情報との組み合わせと、出力データとしての、うつ病の兆候の判別類型が互いに中間ノード61の連関度を介して関連付けられて学習させておく。
The combination of the reference intent information consisting of such intents and the reference facial expression image information, and the discrimination type of the sign of depression as output data are associated with each other through the degree of association of the intermediate node 61. Let me learn.
そして、新たに被検者からインテント情報と表情画像情報とを抽出し、これに対応する参照用インテント情報を介して探索解としてのうつ病の兆候を分析する。
Then, intent information and facial expression image information are newly extracted from the subject, and the signs of depression as a search solution are analyzed via the corresponding reference intent information.
なお、参照用インテント情報と、参照用トーン情報との組み合わせと、出力データとしての、うつ病の兆候の判別類型が互いに中間ノード61の連関度を介して関連付けられて学習させておくことで、新たに被検者からインテント情報と、トーン情報が入力された場合に、同様に探索解を探索することも可能となる。
It should be noted that the combination of the reference intent information and the reference tone information and the discrimination type of the sign of depression as the output data are related to each other through the degree of association of the intermediate node 61 and learned. , When the intent information and the tone information are newly input from the subject, it is possible to search the search solution in the same manner.
参照用代名詞頻度情報の代替として、以下に説明する参照用脳波情報との組み合わせと、当該組み合わせに対するうつ病の兆候の判別類型との3段階以上の連関度が設定されるものであってもよい。
As an alternative to the reference pronoun frequency information, three or more levels of association between the combination with the reference EEG information described below and the discrimination type of the sign of depression for the combination may be set. ..
参照用脳波情報は、被検者の脳波に関する情報である。被検者の脳波は、市販されている脳波計から計測することができる。このような参照用脳波情報を組み合わせて判断することでうつ病の兆候を把握することができる場合もあることから、これを説明変数として加えている。この参照用脳波情報は、時系列的な変化を捉えた情報で構成してもよい。係る場合には、参照用代名詞頻度情報におけるテキストデータと連動させ、紐付けておくようにしてもよい。例えば、「私は、明日、あれと、あれで、大阪へ行く」という文言において、「明日」、「あれと」等の各名詞句(格成分)に対して、時系列的な脳波の変化が紐付けられ、参照用代名詞頻度情報とされていてもよい。
The reference brain wave information is information related to the brain wave of the subject. The electroencephalogram of the subject can be measured from a commercially available electroencephalograph. Since it may be possible to grasp the signs of depression by making a judgment by combining such reference EEG information, this is added as an explanatory variable. This reference electroencephalogram information may be composed of information that captures changes over time. In such a case, it may be linked with the text data in the reference pronoun frequency information. For example, in the phrase "I will go to Osaka tomorrow, that, that,", the changes in brain waves over time for each noun phrase (case component) such as "tomorrow" and "that". May be associated with and used as reference pronoun frequency information.
このような連関度が設定されている場合も同様に、新たに検査対象の被検者から取得した代名詞頻度情報と、脳波情報に基づいて、うつ病の兆候を判別する。
Similarly, when such a degree of association is set, the sign of depression is discriminated based on the pronoun frequency information newly acquired from the subject to be examined and the electroencephalogram information.
参照用代名詞頻度情報の代替として、以下に説明する参照用属性情報との組み合わせと、当該組み合わせに対するうつ病の兆候の判別類型との3段階以上の連関度が設定されている例を示している。
As an alternative to the reference pronoun frequency information, an example is shown in which a combination with the reference attribute information described below and a three-level or higher degree of association with the discrimination type of the sign of depression for the combination are set. ..
参照用属性情報は、被検者の属性を示す情報である。被検者の属性とは、被検者の年齢、性別、職業、現在行っている社会活動、過去から現在に至るまでのうつ病に関係する行動や言動に関する情報、うつ病以外の各種疾患等に関する情報も含まれる。
Reference attribute information is information indicating the attributes of the subject. The attributes of the subject are the subject's age, gender, occupation, current social activities, information on behaviors and behaviors related to depression from the past to the present, various diseases other than depression, etc. Information about is also included.
このような連関度が設定されている場合も同様に、新たに被検者から取得した代名詞頻度情報と、属性情報に基づいて判別する。
Similarly, even when such a degree of association is set, it is determined based on the pronoun frequency information newly acquired from the subject and the attribute information.
なお本発明は、探索解として、判別類型を探索する場合に限定されるものではなく、図10に示すように、判別類型に応じた処方を予め学習させておくことで、処方を探索解として出力することができる。いかなる判別類型に対していかなる処方が効果的かを予め検証した上で、判別類型毎に効果的な処方を紐付けておく。そして、上述と同様に判別類型を探索し、探索した判別類型に紐付けられた処方を判別類型と共に、或いは判別類型の代替として出力してするようにしてもよい。また、判別類型の代替として、この処方そのものを上述した参照用情報とのデータセットとして学習させるようにしてもよい。これにより、被検者から取得した入力データが入力された場合、より効果的な処方がストレートに出力されることとなる。
The present invention is not limited to the case of searching for a discrimination type as a search solution, and as shown in FIG. 10, the prescription can be used as a search solution by learning a prescription according to the discrimination type in advance. Can be output. After verifying in advance what kind of prescription is effective for what kind of discrimination type, an effective prescription is associated with each discrimination type. Then, the discriminant type may be searched in the same manner as described above, and the prescription associated with the searched discriminant type may be output together with the discriminant type or as a substitute for the discriminant type. Further, as an alternative to the discrimination type, the prescription itself may be trained as a data set with the above-mentioned reference information. As a result, when the input data acquired from the subject is input, a more effective prescription will be output straight.
図10は、参照用代名詞頻度情報と、参照用トーン情報との組み合わせにより連関度を形成する場合の例を示しているが、これに限定されるものではなく、上述した全ての参照用情報を入力データとした連関度についても同様に、処方そのものを上述した参照用情報とのデータセットとして学習させるようにしてもよいことは勿論である。
FIG. 10 shows an example in which the degree of association is formed by combining the reference synonym frequency information and the reference tone information, but the present invention is not limited to this, and all the above-mentioned reference information can be used. As for the degree of association as input data, it is of course possible to train the prescription itself as a data set with the above-mentioned reference information.
第3実施形態
第3実施形態においては、参照用代名詞頻度情報のみから、うつ病の兆候の判別類型を判別する。例えば図11に示すように、過去において取得した参照用代名詞頻度情報と、その過去において実際に判別したうつ病の兆候の判別類型との3段階以上の連関度を利用する。 Third Embodiment In the third embodiment, the discrimination type of the sign of depression is discriminated only from the reference pronoun frequency information. For example, as shown in FIG. 11, the degree of association between the reference pronoun frequency information acquired in the past and the discrimination type of the sign of depression actually discriminated in the past is used.
第3実施形態においては、参照用代名詞頻度情報のみから、うつ病の兆候の判別類型を判別する。例えば図11に示すように、過去において取得した参照用代名詞頻度情報と、その過去において実際に判別したうつ病の兆候の判別類型との3段階以上の連関度を利用する。 Third Embodiment In the third embodiment, the discrimination type of the sign of depression is discriminated only from the reference pronoun frequency information. For example, as shown in FIG. 11, the degree of association between the reference pronoun frequency information acquired in the past and the discrimination type of the sign of depression actually discriminated in the past is used.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判別する際において、上述した学習済みデータを利用することとなる。かかる場合には、代名詞頻度情報を新たに取得する。その取得方法は、第1、2実施形態と同様である。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the pronoun frequency information is newly acquired. The acquisition method is the same as that of the first and second embodiments.
