Nothing Special   »   [go: up one dir, main page]

WO2022193807A1 - 冷藏冷冻装置及其化霜控制方法 - Google Patents

冷藏冷冻装置及其化霜控制方法 Download PDF

Info

Publication number
WO2022193807A1
WO2022193807A1 PCT/CN2022/071766 CN2022071766W WO2022193807A1 WO 2022193807 A1 WO2022193807 A1 WO 2022193807A1 CN 2022071766 W CN2022071766 W CN 2022071766W WO 2022193807 A1 WO2022193807 A1 WO 2022193807A1
Authority
WO
WIPO (PCT)
Prior art keywords
evaporator
heat exchanger
storage compartment
defrosting
cold
Prior art date
Application number
PCT/CN2022/071766
Other languages
English (en)
French (fr)
Inventor
姬立胜
崔展鹏
陈建全
刘山山
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022193807A1 publication Critical patent/WO2022193807A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/006Defroster control with electronic control circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B21/00Machines, plants or systems, using electric or magnetic effects
    • F25B21/02Machines, plants or systems, using electric or magnetic effects using Peltier effect; using Nernst-Ettinghausen effect
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B47/00Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
    • F25B47/02Defrosting cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/02Detecting the presence of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/06Removing frost
    • F25D21/08Removing frost by electric heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/006General constructional features for mounting refrigerating machinery components
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2600/00Control issues
    • F25D2600/06Controlling according to a predetermined profile

