WO2022190742A1 - Method for producing hexagonal strontium ferrite powder - Google Patents
Method for producing hexagonal strontium ferrite powder Download PDFInfo
- Publication number
- WO2022190742A1 WO2022190742A1 PCT/JP2022/004898 JP2022004898W WO2022190742A1 WO 2022190742 A1 WO2022190742 A1 WO 2022190742A1 JP 2022004898 W JP2022004898 W JP 2022004898W WO 2022190742 A1 WO2022190742 A1 WO 2022190742A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strontium ferrite
- magnetic
- hexagonal strontium
- raw material
- ferrite powder
- Prior art date
Links
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 title claims abstract description 114
- 229910052712 strontium Inorganic materials 0.000 title claims abstract description 108
- 229910000859 α-Fe Inorganic materials 0.000 title claims abstract description 108
- 239000000843 powder Substances 0.000 title claims abstract description 75
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 37
- 230000005291 magnetic effect Effects 0.000 claims abstract description 141
- 239000002994 raw material Substances 0.000 claims abstract description 71
- 239000000203 mixture Substances 0.000 claims abstract description 46
- 239000011521 glass Substances 0.000 claims abstract description 36
- 238000010304 firing Methods 0.000 claims abstract description 19
- 238000010791 quenching Methods 0.000 claims abstract description 13
- 230000000171 quenching effect Effects 0.000 claims abstract description 13
- UQGFMSUEHSUPRD-UHFFFAOYSA-N disodium;3,7-dioxido-2,4,6,8,9-pentaoxa-1,3,5,7-tetraborabicyclo[3.3.1]nonane Chemical compound [Na+].[Na+].O1B([O-])OB2OB([O-])OB1O2 UQGFMSUEHSUPRD-UHFFFAOYSA-N 0.000 claims abstract description 6
- 230000001376 precipitating effect Effects 0.000 claims abstract description 3
- 239000000155 melt Substances 0.000 claims description 27
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 23
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 23
- 238000001816 cooling Methods 0.000 claims description 17
- 239000000463 material Substances 0.000 claims description 16
- 238000010306 acid treatment Methods 0.000 claims description 12
- 238000005245 sintering Methods 0.000 claims description 11
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims description 5
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 claims description 5
- 229910000018 strontium carbonate Inorganic materials 0.000 claims description 5
- IATRAKWUXMZMIY-UHFFFAOYSA-N strontium oxide Chemical compound [O-2].[Sr+2] IATRAKWUXMZMIY-UHFFFAOYSA-N 0.000 abstract description 12
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 abstract description 6
- 239000002245 particle Substances 0.000 description 58
- 239000000758 substrate Substances 0.000 description 29
- 150000001875 compounds Chemical class 0.000 description 28
- 125000004429 atom Chemical group 0.000 description 27
- 239000006247 magnetic powder Substances 0.000 description 27
- 229910052751 metal Inorganic materials 0.000 description 21
- 239000002184 metal Substances 0.000 description 21
- 239000000314 lubricant Substances 0.000 description 17
- 239000013078 crystal Substances 0.000 description 16
- 239000006249 magnetic particle Substances 0.000 description 16
- 239000011230 binding agent Substances 0.000 description 15
- 239000011148 porous material Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000002904 solvent Substances 0.000 description 13
- 238000001035 drying Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 12
- 239000003973 paint Substances 0.000 description 12
- 229920005989 resin Polymers 0.000 description 11
- 239000011347 resin Substances 0.000 description 11
- 239000011734 sodium Substances 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 10
- 230000005415 magnetization Effects 0.000 description 10
- -1 polyethylene terephthalate Polymers 0.000 description 10
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 9
- 238000002441 X-ray diffraction Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 238000002425 crystallisation Methods 0.000 description 8
- 239000002585 base Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 238000012986 modification Methods 0.000 description 6
- 230000004048 modification Effects 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 125000003118 aryl group Chemical group 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 229920002678 cellulose Polymers 0.000 description 4
- 239000001913 cellulose Substances 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 230000006911 nucleation Effects 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- AJCDFVKYMIUXCR-UHFFFAOYSA-N oxobarium;oxo(oxoferriooxy)iron Chemical compound [Ba]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O.O=[Fe]O[Fe]=O AJCDFVKYMIUXCR-UHFFFAOYSA-N 0.000 description 4
- 229920002312 polyamide-imide Polymers 0.000 description 4
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 3
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 239000004696 Poly ether ether ketone Substances 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000005280 amorphization Methods 0.000 description 3
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 3
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 125000004430 oxygen atom Chemical group O* 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920002530 polyetherether ketone Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920000915 polyvinyl chloride Polymers 0.000 description 3
- 239000004800 polyvinyl chloride Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 2
- 229920002284 Cellulose triacetate Polymers 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004695 Polyether sulfone Substances 0.000 description 2
- 239000004697 Polyetherimide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000004734 Polyphenylene sulfide Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910010413 TiO 2 Inorganic materials 0.000 description 2
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 2
- 229920001807 Urea-formaldehyde Polymers 0.000 description 2
- NNLVGZFZQQXQNW-ADJNRHBOSA-N [(2r,3r,4s,5r,6s)-4,5-diacetyloxy-3-[(2s,3r,4s,5r,6r)-3,4,5-triacetyloxy-6-(acetyloxymethyl)oxan-2-yl]oxy-6-[(2r,3r,4s,5r,6s)-4,5,6-triacetyloxy-2-(acetyloxymethyl)oxan-3-yl]oxyoxan-2-yl]methyl acetate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](OC(C)=O)[C@H]1OC(C)=O)O[C@H]1[C@@H]([C@@H](OC(C)=O)[C@H](OC(C)=O)[C@@H](COC(C)=O)O1)OC(C)=O)COC(=O)C)[C@@H]1[C@@H](COC(C)=O)O[C@@H](OC(C)=O)[C@H](OC(C)=O)[C@H]1OC(C)=O NNLVGZFZQQXQNW-ADJNRHBOSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 238000003490 calendering Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- LZCLXQDLBQLTDK-UHFFFAOYSA-N ethyl 2-hydroxypropanoate Chemical compound CCOC(=O)C(C)O LZCLXQDLBQLTDK-UHFFFAOYSA-N 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 238000007496 glass forming Methods 0.000 description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000004898 kneading Methods 0.000 description 2
- 239000000696 magnetic material Substances 0.000 description 2
- 239000002105 nanoparticle Substances 0.000 description 2
- 229920001643 poly(ether ketone) Polymers 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920001230 polyarylate Polymers 0.000 description 2
- 229920002577 polybenzoxazole Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920001123 polycyclohexylenedimethylene terephthalate Polymers 0.000 description 2
- 229920006393 polyether sulfone Polymers 0.000 description 2
- 229920001601 polyetherimide Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000002952 polymeric resin Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920000069 polyphenylene sulfide Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000005033 polyvinylidene chloride Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 230000003449 preventive effect Effects 0.000 description 2
- 230000001737 promoting effect Effects 0.000 description 2
- 238000010298 pulverizing process Methods 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 229920003002 synthetic resin Polymers 0.000 description 2
- VZGDMQKNWNREIO-UHFFFAOYSA-N tetrachloromethane Chemical compound ClC(Cl)(Cl)Cl VZGDMQKNWNREIO-UHFFFAOYSA-N 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- HXDLWJWIAHWIKI-UHFFFAOYSA-N 2-hydroxyethyl acetate Chemical compound CC(=O)OCCO HXDLWJWIAHWIKI-UHFFFAOYSA-N 0.000 description 1
- SSONCJTVDRSLNK-UHFFFAOYSA-N 2-methylprop-2-enoic acid;hydrochloride Chemical compound Cl.CC(=C)C(O)=O SSONCJTVDRSLNK-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001747 Cellulose diacetate Polymers 0.000 description 1
- DQEFEBPAPFSJLV-UHFFFAOYSA-N Cellulose propionate Chemical compound CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 DQEFEBPAPFSJLV-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920002433 Vinyl chloride-vinyl acetate copolymer Polymers 0.000 description 1
- FJWGYAHXMCUOOM-QHOUIDNNSA-N [(2s,3r,4s,5r,6r)-2-[(2r,3r,4s,5r,6s)-4,5-dinitrooxy-2-(nitrooxymethyl)-6-[(2r,3r,4s,5r,6s)-4,5,6-trinitrooxy-2-(nitrooxymethyl)oxan-3-yl]oxyoxan-3-yl]oxy-3,5-dinitrooxy-6-(nitrooxymethyl)oxan-4-yl] nitrate Chemical compound O([C@@H]1O[C@@H]([C@H]([C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O)O[C@H]1[C@@H]([C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@@H](CO[N+]([O-])=O)O1)O[N+]([O-])=O)CO[N+](=O)[O-])[C@@H]1[C@@H](CO[N+]([O-])=O)O[C@@H](O[N+]([O-])=O)[C@H](O[N+]([O-])=O)[C@H]1O[N+]([O-])=O FJWGYAHXMCUOOM-QHOUIDNNSA-N 0.000 description 1
- 239000003082 abrasive agent Substances 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 229920003180 amino resin Polymers 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- HKQOBOMRSSHSTC-UHFFFAOYSA-N cellulose acetate Chemical compound OC1C(O)C(O)C(CO)OC1OC1C(CO)OC(O)C(O)C1O.CC(=O)OCC1OC(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C1OC1C(OC(C)=O)C(OC(C)=O)C(OC(C)=O)C(COC(C)=O)O1.CCC(=O)OCC1OC(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C1OC1C(OC(=O)CC)C(OC(=O)CC)C(OC(=O)CC)C(COC(=O)CC)O1 HKQOBOMRSSHSTC-UHFFFAOYSA-N 0.000 description 1
- 229920006218 cellulose propionate Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000010908 decantation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000003759 ester based solvent Substances 0.000 description 1
- XSMJZKTTXZAXHD-UHFFFAOYSA-N ethene;2-methylprop-2-enoic acid Chemical group C=C.CC(=C)C(O)=O XSMJZKTTXZAXHD-UHFFFAOYSA-N 0.000 description 1
- 239000004210 ether based solvent Substances 0.000 description 1
- 229940116333 ethyl lactate Drugs 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 150000008282 halocarbons Chemical class 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 1
- 150000002430 hydrocarbons Chemical group 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000010954 inorganic particle Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000005453 ketone based solvent Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229910052976 metal sulfide Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000012768 molten material Substances 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 239000004848 polyfunctional curative Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002620 polyvinyl fluoride Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- 150000002910 rare earth metals Chemical group 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 150000003467 sulfuric acid derivatives Chemical class 0.000 description 1
- 229920003051 synthetic elastomer Polymers 0.000 description 1
- 239000005061 synthetic rubber Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- 229920006163 vinyl copolymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B5/00—Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
- G11B5/84—Processes or apparatus specially adapted for manufacturing record carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/10—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
- H01F1/11—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
Definitions
- the present disclosure relates to a method for producing hexagonal strontium ferrite powder used, for example, as a constituent material of magnetic layers of magnetic recording media.
- Patent Document 1 proposes a magnetic recording medium and a hexagonal strontium ferrite powder for magnetic recording used in the magnetic recording medium.
- magnetic recording media are expected to have both high magnetic properties that can ensure, for example, thermal stability and high-density recording.
- a method for producing hexagonal strontium ferrite powder as an embodiment of the present disclosure includes the following (1) to (3).
- a melt is obtained by melting a mixture containing sodium tetraborate (Na2B4O7) as a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide.
- the method for producing a hexagonal strontium ferrite powder as an embodiment of the present disclosure includes the above (1) to (3), so high magnetic properties that can ensure thermal stability and high magnetic recording density can be obtained.
- FIG. 1 is a cross-sectional view of a magnetic recording medium according to an embodiment of the present disclosure
- FIG. 2 is a flow chart showing a method for producing hexagonal strontium ferrite powder used in the magnetic layer of the magnetic recording medium shown in FIG. 1.
- FIG. FIG. 4 is a characteristic diagram showing the relationship between particle volume and coercive force in an experimental example regarding the magnetic recording medium of the present disclosure;
- the thermal stability of the magnetic particles is evaluated by a parameter Ku ⁇ V/kB ⁇ T including the magnetocrystalline anisotropy constant Ku. That is, it can be said that the higher the value of the parameter Ku ⁇ V/kB ⁇ T, the higher the thermal stability.
- the magnetocrystalline anisotropy constant Ku of the magnetic particles tends to be proportional to the coercive force Hc and the mass magnetization ⁇ s. Therefore, it is considered that the higher the numerical values of the magnetic properties such as the coercive force Hc and the mass magnetization ⁇ s, the higher the thermal stability of the magnetic particles.
- the present disclosure provides a method for producing a hexagonal strontium ferrite powder that exhibits high magnetic properties equal to or higher than those of conventional magnetic powder (for example, barium ferrite powder) while miniaturizing the magnetic material.
- FIG. 1 shows a cross-sectional configuration example of a magnetic recording medium 10 according to an embodiment of the present disclosure.
- the magnetic recording medium 10 has a laminated structure in which multiple layers are laminated.
- the magnetic recording medium 10 includes a long tape-shaped substrate 11, an underlayer 12 provided on one main surface 11A of the substrate 11, and a magnetic layer provided on the underlayer 12. 13 and a back layer 14 provided on the other main surface 11B of the base 11 .
- the surface 13S of the magnetic layer 13 is the surface on which the magnetic head travels in contact.
- the base layer 12 and the back layer 14 are provided as required, and may be omitted.
- the average thickness of the magnetic recording medium 10 is preferably 5.6 ⁇ m or less, for example.
- the magnetic recording medium 10 has a long tape shape, and travels along its own longitudinal direction during recording and reproduction operations.
- the magnetic recording medium 10 is preferably used in a recording/reproducing apparatus having a ring-shaped head as a recording head, for example.
- the base 11 is a nonmagnetic support that supports the underlayer 12 and the magnetic layer 13 .
- the substrate 11 has a long film shape.
- the upper limit of the average thickness of the substrate 11 is preferably 4.2 ⁇ m or less, more preferably 4.0 ⁇ m or less. When the upper limit of the average thickness of the substrate 11 is 4.2 ⁇ m or less, the recording capacity that can be recorded in one data cartridge can be made higher than that of a general magnetic recording medium.
- the lower limit of the average thickness of the substrate 11 is preferably 3 ⁇ m or more, more preferably 3.2 ⁇ m or more. When the lower limit of the average thickness of the substrate 11 is 3 ⁇ m or more, a decrease in the strength of the substrate 11 can be suppressed.
- the average thickness of the substrate 11 is obtained as follows. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared and cut into a length of 250 mm to prepare a sample. Subsequently, layers other than the substrate 11 of the sample, that is, the underlayer 12, the magnetic layer 13 and the back layer 14 are removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Next, using a Mitutoyo laser hologram (LGH-110C) as a measuring device, the thickness of the substrate 11, which is a sample, is measured at five or more points. Then, these measured values are simply averaged (arithmetic average) to calculate the average thickness of the substrate 11 . It is assumed that the measurement position is randomly selected from the sample.
- a Mitutoyo laser hologram LGH-110C
- the base 11 contains, for example, polyesters as a main component.
- the substrate 11 may contain PEEK (polyetheretherketone) as a main component.
- Substrate 11 may contain at least one of polyolefins, cellulose derivatives, vinyl resins, and other polymer resins in addition to polyesters or PEEK.
- the substrate 11 contains two or more of the above materials, the two or more materials may be mixed, copolymerized, or laminated.
- Polyesters contained in the substrate 11 include, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PCT (polycyclohexylenedimethylene terephthalate), PEB (polyethylene-p-oxybenzoate) and at least one of polyethylene bisphenoxycarboxylate.
- the polyolefins contained in the substrate 11 include, for example, at least one of PE (polyethylene) and PP (polypropylene).
- Cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate) and CAP (cellulose acetate propionate).
- Vinyl-based resins include, for example, at least one of PVC (polyvinyl chloride) and PVDC (polyvinylidene chloride).
- polymer resins contained in the substrate 11 include, for example, PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide ), aromatic PAI (aromatic polyamideimide), PBO (polybenzoxazole, e.g. Zylon®), polyether, PEK (polyetherketone), polyetherester, PES (polyethersulfone), PEI ( polyetherimide), PSF (polysulfone), PPS (polyphenylene sulfide), PC (polycarbonate), PAR (polyarylate) and PU (polyurethane).
- PA polyamide, nylon
- aromatic PA aromatic polyamide, aramid
- PI polyimide
- PAI polyamideimide
- PAI aromatic PAI (aromatic polyamideimide)
- PBO polybenzoxazole, e.g. Zylon®
- polyether PEK
- the magnetic layer 13 is a recording layer for recording signals.
- the magnetic layer 13 contains, for example, magnetic powder, binder and lubricant.
- the magnetic layer 13 may further contain additives such as conductive particles, abrasives, and rust preventives, if necessary.
- the magnetic layer 13 has, for example, a surface 13S provided with a large number of recesses. Lubricant is stored in these numerous recesses.
- a large number of recesses preferably extend in a direction perpendicular to the surface of the magnetic layer 13 . This is because the ability to supply the lubricant to the surface 13S of the magnetic layer 13 can be improved.
- a part of many recesses may extend in the vertical direction.
- the magnetic powder contained in the magnetic layer 13 preferably has a mass magnetization ⁇ s of, for example, 30 emu/g or more and 60 emu/g or less. When the magnetic powder has a mass magnetization ⁇ s of 30 emu/g or more, an improvement in the output of the magnetic recording medium 10 can be expected.
- Examples of the magnetic powder contained in the magnetic layer 13 include hexagonal strontium ferrite powder. The hexagonal strontium ferrite powder will be described later.
- the average particle volume of the magnetic powder is, for example, 2500 nm 3 or less, preferably 1800 nm 3 or less, more preferably 1200 nm 3 or less. This is because excellent electromagnetic conversion characteristics (for example, SNR) can be obtained.
- Binder a resin having a structure obtained by imparting a cross-linking reaction to a polyurethane-based resin, a vinyl chloride-based resin, or the like is preferable.
- the binder is not limited to these, and other resins may be blended as appropriate depending on the physical properties required for the magnetic recording medium 10 .
- the resin to be blended is not particularly limited as long as it is a resin commonly used in the coating type magnetic recording medium 10 .
- polyvinyl chloride polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate-acrylonitrile copolymer, acrylate-chloride Vinyl-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate-acrylonitrile copolymer, acrylate-vinylidene chloride copolymer, methacrylate-vinylidene chloride copolymer, methacrylate-chloride Vinyl copolymer, methacrylate-ethylene copolymer, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymer, acrylonitrile-butadiene copolymer, polyamide resin, polyvinyl butyral, cellulose derivatives (cellulose acetate butyrate, cellulose dye acetate, cellulose tria
- thermosetting resins or reactive resins examples include phenol resins, epoxy resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, and urea-formaldehyde resins.
- M in the above chemical formula is a hydrogen atom or an alkali metal such as lithium, potassium or sodium.
- the polar functional groups include side chain types having end groups of -NR1R2, -NR1R2R3+X-, and main chain types of >NR1R2+X-.
- R1, R2 and R3 in the above formula are hydrogen atoms or hydrocarbon groups
- X- is a halogen element ion such as fluorine, chlorine, bromine or iodine, or an inorganic or organic ion.
- the polar functional group includes -OH, -SH, -CN, epoxy group and the like.
- the lubricant contained in the magnetic layer 13 contains, for example, fatty acid and fatty acid ester.
- the fatty acid contained in the lubricant preferably contains, for example, at least one of a compound represented by the following general formula ⁇ 1> and a compound represented by the following general formula ⁇ 2>.
- the fatty acid ester contained in the lubricant preferably contains at least one of the compound represented by the following general formula ⁇ 3> and the compound represented by the following general formula ⁇ 4>.
- the lubricant contains the compound represented by the general formula ⁇ 1> and the compound represented by the general formula ⁇ 3>, so that the compound represented by the general formula ⁇ 2> and the compound represented by the general formula ⁇ 3> By including two types of the compound represented by the general formula ⁇ 1> and the compound represented by the general formula ⁇ 4>, the compound represented by the general formula ⁇ 2> and the general formula ⁇ 4> By including two types of compounds represented by general formula ⁇ 1>, by including three types of compounds represented by general formula ⁇ 2> and general formula ⁇ 3>, general The compound represented by the general formula ⁇ 1>, the compound represented by the general formula ⁇ 3, by including three kinds of the compound represented by the formula ⁇ 1>, the compound represented by the general formula ⁇ 2>, and the compound represented by the general formula ⁇ 4>> and the compound represented by the general formula ⁇ 4>, the compound represented by the general formula ⁇ 2>, the compound represented by the general formula ⁇ 3>, and the compound represented by the general formula ⁇ 4> or
- CH3 ( CH2 ) kCOOH ⁇ 1> (However, in general formula ⁇ 1>, k is an integer selected from the range of 14 or more and 22 or less, more preferably 14 or more and 18 or less.)
- CH3 ( CH2 ) nCH CH( CH2 ) mCOOH ⁇ 2> (However, in general formula ⁇ 2>, the sum of n and m is an integer selected from the range of 12 or more and 20 or less, more preferably 14 or more and 18 or less.)
- CH3 ( CH2 ) pCOO ( CH2 ) qCH3 ⁇ 3 > (However, in general formula ⁇ 3>, p is an integer selected from the range of 14 to 22, more preferably 14 to 18, and q is 2 to 5, more preferably 2 to 4 An integer selected from the following range.) CH3 ( CH2 ) pCOO- ( CH2 ) qCH ( CH3 ) 2 ⁇ 4
- the magnetic layer 13 contains nonmagnetic reinforcing particles such as aluminum oxide ( ⁇ , ⁇ or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide ( Rutile-type or anatase-type titanium oxide) and the like may be further included.
- nonmagnetic reinforcing particles such as aluminum oxide ( ⁇ , ⁇ or ⁇ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide ( Rutile-type or anatase-type titanium oxide) and the like may be further included.
- the underlayer 12 is a nonmagnetic layer containing nonmagnetic powder and a binder.
- the underlayer 12 may further contain at least one additive selected from lubricants, conductive particles, hardeners, rust preventives, and the like, if necessary.
- the underlayer 12 may have a multi-layer structure in which a plurality of layers are laminated.
