Nothing Special   »   [go: up one dir, main page]

WO2022186230A1 - Terminal device and base station device - Google Patents

Terminal device and base station device Download PDF

Info

Publication number
WO2022186230A1
WO2022186230A1 PCT/JP2022/008703 JP2022008703W WO2022186230A1 WO 2022186230 A1 WO2022186230 A1 WO 2022186230A1 JP 2022008703 W JP2022008703 W JP 2022008703W WO 2022186230 A1 WO2022186230 A1 WO 2022186230A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
dmrs
unit
parameters
base station
Prior art date
Application number
PCT/JP2022/008703
Other languages
French (fr)
Japanese (ja)
Inventor
理 中村
秀夫 難波
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2023503879A priority Critical patent/JPWO2022186230A1/ja
Publication of WO2022186230A1 publication Critical patent/WO2022186230A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present invention relates to terminal devices and base station devices. This application claims priority based on Japanese Patent Application No. 2021-34379 filed in Japan on March 4, 2021, the contents of which are incorporated herein.
  • DMRS Demodulation Reference Signal
  • NR Release 15 specifies inter-slot repetition transmission in order to improve communication reliability and expand coverage. Inter-slot repetition allows the same data to be repeatedly transmitted in multiple slots. However, since multiple slots are required for repeated transmission, there is a problem in terms of delay. Therefore, in NR Release 16, intra-slot repeat transmission is specified. In intra-slot repetition transmission, it is possible to set a repetition unit multiple times in a slot and perform transmission.
  • Non-Patent Document 1 In the specifications up to Rel-16, the DMRS that can be used for channel estimation is limited to within a repetition unit or within a slot. Accuracy can be greatly improved. Therefore, in NR Release 17, joint channel estimation (DMRS bundling, also called DMRS sharing) is being considered, which makes it possible to use DMRSs included in different repetition units or different slots.
  • DMRS bundling also called DMRS sharing
  • Non-Patent Document 2 proposes that when joint channel estimation is applied, DMRSs are rearranged so that they are evenly spaced in a plurality of allocated slots or a plurality of repeated time resources.
  • Non-Patent Document 3 proposes switching between repeated transmission and single TB transmission by dynamic signaling. As a result, repeated transmission can be applied to secure a low delay, and batch encoding transmission of 1 TB can be performed to improve transmission characteristics, making it possible to perform control according to QoS.
  • Non-Patent Document 2 when performing joint channel estimation, by rearranging DMRSs (arranging DMRSs at equal intervals in time resources), the rearranged terminal device can obtain good transmission characteristics.
  • the DMRS allocation pattern changes from that of users who are not rearranged, it becomes difficult to apply multi-user MIMO (Multiple Input Multiple Output).
  • One aspect of the present invention has been made in view of such circumstances, and its purpose is to efficiently expand coverage by enabling effective application of joint channel estimation.
  • the configurations of the base station apparatus, the terminal apparatus, and the communication method according to one aspect of the present invention to solve the above-described problems are as follows.
  • One aspect of the present invention is a terminal device that transmits to a base station device, the upper layer receiving higher layer signaling including two parameters of a repetition unit and a repetition number from the base station device.
  • the processing unit uses the processing unit, the higher layer signaling, and a predetermined field included in downlink control information, a first transmission that performs repeated transmission using the two parameters, and the radio allocated by the two parameters
  • the multiplexing unit arranges at least one reference signal for each repetition during DMRS arrangement related to the first transmission, and At the time of DMRS allocation, at least one reference signal is allocated to the radio resources allocated by the two parameters.
  • the multiplexing unit when performing DMRS allocation related to the second transmission, divides the radio resources allocated by the two parameters into 14 symbols, and A DMRS is arranged at a predetermined position of the symbol.
  • One aspect of the present invention is a base station apparatus that receives a signal transmitted by a terminal apparatus, and an upper layer that generates higher layer signaling including two parameters of a repetition unit and a repetition number for the terminal apparatus.
  • the downlink control signal unit arranges at least one reference signal for each repetition when arranging DMRS related to the first transmission, and performs the second transmission. during DMRS configuration associated with , it is indicated to configure at least one reference signal on the radio resources allocated according to the two parameters.
  • the downlink control signal unit divides the radio resources allocated by the two parameters into every 14 symbols when performing the DMRS arrangement related to the second transmission, A DMRS is arranged at a predetermined position of the divided symbols.
  • FIG. 4 is a diagram showing an example of smart DMRS deployment according to the first embodiment
  • FIG. 4 is a diagram showing an example of DMRS allocation in repeated transmission and one transport block transmission according to the first embodiment
  • FIG. 4 is a diagram showing an example of the relationship between the number of symbols and DMRS positions according to the first embodiment
  • FIG. 10 is a diagram showing another example of DMRS allocation in repeated transmission and one transport block transmission according to the first embodiment
  • FIG. 10 is a diagram showing a conventional example of use of radio resources in repeated transmission according to the second embodiment;
  • FIG. 10 is a diagram showing an example of use of radio resources in repeated transmission (DMRS transmission) according to the second embodiment;
  • FIG. 10 is a diagram showing an example of use of radio resources (data transmission) in repeated transmission according to the second embodiment;
  • FIG. 10 is a diagram showing a table used for determining transport block sizes of 3824 or less;
  • the communication system includes base station devices (cells, small cells, serving cells, component carriers, eNodeB, Home eNodeB, gNodeB) and terminal devices (terminals, mobile terminals, UE: User Equipment).
  • base station devices cells, small cells, serving cells, component carriers, eNodeB, Home eNodeB, gNodeB
  • terminal devices terminal devices, mobile terminals, UE: User Equipment.
  • the base station device in the case of the downlink, the base station device becomes a transmitting device (transmitting point, transmitting antenna group, transmitting antenna port group, TRP (Tx/Rx Point)), and the terminal device becomes a receiving device (receiving point, receiving terminal , receiving antenna group, receiving antenna port group).
  • TRP Tx/Rx Point
  • the base station apparatus becomes a receiving apparatus
  • the terminal apparatus becomes a transmitting apparatus.
  • the communication system is also applicable to D2D (Device-to-Device, sidelink) communication. In that case, both
  • the communication system is not limited to data communication between a terminal device and a base station device with human intervention.
  • human intervention such as MTC (Machine Type Communication), M2M communication (Machine-to-Machine Communication), IoT (Internet of Things) communication, NB-IoT (Narrow Band-IoT), etc.
  • MTC Machine Type Communication
  • M2M communication Machine-to-Machine Communication
  • IoT Internet of Things
  • NB-IoT Narrow Band-IoT
  • the communication system can use a multicarrier transmission scheme such as CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) in uplink and downlink.
  • CP-OFDM Cyclic Prefix-Orthogonal Frequency Division Multiplexing
  • the communication system applies Transform precoding, that is, DFTS-OFDM (Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing, also called SC-FDMA) that applies DFT when upper layer parameters for Transform precoder are set. is used).
  • Transform precoding that is, DFTS-OFDM (Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing, also called SC-FDMA) that applies DFT when upper layer parameters for Transform precoder are set. is used).
  • SC-FDMA Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing
  • the base station device and the terminal device in this embodiment are frequency bands called so-called licensed bands, which are licensed from countries and regions where wireless operators provide services, and / or It is possible to communicate in a frequency band called an unlicensed band, which does not require a permit (license) from a country or region.
  • X/Y includes the meaning of "X or Y”. In this embodiment, “X/Y” includes the meaning of “X and Y.” In this embodiment, “X/Y” includes the meaning of "X and/or Y”.
  • FIG. 1 is a diagram showing a configuration example of a communication system 1 according to this embodiment.
  • a communication system 1 in this embodiment includes a base station apparatus 10 and a terminal apparatus 20 .
  • the coverage 10a is a range (communication area) in which the base station apparatus 10 can connect (communicate) with the terminal apparatus 20 (also called a cell).
  • the base station apparatus 10 can accommodate a plurality of terminal apparatuses 20 in the coverage 10a.
  • the uplink radio communication r30 includes at least the following uplink physical channels.
  • Uplink physical channels are used to transmit information output from higher layers.
  • - Physical uplink control channel (PUCCH) Physical uplink shared channel (PUSCH) - Physical Random Access Channel (PRACH)
  • PUCCH is a physical channel used to transmit uplink control information (UCI).
  • the uplink control information includes positive acknowledgment (ACK)/negative acknowledgment (NACK) for downlink data.
  • Downlink data here refers to Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH, and the like.
  • ACK/NACK is also called HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement), HARQ feedback, HARQ response, HARQ control information, or a signal indicating acknowledgment.
  • HARQ-ACK Hybrid Automatic Repeat request ACKnowledgement
  • NR supports at least five formats: PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4.
  • PUCCH format 0 and PUCCH format 2 are composed of 1 or 2 OFDM symbols, and other PUCCHs are composed of 4 to 14 OFDM symbols. It is also composed of PUCCH format 0 and PUCCH format 1 bandwidth 12 subcarriers.
  • PUCCH format 0 1-bit (or 2-bit) ACK/NACK is transmitted using resource elements of 12 subcarriers and 1 OFDM symbol (or 2 OFDM symbols).
  • the uplink control information includes a scheduling request (SR) used to request PUSCH (Uplink-Shared Channel: UL-SCH) resources for initial transmission.
  • SR scheduling request
  • PUSCH Uplink-Shared Channel: UL-SCH
  • a scheduling request indicates a request for UL-SCH resources for initial transmission.
  • the uplink control information includes downlink channel state information (Channel State Information: CSI).
  • the downlink channel state information includes a rank indicator (RI) indicating a preferred spatial multiplexing number (number of layers), a precoding matrix indicator (PMI) indicating a preferred precoder, and a preferred transmission rate. including Channel Quality Indicator (CQI), etc.
  • the PMI indicates a codebook determined by the terminal.
  • the codebook relates to precoding of physical downlink shared channels.
  • a higher layer parameter RI limit can be set.
  • the RI limit has multiple setting parameters, one of which is the type 1 single panel RI limit, which consists of 8 bits.
  • Bitmap parameters, type 1 single-panel RI restrictions form bit sequences r 7 , . . . r 2 , r 1 .
  • r 7 is the MSB (Most Significant Bit)
  • r 0 is the LSB (Least Significant Bit).
  • PMI and RI reporting corresponding to the precoder associated with layer i+1 is not allowed.
  • RI restrictions include type 1 single panel RI restrictions and type 1 multi-panel RI restrictions, which consist of 4 bits.
  • the type 1 multi-panel RI restriction bitmap parameters form the bit sequence r 4 , r 3 , r 2 , r 1 .
  • r 4 is the MSB and r 0 is the LSB.
  • r i is zero (where i is 0, 1, 2, 3), PMI and RI reporting corresponding to the precoder associated with layer i+1 is not allowed.
  • the CQI can use a suitable modulation scheme (eg, QPSK, 16QAM, 64QAM, 256QAMAM, etc.) in a predetermined band, a coding rate, and an index (CQI index) indicating frequency utilization efficiency.
  • BLER block error probability
  • PUSCH is a physical channel used to transmit uplink data (Uplink Transport Block, Uplink-Shared Channel: UL-SCH), and as a transmission method, CP-OFDM or DFT-S-OFDM is applied.
  • PUSCH may be used to transmit control information such as HARQ-ACK and/or channel state information for downlink data along with the uplink data.
  • PUSCH may be used to transmit channel state information only.
  • PUSCH may be used to transmit HARQ-ACK and channel state information only.
  • RRC signaling is also referred to as RRC message/RRC layer information/RRC layer signaling/RRC layer parameters/RRC information element.
  • RRC signaling is information/signals processed in the radio resource control layer.
  • the RRC signaling transmitted from the base station apparatus may be signaling common to multiple terminal apparatuses within a cell.
  • the RRC signaling transmitted from the base station apparatus may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal apparatus. That is, user equipment specific information is sent to a terminal using dedicated signaling.
  • the RRC message can include UE Capabilities of the terminal device.
  • UE Capability is information indicating the functions supported by the terminal device.
  • PUSCH is used to transmit MAC CE (Medium Access Control Element).
  • MAC CE is information/signals processed (transmitted) in the Medium Access Control layer.
  • power headroom may be included in MAC CE and reported via PUSCH. That is, the MAC CE field is used to indicate the level of power headroom.
  • RRC signaling and/or MAC CE are also referred to as higher layer signaling.
  • RRC signaling and/or MAC CE are included in the transport block.
  • the PRACH is used to transmit preambles used for random access.
  • PRACH is used to transmit a random access preamble.
  • PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and PUSCH (UL-SCH) resource requirements. used for
  • an uplink reference signal (Uplink Reference Signal: UL RS) is used as an uplink physical signal.
  • the uplink reference signal includes a demodulation reference signal (DMRS), a sounding reference signal (SRS), a phase tracking signal (PTRS), and the like.
  • DMRS relates to transmission of physical uplink shared channel/physical uplink control channel. For example, when the base station apparatus 10 demodulates the physical uplink shared channel/physical uplink control channel, the demodulation reference signal is used to perform channel estimation/channel correction.
  • the SRS is not related to the transmission of the physical uplink shared channel/physical uplink control channel.
  • the base station apparatus 10 uses SRS to measure uplink channel conditions (CSI measurement).
  • the PTRS is related to transmission of the physical uplink shared channel/physical uplink control channel.
  • the base station apparatus 10 uses PTRS for phase tracking.
  • downlink physical channels are used in downlink r31 radio communication.
  • Downlink physical channels are used to transmit information output from higher layers.
  • PBCH Physical broadcast channel
  • PDCH Physical downlink control channel
  • PDSCH Physical downlink shared channel
  • the PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used by terminal devices.
  • MIB is one of the system information.
  • the MIB contains the downlink transmission bandwidth setting, System Frame number (SFN).
  • SFN System Frame number
  • the MIB may contain information indicating at least part of the slot number, subframe number, and radio frame number in which the PBCH is transmitted.
  • the PDCCH is used to transmit downlink control information (DCI).
  • DCI downlink control information
  • a plurality of formats (also called DCI formats) are defined based on usage.
  • a DCI format may be defined based on the type and number of bits of DCI that constitute one DCI format. Each format is used according to its purpose.
  • Downlink control information includes control information for downlink data transmission and control information for uplink data transmission.
  • a DCI format for downlink data transmission is also called a downlink assignment (or downlink grant).
  • a DCI format for uplink data transmission is also called an uplink grant (or uplink assignment).
  • a downlink grant may at least be used for scheduling the PDSCH in the same slot in which the downlink grant was transmitted.
  • Downlink assignment includes frequency domain resource allocation for PDSCH, time domain resource allocation, MCS (Modulation and Coding Scheme) for PDSCH, NDI (New Data Indicator) for indicating initial transmission or retransmission, HARQ in downlink Downlink control information such as information indicating the process number and Redundancy version indicating the amount of redundancy added to the codeword during error correction coding is included.
  • a codeword is data after error correction coding.
  • the downlink assignment may include a Transmission Power Control (TPC) command for PUCCH and a TPC command for PUSCH.
  • the uplink grant may include an aggregation level (transmission repetition count) that indicates the number of times PUSCH is repeatedly transmitted. Note that the DCI format for each downlink data transmission includes information (fields) necessary for its use among the above information.
  • the uplink grant includes information on resource block allocation for transmitting PUSCH (resource block allocation and hopping resource allocation), time domain resource allocation, information on MCS of PUSCH (MCS/redundancy version), information on DMRS port, information on PUSCH It includes uplink control information such as information on retransmission, TPC commands for PUSCH, and downlink channel state information (CSI) requests (CSI requests).
  • the uplink grant may include information indicating an uplink HARQ process number, information indicating a redundancy version, a transmission power control (TPC) command for PUCCH, and a TPC command for PUSCH.
  • TPC transmission power control
  • the DCI format for each uplink data transmission includes information (fields) necessary for its use among the above information.
  • the OFDM symbol number (position) for transmitting the DMRS symbol is between the first OFDM symbol of the slot and the last OFDM symbol of the PUSCH resource scheduled in the slot when intra frequency hopping is not applied and PUSCH mapping type A is used. given by the signaled duration of For PUSCH mapping type B, where intra frequency hopping is not applied, the OFDM symbol number (position) where a DMRS symbol is transmitted is given by the scheduled PUSCH resource period. If intra frequency hopping is applied, it is given in terms of duration per hop. For PUSCH mapping type A, only if the higher layer parameter indicating the position of the leading DMRS is 2, and the higher layer parameter indicating the number of additional DMRSs is 3 is supported. Also, for PUSCH mapping type A, the 4-symbol period is applicable only when the higher layer parameter indicating the position of the leading DMRS is 2.
  • a PDCCH is generated by adding a Cyclic Redundancy Check (CRC) to downlink control information.
  • CRC Cyclic Redundancy Check
  • the CRC parity bits are scrambled (exclusive OR operation, also called mask) using a predetermined identifier.
  • Parity bits are C-RNTI (Cell-Radio Network Temporary Identifier), CS (Configured Scheduling)-RNTI, Temporary C-RNTI, P (Paging)-RNTI, SI (System Information)-RNTI, or RA (Random Access) - RNTI, SP-CSI (Semi-Persistent Channel State-Information) - RNTI, scrambled with MCS-C-RNTI.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • CS Configured Scheduling
  • Temporary C-RNTI Temporary C-RNTI
  • P Paging
  • SI System Information
  • RA Random Access
  • C-RNTI and CS-RNTI are identifiers for identifying terminal devices within a cell.
  • Temporary C-RNTI is an identifier for identifying a terminal device that has transmitted a random access preamble during a contention based random access procedure.
  • C-RNTI and Temporary C-RNTI are used to control PDSCH transmission or PUSCH transmission in a single subframe.
  • the CS-RNTI is used to periodically allocate PDSCH or PUSCH resources.
  • the CS-RNTI scrambled PDCCH (DCI format) is used to activate or deactivate CS type 2.
  • the control information (MCS, radio resource allocation, etc.) included in the PDCCH scrambled by CS-RNTI is included in the upper layer parameters related to CS, and activation (setting) of CS is performed by the upper layer parameters.
  • P-RNTI is used to transmit paging messages (Paging Channel: PCH).
  • SI-RNTI is used to transmit SIBs.
  • RA-RNTI is used to send a random access response (message 2 in the random access procedure).
  • SP-CSI-RNTI is used for semi-static CSI reporting.
  • MCS-C-RNTI is used in selecting a low spectral efficiency MCS table.
  • the PDSCH is used to transmit downlink data (downlink transport block, DL-SCH).
  • the PDSCH is used to transmit system information messages (also called System Information Block: SIB). Part or all of the SIB may be included in the RRC message.
  • SIB System Information Block
  • the PDSCH is used to transmit RRC signaling.
  • the RRC signaling transmitted from the base station apparatus may be common (cell-specific) for multiple terminal apparatuses within the cell. That is, user equipment common information within that cell is transmitted using cell-specific RRC signaling.
  • the RRC signaling transmitted from the base station apparatus may be a message dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, user equipment specific information is sent to a terminal using dedicated messages.
  • the PDSCH is used to transmit MAC CE.
  • RRC signaling and/or MAC CE are also referred to as higher layer signaling.
  • PMCH is used to transmit multicast data (Multicast Channel: MCH).
  • a synchronization signal (SS) and a downlink reference signal (DL RS) are used as downlink physical signals.
  • Downlink physical signals are not used to transmit information output from higher layers, but are used by the physical layer.
  • the synchronization signal is used by the terminal device to synchronize the frequency domain and time domain of the downlink.
