Nothing Special   »   [go: up one dir, main page]

WO2022194628A1 - Method for producing a stator, and stator and electric machine having same - Google Patents

Method for producing a stator, and stator and electric machine having same Download PDF

Info

Publication number
WO2022194628A1
WO2022194628A1 PCT/EP2022/055987 EP2022055987W WO2022194628A1 WO 2022194628 A1 WO2022194628 A1 WO 2022194628A1 EP 2022055987 W EP2022055987 W EP 2022055987W WO 2022194628 A1 WO2022194628 A1 WO 2022194628A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
segments
winding
stator segments
individual
Prior art date
Application number
PCT/EP2022/055987
Other languages
German (de)
French (fr)
Inventor
Frank Schnaiter
Volker Koeninger
Martin Heyder
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022194628A1 publication Critical patent/WO2022194628A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/14Stator cores with salient poles
    • H02K1/146Stator cores with salient poles consisting of a generally annular yoke with salient poles
    • H02K1/148Sectional cores
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • H02K15/022Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies with salient poles or claw-shaped poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/08Forming windings by laying conductors into or around core parts
    • H02K15/095Forming windings by laying conductors into or around core parts by laying conductors around salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/46Fastening of windings on the stator or rotor structure
    • H02K3/52Fastening salient pole windings or connections thereto
    • H02K3/521Fastening salient pole windings or connections thereto applicable to stators only
    • H02K3/522Fastening salient pole windings or connections thereto applicable to stators only for generally annular cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/0056Manufacturing winding connections
    • H02K15/0068Connecting winding sections; Forming leads; Connecting leads to terminals

Definitions

  • DE 10 2007006095 A1 discloses a manufacturing method for a stator, in which a plurality of individual, separate stator cores are wound before they are combined to form a common stator. For winding, two partial cores are arranged opposite one another on a common axis. A connecting wire between the two partial cores when arranging the partial cores to the stator cores axially above the part, arranged transversely to the radial interior. In a further method step, further pairs of coils are assembled to form a stator, with the pairs of coils being electrically connected to one another. Such an assembly of the stator requires an additional assembly tool for arranging the connec tion wires between the partial coils, as well as an additional assembly step for contacting the coil pairs.
  • the method according to the invention for producing a stator, as well as the stator according to the invention and the electrical machine with the features of the independent claims have the advantage that the ring-shaped arrangement of the separate stator segments means that all stator segments can be connected in one process step with an uninterrupted winding wire how a full-cut stator can be wound using needle winding. There is no electrical contact between the individually wound stator segments and the tangential distance between the stator segments means that a high copper fill factor can still be achieved - as with the winding of individual toothed segments.
  • the connecting wires between the single-tooth coils can be pressed radially inward at the same time as the stator segments are radially compressed using the same tool, so that an additional assembly step for the final positioning of the connecting wires is advantageously eliminated.
  • the production of such ring-shaped stator segments spaced apart in the circumferential direction thus permits favorable variation possibilities in terms of assembly technology for the interconnection of the electrical machine with different electrical phases.
  • stator segments are supported on the spacers in the tangential and radial directions, so that the connecting wires on the outer circumference of the insulating laminations can be wound relatively tightly, compared to a full-section stator.
  • the size of the spacers can be adapted to the number of stator segments or to the outside diameter of the stator body.
  • stator teeth Stator segments placed before winding an insulating mask, which preferably has two parts that are placed in opposite axial directions from above and below on the stator tooth. At least on one side, the insulating mask has an axial peripheral wall along the yoke area of the stator segment, on which the connecting wires can be supported radially from the outside.
  • retaining grooves can be formed in the tangential direction in a particularly favorable manner on the outer circumference of this axial peripheral wall, into which the connec tion wires engage radially.
  • stator teeth to be wound Due to the fixed fixation of the individual stator segments, the sequence of the stator teeth to be wound can be chosen freely. As a result, a connecting wire between two consecutively wound stator teeth can also extend over a larger peripheral area of the circular ring and in this way bridge several tangential distances between two adjacent stator segments one after the other.
  • connecting wires can also span a specific tangential distance between two adjacent stator segments.
  • the individual connecting wires are then preferably arranged axially one above the other, for example in axially adjacent tangential grooves on the outer circumference of the insulating mask.
  • all connecting wires can then be deformed simultaneously at a specific tangential distance until the yoke regions of the stator segments are in tangential contact with one another.
  • the auxiliary tool has bending fingers, for example, which preferably extend in the axial direction and are pressed inward in the radial direction towards the center of the stator.
  • they are arranged in a tangential area between the stator teeth, axially above the electrical winding.
  • the spacers between the stator elements are designed in such a way that they do not interfere with the needle winding of the stator teeth. After winding, the spacers are removed and the stator segments are pressed radially inward towards one another. In this process, the connecting wires are simultaneously the auxiliary tool reshaped in such a way that they do not protrude radially beyond the outer circumference of the stator segments.
  • a holding plate can have axial extensions that assume the position of the bending fingers after the connecting wires have been completely formed.
  • the holding plate can advantageously be integrated into an electrical interconnection plate or into a bearing plate of the electrical machine.
  • Connecting lugs and corresponding recesses are formed particularly favorably on the opposite tangential sides of the yoke area, so that when the stator segments are assembled, they are precisely positioned relative to one another in order to achieve an optimal circular shape for the stator base body. This minimizes an air gap between two adjacent yoke areas, thereby optimizing the magnetic flux and the cogging torque.
  • the connecting lug and the corresponding recess serve as fixing elements, which engage in a form-fitting manner on the corresponding formations of the spacer elements.
  • a mechanically very stable circular ring can be generated for the winding of all stator segments, in which the stator segments are arranged alternately with the spacers in the circumferential direction.
  • the individual lamellar layers are preferably first punched out, with the T-shaped segments remaining connected to one another in the tangential direction using the precut technique or Kiri-Make method.
  • the precut technique the individual T-segments are only punched through up to a certain fraction (1/2 to 4/5) and then pressed back into the initial position in the axial direction.
  • the material tears between two T-segments along the dividing line and claws plastically into their coarse “fracture structure” when pushed back.
  • the T-shaped segments remain connected to one another in the circumferential direction, despite being completely separated, via a plastic material deformation at the predetermined breaking point.
  • the individual lamella layers are connected to one another in the axial direction, preferably by means of stamping and stacking. So that the stator teeth are more accessible for winding, the stator base body, which is closed in the circumferential direction, is separated between the individual T-shaped stator segments at the predetermined breaking point and the stator segments are pulled radially outwards. After that, insulating masks can be placed axially onto the stator segments and wound with a single-tooth coil in a particularly favorable manner. After winding, the individual T-shaped stator segments are reassembled at their predetermined breaking points by radial compression in the way they were before they were separated.
  • Particularly advantageous ra diale bushings are formed on the axial peripheral walls of the insulating masks, through which the winding wire is inserted in the radial direction during winding.
  • the connecting wires between the individual coils can be routed on the radial outside of the insulating mask.
  • a wire start and a wire end can also be fixed in such a radial passage.
  • at least some of the radial passages can be designed as axial pockets for an insulation displacement connection (SKV), through which the winding wire is also passed in the radial direction.
  • a cor responding insulation displacement element can then be inserted axially into such an SKV pocket in order to electrically contact a specific coil.
  • stator segments After the stator segments have been radially compressed, they are firmly fixed to one another. For this purpose, for example, two adjacent stator segments are connected to one another on the outer circumference by means of laser welding. Alternatively, the stator segments can also be glued to one another, or clamped to one another by means of the positive fit of the connecting lug with the recess. Thereafter, the stator segments are preferably pressed into a housing in order to permanently hold the stator segments in the exact position relative to one another. This can be done, for example, by means of thermal shrinkage presses.
  • the stator produced according to the invention has stator segments which are preferably composed of individual, axially layered laminations.
  • the outer circumference of the yoke areas can be approximately circular in a first embodiment, or have flattened, planar areas in an alternative embodiment in order to reduce the outer diameter of the stator base body.
  • flattened areas and approximately circular areas can also alternate in the circumferential direction in order to ensure the exact assembly of the stator segments in a stator base body produced by means of precut technology.
  • Stators with relatively small diameters can also be produced particularly advantageously with the winding method according to the invention, which provide a high power density in a small installation space.
  • a stator has, for example, exactly six stator segments, with the outer diameter of the stator base body being less than 35 mm, for example.
  • stators with nine, twelve or eighteen stator segments can also be produced.
  • exactly two opposing stator segments are wound radially one after the other, so that the connecting wire between the opposing stator segments extends approximately over half the outer circumference of the stator base body.
  • the stator is advantageously used for an electrical machine in which the rotor has integrated permanent magnets.
  • These permanent magnets can be arranged, for example, like spokes (longitudinal direction of the magnets in the radial direction) or tangentially (longitudinal direction in the circumferential direction).
  • the stator of the electric motor can be glued into a housing part, for example, at low cost.
  • Fig. 1 shows a schematic cross section through an electrical machine with T-shaped stator segments
  • FIG. 2 shows a schematic of a process step of the winding method according to the invention with an unwound stator base body
  • FIG. 4 shows a representation of a further embodiment of a stator segment.
  • the electrical machine 10 has a stator 12 with a stator base body 16 radially on the outside.