Definitions

  • the present invention relates to the technical field of refrigerating and freezing storage, in particular to a refrigerating and freezing device and a defrosting control method thereof.
  • a frost layer will accumulate on the cold heat exchanger.
  • the existing refrigeration and freezing devices generally input a fixed reverse voltage to the semiconductor refrigerating sheet, so that the hot end and the cold end are converted, and the hot end absorbs heat. , the cold end releases heat, melts the frost layer on the cold heat exchanger, and consumes a lot of energy.
  • An object of the present invention is to provide a refrigerating and freezing apparatus and a defrosting control method thereof which solves at least the above-mentioned problems.
  • a further object of the present invention is to reduce the energy consumption for defrosting.
  • the present invention first provides a defrosting control method for a refrigerating and freezing device, wherein the refrigerating and freezing device includes a first storage compartment for adjusting the first storage compartment
  • the refrigerating and freezing device includes a first storage compartment for adjusting the first storage compartment
  • a semi-conductor refrigeration system with a temperature of low temperature the semi-conductor refrigeration system includes a semi-conductor refrigerating sheet having a hot end and a cold end, a cold heat exchanger connected with the cold end, and the cold heat exchanger is configured to supply the first storage
  • the compartment provides cooling
  • the semiconductor refrigeration chip is configured to release heat when a forward voltage is input to it, and the cold end absorbs heat, and is configured to be input with a reverse voltage.
  • the hot end absorbs heat and the cold end releases heat;
  • the control method includes:
  • the defrosting control process of the cold heat exchanger includes:
  • the reverse voltage value input to the semiconductor refrigeration sheet is dynamically adjusted according to the temperature of the cold heat exchanger.
  • the method before the step of inputting the first reverse voltage to the semiconductor refrigeration chip, the method further includes:
  • the step of dynamically adjusting the reverse voltage value input to the semiconductor refrigeration sheet according to the temperature of the cold heat exchanger includes:
  • the voltage input to the semiconductor refrigeration sheet is stopped.
  • the semiconductor refrigeration system further includes a heat exchanger connected to the hot end to dissipate heat from the hot end;
  • the refrigerating and freezing apparatus further includes a second storage compartment, a compressor, a first capillary tube, a first evaporator, and a first heating device for defrosting the first evaporator, and the first evaporator is configured
  • the heat exchanger is arranged between the outlet end of the first capillary tube and the inlet end of the first evaporator, so that the refrigerant flows through the the heat exchanger, which dissipates heat from the hot end, thereby reducing the first storage compartment to a cryogenic temperature lower than the second storage compartment;
  • the control method also includes:
  • the defrosting control process of the first evaporator includes:
  • the first heating device When the temperature of the first evaporator is greater than or equal to a fourth preset temperature, the first heating device is turned off.
  • the method before executing the defrosting control process of the cold heat exchanger, the method further includes:
  • control method further includes:
  • the refrigerating and freezing device further includes a third storage compartment and a second evaporator, the second evaporator is configured to provide cold energy to the third storage compartment, and the second evaporator
  • the outlet end of the heat exchanger communicates with the inlet end of the heat exchanger
  • the control method also includes:
  • the defrosting control process of the first evaporator is executed first, and then the defrosting control process of the first evaporator is executed.
  • the defrosting control process of the second evaporator is executed.
  • the refrigerating and freezing device further includes a second capillary tube, a condenser and a switching valve, the inlet end of the switching valve is communicated with the outlet end of the condenser, and the first outlet end of the switching valve is connected to the The inlet end of the first capillary tube is connected, the second outlet end of the switching valve is connected with the inlet end of the second capillary tube, and the inlet end of the second evaporator is connected with the outlet end of the second capillary tube;
  • the control method also includes:
  • the switching valve is controlled to conduct the first outlet end and the inlet end of the first capillary tube, and the first storage compartment needs refrigeration and cooling. /or when the second storage compartment needs to be cooled, the compressor is turned on;
  • the compressor is turned on, and the When the third storage compartment needs to be cooled, the switching valve is controlled to conduct the second outlet end and the inlet end of the second capillary tube, and when the second storage compartment needs to be cooled, the switching valve is controlled The valve conducts its first outlet end and the inlet end of the first capillary tube.
  • the refrigerating and freezing device further comprises a second heating device for defrosting the second evaporator;
  • the defrosting control process of the second evaporator includes:
  • the second heating device is turned off.
  • the present invention also provides a refrigeration and freezing device, comprising:
  • a box body which defines a first storage compartment
  • a semiconductor refrigeration system comprising a semiconductor refrigeration sheet having a hot end and a cold end, a cold heat exchanger connected with the cold end, the cold heat exchanger being configured to provide cold energy to the first storage compartment, the The semiconductor refrigeration chip is configured such that when it is connected to a forward voltage, the hot end releases heat, and the cold end absorbs heat, and when it is connected to a reverse voltage, the hot end absorbs heat, and the cold end absorbs heat. release heat;
  • a controller has a memory and a processor, and the memory stores a computer program, when the computer program is executed by the processor, the computer program is used to implement the defrosting control method of any one of the aforementioned refrigeration and freezing apparatuses.
  • the semiconductor refrigeration system further includes a heat exchanger connected to the hot end to dissipate heat from the hot end;
  • the box body further defines a second storage compartment
  • the refrigerating and freezing device further includes a compressor, a first capillary tube, a first evaporator and a first heating device for defrosting the first evaporator;
  • the first evaporator is configured to provide cooling capacity to the second storage compartment
  • the heat exchanger is arranged between the outlet end of the first capillary tube and the inlet end of the first evaporator, So that the refrigerant flows through the heat exchanger to dissipate heat from the hot end, thereby lowering the first storage compartment to a cryogenic temperature lower than that of the second storage compartment.
  • the box body further defines a third storage compartment
  • the refrigerating and freezing device further comprises a second evaporator, a second capillary tube, a condenser, a switching valve and a second heating device for defrosting the second evaporator;
  • the second evaporator is configured to provide cold energy to the third storage compartment, the inlet end of the second evaporator is connected with the outlet end of the second capillary tube, and the outlet end of the second evaporator is connected It is communicated with the inlet end of the heat exchanger, the inlet end of the switching valve is communicated with the outlet end of the condenser, and the first outlet end of the switching valve is connected with the inlet end of the first capillary tube, so The second outlet end of the switching valve is connected with the inlet end of the second capillary tube.
  • the refrigeration and freezing device and the defrosting control method thereof of the present invention dynamically adjust the reverse voltage value input to the semiconductor refrigerating sheet according to the temperature of the cold heat exchanger, so that the gradually changing defrosting of the cold heat exchanger during the defrosting process can be eliminated.
  • the demand is adapted to match the input reverse voltage value, and the power consumption is reduced while meeting the defrosting demand of the cold heat exchanger.
  • the compressor or semiconductor refrigeration system can be turned on according to the cooling demand, so as to balance the cooling demand of each storage compartment and improve the cooling efficiency.
  • FIG. 1 is a schematic structural diagram of a refrigerating and freezing device according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a refrigeration system of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a semiconductor refrigeration system of a refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a defrosting control method for a refrigerating and freezing device according to an embodiment of the present invention
  • FIG. 5 is a detailed schematic flowchart of a defrosting control method for a refrigerating and freezing apparatus according to an embodiment of the present invention
  • Fig. 6 is the defrosting control flow chart of the cold heat exchanger in the defrosting control method of the refrigerating and freezing apparatus according to an embodiment of the present invention
  • Fig. 7 is the defrosting control flow chart of the first evaporator in the defrosting control method of the refrigerating and freezing apparatus according to an embodiment of the present invention
  • FIG. 8 is a flow chart of defrosting control of the second evaporator in the defrosting control method of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram showing the connection of components of a refrigerating and freezing apparatus according to an embodiment of the present invention.
  • This embodiment first provides a refrigerating and freezing device 10.
  • a refrigerating and freezing device 10 For the convenience of description, “upper”, “lower”, “front”, “rear”, “top”, “bottom”, “horizontal”, etc. mentioned in the description
  • the orientations are all defined according to the spatial positional relationship of the refrigerating and freezing apparatus 10 in a normal working state.
  • the refrigerating and freezing apparatus 10 of this embodiment will be described in detail below with reference to FIGS. 1 to 3 and FIG. 9 .
  • the refrigerating and freezing device 10 in this embodiment may be a refrigerator, a freezer, or other device having a refrigerating and freezing function.
  • the refrigeration and freezing apparatus 10 includes a first storage compartment 110, a semiconductor refrigeration system 150 for adjusting the temperature of the first storage compartment 110, and the semiconductor refrigeration system 150 includes a semiconductor refrigeration sheet 155 having a hot end 153 and a cold end 154,
  • the cold heat exchanger 152 is connected to the cold end 154, the cold heat exchanger 152 is configured to provide cooling capacity to the first storage compartment 110, and the semiconductor refrigeration chip 155 is configured to release the hot end 153 when a forward voltage is input to it.
  • Heat, the cold end 154 absorbs heat and is configured such that when a reverse voltage is input to it, the hot end 153 absorbs heat and the cold end 154 releases heat.
  • the semiconductor refrigeration system 150 mainly utilizes the Peltier effect.
  • a current passes through a galvanic couple formed by two different semiconductor materials in series, heat can be absorbed and released at both ends of the galvanic couple, respectively. , can achieve the purpose of refrigeration.
  • the semiconductor refrigeration chip 155 is energized, a temperature difference occurs between the hot end 153 and the cold end 154.
  • the temperature of the hot end 153 decreases, the temperature of the cold end 154 also decreases. Therefore, in order to reduce the temperature of the cold end 154 , the heat released by the hot end 153 needs to be continuously dissipated to keep the temperature of the cold end 154 lowered.
  • the hot end 153 of the semiconductor refrigeration system 150 can dissipate heat by means of a compression refrigeration system.
  • the semiconductor refrigeration system 150 further includes a heat exchanger 151 connected to the hot end 153 to dissipate heat from the hot end 153 .
  • the refrigerating and freezing apparatus 10 further includes a second storage compartment 130, a compressor 101, a first capillary tube 106, and a first evaporator 104.
  • the first evaporator 104 is configured to provide cold energy to the second storage compartment 130, and heat exchange
  • the heat exchanger 151 is arranged between the outlet end of the first capillary tube 106 and the inlet end of the first evaporator 104, so that the refrigerant flows through the heat exchanger 151 to dissipate heat from the hot end 153, so that the first storage room
  • the chamber 110 is lowered to a cryogenic temperature lower than that of the second storage compartment 130 .
  • the high-temperature and high-pressure refrigerant gas discharged from the outlet of the compressor 101 enters the condenser 102, and is condensed into a high-pressure and normal-temperature refrigerant liquid by the condenser 102, and the refrigerant liquid enters the first capillary tube 106 and becomes a low temperature through the throttling of the first capillary tube 106.
  • the low-pressure refrigerant and the low-temperature and low-pressure refrigerant enter the heat exchanger 151 and conduct heat exchange with the hot end 153 .
  • the refrigerant evaporates and absorbs heat in the heat exchanger 151 to quickly take away the heat of the hot end 153, and maintain the hot end 153 in a low temperature environment.
  • the refrigerating and freezing apparatus 10 may further include a third storage compartment 120 and a second evaporator 103, the second evaporator 103 is configured to provide cooling capacity to the third storage compartment 120, and the output of the second evaporator 103 The end communicates with the inlet end of the heat exchanger 151 .
  • the refrigerating and freezing apparatus 10 of this embodiment may further include a second capillary tube 107 and a switching valve 105 .
  • the switching valve 105 The inlet end of the switch valve 105 is connected with the outlet end of the condenser 102, the first outlet end of the switching valve 105 is connected with the inlet end of the first capillary tube 106, the second outlet end of the switching valve 105 is connected with the inlet end of the second capillary tube 107, the second The inlet end of the evaporator 103 is connected to the outlet end of the second capillary tube 107 .
  • the switching valve 105 is controlled to conduct the first outlet end and the inlet end of the first capillary 106, and when the third storage compartment When the 120 needs to be cooled, the switching valve 105 is controlled to cause the second outlet end and the inlet end of the second capillary tube 107 to be controlled.
  • the flow rate of the first capillary tube 106 should be smaller than the flow rate of the second capillary tube 107 , the flow rate of the first capillary tube 106 is small, and the throttling effect is strong.
  • the temperature of the first evaporator 104 and the heat exchanger 151 can be lowered, so as to realize the cryogenic requirement of the first storage compartment 110 and the low temperature requirement of the second storage compartment 130.