  • a downlink reference signal is used by a terminal device to perform channel estimation/channel correction of a downlink physical channel.
  • downlink reference signals are used to demodulate PBCH, PDSCH, and PDCCH.
  • the downlink reference signal can also be used by the terminal device to measure the downlink channel state (CSI measurement).
  • a downlink physical channel and a downlink physical signal are also collectively referred to as a downlink signal.
  • an uplink physical channel and an uplink physical signal are collectively referred to as an uplink signal.
  • Downlink physical channels and uplink physical channels are also collectively referred to as physical channels.
  • Downlink physical signals and uplink physical signals are also collectively referred to as physical signals.
  • BCH, UL-SCH and DL-SCH are transport channels.
  • Channels used in the MAC layer are called transport channels.
  • a transport channel unit used in the MAC layer is also called a transport block (TB) or a MAC PDU (Protocol Data Unit).
  • TB transport block
  • MAC PDU Protocol Data Unit
  • a transport block is a unit of data that the MAC layer delivers to the physical layer. At the physical layer, transport blocks are mapped to codewords, and encoding processing and the like are performed for each codeword.
  • FIG. 2 is a schematic block diagram of the configuration of the base station apparatus 10 according to this embodiment.
  • the base station apparatus 10 includes an upper layer processing unit (upper layer processing step) 102, a control unit (control step) 104, a transmitting unit (transmitting step) 106, a transmitting antenna 108, a receiving antenna 110, and a receiving unit (receiving step) 112.
  • composed of Transmission section 106 generates a physical downlink channel according to the logical channel input from upper layer processing section 102 .
  • the transmitting unit 106 includes an encoding unit (encoding step) 1060, a modulation unit (modulation step) 1062, a downlink control signal generation unit (downlink control signal generation step) 1064, a downlink reference signal generation unit (downlink reference signal generation step) 1066 , multiplexing section (multiplexing step) 1068 , and radio transmission section (radio transmission step) 1070 .
  • the receiving unit 112 detects (demodulates, decodes, etc.) a physical uplink channel and inputs the content to the upper layer processing unit 102 .
  • the receiving unit 112 includes a radio receiving unit (radio receiving step) 1120, a channel estimating unit (channel estimating step) 1122, a demultiplexing unit (demultiplexing step) 1124, an equalizing unit (equalizing step) 1126, a demodulating unit ( demodulation step) 1128 and a decoding unit (decoding step) 1130 .
  • radio receiving step radio receiving step
  • channel estimating unit channel estimating step
  • demultiplexing step demultiplexing step
  • equalizing unit equalizing unit
  • demodulating unit demodulation step
  • decoding step decoding step
  • the upper layer processing unit 102 includes a medium access control (MAC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, a radio resource control (Radio Resource Control: Performs processing of higher layers than the physical layer such as the RRC) layer.
  • Upper layer processing section 102 generates information necessary for controlling transmitting section 106 and receiving section 112 and outputs the information to control section 104 .
  • Upper layer processing section 102 outputs downlink data (DL-SCH, etc.), system information (MIB, SIB), etc. to transmitting section 106 .
  • the DMRS configuration information may be notified to the terminal device by system information (MIB or SIB) instead of notification by an upper layer such as RRC.
  • the upper layer processing unit 102 generates system information (MIB or a part of SIB) to be broadcast or acquires it from a higher node.
  • Upper layer processing section 102 outputs the system information to be broadcast to transmitting section 106 as BCH/DL-SCH.
  • the MIB is placed on the PBCH in transmitting section 106 .
  • the SIB is mapped to the PDSCH in transmitting section 106 .
  • the upper layer processing unit 102 generates system information (SIB) unique to the terminal device, or acquires it from a higher level.
  • SIB is mapped to the PDSCH in transmitting section 106 .
  • the upper layer processing unit 102 sets various RNTIs for each terminal device.
  • the RNTI is used for encryption (scrambling) of PDCCH, PDSCH, and the like.
  • Upper layer processing section 102 outputs the RNTI to control section 104 /transmitting section 106 /receiving section 112 .
  • the upper layer processing unit 102 uses the downlink data (transport block, DL-SCH) allocated to the PDSCH, system information specific to the terminal device (System Information Block: SIB), RRC message, MAC CE, DMRS configuration information as SIB , and MIB, or DMRS configuration information if not notified by DCI, is generated or acquired from a higher node, and output to transmission section 106 .
  • the upper layer processing unit 102 manages various setting information of the terminal device 20 . Note that part of the radio resource control function may be performed in the MAC layer or the physical layer.
  • the upper layer processing unit 102 receives information about the terminal device, such as the functions supported by the terminal device (UE capabilities), from the terminal device 20 (via the receiving unit 112).
  • the terminal device 20 transmits its own function to the base station device 10 using a higher layer signal (RRC signaling).
  • Information about the terminal device includes information indicating whether the terminal device supports a given function or information indicating that the terminal device has completed installation and testing for the given function. Whether or not a given function is supported includes whether installation and testing for the given function have been completed.
  • the terminal device transmits information (parameters) indicating whether or not the predetermined function is supported. If a terminal device does not support a given function, the terminal device may not transmit information (parameters) indicating whether it supports the given function. That is, whether or not the predetermined function is supported is notified by transmitting information (parameters) indicating whether or not the predetermined function is supported. Information (parameter) indicating whether or not a predetermined function is supported may be notified using one bit of 1 or 0.
  • Upper layer processing section 102 acquires DL-SCH from the decoded uplink data (including CRC) from receiving section 112 .
  • the upper layer processing unit 102 performs error detection on the uplink data transmitted by the terminal device. For example, the error detection is done at the MAC layer.
  • the control unit 104 controls the transmission unit 106 and the reception unit 112 based on various setting information input from the upper layer processing unit 102/reception unit 112 .
  • Control section 104 generates downlink control information (DCI) based on the setting information input from upper layer processing section 102 /receiving section 112 and outputs it to transmitting section 106 .
  • DCI downlink control information
  • the control unit 104 considers the DMRS setting information (whether it is the DMRS configuration 1 or the DMRS configuration 2) input from the upper layer processing unit 102/receiving unit 112, DMRS frequency allocation (DMRS configuration 1 In the case of , an even numbered subcarrier or an odd numbered subcarrier, and in the case of DMRS configuration 2, one of the 0th to 2nd sets) is set, and DCI is generated.
  • DMRS setting information whether it is the DMRS configuration 1 or the DMRS configuration 2
  • DMRS frequency allocation DMRS configuration 1 In the case of , an even numbered subcarrier or an odd numbered subcarrier, and in the case of DMRS configuration 2, one of the 0th to 2nd sets
  • the control unit 104 determines the MCS of PUSCH in consideration of the channel quality information (CSI measurement results) measured by the propagation path estimation unit 1122.
  • the control unit 104 determines an MCS index corresponding to the MCS of the PUSCH.
  • Control section 104 includes the determined MCS index in the uplink grant.
  • the transmission section 106 generates PBCH, PDCCH, PDSCH, downlink reference signals, etc. according to the signal input from the upper layer processing section 102/control section 104 .
  • Encoding section 1060 converts BCH, DL-SCH, etc. input from upper layer processing section 102 into block code, convolutional code, turbo using a predetermined/determined encoding method by upper layer processing section 102. Encoding (including repetition) is performed using code, polar encoding, LDPC code, or the like. Coding section 1060 punctures the coded bits based on the coding rate input from control section 104 .
  • Modulation section 1062 data-modulates the coded bits input from encoding section 1060 using a predetermined modulation scheme (modulation order) input from control section 104 such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. .
  • modulation order is based on the MCS index selected by controller 104 .
  • the downlink control signal generation section 1064 adds CRC to the DCI input from the control section 104 .
  • the downlink control signal generator 1064 performs encryption (scrambling) on the CRC using the RNTI. Furthermore, the downlink control signal generating section 1064 performs QPSK modulation on the DCI to which the CRC is added to generate PDCCH.
  • the downlink reference signal generating section 1066 generates a sequence known by the terminal device as a downlink reference signal. The known sequence is obtained according to a predetermined rule based on a physical cell identifier for identifying base station apparatus 10 or the like.
  • a multiplexing section 1068 multiplexes the modulation symbols of each channel input from the PDCCH/downlink reference signal/modulation section 1062 . That is, multiplexing section 1068 maps PDCCH/downlink reference signals and modulation symbols of each channel to resource elements. Resource elements to be mapped are controlled by downlink scheduling input from the control section 104 .
  • a resource element is the minimum unit of physical resource consisting of one OFDM symbol and one subcarrier.
  • a plurality of resource elements form a resource block (RB), and scheduling is applied using the RB as the minimum unit.
  • transmitting section 106 includes coding section 1060 and modulating section 1062 in the number of layers. In this case, upper layer processing section 102 sets MCS for each transport block of each layer.
  • the radio transmission unit 1070 performs Inverse Fast Fourier Transform (IFFT) on the multiplexed modulation symbols and the like to generate OFDM symbols.
  • a radio transmitter 1070 adds a cyclic prefix (CP) to the OFDM symbol to generate a baseband digital signal.
  • radio transmission section 1070 converts the digital signal into an analog signal, removes unnecessary frequency components by filtering, up-converts to a carrier frequency, amplifies the power, and outputs the signal to transmission antenna 108 for transmission.
  • Receiving section 112 detects (separates, demodulates, and decodes) a signal received from terminal device 20 via receiving antenna 110 according to an instruction from control section 104, and sends the decoded data to upper layer processing section 102/control section 104. input.
  • the radio receiving unit 1120 down-converts the uplink signal received via the receiving antenna 110 into a baseband signal, removes unnecessary frequency components, and amplifies the signal so that the signal level is appropriately maintained. It controls the level, performs quadrature demodulation based on the in-phase and quadrature components of the received signal, and converts the quadrature-demodulated analog signal to a digital signal.
  • Radio receiving section 1120 removes the portion corresponding to CP from the converted digital signal.
  • Radio receiving section 1120 performs Fast Fourier Transform (FFT) on the CP-removed signal to extract a signal in the frequency domain.
  • the frequency domain signal is output to demultiplexing section 1124 .
  • FFT Fast Fourier Transform
  • the demultiplexing unit 1124 Based on the uplink scheduling information (uplink data channel allocation information, etc.) input from the control unit 104, the demultiplexing unit 1124 converts the signal input from the radio receiving unit 1120 into PUSCH, PUCCH, and uplink reference signals. and other signals.
  • the separated uplink reference signals are input to the channel estimation section 1122 .
  • the separated PUSCH and PUCCH are output to equalization section 1126 .
  • the propagation path estimation unit 1122 estimates the frequency response (or delay profile) using the uplink reference signal.
  • a frequency response result obtained by channel estimation for demodulation is input to equalization section 1126 .
  • the propagation path estimation unit 1122 uses the uplink reference signal to measure uplink channel conditions (measurement of RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator)). conduct. Measurement of uplink channel conditions is used for determination of MCS for PUSCH and the like.
  • the equalization section 1126 performs processing for compensating the influence of the propagation path from the frequency response input from the propagation path estimation section 1122 .
  • any existing channel compensation such as a method of multiplying MMSE weights or MRC weights, a method of applying MLD, or the like can be applied.
  • the demodulation section 1128 performs demodulation processing based on the information of the modulation scheme determined in advance/instructed by the control section 104 .
  • the decoding unit 1130 performs decoding processing on the output signal of the demodulation unit based on the coding rate information instructed by the predetermined coding rate/control unit 104 .
  • Decoding section 1130 inputs the decoded data (such as UL-SCH) to upper layer processing section 102 .
  • FIG. 3 is a schematic block diagram showing the configuration of the terminal device 20 in this embodiment.
  • the terminal device 20 includes an upper layer processing unit (upper layer processing step) 202, a control unit (control step) 204, a transmitting unit (transmitting step) 206, a transmitting antenna 208, a receiving antenna 210, and a receiving unit (receiving step) 212. consists of
  • the upper layer processing unit 202 processes the medium access control (MAC) layer, the packet data integration protocol (PDCP) layer, the radio link control (RLC) layer, and the radio resource control (RRC) layer.
  • the upper layer processing unit 202 manages various setting information of its own terminal device.
  • the upper layer processing section 202 notifies the base station apparatus 10 of information (UE Capability) indicating the functions of the terminal device supported by the own terminal apparatus via the transmitting section 206 .
  • the upper layer processing unit 202 notifies the UE Capability by RRC signaling.
  • the upper layer processing unit 202 acquires the decoded data such as DL-SCH and BCH from the receiving unit 212 .
  • the upper layer processing unit 202 generates HARQ-ACK from the DL-SCH error detection result.
  • the upper layer processing unit 202 generates SR.
  • the upper layer processing unit 202 generates UCI including HARQ-ACK/SR/CSI (including CQI report).
  • upper layer processing section 202 inputs information on the DMRS configuration to control section 204 .
  • the upper layer processing section 202 inputs the UCI and UL-SCH to the transmitting section 206 . Note that part of the functions of the upper layer processing unit 202 may be included in the control unit 204 .
  • the control unit 204 interprets the downlink control information (DCI) received via the receiving unit 212.
  • the control unit 204 controls the transmission unit 206 according to the PUSCH scheduling/MCS index/TPC (Transmission Power Control) obtained from the DCI for uplink transmission.
  • the control unit 204 controls the receiving unit 212 according to the PDSCH scheduling/MCS index obtained from the DCI for downlink transmission. Further, the control unit 204 identifies the DMRS frequency allocation according to the information about the DMRS frequency allocation (port number) included in the DCI for downlink transmission and the DMRS configuration information input from the upper layer processing unit 202. .
  • the transmitting unit 206 includes an encoding unit (encoding step) 2060, a modulation unit (modulation step) 2062, an uplink reference signal generation unit (uplink reference signal generation step) 2064, an uplink control signal generation unit (uplink control signal generation step) 2066 , multiplexing section (multiplexing step) 2068 , and radio transmission section (radio transmission step) 2070 .
  • Coding section 2060 convolutionally encodes the uplink data (UL-SCH) input from upper layer processing section 202 under the control of control section 204 (according to the coding rate calculated based on the MCS index), and converts it to LDPC. Encoding such as encoding, polar encoding, and turbo encoding is performed.
  • Modulation section 2062 modulates the coded bits input from coding section 2060 with a modulation method/modulation method predetermined for each channel, such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM, instructed by control section 204. (generate modulation symbols for PUSCH).
  • Uplink reference signal generating section 2064 arranges a physical cell identifier (referred to as PCI, Cell ID, etc.) for identifying base station apparatus 10 and an uplink reference signal, according to an instruction from control section 204.
  • PCI physical cell identifier
  • a sequence determined by a predetermined rule is generated based on the bandwidth, cyclic shift, parameter values for DMRS sequence generation, and frequency allocation.
  • Uplink control signal generation section 2066 encodes UCI, performs BPSK/QPSK modulation, and generates modulation symbols for PUCCH according to instructions from control section 204 .
  • mode 1 or mode 2 can be set as its value.
  • Mode 2 is slot-to-slot hopping, which is a mode in which when transmission is performed using a plurality of slots, the frequency is changed for each slot and transmitted.
  • mode 1 is intra-slot hopping, in which when one or more slots are used for transmission, the slot is divided into a first half and a second half, and the first half and the second half are transmitted with different frequencies.
  • frequency allocation in frequency hopping radio resource allocation in the frequency domain notified by DCI or RRC is applied to the first hop, and frequency allocation of the second hop is applied to the radio resources used in the first hop.
  • Multiplexing unit 2068 uplink scheduling information from the control unit 204 (transmission interval in CS (Configured Scheduling) for uplink included in the RRC message, frequency domain and time domain resource allocation included in DCI, etc.), according to PUSCH , modulation symbols for PUCCH, and uplink reference signals are multiplexed for each transmit antenna port (DMRS port) (that is, each signal is mapped to a resource element).
  • CS Configured Scheduling
  • CS configured scheduling, configured grant scheduling
  • the actual uplink grant is configured via RRC for Configured Grant Type 1 and given via PDCCH processed by CS-RNTI for Configured Grant Type 2.
  • the parameter repK set in the upper layer defines the number of repetitions applied to the transmitted transport block.
  • a parameter repK-RV set in the upper layer indicates a redundancy version pattern to be applied repeatedly. If repK-RV is not set (given), the redundancy version of each actual repeat in the configured grant is set to zero. Otherwise, for the n-th transmission opportunity among all actual iterations (including omitted actual iterations) in the K nominal iterations, the set RV sequence (redundancy version pattern) The transmission associated with the (mod (n ⁇ 1, 4)+1) th value in . Also, the initial transmission of one transport block is started at the first transmission opportunity of K repetitions when the set RV sequence is ⁇ 0, 2, 3, 1 ⁇ .
  • PUSCH repetition type B was specified. Except for PUSCH, which transmits CSI reports without transport blocks, the nominal number of repetitions is given by the higher layer parameter numberofrepetitions.
  • K s be the slot where PUSCH transmission starts
  • N symb be the number of symbols per slot
  • S be the start symbol for the beginning of the slot
  • L be the number of consecutive symbols counted from the symbol S assigned as PUSCH.
  • the slot where repetition starts is given by K s +ceil((S+n ⁇ L)/N symb ), and the start symbol for the beginning of the slot is given by mod(S+n ⁇ L, N symb ).
  • the slot where the nominal repetition ends is K s + ceil ((S + (n + 1) ⁇ L - 1) / N symb ), the end symbol for the beginning of the slot is mod (S + (n + 1) ⁇ L - 1, N symb ).
  • a start RB is determined based on a certain slot number.
  • FIG. 4 shows an example of DMRS arrangement described in Non-Patent Document 2.
  • D denotes a downlink symbol
  • G a guard symbol
  • U an uplink symbol
  • DMRS symbols are hatched.
  • the allocation of DMRSs is biased across S slots and U slots. This is because the DMRS cannot be shared between the S slot and the U slot, that is, the joint channel estimation cannot be applied, so it is necessary to arrange the DMRS at the beginning of the U slot.
  • the accuracy of channel estimation differs depending on the data symbol.
  • Non-Patent Document 2 proposes a smart DMRS arrangement as shown in FIG. 4 as a DMRS arrangement suitable for joint channel estimation.
  • the DMRS is allocated at the beginning of the allocation, and the DMRS is allocated at approximately equal intervals (constant intervals) within the allocation, so data symbols with lower channel estimation accuracy are generated compared to the current specifications. can be made difficult.
  • Non-Patent Document 2 does not disclose signaling for performing smart DMRS arrangement or specific DMRS arrangement criteria, for example, parameters related to joint channel estimation are set, and joint channel estimation is applied according to the parameters. / It is conceivable to decide non-applicability.
  • joint channel estimation the DMRS deployment of the current specifications (up to Release 16) causes a large deviation in channel estimation accuracy. It becomes possible to
  • the range to which joint channel estimation is applied that is, how many symbols in time over which DMRSs are shared may be set by signaling different from RRC signaling for joint channel estimation. Note that the applicable range may be set as a parameter of RRC signaling related to joint channel estimation.
  • the DMRS arrangement of the current specifications can apply multi-user MIMO in which resources are shared at the same frequency and at the same time among multiple terminal devices having the same slot configuration.
  • Application of multi-user MIMO can improve system throughput (cell throughput).
  • joint channel estimation can be set and multi-user MIMO can be applied between transmitters with the same DMRS configuration.