  • the stator base body 16 is composed of individual T-shaped stator segments 14 which have a yoke area 28 radially on the outside, from which a tooth 26 with a toothed shaft 22 extends radially inward.
  • Tooth bases 23 are formed at the radially inner end of the tooth shafts 22 and then form the magnetic poles for the rotor 13 mounted radially inside the stator 14 .
  • Insulating masks 56 are arranged on each of the T-shaped stator segments 14 and an electrical winding 58 is then wrapped around them.
  • each stator segment 14 has a single-tooth coil 59 which is connected to control electronics of the electrical machine 10 via a circuit arrangement (not shown). All of the stator segments 14 can preferably be wound through with an uninterrupted winding wire 41 .
  • the stator base body 16 is composed of individual laminations 20 which are stacked axially one above the other.
  • the individual stator segments 14 are composed of a plurality of toothed segments 24 of the individual lamina layers 21 stacked axially one on top of the other.
  • a plurality of stator segments 14 (for example 12 pieces) form the stator base body 16 over the entire circumference, which is used, for example, in a motor housing 36 .
  • the 1 has a plurality of permanent magnets 80 which are accommodated in a basic rotor body 82 .
  • the permanent magnets 80 are here, for example, on the radial surface of the rotor body arranged.
  • retaining webs 84 are here on the basic rotor body 82, which separate the permanent magnets 80, which are preferably magnetized in the radial direction 7, in the circumferential direction 9 from one another.
  • the permanent magnets 80 are designed in the shape of a loaf of bread, so that the outer circumference 86 of the rotor 15 is designed to be approximately circular.
  • each lamina layer 21 is divided by lateral dividing lines 40 which extend approximately in the radial direction 7 from the outer circumference 35 of the yoke area 28 to the inner diameter 34 .
  • a connecting lug 30 extends in the tangential direction 9 on the dividing line 40 of a first tangential side 18 of the yoke area 28 and, when assembled, engages in a corresponding recess 31 on the second tangential side 19 of the yoke area 28 of a neighboring toothed segment 24 .
  • the dividing line 40 between the individual T-shaped toothed segments 24 of a lamella layer 21 is preferably produced by means of what is known as the pre-cut technique (or kiri-make).
  • the individual toothed segments 24 are not completely separated from one another axially from a sheet metal laminate 20 that is closed over the entire circumference using a punching tool, and in a second step they are pushed back axially into their original position to form a predetermined breaking point between the toothed segments 24 (Push Back).
  • Push Back a predetermined breaking point between the toothed segments 24
  • the Ausneh determination 31 has a connecting lug 30 on the opposite side corre- sponding to geometry, between which the dividing line 40 of the two tangential direction 9 opposite toothed segments 24 runs in the radial direction 7.
  • the connecting lug 30 and the opposite recess 31 are made in the same process step using the identical punching edge of the punching tool.
  • the outer circumference 35 of the stator base body 16 is completely severed, with the individual tooth segments 24 being separated in the circumferential direction 9 via the predetermined breaking point of the separating line 40. stay tied.
  • the outer circumference 35 of the stator base body 16 is designed, for example, as approximately circular, but in further designs, as in FIG. 4, it can also have flattened, planar sections 83 .
  • stator segments 14 are arranged on a segment carrier 48 for winding.
  • the individual stator segments 14 can also be produced in a different way as individual toothed segments, with the toothed segments 24 being punched out of the sheet metal in the usual way and then being connected to one another axially, for example using punched packages 54.
  • the Statorseg elements 14 are encased with the insulating masks 56 and then fixed in a circular ring 15 on the segment carrier 48 .
  • the axes of the tooth shafts 22 are all directed to the center point 11 of the stator body 16 . Between the yoke areas 28, a tangential distance 29 is formed in the tangential direction 9, in which a spacer 49 is arranged.
  • the spacers 49 have formations 50 in which the connecting lugs 30 and the recesses 31 of the yoke areas 28 engage in a form-fitting manner.
  • the stator segments 14 are reliably fixed on the segment carrier 48 and can thereby be wound in the same way as a full-section stator.
  • a wire nozzle 52 of a needle winder is moved up and down axially within the annulus 15 in order to wind a stator tooth 26 .
  • the spacers 48 create a groove area 25 between the stator teeth 26 that is wide enough for the wire nozzle 52 to be able to wind two adjacent single-tooth coils 59 without having to reserve tangential space for the wire nozzle 52 in the finished stator 12 .
  • all the stator teeth 26 can be wound through with an uninterrupted winding wire 41, the winding order of the stator teeth 26 being arbitrary.
  • the winding wire 41 is guided as a connecting wire 42 on the outer circumference of the insulating masks 56 .
  • the insulating masks 56 have radial passages 62 through which the winding wire 41 is guided in the radial direction 7 .
  • pockets 64 for insulation displacement connections (SCS) can be formed as radial passages 62 on the insulating mask 56, into which the winding wire 41 is inserted.
  • Corresponding SKV elements can be inserted into these SKV pockets 64 are inserted, by means of which the electrical winding 58 is contacted.
  • the SKV pockets 64 By arranging the SKV pockets 64 between different individual tooth coils 59, various interconnection arrangements can be implemented. A wire start 66 and a wire end 67 can also be inserted into such an SKV pocket 64 . Between the radial passages 62 and/or the SKV pockets 64, the connecting wires 42 on the outer circumference of the insulating masks 56 also span the tangential distances 29 between the yoke areas 28.
  • Fig. 3 is a ready-wound arrangement shown in FIG. 2 is shown schematically provides Darge, in which the spacers 49 have already been removed.
  • the stator segments 14 are numbered 1-6 clockwise.
  • the beginning of the wire 66 is, for example, on stator segment no. 1, in which case the winding wire 41, after winding stator segment no. 1, continues as a connecting wire 42, for example clockwise to stator segment no. 4, and there through a radial passage 64 radially from the outside inwards is guided to the stator tooth 26.
  • stator segment No. 5 is wound, with the connecting wire 42 only spanning the one radial distance 29 between these immediately adjacent yoke areas 28 .
  • Stator segment no. 5 is then connected via a connec tion wire 42 to stator segment no. 2, and this to no. 3 and this to no.
  • the winding sequence of the six stator segments 14 is implemented according to the winding scheme 1-4-5-2-3-6.
  • the radial bushings 62 are designed as SKV pockets 64 at the start of the coil of stator segment no. 1 and at the coil end of the single-tooth coils of stator segment no. 4, no. 2 and no Individual tooth coils 59 are formed. These can be controlled by electronics, not shown, which are preferably arranged axially above the connecting wires 42 .
  • stator segments 14 are simultaneously pressed radially towards the center 11 along the arrows 71 and the auxiliary tools 44 are also pressed radially inwards along the arrows 72 .
  • the stator 12 is shown in step 2 in the assembled state, in which in particular all yoke areas 28 touch each other tangentially.
  • the connec tion lugs 30 positively engage in the corresponding recesses 31.
  • only a single connecting wire 42 is shown here, which was deformed radially inward by the bending fingers 45.
  • the connecting wire 42 is arranged radially inside the outer circumference 35 of the yoke area 28 and projects radially inward beyond the single-tooth coils 59, in the circumferential area between the stator teeth 26.
  • the tangential distance 93 can in particular be smaller than the Diameter 53 of the wire nozzle 52 or, in particular, smaller than a tangential slot 94 between two adjacent toothed feet 23.
  • step 3 the auxiliary tool 44 is already removed in Fig. 3 and the Statorseg elements 14 are at least temporarily connected to one another.
  • the stator segments 14 are inserted into a stator housing 36, which is only indicated in FIG. 3 and FIG.
  • the stator housing 36 can, for example, be hexagonal or, alternatively, round.
  • the connecting wire 42 now protrudes radially inwards with free loops 43 over the single-tooth coils 59.
  • the rotor 13 is mounted, which preferably has permanent magnets 80, in particular exactly four permanent magnets 80 for six stator segments 14, which form the stator poles form. In order to prevent the free loops 43 from swinging in the operating state, they are fixed with a holding plate 99 .
  • stator segments 14 can be gefer taken by means of pre-cut technology, or as individual tooth segments 14 using conventional stamping technology.
  • the stator segments 14 can also have circular yoke areas 28 instead of the planar yoke areas 28 .
  • FIG. 4 shows a further embodiment based on an individual stator segment 14 produced by means of precut technology.
  • the T-shaped toothed segments 24 of the individual disk layers 21 are held together axially by means of the stamped packages 54 to form a disk package.
  • the stamped packets 54 are particularly circular here - with the top sheet metal lamella 20a circular perforations 95 are punched out, in which the material of the metal lamella 20b of the underlying lamellar layer 21 is plastically pressed.
  • At least one separating wedge is preferably pressed axially into a stator slot 25 between the two tooth shafts 22.
  • This separating wedge generates a separating force between the two yoke areas 28, which separates the predetermined breaking point.
  • the insulating masks 56 are placed on top of them and then wound with single-tooth coils 59 as shown in FIG.
  • a marking 81 on the front side - or also on the outer circumference 35 - serves to ensure that the stator segments 14 for winding are arranged in the segment carrier 48 in exactly the same order as before they were separated, so that the individual "break-off structure" of each predetermined breaking point is ra dialen compression after winding is back together.
  • the connecting lug 30 is formed on the first tangential end 18 of the yoke area 28 and engages again in the recess 30 of the adjacent yoke area 28 after assembly.
  • the connecting lug 30 lies with tangential flanks 33 on opposite counter flanks 36 of the recess 31 in the radial direction 7 .
  • At least one flattened section is formed in a first tangential area on the outer circumference 35 of the yoke areas 28
  • stator segments 14 are punched out, which covers the toothed shaft 22 in the circumferential direction 9 .
  • Each adjacent to the flattened portion 83 are the Zahnsegmen th 24 circular portions 84 of the outer periphery 35 punched on both sides.
  • the stator segments 14 are inserted axially into an assembly tool that is cylindrical and conical.
  • stator base body 16 can be realized by means of precut technology, which can be 25-60 mm, for example.
  • the specific contour of the individual T-shaped toothed segments 24, the arrangement and number of stator teeth 26, and the design of the yoke areas 28 can be varied accordingly.
  • the shape and dimensions as well as the manufacturing process of the separating line 40 with the connecting lug 30 can also be adapted to the requirements of the electrical machine 10 and its manufacturing options.
  • a straight dividing line 40 can be formed instead of the connecting lug 30 and the corresponding recesses 31, a straight dividing line 40 can be formed.
  • the specific winding sequence and the interconnection of the individual tooth coils 59 can be easily varied.
  • welding hooks or welding forks can also be used as contact elements for the individual tooth coils 59 .
  • the invention is particularly suitable for the rotary drive of components or for the adjustment of moving parts in motor vehicles, but is not limited to this application. Due to the formation of the flattened sections 83, small motors 10 with a high power density can also be made available.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Of Motors, Generators (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