このようにして新たに取得した代名詞頻度情報に基づいて、うつ病の兆候の判別類型を判別する。かかる場合には、予め取得した図11に示す連関度を参照する。具体的なうつ病の兆候の判別類型の推定方法は、第1、2実施形態と同様であるため以下での説明を省略する。
Based on the pronoun frequency information newly acquired in this way, the discrimination type of the sign of depression is discriminated. In such a case, the degree of association shown in FIG. 11 acquired in advance is referred to. Since the specific method for estimating the type of discrimination of signs of depression is the same as that of the first and second embodiments, the description below will be omitted.
また第3実施形態においては、参照用インテント情報のみから、うつ病の兆候の判別類型を判別するようにしてもよい。かかる場合には、例えば図12に示すように、過去において取得した参照用インテント情報と、その過去において実際に判別したうつ病の兆候の判別類型との3段階以上の連関度を利用する。
Further, in the third embodiment, the discrimination type of the sign of depression may be discriminated only from the reference intent information. In such a case, for example, as shown in FIG. 12, the degree of association between the reference intent information acquired in the past and the discrimination type of the sign of depression actually discriminated in the past is used.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判別する際において、上述した学習済みデータを利用することとなる。かかる場合には、インテント情報を新たに取得する。その取得方法は、第1、2実施形態と同様である。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, intent information is newly acquired. The acquisition method is the same as that of the first and second embodiments.
このようにして新たに取得したインテント情報に基づいて、うつ病の兆候の判別類型を判別する。かかる場合には、予め取得した図12に示す連関度を参照する。具体的なうつ病の兆候の判別類型の推定方法は、第1、2実施形態と同様であるため以下での説明を省略する。
Based on the newly acquired intent information in this way, the type of discrimination of signs of depression is discriminated. In such a case, the degree of association shown in FIG. 12 acquired in advance is referred to. Since the specific method for estimating the type of discrimination of signs of depression is the same as that of the first and second embodiments, the description below will be omitted.
また第3実施形態においては、参照用トーン情報のみから、うつ病の兆候の判別類型を判別するようにしてもよい。かかる場合には、例えば図13に示すように、過去において取得した参照用トーン情報と、その過去において実際に判別したうつ病の兆候の判別類型との3段階以上の連関度を利用する。
Further, in the third embodiment, the discrimination type of the sign of depression may be discriminated only from the reference tone information. In such a case, for example, as shown in FIG. 13, the degree of association between the reference tone information acquired in the past and the discrimination type of the sign of depression actually discriminated in the past is used.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判別する際において、上述した学習済みデータを利用することとなる。かかる場合には、トーン情報を新たに取得する。その取得方法は、第1、2実施形態と同様である。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, tone information is newly acquired. The acquisition method is the same as that of the first and second embodiments.
このようにして新たに取得したトーン情報に基づいて、うつ病の兆候の判別類型を判別する。かかる場合には、予め取得した図13に示す連関度を参照する。具体的なうつ病の兆候の判別類型の推定方法は、第1、2実施形態と同様であるため以下での説明を省略する。
Based on the tone information newly acquired in this way, the discrimination type of the sign of depression is discriminated. In such a case, the degree of association shown in FIG. 13 acquired in advance is referred to. Since the specific method for estimating the type of discrimination of signs of depression is the same as that of the first and second embodiments, the description below will be omitted.
なお、第3実施形態においても同様に、探索解として、判別類型を探索する場合に限定されるものではなく、判別類型に応じた処方を予め学習させておくことで、処方を探索解として出力するようにしてもよいことは勿論である。
Similarly, in the third embodiment, the search solution is not limited to the case of searching for the discrimination type, and the prescription is output as the search solution by learning the prescription according to the discrimination type in advance. Of course, you may do so.
また、第1実施形態~第3実施形態ともに、上述した実施の形態に限定されるものでは無く、例えば図13に示すように、基調となる参照用情報と、うつ病の兆候の判別類型との3段階以上の連関度を利用するようにしてもよい。かかる場合には、新たに取得した情報に応じたうつ病の兆候の判別類型との3段階以上の連関度に基づき、解探索を行うことになる。基調となる参照用情報は、例えば参照用代名詞頻度情報等であるが、これに限定されるものでは無く、第1実施形態~第3実施形態におけるいかなる参照用情報(参照用代名詞頻度情報、参照用トーン情報、表情画像情報、参照用インテント情報、参照用脳波情報、参照用属性情報等)も適用可能である。
Further, both the first embodiment to the third embodiment are not limited to the above-described embodiments, and as shown in FIG. 13, for example, reference information as a keynote and a type for discriminating signs of depression. You may use the degree of association of 3 or more levels. In such a case, the solution search will be performed based on the degree of association with the discrimination type of the sign of depression according to the newly acquired information in three or more stages. The underlying reference information is, for example, reference pronoun frequency information, etc., but is not limited thereto, and any reference information (reference pronoun frequency information, reference) in the first to third embodiments. Tone information for reference, facial expression image information, intent information for reference, brain wave information for reference, attribute information for reference, etc.) can also be applied.
これらの場合も同様に、学習用データとして用いられた参照用情報に応じた情報が入力された場合に、上述した方法に基づいて解探索が行われることとなる。
Similarly, in these cases, when the information corresponding to the reference information used as the learning data is input, the solution search is performed based on the above-mentioned method.
連関度を通じて求められる探索解は、更に、図14に示すように、他の参照用情報に基づいて修正され、或いは重み付けを変化させるようにしてもよい。
The search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed, as shown in FIG.
ここでいう他の参照用情報とは、上述した参照用情報の何れかを基調となる参照用情報とした場合、当該基調となる参照用情報以外のいかなる参照用情報に該当する。
The other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
例えば、他の参照用情報の一つとして、ある参照用トーン情報P14において、以前においてうつ病の兆候の判別類型としてBが判別される経緯が多かったものとする。このような参照用トーン情報P14に応じたトーン情報を新たに取得したとき、うつ病の兆候の判別類型としての探索解Bに対して、重み付けを上げる処理を行い、換言すればうつ病の兆候の判別類型としての探索解Bにつながるようにする処理を行うように予め設定しておく。
For example, as one of the other reference information, it is assumed that in a certain reference tone information P14, B was previously discriminated as a discriminant type of a sign of depression. When the tone information corresponding to the reference tone information P14 is newly acquired, the search solution B as the discrimination type of the sign of depression is processed to increase the weight, in other words, the sign of depression. It is set in advance to perform a process that leads to the search solution B as the discrimination type of.