  • joint channel estimation is configured for multiple terminals participating in multi-user MIMO, and the DMRS deployment should also be identical. In other words, since the number of terminal devices that can participate in multi-user MIMO is limited, the possibility of applying multi-user MIMO decreases. As a result, cell throughput is reduced.
  • multi-user MIMO is shown as an example here, multi-user MIMO is not limited as long as it is a technology in which a plurality of terminal devices share radio resources.
  • the same can be said for other techniques such as Non-Orthogonal Multiple Access (NOMA).
  • NOMA Non-Orthogonal Multiple Access
  • the RRC signaling may be signaling related to joint channel estimation, and the parameters of the signaling may be the current specification DMRS arrangement and the smart DMRS arrangement.
  • the signaling When the signaling is set by RRC, transmission is performed by a DMRS transmission method (such as keeping the phase constant) for performing joint channel estimation regardless of the value.
  • a DMRS transmission method such as keeping the phase constant
  • application/non-application of joint channel estimation and setting of DMRS allocation when joint channel estimation is applied can be performed without increasing RRC signaling.
  • the RRC signaling has been described above as an example, the present invention is not limited to RRC signaling and can also be applied to dynamic signaling by DCI. Furthermore, depending on the scheduling method, it may be changed whether the setting is performed by RRC signaling or by DCI.
  • configured grant scheduling type 1 which is a scheduling method in which resources for terminal device transmission are allocated only by RRC signaling
  • application of joint channel estimation is set by RRC signaling
  • configured grant scheduling type 2 or dynamic scheduling in the case of a scheduling method in which resources for terminal device transmission are allocated by DCI
  • application of joint channel estimation may be set by DCI.
  • setting the application of joint channel estimation by DCI above may be only for dynamic scheduling. In this way, by enabling settings for performing joint channel estimation and settings for DMRS allocation, it is possible to match DMRS allocations among a plurality of terminal apparatuses. As a result, there are more opportunities to apply multi-user MIMO, so cell throughput can be increased.
  • Non-Patent Document 3 proposes switching between repeated transmission and single TB transmission by dynamic signaling. As a result, repeated transmission can be applied to secure a low delay, and batch encoding transmission of 1 TB can be performed to improve transmission characteristics, making it possible to perform control according to QoS.
  • FIG. 5 shows an example of repeated transmission.
  • the figure shows an example in which the actual repetition is three times, each consisting of 8 symbols, 2 symbols, and 6 symbols.
  • FIG. 5 is an example of PUSCH mapping type B and the DMRS addition position is set to "pos3".
  • FIG. 6 shows a table showing DMRS positions up to Release 16. From FIG. 6, with PUSCH mapping type B, when the DMRS addition position is "pos3", in the case of 8 symbols, "l 0 , 3, 6", in the case of 2 symbols, "l 0 ", in the case of 6 symbols is "l 0 , 4".
  • FIG. 5 shows an example in which 1 TB is transmitted using resources allocated by multiple repeated transmissions or multiple slot transmissions instead of repeated transmissions.
  • the figure shows an example in which the specifications up to NR release 16 are followed and the DMRS is determined every 14 symbols at maximum. Since the allocation is 16 symbols, it is divided into 14 symbols and 2 symbols. From FIG.
  • FIG. 6 shows an example of PUSCH mapping type B, in which "pos0" is set as the DMRS additional position.
  • DMRS symbols are arranged at positions (positions) of "l 0 , 3, 6, 9" with 14 symbols allocated, and with 2 symbols A DMRS symbol is placed at the position of 'l 0 '.
  • the DMRS allocation for 1 TB transmission has less DMRS bias (only one data symbol between DMRSs) than the DMRS allocation for repeated transmission in the upper part of FIG.
  • the number of DMRS symbols is one less for 1 TB.
  • FIG. 7 shows an example of PUSCH mapping type B, in which "pos0" is set as the DMRS additional position.
  • the DMRS bias (only one data symbol between DMRSs) is reduced. In this way, when switching between repeated transmission and 1 TB transmission by dynamic signaling, the DMRS arrangement is also changed. This allows DMRS deployment to be switched without additional signaling.
  • higher layer signaling such as RRC signaling may be used instead of dynamic signaling.
  • RRC parameters for performing 1 TB transmission may be set, and when the RRC parameters for performing 1 TB transmission are set, DMRS allocation may be smart DMRS allocation.
  • whether to repeat transmission or 1 TB may be set by RRC signaling, and DMRS allocation may be notified by dynamic signaling by DCI.
  • smart DMRS deployment may be applied when RRC parameters (information elements) for smart DMRS deployment are defined and RRC parameters (information elements) for smart DMRS deployment are configured.
  • RRC parameters information elements
  • one of a plurality of parameter sets may be set as the RRC parameter for the smart DMRS deployment, and one value may be designated from the parameter set.
  • the parameter set may specify the number of consecutive slots to apply smart DMRS deployment. By separating signaling in this way, it is possible to dynamically change the arrangement of DMRSs according to the situation of other terminal devices.
  • smart DMRS may be applied by dividing the allocated radio resources by slot boundaries. . Note that when smart DMRS is applied, each DMRS symbol is transmitted with the same power and the same phase (within a predetermined range) in the relevant DMRS.
  • the control unit of the terminal device determines the number of resource elements (N RE ) in the slot as follows when the retransmission is not due to a retransmission request.
  • N SC is the number of frequency domain subcarriers in one physical resource block
  • 12 N symb is the number of symbols in PUSCH allocation
  • N DMRS is for DMRS per PRB indicated by RRC signaling or dynamic signaling.
  • N oh is the overhead set by RRC signaling. If Noh is not configured by RRC signaling, Noh is assumed to be zero.
  • N DMRS is determined assuming a nominal repetition of length (duration) of L symbols without segmentation.
  • n PRB is the total number of PRBs allocated to the terminal device.
  • N info N RE ⁇ R ⁇ Q m ⁇ .
  • R is the target coding rate and Qm is the modulation order, which are calculated from the MCS index and the MCS table notified by RRC signaling or DCI.
  • N info is changed by changing the N RE used for TBS calculation.
  • N' symb may be the actual number of repetitions instead of the nominal number of repetitions.
  • N' RE N SC ⁇ N' symb -N DMRS -N oh .
  • N′ symb the number of symbols allocated for the entire repetition.
  • N DMRS should also be configured, but should be determined considering the number of symbols to be allocated across repetitions.
  • N DMRS 5 in FIG.
  • N DMRS is a value set on the basis of one slot, and the current specifications do not assume the number of symbols exceeding 14 OFDM symbols. Therefore, when there are allocations exceeding 14 symbols, N DMRSs may be set by separating every 14 symbols.
  • the reference value is not fixed at 14, and may be set by RRC signaling or the like.
  • the radio transmission unit 2070 performs IFFT (Inverse Fast Fourier Transform) on the multiplexed signal to generate OFDM symbols.
  • Radio transmission section 2070 adds a CP to the OFDM symbol to generate a baseband digital signal. Further, the radio transmission section 2070 converts the baseband digital signal to an analog signal, removes unnecessary frequency components, converts it to a carrier frequency by up-conversion, amplifies the power, and transmits the signal to the base station via the transmission antenna 208. Send to device 10 .
  • IFFT Inverse Fast Fourier Transform
  • the receiving unit 212 includes a radio receiving unit (radio receiving step) 2120, a demultiplexing unit (demultiplexing step) 2122, a channel estimating unit (channel estimating step) 2144, an equalizing unit (equalizing step) 2126, a demodulating unit ( demodulation step) 2128 and a decoding unit (decoding step) 2130 .
  • Radio receiving section 2120 down-converts the downlink signal received via receiving antenna 210 into a baseband signal, removes unnecessary frequency components, and adjusts the amplification level so that the signal level is appropriately maintained. Based on the in-phase and quadrature components of the received signal, it performs quadrature demodulation, and converts the quadrature-demodulated analog signal to a digital signal. Radio receiving section 2120 removes the portion corresponding to the CP from the converted digital signal, performs FFT on the CP-removed signal, and extracts the signal in the frequency domain.
  • the demultiplexing unit 2122 demultiplexes the extracted frequency-domain signals into downlink reference signals, PDCCH, PDSCH, and PBCH.
  • a channel estimator 2124 estimates a frequency response (or delay profile) using a downlink reference signal (DM-RS, etc.).
  • a frequency response result obtained by channel estimation for demodulation is input to equalization section 1126 .
  • the propagation path estimation unit 2124 uses a downlink reference signal (such as CSI-RS) to measure uplink channel conditions (RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator) and SINR (Signal to Interference plus Noise power Ratio) measurement).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • RSSI Receiveived Signal Strength Indicator
  • SINR Signal to Interference plus Noise power Ratio
  • the equalization section 2126 generates equalization weights based on the MMSE criterion from the frequency response input from the channel estimation section 2124 .
  • Equalization section 2126 multiplies the input signal (PUCCH, PDSCH, PBCH, etc.) from demultiplexing section 2122 by the equalization weight.
  • the demodulation section 2128 performs demodulation processing based on information on the modulation order determined in advance/instructed by the control section 204 .
  • the decoding unit 2130 performs decoding processing on the output signal of the demodulation unit 2128 based on the coding rate information instructed by the predetermined coding rate/control unit 204 .
  • the decoding unit 2130 inputs the decoded data (DL-SCH etc.) to the upper layer processing unit 202 .
  • a reference repetition unit (number of OFDM symbols) L and repetition number K are notified from the base station apparatus to the terminal apparatus by RRC signaling or DCI.
  • the number of symbols of L ⁇ K is not necessarily continuously reserved for uplink use. That is, in the case of TDD (Time Division Multiplexing), downlink (DL) and guard symbol allocation are required, and uplink resources cannot be secured continuously, and there is a possibility that part (or all) of the allocation cannot be used.
  • the specifications up to Release 16 define nominal repetitions, including invalid symbols due to DL assignments, etc., and define actual repetitions in consideration of invalid symbols. .
  • the 1 symbol is a data symbol instead of a DMRS, resulting in excess DMRS.
  • one OFDM symbol may be composed of OFDM symbols including both DMRS and data.
  • PUSCH mapping type B and repetition type B
  • FIG. 10 shows an example of repetition, RRC signaling and/or dynamic signaling may be used to transmit one transport block on one PUSCH instead of actual repetition.
  • the redundancy version is changed for each repetition, but when DMRS is transmitted in repeated transmission of one (single) symbol, it is not regarded as an actual repetition, and a redundancy indicating a puncture pattern in an encoded bit sequence is used. It may not be counted because it is a Darcy version change. However, when an OFDM symbol including both DMRS and data signals is transmitted, it may be counted for changing the redundancy version.
  • DMRS transmission instead, either no transmission, data transmission, or OFDM transmission consisting of DMRS and data may be performed.
  • frequency offset related to frequency hopping is set to 0 and transmission is actually performed on the same frequency, if frequency hopping is set by RRC signaling or the like, no transmission, data transmission, Alternatively, either OFDM transmission consisting of DMRS and data may be performed.
  • the program that runs on the device related to the present invention may be a program that controls the Central Processing Unit (CPU) and the like to make the computer function so as to realize the functions of the above-described embodiments related to the present invention.
  • the program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD),
  • RAM Random Access Memory
  • HDD Hard Disk Drive
  • the CPU reads, modifies, and writes accordingly.
  • part of the devices in the above-described embodiments may be realized by a computer.
  • the program for realizing the functions of the embodiment may be recorded in a computer-readable recording medium. It may be realized by causing a computer system to read and execute the program recorded on this recording medium.
  • the "computer system” here is a computer system built in the device, and includes hardware such as an operating system and peripheral devices.
  • the "computer-readable recording medium” may be any of semiconductor recording media, optical recording media, magnetic recording media, and the like.
  • “computer-readable recording medium” means a medium that dynamically stores programs for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line.
  • a volatile memory inside a computer system that serves as a server or a client in that case may also include something that holds the program for a certain period of time.
  • the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
  • each functional block or feature of the apparatus used in the embodiments described above may be implemented or performed in an electrical circuit, typically an integrated circuit or multiple integrated circuits.
  • An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof.
  • a general-purpose processor may be a microprocessor, or any conventional processor, controller, microcontroller, or state machine.
  • the electric circuit described above may be composed of a digital circuit, or may be composed of an analog circuit.
  • an integrated circuit technology that replaces current integrated circuits emerges due to advances in semiconductor technology, it is also possible to use integrated circuits based on this technology.
  • the present invention is not limited to the above-described embodiments.
  • an example of the device was described, but the present invention is not limited to this, and stationary or non-movable electronic equipment installed indoors and outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
  • the present invention is suitable for use in base station apparatuses, terminal apparatuses, and communication methods.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Provided is a terminal device which performs transmission to a base station device, the terminal device comprising: an upper layer processing unit which receives, from the base station device, an upper layer signaling including two parameters of a repeating unit and the number of repetitions; a control unit which, by using the upper layer signaling and a prescribed field included in downlink control information, switches between first transmission that performs repetitive transmission using the two parameters and second transmission that transmits one transport block by using a wireless resource allocated by the two parameters; and a multiplexing unit which switches between DMRS arrangement related to the first transmission and DMRS arrangement related to the second transmission by means of the prescribed field included in the downlink control information.

Description

端末装置および基地局装置Terminal equipment and base station equipment
 本発明は、端末装置および基地局装置に関する。本願は、2021年3月4日に日本に出願された特願2021-34379号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to terminal devices and base station devices. This application claims priority based on Japanese Patent Application No. 2021-34379 filed in Japan on March 4, 2021, the contents of which are incorporated herein.
 3GPP(Third Generation Partnership Project)で仕様化されたNR(New Radio)の通信システムでは、複数のOFDM(Orthogonal Frequency Division Multiplexing)シンボルから構成されるスロット内に、1または複数の復調用参照信号(DMRS; Demodulation Reference Signal)が含まれるOFDMシンボルを挿入する仕様になっている。送信されたスロットを受信した受信機は、スロット内のDMRSを用いてチャネル推定を行い、スロット内のデータ信号を復調する。 In the NR (New Radio) communication system specified by 3GPP (Third Generation Partnership Project), one or more demodulation reference signals (DMRS ; Demodulation Reference Signal) is inserted into OFDM symbols. A receiver that receives the transmitted slot performs channel estimation using the DMRS in the slot and demodulates the data signal in the slot.
 また、NRリリース15では、通信信頼性向上およびカバレッジ拡大のため、スロット間繰り返し送信が仕様化されている。スロット間繰り返しでは、複数のスロットで同一のデータを繰り返し送信することができる。ただし、繰り返し送信を行うのに複数のスロットが必要となるため、遅延性の面で問題があった。そこでNRリリース16では、スロット内繰り返し送信が仕様化された。スロット内繰り返し送信では、スロット内に繰り返し単位を複数回設定し送信を行うことができる。 In addition, NR Release 15 specifies inter-slot repetition transmission in order to improve communication reliability and expand coverage. Inter-slot repetition allows the same data to be repeatedly transmitted in multiple slots. However, since multiple slots are required for repeated transmission, there is a problem in terms of delay. Therefore, in NR Release 16, intra-slot repeat transmission is specified. In intra-slot repetition transmission, it is possible to set a repetition unit multiple times in a slot and perform transmission.
 Rel-16までの仕様では、チャネル推定に用いることができるDMRSは、繰り返し単位内、あるいはスロット内に限られていたが、異なる繰り返し単位、あるいは異なるスロットに含まれるDMRSを使用することでチャネル推定精度を大幅に改善することができる。そこでNRリリース17では、異なる繰り返し単位、あるいは異なるスロットに含まれるDMRSを使用することを可能とするジョイントチャネル推定(DMRSバンドリング、DMRSシェアリングとも呼ばれる)の検討が行われている。(非特許文献1) In the specifications up to Rel-16, the DMRS that can be used for channel estimation is limited to within a repetition unit or within a slot. Accuracy can be greatly improved. Therefore, in NR Release 17, joint channel estimation (DMRS bundling, also called DMRS sharing) is being considered, which makes it possible to use DMRSs included in different repetition units or different slots. (Non-Patent Document 1)
 リリース16までは、スロットあるいは繰り返し毎にDMRSを配置する必要があったが、異なるスロットあるいは異なる繰り返しのDMRSを用いてチャネル推定を行う場合、複数のスロットあるいは繰り返しを考慮すると、DMRSシンボルの時間リソースの配置に偏りが生じてしまうという問題がある。そこで非特許文献2では、ジョイントチャネル推定を適用する場合には、割り当てる複数のスロットあるいは複数の繰り返しの時間リソースにおいて、DMRSが等間隔になるように再配置することが提案されている。 Up to Release 16, it was necessary to allocate DMRS for each slot or repetition. However, when channel estimation is performed using DMRS in different slots or different repetitions, considering multiple slots or repetitions, the time resource of DMRS symbols is reduced. There is a problem that a bias occurs in the arrangement of . Therefore, Non-Patent Document 2 proposes that when joint channel estimation is applied, DMRSs are rearranged so that they are evenly spaced in a plurality of allocated slots or a plurality of repeated time resources.
 ところで、繰り返し送信は、繰り返し送信毎にデータ復号をできるため、繰り返し送信の途中で誤り判定ができるため、低遅延化を実現する上で重要な技術である。ところが繰り返し送信全体を考えると、繰り返し送信を行うよりも符号化率を下げた方が伝送特性を向上させることができる。そこで、複数のスロットを用いて1つのTB(トランスポートブロック)を送信することが考えらえる。非特許文献3では、繰り返し送信と1つのTBで送信をダイナミックシグナリングによって切り替えることが提案されている。これにより低遅延を担保する場合は、繰り返し送信を適用し、伝送特性の改善を図るときは1TBによる一括符号化送信を行うことができ、QoSに応じた制御が可能となる。 By the way, repeated transmission is an important technique for realizing low delay because data can be decoded for each repeated transmission, and error judgment can be made during repeated transmission. However, considering the entire repeated transmission, transmission characteristics can be improved more by lowering the coding rate than by repeating transmission. Therefore, it is conceivable to transmit one TB (transport block) using a plurality of slots. Non-Patent Document 3 proposes switching between repeated transmission and single TB transmission by dynamic signaling. As a result, repeated transmission can be applied to secure a low delay, and batch encoding transmission of 1 TB can be performed to improve transmission characteristics, making it possible to perform control according to QoS.
 非特許文献2において、ジョイントチャネル推定を行う場合に、DMRSを再配置(時間リソースに等間隔で配置)することで、再配置を行った端末装置は良好な伝送特性を得ることができる。しかしながら、再配置を行わないユーザとDMRSの配置パターンが変わってしまうため、マルチユーザMIMO(Multiple Input Multiple Output)の適用が困難となる。 In Non-Patent Document 2, when performing joint channel estimation, by rearranging DMRSs (arranging DMRSs at equal intervals in time resources), the rearranged terminal device can obtain good transmission characteristics. However, since the DMRS allocation pattern changes from that of users who are not rearranged, it becomes difficult to apply multi-user MIMO (Multiple Input Multiple Output).
 本発明の一態様はこのような事情を鑑みてなされたものであり、その目的は、ジョイントチャネル推定を効果的に適用できるようにすることで、効率的にカバレッジ拡大を行うことにある。 One aspect of the present invention has been made in view of such circumstances, and its purpose is to efficiently expand coverage by enabling effective application of joint channel estimation.
 上述した課題を解決するために本発明の一態様に係る基地局装置、端末装置および通信方法の構成は、次の通りである。 The configurations of the base station apparatus, the terminal apparatus, and the communication method according to one aspect of the present invention to solve the above-described problems are as follows.