The invention relates to a stator (12), and to a method for producing a stator (12) from a plurality of separate stator segments (14) which have a yoke region (28), from each of which a stator tooth (26) extends radially inwards, the method comprising the following steps: - arranging the stator segments (14) with the stator teeth (26) oriented radially towards the stator centre (11) and with a tangential distance (29) between adjacent yoke regions (28); - winding the stator teeth (26) with single-tooth coils (59) by means of needle winding, an uninterrupted connecting wire (42) interconnecting at least two single-tooth coils (59) and spanning at least one tangential distance (29) between two yoke regions (28); - radially compressing the stator segments (14) until their yoke regions (28) tangentially touch, the uninterrupted connecting wires (42) being bent by means of an auxiliary tool (44); and - mechanically connecting the individual stator segments (14).

Description

Beschreibung description
Verfahren zum Herstellen eines Stators, sowie ein Stator und eine elektrischeMethod of manufacturing a stator, as well as a stator and an electric
Maschine aufweisend einen solchen Machine having such a
Stand der Technik State of the art
Offenbarung der Erfindung Disclosure of Invention
Mit der DE 10 2007006095 Al ist ein Herstellungsmethode für einen Stator be kannt geworden, bei der eine Mehrzahl von einzelnen separaten Statorkernen bewickelt werden, bevor diese zu einem gemeinsamen Stator zusammengesetzt werden. Zum Bewickeln werden dabei zwei Teilkerne gegenüberliegend auf einer gemeinsamen Achse angeordnet. Ein Verbindungsdraht zwischen den beiden Teilkernen wird beim Anordnen der Teilkerne zum Stator axial oberhalb der Teil kerne, quer zum radialen Innenraum angeordnet. In einem weiteren Verfahrens schritt werden weitere Spulenpaare zu einem Stator zusammengefügt, wobei die Spulenpaare miteinander elektrisch verbunden werden. Eine solche Montage des Stators benötigt ein zusätzliches Montagewerkzeug zur Anordnung der Verbin dungsdrähte zwischen den Teilspulen, sowie einen zusätzlichen Montageschritt für die Kontaktierung der Spulenpaare. DE 10 2007006095 A1 discloses a manufacturing method for a stator, in which a plurality of individual, separate stator cores are wound before they are combined to form a common stator. For winding, two partial cores are arranged opposite one another on a common axis. A connecting wire between the two partial cores when arranging the partial cores to the stator cores axially above the part, arranged transversely to the radial interior. In a further method step, further pairs of coils are assembled to form a stator, with the pairs of coils being electrically connected to one another. Such an assembly of the stator requires an additional assembly tool for arranging the connec tion wires between the partial coils, as well as an additional assembly step for contacting the coil pairs.
Offenbarung der Erfindung Disclosure of Invention
Vorteile der Erfindung Advantages of the Invention
Das erfindungsgemäße Verfahren zum Herstellen eines Stators, sowie der erfin dungsgemäße Stator und die elektrische Maschine mit den Merkmalen der un abhängigen Ansprüche haben demgegenüber den Vorteil, dass durch die ring förmige Anordnung der separaten Statorsegmente alle Statorsegmente in einem Prozess-Schritt mit einem ununterbrochenen durchgewickelten Wickeldraht wie ein Vollschnitt- Stator mittels Nadelwickeln bewickelt werden kann. Dabei entfällt die elektrische Kontaktierung der einzeln bewickelter Statorsegmente und man kann durch den tangentialen Abstand zwischen den Statorsegmenten trotzdem einen hohen Kupferfüllfaktor - wie beim Bewickeln von Einzelzahnsegmenten - erzielen. Die Verbindungsdrähte zwischen den Einzelzahnspulen können im glei chen Werkzeug mit dem radialen Zusammendrücken der Statorsegmente gleich zeitig radial nach innen gedrückt werden, so dass vorteilhaft ein zusätzlicher Montageschritt für die endgültige Positionierung der Verbindungsdrähte entfällt. Die Herstellung solcher ringförmig, in Umfangsrichtung beabstandet angeordne ter Statorsegmente erlaubt somit montagetechnisch günstige Variationsmöglich keiten für die Verschaltung der elektrischen Maschine mit unterschiedlichen elektrischen Phasen. The method according to the invention for producing a stator, as well as the stator according to the invention and the electrical machine with the features of the independent claims have the advantage that the ring-shaped arrangement of the separate stator segments means that all stator segments can be connected in one process step with an uninterrupted winding wire how a full-cut stator can be wound using needle winding. There is no electrical contact between the individually wound stator segments and the tangential distance between the stator segments means that a high copper fill factor can still be achieved - as with the winding of individual toothed segments. The connecting wires between the single-tooth coils can be pressed radially inward at the same time as the stator segments are radially compressed using the same tool, so that an additional assembly step for the final positioning of the connecting wires is advantageously eliminated. The production of such ring-shaped stator segments spaced apart in the circumferential direction thus permits favorable variation possibilities in terms of assembly technology for the interconnection of the electrical machine with different electrical phases.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteil hafte Weiterbildungen und Verbesserungen der in den abhängigen Ansprüchen vorgegebenen Ausführungen möglich. Durch das Fixieren aller Statorsegmente auf einem gemeinsamen Segmententräger können alle Statorsegmente gemein sam in Analogie zu einem Vollschnitt- Stator bewickelt werden. Dabei ist zwi schen zwei benachbarten Jochbereichen ein Abstandshalter angeordnet, so dass sich wieder ein durch die Statorsegmente gebildeter Kreisring ergibt, dessen Statorzähne in Umfangsrichtung aufgrund der Abstandshalter ebenfalls einen größeren Abstand aufweisen. Hierdurch hat beispielsweise eine Düse eines Na delträgers mehr tangentialen Platz, um den Statorzahn mit einem hohen Kupfer füllfaktor zu bewickeln. Die Statorsegmente stützen sich an den Abstandshaltern in tangentialer Richtung und radialer Richtung ab, so dass die Verbindungsdrähte am Außenumfang der Isolierlamellen relativ straff gewickelt werden können, ver gleichsweise wie bei einem Vollschnitt- Stator. Die Größe der Abstandshalter kann dabei an die Anzahl der Statorsegmente, bzw. an den Außendurchmesser des Statorgrund körpers angepasst werden. The measures listed in the dependent claims are advantageous further developments and improvements of the versions specified in the dependent claims possible. By fixing all stator segments on a common segment carrier, all stator segments can be wound together in analogy to a full-section stator. In this case, a spacer is arranged between two adjacent yoke regions, so that a circular ring formed by the stator segments again results, the stator teeth of which also have a larger spacing in the circumferential direction due to the spacers. As a result, for example, a nozzle of a needle carrier has more tangential space to wind the stator tooth with a high copper fill factor. The stator segments are supported on the spacers in the tangential and radial directions, so that the connecting wires on the outer circumference of the insulating laminations can be wound relatively tightly, compared to a full-section stator. The size of the spacers can be adapted to the number of stator segments or to the outside diameter of the stator body.
Besonders günstig ist es, wenn alle Statorsegmente mit einem ununterbroche nem Wickeldraht durchgewickelt werden. Die Wickelreihenfolge der Statorseg mente kann dabei variiert werden, wobei der jeweilige Verbindungsdraht zwi schen zwei nacheinander bewickelten Statorsegmenten am Außenumfang der Isolierlamellen der Statorzähne angelegt wird. Dazu wird auf die Statorzähne der Statorsegmente vor dem Bewickeln eine Isoliermaske aufgesetzt, die bevorzugt jeweils zwei Teile aufweist, die in entgegengesetzter Axialrichtung von oben und unten auf den Statorzahn aufgesetzt werden. Zumindest an einer Seite weist die Isoliermaske entlang dem Jochbereich des Statorsegments eine axiale Um fangswand auf, an der sich die Verbindungsdrähte radial von außen abstützen können. Dazu können am Außenumfang dieser axialen Umfangswand besonders günstig Halterillen in Tangentialrichtung ausgeformt werden, in die die Verbin dungsdrähte radial eingreifen. It is particularly favorable if all the stator segments are wound through with an uninterrupted winding wire. The winding sequence of the stator segments can be varied, with the respective connecting wire between two successively wound stator segments being applied to the outer circumference of the insulating lamellae of the stator teeth. For this purpose, the stator teeth Stator segments placed before winding an insulating mask, which preferably has two parts that are placed in opposite axial directions from above and below on the stator tooth. At least on one side, the insulating mask has an axial peripheral wall along the yoke area of the stator segment, on which the connecting wires can be supported radially from the outside. For this purpose, retaining grooves can be formed in the tangential direction in a particularly favorable manner on the outer circumference of this axial peripheral wall, into which the connec tion wires engage radially.
Durch die feste Fixierung der einzelnen Statorsegmente kann die Reihenfolge der zu bewickelten Statorzähne frei gewählt werden. Dadurch kann sich ein Ver bindungsdraht zwischen zwei nacheinander bewickelten Statorzähnen auch über einen größeren Umfangbereich des Kreisrings erstrecken und dabei nacheinan der mehrere tangentiale Abstände zwischen zwei benachbarten Statorsegmen ten überbrücken. Due to the fixed fixation of the individual stator segments, the sequence of the stator teeth to be wound can be chosen freely. As a result, a connecting wire between two consecutively wound stator teeth can also extend over a larger peripheral area of the circular ring and in this way bridge several tangential distances between two adjacent stator segments one after the other.
Bei solch einem Wickelschema können auch mehrere unterschiedliche Verbin dungsdrähte einen bestimmten tangentialen Abstand zwischen zwei benachbar ten Statorsegmenten überspannen. Die einzelnen Verbindungsdrähte sind dann bevorzugt axial übereinander angeordnet, beispielsweise in axial benachbarten tangentialen Rillen am Außenumfang der Isoliermaske. Beim radialen Zusam mendrücken der Statorsegmente können dann jeweils alle Verbindungsdrähte an einem bestimmten tangentialen Abstand gleichzeitig verformt werden, bis die Jochbereiche der Statorsegmente tangential aneinander anliegen. With such a winding scheme, several different connecting wires can also span a specific tangential distance between two adjacent stator segments. The individual connecting wires are then preferably arranged axially one above the other, for example in axially adjacent tangential grooves on the outer circumference of the insulating mask. When the stator segments are compressed radially, all connecting wires can then be deformed simultaneously at a specific tangential distance until the yoke regions of the stator segments are in tangential contact with one another.
Zum Umformen der Verbindungsdrähte weist das Hilfswerkzeug beispielsweise Biegefinger auf, die sich bevorzugt in Axialrichtung erstrecken und in Radialrich tung nach innen zum Statormittelpunkt gedrückt werden. Beim Umformen der Verbindungsdrähte werden diese in einem tangentialen Bereich zwischen den Statorzähnen, axial oberhalb der elektrischen Wicklung angeordnet. Die Ab standshalter zwischen den Statorelementen sind so ausgebildet, dass sie beim Nadelwickeln der Statorzähne nicht stören. Nach dem Bewickeln werden die Ab standshalter entfernt und die Statorsegmente radial nach innen zueinander ge drückt. Bei diesem Prozess werden gleichzeitig die Verbindungsdrähte mittels dem Hilfswerkzeug derart umgeformt, dass sie radial nicht über den Außenum fang der Statorsegmente ragen. For reshaping the connecting wires, the auxiliary tool has bending fingers, for example, which preferably extend in the axial direction and are pressed inward in the radial direction towards the center of the stator. When forming the connecting wires, they are arranged in a tangential area between the stator teeth, axially above the electrical winding. The spacers between the stator elements are designed in such a way that they do not interfere with the needle winding of the stator teeth. After winding, the spacers are removed and the stator segments are pressed radially inward towards one another. In this process, the connecting wires are simultaneously the auxiliary tool reshaped in such a way that they do not protrude radially beyond the outer circumference of the stator segments.
Damit die umgeformten freien Verbindungsdrähte im Betrieb der elektrischen Maschine nicht vibrieren und dadurch gar abbrechen, werden diese umgeboge nen Verbindungsdrähte mittels einer Halteplatte zuverlässig in einer festen Posi tion gehalten. Beispielsweise kann einen solche Halteplatte axiale Fortsätze auf weisen, die die Position der Biegefinger nach dem vollständigen Umformen der der Verbindungsdrähte einnehmen. Die Halteplatte kann dabei vorteilhaft in eine elektrische Verschalteplatte oder in ein Lagerschild der elektrischen Maschine in tegriert sein. So that the formed free connecting wires do not vibrate during operation of the electrical machine and thereby even break off, these bent connecting wires are reliably held in a fixed position by means of a holding plate. For example, such a retaining plate can have axial extensions that assume the position of the bending fingers after the connecting wires have been completely formed. The holding plate can advantageously be integrated into an electrical interconnection plate or into a bearing plate of the electrical machine.