例えば、他の参照用情報Gが、よりうつ病の兆候の判別類型としての探索解Cを示唆するような分析結果であり、参照用情報Fが、よりうつ病の兆候の判別類型としての探索解Dを示唆するような分析結果であるものとする。このように参照用情報との間での設定の後、実際に取得した情報が参照用情報Gと同一又は類似する場合には、うつ病の兆候の判別類型としての探索解Cの重み付けを上げる処理を行う。これに対して、実際に取得した情報が参照用情報Fと同一又は類似する場合には、うつ病の兆候の判別類型としての探索解Dの重み付けを上げる処理を行う。つまり、うつ病の兆候の判別類型につながる連関度そのものを、この参照用情報F~Hに基づいてコントロールするようにしてもよい。或いは、うつ病の兆候の判別類型を上述した連関度のみで決定した後、この求めた探索解に対して参照用情報F~Hに基づいて修正を加えるようにしてもよい。後者の場合において、参照用情報F~Hに基づいてどのように探索解としてのうつ病の兆候の判別類型にいかなるウェートで修正を加えるかは、都度システム側において設計したものを反映させることとなる。
For example, the other reference information G is an analysis result suggesting a search solution C as a discriminant type of a sign of more depression, and the reference information F is a search as a discriminant type of a sign of more depression. It is assumed that the analysis result suggests the solution D. When the information actually acquired is the same as or similar to the reference information G after the setting with the reference information in this way, the weighting of the search solution C as a discrimination type of the sign of depression is increased. Perform processing. On the other hand, when the actually acquired information is the same as or similar to the reference information F, the process of increasing the weighting of the search solution D as the discrimination type of the sign of depression is performed. That is, the degree of association itself leading to the discrimination type of the sign of depression may be controlled based on the reference information F to H. Alternatively, after determining the discrimination type of the sign of depression only by the above-mentioned degree of association, the obtained search solution may be modified based on the reference information F to H. In the latter case, how to modify the discrimination type of the sign of depression as a search solution based on the reference information F to H should reflect the one designed on the system side each time. Become.
また参照用情報は、何れか1種で構成される場合に限定されるものではなく、2種以上の参照用情報に基づいて解探索するようにしてもよい。かかる場合も同様に、参照用情報の示唆するうつ病の兆候のある判別類型につながるケースほど、連関度を介して求められた探索解としての当該判別類型をより高く修正するようにしてもよい。
Further, the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the discrimination type with the sign of depression suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made. ..
同様に、図15に示すように、基調となる参照用情報と、他の参照用情報とを有する組み合わせに対する、うつ病の兆候の判別類型との連関度を形成する場合においても、基調となる参照用情報は、第1実施形態~第3実施形態におけるいかなる参照用情報(参照用代名詞頻度情報、参照用トーン情報、表情画像情報、参照用インテント情報、参照用脳波情報、参照用属性情報等)も適用可能である。他の参照用情報は、基調となる参照用情報以外の第1実施形態~第3実施形態におけるいかなる参照用情報が含まれる。
Similarly, as shown in FIG. 15, it also becomes a keynote when forming a degree of association with a discriminant type of a sign of depression for a combination having a keynote reference information and another reference information. The reference information is any reference information (reference pronoun frequency information, reference tone information, facial expression image information, reference intent information, reference brain wave information, reference attribute information) in the first to third embodiments. Etc.) are also applicable. Other reference information includes any reference information in the first to third embodiments other than the underlying reference information.
このとき、基調となる参照用情報が、参照用代名詞頻度情報であれば、他の参照用情報としては、これ以外の1実施形態~第3実施形態におけるいかなる参照用情報が含まれる。
At this time, if the reference information as the keynote is the reference pronoun frequency information, the other reference information includes any reference information in the other 1st to 3rd embodiments.
かかる場合も同様に解探索を行うことで、うつ病の兆候の判別類型を推定することができる。このとき、上述した図14に示すように、連関度を通じて得られた探索解に対して、更なる他の参照用情報(参照用情報F、G、H等)を通じて、うつ病の兆候の判別類型を修正するようにしてもよい。
In such a case, it is possible to estimate the discrimination type of signs of depression by performing a solution search in the same manner. At this time, as shown in FIG. 14 described above, the signs of depression are discriminated from the search solution obtained through the degree of association through further reference information (reference information F, G, H, etc.). You may try to modify the type.
第3実施形態においても、他の参照用情報が1のみならず、2以上組み合わさるようにして連関度が学習されるものであってもよい。
Also in the third embodiment, the degree of association may be learned by combining not only one but also two or more other reference information.
なお、上述した探索解としては、うつ病の兆候の判別類型の代替として、うつ病の処方を探索解として探索するようにしてもよい。かかる場合には、上述した基調となる参照用情報と他の参照用情報との組み合わせに対するうつ病の処方との3段階以上の連関度を通じて関連付けたデータを用意しておくことで同様に探索解を探索することができる。
As the above-mentioned search solution, a prescription for depression may be searched as a search solution as an alternative to the type of discrimination of signs of depression. In such a case, the search solution can be similarly obtained by preparing data associated with the prescription of depression for the combination of the above-mentioned basic reference information and other reference information through three or more levels of association. Can be explored.
第4実施形態
第4実施形態において、図16に示すように、基調となる参照用情報と、うつ病の兆候の判別類型との3段階以上の連関度を利用する場合における、参照用の様々なバリエーション展開の例について説明をする。 Fourth Embodiment As shown in FIG. 16, in the fourth embodiment, various references are used when the degree of association between the reference information as the keynote and the discrimination type of the sign of depression is used in three or more stages. An example of various variation development will be explained.
第4実施形態において、図16に示すように、基調となる参照用情報と、うつ病の兆候の判別類型との3段階以上の連関度を利用する場合における、参照用の様々なバリエーション展開の例について説明をする。 Fourth Embodiment As shown in FIG. 16, in the fourth embodiment, various references are used when the degree of association between the reference information as the keynote and the discrimination type of the sign of depression is used in three or more stages. An example of various variation development will be explained.
基調となる参照用情報の例としては、過去の被検者について脳磁図検査を行った参照用脳磁図情報がある。この参照用脳磁図情報は、MEG(脳磁図検査)により得られる画像データで構成されていてもよいし、脳についてスキャニングしたMRIデータで構成されていてもよい。参照用脳磁図情報は、さらにこれらの画像データについて周知のディープラーニング技術を利用し、特徴的な部分を抽出したデータで構成されていてもよい。うつ病の程度とこれらの脳磁図情報は相関があると考えられることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
As an example of the reference information that serves as the keynote, there is reference magnetoencephalogram information obtained by performing a magnetoencephalogram examination on a past subject. This reference magnetoencephalogram information may be composed of image data obtained by MEG (magnetoencephalography examination), or may be composed of MRI data scanned for the brain. The reference magnetoencephalogram information may be further composed of data obtained by extracting characteristic portions by using a deep learning technique known for these image data. Since the degree of depression and these magnetoencephalographic information are considered to be correlated, the above-mentioned degree of association is constructed in advance by learning the data sets in which they are associated with each other.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、脳磁図情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the magnetoencephalogram information is newly acquired.
新たに取得する脳磁図情報は、新たにうつ病の兆候を判別する被検者から取得するものであり、その情報の種類及び取得方法は、上述した参照用脳磁図情報と同様である。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
The newly acquired magnetoencephalogram information is acquired from a subject who newly discriminates a sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference magnetoencephalogram information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
基調となる参照用情報の例としては、過去の被検者の食事内容に関する参照用食事内容情報がある。この参照用食事内容情報は、過去の被検者が実際に摂取した食事の内容(献立等)、食事の量、食事の時間、3食をとる時間間隔、摂取した栄養素やカロリー数である。この参照用食事内容は、1日、1週間、1か月等の期間に区切って取得してもよい。
As an example of the reference information that serves as the keynote, there is reference meal content information regarding the meal content of the subject in the past. This reference meal content information is the content of the meal actually ingested by the subject in the past (meal, etc.), the amount of the meal, the time of the meal, the time interval for taking three meals, and the number of nutrients and calories ingested. This reference meal content may be obtained by dividing it into periods such as one day, one week, and one month.