 (1)本発明の一態様は、基地局装置宛に送信を行う端末装置であって、前記基地局装置から、り返し単位と繰り返し数の2つのパラメータを含む上位レイヤシグナリングを受信する上位層処理部と、前記上位レイヤシグナリングと、下りリンク制御情報に含まれる所定のフィールドを用いて、前記2つのパラメータを用いた繰り返し送信を行う第1の送信と、前記2つのパラメータによって割り当てられた無線リソースを用いた1つのトランスポートブロックの送信を行う第2の送信を切り替える制御部と、前記下りリンク制御情報に含まれる所定のフィールドによって、前記第1の送信に関連したDMRS配置と前記第2の送信に関連したDMRS配置とを切り替える多重部、とを備える。
 (2)本発明の一態様は、前記多重部は、前記第1の送信に関連したDMRS配置の際は、前記繰り返し毎に少なくとも1つの参照信号を配置し、前記第2の送信に関連したDMRS配置の際は、前記2つのパラメータによって割り当てられた無線リソースに少なくとも1つの参照信号を配置する。
 (3)本発明の一態様は、前記多重部は、前記第2の送信に関連したDMRS配置を行う場合、前記2つのパラメータによって割り当てられた無線リソースを14シンボル毎に分割し、前記分割されたシンボルの所定の位置にDMRSを配置する。
 (4)本発明の一態様は、端末装置が送信する信号を受信する基地局装置であって、前記端末装置に対する、繰り返し単位と繰り返し数の2つのパラメータを含む上位レイヤシグナリングを生成する上位層処理部と、下りリンク制御情報に含まれる所定のフィールドを用いて、前記2つのパラメータを用いた繰り返し送信を行う第1の送信と、前記2つのパラメータによって割り当てられた無線リソースを用いた1つのトランスポートブロックの送信を行う第2の送信の切り替えと、前記第1の送信に関連したDMRS配置と前記第2の送信に関連したDMRS配置との切り替えを通知する下りリンク制御信号部、とを備える。
 (5)本発明の一態様は、前記下りリンク制御信号部は、前記第1の送信に関連したDMRS配置の際は、前記繰り返し毎に少なくとも1つの参照信号を配置し、前記第2の送信に関連したDMRS配置の際は、前記2つのパラメータによって割り当てられた無線リソースに少なくとも1つの参照信号を配置することを通知する。
 (6)本発明の一態様は、前記下りリンク制御信号部は、前記第2の送信に関連したDMRS配置を行う場合、前記2つのパラメータによって割り当てられた無線リソースを14シンボル毎に分割し、前記分割されたシンボルの所定の位置にDMRSを配置する。
(1) One aspect of the present invention is a terminal device that transmits to a base station device, the upper layer receiving higher layer signaling including two parameters of a repetition unit and a repetition number from the base station device. Using the processing unit, the higher layer signaling, and a predetermined field included in downlink control information, a first transmission that performs repeated transmission using the two parameters, and the radio allocated by the two parameters A controller for switching a second transmission that transmits one transport block using resources; a multiplexer for switching between DMRS constellations associated with the transmission of the .
(2) In one aspect of the present invention, the multiplexing unit arranges at least one reference signal for each repetition during DMRS arrangement related to the first transmission, and At the time of DMRS allocation, at least one reference signal is allocated to the radio resources allocated by the two parameters.
(3) In one aspect of the present invention, when performing DMRS allocation related to the second transmission, the multiplexing unit divides the radio resources allocated by the two parameters into 14 symbols, and A DMRS is arranged at a predetermined position of the symbol.
(4) One aspect of the present invention is a base station apparatus that receives a signal transmitted by a terminal apparatus, and an upper layer that generates higher layer signaling including two parameters of a repetition unit and a repetition number for the terminal apparatus. Using a processing unit and a predetermined field included in downlink control information, a first transmission that performs repeated transmission using the two parameters, and one using the radio resource allocated by the two parameters a second transmission switching for transmitting transport blocks, and a downlink control signal section for notifying switching between the DMRS allocation related to the first transmission and the DMRS allocation related to the second transmission; Prepare.
(5) In one aspect of the present invention, the downlink control signal unit arranges at least one reference signal for each repetition when arranging DMRS related to the first transmission, and performs the second transmission. during DMRS configuration associated with , it is indicated to configure at least one reference signal on the radio resources allocated according to the two parameters.
(6) In one aspect of the present invention, the downlink control signal unit divides the radio resources allocated by the two parameters into every 14 symbols when performing the DMRS arrangement related to the second transmission, A DMRS is arranged at a predetermined position of the divided symbols.
 本発明の一又は複数の態様によれば、システムスループットを向上させたり、通信のカバレッジを拡大したりすることができる。 According to one or more aspects of the present invention, it is possible to improve system throughput and expand communication coverage.
本実施形態に係る通信システム1の構成例を示す図である。It is a figure which shows the structural example of the communication system 1 which concerns on this embodiment. 本実施形態に係る基地局装置の構成例を示す図である。It is a figure which shows the structural example of the base station apparatus which concerns on this embodiment. 本実施形態に係る端末装置の構成例を示す図である。It is a figure which shows the structural example of the terminal device which concerns on this embodiment. 第一の実施形態に係るスマートDMRS配置の一例を示す図である。FIG. 4 is a diagram showing an example of smart DMRS deployment according to the first embodiment; 第一の実施形態に係る繰り返し送信と1トランスポートブロック送信におけるDMRS配置の一例を示す図である。FIG. 4 is a diagram showing an example of DMRS allocation in repeated transmission and one transport block transmission according to the first embodiment; 第一の実施形態に係るシンボル数とDMRSポジションの関係の一例を示す図である。FIG. 4 is a diagram showing an example of the relationship between the number of symbols and DMRS positions according to the first embodiment; 第一の実施形態に係る繰り返し送信と1トランスポートブロック送信におけるDMRS配置の別例を示す図である。FIG. 10 is a diagram showing another example of DMRS allocation in repeated transmission and one transport block transmission according to the first embodiment; 第二の実施形態に係る、繰り返し送信における無線リソースの使用の従来例を示す図である。FIG. 10 is a diagram showing a conventional example of use of radio resources in repeated transmission according to the second embodiment; 第二の実施形態に係る、繰り返し送信における無線リソースの使用の一例(DMRS送信)を示す図である。FIG. 10 is a diagram showing an example of use of radio resources in repeated transmission (DMRS transmission) according to the second embodiment; 第二の実施形態に係る、繰り返し送信における無線リソースの使用の一例(データ送信)を示す図である。FIG. 10 is a diagram showing an example of use of radio resources (data transmission) in repeated transmission according to the second embodiment; 3824以下のトランスポートブロックサイズの決定に用いる表を示す図である。FIG. 10 is a diagram showing a table used for determining transport block sizes of 3824 or less;
 本実施形態に係る通信システムは、基地局装置(セル、スモールセル、サービングセル、コンポーネントキャリア、eNodeB、Home eNodeB、gNodeB)および端末装置(端末、移動端末、UE:User Equipment)を備える。該通信システムにおいて、下りリンクの場合、基地局装置は送信装置(送信点、送信アンテナ群、送信アンテナポート群、TRP(Tx/Rx Point))となり、端末装置は受信装置(受信点、受信端末、受信アンテナ群、受信アンテナポート群)となる。上りリンクの場合、基地局装置は受信装置となり、端末装置は送信装置となる。前記通信システムは、D2D(Device-to-Device、sidelink)通信にも適用可能である。その場合、送信装置も受信装置も共に端末装置になる。 The communication system according to this embodiment includes base station devices (cells, small cells, serving cells, component carriers, eNodeB, Home eNodeB, gNodeB) and terminal devices (terminals, mobile terminals, UE: User Equipment). In the communication system, in the case of the downlink, the base station device becomes a transmitting device (transmitting point, transmitting antenna group, transmitting antenna port group, TRP (Tx/Rx Point)), and the terminal device becomes a receiving device (receiving point, receiving terminal , receiving antenna group, receiving antenna port group). In the case of uplink, the base station apparatus becomes a receiving apparatus, and the terminal apparatus becomes a transmitting apparatus. The communication system is also applicable to D2D (Device-to-Device, sidelink) communication. In that case, both the transmitting device and the receiving device are terminal devices.
 前記通信システムは、人間が介入する端末装置と基地局装置間のデータ通信に限定されるものに限定されない。つまり、MTC(Machine Type Communication)、M2M通信(Machine-to-Machine Communication)、IoT(Internet of Things)用通信、NB-IoT(Narrow Band-IoT)等(以下、MTCと呼ぶ)の人間の介入を必要としないデータ通信の形態にも、適用することができる。この場合、端末装置がMTC端末となる。前記通信システムは、上りリンク及び下りリンクにおいて、CP-OFDM(Cyclic Prefix - Orthogonal Frequency Division Multiplexing)等のマルチキャリア伝送方式を用いることができる。前記通信システムは、上りリンクにおいて、Transform precoderに関する上位層パラメータが設定された場合、Transform precodingを適用、つまりDFTを適用するDFTS-OFDM(Discrete Fourier Transform Spread - Orthogonal Frequency Division Multiplexing、SC-FDMAとも称される)等の伝送方式を用いる。なお、以下では、上りリンク及び下りリンクにおいて、OFDM伝送方式を用いた場合で説明するが、これに限らず、他の伝送方式を適用することができる。 The communication system is not limited to data communication between a terminal device and a base station device with human intervention. In other words, human intervention such as MTC (Machine Type Communication), M2M communication (Machine-to-Machine Communication), IoT (Internet of Things) communication, NB-IoT (Narrow Band-IoT), etc. (hereinafter referred to as MTC) It can also be applied to a form of data communication that does not require In this case, the terminal device is the MTC terminal. The communication system can use a multicarrier transmission scheme such as CP-OFDM (Cyclic Prefix-Orthogonal Frequency Division Multiplexing) in uplink and downlink. In the uplink, the communication system applies Transform precoding, that is, DFTS-OFDM (Discrete Fourier Transform Spread-Orthogonal Frequency Division Multiplexing, also called SC-FDMA) that applies DFT when upper layer parameters for Transform precoder are set. is used). In addition, although the case where the OFDM transmission method is used in the uplink and the downlink will be described below, the present invention is not limited to this, and other transmission methods can be applied.
 本実施形態における基地局装置及び端末装置は、無線事業者がサービスを提供する国や地域から使用許可(免許)が得られた、いわゆるライセンスバンド(licensed band)と呼ばれる周波数バンド、及び/又は、国や地域からの使用許可(免許)を必要としない、いわゆるアンライセンスバンド(unlicensed band)と呼ばれる周波数バンドで通信することができる。 The base station device and the terminal device in this embodiment are frequency bands called so-called licensed bands, which are licensed from countries and regions where wireless operators provide services, and / or It is possible to communicate in a frequency band called an unlicensed band, which does not require a permit (license) from a country or region.
 本実施形態において、“X/Y”は、“XまたはY”の意味を含む。本実施形態において、“X/Y”は、“XおよびY”の意味を含む。本実施形態において、“X/Y”は、“Xおよび/またはY”の意味を含む。 In this embodiment, "X/Y" includes the meaning of "X or Y". In this embodiment, "X/Y" includes the meaning of "X and Y." In this embodiment, "X/Y" includes the meaning of "X and/or Y".
(第1の実施形態)
 図1は、本実施形態に係る通信システム1の構成例を示す図である。本実施形態における通信システム1は、基地局装置10、端末装置20を備える。カバレッジ10aは、基地局装置10が端末装置20と接続(通信)可能な範囲(通信エリア)である(セルとも呼ぶ)。なお、基地局装置10は、カバレッジ10aにおいて、複数の端末装置20を収容することができる。
(First embodiment)
FIG. 1 is a diagram showing a configuration example of a communication system 1 according to this embodiment. A communication system 1 in this embodiment includes a base station apparatus 10 and a terminal apparatus 20 . The coverage 10a is a range (communication area) in which the base station apparatus 10 can connect (communicate) with the terminal apparatus 20 (also called a cell). Note that the base station apparatus 10 can accommodate a plurality of terminal apparatuses 20 in the coverage 10a.
 図1において、上りリンク無線通信r30は、少なくとも以下の上りリンク物理チャネルを含む。上りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理上りリンク制御チャネル(PUCCH)
・物理上りリンク共有チャネル(PUSCH)
・物理ランダムアクセスチャネル(PRACH)
In FIG. 1, the uplink radio communication r30 includes at least the following uplink physical channels. Uplink physical channels are used to transmit information output from higher layers.
- Physical uplink control channel (PUCCH)
- Physical uplink shared channel (PUSCH)
- Physical Random Access Channel (PRACH)
 PUCCHは、上りリンク制御情報(Uplink Control Information: UCI)を送信するために用いられる物理チャネルである。上りリンク制御情報は、下りリンクデータに対する肯定応答(positive acknowledgement: ACK)/否定応答(Negative acknowledgement: NACK)を含む。ここで下りリンクデータとは、Downlink transport block、 Medium Access Control Protocol Data Unit: MAC PDU、 Downlink-Shared Channel: DL-SCH、 Physical Downlink Shared Channel: PDSCH等を示す。ACK/NACKは、HARQ-ACK(Hybrid Automatic Repeat request ACKnowledgement)、HARQフィードバック、HARQ応答、または、HARQ制御情報、送達確認を示す信号とも称される。 PUCCH is a physical channel used to transmit uplink control information (UCI). The uplink control information includes positive acknowledgment (ACK)/negative acknowledgment (NACK) for downlink data. Downlink data here refers to Downlink transport block, Medium Access Control Protocol Data Unit: MAC PDU, Downlink-Shared Channel: DL-SCH, Physical Downlink Shared Channel: PDSCH, and the like. ACK/NACK is also called HARQ-ACK (Hybrid Automatic Repeat request ACKnowledgement), HARQ feedback, HARQ response, HARQ control information, or a signal indicating acknowledgment.
 NRは、少なくともPUCCHフォーマット0、PUCCHフォーマット1、PUCCHフォーマット2、PUCCHフォーマット3、PUCCHフォーマット4という5つのフォーマットをサポートする。PUCCHフォーマット0およびPUCCHフォーマット2は、1または2のOFDMシンボルから構成され、それ以外のPUCCHは4~14のOFDMシンボルから構成される。またPUCCHフォーマット0およびPUCCHフォーマット1の帯域幅12サブキャリアから構成される。また、PUCCHフォーマット0では、12サブキャリアかつ1OFDMシンボル(あるいは2OFDMシンボル)のリソースエレメントで1ビット(あるいは2ビット)のACK/NACKが送信される。 NR supports at least five formats: PUCCH format 0, PUCCH format 1, PUCCH format 2, PUCCH format 3, and PUCCH format 4. PUCCH format 0 and PUCCH format 2 are composed of 1 or 2 OFDM symbols, and other PUCCHs are composed of 4 to 14 OFDM symbols. It is also composed of PUCCH format 0 and PUCCH format 1 bandwidth 12 subcarriers. In addition, in PUCCH format 0, 1-bit (or 2-bit) ACK/NACK is transmitted using resource elements of 12 subcarriers and 1 OFDM symbol (or 2 OFDM symbols).
 上りリンク制御情報は、初期送信のためのPUSCH(Uplink-Shared Channel: UL-SCH)リソースを要求するために用いられるスケジューリングリクエスト(Scheduling Request: SR)を含む。スケジューリングリクエストは、初期送信のためのUL-SCHリソースを要求することを示す。 The uplink control information includes a scheduling request (SR) used to request PUSCH (Uplink-Shared Channel: UL-SCH) resources for initial transmission. A scheduling request indicates a request for UL-SCH resources for initial transmission.
 上りリンク制御情報は、下りリンクのチャネル状態情報(Channel State Information: CSI)を含む。前記下りリンクのチャネル状態情報は、好適な空間多重数(レイヤ数)を示すランク指標(Rank Indicator: RI)、好適なプレコーダを示すプレコーディング行列指標(Precoding Matrix Indicator: PMI)、好適な伝送レートを指定するチャネル品質指標(Channel Quality Indicator: CQI)などを含む。前記PMIは、端末装置によって決定されるコードブックを示す。該コードブックは、物理下りリンク共有チャネルのプレコーディングに関連する。 The uplink control information includes downlink channel state information (Channel State Information: CSI). The downlink channel state information includes a rank indicator (RI) indicating a preferred spatial multiplexing number (number of layers), a precoding matrix indicator (PMI) indicating a preferred precoder, and a preferred transmission rate. including Channel Quality Indicator (CQI), etc. The PMI indicates a codebook determined by the terminal. The codebook relates to precoding of physical downlink shared channels.
 NRでは、上位層パラメータRI制限を設定することができる。RI制限には複数の設定パラメータが存在し、1つはタイプ1シングルパネルRI制限であり、8ビットで構成される。ビットマップパラメータであるタイプ1シングルパネルRI制限は、ビット系列r、…r、rを形成する。ここでr、はMSB(Most Significant Bit)であり、r、はLSB(Least Significant Bit)である。riがゼロの時(iは0、1、…7)、i+1レイヤに関連付いたプリコーダに対応するPMIとRIレポーティングは許容されない。RI制限にはタイプ1シングルパネルRI制限の他にタイプ1マルチパネルRI制限があり、4ビットで構成される。ビットマップパラメータであるタイプ1マルチパネルRI制限は、ビット系列r、r、r、rを形成する。ここでr、はMSBであり、r、はLSBである。riがゼロの時(iは0、1、2、3)、i+1レイヤに関連付いたプリコーダに対応するPMIとRIレポーティングは許容されない。 In NR, a higher layer parameter RI limit can be set. The RI limit has multiple setting parameters, one of which is the type 1 single panel RI limit, which consists of 8 bits. Bitmap parameters, type 1 single-panel RI restrictions, form bit sequences r 7 , . . . r 2 , r 1 . Here, r 7 is the MSB (Most Significant Bit) and r 0 is the LSB (Least Significant Bit). When r i is zero (i is 0, 1, . . . 7), PMI and RI reporting corresponding to the precoder associated with layer i+1 is not allowed. RI restrictions include type 1 single panel RI restrictions and type 1 multi-panel RI restrictions, which consist of 4 bits. The type 1 multi-panel RI restriction bitmap parameters form the bit sequence r 4 , r 3 , r 2 , r 1 . where r 4 is the MSB and r 0 is the LSB. When r i is zero (where i is 0, 1, 2, 3), PMI and RI reporting corresponding to the precoder associated with layer i+1 is not allowed.
 前記CQIは、所定の帯域における好適な変調方式(例えば、QPSK、16QAM、64QAM、256QAMAMなど)、符号化率(coding rate)、および周波数利用効率を指し示すインデックス(CQIインデックス)を用いることができる。端末装置は、PDSCHのトランスポートブロックがブロック誤り確率(BLER)=0.1を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。ただし上位層シグナリングによって所定のCQIテーブルが設定された場合には、BLER=0.00001を超えずに受信可能であろうCQIインデックスをCQIテーブルから選択する。 The CQI can use a suitable modulation scheme (eg, QPSK, 16QAM, 64QAM, 256QAMAM, etc.) in a predetermined band, a coding rate, and an index (CQI index) indicating frequency utilization efficiency. The terminal device selects from the CQI table a CQI index that would allow PDSCH transport blocks to be received without exceeding block error probability (BLER)=0.1. However, when a predetermined CQI table is set by higher layer signaling, a CQI index that can be received without exceeding BLER=0.00001 is selected from the CQI table.