  • the valve When the valve is switched When the 105 is switched to conduct the second outlet end and the inlet end of the second capillary 107, the temperature of the second evaporator 103 can be reduced, and the temperature requirement of the third storage compartment 120 can be realized, so that the third storage compartment The temperature of 120 is higher than the temperature of the second storage compartment 130, so that three storage compartments with different temperature intervals are formed.
  • the first storage compartment 110 may be a cryogenic compartment
  • the second storage compartment 130 may be a freezing compartment
  • the third storage compartment 120 may be a refrigerating compartment.
  • the temperature range of the cryogenic room can be -30--40°C
  • the temperature range of the freezer room can be -15--24°C
  • the temperature range of the refrigerating room can be 1-9°C.
  • the aforementioned temperature range is only an example, the present invention There is no specific restriction on this.
  • the refrigerating and freezing device 10 may further include a first fan 156, a second fan 108 and a third fan 109.
  • the first fan 156 is configured to promote airflow between the cold heat exchanger 152 and the first storage fan.
  • the second fan 108 is configured to promote the circulation of airflow between the first evaporator 104 and the second storage compartment 130 to accelerate the cooling of the second storage compartment 110.
  • Cooling of the storage compartment 130 ; the third fan 109 is configured to promote the airflow to circulate between the second evaporator 103 and the third storage compartment 120 to accelerate the cooling of the third storage compartment 120 .
  • the refrigerating and freezing apparatus 10 of this embodiment may further include an ice-making chamber 140 , and the second evaporator 103 may provide cooling capacity for the ice-making chamber 140 .
  • One of the distribution modes of the various compartments of the refrigerating and freezing apparatus 10 may be: the ice making compartment 140 and the first storage compartment 110 may be distributed in the lateral direction, and the second storage compartment 130 is located between the ice making compartment 140 and the first storage compartment Below the compartment 110 , the third storage compartment 120 is located above the ice making compartment 140 and the first storage compartment 110 .
  • the refrigeration and freezing device 10 may further include a first heating device 170 for defrosting the first evaporator 104 and a second heating device 180 for defrosting the second evaporator 103 .
  • Both the first heating device 170 and the second heating device 180 can be heating wires, which defrost the corresponding evaporators when they are energized.
  • a fixed reverse voltage is generally input to the semiconductor refrigeration sheet 155, so that the hot end 153 and the cold end 154 are converted, the hot end 153 absorbs heat, and the cold end 154 The heat is released to melt the frost layer on the cold heat exchanger 152 to achieve the purpose of defrosting the cold heat exchanger 152 .
  • the reverse voltage input to the semiconductor refrigeration chip 155 remains unchanged, which increases power consumption and causes unnecessary energy waste.
  • this embodiment provides a defrosting control method for the refrigerating and freezing apparatus 10 .
  • this embodiment provides a control method for dynamically adjusting the reverse voltage input to the semiconductor refrigeration chip 155.
  • the control method of this embodiment is include:
  • the defrosting control process of the cold heat exchanger 152 includes:
  • the refrigerating and freezing apparatus 10 can determine the triggering timing for the cold heat exchanger 152 to open the defrost according to the accumulated opening time of the first storage compartment 110 and the accumulated operating time of the semiconductor refrigeration chip 155 being inputted with the forward voltage, so as to avoid cold heat exchange.
  • the frost layer of the heat exchanger 152 is too thick to affect the refrigeration efficiency, so as to ensure the timely defrosting of the cold heat exchanger 152 .
  • the defrosting control method of this embodiment dynamically adjusts the reverse voltage value input to the semiconductor refrigeration chip 155 according to the temperature of the cold heat exchanger 152, so that the gradually changing defrosting demand of the cold heat exchanger 152 during the defrosting process can be matched with the defrosting demand of the cold heat exchanger 152.
  • the input reverse voltage value is adapted and matched to reduce power consumption while meeting the defrosting requirement of the cold heat exchanger 152 .
  • the step of dynamically adjusting the reverse voltage value input to the semiconductor refrigeration chip 155 according to the temperature of the cold heat exchanger 152 includes:
  • the voltage input to the semiconductor refrigeration chip 155 is stopped.
  • the control method of this embodiment divides the temperature change of the cold heat exchanger 152 into three preset reference values. As the temperature of the cold heat exchanger 152 increases, the frost layer melts, and the reverse input to the semiconductor refrigeration sheet 155 The smaller the voltage value is, until the power is turned off, so as to meet the defrosting requirement of the cold heat exchanger 152 and reduce the energy consumption.
  • the first reverse voltage can be the maximum reverse voltage of the refrigerating chip 155
  • the second reverse voltage can be the rated reverse voltage
  • the third reverse voltage can be the minimum reverse voltage, so as to simplify the power supply to the refrigerating chip 155 control.
  • the first preset temperature, the second preset temperature, and the third preset temperature can be preset according to experimental tests, wherein the third preset temperature should be greater than 0° C. to ensure that the cold heat exchanger 152 will not operate properly when the power is turned off.
  • the temperature is above zero, so that the frost layer of the cold heat exchanger 152 can be melted in time.
  • the first preset temperature, the second preset temperature, and the third preset temperature may be -5°C, 1°C, and 6°C, respectively.
  • the semiconductor refrigeration system 150 When receiving the trigger signal for the cold heat exchanger 152 to start defrosting, the semiconductor refrigeration system 150 may be in a power-on state, providing cooling capacity for the first storage compartment 110, or the first storage compartment 110 reaches the At the shutdown point, the semiconductor refrigeration system 150 is in a power-off state. Therefore, before the reverse voltage is input to the semiconductor refrigeration chip 155, the power-on state of the semiconductor refrigeration chip 155 needs to be detected, and the semiconductor refrigeration chip 155 is being operated with forward voltage. 155 is powered off for a first preset time, and then a first reverse voltage is input to the semiconductor refrigeration chip 155 . When the semiconductor refrigeration chip 155 is running, the temperature of the cold end 154 and the temperature of the cold heat exchanger 152 are relatively low.
  • the semiconductor refrigeration chip 155 Before the reverse voltage is input, the semiconductor refrigeration chip 155 is powered off for a period of time, so that the residual cooling of the cold heat exchanger 152 can be recovered. Continue to be transferred to the first storage compartment 110 to avoid prematurely inputting reverse voltage and prolong the defrosting control process of the cold heat exchanger 152, which not only causes energy waste, but also increases energy consumption.
  • control methods also include:
  • the defrosting control process of the first evaporator 104 includes:
  • the first heating device 170 When the temperature of the first evaporator 104 is greater than or equal to the fourth preset temperature, the first heating device 170 is turned off.
  • the refrigerating and freezing apparatus 10 can determine the triggering timing for the first evaporator 104 to open the defrosting according to the accumulated cooling time of the first evaporator 104 and the accumulated door opening time of the second storage compartment 130, so as to defrost the first evaporator 104 in time. frost to ensure cooling efficiency.
  • both the compression refrigeration system and the semiconductor refrigeration system 150 need to be in a closed state.
  • the first heating device 170 is turned on after a period of time to use the first evaporator.
  • the residual cold of 104 continues to cool the second storage compartment 130, so as to avoid the waste of energy caused by turning on the first heating device 170 immediately after the compressor 101 is turned off.
  • the frost layer gradually melts.
  • the defrosting is basically completed, and the first heating device 170 should be turned off in time.
  • the control method of this embodiment also specifies the timing of defrosting the first evaporator 104 and the cold heat exchanger 152. Specifically, before executing the defrosting control process of the cold heat exchanger 152, it further includes:
  • the defrosting control process of the first evaporator 104 is executed first, and then the defrosting control process of the cold heat exchanger 152 is executed.
  • the defrosting control process of the cold heat exchanger 152 is not directly executed, but the first evaporator 104 is first executed.
  • the aforementioned defrosting control process is performed, and then the aforementioned defrosting control process of the cold heat exchanger 152 is performed.
  • the compressor 101 Since the first evaporator 104 is located at the end of the compression refrigeration system, during the defrosting process of the first evaporator 104, the compressor 101 needs to be in a shutdown state, and the heat dissipation of the hot end 153 in the semiconductor refrigeration system 150 needs to depend on the compression refrigeration system. When the compressor 101 is turned off, the semiconductor refrigeration system 150 also needs to be in a shutdown state because it cannot lower the first storage compartment 110 to the set temperature, which results in the failure of other compartments during the defrosting process of the first evaporator 104. During the defrosting process of the cold heat exchanger 152, the cold energy generated by the hot end 153 is transferred to the refrigerant through the hot heat exchanger 151, and the compression refrigeration system can be in normal refrigeration control.
  • the compression refrigeration system may be in normal refrigeration control. That is to say, the control method further includes: during the defrosting control process of the cold heat exchanger 152, when the second storage compartment 130 needs to be cooled, the compressor 101 can be turned on, so as not to affect the second storage compartment Refrigeration of compartment 130.
  • control method may further include:
  • the defrost control process of the first evaporator 104 is executed first, and then the second evaporator is executed.
  • the defrosting control process of the evaporator 103 is ensured to give priority to the defrosting of the first evaporator 104 .
  • the compressor 101 When the first evaporator 104 is defrosted, the compressor 101 needs to be shut down, and when the second evaporator 103 is defrosted, the compressor 101 and the semiconductor refrigeration system 150 can When the cooling demand of 110 is turned on, and the cold heat exchanger 152 is defrosted, the compressor 101 can be turned on according to the cooling demand of the second storage compartment 130 and the third storage compartment 120. Therefore, by giving priority to ensuring the first evaporator 104 During the defrosting process of the second evaporator 103 or the cold heat exchanger 152, the compressor 101 or the semiconductor refrigeration system 150 can be turned on according to the cooling demand, so as to balance the cooling demand of each storage compartment and improve the cooling efficiency .
  • the switching valve 105 is controlled to conduct the first outlet end and the inlet end of the first capillary tube 106, and the first storage compartment 110 needs refrigeration and/or Or when the second storage compartment 130 needs to be cooled, the compressor 101 is turned on;
  • the compressor 101 is turned on, and the third storage compartment needs to be cooled.
  • the switching valve 105 is controlled to conduct the second outlet and the inlet of the second capillary 107.
  • the switching valve 105 is controlled to conduct the first outlet and the second capillary 107. The inlet end of the first capillary 106 .
  • the defrosting control process of the second evaporator 103 may include:
  • the second heating device 180 is turned off.
  • the defrosting control process of the second evaporator 103 may further include controlling the third fan 109 to run at a preset speed for a preset time, so as to use the air in the third storage compartment 120 for the second The evaporator 103 is preheated, and at the same time, the residual cooling of the second evaporator 103 is used to save energy.
  • the present embodiment provides a process of the defrost control method of the refrigerating and freezing apparatus 10.
  • the defrost control method includes:
  • 1 is the defrosting control process of the cold heat exchanger 152.
  • the defrosting control process of the cold heat exchanger 152 is specifically:
  • the defrosting control process of the first evaporator 104 is specifically:
  • 3 is the defrosting control process of the second evaporator 103.
  • the defrosting control process of the second evaporator 103 is specifically:
  • the defrosting of the first evaporator 104 is preferentially ensured, and the defrosting of the first evaporator 104 can be ensured first.
  • the compressor 101 or the semiconductor refrigeration system 150 is turned on according to the cooling demand, so as to balance the cooling demand of each storage compartment and improve the cooling efficiency.
  • the reverse voltage value input to the semiconductor refrigeration sheet 155 is dynamically adjusted, so that the temperature of the cold heat exchanger 152 can be gradually changed during the defrosting process.
  • the defrosting demand is adaptively matched with the input reverse voltage value, so as to meet the defrosting demand of the cold heat exchanger 152 while reducing power consumption.
  • the refrigeration and freezing apparatus 10 of this embodiment further includes a controller 160 having a memory 161 and a processor 162 , and a computer program 1611 is stored in the memory 161 , when the computer program 1611 is executed by the processor 162, it is used to implement any one of the defrosting control methods described above.
  • the processor 162 may be a central processing unit (central processing unit, CPU for short), or a digital processing unit or the like.
  • the processor 162 transmits and receives data through the communication interface.
  • the memory 161 is used to store programs executed by the processor 162 .
  • Memory 161 is any medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer, and may also be a combination of multiple memories 161 .
  • the computer program 1611 described above can be downloaded from a computer-readable storage medium to a corresponding computing/processing device or downloaded to a computer or external storage device via a network (eg, the Internet, a local area network, a wide area network, and/or a wireless network).
  • a network eg, the Internet, a local area network, a wide area network, and/or a wireless network.
  • Computer program 1611 may execute entirely on a local computing device, as a stand-alone software package, partly on a local computing device and partly on a remote computing device, or entirely on a remote computing device or server (including cloud devices).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Defrosting Systems (AREA)