うつ病の程度とこれらの食事内容に関する情報は相関があると考えられることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
Since the degree of depression and the information on these dietary contents are considered to be correlated, the above-mentioned degree of association is constructed in advance by learning the data sets in which they are associated with each other.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、食事内容情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, new meal content information is acquired.
新たに取得する食事内容情報は、新たにうつ病の兆候を判別する被検者から取得するものであり、その情報の種類及び取得方法は、上述した参照用食事内容情報と同様である。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
The newly acquired meal content information is acquired from the subject who newly determines the sign of depression, and the type and acquisition method of the information is the same as the above-mentioned reference meal content information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
基調となる参照用情報の例としては、過去の被検者の睡眠状態に関する参照用睡眠情報がある。この参照用睡眠情報は、過去の被検者が実際にした睡眠に関するあらゆる情報であり、例えば、睡眠時間や睡眠の深さ、睡眠中に目が覚める回数やその時間帯、睡眠時の体動に関するあらゆるデータが含まれる。うつ病の患者は睡眠が分断されたり、中途覚醒が多い等のデータがあることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
As an example of the reference information that serves as the keynote, there is reference sleep information regarding the sleep state of the subject in the past. This reference sleep information is all information about the sleep actually performed by the subject in the past, for example, sleep time, sleep depth, number of times of waking up during sleep and time zone, body movement during sleep. Contains all the data about. Since patients with depression have data such as sleep division and abundant awakenings, the above-mentioned degree of association is constructed in advance by learning a data set in which these are associated with each other.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、睡眠情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, sleep information is newly acquired.
新たに取得する睡眠情報は、新たにうつ病の兆候を判別する被検者から取得するものであり、その情報の種類及び取得方法は、上述した参照用食事内容情報と同様である。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
The newly acquired sleep information is acquired from a subject who newly determines a sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference meal content information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
基調となる参照用情報の例としては、過去の被検者の運動状態に関する参照用運動情報がある。この参照用運動情報は、過去の被検者が実際にした運動に関するあらゆる情報であり、例えば、単位時間当たりの歩数、外出時間や外出回数、歩いた距離、走った距離等で構成されていてもよい。また、参照用運動情報は、実際に被検者に装着した加速度センサを通じて腕の振りや足の動き、歩く速さ等を計測した情報で構成してもよい。また、参照用運動情報は、体に装着した心拍計を通じて検出された心拍数、さらにはGPS等を通じて検出された位置情報を介した実際の活動範囲を示すものであってもよい。
As an example of the reference information that serves as the keynote, there is reference exercise information regarding the exercise state of the subject in the past. This reference exercise information is all information related to the exercise actually performed by the subject in the past, and is composed of, for example, the number of steps per unit time, the time of going out, the number of times of going out, the distance walked, the distance traveled, and the like. May be good. Further, the reference exercise information may be composed of information obtained by measuring the swing of the arm, the movement of the foot, the walking speed, etc. through the acceleration sensor actually attached to the subject. Further, the reference exercise information may indicate the heart rate detected through a heart rate monitor worn on the body, and may indicate the actual activity range via the position information detected through GPS or the like.
うつ病の患者は運動量と相関があると考えられることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
Since patients with depression are considered to have a correlation with the amount of exercise, the above-mentioned degree of association is constructed in advance by learning a data set in which these are associated with each other.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、運動情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, exercise information is newly acquired.
新たに取得する運動情報は、新たにうつ病の兆候を判別する被検者から取得するものであり、その情報の種類及び取得方法は、上述した参照用運動情報と同様である。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
The newly acquired exercise information is acquired from a subject who newly determines the signs of depression, and the type and acquisition method of the information is the same as the above-mentioned reference exercise information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
基調となる参照用情報の例としては、過去の被検者の生活時間帯に関する参照用生活時間情報がある。この参照用生活時間情報は、過去の被検者が実際にした生活時間帯に関するあらゆる情報であり、例えば、トイレの電気使用時間を介してトイレの時間帯を取得するようにしてもよいし、部屋の電気の使用時間を介して実際に起きている時間、睡眠時間を検出するようにしてもよい。またドアの開閉センサを介してどの部屋に何時間滞在していたかを検出するようにしてもよい。電気の使用時間は、住宅に設定される電気使用メータを介して検出してもよいし、いわゆるスマートハウス等に設置されている電気メータを介して検出するようにしてもよい。
As an example of the reference information that serves as the keynote, there is reference life time information regarding the life time zone of the subject in the past. This reference life time information is any information about the life time actually performed by the subject in the past, and for example, the time zone of the toilet may be acquired through the electricity usage time of the toilet. The time actually awake and the time of sleep may be detected through the time of electricity usage in the room. Further, it may be possible to detect which room and how many hours have been stayed through the door open / close sensor. The electricity usage time may be detected via an electricity usage meter set in a house, or may be detected via an electricity meter installed in a so-called smart house or the like.
うつ病の患者は生活時間と相関があると考えられることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
Since patients with depression are considered to have a correlation with their life time, the above-mentioned degree of association is constructed in advance by learning a data set in which they are associated with each other.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、生活時間情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, new life time information is acquired.
新たに取得する生活時間情報は、新たにうつ病の兆候を判別する被検者から取得するものであり、その情報の種類及び取得方法は、上述した参照用生活時間情報と同様である。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
The newly acquired life time information is acquired from the subject who newly determines the sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference life time information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
基調となる参照用情報の例としては、過去の被検者の家屋内における各種操作に関する参照用操作情報がある。この参照用操作情報は、過去の被検者が実際に家屋内にある電気製品(テレビ、エアコン、PC、ビデオ、掃除機、冷蔵庫、洗濯機)、照明のスイッチ、風呂のガススイッチ、システムキッチンの操作ボタンやレバー等、押しボタン式で開閉する窓の操作等、家屋の住人であればだれもが操作する可能性があるあらゆるものが対象となる。これらの参照用操作情報は、電気製品や家屋内の照明のスイッチ、風呂のガススイッチ、システムキッチンの操作ボタンやレバー等、押しボタンに設置されているIoTセンサを通じて検出してもよい。いわゆるスマートハウス等に設置されている電気メータを介して検出するようにしてもよい。
As an example of the reference information that serves as the keynote, there is reference operation information related to various operations in the subject's house in the past. This reference operation information includes electrical appliances (TVs, air conditioners, PCs, videos, vacuum cleaners, refrigerators, washing machines), lighting switches, bath gas switches, and system kitchens that past subjects actually have in their homes. Anything that any resident of a house can operate, such as the operation buttons and levers of the house, the operation of windows that open and close with a push button, is targeted. These reference operation information may be detected through IoT sensors installed on push buttons such as electric appliances, lighting switches in homes, gas switches for baths, operation buttons and levers in system kitchens, and the like. It may be detected via an electric meter installed in a so-called smart house or the like.
うつ病の患者はボタン等の操作をする際に押し間違い頻度や押圧時間、さらには押圧強度等と相関があると考えられることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
Depressed patients are considered to have a correlation with the frequency of pressing mistakes, pressing time, pressing strength, etc. when operating buttons, etc., so by learning the data sets associated with each other, the above-mentioned Build the degree of association in advance.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、操作情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the operation information is newly acquired.