 PUSCHは、上りリンクデータ(Uplink Transport Block、Uplink-Shared Channel: UL-SCH)を送信するために用いられる物理チャネルであり、伝送方式としては、CP-OFDM、もしくはDFT-S-OFDMが適用される。PUSCHは、前記上りリンクデータと共に、下りリンクデータに対するHARQ-ACKおよび/またはチャネル状態情報等の制御情報を送信するために用いられてもよい。PUSCHは、チャネル状態情報のみを送信するために用いられてもよい。PUSCHはHARQ-ACKおよびチャネル状態情報のみを送信するために用いられてもよい。 PUSCH is a physical channel used to transmit uplink data (Uplink Transport Block, Uplink-Shared Channel: UL-SCH), and as a transmission method, CP-OFDM or DFT-S-OFDM is applied. be. PUSCH may be used to transmit control information such as HARQ-ACK and/or channel state information for downlink data along with the uplink data. PUSCH may be used to transmit channel state information only. PUSCH may be used to transmit HARQ-ACK and channel state information only.
 PUSCHは、無線リソース制御(Radio Resource Control: RRC)シグナリングを送信するために用いられる。RRCシグナリングは、RRCメッセージ/RRC層の情報/RRC層の信号/RRC層のパラメータ/RRC情報要素とも称される。RRCシグナリングは、無線リソース制御層において処理される情報/信号である。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通のシグナリングであってもよい。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のシグナリング(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のシグナリングを用いて送信される。RRCメッセージは、端末装置のUE Capabilityを含めることができる。UE Capabilityは、該端末装置がサポートする機能を示す情報である。 PUSCH is used to transmit Radio Resource Control (RRC) signaling. RRC signaling is also referred to as RRC message/RRC layer information/RRC layer signaling/RRC layer parameters/RRC information element. RRC signaling is information/signals processed in the radio resource control layer. The RRC signaling transmitted from the base station apparatus may be signaling common to multiple terminal apparatuses within a cell. The RRC signaling transmitted from the base station apparatus may be dedicated signaling (also referred to as dedicated signaling) for a certain terminal apparatus. That is, user equipment specific information is sent to a terminal using dedicated signaling. The RRC message can include UE Capabilities of the terminal device. UE Capability is information indicating the functions supported by the terminal device.
 PUSCHは、MAC CE(Medium Access Control Element)を送信するために用いられる。MAC CEは、媒体アクセス制御層(Medium Access Control layer)において処理(送信)される情報/信号である。例えば、パワーヘッドルームは、MAC CEに含まれ、PUSCHを経由して報告されてもよい。すなわち、MAC CEのフィールドが、パワーヘッドルームのレベルを示すために用いられる。RRCシグナリング、および/または、MAC CEを、上位層の信号(higher layer signaling)とも称する。RRCシグナリング、および/または、MAC CEは、トランスポートブロックに含まれる。 PUSCH is used to transmit MAC CE (Medium Access Control Element). MAC CE is information/signals processed (transmitted) in the Medium Access Control layer. For example, power headroom may be included in MAC CE and reported via PUSCH. That is, the MAC CE field is used to indicate the level of power headroom. RRC signaling and/or MAC CE are also referred to as higher layer signaling. RRC signaling and/or MAC CE are included in the transport block.
 PRACHは、ランダムアクセスに用いるプリアンブルを送信するために用いられる。PRACHは、ランダムアクセスプリアンブルを送信するために用いられる。PRACHは、初期コネクション確立(initial connection establishment)プロシージャ、ハンドオーバプロシージャ、コネクション再確立(connection re-establishment)プロシージャ、上りリンク送信に対する同期(タイミング調整)、およびPUSCH(UL-SCH)リソースの要求を示すために用いられる。 The PRACH is used to transmit preambles used for random access. PRACH is used to transmit a random access preamble. PRACH is used to indicate initial connection establishment procedures, handover procedures, connection re-establishment procedures, synchronization (timing adjustment) for uplink transmissions, and PUSCH (UL-SCH) resource requirements. used for
 上りリンクの無線通信では、上りリンク物理信号として上りリンク参照信号(Uplink Reference Signal: UL RS)が用いられる。上りリンク参照信号には、復調用参照信号(Demodulation Reference Signal: DMRS)、サウンディング参照信号(Sounding Reference Signal: SRS)、位相追従信号(Phase Tracking Reference Signal: PTRS)等が含まれる。DMRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。例えば、基地局装置10は、物理上りリンク共有チャネル/物理上りリンク制御チャネルを復調するとき、伝搬路推定/伝搬路補正を行うために復調用参照信号を使用する。 In uplink wireless communication, an uplink reference signal (Uplink Reference Signal: UL RS) is used as an uplink physical signal. The uplink reference signal includes a demodulation reference signal (DMRS), a sounding reference signal (SRS), a phase tracking signal (PTRS), and the like. DMRS relates to transmission of physical uplink shared channel/physical uplink control channel. For example, when the base station apparatus 10 demodulates the physical uplink shared channel/physical uplink control channel, the demodulation reference signal is used to perform channel estimation/channel correction.
 SRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連しない。基地局装置10は、上りリンクのチャネル状態を測定(CSI Measurement)するためにSRSを使用する。 The SRS is not related to the transmission of the physical uplink shared channel/physical uplink control channel. The base station apparatus 10 uses SRS to measure uplink channel conditions (CSI measurement).
 PTRSは、物理上りリンク共有チャネル/物理上りリンク制御チャネルの送信に関連する。基地局装置10は、位相追従のためにPTRSを使用する。 The PTRS is related to transmission of the physical uplink shared channel/physical uplink control channel. The base station apparatus 10 uses PTRS for phase tracking.
 図1において、下りリンクr31の無線通信では、少なくとも以下の下りリンク物理チャネルが用いられる。下りリンク物理チャネルは、上位層から出力された情報を送信するために使用される。
・物理報知チャネル(PBCH)
・物理下りリンク制御チャネル(PDCCH)
・物理下りリンク共有チャネル(PDSCH)
In FIG. 1, at least the following downlink physical channels are used in downlink r31 radio communication. Downlink physical channels are used to transmit information output from higher layers.
- Physical broadcast channel (PBCH)
- Physical downlink control channel (PDCCH)
- Physical downlink shared channel (PDSCH)
 PBCHは、端末装置で共通に用いられるマスターインフォメーションブロック(Master Information Block: MIB、 Broadcast Channel: BCH)を報知するために用いられる。MIBはシステム情報の1つである。例えば、MIBは、下りリンク送信帯域幅設定、システムフレーム番号(SFN:System Frame number)を含む。MIBは、PBCHが送信されるスロットの番号、サブフレームの番号、および、無線フレームの番号の少なくとも一部を指示する情報を含んでもよい。 The PBCH is used to broadcast a master information block (Master Information Block: MIB, Broadcast Channel: BCH) commonly used by terminal devices. MIB is one of the system information. For example, the MIB contains the downlink transmission bandwidth setting, System Frame number (SFN). The MIB may contain information indicating at least part of the slot number, subframe number, and radio frame number in which the PBCH is transmitted.
 PDCCHは、下りリンク制御情報(Downlink Control Information: DCI)を送信するために用いられる。下りリンク制御情報は、用途に基づいた複数のフォーマット(DCIフォーマットとも称する)が定義される。1つのDCIフォーマットを構成するDCIの種類やビット数に基づいて、DCIフォーマットは定義されてもよい。各フォーマットは、用途に応じて使われる。下りリンク制御情報は、下りリンクデータ送信のための制御情報と上りリンクデータ送信のための制御情報を含む。下りリンクデータ送信のためのDCIフォーマットは、下りリンクアサインメント(または、下りリンクグラント)とも称する。上りリンクデータ送信のためのDCIフォーマットは、上りリンクグラント(または、上りリンクアサインメント)とも称する。 The PDCCH is used to transmit downlink control information (DCI). For downlink control information, a plurality of formats (also called DCI formats) are defined based on usage. A DCI format may be defined based on the type and number of bits of DCI that constitute one DCI format. Each format is used according to its purpose. Downlink control information includes control information for downlink data transmission and control information for uplink data transmission. A DCI format for downlink data transmission is also called a downlink assignment (or downlink grant). A DCI format for uplink data transmission is also called an uplink grant (or uplink assignment).
 1つの下りリンクアサインメントは、1つのサービングセル内の1つのPDSCHのスケジューリングに用いられる。下りリンクグラントは、該下りリンクグラントが送信されたスロットと同じスロット内のPDSCHのスケジューリングのために少なくとも用いられてもよい。下りリンクアサインメントには、PDSCHのための周波数領域リソース割り当て、時間領域リソース割り当て、PDSCHに対するMCS(Modulation and Coding Scheme)、初期送信または再送信を指示するNDI(New Data Indicator)、下りリンクにおけるHARQプロセス番号を示す情報、誤り訂正符号化時にコードワードに加えられた冗長性の量を示すRedudancy versionなどの下りリンク制御情報が含まれる。コードワードは、誤り訂正符号化後のデータである。下りリンクアサインメントはPUCCHに対する送信電力制御(TPC:Transmission Power Control)コマンド、PUSCHに対するTPCコマンドを含めてもよい。上りリンクグラントは、PUSCHを繰り返し送信する回数を示すアグリゲーションレベル(送信繰り返し回数)を含めてもよい。なお、各下りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。 One downlink assignment is used for scheduling one PDSCH in one serving cell. A downlink grant may at least be used for scheduling the PDSCH in the same slot in which the downlink grant was transmitted. Downlink assignment includes frequency domain resource allocation for PDSCH, time domain resource allocation, MCS (Modulation and Coding Scheme) for PDSCH, NDI (New Data Indicator) for indicating initial transmission or retransmission, HARQ in downlink Downlink control information such as information indicating the process number and Redundancy version indicating the amount of redundancy added to the codeword during error correction coding is included. A codeword is data after error correction coding. The downlink assignment may include a Transmission Power Control (TPC) command for PUCCH and a TPC command for PUSCH. The uplink grant may include an aggregation level (transmission repetition count) that indicates the number of times PUSCH is repeatedly transmitted. Note that the DCI format for each downlink data transmission includes information (fields) necessary for its use among the above information.
 1つの上りリンクグラントは、1つのサービングセル内の1つのPUSCHのスケジューリングを端末装置に通知するために用いられる。上りリンクグラントは、PUSCHを送信するためのリソースブロック割り当てに関する情報(リソースブロック割り当ておよびホッピングリソース割り当て)、時間領域リソース割り当て、PUSCHのMCSに関する情報(MCS/Redundancy version)、DMRSポートに関する情報、PUSCHの再送に関する情報、PUSCHに対するTPCコマンド、下りリンクのチャネル状態情報(Channel State Information: CSI)要求(CSI request)、など上りリンク制御情報を含む。上りリンクグラントは、上りリンクにおけるHARQプロセス番号を示す情報、リダンダンシーバージョンを示す情報、PUCCHに対する送信電力制御(TPC:Transmission Power Control)コマンド、PUSCHに対するTPCコマンドを含めてもよい。なお、各上りリンクデータ送信のためのDCIフォーマットには、上記情報のうち、その用途のために必要な情報(フィールド)が含まれる。 One uplink grant is used to notify the terminal device of the scheduling of one PUSCH in one serving cell. The uplink grant includes information on resource block allocation for transmitting PUSCH (resource block allocation and hopping resource allocation), time domain resource allocation, information on MCS of PUSCH (MCS/redundancy version), information on DMRS port, information on PUSCH It includes uplink control information such as information on retransmission, TPC commands for PUSCH, and downlink channel state information (CSI) requests (CSI requests). The uplink grant may include information indicating an uplink HARQ process number, information indicating a redundancy version, a transmission power control (TPC) command for PUCCH, and a TPC command for PUSCH. Note that the DCI format for each uplink data transmission includes information (fields) necessary for its use among the above information.
 DMRSシンボルを送信するOFDMシンボル番号(ポジション)は、イントラ周波数ホッピングが適用されず、PUSCHマッピングタイプAの場合、スロットの初めのOFDMシンボルとそのスロットでスケジュールされたPUSCHリソースの最後のOFDMシンボルの間のシグナリングされた期間によって与えられる。イントラ周波数ホッピングが適用されず、PUSCHマッピングタイプBの場合、DMRSシンボルを送信するOFDMシンボル番号(ポジション)は、スケジュールされたPUSCHリソース期間によって与えられる。イントラ周波数ホッピングが適用される場合、ホップあたりの期間で与えられる。PUSCHマッピングタイプAに関して、先頭のDMRSのポジションを示す上位層パラメータが2である場合のみ、追加のDMRS数を示す上位層パラメータが3の場合がサポートされる。またPUSCHマッピングタイプAに関して、4シンボル期間は、先頭のDMRSのポジションを示す上位層パラメータが2である場合のみ適用可能である。 The OFDM symbol number (position) for transmitting the DMRS symbol is between the first OFDM symbol of the slot and the last OFDM symbol of the PUSCH resource scheduled in the slot when intra frequency hopping is not applied and PUSCH mapping type A is used. given by the signaled duration of For PUSCH mapping type B, where intra frequency hopping is not applied, the OFDM symbol number (position) where a DMRS symbol is transmitted is given by the scheduled PUSCH resource period. If intra frequency hopping is applied, it is given in terms of duration per hop. For PUSCH mapping type A, only if the higher layer parameter indicating the position of the leading DMRS is 2, and the higher layer parameter indicating the number of additional DMRSs is 3 is supported. Also, for PUSCH mapping type A, the 4-symbol period is applicable only when the higher layer parameter indicating the position of the leading DMRS is 2.
 PDCCHは、下りリンク制御情報に巡回冗長検査(Cyclic Redundancy Check: CRC)を付加して生成される。PDCCHにおいて、CRCパリティビットは、所定の識別子を用いてスクランブル(排他的論理和演算、マスクとも呼ぶ)される。パリティビットは、C-RNTI(Cell-Radio Network Temporary Identifier)、CS(Configured Scheduling)-RNTI、Temporary C-RNTI、P(Paging)-RNTI、SI(System Information)-RNTI、またはRA(Random Access)-RNTI、SP-CSI(Semi-Persistent Channel State-Information)-RNTI、MCS-C-RNTIでスクランブルされる。C-RNTIおよびCS-RNTIは、セル内において端末装置を識別するための識別子である。Temporary C-RNTIは、コンテンションベースランダムアクセス手順(contention based random access procedure)中に、ランダムアクセスプリアンブルを送信した端末装置を識別するための識別子である。C-RNTIおよびTemporary C-RNTIは、単一のサブフレームにおけるPDSCH送信またはPUSCH送信を制御するために用いられる。CS-RNTIは、PDSCHまたはPUSCHのリソースを周期的に割り当てるために用いられる。ここでCS-RNTIでスクランブリングされたPDCCH(DCIフォーマット)は、CSタイプ2をアクティベートあるいはディアクティベートするために用いられる。一方、CSタイプ1ではCS-RNTIでスクランブリングされたPDCCHに含まれる制御情報(MCSや無線リソース割当等)は、CSに関する上位層パラメータに含め、該上位層パラメータによってCSのアクティベート(設定)を行う。P-RNTIは、ページングメッセージ(Paging Channel: PCH)を送信するために用いられる。SI-RNTIは、SIBを送信するために用いられる。RA-RNTIは、ランダムアクセスレスポンス(ランダムアクセスプロシジャーにおけるメッセージ2)を送信するために用いられる。SP-CSI-RNTIは、準静的なCSIレポーティングのために用いられる。MCS-C-RNTIは、低いスペクトル効率のMCSテーブルを選択する際に用いられる。 A PDCCH is generated by adding a Cyclic Redundancy Check (CRC) to downlink control information. In the PDCCH, the CRC parity bits are scrambled (exclusive OR operation, also called mask) using a predetermined identifier. Parity bits are C-RNTI (Cell-Radio Network Temporary Identifier), CS (Configured Scheduling)-RNTI, Temporary C-RNTI, P (Paging)-RNTI, SI (System Information)-RNTI, or RA (Random Access) - RNTI, SP-CSI (Semi-Persistent Channel State-Information) - RNTI, scrambled with MCS-C-RNTI. C-RNTI and CS-RNTI are identifiers for identifying terminal devices within a cell. Temporary C-RNTI is an identifier for identifying a terminal device that has transmitted a random access preamble during a contention based random access procedure. C-RNTI and Temporary C-RNTI are used to control PDSCH transmission or PUSCH transmission in a single subframe. The CS-RNTI is used to periodically allocate PDSCH or PUSCH resources. Here, the CS-RNTI scrambled PDCCH (DCI format) is used to activate or deactivate CS type 2. On the other hand, in CS type 1, the control information (MCS, radio resource allocation, etc.) included in the PDCCH scrambled by CS-RNTI is included in the upper layer parameters related to CS, and activation (setting) of CS is performed by the upper layer parameters. conduct. P-RNTI is used to transmit paging messages (Paging Channel: PCH). SI-RNTI is used to transmit SIBs. RA-RNTI is used to send a random access response (message 2 in the random access procedure). SP-CSI-RNTI is used for semi-static CSI reporting. MCS-C-RNTI is used in selecting a low spectral efficiency MCS table.
 PDSCHは、下りリンクデータ(下りリンクトランスポートブロック、DL-SCH)を送信するために用いられる。PDSCHは、システムインフォメーションメッセージ(System Information Block: SIBとも称する。)を送信するために用いられる。SIBの一部又は全部は、RRCメッセージに含めることができる。 The PDSCH is used to transmit downlink data (downlink transport block, DL-SCH). The PDSCH is used to transmit system information messages (also called System Information Block: SIB). Part or all of the SIB may be included in the RRC message.
 PDSCHは、RRCシグナリングを送信するために用いられる。基地局装置から送信されるRRCシグナリングは、セル内における複数の端末装置に対して共通(セル固有)であってもよい。すなわち、そのセル内のユーザ装置共通な情報は、セル固有のRRCシグナリングを使用して送信される。基地局装置から送信されるRRCシグナリングは、ある端末装置に対して専用のメッセージ(dedicated signalingとも称する)であってもよい。すなわち、ユーザ装置スペシフィック(ユーザ装置固有)な情報は、ある端末装置に対して専用のメッセージを使用して送信される。 The PDSCH is used to transmit RRC signaling. The RRC signaling transmitted from the base station apparatus may be common (cell-specific) for multiple terminal apparatuses within the cell. That is, user equipment common information within that cell is transmitted using cell-specific RRC signaling. The RRC signaling transmitted from the base station apparatus may be a message dedicated to a certain terminal apparatus (also referred to as dedicated signaling). That is, user equipment specific information is sent to a terminal using dedicated messages.
 PDSCHは、MAC CEを送信するために用いられる。RRCシグナリングおよび/またはMAC CEを、上位層の信号(higher layer signaling)とも称する。PMCHは、マルチキャストデータ(Multicast Channel: MCH)を送信するために用いられる。 The PDSCH is used to transmit MAC CE. RRC signaling and/or MAC CE are also referred to as higher layer signaling. PMCH is used to transmit multicast data (Multicast Channel: MCH).
 図1の下りリンクの無線通信では、下りリンク物理信号として同期信号(Synchronization signal: SS)、下りリンク参照信号(Downlink Reference Signal: DL RS)が用いられる。下りリンク物理信号は、上位層から出力された情報を送信するためには使用されないが、物理層によって使用される。 In the downlink wireless communication in FIG. 1, a synchronization signal (SS) and a downlink reference signal (DL RS) are used as downlink physical signals. Downlink physical signals are not used to transmit information output from higher layers, but are used by the physical layer.