- the average thickness of the underlayer 12 is preferably 0.5 ⁇ m or more and 0.9 ⁇ m or less, more preferably 0.6 ⁇ m or more and 0.7 ⁇ m or less.
- the tension control for the magnetic recording medium 10 is facilitated. Further, by setting the average thickness of the underlayer 12 to 0.5 ⁇ m or more, the adhesive force between the substrate 11 and the underlayer 12 is ensured. Moreover, variations in the thickness of the underlayer 12 can be suppressed, and an increase in the roughness of the surface 13S of the magnetic layer 13 can be prevented.
- the average thickness of the underlying layer 12 is obtained, for example, as follows. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared and cut into a length of 250 mm to prepare a sample. Subsequently, the underlayer 12 and the magnetic layer 13 of the sample magnetic recording medium 10 are peeled off from the substrate 11 . Next, using a laser hologram (LGH-110C) manufactured by Mitutoyo as a measuring device, the thickness of the laminated body of the underlayer 12 and the magnetic layer 13 peeled off from the substrate 11 is measured at five or more positions. do. Then, these measured values are simply averaged (arithmetic average) to calculate the average thickness of the laminate of the underlayer 12 and the magnetic layer 13 . It is assumed that the measurement position is randomly selected from the sample. Finally, the average thickness of the underlayer 12 is obtained by subtracting the average thickness of the magnetic layer 13 measured using the TEM as described above from the average thickness of the laminate.
- LGH-110C laser hologram manufactured by Mituto
- the underlayer 12 may have pores, that is, the underlayer 12 may be provided with a large number of pores.
- the pores of the underlayer 12 may be formed, for example, by forming pores (recesses) in the magnetic layer 13 . can be formed by pressing the portion against the surface on the magnetic layer side. That is, by forming depressions corresponding to the shapes of the protrusions on the surface 13S of the magnetic layer 13, pores can be formed in the magnetic layer 13 and the underlayer 12, respectively. Pores may also be formed as the solvent evaporates during the drying process of the coating material for forming the magnetic layer.
- the solvent in the magnetic layer-forming paint applied and dried the lower layer.
- the pores formed in this manner can communicate the magnetic layer 13 and the underlayer 12, for example.
- the average diameter of the pores can be adjusted by changing the solid content or solvent type of the magnetic layer-forming paint and/or the drying conditions of the magnetic layer-forming paint.
- the pores of the underlayer 12 and the recesses of the magnetic layer 13 are connected.
- the connection between the pores of the underlayer 12 and the recesses of the magnetic layer 13 means that some of the pores of the underlayer 12 and some of the recesses of the magnetic layer 13 are connected. It includes the state in which some things are connected.
- the large number of recesses include those extending in the direction perpendicular to the surface 13S of the magnetic layer 13.
- the pores of the underlayer 12 extending in the direction perpendicular to the surface 13S of the magnetic layer 13 and the surface of the magnetic layer 13 It is preferable that the recesses of the magnetic layer 13 extending in the direction perpendicular to 13S are connected.
- the non-magnetic powder includes, for example, at least one of inorganic powder and organic powder. Also, the non-magnetic powder may contain carbon powder such as carbon black. One type of non-magnetic powder may be used alone, or two or more types of non-magnetic powder may be used in combination.
- Inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like. Examples of the shape of the non-magnetic powder include various shapes such as acicular, spherical, cubic, and plate-like, but are not limited to these.
- Binder for base layer 12 The binder in the underlayer 12 is the same as in the magnetic layer 13 described above.
- the back layer 14 contains, for example, a binder and non-magnetic powder.
- the back layer 14 may further contain at least one additive selected from lubricants, curing agents, antistatic agents, and the like, if necessary.
- the binder and non-magnetic powder in the back layer 14 are the same as the binder and non-magnetic powder in the underlayer 12 described above.
- Examples of the solvent used for preparing the above paint include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, alcohol solvents such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, butyl acetate and propyl acetate.
- ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone
- alcohol solvents such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, butyl acetate and propyl acetate.
- ester solvents such as ethyl lactate and ethylene glycol acetate
- ether solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran and dioxane
- aromatic hydrocarbon solvents such as benzene, toluene and xylene
- methylene chloride ethylene chloride
- halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform, and chlorobenzene. These may be used alone, or may be used by mixing them as appropriate.
- a continuous twin-screw kneader for example, a continuous twin-screw kneader, a continuous twin-screw kneader capable of multistage dilution, a kneader, a pressure kneader, a roll kneader, or the like can be used. , and are not particularly limited to these devices.
- Dispersing devices used for the above coating preparation include, for example, roll mills, ball mills, horizontal sand mills, vertical sand mills, spike mills, pin mills, tower mills, pearl mills (e.g. "DCP Mill” manufactured by Eirich), homogenizers, ultra A dispersing device such as a sonic disperser can be used, but it is not particularly limited to these devices.
- the base layer 12 is formed by applying a base layer forming coating material to one main surface 11A of the substrate 11 and drying it.
- the magnetic layer 13 is formed on the underlayer 12 by coating the underlayer 12 with a magnetic layer-forming paint and drying it.
- the magnetic powder may be magnetically oriented in the running direction (longitudinal direction) of the substrate 11 by, for example, a solenoid coil, and then magnetically oriented in the thickness direction of the substrate 11 .
- the degree of perpendicular orientation (that is, the squareness ratio S1) of the magnetic powder can be improved.
- the back layer 14 is formed by applying a back layer forming coating material to the other main surface 11B of the substrate 11 and drying it.
- the magnetic recording medium 10 is obtained.
- the obtained magnetic recording medium 10 is calendered to smooth the surface 13S of the magnetic layer 13.
- the calendered magnetic recording medium 10 is wound into a roll, and in this state, the magnetic recording medium 10 is subjected to a heat treatment so that a large number of projections on the surface 14S of the back layer 14 become magnetic. It is transferred to surface 13S of layer 13.
- FIG. As a result, a large number of recesses are formed on the surface 13S of the magnetic layer 13. As shown in FIG.
- the temperature of the heat treatment is preferably 50°C or higher and 80°C or lower.
- the heat treatment temperature is 50° C. or higher, good transferability can be obtained.
- the temperature of the heat treatment is 80° C. or less, the number of pores may become too large, and the lubricant on the surface 13S of the magnetic layer 13 may become excessive.
- the temperature of the heat treatment is the temperature of the atmosphere that holds the magnetic recording medium 10 .
- the heat treatment time is preferably 15 hours or more and 40 hours or less.
- the heat treatment time is 15 hours or more, good transferability can be obtained.
- the heat treatment time is 40 hours or less, a decrease in productivity can be suppressed.
- the range of pressure applied to the magnetic recording medium 10 during heat treatment is preferably 150 kg/cm or more and 400 kg/cm or less.
- the magnetic recording medium 10 is cut into a predetermined width (eg, 1/2 inch width). As described above, the intended magnetic recording medium 10 is obtained.
- the hexagonal strontium ferrite powder of this embodiment is a ferromagnetic material for magnetic recording.
- the hexagonal strontium ferrite powder of the present embodiment can be used, for example, as the magnetic powder of the magnetic layer 13 of the coating type magnetic recording medium 10 .
- magnetic powder in the present disclosure refers to an aggregate of a plurality of magnetic particles.
- An aggregate of a plurality of magnetic particles refers to a mode in which the plurality of magnetic particles forming the aggregate are in direct contact with each other, and a binder, lubricant, additive, or the like is added to the plurality of magnetic particles. It also means an intervening aspect.
- the crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms.
- a bivalent metal atom is a metal atom that can become a divalent cation as an ion.
- Examples of bivalent metal atoms include alkaline earth metal atoms such as strontium (Sr) atoms, barium (Ba) atoms and calcium (Ca) atoms, and lead (Pb) atoms.
- Strontium ferrite is hexagonal ferrite containing strontium atoms as divalent metal atoms.
- the hexagonal strontium ferrite powder of the present disclosure refers to hexagonal strontium ferrite powder in which the main divalent metal atoms contained are strontium atoms.
- the main divalent metal atom means the divalent metal atom having the highest abundance ratio (atomic %) among the divalent metal atoms contained in the hexagonal strontium ferrite powder.
- the strontium atom content may be, for example, in the range of 2.0 atomic % or more and 15.0 atomic % or less with respect to 100 atomic % of iron atoms.
- the hexagonal strontium ferrite powder of the present disclosure may contain only strontium atoms as divalent metal atoms.
- the hexagonal strontium ferrite powders of the present disclosure may contain one or more other divalent metal atoms in addition to the strontium atoms.
- at least one of barium atoms and calcium atoms can be included.
- the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 0.05 to 100 atomic % iron atoms. It can be about 5.0 atomic %.
- the hexagonal strontium ferrite powder may have any crystal structure. The crystal structure can be confirmed by X-ray diffraction analysis.
- the hexagonal strontium ferrite powder may have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis.
- hexagonal strontium ferrite powder may be one in which only the M-type crystal structure is detected by X-ray diffraction analysis.
- M-type hexagonal ferrite is represented by the composition formula MFe 12 O 19 .
- M represents a divalent metal atom.
- M in the composition formula MFe 12 O 19 is only a strontium (Sr) atom
- an M-type hexagonal strontium ferrite powder is obtained.
- a plurality of divalent metal atoms are included as M in the composition formula MFe 12 O 19
- the strontium (Sr) atom has the highest abundance ratio (atomic %) among the plurality of divalent metal atoms
- M type hexagonal strontium ferrite powder M type hexagonal strontium ferrite powder.
- the divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content.
- the hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and may or may not contain atoms other than these atoms.
- Thermal fluctuation of hexagonal strontium ferrite powder that is, indices of thermal stability include, for example, coercive force Hc and mass magnetization ⁇ s.
- Hc and mass magnetization ⁇ s are desirable to increase its coercive force Hc and mass magnetization ⁇ s.
- the method for producing hexagonal strontium ferrite powder according to the present embodiment specifically includes the operations of steps S101 to S106 below.
- a raw material mixture used in a glass crystallization method for obtaining hexagonal strontium ferrite powder contains a hexagonal strontium ferrite-forming component and a glass-forming component.
- the glass-forming component is a glass raw material that exhibits a glass transition phenomenon and can be amorphized, that is, vitrified. Specifically, sodium tetraborate (Na 2 B 4 O 7 ) is used.
- the hexagonal strontium ferrite-forming component contained in the raw material mixture is, for example, a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide. Things, etc. Specific examples include SrCO 3 as strontium oxide and Fe 2 O 3 as iron oxide. Here , it is desirable that the content of SrCO3 in the magnetic raw material is higher than the content of Fe2O3 in the magnetic raw material.
- the contents of various components in the raw material mixture are determined according to the composition of the hexagonal strontium ferrite powder to be obtained.
- the content of glass raw materials in the raw material mixture is 30 mol % or less.
- the raw material mixture can be prepared by weighing various components and then mixing them.
- a glass raw material such as sodium tetraborate (Na 2 B 4 O 7 ) and a magnetic material raw material containing SrCO 3 and Fe 2 O 3 are mixed, for example, by placing them in a plastic container and then using a powder mixer. It runs for 60 minutes.
- the raw material mixture can be melted, for example, in a glass melting furnace.
- the raw material mixture is put into a crucible of a glass melting furnace and melted at a melting temperature of 1300° C. to 1500° C., for example.
- the dissolution time may be appropriately set so that the raw material mixture is sufficiently melted.
- the melting time can be, for example, 80 minutes when 1 kg of the raw material mixture is put into the glass melting furnace.
- the content of glass raw materials in the raw material mixture when the content of glass raw materials in the raw material mixture is reduced to, for example, 30 mol % or less, the content of components containing Fe 2 O 3 becomes relatively high.
- the stirring operation since the melting point of the raw material mixture rises, the stirring operation becomes important in order to homogenize the temperature distribution in the furnace and eliminate uneven melting.
- the agitation can prevent clogging of the outlet with the melted material when the melted material is discharged from the melting furnace.
- the stirrer should stir at a rotational speed of, for example, 30 rpm or higher.
- the quenching process Next, by rapidly cooling the melt obtained by dissolving the raw material mixture, an amorphous body containing an amorphous component is produced.
- the quenching can be carried out in the same manner as the quenching step usually performed to obtain an amorphous body by the glass crystallization method.
- a method of rapidly cooling the melt while rolling it using a pair of cooling rolls rotated at high speed is suitable. It is preferable that the pair of cooling rolls maintain a constant surface temperature, for example, by circulating cooling water through internal channels. This is for stabilizing the quenching efficiency and promoting the amorphization of the melt.
- the temperature of the surface of the cooling roll is set at 20° C., for example.
- the gap between the pair of cooling rolls is, for example, 1 mm or less, and the discharge speed is, for example, 0.5 g/sec or more and 1.0 g/sec or less.
- the term "rapid cooling" means to rapidly cool the melted raw material mixture to around room temperature to bring the melt into a disordered state (hereinafter referred to as an amorphous state). It is considered that one of the conditions for the amorphous state is that the cooling rate exceeds the crystal growth rate. By making it amorphous, it becomes possible to control the growth of nanoparticles and control the particle size of nanoparticles.
- the cooling rate is slower than the crystal growth rate, crystal growth of the particles will occur before transitioning to the amorphous state, and the amorphous state and the crystalline state will coexist in the melt. Therefore, when rapid cooling is not successful and the melt of the raw material mixture does not become sufficiently amorphous, the melt contains both an amorphous state and a crystalline state. For this reason, the hexagonal strontium ferrite powder contains particles that grow from an amorphous state in the subsequent firing process and particles that grow from a crystalline state having a certain size in the firing process. Therefore, it is considered that the particle size distribution and magnetic properties of the hexagonal strontium ferrite powder to be obtained are varied.
- the amorphous body obtained by quenching is put into, for example, an electric furnace and fired. Through this firing step, hexagonal strontium ferrite particles and crystallized glass components can be precipitated.
- the particle size of the deposited hexagonal strontium ferrite particles can be controlled by the firing conditions. Increasing the firing temperature for crystallization (crystallization temperature) leads to an increase in the particle size of the precipitated hexagonal strontium ferrite particles. Therefore, it is desirable that the temperature be as low as possible and above the temperature at which crystallization of hexagonal strontium ferrite occurs. Specifically, it is desirable to produce a crystallized product by firing an amorphous body at a firing temperature of 570° C. or higher and 630° C.
- the baking time for crystallization (holding time at the crystallization temperature) is, for example, 1 to 24 hours, preferably 8 hours or longer. Also, the rate of temperature increase until reaching the firing temperature was 1.0° C./min. above 10.0°C/min. and, for example, 5.0° C./min. It is below.
- a crystallized material obtained by heating an amorphous body contains a crystallized glass component together with hexagonal strontium ferrite particles. Therefore, the hexagonal strontium ferrite particles are extracted by subjecting the crystallized product to an acid treatment.
- the crystallized product is put into an acid such as acetic acid and washed with a ball mill. Since the acid treatment dissolves and removes the glass component surrounding the hexagonal strontium ferrite particles, the hexagonal strontium ferrite particles can be collected.
- Hexagonal strontium ferrite particles can be obtained by washing the crystallized product from which the glass component has been removed and then drying the crystallized product.
- the method for producing hexagonal strontium ferrite powder according to the present embodiment includes the following operations ⁇ 1> to ⁇ 3>.
- ⁇ 1> To obtain a melt by melting a mixture containing a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide.
- ⁇ 2> Rapidly cooling the melt to room temperature to produce an amorphous body containing an amorphous component.
- ⁇ 3> Firing the amorphous body at a firing temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product and deposit crystallized hexagonal strontium ferrite.
- the magnetic recording medium 10 containing the hexagonal strontium ferrite powder thus obtained in the magnetic layer 13 can be expected to achieve both excellent electromagnetic conversion characteristics and high long-term reliability.
- Na 2 B 4 O 7 is used as the glass raw material, and the content of Na 2 B 4 O 7 as the glass raw material in the raw material mixture is 30 mol % or less. .
- the nucleation particles are, for example, Sr atoms contained in SrCO 3 and Fe atoms contained in Fe 2 O 3 as the magnetic raw material.
- the relative increase in the number of nucleation particles produces a large number of hexagonal strontium ferrite particles, suppressing coarsening of individual hexagonal strontium ferrite particles.
- the use of Na 2 B 4 O 7 as a glass raw material has the following advantages over the use of, for example, H 3 BO 3 .
- the boiling point of H 3 BO 3 is as low as 300°C. Therefore, H 3 BO 3 may evaporate when the raw material mixture is put into the melting furnace. Therefore, the melting point of the melt is increased, making it difficult to melt.
- Na 2 B 4 O 7 has a relatively high boiling point of 1575° C., it is difficult for Na 2 B 4 O 7 to evaporate when the raw material mixture is put into the melting furnace.
- the melting point of the melt can be kept low, and the raw material mixture can be sufficiently melted. Also, by using Na 2 B 4 O 7 , it is easier to bring the melt into an amorphous state during quenching, as compared with the case of using H 3 BO 3 . Therefore, it is possible to obtain the effects of suppressing variations in particle growth and suppressing coarsening of particles during firing.
- the SrCO3 content (molar ratio) in the magnetic raw material is set higher than the Fe2O3 content ( molar ratio) in the magnetic raw material. I have to. That is, the Sr content (molar ratio) is made higher than the Fe content (molar ratio). Therefore, a large number of hexagonal strontium ferrite particles are produced. Therefore, it is considered that coarsening of individual hexagonal strontium ferrite particles is suppressed.
- Strontium has a high ionization tendency and dissolves in glass to some extent.
- the strontium is insufficient, and the number of hexagonal strontium ferrite particles produced decreases. As a result, individual hexagonal strontium ferrite particles tend to be coarse.
- an amorphous body containing an amorphous component was produced.
- a pair of cooling rolls whose surface temperature was set to 20° C. was used to rapidly cool the molten material while rolling it.
- the gap between the pair of cooling rolls was 1 mm or less, and the discharge speed was 0.5 g/sec or more and 1.0 g/sec or less.
- the amorphous body obtained by quenching was put into an electric furnace and fired.
- the sintering temperature was 620° C.
- the rate of temperature increase from room temperature to the sintering temperature was 5.0° C./min.
- the firing temperature of 620° C. was maintained for 8 hours after reaching the firing temperature of 620° C.
- a crystallized product containing hexagonal strontium ferrite particles was obtained.
- the obtained crystallized product was subjected to an acid treatment to remove the glass component and extract the hexagonal strontium ferrite particles.
- Acetic acid was used for the acid treatment, and ball mill cleaning was performed.
- centrifugal separation was performed using a centrifuge, followed by decantation to obtain hexagonal strontium ferrite powder.
- the hexagonal strontium ferrite powder was put into an electric furnace and dried in an environment of 120° C. until the water content of the strontium ferrite became 2.0 (wt %) or less.
- Example 2 to 14 A ferrite powder sample was prepared in the same manner as in Experimental Example 1, except that the composition ratio of the raw material mixture was changed. However, in Experimental Examples 7 to 9, instead of adding SrCO 3 to the raw material mixture, BaCO 3 was added to prepare samples of hexagonal barium ferrite powder.
- Mass magnetization ⁇ s and coercive force Hc Mass magnetization ⁇ s and coercive force Hc of each sample were measured using a high-sensitivity vibrating sample magnetometer "VSM-P7-15" manufactured by Toei Industry Co., Ltd. The measurement conditions are as follows. ⁇ Maximum external magnetic field: 15 (kOe) ⁇ Measurement mode: full loop, maximum magnetic field: 15kOe, magnetic field step: 40bit, Time constant of Locking amp: 0.3sec, Waiting time: 1sec, MH average number: 20
- the volume of the hexagonal ferrite particles of each sample was calculated from the plate diameter and plate thickness of the particles, assuming that each particle was a hexagonal column.
- the tabular diameter of the particles as used herein refers to the dimension along the crystal plane (220) of strontium ferrite (or barium ferrite).
- the plate thickness of a particle refers to the dimension along the crystal plane (006) of strontium ferrite (or barium ferrite).
- the plate diameter and plate thickness of the ferrite particles were calculated using the fundamental parameter method from the X-ray diffraction pattern obtained by the X-ray diffraction analysis.
- the content of Na 2 B 4 O 7 as a glass raw material in the raw material mixture was 30 mol % or less.
- the particle volume could be reduced while maintaining a high magnetic force Hc.
- the content of strontium oxide (SrCO 3 ) is high and the content of Na 2 B 4 O 7 as a glass raw material is low. Therefore, as shown in FIG. 3, the particle volume could be reduced while maintaining higher magnetic properties than in other Experimental Examples 1 and 7-14.
- the content of Na 2 B 4 O 7 as a glass raw material is high. Therefore, compared with other experimental examples, the particle volume is large and the magnetic properties are low.
- the configurations, methods, steps, shapes, materials, numerical values, etc. given in the above-described embodiments and modifications thereof are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, etc., may be used if necessary. etc. may be used.
- the magnetic recording medium of the present disclosure may contain components other than the substrate, underlayer, magnetic layer, back layer and barrier layer.
- the chemical formulas of compounds and the like are representative ones, and the valence numbers and the like are not limited as long as they are common names of the same compound.
- the upper limit or lower limit of the numerical range at one stage may be replaced with the upper limit or lower limit of the numerical range at another stage.
- the materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified.
- the method for producing a hexagonal strontium ferrite powder as an embodiment of the present disclosure, fine hexagonal strontium ferrite particles can be obtained while having a high coercive force.
- the effect of the present disclosure is not limited to this, and may be any of the effects described in this specification.
- the present technology can take the following configurations. (1) Melting a mixture containing sodium tetraborate (Na 2 B 4 O 7 ) as a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide to obtain a melt.
- a method for producing a hexagonal strontium ferrite powder comprising: sintering the amorphous material at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product, and precipitating the crystallized hexagonal strontium ferrite.