Besonders günstig werde an den gegenüberliegenden tangentialen Seiten des Jochbereichs Verbindungsnasen und korrespondierende Ausnehmungen ange formt, sodass beim Zusammenfügen der Statorsegmente diese präzise zueinan der positioniert werden, um eine optimale Kreisform des Statorgrundkörpers zu erzielen. Dadurch wird ein Luftspalt zwischen zwei benachbarten Jochbereichen minimiert, und dadurch der magnetische Fluss und das Rastmoment optimiert. Gleichzeitig dienen die Verbindungsnase und die korrespondierende Ausneh mung als Fixierelemente, die an entsprechenden Ausformungen der Abstandse lemente formschlüssig eingreifen. Dadurch kann für das Bewickeln aller Stator segmente ein mechanisch sehr stabiler Kreisring erzeugt werden, bei dem die Statorsegmente abwechselnd mit den Abstandshaltern in Umfangsrichtung an geordnet sind. Connecting lugs and corresponding recesses are formed particularly favorably on the opposite tangential sides of the yoke area, so that when the stator segments are assembled, they are precisely positioned relative to one another in order to achieve an optimal circular shape for the stator base body. This minimizes an air gap between two adjacent yoke areas, thereby optimizing the magnetic flux and the cogging torque. At the same time, the connecting lug and the corresponding recess serve as fixing elements, which engage in a form-fitting manner on the corresponding formations of the spacer elements. As a result, a mechanically very stable circular ring can be generated for the winding of all stator segments, in which the stator segments are arranged alternately with the spacers in the circumferential direction.
Zum Herstellen des Stators werden bevorzugt zuerst die einzelnen Lamellen schichten ausgestanzt, wobei die T-förmigen Segmente in Tangentialrichtung über die Precut-Technik, bzw. Kiri-Make-Verfahren miteinander verbunden blei ben. Bei der Precut-Technik werden die einzelnen T-Segmente nur bis zu einem bestimmten Bruchteil (1/2 bis 4/5) durchgestanzt und in Axialrichtung wieder in die Ausgangsposition zurückgepresst. Dabei reißt das Material zwischen zwei T- Segmenten entlang der Trennlinie und verkrallt sich beim Zurückdrücken plas tisch in deren grober „Bruchstruktur“. Dadurch bleiben die T-förmigen Segmente trotz vollständiger Trennung über eine plastische Materialdeformation an der Sollbruchstelle in Umfangsrichtung miteinander verbunden. Die einzelnen Lamel- lenschichten werden in Axialrichtung miteinander verbunden, bevorzugt mittels Stanzpaketieren. Damit die Statorzähne zum Bewickeln besser zugänglich wer den, wird der in Umfangsrichtung geschlossene Statorgrundkörper zwischen den einzelnen T-förmigen Statorsegmenten an der Sollbruchstelle aufgetrennt und die Statorsegmente radial nach außen gezogen. Danach können besonders günstig Isoliermasken axial auf die Statorsegmente aufgesetzt und mit einer Ein zelzahnspule bewickelt werden. Nach dem Bewickeln werden die einzelnen T- förmigen Statorsegmente an deren Sollbruchstellen durch radiales Zusammen drücken wieder derart zusammengefügt, wie sie vor der Vereinzelung angeord net waren. To produce the stator, the individual lamellar layers are preferably first punched out, with the T-shaped segments remaining connected to one another in the tangential direction using the precut technique or Kiri-Make method. With the precut technique, the individual T-segments are only punched through up to a certain fraction (1/2 to 4/5) and then pressed back into the initial position in the axial direction. The material tears between two T-segments along the dividing line and claws plastically into their coarse “fracture structure” when pushed back. As a result, the T-shaped segments remain connected to one another in the circumferential direction, despite being completely separated, via a plastic material deformation at the predetermined breaking point. The individual lamella layers are connected to one another in the axial direction, preferably by means of stamping and stacking. So that the stator teeth are more accessible for winding, the stator base body, which is closed in the circumferential direction, is separated between the individual T-shaped stator segments at the predetermined breaking point and the stator segments are pulled radially outwards. After that, insulating masks can be placed axially onto the stator segments and wound with a single-tooth coil in a particularly favorable manner. After winding, the individual T-shaped stator segments are reassembled at their predetermined breaking points by radial compression in the way they were before they were separated.
Besonders vorteilhaft sind an den axialen Umfangswänden der Isoliermasken ra diale Durchführungen ausgeformt, durch die der Wickeldraht in Radialrichtung beim Wickeln eingelegt wird. Dadurch können die Verbindungsdrähte zwischen den einzelnen Spulen an der radialen Außenseite der Isoliermaske verlegt wer den. Dabei kann auch ein Drahtanfang und ein Drahtende in solch einer radialen Durchführung fixiert werden. In einer weiteren Ausführung kann zumindest ein Teil der radialen Durchführungen als axiale Taschen eine Schneidklemm- Verbindung (SKV) ausgeführt werden, durch die der Wickeldraht ebenfalls in Ra dialrichtung hindurchgeführt wird. In eine solche SKV-Tasche kann dann ein kor respondierendes Schneidklemm-Element axial eingefügt werden, um eine be stimmte Spule elektrisch zu kontaktieren. Durch die Anordnung solcher SKV- Taschen kann dabei die Verschaltung der einzelnen Spulen zu unterschiedlichen Phasensträngen variiert werden. Particularly advantageous ra diale bushings are formed on the axial peripheral walls of the insulating masks, through which the winding wire is inserted in the radial direction during winding. As a result, the connecting wires between the individual coils can be routed on the radial outside of the insulating mask. A wire start and a wire end can also be fixed in such a radial passage. In a further embodiment, at least some of the radial passages can be designed as axial pockets for an insulation displacement connection (SKV), through which the winding wire is also passed in the radial direction. A cor responding insulation displacement element can then be inserted axially into such an SKV pocket in order to electrically contact a specific coil. By arranging such SKV pockets, the connection of the individual coils to different phase strands can be varied.
Nach dem radialen Zusammendrücken der Statorsegmente werden diese fest zueinander fixiert. Dazu werden beispielsweise zwei benachbarte Statorsegmen te am äußeren Umfang mittels Laserschweißen miteinander verbunden. Alterna tiv können die Statorsegmente auch miteinander verklebt werden, oder durch den Formschluss der Verbindungsnase mit der Ausnehmung entsprechend mit einander verklemmt werden. Danach werden die Statorsegmente bevorzugt in ein Gehäuse eingepresst, um die Statorsegmente dauerhaft in exakter Position zueinander zu halten. Dies kann beispielsweise mittels thermischen Schrumpf pressen ausgeführt werden. Der erfindungsgemäß hergestellte Stator weist Statorsegmente auf, die bevor zugt aus einzelnen, axial geschichteten Blechlamellen zusammengesetzt sind. Dabei kann der Außenumfang der Jochbereiche in einer ersten Ausführung nä herungsweise kreisrund ausgebildet sein, oder in einer alternativen Ausführung abgeflachte, ebene Bereiche aufweisen, um den Außendurchmesser des Stator grundkörpers zu reduzieren. In einer weiteren Variante können sich auch abge flachte Bereiche und näherungsweise kreisrunde Bereiche in Umfangsrichtung abwechseln, um bei einem mittels Precut-Technik hergestellten Statorgrundkör- pers das exakte Zusammenfügen der Statorsegmente zu gewährleisten. After the stator segments have been radially compressed, they are firmly fixed to one another. For this purpose, for example, two adjacent stator segments are connected to one another on the outer circumference by means of laser welding. Alternatively, the stator segments can also be glued to one another, or clamped to one another by means of the positive fit of the connecting lug with the recess. Thereafter, the stator segments are preferably pressed into a housing in order to permanently hold the stator segments in the exact position relative to one another. This can be done, for example, by means of thermal shrinkage presses. The stator produced according to the invention has stator segments which are preferably composed of individual, axially layered laminations. The outer circumference of the yoke areas can be approximately circular in a first embodiment, or have flattened, planar areas in an alternative embodiment in order to reduce the outer diameter of the stator base body. In a further variant, flattened areas and approximately circular areas can also alternate in the circumferential direction in order to ensure the exact assembly of the stator segments in a stator base body produced by means of precut technology.
Besonders vorteilhaft können mit dem erfindungsgemäßen Wickelverfahren auch Statoren mit relativ kleinen Durchmessern hergestellt werden, die eine große Leistungsdichte bei geringem Bauraum zur Verfügung stellen. Ein solcher Stator weist beispielsweise genau sechs Statorsegmente auf, wobei der Außendurch messer des Statorgrund körpers beispielsweise kleiner als 35 mm ist. Alternativ können jedoch auch Statoren mit neun, zwölf oder achtzehn Statorsegmenten hergestellt werden. Beispielsweise sind jeweils radial genau zwei gegenüberlie gende Statorsegmente unmittelbar nacheinander bewickelt, so dass sich der Verbindungsdraht zwischen den gegenüberliegenden Statorsegmenten nähe rungsweise über den halben Außenumfang des Statorgrund körpers erstreckt. Stators with relatively small diameters can also be produced particularly advantageously with the winding method according to the invention, which provide a high power density in a small installation space. Such a stator has, for example, exactly six stator segments, with the outer diameter of the stator base body being less than 35 mm, for example. Alternatively, however, stators with nine, twelve or eighteen stator segments can also be produced. For example, exactly two opposing stator segments are wound radially one after the other, so that the connecting wire between the opposing stator segments extends approximately over half the outer circumference of the stator base body.
Vorteilhaft wird der Stator für eine elektrische Maschine verwendet, bei der der Rotor integrierte Permanentmagnete aufweist. Diese Permanentmagnete können beispielsweise speichenartig (Längsrichtung der Magnete in Radialrichtung) oder Tangential (Längsrichtung in Umfangsrichtung) angeordnet werden. Der Stator des Elektromotors kann beispielsweise kostengünstig in ein Gehäuseteil einge klebt werden. The stator is advantageously used for an electrical machine in which the rotor has integrated permanent magnets. These permanent magnets can be arranged, for example, like spokes (longitudinal direction of the magnets in the radial direction) or tangentially (longitudinal direction in the circumferential direction). The stator of the electric motor can be glued into a housing part, for example, at low cost.
Kurze Beschreibung der Zeichnungen Brief description of the drawings
Ausführungsbeispiele der Erfindung sind in den Zeichnungen dargestellt und in der nachfolgenden Beschreibung näher erläutert. Embodiments of the invention are shown in the drawings and explained in more detail in the following description.
Es zeigen: Fig. 1 schematisch einen Querschnitt durch eine elektrische Maschine, mit T-förmigen Statorsegmenten, Show it: Fig. 1 shows a schematic cross section through an electrical machine with T-shaped stator segments,
Fig. 2 schematisch einen Prozess-Schritt des erfindungsgemäßen Wickelverfahrens mit einem unbewickelten Statorgundkörper, 2 shows a schematic of a process step of the winding method according to the invention with an unwound stator base body,
Fig. 3 schematisch weitere Prozess-Schritte des erfindungsgemäßen Wickelverfahrens, und 3 schematically shows further process steps of the winding method according to the invention, and
Fig. 4 eine Darstellung einer weiteren Ausführung eines Statorsegments. 4 shows a representation of a further embodiment of a stator segment.