新たに取得する操作情報は、新たにうつ病の兆候を判別する被検者から取得するものであり、その情報の種類及び取得方法は、上述した参照用操作情報と同様である。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
The newly acquired operation information is acquired from a subject who newly determines a sign of depression, and the type and acquisition method of the information are the same as the above-mentioned reference operation information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
基調となる参照用情報の例としては、過去の被検者の視線の動きに関する参照用視線画像情報がある。この参照用視線画像情報は、出題された問題に対する過去の被検者の視線を撮像したものである。視線の画像解析を行う上では、ディープラーニング技術を利用し、解析画像の特徴量に基づいて自動判別し、データ化してもよい。また赤外線カメラを利用し、被検者の視線の動きを高度に検出するようにしてもよい。
As an example of the reference information that serves as the keynote, there is reference line-of-sight image information regarding the movement of the line-of-sight of the subject in the past. This reference line-of-sight image information is an image of the line-of-sight of the subject in the past for the question given. In performing the image analysis of the line of sight, a deep learning technique may be used to automatically determine the image based on the feature amount of the analyzed image and convert it into data. Further, an infrared camera may be used to detect the movement of the subject's line of sight to a high degree.
出題される問題としては、例えば様々な形状の図形を同時に表示し、同じものがいくつ存在するかを数えさせたり、画面中に表示される目印を移動させる際の視線を解析したり、或いは、いわゆる間違え探しをさせるような問題等、空間認知能力や判断力等を試す問題とされていてもよい。
Questions to be asked include, for example, displaying figures of various shapes at the same time, counting how many of the same things exist, analyzing the line of sight when moving the mark displayed on the screen, or It may be a problem that tests spatial cognitive ability, judgment, etc., such as a problem that causes a so-called mistaken search.
うつ病の患者は、このような問題に対して特徴的な視線の動きをするものと考えられることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
Depressed patients are thought to have characteristic gaze movements for such problems, so by training the datasets in which they are associated with each other, the above-mentioned degree of association is pre-constructed. ..
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、視線画像情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the line-of-sight image information is newly acquired.
新たに取得する操作情報は、新たにうつ病の兆候を判別する被検者に出題された問題に対する視線の動きを撮像したものであり、その情報の種類及び取得方法は、上述した参照用操作情報と同様である。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
The newly acquired operation information is an image of the movement of the line of sight with respect to the problem given to the subject who newly determines the sign of depression, and the type and acquisition method of the information are the above-mentioned reference operations. Similar to information. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
基調となる参照用情報の例としては、単位時間あたりの会話量に関する参照用会話量情報がある。単位時間とは、1分、10分、60分、3時間、一日等、いかなる時間単位であってもよい。会話量は、単に音声を発している時間、つまり、所定音量を超える音声が検出された時間を単位時間で割った値で構成されていてもよい。また、会話量は被検者の音声をテキストデータに変換したとき、当該テキストデータ内の各品詞(動詞、形容詞、目的語、代名詞、副詞等)を定量化し、その品詞の単位時間当たりの量で構成してもよい。また、会話量は、音声をテキストデータ化して、その文節数、単語数、格成分の数、名詞句の数、文字数をカウントすることでテキストデータ全体のボリュームを検出するようにしてもよい。そして、このテキストデータ全体のボリュームの単位時間当たりの量を会話量としてもよい。これらのテキストデータ全体並びに代名詞のボリュームを計測する上での単位(文節数、単語数、格成分の数、名詞句の数、文字数等)は互いに共通化させることが前提となる。
As an example of the reference information that serves as the keynote, there is reference conversation amount information regarding the conversation amount per unit time. The unit time may be any time unit such as 1 minute, 10 minutes, 60 minutes, 3 hours, and one day. The conversation volume may be simply composed of the time during which the voice is emitted, that is, the time during which the voice exceeding a predetermined volume is detected divided by the unit time. In addition, the amount of conversation is the amount of each part of speech (verb, adjective, object, pronoun, adverb, etc.) in the text data when the subject's voice is converted into text data. It may be configured with. In addition, the volume of the entire text data may be detected by converting the voice into text data and counting the number of phrases, the number of words, the number of case components, the number of noun phrases, and the number of characters. Then, the amount of the volume of the entire text data per unit time may be used as the conversation amount. It is premised that the units (number of phrases, number of words, number of case components, number of noun phrases, number of characters, etc.) for measuring the entire text data and the volume of pronouns are shared with each other.
うつ病の患者の症状の程度は、このような会話量と関係することが考えられることから、これらが互いに関連付けられたデータセットを学習させることにより、上述した連関度を予め構築する。
Since the degree of symptoms of a depressed patient may be related to such conversational volume, the above-mentioned degree of association is constructed in advance by learning a data set in which these are associated with each other.
このような連関度が、人工知能でいうところの学習済みデータとなる。このような学習済みデータを作った後に、実際にこれから新たにうつ病の兆候を判断する際において、上述した学習済みデータを利用することとなる。かかる場合には、会話量情報を新たに取得する。
Such degree of association is what is called learned data in artificial intelligence. After creating such trained data, the above-mentioned trained data will be used when actually determining a new sign of depression from now on. In such a case, the conversation volume information is newly acquired.
新たに取得する会話量情報は、新たにうつ病の兆候を判別する被検者の音声をテキストデータに変換し、単位時間あたりの会話量を上述と同様に求める。具体的な解探索の方法は、上述した各実施形態と同様であるため以下での説明を省略する。
For the newly acquired conversation amount information, the voice of the subject who newly determines the sign of depression is converted into text data, and the conversation amount per unit time is obtained in the same manner as described above. Since the specific solution search method is the same as that of each of the above-described embodiments, the description below will be omitted.
また、第1実施形態~第4実施形態ともに、上述した実施の形態に限定されるものでは無く、例えば図13に示すように、基調となる参照用情報と、うつ病の兆候の判別類型との3段階以上の連関度を利用するようにしてもよい。かかる場合には、新たに取得した情報に応じたうつ病の兆候の判別類型との3段階以上の連関度に基づき、解探索を行うことになる。基調となる参照用情報は、例えば参照用代名詞頻度情報等であるが、これに限定されるものでは無く、第1実施形態~第4実施形態におけるいかなる参照用情報(参照用代名詞頻度情報、参照用トーン情報、表情画像情報、参照用インテント情報、参照用脳波情報、参照用属性情報、参照用脳磁図情報、参照用食事内容情報、参照用睡眠情報、参照用運転情報、参照用操作情報、参照用視線画像情報、参照用会話量情報、参照用生活時間情報等)も適用可能である。
Further, both the first to fourth embodiments are not limited to the above-described embodiments, and as shown in FIG. 13, for example, reference information as a keynote and a type for discriminating signs of depression. You may use the degree of association of 3 or more levels. In such a case, the solution search will be performed based on the degree of association with the discrimination type of the sign of depression according to the newly acquired information in three or more stages. The underlying reference information is, for example, reference pronoun frequency information, etc., but is not limited thereto, and any reference information (reference pronoun frequency information, reference) in the first to fourth embodiments. Tone information for reference, facial image information, intent information for reference, brain wave information for reference, attribute information for reference, encephalogram information for reference, meal content information for reference, sleep information for reference, driving information for reference, operation information for reference. , Reference line-of-sight image information, reference conversation volume information, reference life time information, etc.) are also applicable.
これらの場合も同様に、学習用データとして用いられた参照用情報に応じた情報が入力された場合に、上述した方法に基づいて解探索が行われることとなる。
Similarly, in these cases, when the information corresponding to the reference information used as the learning data is input, the solution search is performed based on the above-mentioned method.