- (2) using SrCO3 as the strontium oxide Using Fe 2 O 3 as the iron oxide, The method for producing a hexagonal strontium ferrite powder according to (1) above, wherein the SrCO 3 content in the magnetic raw material is higher than the Fe 2 O 3 content in the magnetic raw material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Magnetic Record Carriers (AREA)
Abstract
Provided is a method for producing hexagonal strontium ferrite powder capable of both ensuring thermal stability and achieving high-density recording. This method for producing hexagonal strontium ferrite powder includes: dissolving a mixture including sodium tetraborate (Na2B4O7) as a glass raw material and a magnetic raw material containing strontium oxide and iron oxide to obtain a dissolved product; quenching the dissolved product to room temperature and generating an amorphous body including an amorphous component; and generating a crystallized product by firing the amorphous body at a firing temperature of 570-630°C, inclusive, and precipitating the crystallized hexagonal strontium ferrite.
Description
本開示は、例えば磁気記録媒体の磁性層の構成材料として用いられる六方晶ストロンチウムフェライト粉末の製造方法に関する。
The present disclosure relates to a method for producing hexagonal strontium ferrite powder used, for example, as a constituent material of magnetic layers of magnetic recording media.
電子データの保存のために、テープ状の磁気記録媒体が幅広く利用されている。例えば特許文献1には、磁気記録媒体、およびその磁気記録媒体に用いられる磁気記録用六方晶ストロンチウムフェライト粉末が提案されている。
Tape-shaped magnetic recording media are widely used to store electronic data. For example, Patent Document 1 proposes a magnetic recording medium and a hexagonal strontium ferrite powder for magnetic recording used in the magnetic recording medium.
ところで、磁気記録媒体に対しては、例えば熱安定性を確保できる高い磁気特性と高密度記録との両立が期待されている。
By the way, magnetic recording media are expected to have both high magnetic properties that can ensure, for example, thermal stability and high-density recording.
そこで、高い信頼性と高い記録密度とを有する磁気記録媒体に用いることのできる六方晶ストロンチウムフェライト粉末の製造方法が望まれる。
Therefore, a method for producing hexagonal strontium ferrite powder that can be used in magnetic recording media with high reliability and high recording density is desired.
本開示の一実施形態としての六方晶ストロンチウムフェライト粉末の製造方法は、下記の(1)~(3)を含む。
(1)ガラス原料としての四ホウ酸ナトリウム(Na2B4O7)と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを含む混合物を溶解し、溶解物を得ること。
(2)溶解物を室温まで急冷し、混合物に非晶質成分を含む非晶質体を生成すること。
(3)非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させること。 A method for producing hexagonal strontium ferrite powder as an embodiment of the present disclosure includes the following (1) to (3).
(1) A melt is obtained by melting a mixture containing sodium tetraborate (Na2B4O7) as a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide.
(2) quenching the melt to room temperature to produce an amorphous body containing an amorphous component in the mixture;
(3) sintering the amorphous body at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product and precipitate crystallized hexagonal strontium ferrite;
(1)ガラス原料としての四ホウ酸ナトリウム(Na2B4O7)と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを含む混合物を溶解し、溶解物を得ること。
(2)溶解物を室温まで急冷し、混合物に非晶質成分を含む非晶質体を生成すること。
(3)非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させること。 A method for producing hexagonal strontium ferrite powder as an embodiment of the present disclosure includes the following (1) to (3).
(1) A melt is obtained by melting a mixture containing sodium tetraborate (Na2B4O7) as a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide.
(2) quenching the melt to room temperature to produce an amorphous body containing an amorphous component in the mixture;
(3) sintering the amorphous body at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product and precipitate crystallized hexagonal strontium ferrite;
本開示の一実施形態としての六方晶ストロンチウムフェライト粉末の製造方法では、上述の(1)~(3)を含むので、熱安定性を確保できる高い磁気特性と高い磁気記録密度とが得られる。
The method for producing a hexagonal strontium ferrite powder as an embodiment of the present disclosure includes the above (1) to (3), so high magnetic properties that can ensure thermal stability and high magnetic recording density can be obtained.
以下、本開示の実施の形態について図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.経緯
2.一実施の形態
2-1.磁気記録媒体の構成
2-2.磁気記録媒体の製造方法
2-3.六方晶ストロンチウムフェライト粒子の製造方法
2-4.効果
3.実験例 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. Background 2. One embodiment 2-1. Configuration of Magnetic Recording Medium 2-2. Manufacturing method of magnetic recording medium 2-3. Method for producing hexagonal strontium ferrite particles 2-4. Effect 3. Experimental example
1.経緯
2.一実施の形態
2-1.磁気記録媒体の構成
2-2.磁気記録媒体の製造方法
2-3.六方晶ストロンチウムフェライト粒子の製造方法
2-4.効果
3.実験例 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. The description will be given in the following order.
1. Background 2. One embodiment 2-1. Configuration of Magnetic Recording Medium 2-2. Manufacturing method of magnetic recording medium 2-3. Method for producing hexagonal strontium ferrite particles 2-4. Effect 3. Experimental example
<1.経緯>
まず、本開示の技術を創作するに至った経緯について説明する。これまでに、テープ状もしくはディスク状の磁気記録媒体の磁性層を構成する磁性体として種々の磁性粉末が開発されている。最近では、磁気記録媒体の記録密度のさらなる向上が求められている。磁気記録媒体の記録密度の向上には、磁性粉末を構成する磁性体粒子の微細化が望ましい。ところが、磁性体粒子が微細化することで、すなわち、磁性体粒子の体積が小さくなることで磁性体粒子の熱安定性が低下する。磁性体粒子の結晶磁気異方性定数Kuを大きくすれば磁性体粒子の熱安定性は向上する。しかしながら、磁性体粒子の結晶磁気異方性定数Kuが大きくなると、磁性体粒子を用いた磁性層への記録操作が行いにくくなる。したがって、このような磁気記録用の磁性体粒子に関するトリレンマを打破する方策が望まれていた。なお、磁性体粒子の熱安定性については、結晶磁気異方性定数Kuを含むパラメータKu×V/kB×Tで評価される。すなわち、パラメータKu×V/kB×Tが高い数値であるほど熱安定性が高いと言える。ところで、磁性体粒子の結晶磁気異方性定数Kuは保磁力Hcおよび質量磁化σsに比例する傾向になる。したがって、保磁力Hcおよび質量磁化σsといった磁気特性の数値が高いほど、磁性体粒子の熱安定性が高くなると考えられる。 <1. History>
First, the circumstances leading to the creation of the technology of the present disclosure will be described. Various magnetic powders have been developed so far as magnetic substances constituting magnetic layers of tape-shaped or disk-shaped magnetic recording media. Recently, there has been a demand for further improvement in the recording density of magnetic recording media. In order to improve the recording density of a magnetic recording medium, it is desirable to reduce the size of the magnetic particles that make up the magnetic powder. However, as the magnetic particles become finer, that is, as the volume of the magnetic particles becomes smaller, the thermal stability of the magnetic particles decreases. The thermal stability of the magnetic particles can be improved by increasing the magnetocrystalline anisotropy constant Ku of the magnetic particles. However, when the magnetocrystalline anisotropy constant Ku of the magnetic particles increases, it becomes difficult to perform a recording operation on the magnetic layer using the magnetic particles. Therefore, there has been a demand for measures to overcome the trilemma concerning such magnetic particles for magnetic recording. The thermal stability of the magnetic particles is evaluated by a parameter Ku×V/kB×T including the magnetocrystalline anisotropy constant Ku. That is, it can be said that the higher the value of the parameter Ku×V/kB×T, the higher the thermal stability. By the way, the magnetocrystalline anisotropy constant Ku of the magnetic particles tends to be proportional to the coercive force Hc and the mass magnetization σs. Therefore, it is considered that the higher the numerical values of the magnetic properties such as the coercive force Hc and the mass magnetization σs, the higher the thermal stability of the magnetic particles.
まず、本開示の技術を創作するに至った経緯について説明する。これまでに、テープ状もしくはディスク状の磁気記録媒体の磁性層を構成する磁性体として種々の磁性粉末が開発されている。最近では、磁気記録媒体の記録密度のさらなる向上が求められている。磁気記録媒体の記録密度の向上には、磁性粉末を構成する磁性体粒子の微細化が望ましい。ところが、磁性体粒子が微細化することで、すなわち、磁性体粒子の体積が小さくなることで磁性体粒子の熱安定性が低下する。磁性体粒子の結晶磁気異方性定数Kuを大きくすれば磁性体粒子の熱安定性は向上する。しかしながら、磁性体粒子の結晶磁気異方性定数Kuが大きくなると、磁性体粒子を用いた磁性層への記録操作が行いにくくなる。したがって、このような磁気記録用の磁性体粒子に関するトリレンマを打破する方策が望まれていた。なお、磁性体粒子の熱安定性については、結晶磁気異方性定数Kuを含むパラメータKu×V/kB×Tで評価される。すなわち、パラメータKu×V/kB×Tが高い数値であるほど熱安定性が高いと言える。ところで、磁性体粒子の結晶磁気異方性定数Kuは保磁力Hcおよび質量磁化σsに比例する傾向になる。したがって、保磁力Hcおよび質量磁化σsといった磁気特性の数値が高いほど、磁性体粒子の熱安定性が高くなると考えられる。 <1. History>
First, the circumstances leading to the creation of the technology of the present disclosure will be described. Various magnetic powders have been developed so far as magnetic substances constituting magnetic layers of tape-shaped or disk-shaped magnetic recording media. Recently, there has been a demand for further improvement in the recording density of magnetic recording media. In order to improve the recording density of a magnetic recording medium, it is desirable to reduce the size of the magnetic particles that make up the magnetic powder. However, as the magnetic particles become finer, that is, as the volume of the magnetic particles becomes smaller, the thermal stability of the magnetic particles decreases. The thermal stability of the magnetic particles can be improved by increasing the magnetocrystalline anisotropy constant Ku of the magnetic particles. However, when the magnetocrystalline anisotropy constant Ku of the magnetic particles increases, it becomes difficult to perform a recording operation on the magnetic layer using the magnetic particles. Therefore, there has been a demand for measures to overcome the trilemma concerning such magnetic particles for magnetic recording. The thermal stability of the magnetic particles is evaluated by a parameter Ku×V/kB×T including the magnetocrystalline anisotropy constant Ku. That is, it can be said that the higher the value of the parameter Ku×V/kB×T, the higher the thermal stability. By the way, the magnetocrystalline anisotropy constant Ku of the magnetic particles tends to be proportional to the coercive force Hc and the mass magnetization σs. Therefore, it is considered that the higher the numerical values of the magnetic properties such as the coercive force Hc and the mass magnetization σs, the higher the thermal stability of the magnetic particles.
そこで、本開示では、磁性体を微細化しつつ、従来の磁性粉(例えばバリウムフェライト粉末)と同等以上の高磁気特性を発現する六方晶ストロンチウムフェライト粉末の製造方法を提供する。
Therefore, the present disclosure provides a method for producing a hexagonal strontium ferrite powder that exhibits high magnetic properties equal to or higher than those of conventional magnetic powder (for example, barium ferrite powder) while miniaturizing the magnetic material.
<2.一実施の形態>
[2-1 磁気記録媒体10の構成]
図1は、本開示の一実施の形態に係る磁気記録媒体10の断面構成例を表している。図1に示したように、磁気記録媒体10は複数層が積層された積層構造を有する。具体的には、磁気記録媒体10は、長尺のテープ状の基体11と、基体11の一方の主面11A上に設けられた下地層12と、下地層12の上に設けられた磁性層13と、基体11の他方の主面11B上に設けられたバック層14とを備える。磁性層13の表面13Sが、磁気ヘッドが当接しつつ走行することとなる表面となる。なお、下地層12およびバック層14は、必要に応じて備えられるものであり、無くてもよい。なお、磁気記録媒体10の平均厚みは、例えば5.6μm以下であるとよい。 <2. one embodiment>
[2-1 Configuration of Magnetic Recording Medium 10]
FIG. 1 shows a cross-sectional configuration example of amagnetic recording medium 10 according to an embodiment of the present disclosure. As shown in FIG. 1, the magnetic recording medium 10 has a laminated structure in which multiple layers are laminated. Specifically, the magnetic recording medium 10 includes a long tape-shaped substrate 11, an underlayer 12 provided on one main surface 11A of the substrate 11, and a magnetic layer provided on the underlayer 12. 13 and a back layer 14 provided on the other main surface 11B of the base 11 . The surface 13S of the magnetic layer 13 is the surface on which the magnetic head travels in contact. The base layer 12 and the back layer 14 are provided as required, and may be omitted. The average thickness of the magnetic recording medium 10 is preferably 5.6 μm or less, for example.
[2-1 磁気記録媒体10の構成]
図1は、本開示の一実施の形態に係る磁気記録媒体10の断面構成例を表している。図1に示したように、磁気記録媒体10は複数層が積層された積層構造を有する。具体的には、磁気記録媒体10は、長尺のテープ状の基体11と、基体11の一方の主面11A上に設けられた下地層12と、下地層12の上に設けられた磁性層13と、基体11の他方の主面11B上に設けられたバック層14とを備える。磁性層13の表面13Sが、磁気ヘッドが当接しつつ走行することとなる表面となる。なお、下地層12およびバック層14は、必要に応じて備えられるものであり、無くてもよい。なお、磁気記録媒体10の平均厚みは、例えば5.6μm以下であるとよい。 <2. one embodiment>
[2-1 Configuration of Magnetic Recording Medium 10]
FIG. 1 shows a cross-sectional configuration example of a
磁気記録媒体10は長尺のテープ状をなし、記録動作および再生動作の際には、自らの長手方向に沿って走行することとなる。磁気記録媒体10は、例えば記録用ヘッドとしてリング型ヘッドを備える記録再生装置に用いられるものであることが好ましい。
The magnetic recording medium 10 has a long tape shape, and travels along its own longitudinal direction during recording and reproduction operations. The magnetic recording medium 10 is preferably used in a recording/reproducing apparatus having a ring-shaped head as a recording head, for example.
(基体11)
基体11は、下地層12および磁性層13を支持する非磁性支持体である。基体11は、長尺のフィルム状をなしている。基体11の平均厚みの上限値は、好ましくは4.2μm以下、より好ましくは4.0μm以下である。基体11の平均厚みの上限値が4.2μm以下であると、1データカートリッジ内に記録できる記録容量を一般的な磁気記録媒体よりも高めることができる。基体11の平均厚みの下限値は、好ましくは3μm以上、より好ましくは3.2μm以上である。基体11の平均厚みの下限値が3μm以上であると、基体11の強度低下を抑制することができる。 (Substrate 11)
Thebase 11 is a nonmagnetic support that supports the underlayer 12 and the magnetic layer 13 . The substrate 11 has a long film shape. The upper limit of the average thickness of the substrate 11 is preferably 4.2 μm or less, more preferably 4.0 μm or less. When the upper limit of the average thickness of the substrate 11 is 4.2 μm or less, the recording capacity that can be recorded in one data cartridge can be made higher than that of a general magnetic recording medium. The lower limit of the average thickness of the substrate 11 is preferably 3 μm or more, more preferably 3.2 μm or more. When the lower limit of the average thickness of the substrate 11 is 3 μm or more, a decrease in the strength of the substrate 11 can be suppressed.
基体11は、下地層12および磁性層13を支持する非磁性支持体である。基体11は、長尺のフィルム状をなしている。基体11の平均厚みの上限値は、好ましくは4.2μm以下、より好ましくは4.0μm以下である。基体11の平均厚みの上限値が4.2μm以下であると、1データカートリッジ内に記録できる記録容量を一般的な磁気記録媒体よりも高めることができる。基体11の平均厚みの下限値は、好ましくは3μm以上、より好ましくは3.2μm以上である。基体11の平均厚みの下限値が3μm以上であると、基体11の強度低下を抑制することができる。 (Substrate 11)
The
基体11の平均厚みは以下のようにして求められる。まず、1/2インチ幅の磁気記録媒体10を準備し、それを250mmの長さに切り出し、サンプルを作製する。続いて、サンプルの基体11以外の層、すなわち下地層12、磁性層13およびバック層14をMEK(メチルエチルケトン)または希塩酸等の溶剤で除去する。次に、測定装置としてミツトヨ(Mitutoyo)社製レーザーホロゲージ(LGH-110C)を用いて、サンプルである基体11の厚みを5点以上の位置で測定する。その後、それらの測定値を単純に平均(算術平均)して、基体11の平均厚みを算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。
The average thickness of the substrate 11 is obtained as follows. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared and cut into a length of 250 mm to prepare a sample. Subsequently, layers other than the substrate 11 of the sample, that is, the underlayer 12, the magnetic layer 13 and the back layer 14 are removed with a solvent such as MEK (methyl ethyl ketone) or dilute hydrochloric acid. Next, using a Mitutoyo laser hologram (LGH-110C) as a measuring device, the thickness of the substrate 11, which is a sample, is measured at five or more points. Then, these measured values are simply averaged (arithmetic average) to calculate the average thickness of the substrate 11 . It is assumed that the measurement position is randomly selected from the sample.
基体11は、例えば、ポリエステル類を主たる成分として含んでいる。または、基体11は、PEEK(ポリエーテルエーテルケトン)を主たる成分として含んでいてもよい。基体11は、ポリエステル類またはPEEKに加えて、ポリオレフィン類、セルロース誘導体、ビニル系樹脂、およびその他の高分子樹脂のうちの少なくとも1種を含んでいてもよい。基体11が上記材料のうちの2種以上を含む場合、それらの2種以上の材料は混合されていてもよいし、共重合されていてもよいし、積層されていてもよい。
The base 11 contains, for example, polyesters as a main component. Alternatively, the substrate 11 may contain PEEK (polyetheretherketone) as a main component. Substrate 11 may contain at least one of polyolefins, cellulose derivatives, vinyl resins, and other polymer resins in addition to polyesters or PEEK. When the substrate 11 contains two or more of the above materials, the two or more materials may be mixed, copolymerized, or laminated.
基体11に含まれるポリエステル類は、例えば、PET(ポリエチレンテレフタレート)、PEN(ポリエチレンナフタレート)、PBT(ポリブチレンテレフタレート)、PBN(ポリブチレンナフタレート)、PCT(ポリシクロヘキシレンジメチレンテレフタレート)、PEB(ポリエチレン-p-オキシベンゾエート)およびポリエチレンビスフェノキシカルボキシレートのうちの少なくとも1種を含む。
Polyesters contained in the substrate 11 include, for example, PET (polyethylene terephthalate), PEN (polyethylene naphthalate), PBT (polybutylene terephthalate), PBN (polybutylene naphthalate), PCT (polycyclohexylenedimethylene terephthalate), PEB (polyethylene-p-oxybenzoate) and at least one of polyethylene bisphenoxycarboxylate.
基体11に含まれるポリオレフィン類は、例えば、PE(ポリエチレン)およびPP(ポリプロピレン)のうちの少なくとも1種を含む。セルロース誘導体は、例えば、セルロースジアセテート、セルローストリアセテート、CAB(セルロースアセテートブチレート)およびCAP(セルロースアセテートプロピオネート)のうちの少なくとも1種を含む。ビニル系樹脂は、例えば、PVC(ポリ塩化ビニル)およびPVDC(ポリ塩化ビニリデン)のうちの少なくとも1種を含む。
The polyolefins contained in the substrate 11 include, for example, at least one of PE (polyethylene) and PP (polypropylene). Cellulose derivatives include, for example, at least one of cellulose diacetate, cellulose triacetate, CAB (cellulose acetate butyrate) and CAP (cellulose acetate propionate). Vinyl-based resins include, for example, at least one of PVC (polyvinyl chloride) and PVDC (polyvinylidene chloride).
基体11に含まれるその他の高分子樹脂は、例えば、PA(ポリアミド、ナイロン)、芳香族PA(芳香族ポリアミド、アラミド)、PI(ポリイミド)、芳香族PI(芳香族ポリイミド)、PAI(ポリアミドイミド)、芳香族PAI(芳香族ポリアミドイミド)、PBO(ポリベンゾオキサゾール、例えばザイロン(登録商標))、ポリエーテル、PEK(ポリエーテルケトン)、ポリエーテルエステル、PES(ポリエーテルサルフォン)、PEI(ポリエーテルイミド)、PSF(ポリスルフォン)、PPS(ポリフェニレンスルフィド)、PC(ポリカーボネート)、PAR(ポリアリレート)およびPU(ポリウレタン)のうちの少なくとも1種を含む。
Other polymer resins contained in the substrate 11 include, for example, PA (polyamide, nylon), aromatic PA (aromatic polyamide, aramid), PI (polyimide), aromatic PI (aromatic polyimide), PAI (polyamideimide ), aromatic PAI (aromatic polyamideimide), PBO (polybenzoxazole, e.g. Zylon®), polyether, PEK (polyetherketone), polyetherester, PES (polyethersulfone), PEI ( polyetherimide), PSF (polysulfone), PPS (polyphenylene sulfide), PC (polycarbonate), PAR (polyarylate) and PU (polyurethane).
(磁性層13)
磁性層13は、信号を記録するための記録層である。磁性層13は、例えば、磁性粉末、結着剤および潤滑剤を含む。磁性層13は、必要に応じて、導電性粒子、研磨剤、防錆剤等の添加剤をさらに含んでいてもよい。 (Magnetic layer 13)
Themagnetic layer 13 is a recording layer for recording signals. The magnetic layer 13 contains, for example, magnetic powder, binder and lubricant. The magnetic layer 13 may further contain additives such as conductive particles, abrasives, and rust preventives, if necessary.
磁性層13は、信号を記録するための記録層である。磁性層13は、例えば、磁性粉末、結着剤および潤滑剤を含む。磁性層13は、必要に応じて、導電性粒子、研磨剤、防錆剤等の添加剤をさらに含んでいてもよい。 (Magnetic layer 13)
The
磁性層13は、例えば多数の凹みが設けられた表面13Sを有している。これらの多数の凹みには、潤滑剤が蓄えられている。多数の凹みは、磁性層13の表面に対して垂直方向に延設されていることが好ましい。磁性層13の表面13Sに対する潤滑剤の供給性を向上することができるからである。なお、多数の凹みの一部が垂直方向に延設されていてもよい。
The magnetic layer 13 has, for example, a surface 13S provided with a large number of recesses. Lubricant is stored in these numerous recesses. A large number of recesses preferably extend in a direction perpendicular to the surface of the magnetic layer 13 . This is because the ability to supply the lubricant to the surface 13S of the magnetic layer 13 can be improved. In addition, a part of many recesses may extend in the vertical direction.