 同期信号は、端末装置が、下りリンクの周波数領域および時間領域の同期を取るために用いられる。下りリンク参照信号は、端末装置が、下りリンク物理チャネルの伝搬路推定/伝搬路補正を行なうために用いられる。例えば、下りリンク参照信号は、PBCH、PDSCH、PDCCHを復調するために用いられる。下りリンク参照信号は、端末装置が、下りリンクのチャネル状態の測定(CSI measurement)するために用いることもできる。 The synchronization signal is used by the terminal device to synchronize the frequency domain and time domain of the downlink. A downlink reference signal is used by a terminal device to perform channel estimation/channel correction of a downlink physical channel. For example, downlink reference signals are used to demodulate PBCH, PDSCH, and PDCCH. The downlink reference signal can also be used by the terminal device to measure the downlink channel state (CSI measurement).
 下りリンク物理チャネルおよび下りリンク物理信号を総称して、下りリンク信号とも称する。また、上りリンク物理チャネルおよび上りリンク物理信号を総称して、上りリンク信号とも称する。また、下りリンク物理チャネルおよび上りリンク物理チャネルを総称して、物理チャネルとも称する。また、下りリンク物理信号および上りリンク物理信号を総称して、物理信号とも称する。 A downlink physical channel and a downlink physical signal are also collectively referred to as a downlink signal. Also, an uplink physical channel and an uplink physical signal are collectively referred to as an uplink signal. Downlink physical channels and uplink physical channels are also collectively referred to as physical channels. Downlink physical signals and uplink physical signals are also collectively referred to as physical signals.
 BCH、UL-SCHおよびDL-SCHは、トランスポートチャネルである。MAC層で用いられるチャネルを、トランスポートチャネルと称する。MAC層で用いられるトランスポートチャネルの単位を、トランスポートブロック(TB:Transport Block)、または、MAC PDU(Protocol Data Unit)とも称する。トランスポートブロックは、MAC層が物理層に渡す(deliverする)データの単位である。物理層において、トランスポートブロックはコードワードにマップされ、コードワード毎に符号化処理などが行なわれる。 BCH, UL-SCH and DL-SCH are transport channels. Channels used in the MAC layer are called transport channels. A transport channel unit used in the MAC layer is also called a transport block (TB) or a MAC PDU (Protocol Data Unit). A transport block is a unit of data that the MAC layer delivers to the physical layer. At the physical layer, transport blocks are mapped to codewords, and encoding processing and the like are performed for each codeword.
 図2は、本実施形態に係る基地局装置10の構成の概略ブロック図である。基地局装置10は、上位層処理部(上位層処理ステップ)102、制御部(制御ステップ)104、送信部(送信ステップ)106、送信アンテナ108、受信アンテナ110、受信部(受信ステップ)112を含んで構成される。送信部106は、上位層処理部102から入力される論理チャネルに応じて、物理下りリンクチャネルを生成する。送信部106は、符号化部(符号化ステップ)1060、変調部(変調ステップ)1062、下りリンク制御信号生成部(下りリンク制御信号生成ステップ)1064、下りリンク参照信号生成部(下りリンク参照信号生成ステップ)1066、多重部(多重ステップ)1068、および無線送信部(無線送信ステップ)1070を含んで構成される。受信部112は、物理上りリンクチャネルを検出し(復調、復号など)、その内容を上位層処理部102に入力する。受信部112は、無線受信部(無線受信ステップ)1120、伝搬路推定部(伝搬路推定ステップ)1122、多重分離部(多重分離ステップ)1124、等化部(等化ステップ)1126、復調部(復調ステップ)1128、復号部(復号ステップ)1130を含んで構成される。 FIG. 2 is a schematic block diagram of the configuration of the base station apparatus 10 according to this embodiment. The base station apparatus 10 includes an upper layer processing unit (upper layer processing step) 102, a control unit (control step) 104, a transmitting unit (transmitting step) 106, a transmitting antenna 108, a receiving antenna 110, and a receiving unit (receiving step) 112. composed of Transmission section 106 generates a physical downlink channel according to the logical channel input from upper layer processing section 102 . The transmitting unit 106 includes an encoding unit (encoding step) 1060, a modulation unit (modulation step) 1062, a downlink control signal generation unit (downlink control signal generation step) 1064, a downlink reference signal generation unit (downlink reference signal generation step) 1066 , multiplexing section (multiplexing step) 1068 , and radio transmission section (radio transmission step) 1070 . The receiving unit 112 detects (demodulates, decodes, etc.) a physical uplink channel and inputs the content to the upper layer processing unit 102 . The receiving unit 112 includes a radio receiving unit (radio receiving step) 1120, a channel estimating unit (channel estimating step) 1122, a demultiplexing unit (demultiplexing step) 1124, an equalizing unit (equalizing step) 1126, a demodulating unit ( demodulation step) 1128 and a decoding unit (decoding step) 1130 .
 上位層処理部102は、媒体アクセス制御(Medium Access Control: MAC)層、パケットデータ統合プロトコル(Packet Data Convergence Protocol: PDCP)層、無線リンク制御(Radio Link Control: RLC)層、無線リソース制御(Radio Resource Control: RRC)層などの物理層より上位層の処理を行なう。上位層処理部102は、送信部106および受信部112の制御を行なうために必要な情報を生成し、制御部104に出力する。上位層処理部102は、下りリンクデータ(DL-SCHなど)、システム情報(MIB、 SIB)などを送信部106に出力する。なお、DMRS構成情報はRRC等の上位レイヤによる通知ではなく、システム情報(MIBあるいはSIB)によって端末装置に通知してもよい。 The upper layer processing unit 102 includes a medium access control (MAC) layer, a packet data convergence protocol (PDCP) layer, a radio link control (RLC) layer, a radio resource control (Radio Resource Control: Performs processing of higher layers than the physical layer such as the RRC) layer. Upper layer processing section 102 generates information necessary for controlling transmitting section 106 and receiving section 112 and outputs the information to control section 104 . Upper layer processing section 102 outputs downlink data (DL-SCH, etc.), system information (MIB, SIB), etc. to transmitting section 106 . Note that the DMRS configuration information may be notified to the terminal device by system information (MIB or SIB) instead of notification by an upper layer such as RRC.
 上位層処理部102は、ブロードキャストするシステム情報(MIB、又はSIBの一部)を生成、又は上位ノードから取得する。上位層処理部102は、BCH/DL-SCHとして、前記ブロードキャストするシステム情報を送信部106に出力する。前記MIBは、送信部106において、PBCHに配置される。前記SIBは、送信部106において、PDSCHに配置される。上位層処理部102は、端末装置固有のシステム情報(SIB)を生成し、又は上位の―度から取得する。該SIBは、送信部106において、PDSCHに配置される。 The upper layer processing unit 102 generates system information (MIB or a part of SIB) to be broadcast or acquires it from a higher node. Upper layer processing section 102 outputs the system information to be broadcast to transmitting section 106 as BCH/DL-SCH. The MIB is placed on the PBCH in transmitting section 106 . The SIB is mapped to the PDSCH in transmitting section 106 . The upper layer processing unit 102 generates system information (SIB) unique to the terminal device, or acquires it from a higher level. The SIB is mapped to the PDSCH in transmitting section 106 .
 上位層処理部102は、各端末装置のための各種RNTIを設定する。前記RNTIは、PDCCH、PDSCHなどの暗号化(スクランブリング)に用いられる。上位層処理部102は、前記RNTIを、制御部104/送信部106/受信部112に出力する。 The upper layer processing unit 102 sets various RNTIs for each terminal device. The RNTI is used for encryption (scrambling) of PDCCH, PDSCH, and the like. Upper layer processing section 102 outputs the RNTI to control section 104 /transmitting section 106 /receiving section 112 .
 上位層処理部102は、PDSCHに配置される下りリンクデータ(トランスポートブロック、DL-SCH)、端末装置固有のシステムインフォメーション(System Information Block: SIB)、RRCメッセージ、MAC CE、DMRS構成情報がSIBやMIBのようなシステム情報や、DCIで通知されない場合はDMRS構成情報などを生成、又は上位ノードから取得し、送信部106に出力する。上位層処理部102は、端末装置20の各種設定情報の管理をする。なお、無線リソース制御の機能の一部は、MACレイヤや物理レイヤで行われてもよい。 The upper layer processing unit 102 uses the downlink data (transport block, DL-SCH) allocated to the PDSCH, system information specific to the terminal device (System Information Block: SIB), RRC message, MAC CE, DMRS configuration information as SIB , and MIB, or DMRS configuration information if not notified by DCI, is generated or acquired from a higher node, and output to transmission section 106 . The upper layer processing unit 102 manages various setting information of the terminal device 20 . Note that part of the radio resource control function may be performed in the MAC layer or the physical layer.
 上位層処理部102は、端末装置がサポートする機能(UE capability)等、端末装置に関する情報を端末装置20(受信部112を介して)から受信する。端末装置20は、自身の機能を基地局装置10に上位層の信号(RRCシグナリング)で送信する。端末装置に関する情報は、その端末装置が所定の機能をサポートするかどうかを示す情報、または、その端末装置が所定の機能に対する導入およびテストの完了を示す情報を含む。所定の機能をサポートするかどうかは、所定の機能に対する導入およびテストを完了しているかどうかを含む。 The upper layer processing unit 102 receives information about the terminal device, such as the functions supported by the terminal device (UE capabilities), from the terminal device 20 (via the receiving unit 112). The terminal device 20 transmits its own function to the base station device 10 using a higher layer signal (RRC signaling). Information about the terminal device includes information indicating whether the terminal device supports a given function or information indicating that the terminal device has completed installation and testing for the given function. Whether or not a given function is supported includes whether installation and testing for the given function have been completed.
 端末装置が所定の機能をサポートする場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信する。端末装置が所定の機能をサポートしない場合、その端末装置はその所定の機能をサポートするかどうかを示す情報(パラメータ)を送信しないようにしてよい。すなわち、その所定の機能をサポートするかどうかは、その所定の機能をサポートするかどうかを示す情報(パラメータ)を送信するかどうかによって通知される。なお、所定の機能をサポートするかどうかを示す情報(パラメータ)は、1または0の1ビットを用いて通知してもよい。  If the terminal device supports a predetermined function, the terminal device transmits information (parameters) indicating whether or not the predetermined function is supported. If a terminal device does not support a given function, the terminal device may not transmit information (parameters) indicating whether it supports the given function. That is, whether or not the predetermined function is supported is notified by transmitting information (parameters) indicating whether or not the predetermined function is supported. Information (parameter) indicating whether or not a predetermined function is supported may be notified using one bit of 1 or 0.
 上位層処理部102は、受信部112から復号後の上りリンクデータ(CRCも含む)からDL-SCHを取得する。上位層処理部102は、端末装置が送信した前記上りリンクデータに対して誤り検出を行う。例えば、該誤り検出はMAC層で行われる。 Upper layer processing section 102 acquires DL-SCH from the decoded uplink data (including CRC) from receiving section 112 . The upper layer processing unit 102 performs error detection on the uplink data transmitted by the terminal device. For example, the error detection is done at the MAC layer.
 制御部104は、上位層処理部102/受信部112から入力された各種設定情報に基づいて、送信部106および受信部112の制御を行なう。制御部104は、上位層処理部102/受信部112から入力された設定情報に基づいて、下りリンク制御情報(DCI)を生成し、送信部106に出力する。例えば制御部104は、上位層処理部102/受信部112から入力されたDMRSに関する設定情報(DMRS構成1であるかDMRS構成2であるか)を考慮して、DMRSの周波数配置(DMRS構成1の場合は偶数サブキャリアあるいは奇数サブキャリア、DMRS構成2の場合は第0~第2のセットのいずれか)を設定し、DCIを生成する。 The control unit 104 controls the transmission unit 106 and the reception unit 112 based on various setting information input from the upper layer processing unit 102/reception unit 112 . Control section 104 generates downlink control information (DCI) based on the setting information input from upper layer processing section 102 /receiving section 112 and outputs it to transmitting section 106 . For example, the control unit 104 considers the DMRS setting information (whether it is the DMRS configuration 1 or the DMRS configuration 2) input from the upper layer processing unit 102/receiving unit 112, DMRS frequency allocation (DMRS configuration 1 In the case of , an even numbered subcarrier or an odd numbered subcarrier, and in the case of DMRS configuration 2, one of the 0th to 2nd sets) is set, and DCI is generated.
 制御部104は、伝搬路推定部1122で測定されたチャネル品質情報(CSI Measurement結果)を考慮して、PUSCHのMCSを決定する。制御部104は、前記PUSCHのMCSに対応するMCSインデックスを決定する。制御部104は、決定したMCSインデックスを上りリンクグラントに含める。 The control unit 104 determines the MCS of PUSCH in consideration of the channel quality information (CSI measurement results) measured by the propagation path estimation unit 1122. The control unit 104 determines an MCS index corresponding to the MCS of the PUSCH. Control section 104 includes the determined MCS index in the uplink grant.
 送信部106は、上位層処理部102/制御部104から入力された信号に従って、PBCH、PDCCH、PDSCHおよび下りリンク参照信号などを生成する。符号化部1060は、上位層処理部102から入力されたBCH、DL-SCHなどを、予め定められた/上位層処理部102が決定した符号化方式を用いて、ブロック符号、畳み込み符号、ターボ符号、ポーラ符号化、LDPC符号などによる符号化(リピティションを含む)を行なう。符号化部1060は、制御部104から入力された符号化率に基づいて、符号化ビットをパンクチャリングする。変調部1062は、符号化部1060から入力された符号化ビットをBPSK、QPSK、16QAM、64QAM、256QAM等の予め定められた/制御部104から入力された変調方式(変調オーダー)でデータ変調する。該変調オーダーは、制御部104で選択された前記MCSインデックスに基づく。 The transmission section 106 generates PBCH, PDCCH, PDSCH, downlink reference signals, etc. according to the signal input from the upper layer processing section 102/control section 104 . Encoding section 1060 converts BCH, DL-SCH, etc. input from upper layer processing section 102 into block code, convolutional code, turbo using a predetermined/determined encoding method by upper layer processing section 102. Encoding (including repetition) is performed using code, polar encoding, LDPC code, or the like. Coding section 1060 punctures the coded bits based on the coding rate input from control section 104 . Modulation section 1062 data-modulates the coded bits input from encoding section 1060 using a predetermined modulation scheme (modulation order) input from control section 104 such as BPSK, QPSK, 16QAM, 64QAM, 256QAM. . The modulation order is based on the MCS index selected by controller 104 .
 下りリンク制御信号生成部1064は、制御部104から入力されたDCIに対してCRCを付加する。下りリンク制御信号生成部1064は、前記CRCに対して、RNTIを用いて暗号化(スクランブリング)を行う。さらに、下りリンク制御信号生成部1064は、前記CRCが付加されたDCIに対してQPSK変調を行い、PDCCHを生成する。下りリンク参照信号生成部1066は、端末装置が既知の系列を下りリンク参照信号として生成する。前記既知の系列は、基地局装置10を識別するための物理セル識別子などの基に予め定められた規則で求まる。 The downlink control signal generation section 1064 adds CRC to the DCI input from the control section 104 . The downlink control signal generator 1064 performs encryption (scrambling) on the CRC using the RNTI. Furthermore, the downlink control signal generating section 1064 performs QPSK modulation on the DCI to which the CRC is added to generate PDCCH. The downlink reference signal generating section 1066 generates a sequence known by the terminal device as a downlink reference signal. The known sequence is obtained according to a predetermined rule based on a physical cell identifier for identifying base station apparatus 10 or the like.
 多重部1068は、PDCCH/下りリンク参照信号/変調部1062から入力される各チャネルの変調シンボルを多重する。つまり、多重部1068は、PDCCH/下りリンク参照信号を各チャネルの変調シンボルをリソースエレメントにマッピングする。マッピングするリソースエレメントは、前記制御部104から入力される下りリンクスケジューリングによって制御される。リソースエレメントは、1つのOFDMシンボルと1つのサブキャリアからなる物理リソースの最小単位である。なお、複数のリソースエレメントによってリソースブロック(RB)が構成され、RBを最小単位としてスケジューリングが適用される。なお、MIMO伝送を行う場合、送信部106は符号化部1060および変調部1062をレイヤ数具備する。この場合、上位層処理部102は、各レイヤのトランスポートブロック毎にMCSを設定する。 A multiplexing section 1068 multiplexes the modulation symbols of each channel input from the PDCCH/downlink reference signal/modulation section 1062 . That is, multiplexing section 1068 maps PDCCH/downlink reference signals and modulation symbols of each channel to resource elements. Resource elements to be mapped are controlled by downlink scheduling input from the control section 104 . A resource element is the minimum unit of physical resource consisting of one OFDM symbol and one subcarrier. A plurality of resource elements form a resource block (RB), and scheduling is applied using the RB as the minimum unit. When performing MIMO transmission, transmitting section 106 includes coding section 1060 and modulating section 1062 in the number of layers. In this case, upper layer processing section 102 sets MCS for each transport block of each layer.
 無線送信部1070は、多重された変調シンボルなどを逆高速フーリエ変換(Inverse Fast Fourier Transform: IFFT)してOFDMシンボルを生成する。無線送信部1070は、前記OFDMシンボルにサイクリックプレフィックス(cyclic prefix: CP)を付加してベースバンドのディジタル信号を生成する。さらに、無線送信部1070は、前記ディジタル信号をアナログ信号に変換し、フィルタリングにより余分な周波数成分を除去し、搬送周波数にアップコンバートし、電力増幅し、送信アンテナ108に出力して送信する。 The radio transmission unit 1070 performs Inverse Fast Fourier Transform (IFFT) on the multiplexed modulation symbols and the like to generate OFDM symbols. A radio transmitter 1070 adds a cyclic prefix (CP) to the OFDM symbol to generate a baseband digital signal. Furthermore, radio transmission section 1070 converts the digital signal into an analog signal, removes unnecessary frequency components by filtering, up-converts to a carrier frequency, amplifies the power, and outputs the signal to transmission antenna 108 for transmission.
 受信部112は、制御部104の指示に従って、受信アンテナ110を介して端末装置20からの受信信号を検出(分離、復調、復号)し、復号したデータを上位層処理部102/制御部104に入力する。無線受信部1120は、受信アンテナ110を介して受信された上りリンクの信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信された信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部1120は、変換したディジタル信号からCPに相当する部分を除去する。無線受信部1120は、CPを除去した信号に対して高速フーリエ変換(Fast Fourier Transform: FFT)を行い、周波数領域の信号を抽出する。前記周波数領域の信号は、多重分離部1124に出力される。 Receiving section 112 detects (separates, demodulates, and decodes) a signal received from terminal device 20 via receiving antenna 110 according to an instruction from control section 104, and sends the decoded data to upper layer processing section 102/control section 104. input. The radio receiving unit 1120 down-converts the uplink signal received via the receiving antenna 110 into a baseband signal, removes unnecessary frequency components, and amplifies the signal so that the signal level is appropriately maintained. It controls the level, performs quadrature demodulation based on the in-phase and quadrature components of the received signal, and converts the quadrature-demodulated analog signal to a digital signal. Radio receiving section 1120 removes the portion corresponding to CP from the converted digital signal. Radio receiving section 1120 performs Fast Fourier Transform (FFT) on the CP-removed signal to extract a signal in the frequency domain. The frequency domain signal is output to demultiplexing section 1124 .