Abstract

一种冷藏冷冻装置及其化霜控制方法,。冷藏冷冻装置包括第一储物间室、用于调节第一储物间室的温度的半导体制冷系统,半导体制冷系统包括具有热端和冷端的半导体制冷片、与冷端连接的冷换热器,冷换热器配置为向第一储物间室提供冷量,半导体制冷片配置为在其被输入正向电压时,热端释放热量,冷端吸收热量,并配置为在其被输入反向电压时,热端吸收热量,冷端释放热量。控制方法包括:获取冷换热器开启化霜的触发信号;在接收到冷换热器开启化霜的触发信号后,向半导体制冷片输入第一反向电压;检测冷换热器的温度;根据冷换热器的温度动态调整向半导体制冷片输入的反向电压值,以在满足冷换热器的化霜需求的同时,降低耗电量。

Description

冷藏冷冻装置及其化霜控制方法 技术领域
本发明涉及冷藏冷冻存储技术领域,特别是涉及一种冷藏冷冻装置及其化霜控制方法。
背景技术
针对利用半导体制冷的冷藏冷冻装置,半导体制冷片被接通正向电压时,其冷端制冷,热端发热,通过与冷端接触的冷换热器与间室进行热交换,实现对间室的制冷。
半导体制冷片在长期制冷过程中,冷换热器上会堆积霜层,现有的冷藏冷冻装置,一般向半导体制冷片输入固定的反向电压,使得热端与冷端转换,热端吸收热量,冷端释放热量,融化冷换热器上的霜层,能耗较大。
发明内容
本发明的一个目的是要提供一种至少解决上述问题的冷藏冷冻装置及其化霜控制方法。
本发明一个进一步的目的是降低化霜能耗。
特别地,根据本发明的一个方面,本发明首先提供了一种冷藏冷冻装置的化霜控制方法,所述冷藏冷冻装置包括第一储物间室、用于调节所述第一储物间室的温度的半导体制冷系统,所述半导体制冷系统包括具有热端和冷端的半导体制冷片、与所述冷端连接的冷换热器,所述冷换热器配置为向所述第一储物间室提供冷量,所述半导体制冷片配置为在其被输入正向电压时,所述热端释放热量,所述冷端吸收热量,并配置为在其被输入反向电压时,所述热端吸收热量,所述冷端释放热量;
所述控制方法包括:
获取所述冷换热器开启化霜的触发信号;
在接收到所述冷换热器开启化霜的触发信号后,执行所述冷换热器的化霜控制过程;
所述冷换热器的化霜控制过程包括:
向所述半导体制冷片输入第一反向电压;
检测所述冷换热器的温度;
根据所述冷换热器的温度动态调整向所述半导体制冷片输入的反向电压值。
可选地,在所述向所述半导体制冷片输入第一反向电压的步骤之前,还包括:
检测所述半导体制冷片的通电状态;
对正在通正向电压运行中的所述半导体制冷片断电第一预设时间。
可选地,所述根据所述冷换热器的温度动态调整向所述半导体制冷片输入的反向电压值的步骤包括:
当所述冷换热器的温度大于等于第一预设温度小于第二预设温度时,向所述半导体制冷片输入小于所述第一反向电压的第二反向电压;
当所述冷换热器的温度大于等于所述第二预设温度小于第三预设温度时,向所述半导体制冷片输入小于所述第二反向电压的第三反向电压;
当所述冷换热器的温度大于等于所述第三预设温度时,停止向所述半导体制冷片输入电压。
可选地,所述半导体制冷系统还包括与所述热端连接的热换热器,以对所述热端进行散热;
所述冷藏冷冻装置还包括第二储物间室、压缩机、第一毛细管、第一蒸发器和用于对所述第一蒸发器化霜的第一加热装置,所述第一蒸发器配置为向所述第二储物间室提供冷量,所述热换热器设置于所述第一毛细管的出端与所述第一蒸发器的进端之间,以使得制冷剂流经所述热换热器,对所述热端进行散热,从而将所述第一储物间室降低到低于所述第二储物间室的深冷温度;
所述控制方法还包括:
获取所述第一蒸发器开启化霜的触发信号;
在接收到所述第一蒸发器开启化霜的触发信号后,执行所述第一蒸发器的化霜控制过程;
所述第一蒸发器的化霜控制过程包括:
关闭所述压缩机,并经第二预设时间后,开启所述第一加热装置,对所述第一蒸发器进行化霜;
在所述第一蒸发器的温度大于或等于第四预设温度时,关闭所述第一加热装置。
可选地,在执行冷换热器的化霜控制过程之前,还包括:
当接收到所述第一蒸发器开启化霜的触发信号时,先执行所述第一蒸发器的化霜控制过程,再执行所述冷换热器的化霜控制过程;
并且,所述控制方法还包括:
在执行所述冷换热器的化霜控制过程中,在所述第二储物间室需要制冷 时,开启所述压缩机。
可选地,所述冷藏冷冻装置还包括第三储物间室和第二蒸发器,所述第二蒸发器配置为向所述第三储物间室提供冷量,所述第二蒸发器的出端与所述热换热器的进端连通;
所述控制方法还包括:
获取所述第二蒸发器开启化霜的触发信号;
在接收到所述第二蒸发器开启化霜的触发信号后,当接收到所述第一蒸发器开启化霜的触发信号时,先执行所述第一蒸发器的化霜控制过程,再执行所述第二蒸发器的化霜控制过程。
可选地,所述冷藏冷冻装置还包括第二毛细管、冷凝器和切换阀,所述切换阀的进端与所述冷凝器的出端连通,所述切换阀的第一出端与所述第一毛细管的进端连接,所述切换阀的第二出端与所述第二毛细管的进端连接,所述第二蒸发器的进端与所述第二毛细管的出端连接;
所述控制方法还包括:
在执行所述第二蒸发器的化霜控制过程中,控制所述切换阀导通其第一出端与所述第一毛细管的进端,并在所述第一储物间室需要制冷和/或所述第二储物间室需要制冷时,开启所述压缩机;
在执行所述冷换热器的化霜控制过程中,在所述第二储物间室需要制冷和/或所述第三储物间室需要制冷时,开启所述压缩机,并在所述第三储物间室需要制冷时,控制所述切换阀导通其第二出端与所述第二毛细管的进端,在所述第二储物间室需要制冷时,控制所述切换阀导通其第一出端与所述第一毛细管的进端。
可选地,所述冷藏冷冻装置还包括用于对所述第二蒸发器化霜的第二加热装置;
所述第二蒸发器的化霜控制过程包括:
开启所述第二加热装置;
判断所述第二蒸发器的温度是否大于等于第五预设温度;
若是,关闭所述第二加热装置。
根据本发明的另一方面,本发明还提供了一种冷藏冷冻装置,包括:
箱体,其内限定有第一储物间室;
半导体制冷系统,包括具有热端和冷端的半导体制冷片、与所述冷端连接的冷换热器,所述冷换热器配置为向所述第一储物间室提供冷量,所述半导体制冷片配置为在其被通正向电压时,所述热端释放热量,所述冷端吸收热量,并配置为在其被通反向电压时,所述热端吸收热量,所述冷端释放热 量;
控制器,其具有存储器以及处理器,并且所述存储器内存储有计算机程序,所述计算机程序被所述处理器执行时用于实现前述任一项所述冷藏冷冻装置的化霜控制方法。
可选地,所述半导体制冷系统还包括与所述热端连接的热换热器,以对所述热端进行散热;
所述箱体还限定有第二储物间室,所述冷藏冷冻装置还包括压缩机、第一毛细管、第一蒸发器和用于对所述第一蒸发器化霜的第一加热装置;
所述第一蒸发器配置为向所述第二储物间室提供冷量,所述热换热器设置于所述第一毛细管的出端与所述第一蒸发器的进端之间,以使得制冷剂流经所述热换热器,对所述热端进行散热,从而将所述第一储物间室降低到低于所述第二储物间室的深冷温度。
可选地,所述箱体还限定有第三储物间室;
所述冷藏冷冻装置还包括第二蒸发器、第二毛细管、冷凝器、切换阀和用于对所述第二蒸发器化霜的第二加热装置;
所述第二蒸发器配置为向所述第三储物间室提供冷量,所述第二蒸发器的进端与所述第二毛细管的出端连接,所述第二蒸发器的出端与所述热换热器的进端连通,所述切换阀的进端与所述冷凝器的出端连通,所述切换阀的第一出端与所述第一毛细管的进端连接,所述切换阀的第二出端与所述第二毛细管的进端连接。
本发明的冷藏冷冻装置及其化霜控制方法,根据冷换热器的温度动态调整向半导体制冷片输入的反向电压值,可将冷换热器在化霜过程中的逐渐变化的化霜需求与输入的反向电压值进行适应匹配,在满足冷换热器的化霜需求的同时,降低耗电量。
进一步地,本发明的冷藏冷冻装置及其化霜控制方法,当第一蒸发器与第二蒸发器和/或冷换热器同时需要化霜时,优先保证了第一蒸发器的化霜,可在第二蒸发器或冷换热器化霜过程中,根据制冷需求开启压缩机或半导体制冷系统,从而平衡各储物间室的制冷需求,提升制冷效率。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域 技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冷藏冷冻装置的结构示意图;
图2是根据本发明一个实施例的冷藏冷冻装置的制冷系统的示意图;
图3是根据本发明一个实施例的冷藏冷冻装置的半导体制冷系统的示意图;
图4是根据本发明一个实施例的冷藏冷冻装置的化霜控制方法的示意图;
图5是根据本发明一个实施例的冷藏冷冻装置的化霜控制方法的详细流程示意图;
图6是根据本发明一个实施例的冷藏冷冻装置的化霜控制方法中冷换热器的化霜控制流程图;
图7是根据本发明一个实施例的冷藏冷冻装置的化霜控制方法中第一蒸发器的化霜控制流程图;
图8是根据本发明一个实施例的冷藏冷冻装置的化霜控制方法中第二蒸发器的化霜控制流程图;以及
图9是根据本发明一个实施例的冷藏冷冻装置的部件连接示意图。
具体实施方式
本实施例首先提供了一种冷藏冷冻装置10,为了便于描述,说明书中提及的“上”、“下”、“前”、“后”、“顶”、“底”、“横向”等方位均按照冷藏冷冻装置10正常工作状态下的空间位置关系进行限定。