(磁性粉末)
磁性層13に含まれる磁性粉末は、例えば30emu/g以上60emu/g以下の質量磁化σsを有するとよい。磁性粉末の質量磁化σsが30emu/g以上であることにより、磁気記録媒体10としての出力の向上が期待できる。磁性層13に含まれる磁性粉末としては、例えば六方晶ストロンチウムフェライト粉末が挙げられる。なお、六方晶ストロンチウムフェライト粉末については後述する。 (Magnetic powder)
The magnetic powder contained in themagnetic layer 13 preferably has a mass magnetization σs of, for example, 30 emu/g or more and 60 emu/g or less. When the magnetic powder has a mass magnetization σs of 30 emu/g or more, an improvement in the output of the magnetic recording medium 10 can be expected. Examples of the magnetic powder contained in the magnetic layer 13 include hexagonal strontium ferrite powder. The hexagonal strontium ferrite powder will be described later.
磁性層13に含まれる磁性粉末は、例えば30emu/g以上60emu/g以下の質量磁化σsを有するとよい。磁性粉末の質量磁化σsが30emu/g以上であることにより、磁気記録媒体10としての出力の向上が期待できる。磁性層13に含まれる磁性粉末としては、例えば六方晶ストロンチウムフェライト粉末が挙げられる。なお、六方晶ストロンチウムフェライト粉末については後述する。 (Magnetic powder)
The magnetic powder contained in the
磁性粉末の平均粒子体積は、例えば2500nm3以下、好ましくは1800nm3以下、より好ましくは1200nm3以下である。優れた電磁変換特性(例えばSNR)を得ることができるからである。
The average particle volume of the magnetic powder is, for example, 2500 nm 3 or less, preferably 1800 nm 3 or less, more preferably 1200 nm 3 or less. This is because excellent electromagnetic conversion characteristics (for example, SNR) can be obtained.
(結着剤)
結着剤としては、ポリウレタン系樹脂、塩化ビニル系樹脂等に架橋反応を付与した構造の樹脂が好ましい。しかしながら結着剤はこれらに限定されるものではなく、磁気記録媒体10に対して要求される物性等に応じて、その他の樹脂を適宜配合してもよい。配合する樹脂としては、通常、塗布型の磁気記録媒体10において一般的に用いられる樹脂であれば、特に限定されない。 (Binder)
As the binder, a resin having a structure obtained by imparting a cross-linking reaction to a polyurethane-based resin, a vinyl chloride-based resin, or the like is preferable. However, the binder is not limited to these, and other resins may be blended as appropriate depending on the physical properties required for themagnetic recording medium 10 . The resin to be blended is not particularly limited as long as it is a resin commonly used in the coating type magnetic recording medium 10 .
結着剤としては、ポリウレタン系樹脂、塩化ビニル系樹脂等に架橋反応を付与した構造の樹脂が好ましい。しかしながら結着剤はこれらに限定されるものではなく、磁気記録媒体10に対して要求される物性等に応じて、その他の樹脂を適宜配合してもよい。配合する樹脂としては、通常、塗布型の磁気記録媒体10において一般的に用いられる樹脂であれば、特に限定されない。 (Binder)
As the binder, a resin having a structure obtained by imparting a cross-linking reaction to a polyurethane-based resin, a vinyl chloride-based resin, or the like is preferable. However, the binder is not limited to these, and other resins may be blended as appropriate depending on the physical properties required for the
例えば、ポリ塩化ビニル、ポリ酢酸ビニル、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-アクリロニトリル共重合体、アクリル酸エステル-アクリロニトリル共重合体、アクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニリデン共重合体、メタクリル酸エステル-塩化ビニル共重合体、メタクリル酸エステル-エチレン共重合体、ポリ弗化ビニル、塩化ビニリデン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン共重合体、ポリアミド樹脂、ポリビニルブチラール、セルロース誘導体(セルロースアセテートブチレート、セルロースダイアセテート、セルローストリアセテート、セルロースプロピオネート、ニトロセルロース)、スチレンブタジエン共重合体、ポリエステル樹脂、アミノ樹脂、合成ゴム等が挙げられる。
For example, polyvinyl chloride, polyvinyl acetate, vinyl chloride-vinyl acetate copolymer, vinyl chloride-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate-acrylonitrile copolymer, acrylate-chloride Vinyl-vinylidene chloride copolymer, vinyl chloride-acrylonitrile copolymer, acrylate-acrylonitrile copolymer, acrylate-vinylidene chloride copolymer, methacrylate-vinylidene chloride copolymer, methacrylate-chloride Vinyl copolymer, methacrylate-ethylene copolymer, polyvinyl fluoride, vinylidene chloride-acrylonitrile copolymer, acrylonitrile-butadiene copolymer, polyamide resin, polyvinyl butyral, cellulose derivatives (cellulose acetate butyrate, cellulose dye acetate, cellulose triacetate, cellulose propionate, nitrocellulose), styrene-butadiene copolymer, polyester resin, amino resin, synthetic rubber, and the like.
また、熱硬化性樹脂、または反応型樹脂の例としては、フェノール樹脂、エポキシ樹脂、尿素樹脂、メラミン樹脂、アルキッド樹脂、シリコーン樹脂、ポリアミン樹脂、尿素ホルムアルデヒド樹脂等が挙げられる。
Examples of thermosetting resins or reactive resins include phenol resins, epoxy resins, urea resins, melamine resins, alkyd resins, silicone resins, polyamine resins, and urea-formaldehyde resins.
また、上述した各結着剤には、磁性粉の分散性を向上させる目的で、-SO3 M、-OSO3 M、-COOM、P=O(OM)2 等の極性官能基が導入されていてもよい。ここで、上記化学式中のMは、水素原子、またはリチウム、カリウム、ナトリウム等のアルカリ金属である。
In addition, polar functional groups such as -SO3 M, -OSO3 M, -COOM and P=O(OM) 2 are introduced into each of the binders described above for the purpose of improving the dispersibility of the magnetic powder. may Here, M in the above chemical formula is a hydrogen atom or an alkali metal such as lithium, potassium or sodium.
さらに、極性官能基としては、-NR1R2、-NR1R2R3+X-の末端基を有する側鎖型のもの、>NR1R2+X-の主鎖型のものが挙げられる。ここで、上記式中のR1、R2、R3は、水素原子、または炭化水素基であり、X-は弗素、塩素、臭素、ヨウ素等のハロゲン元素イオン、または無機もしくは有機イオンである。また、極性官能基としては、-OH、-SH、-CN、エポキシ基等も挙げられる。
Further, the polar functional groups include side chain types having end groups of -NR1R2, -NR1R2R3+X-, and main chain types of >NR1R2+X-. Here, R1, R2 and R3 in the above formula are hydrogen atoms or hydrocarbon groups, and X- is a halogen element ion such as fluorine, chlorine, bromine or iodine, or an inorganic or organic ion. Further, the polar functional group includes -OH, -SH, -CN, epoxy group and the like.
(潤滑剤)
磁性層13に含まれる潤滑剤は、例えば脂肪酸および脂肪酸エステルを含有している。潤滑剤に含有される脂肪酸は、例えば下記の一般式<1>により示される化合物および一般式<2>により示される化合物のうちの少なくとも一方を含むことが好ましい。また、潤滑剤に含有される脂肪酸エステルは、下記の一般式<3>により示される化合物および一般式<4>により示される化合物のうちの少なくとも一方を含むことが好ましい。潤滑剤が、一般式<1>により示される化合物および一般式<3>により示される化合物の2種を含むことにより、一般式<2>により示される化合物および一般式<3>により示される化合物の2種を含むことにより、一般式<1>により示される化合物および一般式<4>により示される化合物の2種を含むことにより、一般式<2>により示される化合物および一般式<4>により示される化合物の2種を含むことにより、一般式<1>により示される化合物、一般式<2>により示される化合物および一般式<3>により示される化合物の3種を含むことにより、一般式<1>により示される化合物、一般式<2>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、一般式<1>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、一般式<2>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、または、一般式<1>により示される化合物、一般式<2>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の4種を含むことにより、磁気記録媒体10における繰り返しの記録又は再生による動摩擦係数の増加を抑制することができる。その結果、磁気記録媒体10の走行性をさらに向上させることができる。
CH3(CH2)kCOOH ・・・<1>
(但し、一般式<1>において、kは14以上22以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3(CH2)nCH=CH(CH2)mCOOH ・・・<2>
(但し、一般式<2>において、nとmとの和は12以上20以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3(CH2)pCOO(CH2)qCH3 ・・・<3>
(但し、一般式<3>において、pは14以上22以下、より好ましくは14以上18以下の範囲から選ばれる整数であり、且つ、qは2以上5以下の範囲、より好ましくは2以上4以下の範囲から選ばれる整数である。)
CH3(CH2)pCOO-(CH2)qCH(CH3)2 …<4>
(但し、前記一般式<4>において、pは14以上22以下の範囲から選ばれる整数であり、qは1以上3以下の範囲から選ばれる整数である。) (lubricant)
The lubricant contained in themagnetic layer 13 contains, for example, fatty acid and fatty acid ester. The fatty acid contained in the lubricant preferably contains, for example, at least one of a compound represented by the following general formula <1> and a compound represented by the following general formula <2>. Moreover, the fatty acid ester contained in the lubricant preferably contains at least one of the compound represented by the following general formula <3> and the compound represented by the following general formula <4>. The lubricant contains the compound represented by the general formula <1> and the compound represented by the general formula <3>, so that the compound represented by the general formula <2> and the compound represented by the general formula <3> By including two types of the compound represented by the general formula <1> and the compound represented by the general formula <4>, the compound represented by the general formula <2> and the general formula <4> By including two types of compounds represented by general formula <1>, by including three types of compounds represented by general formula <2> and general formula <3>, general The compound represented by the general formula <1>, the compound represented by the general formula <3, by including three kinds of the compound represented by the formula <1>, the compound represented by the general formula <2>, and the compound represented by the general formula <4>> and the compound represented by the general formula <4>, the compound represented by the general formula <2>, the compound represented by the general formula <3>, and the compound represented by the general formula <4> or by including three types of compounds represented by the general formula <1>, the compound represented by the general formula <2>, the compound represented by the general formula <3> and the general formula <4> By including the four compounds, it is possible to suppress an increase in the coefficient of dynamic friction due to repeated recording or reproduction in the magnetic recording medium 10 . As a result, the running properties of the magnetic recording medium 10 can be further improved.
CH3 ( CH2 ) kCOOH <1>
(However, in general formula <1>, k is an integer selected from the range of 14 or more and 22 or less, more preferably 14 or more and 18 or less.)
CH3 ( CH2 ) nCH =CH( CH2 ) mCOOH <2>
(However, in general formula <2>, the sum of n and m is an integer selected from the range of 12 or more and 20 or less, more preferably 14 or more and 18 or less.)
CH3 ( CH2 ) pCOO ( CH2 ) qCH3 < 3 >
(However, in general formula <3>, p is an integer selected from the range of 14 to 22, more preferably 14 to 18, and q is 2 to 5, more preferably 2 to 4 An integer selected from the following range.)
CH3 ( CH2 ) pCOO- ( CH2 ) qCH ( CH3 ) 2 <4>
(However, in the general formula <4>, p is an integer selected from the range of 14 or more and 22 or less, and q is an integer selected from the range of 1 or more and 3 or less.)
磁性層13に含まれる潤滑剤は、例えば脂肪酸および脂肪酸エステルを含有している。潤滑剤に含有される脂肪酸は、例えば下記の一般式<1>により示される化合物および一般式<2>により示される化合物のうちの少なくとも一方を含むことが好ましい。また、潤滑剤に含有される脂肪酸エステルは、下記の一般式<3>により示される化合物および一般式<4>により示される化合物のうちの少なくとも一方を含むことが好ましい。潤滑剤が、一般式<1>により示される化合物および一般式<3>により示される化合物の2種を含むことにより、一般式<2>により示される化合物および一般式<3>により示される化合物の2種を含むことにより、一般式<1>により示される化合物および一般式<4>により示される化合物の2種を含むことにより、一般式<2>により示される化合物および一般式<4>により示される化合物の2種を含むことにより、一般式<1>により示される化合物、一般式<2>により示される化合物および一般式<3>により示される化合物の3種を含むことにより、一般式<1>により示される化合物、一般式<2>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、一般式<1>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、一般式<2>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の3種を含むことにより、または、一般式<1>により示される化合物、一般式<2>により示される化合物、一般式<3>により示される化合物および一般式<4>により示される化合物の4種を含むことにより、磁気記録媒体10における繰り返しの記録又は再生による動摩擦係数の増加を抑制することができる。その結果、磁気記録媒体10の走行性をさらに向上させることができる。
CH3(CH2)kCOOH ・・・<1>
(但し、一般式<1>において、kは14以上22以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3(CH2)nCH=CH(CH2)mCOOH ・・・<2>
(但し、一般式<2>において、nとmとの和は12以上20以下の範囲、より好ましくは14以上18以下の範囲から選ばれる整数である。)
CH3(CH2)pCOO(CH2)qCH3 ・・・<3>
(但し、一般式<3>において、pは14以上22以下、より好ましくは14以上18以下の範囲から選ばれる整数であり、且つ、qは2以上5以下の範囲、より好ましくは2以上4以下の範囲から選ばれる整数である。)
CH3(CH2)pCOO-(CH2)qCH(CH3)2 …<4>
(但し、前記一般式<4>において、pは14以上22以下の範囲から選ばれる整数であり、qは1以上3以下の範囲から選ばれる整数である。) (lubricant)
The lubricant contained in the
CH3 ( CH2 ) kCOOH <1>
(However, in general formula <1>, k is an integer selected from the range of 14 or more and 22 or less, more preferably 14 or more and 18 or less.)
CH3 ( CH2 ) nCH =CH( CH2 ) mCOOH <2>
(However, in general formula <2>, the sum of n and m is an integer selected from the range of 12 or more and 20 or less, more preferably 14 or more and 18 or less.)
CH3 ( CH2 ) pCOO ( CH2 ) qCH3 < 3 >
(However, in general formula <3>, p is an integer selected from the range of 14 to 22, more preferably 14 to 18, and q is 2 to 5, more preferably 2 to 4 An integer selected from the following range.)
CH3 ( CH2 ) pCOO- ( CH2 ) qCH ( CH3 ) 2 <4>
(However, in the general formula <4>, p is an integer selected from the range of 14 or more and 22 or less, and q is an integer selected from the range of 1 or more and 3 or less.)
(添加剤)
磁性層13は、非磁性補強粒子として、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)等をさらに含んでいてもよい。 (Additive)
Themagnetic layer 13 contains nonmagnetic reinforcing particles such as aluminum oxide (α, β or γ alumina), chromium oxide, silicon oxide, diamond, garnet, emery, boron nitride, titanium carbide, silicon carbide, titanium carbide, titanium oxide ( Rutile-type or anatase-type titanium oxide) and the like may be further included.
磁性層13は、非磁性補強粒子として、酸化アルミニウム(α、βまたはγアルミナ)、酸化クロム、酸化珪素、ダイヤモンド、ガーネット、エメリー、窒化ホウ素、チタンカーバイト、炭化珪素、炭化チタン、酸化チタン(ルチル型またはアナターゼ型の酸化チタン)等をさらに含んでいてもよい。 (Additive)
The
(下地層12)
下地層12は、非磁性粉および結着剤を含む非磁性層である。下地層12が、必要に応じて、潤滑剤、導電性粒子、硬化剤および防錆剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。また、下地層12は、複数層が積層されてなる多層構造を有していてもよい。下地層12の平均厚みは、好ましくは0.5μm以上0.9μm以下、より好ましくは0.6μm以上0.7μm以下である。下地層12の平均厚みを0.9μm以下に薄くすることにより、基体11の厚みを薄くする場合よりも磁気記録媒体10全体のヤング率が効果的に低下する。このため、磁気記録媒体10に対するテンションコントロールが容易となる。また、下地層12の平均厚みを0.5μm以上とすることにより、基体11と下地層12との接着力が確保される。そのうえ、下地層12の厚みのばらつきを抑えることができ、磁性層13の表面13Sの粗さが大きくなるのを防ぐことができる。 (underlying layer 12)
Theunderlayer 12 is a nonmagnetic layer containing nonmagnetic powder and a binder. The underlayer 12 may further contain at least one additive selected from lubricants, conductive particles, hardeners, rust preventives, and the like, if necessary. Further, the underlayer 12 may have a multi-layer structure in which a plurality of layers are laminated. The average thickness of the underlayer 12 is preferably 0.5 μm or more and 0.9 μm or less, more preferably 0.6 μm or more and 0.7 μm or less. By reducing the average thickness of the underlayer 12 to 0.9 μm or less, the Young's modulus of the magnetic recording medium 10 as a whole is more effectively reduced than when the thickness of the substrate 11 is reduced. Therefore, tension control for the magnetic recording medium 10 is facilitated. Further, by setting the average thickness of the underlayer 12 to 0.5 μm or more, the adhesive force between the substrate 11 and the underlayer 12 is ensured. Moreover, variations in the thickness of the underlayer 12 can be suppressed, and an increase in the roughness of the surface 13S of the magnetic layer 13 can be prevented.
下地層12は、非磁性粉および結着剤を含む非磁性層である。下地層12が、必要に応じて、潤滑剤、導電性粒子、硬化剤および防錆剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。また、下地層12は、複数層が積層されてなる多層構造を有していてもよい。下地層12の平均厚みは、好ましくは0.5μm以上0.9μm以下、より好ましくは0.6μm以上0.7μm以下である。下地層12の平均厚みを0.9μm以下に薄くすることにより、基体11の厚みを薄くする場合よりも磁気記録媒体10全体のヤング率が効果的に低下する。このため、磁気記録媒体10に対するテンションコントロールが容易となる。また、下地層12の平均厚みを0.5μm以上とすることにより、基体11と下地層12との接着力が確保される。そのうえ、下地層12の厚みのばらつきを抑えることができ、磁性層13の表面13Sの粗さが大きくなるのを防ぐことができる。 (underlying layer 12)
The
なお、下地層12の平均厚みは、例えば次のように求められる。まず、1/2インチ幅の磁気記録媒体10を準備し、それを250mmの長さに切り出し、サンプルを作製する。続いて、サンプルの磁気記録媒体10について、下地層12および磁性層13を基体11から剥がす。次に、測定装置としてミツトヨ(Mitutoyo)社製レーザーホロゲージ(LGH-110C)を用い、基体11から剥がした下地層12と磁性層13との積層体の厚みを、5点以上の位置で測定する。そののち、それらの測定値を単純平均(算術平均)し、下地層12と磁性層13との積層体の平均厚みを算出する。なお、測定位置は、サンプルから無作為に選ばれるものとする。最後に、その積層体の平均厚みから、上述のようにTEMを用いて測定した磁性層13の平均厚みを差し引くことにより、下地層12の平均厚みを求める。
The average thickness of the underlying layer 12 is obtained, for example, as follows. First, a magnetic recording medium 10 having a width of 1/2 inch is prepared and cut into a length of 250 mm to prepare a sample. Subsequently, the underlayer 12 and the magnetic layer 13 of the sample magnetic recording medium 10 are peeled off from the substrate 11 . Next, using a laser hologram (LGH-110C) manufactured by Mitutoyo as a measuring device, the thickness of the laminated body of the underlayer 12 and the magnetic layer 13 peeled off from the substrate 11 is measured at five or more positions. do. Then, these measured values are simply averaged (arithmetic average) to calculate the average thickness of the laminate of the underlayer 12 and the magnetic layer 13 . It is assumed that the measurement position is randomly selected from the sample. Finally, the average thickness of the underlayer 12 is obtained by subtracting the average thickness of the magnetic layer 13 measured using the TEM as described above from the average thickness of the laminate.
下地層12は、細孔を有していてよく、すなわち、下地層12は、多数の細孔が設けられていてもよい。下地層12の細孔は、例えば磁性層13に細孔(凹み)を形成することに伴い形成されてよく、特には、磁気記録媒体10のバック層14の表面14Sに設けられた多数の突部を磁性層側表面に押し当てることによって形成されうる。すなわち、突部の形に対応する凹みが磁性層13の表面13Sに形成されることによって、磁性層13および下地層12に細孔がそれぞれ形成されうる。また、磁性層形成用塗料の乾燥工程で溶剤が揮発することに伴い細孔が形成されてもよい。また、磁性層13を形成するために磁性層形成用塗料を下地層12の表面に塗布した際に磁性層形成用塗料中の溶剤が下層を塗布乾燥させた際に形成された下地層12の細孔を通り、下地層12内に浸透しうる。そののち磁性層13の乾燥工程において下地層12内に浸透した溶剤が揮発する際に、下地層12内に浸透した溶剤が下地層12から磁性層13の表面13Sへ移動していくことによって細孔が形成されてもよい。このように形成された細孔は、例えば磁性層13と下地層12とを連通しているものでありうる。磁性層形成用塗料の固形分若しくは溶剤の種類及び/又は磁性層形成用塗料の乾燥条件を変更することによって、細孔の平均直径を調整することが出来る。磁性層13および下地層12の両方に細孔が形成されていることによって、良好な走行安定性のために特に適した量の潤滑剤が磁性層側表面に現れ、繰り返しの記録又は再生による動摩擦係数の増加をさらに抑制することができる。
The underlayer 12 may have pores, that is, the underlayer 12 may be provided with a large number of pores. The pores of the underlayer 12 may be formed, for example, by forming pores (recesses) in the magnetic layer 13 . can be formed by pressing the portion against the surface on the magnetic layer side. That is, by forming depressions corresponding to the shapes of the protrusions on the surface 13S of the magnetic layer 13, pores can be formed in the magnetic layer 13 and the underlayer 12, respectively. Pores may also be formed as the solvent evaporates during the drying process of the coating material for forming the magnetic layer. In addition, when the magnetic layer-forming paint was applied to the surface of the underlayer 12 to form the magnetic layer 13, the solvent in the magnetic layer-forming paint applied and dried the lower layer. It can permeate into the underlying layer 12 through the pores. After that, when the solvent that has penetrated into the underlayer 12 evaporates in the drying process of the magnetic layer 13, the solvent that has penetrated into the underlayer 12 migrates from the underlayer 12 to the surface 13S of the magnetic layer 13, resulting in fine particles. Holes may be formed. The pores formed in this manner can communicate the magnetic layer 13 and the underlayer 12, for example. The average diameter of the pores can be adjusted by changing the solid content or solvent type of the magnetic layer-forming paint and/or the drying conditions of the magnetic layer-forming paint. By forming pores in both the magnetic layer 13 and the underlayer 12, a particularly suitable amount of lubricant appears on the magnetic layer side surface for good running stability, and dynamic friction due to repeated recording or reproduction is reduced. An increase in the coefficient can be further suppressed.