 多重分離部1124は、制御部104から入力される上りリンクのスケジューリングの情報(上りリンクデータチャネル割当て情報など)に基づいて、無線受信部1120から入力された信号をPUSCH、PUCCH及上りリンク参照信号などの信号に分離する。前記分離された上りリンク参照信号は、伝搬路推定部1122に入力される。前記分離されたPUSCH、PUCCHは、等化部1126に出力する。 Based on the uplink scheduling information (uplink data channel allocation information, etc.) input from the control unit 104, the demultiplexing unit 1124 converts the signal input from the radio receiving unit 1120 into PUSCH, PUCCH, and uplink reference signals. and other signals. The separated uplink reference signals are input to the channel estimation section 1122 . The separated PUSCH and PUCCH are output to equalization section 1126 .
 伝搬路推定部1122は、上りリンク参照信号を用いて、周波数応答(または遅延プロファイル)を推定する。復調用に伝搬路推定された周波数応答結果は、等化部1126へ入力される。伝搬路推定部1122は、上りリンク参照信号を用いて、上りリンクのチャネル状況の測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)の測定)を行う。上りリンクのチャネル状況の測定は、PUSCHのためのMCSの決定などに用いられる。 The propagation path estimation unit 1122 estimates the frequency response (or delay profile) using the uplink reference signal. A frequency response result obtained by channel estimation for demodulation is input to equalization section 1126 . The propagation path estimation unit 1122 uses the uplink reference signal to measure uplink channel conditions (measurement of RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator)). conduct. Measurement of uplink channel conditions is used for determination of MCS for PUSCH and the like.
 等化部1126は、伝搬路推定部1122より入力された周波数応答より伝搬路での影響を補償する処理を行う。補償の方法としては、MMSE重みやMRC重みを乗算する方法や、MLDを適用する方法等、既存のいかなる伝搬路補償も適用することができる。復調部1128は、予め決められている/制御部104から指示される変調方式の情報に基づき、復調処理を行う。 The equalization section 1126 performs processing for compensating the influence of the propagation path from the frequency response input from the propagation path estimation section 1122 . As a compensation method, any existing channel compensation such as a method of multiplying MMSE weights or MRC weights, a method of applying MLD, or the like can be applied. The demodulation section 1128 performs demodulation processing based on the information of the modulation scheme determined in advance/instructed by the control section 104 .
 復号部1130は、予め決められている符号化率/制御部104から指示される符号化率の情報に基づいて、前記復調部の出力信号に対して復号処理を行う。復号部1130は、復号後のデータ(UL-SCHなど)を上位層処理部102に入力する。 The decoding unit 1130 performs decoding processing on the output signal of the demodulation unit based on the coding rate information instructed by the predetermined coding rate/control unit 104 . Decoding section 1130 inputs the decoded data (such as UL-SCH) to upper layer processing section 102 .
 図3は、本実施形態における端末装置20の構成を示す概略ブロック図である。端末装置20は、上位層処理部(上位層処理ステップ)202、制御部(制御ステップ)204、送信部(送信ステップ)206、送信アンテナ208、受信アンテナ210および受信部(受信ステップ)212を含んで構成される。 FIG. 3 is a schematic block diagram showing the configuration of the terminal device 20 in this embodiment. The terminal device 20 includes an upper layer processing unit (upper layer processing step) 202, a control unit (control step) 204, a transmitting unit (transmitting step) 206, a transmitting antenna 208, a receiving antenna 210, and a receiving unit (receiving step) 212. consists of
 上位層処理部202は、媒体アクセス制御(MAC)層、パケットデータ統合プロトコル(PDCP)層、無線リンク制御(RLC)層、無線リソース制御(RRC)層の処理を行なう。上位層処理部202は、自端末装置の各種設定情報の管理をする。上位層処理部202は、自端末装置がサポートしている端末装置の機能を示す情報(UE Capability)を、送信部206を介して、基地局装置10へ通知する。上位層処理部202は、UE CapabilityをRRCシグナリングで通知する。 The upper layer processing unit 202 processes the medium access control (MAC) layer, the packet data integration protocol (PDCP) layer, the radio link control (RLC) layer, and the radio resource control (RRC) layer. The upper layer processing unit 202 manages various setting information of its own terminal device. The upper layer processing section 202 notifies the base station apparatus 10 of information (UE Capability) indicating the functions of the terminal device supported by the own terminal apparatus via the transmitting section 206 . The upper layer processing unit 202 notifies the UE Capability by RRC signaling.
 上位層処理部202は、DL-SCH、BCHなどの復号後のデータを受信部212から取得する。上位層処理部202は、前記DL-SCHの誤り検出結果から、HARQ-ACKを生成する。上位層処理部202は、SRを生成する。上位層処理部202は、HARQ-ACK/SR/CSI(CQIレポートを含む)を含むUCIを生成する。また上位層処理部202は、DMRS構成情報が上位レイヤによって通知されている場合、DMRS構成に関する情報を制御部204に入力する。上位層処理部202は、前記UCIやUL-SCHを送信部206に入力する。なお、上位層処理部202の機能の一部は、制御部204に含めてもよい。 The upper layer processing unit 202 acquires the decoded data such as DL-SCH and BCH from the receiving unit 212 . The upper layer processing unit 202 generates HARQ-ACK from the DL-SCH error detection result. The upper layer processing unit 202 generates SR. The upper layer processing unit 202 generates UCI including HARQ-ACK/SR/CSI (including CQI report). Further, when DMRS configuration information is notified by the upper layer, upper layer processing section 202 inputs information on the DMRS configuration to control section 204 . The upper layer processing section 202 inputs the UCI and UL-SCH to the transmitting section 206 . Note that part of the functions of the upper layer processing unit 202 may be included in the control unit 204 .
 制御部204は、受信部212を介して受信した下りリンク制御情報(DCI)を解釈する。制御部204は、上りリンク送信のためのDCIから取得したPUSCHのスケジューリング/MCSインデックス/TPC(Transmission Power Control)などに従って、送信部206を制御する。制御部204は、下りリンク送信のためのDCIから取得したPDSCHのスケジューリング/MCSインデックスなどに従って、受信部212を制御する。さらに制御部204は、下りリンク送信のためのDCIに含まれるDMRSの周波数配置(ポート番号)に関する情報と、上位層処理部202から入力されるDMRS構成情報にしたがって、DMRSの周波数配置を特定する。 The control unit 204 interprets the downlink control information (DCI) received via the receiving unit 212. The control unit 204 controls the transmission unit 206 according to the PUSCH scheduling/MCS index/TPC (Transmission Power Control) obtained from the DCI for uplink transmission. The control unit 204 controls the receiving unit 212 according to the PDSCH scheduling/MCS index obtained from the DCI for downlink transmission. Further, the control unit 204 identifies the DMRS frequency allocation according to the information about the DMRS frequency allocation (port number) included in the DCI for downlink transmission and the DMRS configuration information input from the upper layer processing unit 202. .
 送信部206は、符号化部(符号化ステップ)2060、変調部(変調ステップ)2062、上りリンク参照信号生成部(上りリンク参照信号生成ステップ)2064、上りリンク制御信号生成部(上りリンク制御信号生成ステップ)2066、多重部(多重ステップ)2068、無線送信部(無線送信ステップ)2070を含んで構成される。 The transmitting unit 206 includes an encoding unit (encoding step) 2060, a modulation unit (modulation step) 2062, an uplink reference signal generation unit (uplink reference signal generation step) 2064, an uplink control signal generation unit (uplink control signal generation step) 2066 , multiplexing section (multiplexing step) 2068 , and radio transmission section (radio transmission step) 2070 .
 符号化部2060は、制御部204の制御に従って(MCSインデックスに基づいて算出される符号化率に従って)、上位層処理部202から入力された上りリンクデータ(UL-SCH)を畳み込み符号化、LDPC符号化、ポーラ符号化、ターボ符号化等の符号化を行う。 Coding section 2060 convolutionally encodes the uplink data (UL-SCH) input from upper layer processing section 202 under the control of control section 204 (according to the coding rate calculated based on the MCS index), and converts it to LDPC. Encoding such as encoding, polar encoding, and turbo encoding is performed.
 変調部2062は、BPSK、QPSK、16QAM、64QAM、256QAM等の制御部204から指示された変調方式/チャネル毎に予め定められた変調方式で、符号化部2060から入力された符号化ビットを変調する(PUSCHのための変調シンボルを生成する)。 Modulation section 2062 modulates the coded bits input from coding section 2060 with a modulation method/modulation method predetermined for each channel, such as BPSK, QPSK, 16QAM, 64QAM, and 256QAM, instructed by control section 204. (generate modulation symbols for PUSCH).
 上りリンク参照信号生成部2064は、制御部204の指示に従って、基地局装置10を識別するための物理セル識別子(physical cell identity: PCI、Cell IDなどと称される)、上りリンク参照信号を配置する帯域幅、サイクリックシフト、DMRSシーケンスの生成に対するパラメータの値、さらに周波数配置などを基に、予め定められた規則(式)で求まる系列を生成する。 Uplink reference signal generating section 2064 arranges a physical cell identifier (referred to as PCI, Cell ID, etc.) for identifying base station apparatus 10 and an uplink reference signal, according to an instruction from control section 204. A sequence determined by a predetermined rule (formula) is generated based on the bandwidth, cyclic shift, parameter values for DMRS sequence generation, and frequency allocation.
 上りリンク制御信号生成部2066は、制御部204の指示に従って、UCIを符号化、BPSK/QPSK変調を行い、PUCCHのための変調シンボルを生成する。 Uplink control signal generation section 2066 encodes UCI, performs BPSK/QPSK modulation, and generates modulation symbols for PUCCH according to instructions from control section 204 .
 Rel-15の周波数ホッピングに関する上位層パラメータ(frequencyHopping)が設定されている場合において、その値としてはモード1あるいはモード2が設定可能である。モード2はスロット間ホッピングであり、複数のスロットを用いて送信する場合において、スロットごとに周波数を変えて送信するモードである。一方、モード1はスロット内ホッピングであり、1つまたは複数のスロットを用いて送信する場合において、スロットを前半と後半に分割し、前半と後半で周波数を変えて送信するモードである。周波数ホッピングにおける周波数割り当てとしては、DCIやRRCによって通知された周波数領域の無線リソース割り当ては第1のホップに適用し、第2のホップの周波数割り当ては、第1のホップで用いる無線リソースに対して、周波数ホッピング量に関する上位層パラメータ(frequencyHoppingOffset)で設定される値だけシフトした無線リソースを割り当てる。 When the upper layer parameter (frequencyHopping) related to Rel-15 frequency hopping is set, mode 1 or mode 2 can be set as its value. Mode 2 is slot-to-slot hopping, which is a mode in which when transmission is performed using a plurality of slots, the frequency is changed for each slot and transmitted. On the other hand, mode 1 is intra-slot hopping, in which when one or more slots are used for transmission, the slot is divided into a first half and a second half, and the first half and the second half are transmitted with different frequencies. As frequency allocation in frequency hopping, radio resource allocation in the frequency domain notified by DCI or RRC is applied to the first hop, and frequency allocation of the second hop is applied to the radio resources used in the first hop. , a radio resource shifted by a value set by a higher-layer parameter (frequencyHoppingOffset) regarding the amount of frequency hopping.
 多重部2068は、制御部204からの上りリンクスケジューリング情報(RRCメッセージに含まれる上りリンクのためのCS(Configured Scheduling)における送信間隔、DCIに含まれる周波数領域および時間領域リソース割り当てなど)に従って、PUSCHのための変調シンボル、PUCCHのための変調シンボル、上りリンク参照信号を送信アンテナポート(DMRSポート)毎に多重する(つまり、各信号はリソースエレメントにマップされる)。 Multiplexing unit 2068, uplink scheduling information from the control unit 204 (transmission interval in CS (Configured Scheduling) for uplink included in the RRC message, frequency domain and time domain resource allocation included in DCI, etc.), according to PUSCH , modulation symbols for PUCCH, and uplink reference signals are multiplexed for each transmit antenna port (DMRS port) (that is, each signal is mapped to a resource element).
 ここで、CS(configured scheduling、コンフィギュアドグラントスケジューリング)に関する説明を行う。ダイナミックグラントなしの伝送には2種類ある。1つは、RRCによって与えられ、configured grantとして保存されるconfigured grantタイプ1であり、1つは、PDCCHによって与えられ、configured grantアクティベーションあるいはデアクティベーションを示すL1シグナリングに基づいたconfigured grantとして保存およびクリアされるconfigured grantタイプ2である。タイプ1とタイプ2はサービングセル毎かつBWP毎にRRCで設定される。複数の設定は、異なるサービングセルにおいてのみ同時にアクティブになり得る。タイプ2に関して、アクティベーションとデアクティベーションは、サービングセル間で独立である。同じサービングセルに関して、MACエンティティはタイプ1あるいはタイプ2のどちらかで設定される。タイプ1が設定された時、RRCは次のパラメータを設定する。
・cs-RNTI: 再送のためのCS-RNTI
・periodicity: configured grantタイプ1の周期
・timeDomainOffset: 時間領域におけるSFN=0に関するリソースのオフセット
・timeDomainAllocation: パラメータstartSymbolAndLengthを含む、時間領域におけるconfigured grantの配置
・nrofHARQ-Processes: HARQプロセスの数
また、タイプ2が設定された時、RRCは次のパラメータを設定する。
・cs-RNTI: アクティベーション、デアクティベーション、再送のためのCS-RNTI
・periodicity: configured grantタイプ2の周期
・nrofHARQ-Processes: HARQプロセスの数
つまりConfiguredGrantConfigは、2つの方式にしたがって、ダイナミックグラントなしで上りリンク伝送を設定するために用いられる。実際の上りリンクグラントは、Configured Grantタイプ1では、RRC経由で設定され、Configured Grantタイプ2では、CS-RNTIで処理されたPDCCH経由で与えられる。
Here, CS (configured scheduling, configured grant scheduling) will be explained. There are two types of transmission without dynamic grant. One is a configured grant type 1 given by RRC and stored as configured grant and one is given by PDCCH and stored as configured grant based on L1 signaling indicating configured grant activation or deactivation. Cleared configured grant type 2. Type 1 and type 2 are configured in RRC per serving cell and per BWP. Multiple configurations can be active simultaneously only in different serving cells. For Type 2, activation and deactivation are independent between serving cells. For the same serving cell, MAC entities are configured as either type 1 or type 2. When Type 1 is configured, RRC configures the following parameters.
- cs-RNTI: CS-RNTI for retransmission
periodicity: the periodicity of the configured grant type 1 timeDomainOffset: the offset of the resource for SFN=0 in the time domain timeDomainAllocation: the allocation of the configured grant in the time domain, including the parameter startSymbolAndLength nrofHARQ-Processes: the number of HARQ processes, also type 2 is set, RRC sets the following parameters:
cs-RNTI: CS-RNTI for activation, deactivation and retransmission
• periodicity: the periodicity of the configured grant type 2 • nrofHARQ-Processes: the number of HARQ processes or ConfiguredGrantConfig is used to configure uplink transmission without dynamic grant according to two schemes. The actual uplink grant is configured via RRC for Configured Grant Type 1 and given via PDCCH processed by CS-RNTI for Configured Grant Type 2.
 上位層で設定されるパラメータrepKは、送信されたトランスポートブロックに適用される繰り返し数が定義される。上位層で設定されるパラメータrepK-RVは、繰り返しに適用されるリダンダンシーバージョンパターンを示す。repK-RVが設定されない(与えられない)場合、コンフィギュアドグラントにおける各実際の繰り返しのリダンダンシーバージョンは、0にセットされる。それ以外の場合、K回の名目上の繰り返し中のすべての実際の繰り返し(省略される実際の繰り返しを含む)の中のn番目の送信機会について、設定されるRV系列(リダンダンシーバージョンパターン)の中の(mod(n-1、4)+1)番目の値に関連付けられた伝送が行われる。また一つのトランスポートブロックの初送は、設定されるRV系列が{0、2、3、1}の場合、K回繰り返しの最初の送信機会で開始される。設定されるRV系列が{0、3、0、3}の場合、RV=0と関連付けられたK回繰り返しのいずれかの送信機会で開始される。設定されるRV系列が{0、0、0、0}の場合、K=8の時の最後の送信機会を除く、K回繰り返しのいずれかの送信機会で開始される。いずれのRV系列に関しても、繰り返しはK回繰り返し送信後、あるいは周期P内のK回繰り返し中の最後の送信機会、あるいは周期P内に同じトランスポートブロックをスケジューリングするための上りリンクグラントを受信した時のいずれかに初めに達した場合に終端される。Rel-15において端末装置は、周期Pによって算出される時間期間よりも長いK回繰り返し送信に関する時間期間が設定されることを期待しない。コンフィギュアドグラントによるタイプ1およびタイプ2PUSCH送信両方について、端末装置がrepK>1と設定された時、端末装置はそのトランスポートブロックをrepKの連続するスロットに渡って繰り返す。この時、端末装置は各スロットで同じシンボル配置を適用する。もしスロット構成の決定に関する端末装置のプロシージャが、配置されたスロットのシンボルを下りリンクシンボルとして判断(決定)する場合、そのスロットにおける送信は複数スロットのPUSCH送信に関し省略される。repKが設定された場合、値として1回、2回、4回、8回のいずれかを設定可能である。ただし、RRCパラメータ自体が存在しない場合、繰り返し数は1として送信を行う。またrepK-RVは、{0、2、3、1}、{0、3、0、3}、{0、0、0、0}のいずれかが設定され得る。なお、同一のトランスポートブロックから生成される異なるリダンダンシーバージョンの信号は、同一のトランスポートブロック(情報ビット系列)から構成される信号であるが、構成される符号化ビットの少なくとも一部が異なる。 The parameter repK set in the upper layer defines the number of repetitions applied to the transmitted transport block. A parameter repK-RV set in the upper layer indicates a redundancy version pattern to be applied repeatedly. If repK-RV is not set (given), the redundancy version of each actual repeat in the configured grant is set to zero. Otherwise, for the n-th transmission opportunity among all actual iterations (including omitted actual iterations) in the K nominal iterations, the set RV sequence (redundancy version pattern) The transmission associated with the (mod (n−1, 4)+1) th value in . Also, the initial transmission of one transport block is started at the first transmission opportunity of K repetitions when the set RV sequence is {0, 2, 3, 1}. If the configured RV sequence is {0, 3, 0, 3}, start on any transmission opportunity of K repetitions associated with RV=0. If the configured RV sequence is {0, 0, 0, 0}, it will start on any transmission opportunity of K repetitions, except for the last transmission opportunity when K=8. For any RV sequence, the iteration is after K iteration transmissions, or the last transmission opportunity during K iterations in period P, or received an uplink grant to schedule the same transport block in period P. Terminates when either of the times is reached first. In Rel-15, the terminal equipment does not expect to set a time period for K repeated transmissions longer than the time period calculated by the period P. For both Type 1 and Type 2 PUSCH transmissions with configured grants, when the terminal is set with repK>1, the terminal repeats its transport block over repK consecutive slots. At this time, the terminal equipment applies the same symbol allocation in each slot. If the terminal's procedure for slot configuration determination determines that the symbols of the allocated slot are downlink symbols, the transmission in that slot is skipped for multi-slot PUSCH transmission. If repK is set, the value can be 1 time, 2 times, 4 times, or 8 times. However, if the RRC parameter itself does not exist, the number of repetitions is set to 1 for transmission. Also, repK-RV can be set to {0, 2, 3, 1}, {0, 3, 0, 3}, or {0, 0, 0, 0}. Note that signals of different redundancy versions generated from the same transport block are signals composed of the same transport block (information bit sequence), but differ in at least part of the coded bits composed.