Fig. 1 zeigt als erfindungsgemäße elektrische Maschine 10 einen elektrisch kommutierten Motor 10. Die elektrische Maschine 10 weist radial außen einen Stator 12 mit einem Statorgrundkörper 16 auf. Der Statorgrundkörper 16 ist aus einzelnen T-förmigen Statorsegmenten 14 zusammengesetzt, die radial außen einen Jochbereich 28 aufweisen, von dem sich radial nach innen ein Zahn 26 mit einem Zahnschaft 22 erstreckt. Am radial inneren Ende der Zahnschäfte 22 sind Zahnfüße 23 ausgebildet, die dann die Magnetpole für den radial innerhalb des Stators 14 gelagerten Rotor 13 ausbilden. Auf den T-förmigen Statorsegmenten 14 sind jeweils Isoliermasken 56 angeordnet, die dann mit einer elektrischen Wicklung 58 umwickelt sind. In diesem Ausführungsbeispiel weist jedes Stator segment 14 eine Einzelzahnspule 59 auf, die über eine nicht dargestellte Ver schaltungsanordnung mit einer Steuerelektronik der elektrischen Maschine 10 verbunden sind. Dabei können bevorzugt alle Statorsegmente 14 mit einem un unterbrochenen Wickeldraht 41 durchgewickelt sein. Der Statorgrundkörper 16 ist aus einzelnen Blechlamellen 20 zusammengesetzt, die axial übereinanderge- stapelt sind. Dabei sind die einzelnen Statorsegmente 14 aus mehreren axial übereinander gestapelten Zahnsegmenten 24 der einzelnen Lamellenschichten 21 zusammengesetzt. Mehrere Statorsegmente 14 (beispielsweise 12 Stück) bil den über den gesamten Umfang den Statorgrund körper 16, der beispielweise in ein Motorgehäuse 36 eingesetzt wird. Der Rotor 13 in Fig. 1 weist mehrere Per manentmagnete 80 auf, die in einem Rotorgrundkörper 82 aufgenommen sind. Die Permanentmagnete 80 sind hier beispielweise an der radialen Oberfläche des Rotorgrundkörpers angeordnet. In Tangentialrichtung 9 zwischen den Per manentmagneten 80 sind hier Haltestege 84 am Rotorgrund körper 82 ausgebil det, die die vorzugsweise in Radialrichtung 7 magnetisierten Permanentmagnete 80 in Umfangsrichtung 9 voneinander trennen. Im Ausführungsbeispiel sind die Permanentmagnete 80 Brotlaib-förmig ausgebildet, so dass der Außenumfang 86 des Rotors 15 näherungsweise kreisförmig ausgebildet ist. Insbesondere sind auf dem Rotor 13 acht Permanentmagnete 80 angeordnet, die mit den zwölf durch die T-förmigen Statorsegmente 14 gebildeten Statorpole Zusammenwirken. In al ternativen Ausführungen werden 6/4- oder 12/10- oder 18/14 oder 12/8 - Motor- Topologien verwendet. Die einzelnen Blechlamellen 20 jeder Lamellenschicht 21 sind durch seitliche Trennlinien 40 unterteilt, die sich näherungsweise in Radial richtung 7 vom Außenumfang 35 des Jochbereichs 28 zu dessen Innendurch messer 34 erstrecken. An der Trennlinie 40 einer ersten tangentialen Seite 18 des Jochbereichs 28 erstreckt sich in Tangentialrichtung 9 eine Verbindungsnase 30, die im zusammengefügten Zustand in eine korrespondierende Ausnehmung 31 an der zweiten tangentialen Seite 19 des Jochbereichs 28 eines benachbar ten Zahnsegments 24 eingreift. Die Trennlinie 40 zwischen den einzelnen T- förmigen Zahnsegmenten 24 einer Lamellenschicht 21 wird bevorzugt mittels der sogenannten Precut-Technik (oder Kiri-Make) hergestellt. Dabei werden aus ei ner über den ganzen Umfang geschlossenen Blechlamelle 20 die einzelnen Zahnsegmente 24 in einem ersten Schritt mittels einem Stanzwerkzeug axial nicht vollständig voneinander getrennt, und in einem zweiten Schritt zur Ausbil dung einer Sollbruchstelle zwischen den Zahnsegmenten 24 wieder axial in die ursprüngliche Position zurückgedrückt (Push Back). Dadurch entsteht ein über den gesamten Umfang geschlossener Statorgrund körper 16, der erst zum Bewi ckeln der einzelnen T-förmigen Statorsegmente 14 vereinzelt wird. Die Ausneh mung 31 weist eine zur gegenüberliegenden Verbindungsnase 30 korrespondie rende Geometrie auf, zwischen denen die Trennlinie 40 der beiden in Tangential richtung 9 gegenüberliegenden Zahnsegmenten 24 in Radialrichtung 7 verläuft. Die Verbindungsnase 30 und die gegenüberliegende Ausnehmung 31 werden dabei im gleichen Prozess-Schritt mittels der identischen Stanzkante des Stanz werkzeugs hergestellt. Beim Stanzprozess wird der äußere Umfang 35 des Statorgrundkörpers 16 vollständig durchtrennt, wobei die einzelnen Zahnseg mente 24 über die Sollbruchstelle der Trennlinie 40 in Umfangsrichtung 9 ver- bunden bleiben. Der Außenumfang 35 des Statorgrund körpers 16 ist beispiels wiese näherungsweise kreisrund ausgeführt, kann in weiteren Ausführungen, wie in Fig. 4, aber auch abgeflachte, ebene Abschnitte 83 aufweisen. 1 shows an electrically commutated motor 10 as the electrical machine 10 according to the invention. The electrical machine 10 has a stator 12 with a stator base body 16 radially on the outside. The stator base body 16 is composed of individual T-shaped stator segments 14 which have a yoke area 28 radially on the outside, from which a tooth 26 with a toothed shaft 22 extends radially inward. Tooth bases 23 are formed at the radially inner end of the tooth shafts 22 and then form the magnetic poles for the rotor 13 mounted radially inside the stator 14 . Insulating masks 56 are arranged on each of the T-shaped stator segments 14 and an electrical winding 58 is then wrapped around them. In this exemplary embodiment, each stator segment 14 has a single-tooth coil 59 which is connected to control electronics of the electrical machine 10 via a circuit arrangement (not shown). All of the stator segments 14 can preferably be wound through with an uninterrupted winding wire 41 . The stator base body 16 is composed of individual laminations 20 which are stacked axially one above the other. The individual stator segments 14 are composed of a plurality of toothed segments 24 of the individual lamina layers 21 stacked axially one on top of the other. A plurality of stator segments 14 (for example 12 pieces) form the stator base body 16 over the entire circumference, which is used, for example, in a motor housing 36 . The rotor 13 in FIG. 1 has a plurality of permanent magnets 80 which are accommodated in a basic rotor body 82 . The permanent magnets 80 are here, for example, on the radial surface of the rotor body arranged. In the tangential direction 9 between the permanent magnets 80, retaining webs 84 are here on the basic rotor body 82, which separate the permanent magnets 80, which are preferably magnetized in the radial direction 7, in the circumferential direction 9 from one another. In the exemplary embodiment, the permanent magnets 80 are designed in the shape of a loaf of bread, so that the outer circumference 86 of the rotor 15 is designed to be approximately circular. In particular, eight permanent magnets 80 are arranged on the rotor 13 and interact with the twelve stator poles formed by the T-shaped stator segments 14 . In alternative designs, 6/4 or 12/10 or 18/14 or 12/8 motor topologies are used. The individual laminations 20 of each lamina layer 21 are divided by lateral dividing lines 40 which extend approximately in the radial direction 7 from the outer circumference 35 of the yoke area 28 to the inner diameter 34 . A connecting lug 30 extends in the tangential direction 9 on the dividing line 40 of a first tangential side 18 of the yoke area 28 and, when assembled, engages in a corresponding recess 31 on the second tangential side 19 of the yoke area 28 of a neighboring toothed segment 24 . The dividing line 40 between the individual T-shaped toothed segments 24 of a lamella layer 21 is preferably produced by means of what is known as the pre-cut technique (or kiri-make). In a first step, the individual toothed segments 24 are not completely separated from one another axially from a sheet metal laminate 20 that is closed over the entire circumference using a punching tool, and in a second step they are pushed back axially into their original position to form a predetermined breaking point between the toothed segments 24 (Push Back). This results in a stator base body 16 which is closed over the entire circumference and which is only separated for the winding of the individual T-shaped stator segments 14 . The Ausneh determination 31 has a connecting lug 30 on the opposite side corre- sponding to geometry, between which the dividing line 40 of the two tangential direction 9 opposite toothed segments 24 runs in the radial direction 7. The connecting lug 30 and the opposite recess 31 are made in the same process step using the identical punching edge of the punching tool. During the stamping process, the outer circumference 35 of the stator base body 16 is completely severed, with the individual tooth segments 24 being separated in the circumferential direction 9 via the predetermined breaking point of the separating line 40. stay tied. The outer circumference 35 of the stator base body 16 is designed, for example, as approximately circular, but in further designs, as in FIG. 4, it can also have flattened, planar sections 83 .
In Fig. 2 ist dargestellt, wie die Statorsegmente 14 zum Bewickeln auf einem Segmententräger 48 angeordnet werden. Die einzelnen Statorsegmente 14 kön nen anstelle des Precut-Technik gemäß Fig. 1 auch in anderer Weise als Einzel zahnsegmente hergestellt werden, wobei die Zahnsegmente 24 in gewöhnlicher Weise aus dem Blech ausgestanzt werden, und anschließend beispielsweise mit tels Stanzpaketierungen 54 axial miteinander verbunden werden. Die Statorseg mente 14 werden mit den Isoliermasken 56 ummantelt und dann in einem Kreis ring 15 auf dem Segmententräger 48 fixiert. Dabei sind die Achsen der Zahn schäfte 22 alle auf den Mittelpunkt 11 des Statorgrund körpers 16 gerichtet. Zwi schen den Jochbereichen 28 ist in Tangentialrichtung 9 ein tangentialer Abstand 29 ausgebildet, in dem ein Abstandshalter 49 angeordnet ist. Beispielseise wei sen die Abstandshalter 49 Ausformungen 50 auf, in die die Verbindungsnasen 30 und die Ausnehmungen 31 der Jochbereiche 28 formschlüssig eingreifen. Dadurch sind die Statorsegmente 14 zuverlässig auf dem Segmententräger 48 fixiert, und können dadurch in derselben Weise bewickelt werden, wie ein Voll schnitt-Stator. Dazu wird eine Drahtdüse 52 eines Nadelwicklers innerhalb des Kreisrings 15 axial auf und ab bewegt, um einen Statorzahn 26 zu bewickeln. Durch die Abstandshalter 48 ist ein Nutbereich 25 zwischen den Statorzähnen 26 breit genug ausgebildet, dass die Drahtdüse 52 zwei benachbarte Einzelzahn spulen 59 wickeln kann, ohne dass im fertig bewickelten Stator 12 tangentialer Platz für die Drahtdüse 52 vorgehalten werden muss. Somit können alle Statorzähne 26 mit einem ununterbrochenen Wickeldraht 41 durchgewickelt wer den, wobei die Wickelreihenfolge der Statorzähne 26 beliebig ist. Um zwei nacheinander zu bewickelnde Statorzähne 26 ununterbrochen zu verbinden, wird der Wickeldraht 41 als Verbindungsdraht 42 am Außenumfang der Isoliermasken 56 geführt. Die Isoliermasken 56 weisen radiale Durchführungen 62 auf, durch die der Wickeldraht 41 in Radialrichtung 7 geführt wird. An der Isoliermaske 56 können des Weiteren als radiale Durchführungen 62 Taschen 64 für Schneid- Klemm-Verbindungen (SKV) ausgebildet sein, in die der Wickeldraht 41 eingelegt wird. In diese SKV-Taschen 64 können korrespondierende SKV-Elemente einge- steckt werden, mittels denen die elektrische Wicklung 58 kontaktiert wird. Durch die Anordnung der SKV-Taschen 64 zwischen unterschiedlichen Einzelzahnspu len 59 können verschiedene Verschaltungsanordnungen realisiert werden. Dabei kann auch ein Drahtanfang 66 und ein Drahtende 67 in eine solche SKV-Tasche 64 eingelegt werden. Zwischen den radialen Durchführungen 62 und/oder den SKV-Taschen 64 überspannen die Verbindungsdrähte 42 am Außenumfang der Isoliermasken 56 auch die tangentialen Abstände 29 zwischen den Jochberei chen 28. 2 shows how the stator segments 14 are arranged on a segment carrier 48 for winding. Instead of using the precut technique shown in FIG. 1, the individual stator segments 14 can also be produced in a different way as individual toothed segments, with the toothed segments 24 being punched out of the sheet metal in the usual way and then being connected to one another axially, for example using punched packages 54. The Statorseg elements 14 are encased with the insulating masks 56 and then fixed in a circular ring 15 on the segment carrier 48 . The axes of the tooth shafts 22 are all directed to the center point 11 of the stator body 16 . Between the yoke areas 28, a tangential distance 29 is formed in the tangential direction 9, in which a spacer 49 is arranged. For example, the spacers 49 have formations 50 in which the connecting lugs 30 and the recesses 31 of the yoke areas 28 engage in a form-fitting manner. As a result, the stator segments 14 are reliably fixed on the segment carrier 48 and can thereby be wound in the same way as a full-section stator. For this purpose, a wire nozzle 52 of a needle winder is moved up and down axially within the annulus 15 in order to wind a stator tooth 26 . The spacers 48 create a groove area 25 between the stator teeth 26 that is wide enough for the wire nozzle 52 to be able to wind two adjacent single-tooth coils 59 without having to reserve tangential space for the wire nozzle 52 in the finished stator 12 . Thus, all the stator teeth 26 can be wound through with an uninterrupted winding wire 41, the winding order of the stator teeth 26 being arbitrary. In order to continuously connect two stator teeth 26 to be wound one after the other, the winding wire 41 is guided as a connecting wire 42 on the outer circumference of the insulating masks 56 . The insulating masks 56 have radial passages 62 through which the winding wire 41 is guided in the radial direction 7 . Furthermore, pockets 64 for insulation displacement connections (SCS) can be formed as radial passages 62 on the insulating mask 56, into which the winding wire 41 is inserted. Corresponding SKV elements can be inserted into these SKV pockets 64 are inserted, by means of which the electrical winding 58 is contacted. By arranging the SKV pockets 64 between different individual tooth coils 59, various interconnection arrangements can be implemented. A wire start 66 and a wire end 67 can also be inserted into such an SKV pocket 64 . Between the radial passages 62 and/or the SKV pockets 64, the connecting wires 42 on the outer circumference of the insulating masks 56 also span the tangential distances 29 between the yoke areas 28.
In Fig. 3 ist schematisch eine fertig bewickelte Anordnung gemäß Fig. 2 darge stellt, bei der die Abstandshalter 49 bereits entfernt sind. Die Statorsegmente 14 sind im Uhrzeigersinn mit Nr. 1 - 6 durchnummeriert. Der Drahtanfang 66 ist bei spielsweise am Statorsegment Nr. 1, wobei dann der Wickeldraht 41 nach dem Bewickeln des Statorsegments Nr. 1 als Verbindungsdraht 42 beispielsweise im Uhrzeigersinn zu Statorsegment Nr. 4 weitergeführt, und dort durch eine radiale Durchführung 64 radial von außen nach innen zum Statorzahn 26 geführt wird. Danach wird das Statorsegment Nr. 5 bewickelt, wobei der Verbindungsdraht 42 nur den einen radialen Abstand 29 zwischen diesen unmittelbar benachbarten Jochbereichen 28 überspannt. Statorsegment Nr. 5 ist dann über einen Verbin dungsdraht 42 mit Statorsegment Nr. 2, und dieses mit Nr. 3 und dieses mit Nr. In Fig. 3 is a ready-wound arrangement shown in FIG. 2 is shown schematically provides Darge, in which the spacers 49 have already been removed. The stator segments 14 are numbered 1-6 clockwise. The beginning of the wire 66 is, for example, on stator segment no. 1, in which case the winding wire 41, after winding stator segment no. 1, continues as a connecting wire 42, for example clockwise to stator segment no. 4, and there through a radial passage 64 radially from the outside inwards is guided to the stator tooth 26. Thereafter, stator segment No. 5 is wound, with the connecting wire 42 only spanning the one radial distance 29 between these immediately adjacent yoke areas 28 . Stator segment no. 5 is then connected via a connec tion wire 42 to stator segment no. 2, and this to no. 3 and this to no.