繰り返し記録または再生後における動摩擦係数の低下を抑制する観点からすると、下地層12の細孔と磁性層13の凹みとがつながっていることが好ましい。ここで、下地層12の細孔と磁性層13の凹みとがつながっているとは、下地層12の多数の細孔のうちの一部のものと、磁性層13の多数の凹みのうちの一部のものとがつながっている状態を含むものとする。
From the viewpoint of suppressing a decrease in the coefficient of dynamic friction after repeated recording or reproduction, it is preferable that the pores of the underlayer 12 and the recesses of the magnetic layer 13 are connected. Here, the connection between the pores of the underlayer 12 and the recesses of the magnetic layer 13 means that some of the pores of the underlayer 12 and some of the recesses of the magnetic layer 13 are connected. It includes the state in which some things are connected.
磁性層13の表面13Sに対する潤滑剤の供給性を向上する観点からすると、多数の凹みは、磁性層13の表面13Sに対して垂直方向に延設されているものを含んでいることが好ましい。また、磁性層13の表面13Sに対する潤滑剤の供給性を向上する観点からすると、磁性層13の表面13Sに対して垂直方向に延設された下地層12の細孔と、磁性層13の表面13Sに対して垂直方向に延設された磁性層13の凹みとがつながっていることが好ましい。
From the viewpoint of improving the supply of lubricant to the surface 13S of the magnetic layer 13, it is preferable that the large number of recesses include those extending in the direction perpendicular to the surface 13S of the magnetic layer 13. In addition, from the viewpoint of improving the supply of the lubricant to the surface 13S of the magnetic layer 13, the pores of the underlayer 12 extending in the direction perpendicular to the surface 13S of the magnetic layer 13 and the surface of the magnetic layer 13 It is preferable that the recesses of the magnetic layer 13 extending in the direction perpendicular to 13S are connected.
(下地層12の非磁性粉)
非磁性粉は、例えば無機粒子粉または有機粒子粉の少なくとも1種を含む。また、非磁性粉は、カーボンブラック等の炭素粉を含んでいてもよい。なお、1種の非磁性粉を単独で用いてもよいし、2種以上の非磁性粉を組み合わせて用いてもよい。無機粒子は、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物または金属硫化物等を含む。非磁性粉の形状としては、例えば、針状、球状、立方体状、板状等の各種形状が挙げられるが、これに限定されるものではない。 (Non-Magnetic Powder for Underlayer 12)
The non-magnetic powder includes, for example, at least one of inorganic powder and organic powder. Also, the non-magnetic powder may contain carbon powder such as carbon black. One type of non-magnetic powder may be used alone, or two or more types of non-magnetic powder may be used in combination. Inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like. Examples of the shape of the non-magnetic powder include various shapes such as acicular, spherical, cubic, and plate-like, but are not limited to these.
非磁性粉は、例えば無機粒子粉または有機粒子粉の少なくとも1種を含む。また、非磁性粉は、カーボンブラック等の炭素粉を含んでいてもよい。なお、1種の非磁性粉を単独で用いてもよいし、2種以上の非磁性粉を組み合わせて用いてもよい。無機粒子は、例えば、金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物または金属硫化物等を含む。非磁性粉の形状としては、例えば、針状、球状、立方体状、板状等の各種形状が挙げられるが、これに限定されるものではない。 (Non-Magnetic Powder for Underlayer 12)
The non-magnetic powder includes, for example, at least one of inorganic powder and organic powder. Also, the non-magnetic powder may contain carbon powder such as carbon black. One type of non-magnetic powder may be used alone, or two or more types of non-magnetic powder may be used in combination. Inorganic particles include, for example, metals, metal oxides, metal carbonates, metal sulfates, metal nitrides, metal carbides, metal sulfides, and the like. Examples of the shape of the non-magnetic powder include various shapes such as acicular, spherical, cubic, and plate-like, but are not limited to these.
(下地層12の結着剤)
下地層12における結着剤は、上述の磁性層13と同様である。 (Binder for base layer 12)
The binder in theunderlayer 12 is the same as in the magnetic layer 13 described above.
下地層12における結着剤は、上述の磁性層13と同様である。 (Binder for base layer 12)
The binder in the
(バック層14)
バック層14は、例えば結着剤および非磁性粉を含んでいる。バック層14が、必要に応じて潤滑剤、硬化剤および帯電防止剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。バック層14における結着剤および非磁性粉は、上述の下地層12における結着剤および非磁性粉と同様である。 (back layer 14)
Theback layer 14 contains, for example, a binder and non-magnetic powder. The back layer 14 may further contain at least one additive selected from lubricants, curing agents, antistatic agents, and the like, if necessary. The binder and non-magnetic powder in the back layer 14 are the same as the binder and non-magnetic powder in the underlayer 12 described above.
バック層14は、例えば結着剤および非磁性粉を含んでいる。バック層14が、必要に応じて潤滑剤、硬化剤および帯電防止剤等のうちの少なくとも1種の添加剤をさらに含んでいてもよい。バック層14における結着剤および非磁性粉は、上述の下地層12における結着剤および非磁性粉と同様である。 (back layer 14)
The
[2-2 磁気記録媒体10の製造方法]
次に、上述の構成を有する磁気記録媒体10の製造方法について説明する。まず、非磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、下地層形成用塗料を調製する。次に、磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、磁性層形成用塗料を調製する。次に、結着剤および非磁性粉等を溶剤に混練、分散させることにより、バック層形成用塗料を調製する。磁性層形成用塗料、下地層形成用塗料およびバック層形成用塗料の調製には、例えば、以下の溶剤、分散装置および混練装置を用いることができる。 [2-2 Manufacturing Method of Magnetic Recording Medium 10]
Next, a method of manufacturing themagnetic recording medium 10 having the above configuration will be described. First, a non-magnetic powder, a binder, a lubricant, etc. are kneaded and dispersed in a solvent to prepare a paint for forming an underlayer. Next, magnetic powder, a binder, a lubricant, etc. are kneaded and dispersed in a solvent to prepare a coating material for forming a magnetic layer. Next, a binder, non-magnetic powder, etc. are kneaded and dispersed in a solvent to prepare a paint for forming a back layer. For the preparation of the magnetic layer-forming paint, undercoat layer-forming paint and back layer-forming paint, for example, the following solvents, dispersing devices and kneading devices can be used.
次に、上述の構成を有する磁気記録媒体10の製造方法について説明する。まず、非磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、下地層形成用塗料を調製する。次に、磁性粉、結着剤および潤滑剤等を溶剤に混練、分散させることにより、磁性層形成用塗料を調製する。次に、結着剤および非磁性粉等を溶剤に混練、分散させることにより、バック層形成用塗料を調製する。磁性層形成用塗料、下地層形成用塗料およびバック層形成用塗料の調製には、例えば、以下の溶剤、分散装置および混練装置を用いることができる。 [2-2 Manufacturing Method of Magnetic Recording Medium 10]
Next, a method of manufacturing the
上述の塗料調製に用いられる溶剤としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒、メタノール、エタノール、プロパノール等のアルコール系溶媒、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピル、乳酸エチル、エチレングリコールアセテート等のエステル系溶媒、ジエチレングリコールジメチルエーテル、2-エトキシエタノール、テトラヒドロフラン、ジオキサン等のエーテル系溶媒、ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒、メチレンクロライド、エチレンクロライド、四塩化炭素、クロロホルム、クロロベンゼン等のハロゲン化炭化水素系溶媒等が挙げられる。これらは単独で用いてもよく、適宜混合して用いてもよい。
Examples of the solvent used for preparing the above paint include ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, alcohol solvents such as methanol, ethanol and propanol, methyl acetate, ethyl acetate, butyl acetate and propyl acetate. , ester solvents such as ethyl lactate and ethylene glycol acetate, ether solvents such as diethylene glycol dimethyl ether, 2-ethoxyethanol, tetrahydrofuran and dioxane, aromatic hydrocarbon solvents such as benzene, toluene and xylene, methylene chloride, ethylene chloride, Examples thereof include halogenated hydrocarbon solvents such as carbon tetrachloride, chloroform, and chlorobenzene. These may be used alone, or may be used by mixing them as appropriate.
上述の塗料調製に用いられる混練装置としては、例えば、連続二軸混練機、多段階で希釈可能な連続二軸混練機、ニーダー、加圧ニーダー、ロールニーダー等の混練装置を用いることができるが、特にこれらの装置に限定されるものではない。また、上述の塗料調製に用いられる分散装置としては、例えば、ロールミル、ボールミル、横型サンドミル、縦型サンドミル、スパイクミル、ピンミル、タワーミル、パールミル(例えばアイリッヒ社製「DCPミル」等)、ホモジナイザー、超音波分散機等の分散装置を用いることができるが、特にこれらの装置に限定されるものではない。
As the kneading device used for the preparation of the above paint, for example, a continuous twin-screw kneader, a continuous twin-screw kneader capable of multistage dilution, a kneader, a pressure kneader, a roll kneader, or the like can be used. , and are not particularly limited to these devices. Dispersing devices used for the above coating preparation include, for example, roll mills, ball mills, horizontal sand mills, vertical sand mills, spike mills, pin mills, tower mills, pearl mills (e.g. "DCP Mill" manufactured by Eirich), homogenizers, ultra A dispersing device such as a sonic disperser can be used, but it is not particularly limited to these devices.
次に、下地層形成用塗料を基体11の一方の主面11Aに塗布して乾燥させることにより、下地層12を形成する。続いて、この下地層12上に磁性層形成用塗料を塗布して乾燥させることにより、磁性層13を下地層12上に形成する。なお、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基体11の厚み方向に磁場配向させることが好ましい。また、乾燥の際に、例えばソレノイドコイルにより、磁性粉を基体11の走行方向(長手方向)に磁場配向させたのちに、基体11の厚み方向に磁場配向させるようにしてもよい。このような磁場配向処理をすることで、磁性粉の垂直配向度(すなわち角形比S1)を向上することができる。磁性層13の形成後、バック層形成用塗料を基体11の他方の主面11Bに塗布して乾燥させることにより、バック層14を形成する。これにより、磁気記録媒体10が得られる。
Next, the base layer 12 is formed by applying a base layer forming coating material to one main surface 11A of the substrate 11 and drying it. Subsequently, the magnetic layer 13 is formed on the underlayer 12 by coating the underlayer 12 with a magnetic layer-forming paint and drying it. During drying, it is preferable to magnetically orient the magnetic powder in the thickness direction of the substrate 11 using, for example, a solenoid coil. Further, during drying, the magnetic powder may be magnetically oriented in the running direction (longitudinal direction) of the substrate 11 by, for example, a solenoid coil, and then magnetically oriented in the thickness direction of the substrate 11 . By performing such a magnetic field orientation treatment, the degree of perpendicular orientation (that is, the squareness ratio S1) of the magnetic powder can be improved. After forming the magnetic layer 13, the back layer 14 is formed by applying a back layer forming coating material to the other main surface 11B of the substrate 11 and drying it. Thus, the magnetic recording medium 10 is obtained.
その後、得られた磁気記録媒体10にカレンダー処理を行い、磁性層13の表面13Sを平滑化する。次に、カレンダー処理が施された磁気記録媒体10をロール状に巻き取ったのち、この状態で磁気記録媒体10に加熱処理を行うことにより、バック層14の表面14Sの多数の突部を磁性層13の表面13Sに転写する。これにより、磁性層13の表面13Sに多数の凹みが形成される。
After that, the obtained magnetic recording medium 10 is calendered to smooth the surface 13S of the magnetic layer 13. Next, the calendered magnetic recording medium 10 is wound into a roll, and in this state, the magnetic recording medium 10 is subjected to a heat treatment so that a large number of projections on the surface 14S of the back layer 14 become magnetic. It is transferred to surface 13S of layer 13. FIG. As a result, a large number of recesses are formed on the surface 13S of the magnetic layer 13. As shown in FIG.
加熱処理の温度は、50℃以上80℃以下であることが好ましい。加熱処理の温度が50℃以上であると、良好な転写性を得ることができる。一方、加熱処理の温度が80℃以下であると、細孔量が多くなりすぎ、磁性層13の表面13Sの潤滑剤が過多になってしまうおそれがある。ここで、加熱処理の温度は、磁気記録媒体10を保持する雰囲気の温度である。
The temperature of the heat treatment is preferably 50°C or higher and 80°C or lower. When the heat treatment temperature is 50° C. or higher, good transferability can be obtained. On the other hand, if the temperature of the heat treatment is 80° C. or less, the number of pores may become too large, and the lubricant on the surface 13S of the magnetic layer 13 may become excessive. Here, the temperature of the heat treatment is the temperature of the atmosphere that holds the magnetic recording medium 10 .
加熱処理の時間は、15時間以上40時間以下であることが好ましい。加熱処理の時間が15時間以上であると、良好な転写性を得ることができる。一方、加熱処理の時間が40時間以下であると、生産性の低下を抑制することができる。
The heat treatment time is preferably 15 hours or more and 40 hours or less. When the heat treatment time is 15 hours or more, good transferability can be obtained. On the other hand, when the heat treatment time is 40 hours or less, a decrease in productivity can be suppressed.
また、加熱処理の際に磁気記録媒体10に対して付与する圧力の範囲は150kg/cm以上400kg/cm以下であるとよい。
Also, the range of pressure applied to the magnetic recording medium 10 during heat treatment is preferably 150 kg/cm or more and 400 kg/cm or less.
最後に、磁気記録媒体10を所定の幅(例えば1/2インチ幅)に裁断する。以上により、目的とする磁気記録媒体10が得られる。
Finally, the magnetic recording medium 10 is cut into a predetermined width (eg, 1/2 inch width). As described above, the intended magnetic recording medium 10 is obtained.
[2-3 六方晶ストロンチウムフェライト粉末]
本実施の形態の六方晶ストロンチウムフェライト粉末は、磁気記録用の強磁性体である。本実施の形態の六方晶ストロンチウムフェライト粉末は、例えば塗布型の磁気記録媒体10の磁性層13の磁性粉末として用いることができる。なお、本開示の「磁性粉末」は、複数の磁性体粒子の集合物をいう。複数の磁性体粒子の集合物とは、集合物を構成する複数の磁性体粒子同士が互いに直接接している態様のほか、結着剤、潤滑剤または添加剤などが、複数の磁性体粒子の間に介在している態様をも意味する。 [2-3 Hexagonal Strontium Ferrite Powder]
The hexagonal strontium ferrite powder of this embodiment is a ferromagnetic material for magnetic recording. The hexagonal strontium ferrite powder of the present embodiment can be used, for example, as the magnetic powder of themagnetic layer 13 of the coating type magnetic recording medium 10 . In addition, "magnetic powder" in the present disclosure refers to an aggregate of a plurality of magnetic particles. An aggregate of a plurality of magnetic particles refers to a mode in which the plurality of magnetic particles forming the aggregate are in direct contact with each other, and a binder, lubricant, additive, or the like is added to the plurality of magnetic particles. It also means an intervening aspect.
本実施の形態の六方晶ストロンチウムフェライト粉末は、磁気記録用の強磁性体である。本実施の形態の六方晶ストロンチウムフェライト粉末は、例えば塗布型の磁気記録媒体10の磁性層13の磁性粉末として用いることができる。なお、本開示の「磁性粉末」は、複数の磁性体粒子の集合物をいう。複数の磁性体粒子の集合物とは、集合物を構成する複数の磁性体粒子同士が互いに直接接している態様のほか、結着剤、潤滑剤または添加剤などが、複数の磁性体粒子の間に介在している態様をも意味する。 [2-3 Hexagonal Strontium Ferrite Powder]
The hexagonal strontium ferrite powder of this embodiment is a ferromagnetic material for magnetic recording. The hexagonal strontium ferrite powder of the present embodiment can be used, for example, as the magnetic powder of the
六方晶フェライトの結晶構造は、構成原子として、少なくとも鉄原子、2価金属原子および酸素原子を含む。2価金属原子とは、イオンとして2価のカチオンになり得る金属原子である。2価金属原子としては、例えばストロンチウム(Sr)原子、バリウム(Ba)原子、カルシウム(Ca)原子等のアルカリ土類金属原子や、鉛(Pb)原子等を挙げることができる。2価金属原子としてストロンチウム原子を含む六方晶フェライトがストロンチウムフェライトである。本開示の六方晶ストロンチウムフェライト粉末とは、六方晶ストロンチウムフェライト粉末に含まれる主な2価金属原子がストロンチウム原子であるものをいう。主な2価金属原子とは、六方晶ストロンチウムフェライト粉末に含まれる2価金属原子における存在比率(原子%)が最も高い2価金属原子をいう。上記六方晶ストロンチウムフェライト粉末において、ストロンチウム原子含有率は、鉄原子100原子%に対して例えば2.0原子%以上15.0原子%以下の範囲であってもよい。本開示の六方晶ストロンチウムフェライト粉末は、2価金属原子として、ストロンチウム原子のみを含有するものであってもよい。あるいは、本開示の六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の2価金属原子を含むようにしてもよい。例えば、バリウム原子およびカルシウム原子のうちの少なくとも一方の2価金属原子を含むことができる。ストロンチウム原子以外の他の2価金属原子が含まれる場合、上記六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%程度とすることができる。
The crystal structure of hexagonal ferrite contains at least iron atoms, divalent metal atoms and oxygen atoms as constituent atoms. A bivalent metal atom is a metal atom that can become a divalent cation as an ion. Examples of bivalent metal atoms include alkaline earth metal atoms such as strontium (Sr) atoms, barium (Ba) atoms and calcium (Ca) atoms, and lead (Pb) atoms. Strontium ferrite is hexagonal ferrite containing strontium atoms as divalent metal atoms. The hexagonal strontium ferrite powder of the present disclosure refers to hexagonal strontium ferrite powder in which the main divalent metal atoms contained are strontium atoms. The main divalent metal atom means the divalent metal atom having the highest abundance ratio (atomic %) among the divalent metal atoms contained in the hexagonal strontium ferrite powder. In the hexagonal strontium ferrite powder, the strontium atom content may be, for example, in the range of 2.0 atomic % or more and 15.0 atomic % or less with respect to 100 atomic % of iron atoms. The hexagonal strontium ferrite powder of the present disclosure may contain only strontium atoms as divalent metal atoms. Alternatively, the hexagonal strontium ferrite powders of the present disclosure may contain one or more other divalent metal atoms in addition to the strontium atoms. For example, at least one of barium atoms and calcium atoms can be included. When other divalent metal atoms other than strontium atoms are contained, the barium atom content and calcium atom content in the hexagonal strontium ferrite powder are, for example, 0.05 to 0.05 to 100 atomic % iron atoms. It can be about 5.0 atomic %.
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M 型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。上記六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであってもよい。例えば、M型の六方晶フェライトは、MFe12 O19の組成式で表される。ここでMは2価金属原子を表す。したがって、組成式MFe12 O19 のMがストロンチウム(Sr)原子のみである場合、M型の六方晶ストロンチウムフェライト粉末となる。あるいは、組成式MFe12 O19 のMとして複数の2価金属原子が含まれる場合、それら複数の2価金属原子のうちストロンチウム(Sr)原子が最も高い存在比率(原子%)であるとき、M型の六方晶ストロンチウムフェライト粉末となる。上記六方晶ストロンチウムフェライト粉末の2価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。上記六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子を含んでもよいし、含まなくてもよい。
As crystal structures of hexagonal ferrite, magnetoplumbite type (also called “M type”), W type, Y type and Z type are known. The hexagonal strontium ferrite powder may have any crystal structure. The crystal structure can be confirmed by X-ray diffraction analysis. The hexagonal strontium ferrite powder may have a single crystal structure or two or more crystal structures detected by X-ray diffraction analysis. For example, hexagonal strontium ferrite powder may be one in which only the M-type crystal structure is detected by X-ray diffraction analysis. For example, M-type hexagonal ferrite is represented by the composition formula MFe 12 O 19 . Here, M represents a divalent metal atom. Therefore, when M in the composition formula MFe 12 O 19 is only a strontium (Sr) atom, an M-type hexagonal strontium ferrite powder is obtained. Alternatively, when a plurality of divalent metal atoms are included as M in the composition formula MFe 12 O 19 , when the strontium (Sr) atom has the highest abundance ratio (atomic %) among the plurality of divalent metal atoms, M type hexagonal strontium ferrite powder. The divalent metal atom content of the hexagonal strontium ferrite powder is usually determined by the type of crystal structure of the hexagonal ferrite, and is not particularly limited. The same applies to the iron atom content and the oxygen atom content. The hexagonal strontium ferrite powder contains at least iron atoms, strontium atoms, oxygen atoms and rare earth atoms, and may or may not contain atoms other than these atoms.
六方晶ストロンチウムフェライト粉末の熱揺らぎ、すなわち熱安定性の指標として、例えば保磁力Hcおよび質量磁化σsが挙げられる。六方晶ストロンチウムフェライト粉末の熱揺らぎを低減し、熱安定性を向上させるには、その保磁力Hcおよび質量磁化σsを高くすることが望ましい。
Thermal fluctuation of hexagonal strontium ferrite powder, that is, indices of thermal stability include, for example, coercive force Hc and mass magnetization σs. In order to reduce the thermal fluctuation of the hexagonal strontium ferrite powder and improve its thermal stability, it is desirable to increase its coercive force Hc and mass magnetization σs.
[2-3 六方晶ストロンチウムフェライト粉末の製造方法]
次に、図2を参照して、本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法について説明する。本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法は、いわゆるガラス結晶化法を用いたものである。 [2-3 Method for producing hexagonal strontium ferrite powder]
Next, a method for producing hexagonal strontium ferrite powder according to the present embodiment will be described with reference to FIG. The method for producing the hexagonal strontium ferrite powder of the present embodiment uses a so-called glass crystallization method.