以下参照图1至图3以及图9对本实施例的冷藏冷冻装置10进行详细描述。
本实施例的冷藏冷冻装置10可以为冰箱、冷柜等具有冷藏冷冻功能的装置。冷藏冷冻装置10包括第一储物间室110、用于调节第一储物间室110的温度的半导体制冷系统150,半导体制冷系统150包括具有热端153和冷端154的半导体制冷片155、与冷端154连接的冷换热器152,冷换热器152配置为向第一储物间室110提供冷量,半导体制冷片155配置为在其被输入正向电压时,热端153释放热量,冷端154吸收热量,并配置为在其被输入反向电压时,热端153吸收热量,冷端154释放热量。
如本领域技术人员所熟知,半导体制冷系统150主要是利用了珀耳帖效应,当电流通过两种不同半导体材料串联成的电偶时,在电偶的两端即可分别吸收热量和放出热量,可以实现制冷的目的。半导体制冷片155在通电之后热端153和冷端154会产生温差,当热端153的温度降低时,冷端154的 温度也会随之降低。因此,为降低冷端154的温度,热端153释放的热量需要被持续的散发,才能保持冷端154温度的降低。
本实施例中,半导体制冷系统150的热端153可借助压缩制冷系统进行散热,具体地,半导体制冷系统150还包括与热端153连接的热换热器151,以对热端153进行散热,冷藏冷冻装置10还包括第二储物间室130、压缩机101、第一毛细管106、第一蒸发器104,第一蒸发器104配置为向第二储物间室130提供冷量,热换热器151设置于第一毛细管106的出端与第一蒸发器104的进端之间,以使得制冷剂流经热换热器151,对热端153进行散热,从而将第一储物间室110降低到低于第二储物间室130的深冷温度。
压缩机101出口排出的高温高压状态的制冷剂气体进入冷凝器102,由冷凝器102冷凝成高压常温的制冷剂液体,制冷剂液体进入第一毛细管106经过第一毛细管106的节流变为低温低压制冷剂,低温低压制冷剂进入热换热器151,与热端153进行热交换。当半导体制冷片155被施加正向电压时,制冷剂在热换热器151中蒸发吸热快速带走热端153的热量,将热端153维持在低温环境,借助半导体本身的制冷温差,实现冷端154的温度的进一步下降,通过冷换热器152的换热,在间接接触或强制对流的方式,实现第一储物间室110的深度制冷,满足深冷需求。
进一步地,冷藏冷冻装置10还可包括第三储物间室120和第二蒸发器103,第二蒸发器103配置为向第三储物间室120提供冷量,第二蒸发器103的出端与热换热器151的进端连通。
为实现对第二储物间室130和第三储物间室120的不同设定温度的制冷需求,本实施例的冷藏冷冻装置10还可包括第二毛细管107和切换阀105,切换阀105的进端与冷凝器102的出端连通,切换阀105的第一出端与第一毛细管106的进端连接,切换阀105的第二出端与第二毛细管107的进端连接,第二蒸发器103的进端与第二毛细管107的出端连接。
当第一储物间室110和/或第二储物间室130需要制冷时,切换阀105受控导通其第一出端与第一毛细管106的进端,当第三储物间室120需要制冷时,切换阀105受控导致其第二出端与第二毛细管107的进端。
第一毛细管106的流量应小于第二毛细管107的流量,第一毛细管106的流量较小,节流效果较强,当切换阀105切换为将其第一出端与第一毛细管106的进端导通时,可使得第一蒸发器104、热换热器151的温度更低,从而实现第一储物间室110的深冷需求和第二储物间室130的低温需求,当切换阀105切换为将其第二出端与第二毛细管107的进端导通时,可降低第二蒸发器103的温度,实现第三储物间室120的温度需求,使得第三储物间 室120的温度高于第二储物间室130的温度,从而形成温度区间不同的三个储物间室。
如上,第一储物间室110可为深冷室,第二储物间室130为冷冻室,第三储物间室120为冷藏室。深冷室的温度区间可以为-30—-40℃,冷冻室的温度区间可以为-15—-24℃,冷藏室的温度区间可为1-9℃,前述温度区间仅为示例,本发明对此不作具体限制。
为加速各储物间室的制冷,冷藏冷冻装置10还可包括第一风机156、第二风机108和第三风机109,第一风机156配置为促使气流在冷换热器152与第一储物间室110之间循环,从而加速第一储物间室110的降温;第二风机108配置为促使气流在第一蒸发器104与第二储物间室130之间循环,加速第二储物间室130的降温;第三风机109则配置为促使气流在第二蒸发器103与第三储物间室120之间循环,加速第三储物间室120的降温。
如附图所示,本实施例的冷藏冷冻装置10还可包括制冰室140,第二蒸发器103可为制冰室140提供冷量。冷藏冷冻装置10的各间室的其中一个分布方式可以为:制冰室140、第一储物间室110可沿横向分布,第二储物间室130位于制冰室140和第一储物间室110的下方,第三储物间室120位于制冰室140和第一储物间室110的上方。
冷藏冷冻装置10还可包括用于对第一蒸发器104化霜的第一加热装置170和用于对第二蒸发器103化霜的第二加热装置180。第一加热装置170、第二加热装置180均可为加热丝,在其通电时,对对应的蒸发器进行化霜。
而针对冷换热器152的化霜,传统半导体制冷系统150中,一般向半导体制冷片155输入固定的反向电压,使得热端153与冷端154转换,热端153吸收热量,冷端154释放热量,融化冷换热器152上的霜层,达到对冷换热器152化霜的目的。但是,在化霜过程中,半导体制冷片155被输入的反向电压始终不变,增加了耗电量,造成了不必要的能源浪费。
为此,基于前述的冷藏冷冻装置10,参见图4至图8,本实施例提供了一种冷藏冷冻装置10的化霜控制方法。
首先,针对冷换热器152的化霜,本实施例提供了一种动态调整向半导体制冷片155输入的反向电压的控制方式,具体地,如图4所示,本实施例的控制方法包括:
S402,获取冷换热器152开启化霜的触发信号;
S404,在接收到冷换热器152开启化霜的触发信号后,执行冷换热器152的化霜控制过程;
冷换热器152的化霜控制过程包括:
S406,向半导体制冷片155输入第一反向电压;
S408,检测冷换热器152的温度;
S410,根据冷换热器152的温度动态调整向半导体制冷片155输入的反向电压值。
冷藏冷冻装置10可根据第一储物间室110的累计开门时间和半导体制冷片155被输入正向电压的累计运行时间而确定冷换热器152开启化霜的触发时机,以避免冷换热器152霜层过厚而影响制冷效率,保证冷换热器152的及时化霜。
本实施例的化霜控制方法根据冷换热器152的温度动态调整向半导体制冷片155输入的反向电压值,可将冷换热器152在化霜过程中的逐渐变化的化霜需求与输入的反向电压值进行适应匹配,在满足冷换热器152的化霜需求的同时,降低耗电量。
在其中一个实施例中,根据冷换热器152的温度动态调整向半导体制冷片155输入的反向电压值的步骤包括:
当冷换热器152的温度大于等于第一预设温度小于第二预设温度时,向半导体制冷片155输入小于第一反向电压的第二反向电压;
当冷换热器152的温度大于等于第二预设温度小于第三预设温度时,向半导体制冷片155输入小于第二反向电压的第三反向电压;
当冷换热器152的温度大于等于第三预设温度时,停止向半导体制冷片155输入电压。
在对冷换热器152化霜的过程中,在初始化霜阶段,由于冷换热器152的温度较低,霜层厚度较厚,需要更多的热量升高冷换热器152的温度,为此,首先向半导体制冷片155输入较大的第一反向电压,结霜较多的冷换热器152可充分利用冷端154释放的热量,随着冷换热器152的温度逐渐升高,霜层的逐渐融化,霜层厚度越来越小,逐渐降低向半导体制冷片155输入的反向电压值,直至当冷换热器152的温度升高到一定程度,停止向半导体制冷片155输入电压。
本实施例的控制方法将冷换热器152的温度变化划分为三个预设参考值,随着冷换热器152的温度的增加,霜层的融化,向半导体制冷片155输入的反向电压的值越小,直至断电,从而满足冷换热器152的化霜需求,降低能耗。
第一反向电压可为半导体制冷片155的最大反向电压,第二反向电压可为额定反向电压,第三反向电压可为最小反向电压,以简化对半导体制冷片155的电源的控制。
第一预设温度、第二预设温度、第三预设温度可根据实验测试预先设定,其中,第三预设温度应大于0℃,以保证在断电时,冷换热器152的温度处于零上,使得冷换热器152的霜层能够及时融化。例如,第一预设温度、第二预设温度、第三预设温度可分别为-5℃、1℃、6℃。
当接收到所述冷换热器152开启化霜的触发信号时,半导体制冷系统150可能处于通电状,正为第一储物间室110提供冷量,或者,第一储物间室110达到关机点,半导体制冷系统150处于断电状态,为此,在对半导体制冷片155输入反向电压之前,需检测半导体制冷片155的通电状态,并对正在通正向电压运行中的半导体制冷片155断电第一预设时间,再向半导体制冷片155输入第一反向电压。半导体制冷片155运行时,冷端154的温度、冷换热器152的温度较低,在输入反向电压之前,使得半导体制冷片155断电一段时间,使得冷换热器152的余冷可继续被转移到第一储物间室110,避免输入反向电压过早而延长冷换热器152的化霜控制过程,既造成了能源浪费,又增加了能耗。