6 verbunden, an welchem das Drahtende 67 angeordnet ist. Somit ist die Wickel reihenfolge der sechs Statorsegmente 14 gemäß dem Wickelschema 1-4-5-2-3-6 realisiert. Werden nun beispielsweise am Spulenanfang vom Statorsegment Nr.l und am Spulenende der Einzelzahnspulen vom Statorsegment Nr. 4, Nr. 2 und Nr. 5 die radialen Durchführungen 62 als SKV-Taschen 64 ausgeführt, können drei Phasen mit jeweils zwei gegenüberliegenden, in Reihe geschalteten Einzel zahnspulen 59 gebildet werden. Diese können von einer nicht dargestellten Elektronik angesteuert werden, die bevorzugt axial oberhalb der Verbindungs drähte 42 angeordnet ist. 6 connected to which the wire end 67 is arranged. Thus, the winding sequence of the six stator segments 14 is implemented according to the winding scheme 1-4-5-2-3-6. If, for example, the radial bushings 62 are designed as SKV pockets 64 at the start of the coil of stator segment no. 1 and at the coil end of the single-tooth coils of stator segment no. 4, no. 2 and no Individual tooth coils 59 are formed. These can be controlled by electronics, not shown, which are preferably arranged axially above the connecting wires 42 .
Nach dem fertigen Bewickeln werden gleichzeitig die Statorsegmente 14 entlang den Pfeilen 71 radial zum Mittelpunkt 11 hin, und die Hilfswerkzeuge 44 entlang den Pfeilen 72 ebenfalls radial nach innen gedrückt. In Fig. 3 ist in Schritt 2 der Stator 12 im zusammengefügten Zustand dargestellt, bei dem sich insbesondere alle Jochbereiche 28 tangential einander berühren. Dabei greifen die Verbin dungsnasen 30 formschlüssig in die korrespondierenden Ausnehmungen 31. Der Übersichtlichkeit halber ist hier nur ein einziger Verbindungsdraht 42 eingezeich net, der durch die Biegefinger 45 radial nach innen umgeformt wurde. Dabei ist der Verbindungsdraht 42 radial innerhalb des Außenumfangs 35 der Jochberei che 28 angeordnet, und ragt radial nach innen über die Einzelzahnspulen 59, im Umfangsbereich zwischen den Statorzähnen 26. Zwischen zwei benachbarten Einzelzahnspulen 59 kann die tangentiale Entfernung 93 insbesondere kleiner ausgebildet sein, als der Durchmesser 53 der Drahtdüse 52 oder insbesondere auch kleiner als ein tangentialer Nutschlitz 94 zwischen zwei benachbarten Zahn füssen 23. After the winding is complete, the stator segments 14 are simultaneously pressed radially towards the center 11 along the arrows 71 and the auxiliary tools 44 are also pressed radially inwards along the arrows 72 . In Fig. 3, the stator 12 is shown in step 2 in the assembled state, in which in particular all yoke areas 28 touch each other tangentially. Here, the connec tion lugs 30 positively engage in the corresponding recesses 31. For the sake of clarity, only a single connecting wire 42 is shown here, which was deformed radially inward by the bending fingers 45. The connecting wire 42 is arranged radially inside the outer circumference 35 of the yoke area 28 and projects radially inward beyond the single-tooth coils 59, in the circumferential area between the stator teeth 26. Between two adjacent single-tooth coils 59, the tangential distance 93 can in particular be smaller than the Diameter 53 of the wire nozzle 52 or, in particular, smaller than a tangential slot 94 between two adjacent toothed feet 23.
Im Schritt 3 ist in Fig. 3 das Hilfswerkzeug 44 bereits entfernt und die Statorseg mente 14 zumindest provisorisch miteinander verbunden. Die Statorsegmente 14 werden in ein Statorgehäuse 36 eingefügt, das in Fig. 3 und Fig. 1 nur angedeu tet ist. Das Statorgehäuse 36 kann beispielsweise sechseckig oder alternativ auch rund ausgebildet sein. Der Verbindungsdraht 42 ragt nun mit freien Schlei fen 43 radial nach innen über die Einzelzahnspulen 59. Beim Zusammenbau der elektrischen Maschine 10 wird der Rotor 13 montiert, der bevorzugt Permanent magnete 80 aufweist, insbesondere genau vier Permanentmagnete 80 für sechs Statorsegmente 14, die die Statorpole bilden. Um die freien Schleifen 43 im Be triebszustand am Schwingen zu hindern, werden diese mit einer Halteplatte 99 fixiert. Diese ist beispielweise in eine Verschalteplatte zur elektrischen Kontaktie rung der Einzelzahnspulen 59 oder in ein Lagerschild für den Rotor 13 integriert. Die Statorsegmente 14 gemäß Fig. 2 und 3 können mittels Precut-Technik gefer tigt werden, oder als Einzelzahnsegmente 14 mit herkömmlicher Stanztechnik. Auch können die Statorsegmente 14 anstelle der ebenen Jochbereiche 28 auch kreisförmige Jochbereiche 28 aufweisen. In step 3, the auxiliary tool 44 is already removed in Fig. 3 and the Statorseg elements 14 are at least temporarily connected to one another. The stator segments 14 are inserted into a stator housing 36, which is only indicated in FIG. 3 and FIG. The stator housing 36 can, for example, be hexagonal or, alternatively, round. The connecting wire 42 now protrudes radially inwards with free loops 43 over the single-tooth coils 59. When assembling the electrical machine 10, the rotor 13 is mounted, which preferably has permanent magnets 80, in particular exactly four permanent magnets 80 for six stator segments 14, which form the stator poles form. In order to prevent the free loops 43 from swinging in the operating state, they are fixed with a holding plate 99 . This is integrated, for example, in a wiring board for electrical contacting of the individual tooth coils 59 or in an end shield for the rotor 13 . The stator segments 14 according to FIGS. 2 and 3 can be gefer taken by means of pre-cut technology, or as individual tooth segments 14 using conventional stamping technology. The stator segments 14 can also have circular yoke areas 28 instead of the planar yoke areas 28 .
In Fig. 4 ist eine weitere Ausführung anhand eines mittels Precut-Technik herge stellten einzelnen Statorsegments 14 dargestellt. Die T-förmigen Zahnsegmente 24 der einzelnen Lamellenschichten 21 werden mittels der Stanzpaketierungen 54 axial zu einem Lamellenpaket zusammengehalten. Die Stanzpaketierungen 54 sind hier insbesondere kreisrund ausgebildet - wobei in der obersten Blech- lamelle 20a kreisrunde Durchstanzungen 95 ausgestanzt sind, in die das Material der Blechlamelle 20b der darunter liegenden Lamellenschicht 21 plastisch einge drückt ist. Um zwei benachbarte - mittels Precut-Technik hergestellte - Stator segmente 14 des Statorgrund körpers 16 zu trennen, wird bevorzugt in eine Statornut 25 zwischen den beiden Zahnschäften 22 axial mindestens ein Trenn keil eingepresst. Dieser Trennkeil erzeugt eine Trennkraft zwischen den beiden Jochbereichen 28, durch die die Sollbruchstelle getrennt wird. Nach dem Verein zeln der als Lamellenpakete ausgebildeten Statorsegmente 14 werden auf diese die Isoliermasken 56 aufgesetzt, und dann gemäß Fig. 3 mit Einzelzahnspulen 59 bewickelt. Eine Markierung 81 an der Stirnseite - oder auch am Außenum fang 35 - dient dazu, dass die Statorsegmente 14 zum Bewickeln im Segmenten- träger 48 in genau der gleichen Reihenfolge wie vor dem Vereinzeln angeordnet werden, so dass die individuelle „Abbruchstruktur“ jeder Sollbruchstelle beim ra dialen Zusammendrücken nach dem Bewickeln wieder zusammen findet. An dem ersten tangentialen Ende 18 des Jochbereichs 28 ist die Verbindungsnase 30 ausgebildet, die nach dem Zusammenfügen wieder in die Ausnehmung 30 des benachbarten Jochbereichs 28 eingreift. Dabei liegt die Verbindungsnase 30 mit tangentialen Flanken 33 an gegenüberliegenden Gegenflanken 36der Aus nehmung 31 in Radialrichtung 7 an. Am Außenumfang 35 der Jochbereiche 28 wird in einem ersten tangentialen Bereich zumindest ein abgeflachter Abschnitt4 shows a further embodiment based on an individual stator segment 14 produced by means of precut technology. The T-shaped toothed segments 24 of the individual disk layers 21 are held together axially by means of the stamped packages 54 to form a disk package. The stamped packets 54 are particularly circular here - with the top sheet metal lamella 20a circular perforations 95 are punched out, in which the material of the metal lamella 20b of the underlying lamellar layer 21 is plastically pressed. In order to separate two adjacent stator segments 14 of the stator base body 16--manufactured by precut technology--at least one separating wedge is preferably pressed axially into a stator slot 25 between the two tooth shafts 22. This separating wedge generates a separating force between the two yoke areas 28, which separates the predetermined breaking point. After the association of the stator segments 14 designed as laminations, the insulating masks 56 are placed on top of them and then wound with single-tooth coils 59 as shown in FIG. A marking 81 on the front side - or also on the outer circumference 35 - serves to ensure that the stator segments 14 for winding are arranged in the segment carrier 48 in exactly the same order as before they were separated, so that the individual "break-off structure" of each predetermined breaking point is ra dialen compression after winding is back together. The connecting lug 30 is formed on the first tangential end 18 of the yoke area 28 and engages again in the recess 30 of the adjacent yoke area 28 after assembly. The connecting lug 30 lies with tangential flanks 33 on opposite counter flanks 36 of the recess 31 in the radial direction 7 . At least one flattened section is formed in a first tangential area on the outer circumference 35 of the yoke areas 28
83 ausgestanzt, der in Umfangsrichtung 9 den Zahnschaft 22 überdeckt. Jeweils benachbart zu dem abgeflachten Abschnitt 83 sind beidseitig den Zahnsegmen ten 24 kreisförmige Abschnitte 84 des Außenumfangs 35 ausgestanzt. Um nach dem Bewickeln die einzelnen Statorsegmente 14 wieder zum Stator 12 zusam menzusetzen, werden die Statorsegemnte 14 axial in ein Montagewerkzeug ein gefügt, das zylindrisch und konisch ausgebildet ist. Die kreisrunden Abschnitte83 is punched out, which covers the toothed shaft 22 in the circumferential direction 9 . Each adjacent to the flattened portion 83 are the Zahnsegmen th 24 circular portions 84 of the outer periphery 35 punched on both sides. In order to reassemble the individual stator segments 14 to form the stator 12 after the winding, the stator segments 14 are inserted axially into an assembly tool that is cylindrical and conical. The circular sections
84 der Jochbereiche 28 liegen dabei radial am Montagewerkzeug an, und wer den radial zueinander gedrückt, so dass die Statorsegmente 14 über den Torbo gen-Effekt exakt zueinander positioniert werden. Es ist erkennbar, dass die bei den tangentialen Enden 18, 19 des Jochbereichs 28 eine größere radiale Erstre ckung 89 an den kreisrunden Abschnitten 88 aufweisen, als die radiale Erstre ckung 85 an dem abgeflachten Abschnitt 83 des Jochbereichs 24 am Statorzahn 26. Bei dieser Ausführung können auch relativ kleine Außendurchmesser 35 für einen solchen Statorgrundkörper 16 mittels Precut-Technik realisiert werden, die beispielsweise 25 - 60 mm betragen. 84 of the yoke areas 28 lie radially against the assembly tool and are pressed radially towards one another, so that the stator segments 14 are positioned exactly towards one another via the Torbo gene effect. It can be seen that the tangential ends 18, 19 of the yoke area 28 have a greater radial extension 89 on the circular sections 88 than the radial extension 85 on the flattened section 83 of the yoke area 24 on the stator tooth 26. In this embodiment can also be relatively small outer diameter 35 for such a stator base body 16 can be realized by means of precut technology, which can be 25-60 mm, for example.
Es sei angemerkt, dass hinsichtlich der in den Figuren und in der Beschreibung gezeigten Ausführungsbeispiele vielfältige Kombinationsmöglichkeiten der ein zelnen Merkmale untereinander möglich sind. So kann beispielsweise die kon krete Kontur der einzelnen T-förmigen Zahnsegmente 24, die Anordnung und Anzahl der Statorzähne 26, sowie die Ausbildung der Jochbereiche 28 entspre chend variiert werden. Auch kann die Ausformung und Abmessungen sowie das Fertigungsverfahren der Trennlinie 40 mit der Verbindungsnase 30 an die Anfor derungen der elektrischen Maschine 10 und deren Fertigungsmöglichkeiten an gepasst werden. Beispielsweise kann anstatt der Verbindungsnase 30 und der korrespondierenden Ausnehmungen 31 auch eine gerade Trennlinie 40 ausge bildet sein. Ebenso kann die konkrete Wickelreihenfolge und die Verschaltung der Einzelzahnspulen 59 einfach variiert werden. Alternativ zu den SKV- Verbindungen können als Kontaktelemente für die Einzelzahnspulen 59 auch Schweißhaken oder Schweißgabeln verwendet werden. Die Erfindung eignet sich in besonderer Weise für den Drehantrieb von Komponenten oder für die Verstellung von beweglichen Teilen im Kraftfahrzeug, ist jedoch nicht auf diese Anwendung beschränkt. Durch die Ausbildung der abgeflachten Abschnitte 83, können auch kleine Motoren 10 mit hoher Leistungsdichte zur Verfügung gestellt werden. It should be noted that with regard to the exemplary embodiments shown in the figures and in the description, a wide range of possible combinations of the individual features are possible. For example, the specific contour of the individual T-shaped toothed segments 24, the arrangement and number of stator teeth 26, and the design of the yoke areas 28 can be varied accordingly. The shape and dimensions as well as the manufacturing process of the separating line 40 with the connecting lug 30 can also be adapted to the requirements of the electrical machine 10 and its manufacturing options. For example, instead of the connecting lug 30 and the corresponding recesses 31, a straight dividing line 40 can be formed. Likewise, the specific winding sequence and the interconnection of the individual tooth coils 59 can be easily varied. As an alternative to the SKV connections, welding hooks or welding forks can also be used as contact elements for the individual tooth coils 59 . The invention is particularly suitable for the rotary drive of components or for the adjustment of moving parts in motor vehicles, but is not limited to this application. Due to the formation of the flattened sections 83, small motors 10 with a high power density can also be made available.