連関度を通じて求められる探索解は、更に、他の参照用情報に基づいて修正され、或いは重み付けを変化させるようにしてもよい。
The search solution obtained through the degree of association may be further modified based on other reference information, or the weighting may be changed.
ここでいう他の参照用情報とは、上述した参照用情報の何れかを基調となる参照用情報とした場合、当該基調となる参照用情報以外のいかなる参照用情報に該当する。
The other reference information referred to here corresponds to any reference information other than the reference information which is the keynote when any of the above-mentioned reference information is used as the keynote reference information.
例えば、他の参照用情報の一つとして、ある参照用生活時間情報P14において、以前においてうつ病の兆候の判別類型としてBが判別される経緯が多かったものとする。このような参照用生活時間情報P14に応じたトーン情報を新たに取得したとき、うつ病の兆候の判別類型としての探索解Bに対して、重み付けを上げる処理を行い、換言すればうつ病の兆候の判別類型としての探索解Bにつながるようにする処理を行うように予め設定しておく。
For example, as one of the other reference information, it is assumed that B was previously discriminated as a discriminant type of a sign of depression in a certain reference life time information P14. When the tone information corresponding to the reference life time information P14 is newly acquired, the search solution B as the discrimination type of the sign of depression is processed to increase the weight, in other words, the depression. It is set in advance to perform a process that leads to the search solution B as a symptom discrimination type.
例えば、他の参照用情報Gが、よりうつ病の兆候の判別類型としての探索解Cを示唆するような分析結果であり、参照用情報Fが、よりうつ病の兆候の判別類型としての探索解Dを示唆するような分析結果であるものとする。このように参照用情報との間での設定の後、実際に取得した情報が参照用情報Gと同一又は類似する場合には、うつ病の兆候の判別類型としての探索解Cの重み付けを上げる処理を行う。これに対して、実際に取得した情報が参照用情報Fと同一又は類似する場合には、うつ病の兆候の判別類型としての探索解Dの重み付けを上げる処理を行う。つまり、うつ病の兆候の判別類型につながる連関度そのものを、この参照用情報F~Hに基づいてコントロールするようにしてもよい。或いは、うつ病の兆候の判別類型を上述した連関度のみで決定した後、この求めた探索解に対して参照用情報F~Hに基づいて修正を加えるようにしてもよい。後者の場合において、参照用情報F~Hに基づいてどのように探索解としてのうつ病の兆候の判別類型にいかなるウェートで修正を加えるかは、都度システム側において設計したものを反映させることとなる。
For example, the other reference information G is an analysis result suggesting a search solution C as a discriminant type of a sign of more depression, and the reference information F is a search as a discriminant type of a sign of more depression. It is assumed that the analysis result suggests the solution D. When the information actually acquired is the same as or similar to the reference information G after the setting with the reference information in this way, the weighting of the search solution C as a discrimination type of the sign of depression is increased. Perform processing. On the other hand, when the actually acquired information is the same as or similar to the reference information F, the process of increasing the weighting of the search solution D as the discrimination type of the sign of depression is performed. That is, the degree of association itself leading to the discrimination type of the sign of depression may be controlled based on the reference information F to H. Alternatively, after determining the discrimination type of the sign of depression only by the above-mentioned degree of association, the obtained search solution may be modified based on the reference information F to H. In the latter case, how to modify the discrimination type of the sign of depression as a search solution based on the reference information F to H should reflect the one designed on the system side each time. Become.
また参照用情報は、何れか1種で構成される場合に限定されるものではなく、2種以上の参照用情報に基づいて解探索するようにしてもよい。かかる場合も同様に、参照用情報の示唆するうつ病の兆候のある判別類型につながるケースほど、連関度を介して求められた探索解としての当該判別類型をより高く修正するようにしてもよい。
Further, the reference information is not limited to the case where it is composed of any one type, and the solution search may be performed based on two or more types of reference information. Similarly, in such a case, the more the case leads to the discrimination type with the sign of depression suggested by the reference information, the higher the modification of the discrimination type as the search solution obtained through the degree of association may be made. ..
同様に、図15に示すように、基調となる参照用情報と、他の参照用情報とを有する組み合わせに対する、うつ病の兆候の判別類型との連関度を形成する場合においても、基調となる参照用情報は、第1実施形態~第4実施形態におけるいかなる参照用情報(参照用代名詞頻度情報、参照用トーン情報、表情画像情報、参照用インテント情報、参照用脳波情報、参照用属性情報、参照用脳磁図情報、参照用食事内容情報、参照用睡眠情報、参照用運転情報、参照用操作情報、参照用視線画像情報、参照用会話量情報、参照用生活時間情報等)も適用可能である。他の参照用情報は、基調となる参照用情報以外の第1実施形態~第4実施形態におけるいかなる参照用情報が含まれる。
Similarly, as shown in FIG. 15, it also becomes a keynote when forming a degree of association with a discriminant type of a sign of depression for a combination having a keynote reference information and another reference information. The reference information is any reference information (reference pronoun frequency information, reference tone information, facial image image information, reference intent information, reference brain wave information, reference attribute information) in the first to fourth embodiments. , Reference electroencephalogram information, reference meal content information, reference sleep information, reference driving information, reference operation information, reference line-of-sight image information, reference conversation volume information, reference life time information, etc.) are also applicable. Is. Other reference information includes any reference information in the first to fourth embodiments other than the underlying reference information.
このとき、基調となる参照用情報が、参照用脳磁図情報であれば、他の参照用情報としては、これ以外の1実施形態~第4実施形態におけるいかなる参照用情報が含まれる。
At this time, if the reference information as the keynote is the reference magnetoencephalogram information, the other reference information includes any reference information in the other 1st to 4th embodiments.
かかる場合も同様に解探索を行うことで、うつ病の兆候の判別類型を推定することができる。このとき、上述した図14に示すように、連関度を通じて得られた探索解に対して、更なる他の参照用情報(参照用情報F、G、H等)を通じて、うつ病の兆候の判別類型を修正するようにしてもよい。
In such a case, it is possible to estimate the discrimination type of signs of depression by performing a solution search in the same manner. At this time, as shown in FIG. 14 described above, the signs of depression are discriminated from the search solution obtained through the degree of association through further reference information (reference information F, G, H, etc.). You may try to modify the type.
第4実施形態においても、他の参照用情報が1のみならず、2以上組み合わさるようにして連関度が学習されるものであってもよい。
Also in the fourth embodiment, the degree of association may be learned by combining not only one but also two or more other reference information.
なお、上述した探索解としては、うつ病の兆候の判別類型の代替として、うつ病の処方を探索解として探索するようにしてもよい。かかる場合には、上述した基調となる参照用情報と他の参照用情報との組み合わせに対するうつ病の処方との3段階以上の連関度を通じて関連付けたデータを用意しておくことで同様に探索解を探索することができる。
As the above-mentioned search solution, a prescription for depression may be searched as a search solution as an alternative to the type of discrimination of signs of depression. In such a case, the search solution can be similarly obtained by preparing data associated with the prescription of depression for the combination of the above-mentioned basic reference information and other reference information through three or more levels of association. Can be explored.