次に、図2を参照して、本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法について説明する。本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法は、いわゆるガラス結晶化法を用いたものである。 [2-3 Method for producing hexagonal strontium ferrite powder]
Next, a method for producing hexagonal strontium ferrite powder according to the present embodiment will be described with reference to FIG. The method for producing the hexagonal strontium ferrite powder of the present embodiment uses a so-called glass crystallization method.
本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法は、具体的には以下のステップS101~S106の各操作を含む。
The method for producing hexagonal strontium ferrite powder according to the present embodiment specifically includes the operations of steps S101 to S106 below.
(S101)ガラス原料と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを混合すること(原材料混合工程)。
(S102)混合物を溶解して溶解物を得ること(溶解工程)。
(S103)溶解物を室温まで急冷し、溶解物に非晶質成分を生成すること(非晶質化工程)。
(S104)非晶質成分が生成された溶解物を570℃以上630℃以下の焼成温度で焼成することで結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させること(焼成工程)。
(S105)酸処理により、結晶化物からガラス原料の成分を除去すること(酸処理工程)。
(S106)結晶化物を乾燥させ、六方晶ストロンチウムフェライト粉末を得ること(乾燥工程)。 (S101) Mixing a glass raw material with a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide (raw material mixing step).
(S102) dissolving the mixture to obtain a melt (dissolving step);
(S103) Rapidly cooling the melt to room temperature to generate an amorphous component in the melt (amorphization step).
(S104) sintering the melt in which the amorphous component is produced at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product and precipitate crystallized hexagonal strontium ferrite (sintering step).
(S105) removing the component of the glass raw material from the crystallized product by acid treatment (acid treatment step).
(S106) Drying the crystallized product to obtain hexagonal strontium ferrite powder (drying step).
(S102)混合物を溶解して溶解物を得ること(溶解工程)。
(S103)溶解物を室温まで急冷し、溶解物に非晶質成分を生成すること(非晶質化工程)。
(S104)非晶質成分が生成された溶解物を570℃以上630℃以下の焼成温度で焼成することで結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させること(焼成工程)。
(S105)酸処理により、結晶化物からガラス原料の成分を除去すること(酸処理工程)。
(S106)結晶化物を乾燥させ、六方晶ストロンチウムフェライト粉末を得ること(乾燥工程)。 (S101) Mixing a glass raw material with a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide (raw material mixing step).
(S102) dissolving the mixture to obtain a melt (dissolving step);
(S103) Rapidly cooling the melt to room temperature to generate an amorphous component in the melt (amorphization step).
(S104) sintering the melt in which the amorphous component is produced at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product and precipitate crystallized hexagonal strontium ferrite (sintering step).
(S105) removing the component of the glass raw material from the crystallized product by acid treatment (acid treatment step).
(S106) Drying the crystallized product to obtain hexagonal strontium ferrite powder (drying step).
以下、上記工程について、詳細に説明する。
The above steps will be explained in detail below.
(原材料混合工程)
六方晶ストロンチウムフェライト粉末を得るためのガラス結晶化法に用いられる原料混合物は、六方晶ストロンチウムフェライト形成成分およびガラス形成成分を含むものである。ここでガラス形成成分とは、ガラス転移現象を示し非晶質化、すなわちガラス化し得るガラス原料である。具体的には、四ホウ酸ナトリウム(Na2B4O7)を用いる。 (Raw material mixing process)
A raw material mixture used in a glass crystallization method for obtaining hexagonal strontium ferrite powder contains a hexagonal strontium ferrite-forming component and a glass-forming component. Here, the glass-forming component is a glass raw material that exhibits a glass transition phenomenon and can be amorphized, that is, vitrified. Specifically, sodium tetraborate (Na 2 B 4 O 7 ) is used.
六方晶ストロンチウムフェライト粉末を得るためのガラス結晶化法に用いられる原料混合物は、六方晶ストロンチウムフェライト形成成分およびガラス形成成分を含むものである。ここでガラス形成成分とは、ガラス転移現象を示し非晶質化、すなわちガラス化し得るガラス原料である。具体的には、四ホウ酸ナトリウム(Na2B4O7)を用いる。 (Raw material mixing process)
A raw material mixture used in a glass crystallization method for obtaining hexagonal strontium ferrite powder contains a hexagonal strontium ferrite-forming component and a glass-forming component. Here, the glass-forming component is a glass raw material that exhibits a glass transition phenomenon and can be amorphized, that is, vitrified. Specifically, sodium tetraborate (Na 2 B 4 O 7 ) is used.
原料混合物に含まれる六方晶ストロンチウムフェライト形成成分は、例えばストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料であり、ストロンチウムフェライトの結晶構造の構成原子となる原子を含む酸化物等である。具体例としては、ストロンチウム酸化物としてのSrCO3と、鉄酸化物としてFe2O3とが挙げられる。ここで、磁性体原料におけるSrCO3の含有率は、磁性体原料におけるFe2O3の含有率よりも高いことが望ましい。
The hexagonal strontium ferrite-forming component contained in the raw material mixture is, for example, a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide. Things, etc. Specific examples include SrCO 3 as strontium oxide and Fe 2 O 3 as iron oxide. Here , it is desirable that the content of SrCO3 in the magnetic raw material is higher than the content of Fe2O3 in the magnetic raw material.
原料混合物における各種成分の含有率は、得ようとする六方晶ストロンチウムフェライト粉末の組成に応じて決定される。例えば原料混合物におけるガラス原料の含有率は、30mol%以下である。原料混合物は、各種成分を秤量したのち混合することにより調製することができる。四ホウ酸ナトリウム(Na2B4O7)などのガラス原料と、SrCO3およびFe2O3とを含む磁性体原料との混合は、例えばプラスチックの容器に入れたのち、粉体混合機で60分間に亘って行われる。
The contents of various components in the raw material mixture are determined according to the composition of the hexagonal strontium ferrite powder to be obtained. For example, the content of glass raw materials in the raw material mixture is 30 mol % or less. The raw material mixture can be prepared by weighing various components and then mixing them. A glass raw material such as sodium tetraborate (Na 2 B 4 O 7 ) and a magnetic material raw material containing SrCO 3 and Fe 2 O 3 are mixed, for example, by placing them in a plastic container and then using a powder mixer. It runs for 60 minutes.
(溶解工程)
原料混合物の溶解は、例えばガラス溶解炉で行うことができる。例えば原料混合物をガラス溶解炉の坩堝に投入し、例えば1300℃~1500℃の溶解温度で溶解する。溶解時間は、原料混合物が十分溶融するように適宜設定すればよい。溶解時間は、例えば1kgの原料混合物をガラス溶解炉に投入した場合、例えば80分間とすることができる。また、溶解炉内の原料混合物を撹拌装置により撹拌しつつ溶解することが望ましい。溶解炉内の温度むらを低減し、原料混合物が溶解してなる溶解物のアモルファス化を促進するためである。特に、本開示では、原料混合物におけるガラス原料の含有率を例えば30mol%以下と低くする場合、相対的にFe2O3を含む成分の含有率が高くなる。その場合、原料混合物の融点が上昇するので、炉内の温度分布を均質化し、溶解むらを解消するために撹拌操作が重要となる。また、撹拌により、溶解炉から溶解物を排出する際、排出口に溶解物が詰まるのを防ぐことができる。撹拌装置は、例えば30rpm以上の回転速度で撹拌するようにするとよい。 (Melting process)
The raw material mixture can be melted, for example, in a glass melting furnace. For example, the raw material mixture is put into a crucible of a glass melting furnace and melted at a melting temperature of 1300° C. to 1500° C., for example. The dissolution time may be appropriately set so that the raw material mixture is sufficiently melted. The melting time can be, for example, 80 minutes when 1 kg of the raw material mixture is put into the glass melting furnace. Moreover, it is desirable to dissolve the raw material mixture in the melting furnace while stirring it with a stirring device. This is for reducing the temperature unevenness in the melting furnace and promoting the amorphization of the melt obtained by melting the raw material mixture. In particular, in the present disclosure, when the content of glass raw materials in the raw material mixture is reduced to, for example, 30 mol % or less, the content of components containing Fe 2 O 3 becomes relatively high. In that case, since the melting point of the raw material mixture rises, the stirring operation becomes important in order to homogenize the temperature distribution in the furnace and eliminate uneven melting. In addition, the agitation can prevent clogging of the outlet with the melted material when the melted material is discharged from the melting furnace. The stirrer should stir at a rotational speed of, for example, 30 rpm or higher.
原料混合物の溶解は、例えばガラス溶解炉で行うことができる。例えば原料混合物をガラス溶解炉の坩堝に投入し、例えば1300℃~1500℃の溶解温度で溶解する。溶解時間は、原料混合物が十分溶融するように適宜設定すればよい。溶解時間は、例えば1kgの原料混合物をガラス溶解炉に投入した場合、例えば80分間とすることができる。また、溶解炉内の原料混合物を撹拌装置により撹拌しつつ溶解することが望ましい。溶解炉内の温度むらを低減し、原料混合物が溶解してなる溶解物のアモルファス化を促進するためである。特に、本開示では、原料混合物におけるガラス原料の含有率を例えば30mol%以下と低くする場合、相対的にFe2O3を含む成分の含有率が高くなる。その場合、原料混合物の融点が上昇するので、炉内の温度分布を均質化し、溶解むらを解消するために撹拌操作が重要となる。また、撹拌により、溶解炉から溶解物を排出する際、排出口に溶解物が詰まるのを防ぐことができる。撹拌装置は、例えば30rpm以上の回転速度で撹拌するようにするとよい。 (Melting process)
The raw material mixture can be melted, for example, in a glass melting furnace. For example, the raw material mixture is put into a crucible of a glass melting furnace and melted at a melting temperature of 1300° C. to 1500° C., for example. The dissolution time may be appropriately set so that the raw material mixture is sufficiently melted. The melting time can be, for example, 80 minutes when 1 kg of the raw material mixture is put into the glass melting furnace. Moreover, it is desirable to dissolve the raw material mixture in the melting furnace while stirring it with a stirring device. This is for reducing the temperature unevenness in the melting furnace and promoting the amorphization of the melt obtained by melting the raw material mixture. In particular, in the present disclosure, when the content of glass raw materials in the raw material mixture is reduced to, for example, 30 mol % or less, the content of components containing Fe 2 O 3 becomes relatively high. In that case, since the melting point of the raw material mixture rises, the stirring operation becomes important in order to homogenize the temperature distribution in the furnace and eliminate uneven melting. In addition, the agitation can prevent clogging of the outlet with the melted material when the melted material is discharged from the melting furnace. The stirrer should stir at a rotational speed of, for example, 30 rpm or higher.
(急冷工程)
次いで、原料混合物を溶解して得られた溶解物を急冷することにより、非晶質成分を含む非晶質体を生成する。上記急冷は、ガラス結晶化法で非晶質体を得るために通常行われる急冷工程と同様に実施することができる。例えば高速回転させた一対の冷却ロールを用いて溶解物を圧延しつつ急冷する方法が好適である。一対の冷却ロールは、例えば内部の流路を冷却水が循環することで、表面の温度が一定に維持されるようになっているとよい。急冷効率を安定化させ、溶解物のアモルファス化を促進させるためである。冷却ロールの表面の温度は、例えば20℃に設定する。また、一対の冷却ロールの間隔は例えば1mm以下とし、排出速度を、例えば0.5g/秒以上1.0g/秒以下とする。なお、「急冷」とは、溶解した原料混合物を急速に室温付近まで冷却し、溶解物を無秩序状態(以降アモルファス状態と呼ぶ)にすることを意味する。アモルファス状態にするには、冷却速度が結晶成長速度を上回っていることがひとつの条件であると考えられる。アモルファス状態にすることにより、ナノ粒子の成長の制御やナノ粒子の粒径の制御が可能になる。仮に、冷却速度が結晶成長速度よりも遅い場合、アモルファス状態に移行するまでに粒子の結晶成長が生じてしまい、アモルファス状態と結晶状態とが溶解物中に混在することになる。したがって、急冷が上手く行かずに原料混合物の溶解物が十分にアモルファス状態にならない場合、アモルファス状態と結晶状態とが溶解物中に混在する。このため、のちの焼成工程においてアモルファス状態から成長する粒子と、焼成工程においてある程度の大きさを持つ結晶状態から成長する粒子とが六方晶ストロンチウムフェライト粉末中に混在することとなる。よって、得られる六方晶ストロンチウムフェライト粉末の粒度分布や磁気特性にばらつきが生じてしまうと考えられる。 (quenching process)
Next, by rapidly cooling the melt obtained by dissolving the raw material mixture, an amorphous body containing an amorphous component is produced. The quenching can be carried out in the same manner as the quenching step usually performed to obtain an amorphous body by the glass crystallization method. For example, a method of rapidly cooling the melt while rolling it using a pair of cooling rolls rotated at high speed is suitable. It is preferable that the pair of cooling rolls maintain a constant surface temperature, for example, by circulating cooling water through internal channels. This is for stabilizing the quenching efficiency and promoting the amorphization of the melt. The temperature of the surface of the cooling roll is set at 20° C., for example. Further, the gap between the pair of cooling rolls is, for example, 1 mm or less, and the discharge speed is, for example, 0.5 g/sec or more and 1.0 g/sec or less. The term "rapid cooling" means to rapidly cool the melted raw material mixture to around room temperature to bring the melt into a disordered state (hereinafter referred to as an amorphous state). It is considered that one of the conditions for the amorphous state is that the cooling rate exceeds the crystal growth rate. By making it amorphous, it becomes possible to control the growth of nanoparticles and control the particle size of nanoparticles. If the cooling rate is slower than the crystal growth rate, crystal growth of the particles will occur before transitioning to the amorphous state, and the amorphous state and the crystalline state will coexist in the melt. Therefore, when rapid cooling is not successful and the melt of the raw material mixture does not become sufficiently amorphous, the melt contains both an amorphous state and a crystalline state. For this reason, the hexagonal strontium ferrite powder contains particles that grow from an amorphous state in the subsequent firing process and particles that grow from a crystalline state having a certain size in the firing process. Therefore, it is considered that the particle size distribution and magnetic properties of the hexagonal strontium ferrite powder to be obtained are varied.
次いで、原料混合物を溶解して得られた溶解物を急冷することにより、非晶質成分を含む非晶質体を生成する。上記急冷は、ガラス結晶化法で非晶質体を得るために通常行われる急冷工程と同様に実施することができる。例えば高速回転させた一対の冷却ロールを用いて溶解物を圧延しつつ急冷する方法が好適である。一対の冷却ロールは、例えば内部の流路を冷却水が循環することで、表面の温度が一定に維持されるようになっているとよい。急冷効率を安定化させ、溶解物のアモルファス化を促進させるためである。冷却ロールの表面の温度は、例えば20℃に設定する。また、一対の冷却ロールの間隔は例えば1mm以下とし、排出速度を、例えば0.5g/秒以上1.0g/秒以下とする。なお、「急冷」とは、溶解した原料混合物を急速に室温付近まで冷却し、溶解物を無秩序状態(以降アモルファス状態と呼ぶ)にすることを意味する。アモルファス状態にするには、冷却速度が結晶成長速度を上回っていることがひとつの条件であると考えられる。アモルファス状態にすることにより、ナノ粒子の成長の制御やナノ粒子の粒径の制御が可能になる。仮に、冷却速度が結晶成長速度よりも遅い場合、アモルファス状態に移行するまでに粒子の結晶成長が生じてしまい、アモルファス状態と結晶状態とが溶解物中に混在することになる。したがって、急冷が上手く行かずに原料混合物の溶解物が十分にアモルファス状態にならない場合、アモルファス状態と結晶状態とが溶解物中に混在する。このため、のちの焼成工程においてアモルファス状態から成長する粒子と、焼成工程においてある程度の大きさを持つ結晶状態から成長する粒子とが六方晶ストロンチウムフェライト粉末中に混在することとなる。よって、得られる六方晶ストロンチウムフェライト粉末の粒度分布や磁気特性にばらつきが生じてしまうと考えられる。 (quenching process)
Next, by rapidly cooling the melt obtained by dissolving the raw material mixture, an amorphous body containing an amorphous component is produced. The quenching can be carried out in the same manner as the quenching step usually performed to obtain an amorphous body by the glass crystallization method. For example, a method of rapidly cooling the melt while rolling it using a pair of cooling rolls rotated at high speed is suitable. It is preferable that the pair of cooling rolls maintain a constant surface temperature, for example, by circulating cooling water through internal channels. This is for stabilizing the quenching efficiency and promoting the amorphization of the melt. The temperature of the surface of the cooling roll is set at 20° C., for example. Further, the gap between the pair of cooling rolls is, for example, 1 mm or less, and the discharge speed is, for example, 0.5 g/sec or more and 1.0 g/sec or less. The term "rapid cooling" means to rapidly cool the melted raw material mixture to around room temperature to bring the melt into a disordered state (hereinafter referred to as an amorphous state). It is considered that one of the conditions for the amorphous state is that the cooling rate exceeds the crystal growth rate. By making it amorphous, it becomes possible to control the growth of nanoparticles and control the particle size of nanoparticles. If the cooling rate is slower than the crystal growth rate, crystal growth of the particles will occur before transitioning to the amorphous state, and the amorphous state and the crystalline state will coexist in the melt. Therefore, when rapid cooling is not successful and the melt of the raw material mixture does not become sufficiently amorphous, the melt contains both an amorphous state and a crystalline state. For this reason, the hexagonal strontium ferrite powder contains particles that grow from an amorphous state in the subsequent firing process and particles that grow from a crystalline state having a certain size in the firing process. Therefore, it is considered that the particle size distribution and magnetic properties of the hexagonal strontium ferrite powder to be obtained are varied.
(焼成工程)
急冷により得られた非晶質体を、例えば電気炉に投入して焼成を行う。この焼成工程により、六方晶ストロンチウムフェライト粒子および結晶化したガラス成分を析出させることができる。析出させる六方晶ストロンチウムフェライト粒子の粒子サイズは、焼成条件により制御可能である。結晶化のための焼成温度(結晶化温度)を高くすることは、析出する六方晶ストロンチウムフェライト粒子の粒子サイズの増大を招く。したがって、六方晶ストロンチウムフェライトの結晶化が生じる温度以上であって可能な限り低い温度であることが望ましい。具体的には、非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成することが望ましい。結晶化のための焼成時間(上記結晶化温度での保持時間)は、例えば1~24時間であり、例えば8時間以上行うことが望ましい。また、焼成温度に到達するまでの昇温速度は、1.0℃/min.以上10.0℃/min.であり、例えば5.0℃/min.以下である。 (Baking process)
The amorphous body obtained by quenching is put into, for example, an electric furnace and fired. Through this firing step, hexagonal strontium ferrite particles and crystallized glass components can be precipitated. The particle size of the deposited hexagonal strontium ferrite particles can be controlled by the firing conditions. Increasing the firing temperature for crystallization (crystallization temperature) leads to an increase in the particle size of the precipitated hexagonal strontium ferrite particles. Therefore, it is desirable that the temperature be as low as possible and above the temperature at which crystallization of hexagonal strontium ferrite occurs. Specifically, it is desirable to produce a crystallized product by firing an amorphous body at a firing temperature of 570° C. or higher and 630° C. or lower. The baking time for crystallization (holding time at the crystallization temperature) is, for example, 1 to 24 hours, preferably 8 hours or longer. Also, the rate of temperature increase until reaching the firing temperature was 1.0° C./min. above 10.0°C/min. and, for example, 5.0° C./min. It is below.
急冷により得られた非晶質体を、例えば電気炉に投入して焼成を行う。この焼成工程により、六方晶ストロンチウムフェライト粒子および結晶化したガラス成分を析出させることができる。析出させる六方晶ストロンチウムフェライト粒子の粒子サイズは、焼成条件により制御可能である。結晶化のための焼成温度(結晶化温度)を高くすることは、析出する六方晶ストロンチウムフェライト粒子の粒子サイズの増大を招く。したがって、六方晶ストロンチウムフェライトの結晶化が生じる温度以上であって可能な限り低い温度であることが望ましい。具体的には、非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成することが望ましい。結晶化のための焼成時間(上記結晶化温度での保持時間)は、例えば1~24時間であり、例えば8時間以上行うことが望ましい。また、焼成温度に到達するまでの昇温速度は、1.0℃/min.以上10.0℃/min.であり、例えば5.0℃/min.以下である。 (Baking process)
The amorphous body obtained by quenching is put into, for example, an electric furnace and fired. Through this firing step, hexagonal strontium ferrite particles and crystallized glass components can be precipitated. The particle size of the deposited hexagonal strontium ferrite particles can be controlled by the firing conditions. Increasing the firing temperature for crystallization (crystallization temperature) leads to an increase in the particle size of the precipitated hexagonal strontium ferrite particles. Therefore, it is desirable that the temperature be as low as possible and above the temperature at which crystallization of hexagonal strontium ferrite occurs. Specifically, it is desirable to produce a crystallized product by firing an amorphous body at a firing temperature of 570° C. or higher and 630° C. or lower. The baking time for crystallization (holding time at the crystallization temperature) is, for example, 1 to 24 hours, preferably 8 hours or longer. Also, the rate of temperature increase until reaching the firing temperature was 1.0° C./min. above 10.0°C/min. and, for example, 5.0° C./min. It is below.