Claims

Ansprüche Expectations
1. Verfahren zum Herstellen eines Stators (12), aus mehreren separaten Sta torsegmenten (14), die einen Jochbereich (28) aufweisen, von denen sich jeweils ein Statorzahn (26) radial nach innen erstreckt, gekennzeichnet durch folgende Schritte: 1. A method for producing a stator (12) from a plurality of separate stator segments (14) which have a yoke region (28) from which a stator tooth (26) extends radially inwards, characterized by the following steps:
Anordnen der Statorsegmente (14) mit den Statorzähnen (26) radial zum Statormittelpunkt (11) hin ausgerichtet, und mit einem tangentialen Abstand (29) zwischen benachbarten Jochbereichen (28)Arranging the stator segments (14) with the stator teeth (26) aligned radially towards the stator center (11) and with a tangential distance (29) between adjacent yoke areas (28)
Bewickeln der Statorzähne (26) mit Einzelzahnspulen (59) mittels Na delwickeln, wobei ein ununterbrochener Verbindungsdraht (42) mindes tens zwei Einzelzahnspulen (59) miteinander verbindet und dabei min destens einen tangentialen Abstand (29) zwischen zwei Jochbereichen (28) überspannt Winding the stator teeth (26) with single-tooth coils (59) by means of needle winding, with an uninterrupted connecting wire (42) connecting at least two single-tooth coils (59) to one another and thereby spanning at least one tangential distance (29) between two yoke areas (28).
Radiales Zusammendrücken der Statorsegmente (14) bis sich deren Jochbereiche (28) tangential berühren, wobei die ununterbrochenen Verbindungsdrähte (42) mittels eines Hilfswerkzeug (44) umgebogen werden Radial compression of the stator segments (14) until their yoke areas (28) touch tangentially, the uninterrupted connecting wires (42) being bent over by means of an auxiliary tool (44).
Mechanisches Verbinden der einzelnen Statorsegmente (14) Mechanical connection of the individual stator segments (14)
2. Verfahren zum Herstellen eines Stators (12) nach Anspruch 1, dadurch ge kennzeichnet, dass die Statorsegmente (14) zum Bewickeln in einem Seg- mententräger (48) gehalten werden, wobei in den tangentialen Abständen (29) zwischen den Jochbereichen (28) Abstandshalter (49) angeordnet wer den, an denen sich die Jochbereiche (28) abstützen. 2. The method for manufacturing a stator (12) according to claim 1, characterized in that the stator segments (14) are held in a segment carrier (48) for winding, with the tangential distances (29) between the yoke areas (28 ) Spacers (49) are arranged on who the yoke areas (28) are supported.
3. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass alle Statorsegmente (14) des Stators (12) auf dem Segmententräger (48) in einem Kreisring (15) angeord net werden, und die Statorzähne (26) aller Statorsegmente (14) mit einem ununterbrochenen Wickeldraht (41) durchbewickelt werden. 3. A method for producing a stator (12) according to any one of the preceding claims, characterized in that all the stator segments (14) of the stator (12) on the segment carrier (48) in a circular ring (15) are net angeord, and the stator teeth (26) of all stator segments (14) are wound with an uninterrupted winding wire (41).
4. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass die Statorzähne (26) vor dem Bewickeln mit einer Isoliermaske (56) ummantelt werden, und beim Bewi ckeln die Verbindungsdrähte (42) zwischen den Einzelzahnspulen (59) am radial äußeren Umfang (57) der Isoliermasken (56) - insbesondere in daran ausgeformten tangentialen Rillen - verlegt werden. 4. Method for producing a stator (12) according to one of the preceding claims, characterized in that the stator teeth (26) are encased in an insulating mask (56) before the winding, and the connecting wires (42) between the individual tooth coils are wound during the winding (59) on the radially outer circumference (57) of the insulating masks (56) - in particular in tangential grooves formed thereon.
5. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass die Wickelreihenfolge der Statorsegmente (14) von deren geometrischen Reihenfolge im Kreisring (15) abweicht, und sich Verbindungsdrähte (42) zwischen unmittelbar nacheinan der bewickelten Satorsegmenten (14) über mehrere tangentiale Abstände (29) erstrecken. 5. The method for producing a stator (12) according to any one of the preceding claims, characterized in that the winding order of the stator segments (14) differs from their geometric order in the circular ring (15), and connecting wires (42) between the wound one after the other Satorsegmenten (14) extend over several tangential distances (29).
6. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass sich mehrere Verbindungs drähte (42) über genau einen tangentialen Abstand (29) erstrecken, wobei die Verbindungsdrähte (42) beim Bewickeln axial übereinander verlegt wer den, und beim Zusammendrücken der Statorsegmente (14) die mehreren Verbindungsdrähte (42) mittels dem Hilfswerkzeug (44) gleichzeitig umge bogen werden. 6. Method for producing a stator (12) according to one of the preceding claims, characterized in that several connecting wires (42) extend over exactly one tangential distance (29), the connecting wires (42) being laid axially one above the other during winding and when the stator segments (14) are pressed together, the plurality of connecting wires (42) are bent simultaneously by means of the auxiliary tool (44).
7. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass das Hilfswerkzeug (44) an den tangentialen Abständen (29) zwischen den Statorsegmenten (14) Biege finger (45) aufweist, die beim radialen Zusammendrücken der Statorsegmen te (14) die Verbindungsdrähte (42) radial nach innen umbiegen, so dass die Verbindungsdrähte (42) axial über einem Nutbereich (25) zwischen zwei be nachbarten Statorzähnen (26) angeordnet werden - wobei insbesondere vor dem radialen Zusammenfügen der Statorsegmente (14) die Abstandshalter (49) zwischen den Jochbereichen (28) entfernt werden. 7. A method for producing a stator (12) according to any one of the preceding claims, characterized in that the auxiliary tool (44) at the tangential distances (29) between the stator segments (14) bending fingers (45) which during radial compression of the stator segments (14) bend the connecting wires (42) radially inwards, so that the connecting wires (42) are arranged axially over a slot region (25) between two adjacent stator teeth (26) - in particular before the stator segments ( 14) the spacers (49) between the yoke portions (28) are removed.
8. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass nach dem radialen Zusam- mendrücken der Statorsegmente (14) eine Halteplatte (99) axial auf die Sta torsegmente (14) aufgesetzt wird, die die umgebogenen Verbindungsdrähte (42) dauerhaft schwingungsfest fixiert - wobei insbesondere die Halteplatte (99) als Teil einer Verschalteplatte oder eines Lagerschildes ausgeführt ist. 8. A method for manufacturing a stator (12) according to any one of the preceding claims, characterized in that after the radial assembly pressing the stator segments (14), a retaining plate (99) is placed axially on the stator segments (14), which permanently fixes the bent connecting wires (42) in a vibration-proof manner - the retaining plate (99) in particular being designed as part of a connecting plate or an end shield.
9. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass an einer ersten tangentialen Seite (18) des Jochbereichs (28) eine Verbindungsnase (30) und an einer gegenüberliegenden zweiten tangentialen Seite (19) eine korrespondierende Ausnehmung (31) ausgeformt wird, in die die Verbindungsnase (30) in radial zusammengedrückten Zustand eingreift, und die Statorsegmente (14) wäh rend dem Bewickeln mittels der Verbindungsnasen (30) und der Ausneh mungen (31) an dem Abstandshalter (49) fixiert werden. 9. A method for manufacturing a stator (12) according to any one of the preceding claims, characterized in that on a first tangential side (18) of the yoke area (28) has a connecting lug (30) and on an opposite second tangential side (19) a corresponding recess (31) is formed, into which the connecting lug (30) engages in the radially compressed state, and the stator segments (14) during winding by means of the connecting lugs (30) and the recesses (31) on the spacer (49) be fixed.
10. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass die Statorsegmente (14) aus einzelnen Lamellenschichten (21) zusammengesetzt werden, wobei einzelne Zahnsegmente (24) aus einer umlaufend geschlossenen Lamellenschicht (21) mittels Precut-Technik ausgestanzt werden, derart, dass die Zahnseg mente (24) jeder Lamellenschicht (21) mittels einer Sollbruchstelle (40) mit einander verbunden bleiben, wobei die Zahnsegmente (24) jeder Lamellen schicht (21) zuerst nur teilweise durchgestanzt werden, und in einem weite ren Schritt wieder in die ursprüngliche axiale Position zurückgedrückt wer den, sodass die einzelnen Zahnsegmente (24) nur durch kleine plastische Verformungen miteinander verbunden bleiben, und danach mehrerer Lamel lenschichten (21) zu einem Statorgrundkörper (16) - insbesondere mittels Stanzpaketieren (54) - axial zusammengesetzt werden, und dann der Statorgrundkörper (16) zu einzelnen Statorsegmenten (14) vereinzelt wird, und die Statorsegmente (14) danach im Segmententräger (48) fixiert wer den, und nach deren Bewickeln radial wieder zum Stator (12) zusammenge fügt werden, genau in der Weise, wie die Zahnsegmente (24) zuvor über die Sollbruchstellen (40) miteinander verbunden waren. 10. The method for producing a stator (12) according to any one of the preceding claims, characterized in that the stator segments (14) are composed of individual lamellar layers (21), individual toothed segments (24) being made of a circumferentially closed lamellar layer (21) by means are punched out using the precut technique in such a way that the toothed segments (24) of each lamellar layer (21) remain connected to one another by means of a predetermined breaking point (40), the toothed segments (24) of each lamellar layer (21) first being only partially punched through, and in a further step, they are pressed back into the original axial position, so that the individual toothed segments (24) remain connected to one another only by small plastic deformations, and then several lamellar layers (21) to form a stator base body (16) - in particular by means of stamping packets ( 54) - are assembled axially, and then the stator body (16) to individual stator segments (14) vere individually, and the stator segments (14) are then fixed in the segment carrier (48) and after they have been wound, they are joined together again radially to form the stator (12), exactly in the same way as the toothed segments (24) previously via the predetermined breaking points ( 40) were connected to each other.
11. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass die Isoliermasken (56) der Statorzähne (26) radiale Durchführungen (62) aufweisen, und der Verbin dungsdraht (42) zwischen den Einzelzahnspulen (59) und/oder eine Drahtzu führung (66) und/oder ein Drahtabgang (67) der Einzelzahnspulen (19) in Radialrichtung (30) durch die radiale Durchführungen (62) geführt werden - und insbesondere zumindest ein Teil der Durchführungen (62) als Tasche (64) einer Schneid-Klemm-Verbindung ausgebildet ist, mittels der die Einzel zahnspulen (59) zu verschiedenen Phasen verschaltet werden können. 11. A method for manufacturing a stator (12) according to any one of the preceding claims, characterized in that the insulating masks (56) of Stator teeth (26) have radial bushings (62), and the connecting wire (42) between the single-tooth coils (59) and/or a wire feed (66) and/or a wire outlet (67) of the single-tooth coils (19) in the radial direction (30 ) are guided through the radial bushings (62) - and in particular at least part of the bushings (62) is designed as a pocket (64) of an insulation displacement connection, by means of which the individual toothed coils (59) can be connected to different phases.
12. Verfahren zum Herstellen eines Stators (12) nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass die Statorsegmente (14) nach dem radialen Zusammendrücken mittels Kleben oder Schweißen oder Verklemmen miteinander mechanisch verbunden werden - und insbesonde re axial in ein Statorgehäuse (36) eingefügt werden. 12. Method for producing a stator (12) according to one of the preceding claims, characterized in that the stator segments (14) are mechanically connected to one another after being radially compressed by means of gluing or welding or clamping - and in particular axially in a stator housing (36 ) are inserted.
13. Stator (12), hergestellt gemäß dem Verfahren nach einem der vorhergehen den Ansprüche, dadurch gekennzeichnet, dass die Jochbereiche (28) an ih rem Außenumfang (35) kreisbogenförmige Abschnitte (88) und/oder mit ei ner ebenen Fläche (83) ausgebildet sind, und insbesondere die Statorseg mente (14) aus einzelnen axial gestapelten Blechlamellen (20) zusammen gesetzt sind. 13. Stator (12), produced according to the method according to one of the preceding claims, characterized in that the yoke areas (28) have circular arc-shaped sections (88) on their outer circumference (35) and/or with a flat surface (83) are formed, and in particular the Statorseg elements (14) from individual axially stacked laminations (20) are put together.
14. Stator (12) nach Anspruch 13, dadurch gekennzeichnet, dass der Stator (12) genau sechs oder oder neun zwölf oder achtzehn Statorsegmente (14) auf weist, wobei insbesondere alle Einzelzahnspulen (59) der Statorsegmenten (14) über einen einzigen durchgewickelten Verbindungsdraht (42) miteinan der verbunden sind. 14. Stator (12) according to claim 13, characterized in that the stator (12) has exactly six or nine or twelve or eighteen stator segments (14), in particular all individual tooth coils (59) of the stator segments (14) having a single through-wound Connecting wire (42) are connected to each other.
15. Elektrische Maschine (10) mit einem Stator (12) nach einem der Ansprüche 13 oder 14, dadurch gekennzeichnet, dass radial innerhalb des Stators (12) ein Permanentmagnete (80) aufweisender Rotor (13) drehbar gelagert ist - und insbesondere der Stator (12) mittels einer Elektronikeinheit elektronisch kommutierbar ist. 15. Electrical machine (10) with a stator (12) according to one of claims 13 or 14, characterized in that radially inside the stator (12) having a permanent magnet (80) rotor (13) is rotatably mounted - and in particular the stator (12) can be electronically commutated by means of an electronic unit.
PCT/EP2022/055987 2021-03-19 2022-03-09 Method for producing a stator, and stator and electric machine having same WO2022194628A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102021202678.8A DE102021202678A1 (en) 2021-03-19 2021-03-19 Method for producing a stator, and a stator and an electrical machine having such
DE102021202678.8 2021-03-19