第一蒸发器104在为第二储物间室130供冷的过程中,同样存在结霜的问题,本实施例的控制方法还提供了第一蒸发器104的化霜控制方式,具体地,控制方法还包括:
获取第一蒸发器104开启化霜的触发信号;
在接收到第一蒸发器104开启化霜的触发信号后,执行第一蒸发器104的化霜控制过程;
第一蒸发器104的化霜控制过程包括:
关闭压缩机101,并经第二预设时间后,开启第一加热装置170,对第一蒸发器104进行化霜;
在第一蒸发器104的温度大于或等于第四预设温度时,关闭第一加热装置170。
冷藏冷冻装置10可根据第一蒸发器104的累计制冷时间和第二储物间室130的累计开门时间确定第一蒸发器104开启化霜的触发时机,以及时对第一蒸发器104进行化霜,保证制冷效率。
第一蒸发器104化霜过程中,压缩制冷系统和半导体制冷系统150需均处于关闭状态,在压缩机101被关闭后,经一段时间后再开启第一加热装置170,以利用第一蒸发器104的余冷继续给第二储物间室130制冷,避免压缩机101关闭后立即开启第一加热装置170而造成能量的浪费。
随着第一蒸发器104的温度的逐渐升高,霜层逐渐融化,当第一蒸发器104升高到一定温度时,化霜基本完成,应及时关闭第一加热装置170。
本实施例的控制方法还对第一蒸发器104、冷换热器152的化霜的时机进行了规定,具体地,执行冷换热器152的化霜控制过程之前,还包括:
当接收到第一蒸发器104开启化霜的触发信号时,先执行第一蒸发器104的化霜控制过程,再执行冷换热器152的化霜控制过程。
也即是说,在确定冷换热器152和第一蒸发器104均需要开启化霜时,并不是直接执行冷换热器152的化霜控制过程,而是先执行第一蒸发器104的前述化霜控制过程,再执行冷换热器152的前述化霜控制过程。
由于第一蒸发器104处于压缩制冷系统的末端,第一蒸发器104化霜过程中,压缩机101需处于关机状态,而半导体制冷系统150中的热端153的散热需要依赖于压缩制冷系统,当压缩机101关机时,半导体制冷系统150由于不能将第一储物间室110降低到设定温度,也需要处于关机状态,这就导致在第一蒸发器104化霜过程中其他间室无法进行制冷;而在冷换热器152化霜过程中,热端153产生的冷量通过热换热器151传向制冷剂,压缩制冷系统可处于正常的制冷控制中。
为此,当第一蒸发器104与冷换热器152均需要化霜时,需要优先保证第一蒸发器104的化霜需求,在第一蒸发器104完成化霜之后,再进行冷换热器152的化霜,从而可兼顾第二储物间室130和第一储物间室110的制冷需求,保证制冷效果。
如前所述,冷换热器152化霜过程中,压缩制冷系统可处于正常的制冷控制中。也即是说,控制方法还包括:在执行冷换热器152的化霜控制过程中,在第二储物间室130需要制冷时,可开启压缩机101,从而不会影响第二储物间室130的制冷。
进一步地,控制方法还可包括:
获取第二蒸发器103开启化霜的触发信号;
在接收到第二蒸发器103开启化霜的触发信号后,当接收到第一蒸发器104开启化霜的触发信号时,先执行第一蒸发器104的化霜控制过程,再执行第二蒸发器103的化霜控制过程,以优先保证第一蒸发器104的化霜。
由于第一蒸发器104化霜时,压缩机101需要停机,而第二蒸发器103化霜时,压缩机101和半导体制冷系统150可根据第三储物间室120、第一储物间室110的制冷需求开启,冷换热器152化霜时,压缩机101可根据第二储物间室130、第三储物间室120的制冷需求开启,因此,通过优先保证第一蒸发器104的化霜,可在第二蒸发器103或冷换热器152化霜过程中,根据制冷需求开启压缩机101或半导体制冷系统150,从而可平衡各储物间室的制冷需求,提升制冷效率。
具体地,在执行第二蒸发器103的化霜控制过程中,控制切换阀105导通其第一出端与第一毛细管106的进端,并在第一储物间室110需要制冷和/或第二储物间室130需要制冷时,开启压缩机101;
在执行冷换热器152的化霜控制过程中,在第二储物间室130需要制冷和/或第三储物间室120需要制冷时,开启压缩机101,并在第三储物间室120需要制冷时,控制切换阀105导通其第二出端与第二毛细管107的进端,在第二储物间室130需要制冷时,控制切换阀105导通其第一出端与第一毛细管106的进端。
第二蒸发器103的化霜控制过程可包括:
开启第二加热装置180;
判断第二蒸发器103的温度是否大于等于第五预设温度;
若是,关闭第二加热装置180。
在开启第二加热装置180之前,第二蒸发器103的化霜控制过程还可包括控制第三风机109以预设转速运行预设时间,以利用第三储物间室120的空气为第二蒸发器103进行预加热,同时,利用第二蒸发器103的余冷,起到节能的作用。
为更清楚地理解本实施例的化霜控制方法,如图5所示,本实施例给出了冷藏冷冻装置10的化霜控制方法的一种流程,具体地,化霜控制方法包括:
S502,分别获取冷换热器152、第一蒸发器104、第二蒸发器103开启化霜的对应的触发信号;
S504,仅接收到冷换热器152开启化霜的触发信号,执行①,仅接收到第一蒸发器104开启化霜的触发信号,执行②,仅接收到第二蒸发器103开启化霜的触发信号,执行③,同时接收到第一蒸发器104与第二蒸发器103和/或冷换热器152开启化霜的对应的触发信号时,先执行②,再执行③和/或①。
其中①为冷换热器152的化霜控制过程,如图6所示,冷换热器152的化霜控制过程具体为:
S602,根据第二储物间室130、第三储物间室120的制冷需求控制压缩机101、切换阀105;
S604,关闭第一风机156,5min后,向半导体制冷片155输入最大反向电压;
S606,检测冷换热器152的温度;
S608,当冷换热器152的温度大于等于-5℃小于1℃时,将向半导体制 冷片155输入的电压调整为额定反向电压;
S610,当冷换热器152的温度大于等于1℃小于6℃时,将向半导体制冷片155输入的电压调整为最小反向电压;
S612,当冷换热器152的温度大于等于6℃时,关闭电压。
其中②为第一蒸发器104的化霜控制过程,如图7所示,第一蒸发器104的化霜控制过程具体为:
S702,关闭压缩机101,停止向半导体制冷片155输入正向电压;
S704,5min后,启动第一加热装置170,并检测第一蒸发器104的温度;
S706,当第一蒸发器104的温度大于等于6℃时,关闭第一加热装置170。
其中③为第二蒸发器103的化霜控制过程,如图8所示,第二蒸发器103的化霜控制过程具体为:
S802,控制切换阀105导通其第一出端与第一毛细管106的进端,根据第一储物间室110、第二储物间室130的制冷需求控制压缩机101,控制第三风机109以最小转速运行;
S804,10min后,开启第二加热装置180,并检测第二蒸发器103的温度;
S806,当第二蒸发器103的温度大于等于6℃时,关闭第二加热装置180。
本实施例的化霜控制方法,当第一蒸发器104与第二蒸发器103和/或冷换热器152同时需要化霜时,优先保证了第一蒸发器104的化霜,可在第二蒸发器103或冷换热器152化霜过程中,根据制冷需求开启压缩机101或半导体制冷系统150,从而平衡各储物间室的制冷需求,提升制冷效率。另外,在冷换热器152的控制过程中,根据冷换热器152的温度动态调整向半导体制冷片155输入的反向电压值,可将冷换热器152在化霜过程中逐渐变化的化霜需求与输入的反向电压值进行适应匹配,在满足冷换热器152的化霜需求的同时,降低耗电量。
基于前述任一实施例的化霜控制方法,如图9所示,本实施例的冷藏冷冻装置10还包括控制器160,其具有存储器161以及处理器162,并且存储器161内存储有计算机程序1611,计算机程序1611被处理器162执行时用于实现前述任一项的化霜控制方法。
处理器162可以是一个中央处理单元(central processing unit,简称CPU),或者为数字处理单元等等。处理器162通过通信接口收发数据。存储器161用于存储处理器162执行的程序。存储器161是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何介质,也可以是多个存储器161的组合。上述计算机程序1611可以从计算机可读存储 介质下载到相应计算/处理设备或者经由网络(例如因特网、局域网、广域网和/或无线网络)下载到计算机或外部存储设备。
计算机程序1611可以完全布置在本地计算设备、作为独立的软件包、部分布置在本地计算设备并且部分布置在远程计算设备上、或者完全布置在远程计算设备或服务器(包括云端设备)上来执行。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (11)