(酸処理工程)
非晶質体を加熱することで得られた結晶化物には、六方晶ストロンチウムフェライト粒子と共に結晶化したガラス成分が含まれている。そこで、結晶化物に対し酸処理を行うことにより、六方晶ストロンチウムフェライト粒子を抽出するようにする。酸処理では、酢酸などの酸に結晶化物を投入し、ボールミル洗浄を行う。酸処理により、六方晶ストロンチウムフェライト粒子を取り囲んでいたガラス成分が溶解除去されるため、六方晶ストロンチウムフェライト粒子を採取することができる。なお、酸処理の前には、結晶化物に対して粉砕処理を行うことが好ましい。酸処理の効率を高めるためである。粗粉砕は乾式、湿式のいずれの方法で行ってもよい。そののち、遠心分離機で遠心分離し、デカンテーションを行うことで、不純物であるガラス成分を除去する。 (Acid treatment step)
A crystallized material obtained by heating an amorphous body contains a crystallized glass component together with hexagonal strontium ferrite particles. Therefore, the hexagonal strontium ferrite particles are extracted by subjecting the crystallized product to an acid treatment. In the acid treatment, the crystallized product is put into an acid such as acetic acid and washed with a ball mill. Since the acid treatment dissolves and removes the glass component surrounding the hexagonal strontium ferrite particles, the hexagonal strontium ferrite particles can be collected. In addition, it is preferable to subject the crystallized product to pulverization treatment before the acid treatment. This is for increasing the efficiency of the acid treatment. Coarse pulverization may be carried out by either a dry method or a wet method. After that, by centrifuging with a centrifuge and decanting, the glass component as an impurity is removed.
非晶質体を加熱することで得られた結晶化物には、六方晶ストロンチウムフェライト粒子と共に結晶化したガラス成分が含まれている。そこで、結晶化物に対し酸処理を行うことにより、六方晶ストロンチウムフェライト粒子を抽出するようにする。酸処理では、酢酸などの酸に結晶化物を投入し、ボールミル洗浄を行う。酸処理により、六方晶ストロンチウムフェライト粒子を取り囲んでいたガラス成分が溶解除去されるため、六方晶ストロンチウムフェライト粒子を採取することができる。なお、酸処理の前には、結晶化物に対して粉砕処理を行うことが好ましい。酸処理の効率を高めるためである。粗粉砕は乾式、湿式のいずれの方法で行ってもよい。そののち、遠心分離機で遠心分離し、デカンテーションを行うことで、不純物であるガラス成分を除去する。 (Acid treatment step)
A crystallized material obtained by heating an amorphous body contains a crystallized glass component together with hexagonal strontium ferrite particles. Therefore, the hexagonal strontium ferrite particles are extracted by subjecting the crystallized product to an acid treatment. In the acid treatment, the crystallized product is put into an acid such as acetic acid and washed with a ball mill. Since the acid treatment dissolves and removes the glass component surrounding the hexagonal strontium ferrite particles, the hexagonal strontium ferrite particles can be collected. In addition, it is preferable to subject the crystallized product to pulverization treatment before the acid treatment. This is for increasing the efficiency of the acid treatment. Coarse pulverization may be carried out by either a dry method or a wet method. After that, by centrifuging with a centrifuge and decanting, the glass component as an impurity is removed.
(乾燥工程)
ガラス成分が除去された結晶化物を水洗したのち、乾燥処理を行うことにより、六方晶ストロンチウムフェライト粒子を得ることができる。 (Drying process)
Hexagonal strontium ferrite particles can be obtained by washing the crystallized product from which the glass component has been removed and then drying the crystallized product.
ガラス成分が除去された結晶化物を水洗したのち、乾燥処理を行うことにより、六方晶ストロンチウムフェライト粒子を得ることができる。 (Drying process)
Hexagonal strontium ferrite particles can be obtained by washing the crystallized product from which the glass component has been removed and then drying the crystallized product.
[2-4 効果]
このように、本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法は、以下の<1>から<3>の各操作を含むようにしたものである。
<1>ガラス原料と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを含む混合物を溶解し、溶解物を得ること。
<2>溶解物を室温まで急冷し、非晶質成分を含む非晶質体を生成すること。
<3>非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させること。 [2-4 Effect]
As described above, the method for producing hexagonal strontium ferrite powder according to the present embodiment includes the following operations <1> to <3>.
<1> To obtain a melt by melting a mixture containing a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide.
<2> Rapidly cooling the melt to room temperature to produce an amorphous body containing an amorphous component.
<3> Firing the amorphous body at a firing temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product and deposit crystallized hexagonal strontium ferrite.
このように、本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法は、以下の<1>から<3>の各操作を含むようにしたものである。
<1>ガラス原料と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを含む混合物を溶解し、溶解物を得ること。
<2>溶解物を室温まで急冷し、非晶質成分を含む非晶質体を生成すること。
<3>非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させること。 [2-4 Effect]
As described above, the method for producing hexagonal strontium ferrite powder according to the present embodiment includes the following operations <1> to <3>.
<1> To obtain a melt by melting a mixture containing a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide.
<2> Rapidly cooling the melt to room temperature to produce an amorphous body containing an amorphous component.
<3> Firing the amorphous body at a firing temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product and deposit crystallized hexagonal strontium ferrite.
本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法によれば、上記の各処理を含むことにより、高い保磁力を有しつつ、微細化された六方晶ストロンチウムフェライト粒子を得ることができる。そのため、そのようにして得られた六方晶ストロンチウムフェライト粉末を磁性層13に含む磁気記録媒体10は、優れた電磁変換特性と高い長期信頼性との両立が期待できる。
According to the method for producing hexagonal strontium ferrite powder of the present embodiment, by including each of the above treatments, it is possible to obtain hexagonal strontium ferrite particles that are finely divided while having a high coercive force. Therefore, the magnetic recording medium 10 containing the hexagonal strontium ferrite powder thus obtained in the magnetic layer 13 can be expected to achieve both excellent electromagnetic conversion characteristics and high long-term reliability.
本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法では、ガラス原料としてNa2B4O7を用いると共に、原料混合物におけるガラス原料としてのNa2B4O7の含有率を30mol%以下としている。このように、原料混合物に占めるガラス原料の含有率を低く抑えることで、原料混合物に占める六方晶ストロンチウムフェライト粒子の核となる核生成粒子の数が相対的に増加する。核生成粒子とは、例えば磁性体原料としてのSrCO3に含まれるSr原子やFe2O3に含まれるFe原子である。核生成粒子の数が相対的に増加することにより多数の六方晶ストロンチウムフェライト粒子が生成され、個々の六方晶ストロンチウムフェライト粒子の粗大化が抑制されると考えられる。また、ガラス原料としてNa2B4O7を用いることにより、例えばH3BO3を用いた場合と比較して以下の利点がある。H3BO3の沸点は300℃と非常に低い。このため、原料混合物を溶解炉に投入した時点でH3BO3が蒸発してしまう可能性がある。よって、溶解物の融点が上昇し、溶解しづらくなる。Na2B4O7の沸点は1575℃と比較的高いので、原料混合物を溶解炉に投入した時点でNa2B4O7の蒸発は生じにくい。よって、溶解物の融点を低く抑え、十分に原料混合物の溶解を行うことができる。また、Na2B4O7を用いることで、H3BO3を用いた場合と比較して、急冷時に溶解物をアモルファス状態にしやすい。このため、焼成時に粒子成長のばらつき抑制や、粒子の粗大化を抑制する効果が得られる。
In the method for producing hexagonal strontium ferrite powder according to the present embodiment, Na 2 B 4 O 7 is used as the glass raw material, and the content of Na 2 B 4 O 7 as the glass raw material in the raw material mixture is 30 mol % or less. . In this way, by keeping the glass raw material content in the raw material mixture low, the number of nucleation particles that serve as nuclei of hexagonal strontium ferrite particles in the raw material mixture relatively increases. The nucleation particles are, for example, Sr atoms contained in SrCO 3 and Fe atoms contained in Fe 2 O 3 as the magnetic raw material. It is believed that the relative increase in the number of nucleation particles produces a large number of hexagonal strontium ferrite particles, suppressing coarsening of individual hexagonal strontium ferrite particles. Also, the use of Na 2 B 4 O 7 as a glass raw material has the following advantages over the use of, for example, H 3 BO 3 . The boiling point of H 3 BO 3 is as low as 300°C. Therefore, H 3 BO 3 may evaporate when the raw material mixture is put into the melting furnace. Therefore, the melting point of the melt is increased, making it difficult to melt. Since Na 2 B 4 O 7 has a relatively high boiling point of 1575° C., it is difficult for Na 2 B 4 O 7 to evaporate when the raw material mixture is put into the melting furnace. Therefore, the melting point of the melt can be kept low, and the raw material mixture can be sufficiently melted. Also, by using Na 2 B 4 O 7 , it is easier to bring the melt into an amorphous state during quenching, as compared with the case of using H 3 BO 3 . Therefore, it is possible to obtain the effects of suppressing variations in particle growth and suppressing coarsening of particles during firing.
また、本実施の形態の六方晶ストロンチウムフェライト粉末の製造方法では、磁性体原料におけるSrCO3の含有率(モル比)が磁性体原料におけるFe2O3の含有率(モル比)よりも高くなるようにしている。すなわち、Feの含有率(モル比)よりもSrの含有率(モル比)が高くなるようにしている。このため、六方晶ストロンチウムフェライト粒子が多数生成される。よって、個々の六方晶ストロンチウムフェライト粒子の粗大化が抑制されると考えられる。ストロンチウムはイオン化傾向が高く、ある程度、ガラスに溶けてしまう。そのため、Srの含有率(モル比)がFeの含有率(モル比)と同等以下であると、ストロンチウムが不足し、生成される六方晶ストロンチウムフェライト粒子の数が減少する。その結果、個々の六方晶ストロンチウムフェライト粒子は粗大化しやすい傾向にある。
Further, in the method for producing the hexagonal strontium ferrite powder of the present embodiment, the SrCO3 content (molar ratio) in the magnetic raw material is set higher than the Fe2O3 content ( molar ratio) in the magnetic raw material. I have to. That is, the Sr content (molar ratio) is made higher than the Fe content (molar ratio). Therefore, a large number of hexagonal strontium ferrite particles are produced. Therefore, it is considered that coarsening of individual hexagonal strontium ferrite particles is suppressed. Strontium has a high ionization tendency and dissolves in glass to some extent. Therefore, if the Sr content (molar ratio) is equal to or less than the Fe content (molar ratio), the strontium is insufficient, and the number of hexagonal strontium ferrite particles produced decreases. As a result, individual hexagonal strontium ferrite particles tend to be coarse.
<3.実験例>
以下、いくつかの実験例により本開示を具体的に説明する。ただし、本開示は以下の実験例のみに限定されるものではない。 <3. Experimental example>
The present disclosure will be specifically described below with some experimental examples. However, the present disclosure is not limited only to the following experimental examples.
以下、いくつかの実験例により本開示を具体的に説明する。ただし、本開示は以下の実験例のみに限定されるものではない。 <3. Experimental example>
The present disclosure will be specifically described below with some experimental examples. However, the present disclosure is not limited only to the following experimental examples.
(1)フェライト粉末の作製
以下の要領にて、実験例1~14のフェライト粉末のサンプルを作製した。 (1) Production of ferrite powder Ferrite powder samples of Experimental Examples 1 to 14 were produced in the following manner.
以下の要領にて、実験例1~14のフェライト粉末のサンプルを作製した。 (1) Production of ferrite powder Ferrite powder samples of Experimental Examples 1 to 14 were produced in the following manner.
[実験例1]
まず、Na2B4O7と、Fe2O3と、SrCO3と、TiO2とを、表1に示した組成比となるように秤量し、それらを粉体混合機で混合することで原料混合物を得た。混合時間は60分間とした。原料混合物の組成比を表1に示す。 [Experimental example 1]
First, Na 2 B 4 O 7 , Fe 2 O 3 , SrCO 3 , and TiO 2 were weighed so as to have the composition ratio shown in Table 1, and mixed with a powder mixer. A raw material mixture was obtained. Mixing time was 60 minutes. Table 1 shows the composition ratio of the raw material mixture.
まず、Na2B4O7と、Fe2O3と、SrCO3と、TiO2とを、表1に示した組成比となるように秤量し、それらを粉体混合機で混合することで原料混合物を得た。混合時間は60分間とした。原料混合物の組成比を表1に示す。 [Experimental example 1]
First, Na 2 B 4 O 7 , Fe 2 O 3 , SrCO 3 , and TiO 2 were weighed so as to have the composition ratio shown in Table 1, and mixed with a powder mixer. A raw material mixture was obtained. Mixing time was 60 minutes. Table 1 shows the composition ratio of the raw material mixture.
次に、原料混合物1kgをガラス溶解炉の坩堝に投入し、溶解することで溶解物を得た。溶解温度は1400℃とし、溶解時間は80分間とした。溶解時には坩堝に入れた原料混合物を30rpmで回転する撹拌棒で撹拌するようにした。
Next, 1 kg of the raw material mixture was put into a crucible of a glass melting furnace and melted to obtain a melt. The melting temperature was 1400° C. and the melting time was 80 minutes. At the time of melting, the raw material mixture placed in the crucible was stirred with a stirring rod rotating at 30 rpm.
次に、溶解物を坩堝から流出させつつ急冷することにより、非晶質成分を含む非晶質体を生成した。ここでは、表面温度が20℃に設定された一対の冷却ロールを用いて溶解物を圧延しつつ急冷するようにした。その際、一対の冷却ロールの間隔は1mm以下とし、排出速度を0.5g/秒以上1.0g/秒以下とした。
Next, by rapidly cooling the melt while flowing it out of the crucible, an amorphous body containing an amorphous component was produced. Here, a pair of cooling rolls whose surface temperature was set to 20° C. was used to rapidly cool the molten material while rolling it. At that time, the gap between the pair of cooling rolls was 1 mm or less, and the discharge speed was 0.5 g/sec or more and 1.0 g/sec or less.
急冷により得られた非晶質体を電気炉に投入して焼成をおこなった。ここでは、焼成温度を620℃とし、室温から焼成温度に到達するまでの昇温速度は、5.0℃/min.とした。また、焼成温度620℃に到達した時点から8時間に亘って620℃の焼成温度を維持するようにした。これにより、六方晶ストロンチウムフェライト粒子を含む結晶化物を得た。
The amorphous body obtained by quenching was put into an electric furnace and fired. Here, the sintering temperature was 620° C., and the rate of temperature increase from room temperature to the sintering temperature was 5.0° C./min. and In addition, the firing temperature of 620° C. was maintained for 8 hours after reaching the firing temperature of 620° C. As a result, a crystallized product containing hexagonal strontium ferrite particles was obtained.
次に、得られた結晶化物に対し酸処理を行うことによりガラス成分を除去し、六方晶ストロンチウムフェライト粒子を抽出した。酸処理には酢酸を用い、ボールミル洗浄を行った。そののち、遠心分離機で遠心分離を行い、デカンテーションを行うことで六方晶ストロンチウムフェライト粉末を得た。最後に、六方晶ストロンチウムフェライト粉末を電気炉に投入し、120℃の環境下でストロンチウムフェライトの水分値が2.0(wt%)以下になるまで乾燥させた。
Next, the obtained crystallized product was subjected to an acid treatment to remove the glass component and extract the hexagonal strontium ferrite particles. Acetic acid was used for the acid treatment, and ball mill cleaning was performed. Thereafter, centrifugal separation was performed using a centrifuge, followed by decantation to obtain hexagonal strontium ferrite powder. Finally, the hexagonal strontium ferrite powder was put into an electric furnace and dried in an environment of 120° C. until the water content of the strontium ferrite became 2.0 (wt %) or less.
[実験例2~14]
原料混合物の組成比を変更したことを除き、他は実験例1と同様にしてフェライト粉末のサンプルを作製した。但し、実験例7~9では原料混合物にSrCO3を投入する代わりにBaCO3を投入することで六方晶バリウムフェライト粉末のサンプルを作製するようにした。 [Experimental Examples 2 to 14]
A ferrite powder sample was prepared in the same manner as in Experimental Example 1, except that the composition ratio of the raw material mixture was changed. However, in Experimental Examples 7 to 9, instead of adding SrCO 3 to the raw material mixture, BaCO 3 was added to prepare samples of hexagonal barium ferrite powder.
原料混合物の組成比を変更したことを除き、他は実験例1と同様にしてフェライト粉末のサンプルを作製した。但し、実験例7~9では原料混合物にSrCO3を投入する代わりにBaCO3を投入することで六方晶バリウムフェライト粉末のサンプルを作製するようにした。 [Experimental Examples 2 to 14]
A ferrite powder sample was prepared in the same manner as in Experimental Example 1, except that the composition ratio of the raw material mixture was changed. However, in Experimental Examples 7 to 9, instead of adding SrCO 3 to the raw material mixture, BaCO 3 was added to prepare samples of hexagonal barium ferrite powder.
(2)フェライト粉末の評価
次に、上述のように作製した実験例1~14のフェライト粉末のサンプルについて、X線回折分析により結晶構造の確認をした。さらに質量磁化σs、保磁力Hc、および粒子体積の測定をおこなった。それらの結果を表1に示す。さらに、図3に、実験例1~14のフェライト粉末の粒子体積と保磁力との関係を示す。 (2) Evaluation of Ferrite Powder Next, the crystal structures of the ferrite powder samples of Experimental Examples 1 to 14 produced as described above were confirmed by X-ray diffraction analysis. Furthermore, mass magnetization σs, coercive force Hc, and particle volume were measured. Those results are shown in Table 1. Furthermore, FIG. 3 shows the relationship between the particle volume and the coercive force of the ferrite powders of Experimental Examples 1-14.
次に、上述のように作製した実験例1~14のフェライト粉末のサンプルについて、X線回折分析により結晶構造の確認をした。さらに質量磁化σs、保磁力Hc、および粒子体積の測定をおこなった。それらの結果を表1に示す。さらに、図3に、実験例1~14のフェライト粉末の粒子体積と保磁力との関係を示す。 (2) Evaluation of Ferrite Powder Next, the crystal structures of the ferrite powder samples of Experimental Examples 1 to 14 produced as described above were confirmed by X-ray diffraction analysis. Furthermore, mass magnetization σs, coercive force Hc, and particle volume were measured. Those results are shown in Table 1. Furthermore, FIG. 3 shows the relationship between the particle volume and the coercive force of the ferrite powders of Experimental Examples 1-14.
(X線回折分析)
各サンプルについてX線回折分析をおこなったところ、いずれもマグネトプランバイト型(M型)の六方晶フェライトの結晶構造を有することが確認できた。X線回折分析は、株式会社RIGAKUの「UltimaIV」を用いて以下の設定条件で実施した。
・X線管球:Co管球、
・測定範囲:20~80(deg.)
・スキャンスピード:1(deg./min.)
・X線電圧:40kV (X-ray diffraction analysis)
When each sample was subjected to X-ray diffraction analysis, it was confirmed that each sample had a magnetoplumbite-type (M-type) hexagonal ferrite crystal structure. The X-ray diffraction analysis was carried out under the following setting conditions using "Ultima IV" manufactured by RIGAKU Co., Ltd.
・X-ray tube: Co tube,
・Measuring range: 20 to 80 (deg.)
・Scan speed: 1 (deg./min.)
・X-ray voltage: 40 kV
各サンプルについてX線回折分析をおこなったところ、いずれもマグネトプランバイト型(M型)の六方晶フェライトの結晶構造を有することが確認できた。X線回折分析は、株式会社RIGAKUの「UltimaIV」を用いて以下の設定条件で実施した。
・X線管球:Co管球、
・測定範囲:20~80(deg.)
・スキャンスピード:1(deg./min.)
・X線電圧:40kV (X-ray diffraction analysis)
When each sample was subjected to X-ray diffraction analysis, it was confirmed that each sample had a magnetoplumbite-type (M-type) hexagonal ferrite crystal structure. The X-ray diffraction analysis was carried out under the following setting conditions using "Ultima IV" manufactured by RIGAKU Co., Ltd.
・X-ray tube: Co tube,
・Measuring range: 20 to 80 (deg.)
・Scan speed: 1 (deg./min.)
・X-ray voltage: 40 kV
(質量磁化σsおよび保磁力Hc)
各サンプルについて東英工業製の高感度振動試料型磁力計「VSM-P7-15型」を用いて質量磁化σsおよび保磁力Hcを測定した。測定条件は下記の通りである。
・最大外部磁場:15(kOe)
・測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20 (mass magnetization σs and coercive force Hc)
Mass magnetization σs and coercive force Hc of each sample were measured using a high-sensitivity vibrating sample magnetometer "VSM-P7-15" manufactured by Toei Industry Co., Ltd. The measurement conditions are as follows.
・Maximum external magnetic field: 15 (kOe)
・Measurement mode: full loop, maximum magnetic field: 15kOe, magnetic field step: 40bit, Time constant of Locking amp: 0.3sec, Waiting time: 1sec, MH average number: 20
各サンプルについて東英工業製の高感度振動試料型磁力計「VSM-P7-15型」を用いて質量磁化σsおよび保磁力Hcを測定した。測定条件は下記の通りである。
・最大外部磁場:15(kOe)
・測定モード:フルループ、最大磁界:15kOe、磁界ステップ:40bit、Time constant of Locking amp:0.3sec、Waiting time:1sec、MH平均数:20 (mass magnetization σs and coercive force Hc)
Mass magnetization σs and coercive force Hc of each sample were measured using a high-sensitivity vibrating sample magnetometer "VSM-P7-15" manufactured by Toei Industry Co., Ltd. The measurement conditions are as follows.
・Maximum external magnetic field: 15 (kOe)
・Measurement mode: full loop, maximum magnetic field: 15kOe, magnetic field step: 40bit, Time constant of Locking amp: 0.3sec, Waiting time: 1sec, MH average number: 20
(粒子体積)
各サンプルの六方晶フェライト粒子の体積は、各粒子を六角柱と仮定し、粒子の板径および粒子の板厚から算出した。ここでいう粒子の板径とは、ストロンチウムフェライト(もしくはバリウムフェライト)の結晶面(220)に沿った寸法をいう。また、粒子の板厚とは、ストロンチウムフェライト(もしくはバリウムフェライト)の結晶面(006)に沿った寸法をいう。フェライト粒子の板径および板厚は、X線回折分析を行ったX線回折パターンからファンダメンタルパラメータ法を用いて算出した。 (particle volume)
The volume of the hexagonal ferrite particles of each sample was calculated from the plate diameter and plate thickness of the particles, assuming that each particle was a hexagonal column. The tabular diameter of the particles as used herein refers to the dimension along the crystal plane (220) of strontium ferrite (or barium ferrite). Further, the plate thickness of a particle refers to the dimension along the crystal plane (006) of strontium ferrite (or barium ferrite). The plate diameter and plate thickness of the ferrite particles were calculated using the fundamental parameter method from the X-ray diffraction pattern obtained by the X-ray diffraction analysis.