1 うつ状態判別システム
2 判別装置
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 推定部
28 記憶部
61 ノード
1 Depressionstate discrimination system 2 Discrimination device 21 Internal bus 23 Display unit 24 Control unit 25 Operation unit 26 Communication unit 27 Estimating unit 28 Storage unit 61 Node
2 判別装置
21 内部バス
23 表示部
24 制御部
25 操作部
26 通信部
27 推定部
28 記憶部
61 ノード
1 Depression
Claims (9)
- メディアに出演する出演者のうつ状態を判別するうつ状態判別プログラムにおいて、
上記出演者の動画像からなる動画像情報を取得する情報取得ステップと、
人の動作を動画像として予め撮像した参照用動画像情報と、うつ状態のレベルとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した動画像情報に応じた参照用動画像情報とうつ状態のレベルとの3段階以上の連関度に基づき、上記出演者のうつ状態を判別するうつ状態判別ステップとをコンピュータに実行させること
を特徴とするうつ状態判別プログラム。 In the depression state determination program that determines the depression state of performers appearing in the media
The information acquisition step to acquire the moving image information consisting of the moving images of the above performers,
The reference moving image according to the moving image information acquired in the above information acquisition step by using the three or more levels of association between the reference moving image information captured in advance as a moving image of a person's movement and the level of depression. A depression state determination program characterized by having a computer execute the depression state determination step for determining the depression state of the performer based on the degree of association between the information and the level of the depression state. - 上記情報取得ステップでは、上記出演者の音声情報を取得し、
上記うつ状態判別ステップでは、上記参照用動画像情報と、人の音声を録音した参照用音声情報とを有する組み合わせと、うつ状態のレベルとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した動画像情報に応じた参照用動画像情報と音声情報に応じた参照用音声情報とを有する組み合わせと、うつ状態のレベルとの3段階以上の連関度に基づき、上記出演者のうつ状態を判別すること
を特徴とする請求項1記載のうつ状態判別プログラム。 In the above information acquisition step, the voice information of the above performers is acquired, and the voice information is acquired.
In the depression state determination step, the information acquisition is performed by using the combination of the reference moving image information and the reference voice information recorded with human voice, and the degree of association between the level of the depression state and the level of the depression state. Based on the degree of association between the combination of the reference moving image information according to the moving image information acquired in the step and the reference audio information according to the audio information and the level of the depressed state, the above performers The depression state determination program according to claim 1, wherein the depression state is determined. - メディアに出演する出演者のうつ状態を判別するうつ状態判別プログラムにおいて、
上記出演者の音声情報を取得する情報取得ステップと、
人の音声を録音した参照用音声情報と、うつ状態のレベルとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した音声情報に応じた参照用音声情報とうつ状態のレベルとの3段階以上の連関度に基づき、上記出演者のうつ状態を判別するうつ状態判別ステップとをコンピュータに実行させること
を特徴とするうつ状態判別プログラム。 In the depression state determination program that determines the depression state of performers appearing in the media
The information acquisition step to acquire the voice information of the above performers,
Using the three or more levels of association between the reference voice information recorded from human voice and the level of depression, the reference voice information and the level of depression according to the voice information acquired in the above information acquisition step. A depression state determination program characterized by causing a computer to execute the depression state determination step for determining the depression state of the performer based on the degree of association of three or more stages. - 上記情報取得ステップでは、各種情報サイトへ上記出演者に関して書き込まれたテキスト情報を取得し、
上記うつ状態判別ステップでは、上記参照用動画像情報と、予めテキストデータを類型化した参照用テキスト情報を有する組み合わせと、うつ状態のレベルとの3段階以上の連関度を利用し、上記情報取得ステップにおいて取得した動画像情報に応じた参照用動画像情報とテキスト情報に応じた参照用テキスト情報とを有する組み合わせと、うつ状態のレベルとの3段階以上の連関度に基づき、上記出演者のうつ状態を判別すること
を特徴とする請求項1記載のうつ状態判別プログラム。 In the above information acquisition step, the text information written about the above performers is acquired on various information sites, and the text information is acquired.
In the depression state determination step, the information acquisition is performed by using the combination of the reference video information, the reference text information in which the text data is categorized in advance, and the degree of association between the depression level and the depression state. Based on the degree of association between the combination of the reference video information according to the video information acquired in the step and the reference text information according to the text information and the level of depression, the above performers The depression state determination program according to claim 1, wherein the depression state is determined. - 被検者のうつ病の兆候を判別するうつ病兆候判別プログラムにおいて、
被検者の音声の入力を受け付ける受付ステップと、
上記受付ステップにより受け付けられた音声をテキストデータに変換してこれを形態素解析することにより、当該テキストデータに含まれる処理動作を特定するアクションを規定するインテントに関するインテント情報を取得する情報取得ステップと、
処理動作を特定するアクションを規定するインテントに関する参照用インテント情報と、うつ病の兆候の判別類型との3段階以上の連関度を参照し、上記情報取得ステップにより取得されたインテント情報に基づき、上記被検者のうつ病の兆候を判別する判別ステップとをコンピュータに実行させること
を特徴とするうつ病兆候判別プログラム。 In a depression symptom determination program that determines the signs of depression in a subject
A reception step that accepts the voice input of the subject,
An information acquisition step of acquiring intent information related to an intent that defines an action that specifies a processing operation included in the text data by converting the voice received by the reception step into text data and performing morphological analysis. When,
Refer to the three or more levels of association between the reference intent information regarding the intent that defines the action that specifies the processing operation and the discrimination type of the sign of depression, and use the intent information acquired by the above information acquisition step. Based on the above, a depression sign determination program characterized by causing a computer to perform a determination step for determining a sign of depression in a subject. - 被検者のうつ病の兆候を判別するうつ病兆候判別プログラムにおいて、
被検者の音声の入力を受け付ける受付ステップと、
上記受付ステップにより受け付けられた音声のトーンに関するトーン情報を取得する情報取得ステップと、
音声のトーンに関する参照用トーン情報と、うつ病の兆候の判別類型との3段階以上の連関度を参照し、上記情報取得ステップにより取得されたトーン情報に基づき、上記被検者のうつ病の兆候を判別する判別ステップとをコンピュータに実行させること
を特徴とするうつ病兆候判別プログラム。 In a depression symptom determination program that determines the signs of depression in a subject
A reception step that accepts the voice input of the subject,
An information acquisition step for acquiring tone information regarding the tone of the voice received by the above reception step, and
Based on the tone information acquired by the information acquisition step, the degree of association between the reference tone information regarding the tone of the voice and the discrimination type of the sign of depression is referred to, and the depression of the subject is described. A depression symptom discrimination program characterized by having a computer perform a symptom discrimination step. - 被検者のうつ病の兆候を判別するうつ病兆候判別プログラムにおいて、
出題された問題に対する被検者の視線を撮像した視線画像情報を取得する情報取得ステップと、
出題された問題に対する過去の被検者の視線を撮像した参照用視線画像情報と、うつ病の兆候の判別類型との3段階以上の連関度を参照し、上記情報取得ステップにより取得された視線画像情報に基づき、上記被検者のうつ病の兆候を判別する判別ステップとをコンピュータに実行させること
を特徴とするうつ病兆候判別プログラム。 In a depression symptom determination program that determines the signs of depression in a subject
The information acquisition step to acquire the line-of-sight image information that captures the line-of-sight of the subject for the question that was asked,
The line-of-sight acquired by the above information acquisition step with reference to the degree of association between the reference line-of-sight image information obtained by capturing the line-of-sight of the subject in the past for the question asked and the discrimination type of the sign of depression in three or more stages. A depression sign discrimination program characterized by causing a computer to perform a discrimination step for discriminating a sign of depression of a subject based on image information. - 被検者のうつ病の兆候を判別するうつ病兆候判別プログラムにおいて、
被検者の音声の入力を受け付ける受付ステップと、
上記受付ステップにより受け付けられた音声をテキストデータに変換して単位時間あたりの会話量を求めた会話量情報を取得する情報取得ステップと、
単位時間あたりの会話量に関する参照用会話量情報と、うつ病の兆候の判別類型との3段階以上の連関度を参照し、上記情報取得ステップにより取得された会話量情報に基づき、上記被検者のうつ病の兆候を判別する判別ステップとをコンピュータに実行させること
を特徴とするうつ病兆候判別プログラム。 In a depression symptom determination program that determines the signs of depression in a subject
A reception step that accepts the voice input of the subject,
The information acquisition step of converting the voice received by the above reception step into text data and acquiring the conversation amount information obtained by calculating the conversation amount per unit time, and the information acquisition step.