  1. 一种冷藏冷冻装置的化霜控制方法,所述冷藏冷冻装置包括第一储物间室、用于调节所述第一储物间室的温度的半导体制冷系统,所述半导体制冷系统包括具有热端和冷端的半导体制冷片、与所述冷端连接的冷换热器,所述冷换热器配置为向所述第一储物间室提供冷量,所述半导体制冷片配置为在其被输入正向电压时,所述热端释放热量,所述冷端吸收热量,并配置为在其被输入反向电压时,所述热端吸收热量,所述冷端释放热量;
    所述控制方法包括:
    获取所述冷换热器开启化霜的触发信号;
    在接收到所述冷换热器开启化霜的触发信号后,执行所述冷换热器的化霜控制过程;
    所述冷换热器的化霜控制过程包括:
    向所述半导体制冷片输入第一反向电压;
    检测所述冷换热器的温度;
    根据所述冷换热器的温度动态调整向所述半导体制冷片输入的反向电压值。
  2. 根据权利要求1所述的化霜控制方法,在所述向所述半导体制冷片输入第一反向电压的步骤之前,还包括:
    检测所述半导体制冷片的通电状态;
    对正在通正向电压运行中的所述半导体制冷片断电第一预设时间。
  3. 根据权利要求1所述的化霜控制方法,所述根据所述冷换热器的温度动态调整向所述半导体制冷片输入的反向电压值的步骤包括:
    当所述冷换热器的温度大于等于第一预设温度小于第二预设温度时,向所述半导体制冷片输入小于所述第一反向电压的第二反向电压;
    当所述冷换热器的温度大于等于所述第二预设温度小于第三预设温度时,向所述半导体制冷片输入小于所述第二反向电压的第三反向电压;
    当所述冷换热器的温度大于等于所述第三预设温度时,停止向所述半导体制冷片输入电压。
  4. 根据权利要求1所述的化霜控制方法,其中
    所述半导体制冷系统还包括与所述热端连接的热换热器,以对所述热端 进行散热;
    所述冷藏冷冻装置还包括第二储物间室、压缩机、第一毛细管、第一蒸发器和用于对所述第一蒸发器化霜的第一加热装置,所述第一蒸发器配置为向所述第二储物间室提供冷量,所述热换热器设置于所述第一毛细管的出端与所述第一蒸发器的进端之间,以使得制冷剂流经所述热换热器,对所述热端进行散热,从而将所述第一储物间室降低到低于所述第二储物间室的深冷温度;
    所述控制方法还包括:
    获取所述第一蒸发器开启化霜的触发信号;
    在接收到所述第一蒸发器开启化霜的触发信号后,执行所述第一蒸发器的化霜控制过程;
    所述第一蒸发器的化霜控制过程包括:
    关闭所述压缩机,并经第二预设时间后,开启所述第一加热装置,对所述第一蒸发器进行化霜;
    在所述第一蒸发器的温度大于或等于第四预设温度时,关闭所述第一加热装置。
  5. 根据权利要求4所述的化霜控制方法,在执行冷换热器的化霜控制过程之前,还包括:
    当接收到所述第一蒸发器开启化霜的触发信号时,先执行所述第一蒸发器的化霜控制过程,再执行所述冷换热器的化霜控制过程;
    并且,所述控制方法还包括:
    在执行所述冷换热器的化霜控制过程中,在所述第二储物间室需要制冷时,开启所述压缩机。
  6. 根据权利要求5所述的化霜控制方法,其中
    所述冷藏冷冻装置还包括第三储物间室和第二蒸发器,所述第二蒸发器配置为向所述第三储物间室提供冷量,所述第二蒸发器的出端与所述热换热器的进端连通;
    所述控制方法还包括:
    获取所述第二蒸发器开启化霜的触发信号;
    在接收到所述第二蒸发器开启化霜的触发信号后,当接收到所述第一蒸发器开启化霜的触发信号时,先执行所述第一蒸发器的化霜控制过程,再执行所述第二蒸发器的化霜控制过程。
  7. 根据权利要求6所述的化霜控制方法,其中
    所述冷藏冷冻装置还包括第二毛细管、冷凝器和切换阀,所述切换阀的进端与所述冷凝器的出端连通,所述切换阀的第一出端与所述第一毛细管的进端连接,所述切换阀的第二出端与所述第二毛细管的进端连接,所述第二蒸发器的进端与所述第二毛细管的出端连接;
    所述控制方法还包括:
    在执行所述第二蒸发器的化霜控制过程中,控制所述切换阀导通其第一出端与所述第一毛细管的进端,并在所述第一储物间室需要制冷和/或所述第二储物间室需要制冷时,开启所述压缩机;
    在执行所述冷换热器的化霜控制过程中,在所述第二储物间室需要制冷和/或所述第三储物间室需要制冷时,开启所述压缩机,并在所述第三储物间室需要制冷时,控制所述切换阀导通其第二出端与所述第二毛细管的进端,在所述第二储物间室需要制冷时,控制所述切换阀导通其第一出端与所述第一毛细管的进端。
  8. 根据权利要求6所述的化霜控制方法,其中,所述冷藏冷冻装置还包括用于对所述第二蒸发器化霜的第二加热装置;
    所述第二蒸发器的化霜控制过程包括:
    开启所述第二加热装置;
    判断所述第二蒸发器的温度是否大于等于第五预设温度;
    若是,关闭所述第二加热装置。
  9. 一种冷藏冷冻装置,包括:
    箱体,其内限定有第一储物间室;
    半导体制冷系统,包括具有热端和冷端的半导体制冷片、与所述冷端连接的冷换热器,所述冷换热器配置为向所述第一储物间室提供冷量,所述半导体制冷片配置为在其被通正向电压时,所述热端释放热量,所述冷端吸收热量,并配置为在其被通反向电压时,所述热端吸收热量,所述冷端释放热量;
    控制器,其具有存储器以及处理器,并且所述存储器内存储有计算机程序,所述计算机程序被所述处理器执行时用于实现根据权利要求1至8中任一项所述冷藏冷冻装置的化霜控制方法。
  10. 根据权利要求9所述的冷藏冷冻装置,其中
    所述半导体制冷系统还包括与所述热端连接的热换热器,以对所述热端进行散热;
    所述箱体还限定有第二储物间室,所述冷藏冷冻装置还包括压缩机、第一毛细管、第一蒸发器和用于对所述第一蒸发器化霜的第一加热装置;
    所述第一蒸发器配置为向所述第二储物间室提供冷量,所述热换热器设置于所述第一毛细管的出端与所述第一蒸发器的进端之间,以使得制冷剂流经所述热换热器,对所述热端进行散热,从而将所述第一储物间室降低到低于所述第二储物间室的深冷温度。
  11. 根据权利要求10所述的冷藏冷冻装置,其中
    所述箱体还限定有第三储物间室;
    所述冷藏冷冻装置还包括第二蒸发器、第二毛细管、冷凝器、切换阀和用于对所述第二蒸发器化霜的第二加热装置;
    所述第二蒸发器配置为向所述第三储物间室提供冷量,所述第二蒸发器的进端与所述第二毛细管的出端连接,所述第二蒸发器的出端与所述热换热器的进端连通,所述切换阀的进端与所述冷凝器的出端连通,所述切换阀的第一出端与所述第一毛细管的进端连接,所述切换阀的第二出端与所述第二毛细管的进端连接。
PCT/CN2022/071766 2021-03-17 2022-01-13 冷藏冷冻装置及其化霜控制方法 WO2022193807A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110287112.X 2021-03-17
CN202110287112.XA CN115111871A (zh) 2021-03-17 2021-03-17 冷藏冷冻装置及其化霜控制方法