各サンプルの六方晶フェライト粒子の体積は、各粒子を六角柱と仮定し、粒子の板径および粒子の板厚から算出した。ここでいう粒子の板径とは、ストロンチウムフェライト(もしくはバリウムフェライト)の結晶面(220)に沿った寸法をいう。また、粒子の板厚とは、ストロンチウムフェライト(もしくはバリウムフェライト)の結晶面(006)に沿った寸法をいう。フェライト粒子の板径および板厚は、X線回折分析を行ったX線回折パターンからファンダメンタルパラメータ法を用いて算出した。 (particle volume)
The volume of the hexagonal ferrite particles of each sample was calculated from the plate diameter and plate thickness of the particles, assuming that each particle was a hexagonal column. The tabular diameter of the particles as used herein refers to the dimension along the crystal plane (220) of strontium ferrite (or barium ferrite). Further, the plate thickness of a particle refers to the dimension along the crystal plane (006) of strontium ferrite (or barium ferrite). The plate diameter and plate thickness of the ferrite particles were calculated using the fundamental parameter method from the X-ray diffraction pattern obtained by the X-ray diffraction analysis.
表1および図3に示したように、実験例2~6では、質量磁化σsおよび保磁力Hcを良好に維持しつつ、すなわち高い磁気特性を維持しつつ、粒子体積を小さくすることができた。
As shown in Table 1 and FIG. 3, in Experimental Examples 2 to 6, the particle volume could be reduced while maintaining good mass magnetization σs and coercive force Hc, that is, while maintaining high magnetic properties. .
これに対し、実験例7~9では、原料混合物にストロンチウム酸化物を含まず、バリウム酸化物を用いるようにしたので、同程度の保磁力が得られた場合であっても、粒子体積が大きくなる傾向がみられた。例えば実験例7では、保磁力Hcが例えば実験例4,6と同程度の2700[Oe]であったが、粒子体積が2700[nm3]となり、実験例4の粒子体積1994[nm3]および実験例6の粒子体積982[nm3]と比べて大幅に大きくなった。また、実験例8,9では、保磁力Hcがそれぞれ2300[Oe],2200[Oe]であり、例えば実験例5の2191[Oe]と同程度であったが、粒子体積がそれぞれ1800[nm3],1500[nm3]となり、実験例5の粒子体積1196[nm3]と比べて大幅に大きくなった。
On the other hand, in Experimental Examples 7 to 9, barium oxide was used instead of strontium oxide in the raw material mixture. tended to be For example, in Experimental Example 7, the coercive force Hc was 2700 [Oe], which is about the same as in Experimental Examples 4 and 6, but the particle volume was 2700 [nm 3 ], while the particle volume of Experimental Example 4 was 1994 [nm 3 ]. And compared with the particle volume of Experimental Example 6, 982 [nm 3 ], the particle volume was greatly increased. Further, in Experimental Examples 8 and 9, the coercive force Hc was 2300 [Oe] and 2200 [Oe], respectively, which was about the same as 2191 [Oe] in Experimental Example 5, but the particle volume was 1800 [nm]. 3 ], 1500 [nm 3 ], which is significantly larger than the particle volume of Experimental Example 5, 1196 [nm 3 ].
実験例1~6,12~14では、原料混合物におけるガラス原料としてのNa2B4O7の含有率を30mol%以下としているので、実験例10,11などと比較して質量磁化σsおよび保磁力Hcを高く維持しつつ、粒子体積を低減することができた。特に、実験例2~6では、ストロンチウム酸化物(SrCO3)の含有率が高く、ガラス原料としてのNa2B4O7の含有率が低い。このため、図3に示したように、他の実験例1,7~14と比較して、より高い磁気特性を維持しつつ粒子体積を低減することができた。また、実験例10,11では、ガラス原料としてのNa2B4O7の含有率が高い。このため、他の実験例と比較すると、粒子体積が大きく、磁気特性が低い。また、実験例12,13では、ストロンチウム酸化物(SrCO3)の含有率が比較的低い。このため、核生成粒子の数が相対的に少なく、粒子成長にばらつきが生じていると考えられる。また、TiO2の添加により六方晶フェライト粒子の結晶成長が阻害され、保磁力Hcの低下を招くことが確認された。
In Experimental Examples 1 to 6 and 12 to 14, the content of Na 2 B 4 O 7 as a glass raw material in the raw material mixture was 30 mol % or less. The particle volume could be reduced while maintaining a high magnetic force Hc. In particular, in Experimental Examples 2 to 6, the content of strontium oxide (SrCO 3 ) is high and the content of Na 2 B 4 O 7 as a glass raw material is low. Therefore, as shown in FIG. 3, the particle volume could be reduced while maintaining higher magnetic properties than in other Experimental Examples 1 and 7-14. Also, in Experimental Examples 10 and 11, the content of Na 2 B 4 O 7 as a glass raw material is high. Therefore, compared with other experimental examples, the particle volume is large and the magnetic properties are low. Also, in Experimental Examples 12 and 13, the content of strontium oxide (SrCO 3 ) is relatively low. For this reason, the number of nucleation particles is relatively small, and it is considered that the particle growth is uneven. It was also confirmed that the addition of TiO 2 inhibits the crystal growth of hexagonal ferrite grains, resulting in a decrease in coercive force Hc.
以上、実施の形態およびその変形例を挙げて本開示を具体的に説明したが、本開示は上記実施の形態等に限定されるものではなく、種々の変形が可能である。
Although the present disclosure has been specifically described above with reference to the embodiments and modifications thereof, the present disclosure is not limited to the above-described embodiments and the like, and various modifications are possible.
例えば、上述の実施形態およびその変形例において挙げた構成、方法、工程、形状、材料および数値等はあくまでも例に過ぎず、必要に応じてこれと異なる構成、方法、工程、形状、材料および数値等を用いてもよい。具体的には、本開示の磁気記録媒体は、基体、下地層、磁性層、バック層およびバリア層以外の構成要素を含んでいてもよい。また、化合物等の化学式は代表的なものであって、同じ化合物の一般名称であれば、記載された価数等に限定されない。
For example, the configurations, methods, steps, shapes, materials, numerical values, etc. given in the above-described embodiments and modifications thereof are merely examples, and different configurations, methods, steps, shapes, materials, numerical values, etc., may be used if necessary. etc. may be used. Specifically, the magnetic recording medium of the present disclosure may contain components other than the substrate, underlayer, magnetic layer, back layer and barrier layer. Also, the chemical formulas of compounds and the like are representative ones, and the valence numbers and the like are not limited as long as they are common names of the same compound.
また、上述の実施形態およびその変形例の構成、方法、工程、形状、材料および数値等は、本開示の主旨を逸脱しない限り、互いに組み合わせることが可能である。
Also, the configurations, methods, steps, shapes, materials, numerical values, etc. of the above-described embodiments and modifications thereof can be combined with each other without departing from the gist of the present disclosure.
また、本明細書において段階的に記載された数値範囲において、ある段階の数値範囲の上限値または下限値は、他の段階の数値範囲の上限値または下限値に置き換えてもよい。本明細書に例示した材料は、特に断らない限り、1種を単独で用いることができるし、2種以上を組み合わせて用いることもできる。
In addition, in the numerical ranges described stepwise in this specification, the upper limit or lower limit of the numerical range at one stage may be replaced with the upper limit or lower limit of the numerical range at another stage. The materials exemplified in this specification can be used singly or in combination of two or more unless otherwise specified.
以上説明したように、本開示の一実施形態としての六方晶ストロンチウムフェライト粉末の製造方法によれば、高い保磁力を有しつつ、微細化された六方晶ストロンチウムフェライト粒子を得ることができる。
なお、本開示の効果はこれに限定されるものではなく、本明細書に記載のいずれの効果であってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
ガラス原料としての四ホウ酸ナトリウム(Na2B4O7)と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを含む混合物を溶解し、溶解物を得ることと、
前記溶解物を室温まで急冷し、非晶質成分を含む非晶質体を生成することと、
前記非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させることと
を含む
六方晶ストロンチウムフェライト粉末の製造方法。
(2)
前記ストロンチウム酸化物としてSrCO3を用い、
前記鉄酸化物としてFe2O3を用い、
前記磁性体原料における前記SrCO3の含有率は、前記磁性体原料における前記Fe2O3の含有率よりも高い
上記(1)記載の六方晶ストロンチウムフェライト粉末の製造方法。
(3)
前記混合物における前記ガラス原料の含有率は、30mol%以下である
上記(1)または(2)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(4)
5℃/min.以下の昇温速度で前記室温から前記焼成温度まで昇温する
上記(1)から(3)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(5)
前記非晶質体を前記焼成温度で8時間以上に亘って焼成する
上記(1)から(4)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(6)
前記溶解物を、冷却ロールを用いて圧延しつつ前記急冷を行う
上記(1)から(5)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(7)
酸処理により、前記結晶化物から前記ガラス原料の成分を除去することをさらに含む
上記(1)から(6)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。 As described above, according to the method for producing a hexagonal strontium ferrite powder as an embodiment of the present disclosure, fine hexagonal strontium ferrite particles can be obtained while having a high coercive force.
Note that the effect of the present disclosure is not limited to this, and may be any of the effects described in this specification. In addition, the present technology can take the following configurations.
(1)
Melting a mixture containing sodium tetraborate (Na 2 B 4 O 7 ) as a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide to obtain a melt. When,
quenching the melt to room temperature to produce an amorphous body comprising an amorphous component;
A method for producing a hexagonal strontium ferrite powder, comprising: sintering the amorphous material at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product, and precipitating the crystallized hexagonal strontium ferrite.
(2)
using SrCO3 as the strontium oxide ,
Using Fe 2 O 3 as the iron oxide,
The method for producing a hexagonal strontium ferrite powder according to (1) above, wherein the SrCO 3 content in the magnetic raw material is higher than the Fe 2 O 3 content in the magnetic raw material.
(3)
The method for producing a hexagonal strontium ferrite powder according to any one of (1) or (2) above, wherein the content of the glass raw material in the mixture is 30 mol % or less.
(4)
5°C/min. The method for producing a hexagonal strontium ferrite powder according to any one of (1) to (3) above, wherein the temperature is raised from the room temperature to the firing temperature at the following temperature elevation rate.
(5)
The method for producing a hexagonal strontium ferrite powder according to any one of (1) to (4) above, wherein the amorphous body is fired at the firing temperature for 8 hours or longer.
(6)
The method for producing a hexagonal strontium ferrite powder according to any one of the above (1) to (5), wherein the quenching is performed while rolling the melt using cooling rolls.
(7)
The method for producing a hexagonal strontium ferrite powder according to any one of (1) to (6) above, further comprising removing the glass raw material component from the crystallized product by acid treatment.
なお、本開示の効果はこれに限定されるものではなく、本明細書に記載のいずれの効果であってもよい。また、本技術は以下のような構成を取り得るものである。
(1)
ガラス原料としての四ホウ酸ナトリウム(Na2B4O7)と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを含む混合物を溶解し、溶解物を得ることと、
前記溶解物を室温まで急冷し、非晶質成分を含む非晶質体を生成することと、
前記非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させることと
を含む
六方晶ストロンチウムフェライト粉末の製造方法。
(2)
前記ストロンチウム酸化物としてSrCO3を用い、
前記鉄酸化物としてFe2O3を用い、
前記磁性体原料における前記SrCO3の含有率は、前記磁性体原料における前記Fe2O3の含有率よりも高い
上記(1)記載の六方晶ストロンチウムフェライト粉末の製造方法。
(3)
前記混合物における前記ガラス原料の含有率は、30mol%以下である
上記(1)または(2)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(4)
5℃/min.以下の昇温速度で前記室温から前記焼成温度まで昇温する
上記(1)から(3)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(5)
前記非晶質体を前記焼成温度で8時間以上に亘って焼成する
上記(1)から(4)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(6)
前記溶解物を、冷却ロールを用いて圧延しつつ前記急冷を行う
上記(1)から(5)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。
(7)
酸処理により、前記結晶化物から前記ガラス原料の成分を除去することをさらに含む
上記(1)から(6)のいずれか1つに記載の六方晶ストロンチウムフェライト粉末の製造方法。 As described above, according to the method for producing a hexagonal strontium ferrite powder as an embodiment of the present disclosure, fine hexagonal strontium ferrite particles can be obtained while having a high coercive force.
Note that the effect of the present disclosure is not limited to this, and may be any of the effects described in this specification. In addition, the present technology can take the following configurations.
(1)
Melting a mixture containing sodium tetraborate (Na 2 B 4 O 7 ) as a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide to obtain a melt. When,
quenching the melt to room temperature to produce an amorphous body comprising an amorphous component;
A method for producing a hexagonal strontium ferrite powder, comprising: sintering the amorphous material at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product, and precipitating the crystallized hexagonal strontium ferrite.
(2)
using SrCO3 as the strontium oxide ,
Using Fe 2 O 3 as the iron oxide,
The method for producing a hexagonal strontium ferrite powder according to (1) above, wherein the SrCO 3 content in the magnetic raw material is higher than the Fe 2 O 3 content in the magnetic raw material.
(3)
The method for producing a hexagonal strontium ferrite powder according to any one of (1) or (2) above, wherein the content of the glass raw material in the mixture is 30 mol % or less.
(4)
5°C/min. The method for producing a hexagonal strontium ferrite powder according to any one of (1) to (3) above, wherein the temperature is raised from the room temperature to the firing temperature at the following temperature elevation rate.
(5)
The method for producing a hexagonal strontium ferrite powder according to any one of (1) to (4) above, wherein the amorphous body is fired at the firing temperature for 8 hours or longer.
(6)
The method for producing a hexagonal strontium ferrite powder according to any one of the above (1) to (5), wherein the quenching is performed while rolling the melt using cooling rolls.
(7)
The method for producing a hexagonal strontium ferrite powder according to any one of (1) to (6) above, further comprising removing the glass raw material component from the crystallized product by acid treatment.
本出願は、日本国特許庁において2021年3月11日に出願された日本特許出願番号2021-039757号を基礎として優先権を主張するものであり、この出願のすべての内容を参照によって本出願に援用する。
This application claims priority based on Japanese Patent Application No. 2021-039757 filed on March 11, 2021 at the Japan Patent Office, and the entire contents of this application are incorporated herein by reference. to refer to.
当業者であれば、設計上の要件や他の要因に応じて、種々の修正、コンビネーション、サブコンビネーション、および変更を想到し得るが、それらは添付の請求の範囲やその均等物の範囲に含まれるものであることが理解される。
Depending on design requirements and other factors, those skilled in the art may conceive various modifications, combinations, subcombinations, and modifications that fall within the scope of the appended claims and their equivalents. It is understood that
Claims (7)
- ガラス原料としての四ホウ酸ナトリウム(Na2B4O7)と、ストロンチウム(Sr)酸化物および鉄(Fe)酸化物を含有する磁性体原料とを含む混合物を溶解し、溶解物を得ることと、
前記溶解物を室温まで急冷し、非晶質成分を含む非晶質体を生成することと、
前記非晶質体を570℃以上630℃以下の焼成温度で焼成することにより結晶化物を生成し、結晶化した六方晶ストロンチウムフェライトを析出させることと
を含む
六方晶ストロンチウムフェライト粉末の製造方法。 Melting a mixture containing sodium tetraborate (Na 2 B 4 O 7 ) as a glass raw material and a magnetic raw material containing strontium (Sr) oxide and iron (Fe) oxide to obtain a melt. When,
quenching the melt to room temperature to produce an amorphous body comprising an amorphous component;
A method for producing a hexagonal strontium ferrite powder, comprising: sintering the amorphous material at a sintering temperature of 570° C. or higher and 630° C. or lower to produce a crystallized product, and precipitating the crystallized hexagonal strontium ferrite. - 前記ストロンチウム(Sr)酸化物としてSrCO3を用い、
前記鉄(Fe)酸化物としてFe2O3を用い、
前記磁性体原料における前記SrCO3の含有率は、前記磁性体原料における前記Fe2O3の含有率よりも高い
請求項1記載の六方晶ストロンチウムフェライト粉末の製造方法。 Using SrCO3 as the strontium ( Sr) oxide,
Using Fe 2 O 3 as the iron (Fe) oxide,
2. The method for producing hexagonal strontium ferrite powder according to claim 1 , wherein the SrCO3 content in the magnetic raw material is higher than the Fe2O3 content in the magnetic raw material. - 前記混合物における前記ガラス原料の含有率は、30mol%以下である
請求項1記載の六方晶ストロンチウムフェライト粉末の製造方法。 The method for producing hexagonal strontium ferrite powder according to claim 1, wherein the content of the glass raw material in the mixture is 30 mol% or less. - 5℃/min.以下の昇温速度で前記室温から前記焼成温度まで昇温する
請求項1記載の六方晶ストロンチウムフェライト粉末の製造方法。 5°C/min. The method for producing a hexagonal strontium ferrite powder according to claim 1, wherein the temperature is raised from the room temperature to the firing temperature at a temperature elevation rate of: - 前記非晶質体を前記焼成温度で8時間以上に亘って焼成する
請求項1記載の六方晶ストロンチウムフェライト粉末の製造方法。 2. The method for producing hexagonal strontium ferrite powder according to claim 1, wherein said amorphous body is fired at said firing temperature for 8 hours or longer. - 前記溶解物を、冷却ロールを用いて圧延しつつ前記急冷を行う
請求項1記載の六方晶ストロンチウムフェライト粉末の製造方法。 The method for producing a hexagonal strontium ferrite powder according to claim 1, wherein the quenching is performed while the melt is rolled using cooling rolls. - 酸処理により、前記結晶化物から前記ガラス原料の成分を除去することをさらに含む
請求項1記載の六方晶ストロンチウムフェライト粉末の製造方法。 2. The method for producing a hexagonal strontium ferrite powder according to claim 1, further comprising removing the glass raw material component from the crystallized product by acid treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023505229A JPWO2022190742A1 (en) | 2021-03-11 | 2022-02-08 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-039757 | 2021-03-11 | ||
JP2021039757 | 2021-03-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022190742A1 true WO2022190742A1 (en) | 2022-09-15 |
Family
ID=83227895
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/004898 WO2022190742A1 (en) | 2021-03-11 | 2022-02-08 | Method for producing hexagonal strontium ferrite powder |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2022190742A1 (en) |
WO (1) | WO2022190742A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176964A1 (en) * | 2023-02-20 | 2024-08-29 | ソニーグループ株式会社 | Method for producing coating material for magnetic recording medium, and method for producing magnetic recording medium |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6218701A (en) * | 1985-07-18 | 1987-01-27 | Sony Corp | Manufacture of hexagonal ferrite particle powder |
WO2015025465A1 (en) * | 2013-08-23 | 2015-02-26 | ソニー株式会社 | Ferrimagnetic particle powder and manufacturing method therefor, and magnetic recording medium and manufacturing method therefor |
JP2020113352A (en) * | 2019-01-11 | 2020-07-27 | 富士フイルム株式会社 | Hexagonal crystal strontium ferrite powder, magnetic recording medium, and magnetic recording and reproducing device |
-
2022
- 2022-02-08 WO PCT/JP2022/004898 patent/WO2022190742A1/en active Application Filing
- 2022-02-08 JP JP2023505229A patent/JPWO2022190742A1/ja active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6218701A (en) * | 1985-07-18 | 1987-01-27 | Sony Corp | Manufacture of hexagonal ferrite particle powder |
WO2015025465A1 (en) * | 2013-08-23 | 2015-02-26 | ソニー株式会社 | Ferrimagnetic particle powder and manufacturing method therefor, and magnetic recording medium and manufacturing method therefor |
JP2020113352A (en) * | 2019-01-11 | 2020-07-27 | 富士フイルム株式会社 | Hexagonal crystal strontium ferrite powder, magnetic recording medium, and magnetic recording and reproducing device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024176964A1 (en) * | 2023-02-20 | 2024-08-29 | ソニーグループ株式会社 | Method for producing coating material for magnetic recording medium, and method for producing magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JPWO2022190742A1 (en) | 2022-09-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6766938B2 (en) | Magnetic recording medium | |
JP5645865B2 (en) | Hexagonal strontium ferrite magnetic powder and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof | |
WO2019159466A1 (en) | Magnetic recording medium | |
JP5284707B2 (en) | Method for producing hexagonal ferrite magnetic powder, magnetic recording medium and method for producing the same | |
WO2019171665A1 (en) | Magnetic recording tape, production method therefor, and magnetic recording tape cartridge | |
US11355145B2 (en) | Magnetic recording medium | |
WO2022190742A1 (en) | Method for producing hexagonal strontium ferrite powder | |
JP7176526B2 (en) | Method for manufacturing magnetic powder | |
US8419966B2 (en) | Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium and method of manufacturing the same | |
JP2010100489A (en) | Ferrite particle, ferrite powder and magnetic recording medium | |
JP5185200B2 (en) | Hexagonal ferrite magnetic powder and manufacturing method thereof, and magnetic recording medium and manufacturing method thereof | |
JP2010080608A (en) | Method of manufacturing hexagonal ferrite magnetic powder, magnetic recording medium, and method of manufacturing the same | |
WO2024176964A1 (en) | Method for producing coating material for magnetic recording medium, and method for producing magnetic recording medium | |
WO2024162177A1 (en) | Hexagonal ferrite magnetic powder and magnetic recording medium | |
JP6103172B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium | |
JP5253071B2 (en) | Method for manufacturing magnetic recording medium | |
JP2982820B2 (en) | Manufacturing method of magnetic tape | |
JP5403241B2 (en) | Nonmagnetic particle powder for nonmagnetic underlayer of magnetic recording medium, and magnetic recording medium | |
JPH11339253A (en) | Magnetic recording medium and its production | |
JPH1021539A (en) | Producing device for magnetic recording medium, production of magnetic recording medium, and magnetic recording medium | |
JP2003036519A (en) | Hexagonal ferrite powder and magnetic recording medium containing it | |
JP2000011358A (en) | Magnetic recording medium | |
JP2005259299A (en) | Magnetic recording medium | |
JPH04109425A (en) | Magnetic recording medium and its production | |
JP2000331324A (en) | Disk type magnetic recording medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22766707 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023505229 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22766707 Country of ref document: EP Kind code of ref document: A1 |