Publications (1)

Publication Number Publication Date
WO2022194628A1 true WO2022194628A1 (en) 2022-09-22

Family

ID=81074310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/055987 WO2022194628A1 (en) 2021-03-19 2022-03-09 Method for producing a stator, and stator and electric machine having same

Country Status (2)

Country Link
DE (1) DE102021202678A1 (en)
WO (1) WO2022194628A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022214179A1 (en) 2022-12-21 2024-06-27 Robert Bosch Gesellschaft mit beschränkter Haftung Stator for an electrical machine, as well as an electrical machine comprising a stator, and method for producing a stator
DE102023200703A1 (en) 2023-01-30 2024-08-01 Robert Bosch Gesellschaft mit beschränkter Haftung Method for producing a stator, as well as a stator and an electrical machine comprising such a stator
DE102023204071A1 (en) 2023-05-03 2024-11-07 Robert Bosch Gesellschaft mit beschränkter Haftung Method for producing a stator for an electrical machine and a stator and an electrical machine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161048A (en) * 1999-11-30 2001-06-12 Sanyo Denki Co Ltd Manufacturing method of dynamoelectric machine stator
WO2002084842A1 (en) * 2001-04-13 2002-10-24 Matsushita Ecology Systems Co., Ltd. Stator for inner rotor motors and method of producing the same
DE102007006095A1 (en) 2006-02-07 2007-08-23 Asmo Co., Ltd., Kosai Manufacturing method for a stator, and stator
JP4705723B2 (en) * 2001-02-02 2011-06-22 オリエンタルモーター株式会社 Method for assembling motor stator
DE102010043976A1 (en) * 2010-11-16 2012-05-16 Robert Bosch Gmbh Component for manufacturing machine component e.g. stator for electric machine, has several teeth which are arranged at base portion in arrangement direction, and base portion comprises one or more upsetting regions between each teeth
DE102017201178A1 (en) * 2017-01-25 2018-07-26 Robert Bosch Gmbh Mechanical component and method for producing a machine component

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6941644B2 (en) 1999-09-27 2005-09-13 Reliance Electric Technologies, Llc Method for winding segments of a segmented wound member of an electromechanical device
US7595578B2 (en) 2005-05-06 2009-09-29 Mistuba Corporation Motor, rotary electric machine and its stator, and method for manufacturing the stator
JP5356897B2 (en) 2009-04-10 2013-12-04 三菱電機株式会社 Rotating electric machine and manufacturing method thereof
JP5562045B2 (en) 2010-01-07 2014-07-30 日特エンジニアリング株式会社 Stator assembly method and assembly apparatus
JP2019208335A (en) 2018-05-30 2019-12-05 日本電産サンキョー株式会社 Motor and pumping apparatus
EP3657632A1 (en) 2018-11-26 2020-05-27 Nortech System SA A stator for a brushless motor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001161048A (en) * 1999-11-30 2001-06-12 Sanyo Denki Co Ltd Manufacturing method of dynamoelectric machine stator
JP4705723B2 (en) * 2001-02-02 2011-06-22 オリエンタルモーター株式会社 Method for assembling motor stator
WO2002084842A1 (en) * 2001-04-13 2002-10-24 Matsushita Ecology Systems Co., Ltd. Stator for inner rotor motors and method of producing the same
DE102007006095A1 (en) 2006-02-07 2007-08-23 Asmo Co., Ltd., Kosai Manufacturing method for a stator, and stator
DE102010043976A1 (en) * 2010-11-16 2012-05-16 Robert Bosch Gmbh Component for manufacturing machine component e.g. stator for electric machine, has several teeth which are arranged at base portion in arrangement direction, and base portion comprises one or more upsetting regions between each teeth
DE102017201178A1 (en) * 2017-01-25 2018-07-26 Robert Bosch Gmbh Mechanical component and method for producing a machine component

Also Published As

Publication number Publication date
DE102021202678A1 (en) 2022-09-22

Similar Documents

Publication Publication Date Title
WO2022194628A1 (en) Method for producing a stator, and stator and electric machine having same
EP2647109B1 (en) Method for producing a stator winding of an electric machine, in particular for producing an ac generator
EP1171945B1 (en) Method for producing a magnetically excitable core comprising a core winding for an electric machine
WO2016110427A1 (en) Stator for an electric machine, and method for manufacturing same
EP2436102B1 (en) Method for producing a stator winding of an electric machine, in particular for producing an alternator
EP1129517A2 (en) Method for producing a stator and/or a rotor, stator and rotor, and electric machine with a rotor and a stator
WO2016110424A1 (en) Stator for an electric machine, and method for producing such a stator
EP2520005B1 (en) Manufacturing method of a segmented stator including winding step and corresponding stator
WO2021204830A1 (en) Laminated core for an electric machine, electric machine having a laminated core, and method for producing a stator main part
DE102019200616A1 (en) Stator for an electrical machine, an electrical machine and method for producing such an electrical machine
WO2023274932A1 (en) Insulating mask for a stator, stator, electric machine and method for producing a stator
WO2020074660A1 (en) Electric motor, brake system, and vehicle
EP3488516B1 (en) Stator of an alternating current machine
EP1087497B1 (en) Stator for an inner rotor motor
EP1508954A1 (en) Method for producing a part with a coil and electric machine comprising such a part
EP3794711A1 (en) Individual tooth segment
DE102021122126A1 (en) Stator of a rotary electric machine, method for manufacturing the stator and rotary electric machine
DE102020206974A1 (en) Method for producing a stator, in particular for an EC motor, as well as a stator and an electrical machine produced according to this method
DE102023200703A1 (en) Method for producing a stator, as well as a stator and an electrical machine comprising such a stator
DE102021202679A1 (en) Stator base body for an electrical machine, and an electrical machine having a stator base body, and method for producing a stator base body
DE102021210400A1 (en) Method for producing a stator, in particular for an EC motor, and a stator and an electrical machine produced using this method
DE102012212768A1 (en) Stator for construction of stator assembly for electronically commutated electrical motor, has ring segment provided with return element directed inwardly towards stator teeth, where return element includes specific range of segment angle
DE102021211926A1 (en) Method for producing a stator, in particular for an EC motor, and a stator and an electrical machine produced using this method
DE102021122128A1 (en) Stator of a rotary electric machine, method for manufacturing the stator and rotary electric machine
DE102023203909A1 (en) Electric machine, stator for an electric machine, and method for producing such a machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22714139

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22714139

Country of ref document: EP

Kind code of ref document: A1