Publications (1)

Publication Number Publication Date
WO2022193807A1 true WO2022193807A1 (zh) 2022-09-22

Family

ID=83321707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071766 WO2022193807A1 (zh) 2021-03-17 2022-01-13 冷藏冷冻装置及其化霜控制方法

Country Status (2)

Country Link
CN (1) CN115111871A (zh)
WO (1) WO2022193807A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082246A1 (zh) * 2022-10-20 2024-04-25 深圳市虎一科技有限公司 一种烹饪设备及其除霜方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065463A (ja) * 1998-08-25 2000-03-03 Fujitsu General Ltd 冷凍冷蔵庫
CN106403442A (zh) * 2015-07-31 2017-02-15 青岛海尔智能技术研发有限公司 冰箱及其除霜方法
CN207631086U (zh) * 2017-07-31 2018-07-20 西南交通大学 半导体制冷的冷藏车
CN111397045A (zh) * 2020-04-20 2020-07-10 珠海格力电器股份有限公司 一种基于半导体换热器的机组、其控制方法及空调
CN211084550U (zh) * 2019-09-29 2020-07-24 青岛海尔电冰箱有限公司 冰箱
CN111550964A (zh) * 2020-04-29 2020-08-18 珠海格力电器股份有限公司 一种化霜方法、制冷设备及化霜控制方法、商用制冷机组

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102699772B1 (ko) * 2019-02-28 2024-08-29 엘지전자 주식회사 냉장고의 제어 방법
CN110986410A (zh) * 2019-11-28 2020-04-10 海信(山东)冰箱有限公司 一种低温储藏装置的制冷系统、低温储藏装置及控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065463A (ja) * 1998-08-25 2000-03-03 Fujitsu General Ltd 冷凍冷蔵庫
CN106403442A (zh) * 2015-07-31 2017-02-15 青岛海尔智能技术研发有限公司 冰箱及其除霜方法
CN207631086U (zh) * 2017-07-31 2018-07-20 西南交通大学 半导体制冷的冷藏车
CN211084550U (zh) * 2019-09-29 2020-07-24 青岛海尔电冰箱有限公司 冰箱
CN111397045A (zh) * 2020-04-20 2020-07-10 珠海格力电器股份有限公司 一种基于半导体换热器的机组、其控制方法及空调
CN111550964A (zh) * 2020-04-29 2020-08-18 珠海格力电器股份有限公司 一种化霜方法、制冷设备及化霜控制方法、商用制冷机组

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024082246A1 (zh) * 2022-10-20 2024-04-25 深圳市虎一科技有限公司 一种烹饪设备及其除霜方法

Also Published As

Publication number Publication date
CN115111871A (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
US20220026116A1 (en) Test chamber and method
JP2009085501A (ja) 冷凍装置
JP4311924B2 (ja) フリークーリング利用冷熱源設備
KR101620430B1 (ko) 냉장고 및 그 제어방법
WO2022193807A1 (zh) 冷藏冷冻装置及其化霜控制方法
RU2432532C2 (ru) Способ управления холодильником и холодильник с возможностью временной задержки включения компрессора
WO2022183849A1 (zh) 冷藏冷冻装置及其控制方法
US20200263916A1 (en) Refrigeration machine
KR20150058995A (ko) 냉장고 및 그 제어 방법
US8863535B2 (en) Air conditioning apparatus and control method thereof
WO2024045573A1 (zh) 冰箱温度的控制方法及单温控的风冷冰箱
CN217685313U (zh) 一种空调驱动装置的冷却系统
JP2003214682A (ja) 比例制御弁を用いたブラインの温度制御装置
US11796241B2 (en) Method and apparatus for controlling humidity within a compartment of refrigeration appliance
WO2018108117A1 (zh) 提高直线压缩机稳定性的冰箱及其控制方法
JP5870237B2 (ja) 冷蔵庫
WO2018108118A1 (zh) 提高直线压缩机稳定性的冰箱及其控制方法
US20220235977A1 (en) Method for controlling refrigerator
KR20030065970A (ko) 전자식 냉장고의 저온 운전제어방법
WO2020142930A1 (zh) 冰箱及其制冷控制方法与装置
JPH07218003A (ja) 冷凍装置の制御方式
CN113959022B (zh) 空调机组及其控制方法
KR20060066439A (ko) 공기조화기의 실외팬 제어 방법
CN219713716U (zh) 一种用于冰箱的制冷系统及冰箱
CN113790541B (zh) 制冷系统、控制方法及制冷设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22770169

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22770169

Country of ref document: EP

Kind code of ref document: A1