Based on the conversation volume information acquired by the information acquisition step, the subject is examined by referring to the degree of association between the reference conversation volume information regarding the conversation volume per unit time and the discrimination type of the sign of depression at three or more levels. A depression sign discrimination program characterized by having a computer perform a discrimination step for discriminating a person's signs of depression. - 上記判別ステップでは、人工知能におけるニューラルネットワークのノードの各出力の重み付け係数に対応する上記連関度を利用すること
を特徴とする請求項1~8のうち何れか1項記載のうつ病兆候判別プログラム。
The depression sign discrimination program according to any one of claims 1 to 8, wherein in the discrimination step, the degree of association corresponding to the weighting coefficient of each output of the node of the neural network in artificial intelligence is used. ..
Applications Claiming Priority (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-187931 | 2020-11-11 | ||
JP2020187931A JP2022077195A (en) | 2020-11-11 | 2020-11-11 | Depressive state determination program |
JP2021-000780 | 2021-01-06 | ||
JP2021-000779 | 2021-01-06 | ||
JP2021000780A JP2022106068A (en) | 2021-01-06 | 2021-01-06 | Depression symptom determination program |
JP2021000779A JP2022106067A (en) | 2021-01-06 | 2021-01-06 | Depression symptom discrimination program |
JP2021-000778 | 2021-01-06 | ||
JP2021000778A JP2022106066A (en) | 2021-01-06 | 2021-01-06 | Depression symptom discrimination program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022102721A1 true WO2022102721A1 (en) | 2022-05-19 |
Family
ID=81601298
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/041602 WO2022102721A1 (en) | 2020-11-11 | 2021-11-11 | Depression-state-determining program |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2022102721A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023233979A1 (en) * | 2022-05-30 | 2023-12-07 | 国立研究開発法人情報通信研究機構 | Mood estimating program |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223713A (en) * | 2012-03-21 | 2013-10-31 | Hamamatsu Univ School Of Medicine | Asperger's diagnosis assistance method and system, and asperger's diagnosis assistance device |
US20170245759A1 (en) * | 2016-02-25 | 2017-08-31 | Samsung Electronics Co., Ltd. | Image-analysis for assessing heart failure |
JP2018114232A (en) * | 2017-01-20 | 2018-07-26 | 株式会社リコー | Diagnosis apparatus, program, and diagnosis system |
JP2018121749A (en) * | 2017-01-30 | 2018-08-09 | 株式会社リコー | Diagnostic apparatus, program, and diagnostic system |
US20190230170A1 (en) * | 2018-01-23 | 2019-07-25 | Todd Jeremy Marlin | Suicide and Alarming Behavior Alert/Prevention System |
US10594757B1 (en) * | 2017-08-04 | 2020-03-17 | Grammarly, Inc. | Sender-receiver interface for artificial intelligence communication assistance for augmenting communications |
US20200104167A1 (en) * | 2017-07-05 | 2020-04-02 | Shanghai Cambricon Information Technology Co., Ltd. | Data processing apparatus and method |
CN111462841A (en) * | 2020-03-12 | 2020-07-28 | 华南理工大学 | Depression intelligent diagnosis device and system based on knowledge graph |
-
2021
- 2021-11-11 WO PCT/JP2021/041602 patent/WO2022102721A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013223713A (en) * | 2012-03-21 | 2013-10-31 | Hamamatsu Univ School Of Medicine | Asperger's diagnosis assistance method and system, and asperger's diagnosis assistance device |
US20170245759A1 (en) * | 2016-02-25 | 2017-08-31 | Samsung Electronics Co., Ltd. | Image-analysis for assessing heart failure |
JP2018114232A (en) * | 2017-01-20 | 2018-07-26 | 株式会社リコー | Diagnosis apparatus, program, and diagnosis system |
JP2018121749A (en) * | 2017-01-30 | 2018-08-09 | 株式会社リコー | Diagnostic apparatus, program, and diagnostic system |
US20200104167A1 (en) * | 2017-07-05 | 2020-04-02 | Shanghai Cambricon Information Technology Co., Ltd. | Data processing apparatus and method |
US10594757B1 (en) * | 2017-08-04 | 2020-03-17 | Grammarly, Inc. | Sender-receiver interface for artificial intelligence communication assistance for augmenting communications |
US20190230170A1 (en) * | 2018-01-23 | 2019-07-25 | Todd Jeremy Marlin | Suicide and Alarming Behavior Alert/Prevention System |
CN111462841A (en) * | 2020-03-12 | 2020-07-28 | 华南理工大学 | Depression intelligent diagnosis device and system based on knowledge graph |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023233979A1 (en) * | 2022-05-30 | 2023-12-07 | 国立研究開発法人情報通信研究機構 | Mood estimating program |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Morgan et al. | Single-case research methods for the behavioral and health sciences | |
JP6662535B2 (en) | Lifestyle management support device and lifestyle management support method | |
CN115040086A (en) | Data processing system and method based on digital biomarkers | |
WO2022102721A1 (en) | Depression-state-determining program | |
Castro et al. | Identification of functional domains in developmental measures: An ICF-CY analysis of Griffiths developmental scales and Schedule of Growing Skills II | |
JP6696654B1 (en) | Fatigue discrimination program | |
Scholes | Developing expertise in critical care nursing | |
JP2022106065A (en) | Dementia symptom determination program | |
WO2021210460A1 (en) | Dementia symptom discrimination program | |
JP2022106064A (en) | Dementia symptom determination program | |
JP2022106068A (en) | Depression symptom determination program | |
JP2021163006A (en) | Sleep health level determination program | |
JP2021111269A (en) | Fatigue discrimination program, and improvement measure proposal program | |
JP2022077195A (en) | Depressive state determination program | |
JP2022113073A (en) | Program for determining sign of depression | |
JP2022113072A (en) | Dementia symptom determination program | |
JP2022113093A (en) | Program for determining attention degree of person to be watched | |
JP6906816B1 (en) | Infectious disease infection risk assessment program | |
JP6755065B1 (en) | Fatigue determination program | |
JP2022106067A (en) | Depression symptom discrimination program | |
Hilton | The mathematical development of children with Apert syndrome | |
JP2022106066A (en) | Depression symptom discrimination program | |
JP2021166664A (en) | Dementia development discrimination program | |
Kallio | Unobtrusive stress assessment in knowledge work using real-life environmental sensor data | |
KR20240133886A (en) | Mentality servie system with non-face to face based on processing big data and method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21891966 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2023) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21891966 Country of ref document: EP Kind code of ref document: A1 |