 NRリリース16で、PUSCHリピティションタイプBが仕様化された。トランスポートブロックを伴わないCSIレポートを送信するPUSCHを除き、名目上の繰り返し数は上位レイヤパラメータであるnumberofrepetitionsで与えられる。PUSCH送信がスタートするスロットをK、スロット毎のシンボル数をNsymb、スロットの先頭に対するスタートシンボルをS、PUSCHとして割り当てられるシンボルSから数えて連続するシンボル数をLとした場合、名目上の繰り返しが開始されるスロットは、K+ceil((S+n・L)/Nsymb)、スロットの先頭に対するスタートシンボルはmod(S+n・L、Nsymb)で与えられる。また、名目上の繰り返しが終了するスロットは、K+ceil((S+(n+1)・L-1)/Nsymb)、スロットの先頭に対するエンドシンボルはmod(S+(n+1)・L-1、Nsymb)で与えられる。 In NR Release 16, PUSCH repetition type B was specified. Except for PUSCH, which transmits CSI reports without transport blocks, the nominal number of repetitions is given by the higher layer parameter numberofrepetitions. Let K s be the slot where PUSCH transmission starts, N symb be the number of symbols per slot, S be the start symbol for the beginning of the slot, and L be the number of consecutive symbols counted from the symbol S assigned as PUSCH. The slot where repetition starts is given by K s +ceil((S+n·L)/N symb ), and the start symbol for the beginning of the slot is given by mod(S+n·L, N symb ). Also, the slot where the nominal repetition ends is K s + ceil ((S + (n + 1) · L - 1) / N symb ), the end symbol for the beginning of the slot is mod (S + (n + 1) · L - 1, N symb ).
 PUSCHリピティションタイプBに関して、K回の名目上の繰り返しのそれぞれに関して、TDDのコンフィグレーションや下りリンク制御情報の受信による無効なシンボルを決定した後、残ったシンボルがPUSCHリピティションタイプB送信に関する、潜在的に有効なシンボルと考慮される。もし、ある名目上の繰り返しにおけるPUSCHリピティションタイプB送信に関する潜在的に有効なシンボルの数がゼロより大きい場合、その名目上の繰り返しは1または複数の実際の繰り返しを構成する。ここで、各実際の繰り返しは、スロット内のPUSCHリピティションタイプB送信に用いられる連続する有効なシンボルのセットを構成する。1つのシンボルによる実際の繰り返しは、L=1の場合を除き省略される。実際の繰り返しは、その他の条件に基づいて省略される。リダンダンシーバージョンは実際の繰り返し数に基づいて適用される。 For PUSCH repetition type B, after determining invalid symbols due to TDD configuration and reception of downlink control information for each of the K nominal repetitions, the remaining symbols are for PUSCH repetition type B transmission, Considered a potentially valid symbol. If the number of potentially valid symbols for PUSCH repetition type B transmission in a nominal repetition is greater than zero, then that nominal repetition constitutes one or more actual repetitions. Here, each actual repetition constitutes a set of consecutive valid symbols used for PUSCH repetition type B transmission within the slot. The actual repetition by one symbol is omitted except when L=1. Actual iterations are omitted based on other conditions. Redundancy versions are applied based on the actual number of iterations.
 PUSCHリピティションタイプBにおける繰り返し間周波数ホッピングについて説明を行う。n番目の名目上の繰り返し内の実際の繰り返しにおけるスタートRBは、mod(n、2)=0の時、上りリンクBWP内のスタートRBで決定し、mod(n、2)=1の時、上りリンクBWP内のスタートRBとRRCシグナリングで通知される周波数ホッピング時のオフセット、および上りリンクBWPの帯域幅で決定される。一方、スロット間周波数ホッピングにおいては、あるスロット番号に基づいてスタートRBが決定される。 Explain frequency hopping between repetitions in PUSCH repetition type B. The start RB in the actual iteration within the nth nominal iteration is determined by the start RB in the uplink BWP when mod(n,2)=0, and when mod(n,2)=1, It is determined by the start RB in the uplink BWP, the offset during frequency hopping notified by RRC signaling, and the bandwidth of the uplink BWP. On the other hand, in inter-slot frequency hopping, a start RB is determined based on a certain slot number.
 PUSCHマッピングタイプBでは、スロットの先頭にDMRSが配置される。図4に非特許文献2に記載されているDMRSの配置例を示す。図4では、Dは下りリンクシンボル、Gはガードシンボル、Uは上りリンクシンボルを表しており、DMRSシンボルを斜線で示している。結果として、現在の仕様においては、SスロットとUスロット全体でみると、DMRSの配置に偏りがある。これはSスロットとUスロットでDMRSを共有できない、つまりジョイントチャネル推定を適用できないため、Uスロットの先頭にDMRSを配置する必要があるためである。しかしながら現在の仕様のDMRS配置では、データシンボルによってチャネル推定精度に差が生じてしまうという問題があった。例えば、Uスロットの最後のシンボルはDMRSからの時間的に離れているため、チャネル推定精度が低くなるが、Sスロットの最後のシンボルはSスロットのDMRSと連続している上、Uスロットの先頭のDMRSとも連続しており、高いチャネル推定精度が期待できる。しかしながら、精度の低いUスロットの最後のデータシンボルに引っ張られて、パケット(符号化ブロック、トランスポートブロック)全体として誤りが生じる可能性がある。そこで非特許文献2では、ジョイントチャネル推定に適したDMRS配置として、図4に示すようなスマートDMRS配置が提案されている。スマートDMRS配置では、割り当ての先頭にはDMRSを配置しつつ、DMRSを割り当て内でほぼ等間隔(一定間隔)に配置するため、現在の仕様と比較して、チャネル推定精度の低いデータシンボルを発生しにくくすることができる。 With PUSCH mapping type B, a DMRS is placed at the beginning of a slot. FIG. 4 shows an example of DMRS arrangement described in Non-Patent Document 2. In FIG. In FIG. 4, D denotes a downlink symbol, G a guard symbol, U an uplink symbol, and DMRS symbols are hatched. As a result, in the current specifications, the allocation of DMRSs is biased across S slots and U slots. This is because the DMRS cannot be shared between the S slot and the U slot, that is, the joint channel estimation cannot be applied, so it is necessary to arrange the DMRS at the beginning of the U slot. However, in the DMRS arrangement of the current specifications, there is a problem that the accuracy of channel estimation differs depending on the data symbol. For example, since the last symbol of the U slot is temporally distant from the DMRS, the channel estimation accuracy is low. , and high channel estimation accuracy can be expected. However, there is a possibility that an error will occur in the entire packet (coding block, transport block) due to the last data symbol of the U slot with low accuracy. Therefore, Non-Patent Document 2 proposes a smart DMRS arrangement as shown in FIG. 4 as a DMRS arrangement suitable for joint channel estimation. In smart DMRS allocation, the DMRS is allocated at the beginning of the allocation, and the DMRS is allocated at approximately equal intervals (constant intervals) within the allocation, so data symbols with lower channel estimation accuracy are generated compared to the current specifications. can be made difficult.
 非特許文献2では、スマートDMRS配置を行うためのシグナリングや、具体的なDMRSの配置基準については開示されていないが、例えば、ジョイントチャネル推定に関するパラメータを設定し、そのパラメータに従ってジョイントチャネル推定の適用/不適用を決定することが考えられる。ジョイントチャネル推定を適用する場合、現在(リリース16まで)の仕様のDMRS配置ではチャネル推定精度に大きな偏りが発生してしまうため、現在の仕様ではなく、スマートDMRS配置を行うことで伝送特性を改善すること可能となる。なお、ジョイントチャネル推定を適用する範囲、つまり時間的にどの程度のシンボルにわたってDMRSを共有するかを設定するかについて、ジョイントチャネル推定のRRCシグナリングとは異なるシグナリングによって設定してもよい。なお、ジョイントチャネル推定に関するRRCシグナリングのパラメータとして、適用する範囲を設定してもよい。 Although Non-Patent Document 2 does not disclose signaling for performing smart DMRS arrangement or specific DMRS arrangement criteria, for example, parameters related to joint channel estimation are set, and joint channel estimation is applied according to the parameters. / It is conceivable to decide non-applicability. When joint channel estimation is applied, the DMRS deployment of the current specifications (up to Release 16) causes a large deviation in channel estimation accuracy. It becomes possible to The range to which joint channel estimation is applied, that is, how many symbols in time over which DMRSs are shared may be set by signaling different from RRC signaling for joint channel estimation. Note that the applicable range may be set as a parameter of RRC signaling related to joint channel estimation.
 しかしながら、現在の仕様のDMRS配置は、同じスロット構成となる複数の端末装置間で、同一周波数同一時間でリソースを共有するマルチユーザMIMOを適用することができる。マルチユーザMIMOを適用することで、システムスループット(セルスループット)を向上させることができる。スマートDMRS配置を用いる場合においても、ジョイントチャネル推定が設定され、同じDMRS構成となる送信装置間でマルチユーザMIMOを適用することはできる。しかしながら、マルチユーザMIMOに参加する複数の端末に対してジョイントチャネル推定が設定され、DMRS配置も同一である必要がある。つまり、マルチユーザMIMOに参加できる端末装置数が限定されるため、マルチユーザMIMOを適用できる可能性が減少する。この結果、セルスループットが減少してしまう。なお、ここではマルチユーザMIMOを例に示したが、複数の端末装置が無線リソースを共有する技術であればマルチユーザMIMOに限られず、マルチユーザ重畳伝送(Multi-User superposition Transmission;MUST)や非直交多元接続(Non-Orthogonal Multiple Access;NOMA)等の他の技術であっても同様のことが言及できる。さらに、他セルの端末(あるいは他基地局)の送信(下りリンク送信、上りリンク送信、サイドリンク送信等どのようなリンクでの送信であってもよい)とDMRSを直交させることを考えた場合、他のセルの端末装置とDMRS配置が同一となるように設定を合わせる必要があり、基地局装置間の連携が必要となる。 However, the DMRS arrangement of the current specifications can apply multi-user MIMO in which resources are shared at the same frequency and at the same time among multiple terminal devices having the same slot configuration. Application of multi-user MIMO can improve system throughput (cell throughput). Even when smart DMRS deployment is used, joint channel estimation can be set and multi-user MIMO can be applied between transmitters with the same DMRS configuration. However, joint channel estimation is configured for multiple terminals participating in multi-user MIMO, and the DMRS deployment should also be identical. In other words, since the number of terminal devices that can participate in multi-user MIMO is limited, the possibility of applying multi-user MIMO decreases. As a result, cell throughput is reduced. Although multi-user MIMO is shown as an example here, multi-user MIMO is not limited as long as it is a technology in which a plurality of terminal devices share radio resources. The same can be said for other techniques such as Non-Orthogonal Multiple Access (NOMA). Furthermore, when considering orthogonalizing DMRS with transmission of a terminal (or another base station) in another cell (transmission on any link, such as downlink transmission, uplink transmission, sidelink transmission, etc.) , it is necessary to match settings so that the DMRS allocation is the same as that of terminal equipment in other cells, and coordination between base station equipment is required.
 そこで、ジョイントチャネル推定を適用する場合においても、現在の仕様のDMRS配置を適用できることが望ましい。つまりジョイントチャネル推定の適用を設定するRRCシグナリング(パラメータ、要素、情報要素)に加え、DMRS配置を指定するRRCシグナリングを存在させることで、他の端末装置とDMRSの配置を合わせることができるようになり、マルチユーザMIMO等の適用が容易になる。この結果、セルスループットを増加させることができる。なお、上記2つの設定は必ずしも別のシグナリングを適用する必要はない。例えば、RRCシグナリングとして、ジョイントチャネル推定に関するシグナリングを設定し、該シグナリングのパラメータとして、現在の仕様のDMRS配置と、スマートDMRS配置を設定できるようにしてもよい。該シグナリングがRRCで設定された場合、値によらずジョイントチャネル推定を行うためのDMRS送信方法(位相を一定に保つ等)で送信を行う。これにより、RRCシグナリングを増やすことなく、ジョイントチャネル推定の適用/不適用と、ジョイントチャネル推定適用時のDMRS配置の設定を行うことができる。なお、上記はRRCシグナリングを例に説明をしたが、RRCシグナリングに限定されず、DCIによるダイナミックシグナリングに対しても適用することができる。さらにスケジューリング方法によって、RRCシグナリングで設定を行うか、DCIによって設定を行うかを変えてもよい。例えばコンフィギュアドグラントスケジューリングタイプ1というRRCシグナリングのみによって、端末装置が送信を行うリソースの割り当てが行われるスケジューリング方法の場合は、RRCシグナリングによってジョイントチャネル推定の適用を設定し、コンフィギュアドグラントスケジューリングタイプ2あるいはダイナミックスケジューリングというDCIによって、端末装置が送信を行うリソースの割り当てが行われるスケジューリング方法の場合は、DCIによってジョイントチャネル推定の適用を設定するとしてもよい。ただし、上記でDCIによってジョイントチャネル推定の適用を設定するのは、ダイナミックスケジューリングのみであってもよい。このように、ジョイントチャネル推定を行うための設定と、DMRS配置の設定をそれぞれ設定できるようにすることで、複数の端末装置間でDMRSの配置を合わせることができる。この結果、マルチユーザMIMOを適用できる機会が増えるため、セルスループットを増加させることができる。 Therefore, it is desirable to be able to apply the DMRS arrangement of the current specifications even when joint channel estimation is applied. In other words, in addition to RRC signaling (parameters, elements, information elements) that configure application of joint channel estimation, there is RRC signaling that specifies DMRS allocation, so that DMRS allocation can be matched with other terminal devices. This makes it easier to apply multi-user MIMO and the like. As a result, cell throughput can be increased. Note that the above two settings do not necessarily need to apply different signaling. For example, the RRC signaling may be signaling related to joint channel estimation, and the parameters of the signaling may be the current specification DMRS arrangement and the smart DMRS arrangement. When the signaling is set by RRC, transmission is performed by a DMRS transmission method (such as keeping the phase constant) for performing joint channel estimation regardless of the value. By this means, application/non-application of joint channel estimation and setting of DMRS allocation when joint channel estimation is applied can be performed without increasing RRC signaling. In addition, although the RRC signaling has been described above as an example, the present invention is not limited to RRC signaling and can also be applied to dynamic signaling by DCI. Furthermore, depending on the scheduling method, it may be changed whether the setting is performed by RRC signaling or by DCI. For example, in the case of configured grant scheduling type 1, which is a scheduling method in which resources for terminal device transmission are allocated only by RRC signaling, application of joint channel estimation is set by RRC signaling, and configured grant scheduling type 2 or dynamic scheduling, in the case of a scheduling method in which resources for terminal device transmission are allocated by DCI, application of joint channel estimation may be set by DCI. However, setting the application of joint channel estimation by DCI above may be only for dynamic scheduling. In this way, by enabling settings for performing joint channel estimation and settings for DMRS allocation, it is possible to match DMRS allocations among a plurality of terminal apparatuses. As a result, there are more opportunities to apply multi-user MIMO, so cell throughput can be increased.
 ところで、繰り返し送信は、繰り返し送信毎にデータ復号をできるため、繰り返し送信の途中で誤り判定ができるため、低遅延化を実現する上で重要な技術である。ところが繰り返し送信全体を考えると、繰り返し送信を行うよりも符号化率を下げた方が伝送特性を向上させることができる可能性がある。そこで、複数のスロットを用いて1つのTB(トランスポートブロック)を送信することが考えらえる。非特許文献3では、繰り返し送信と1つのTBで送信をダイナミックシグナリングによって切り替えることが提案されている。これにより低遅延を担保する場合は、繰り返し送信を適用し、伝送特性の改善を図るときは1TBによる一括符号化送信を行うことができ、QoSに応じた制御が可能となる。 By the way, repeated transmission is an important technique for realizing low delay because data can be decoded for each repeated transmission, and error judgment can be made during repeated transmission. However, considering the entire repeated transmission, there is a possibility that the transmission characteristics can be improved by lowering the coding rate rather than repeating the transmission. Therefore, it is conceivable to transmit one TB (transport block) using a plurality of slots. Non-Patent Document 3 proposes switching between repeated transmission and single TB transmission by dynamic signaling. As a result, repeated transmission can be applied to secure a low delay, and batch encoding transmission of 1 TB can be performed to improve transmission characteristics, making it possible to perform control according to QoS.
 1TBでの送信時に繰り返し送信と同じDMRSの配置を適用すると、割り当てリソース全体を考慮した場合、DMRSに偏りが生じているためチャネル推定精度に偏りが生じる。そこで、ダイナミックシグナリングによって複数スロットにまたがった1TBの送信を行う場合は、DMRSの配置を現在のDMRSの配置とは異なるものを適用する。これにより、少ない制御情報量で良好な伝送特性を得ることができる。 If the same DMRS arrangement as for repeated transmission is applied during transmission in 1 TB, channel estimation accuracy will be biased due to biased DMRSs when considering all allocated resources. Therefore, when transmitting 1 TB across multiple slots by dynamic signaling, a different DMRS arrangement from the current DMRS arrangement is applied. As a result, good transmission characteristics can be obtained with a small amount of control information.
 上記について図面を用いて説明を行う。図5に例を示す。図5の上部には、繰り返し送信の例を示す。図では実際の繰り返しが3回で、それぞれ8シンボル、2シンボル、6シンボルで構成される例を示している。なお、図5はPUSCHマッピングタイプBで、DMRS追加ポジションが「pos3」が設定された場合の例である。図6にリリース16までのDMRSのポジションを示す表を示す。図6より、PUSCHマッピングタイプBで、DMRS追加ポジションが「pos3」の場合、8シンボルの場合は、「l、3、6」、2シンボルの場合は、「l」、6シンボルの場合は、「l、4」である。PUSCHマッピングタイプBの場合、NRの仕様より「l=0」であることから、図5において斜線で示すポジションにDMRSシンボルが配置される。繰り返し送信ではなく、1TBを複数の繰り返し送信あるいは複数のスロット送信で割り当てられたリソースで送信する場合の例を、図5の下部に示す。図ではNRリリース16までの仕様を踏襲し、最大14シンボル毎にDMRSを決定する例を示す。割り当ては16シンボルであるため、14シンボルと2シンボルに分割される。図6より、PUSCHマッピングタイプBで、DMRS追加ポジションが「pos3」の場合、割り当てが14シンボルでは「l、3、6、9」の位置(ポジション)にDMRSシンボルが配置され、2シンボルでは「l」の位置にDMRSシンボルが配置される。結果として図5上部の繰り返し送信におけるDMRS配置よりも1TB送信のDMRS配置の方がDMRSの偏り(DMRS間が1データシンボルのみ)が少なくなる。なお図5の例では、DMRSシンボルの数が1TBの方が1つ少なくなる。図7に別例を示す。図7はPUSCHマッピングタイプBで、DMRS追加ポジションとして「pos0」が設定された場合の例である。図7の例でもDMRSの偏り(DMRS間が1データシンボルのみ)が少なくなる。このように、ダイナミックシグナリングによって、繰り返し送信と1TB送信を切り替える場合に、DMRS配置も変更する。これにより、追加のシグナリングなしで、DMRS配置を切り替えることができる。なお上記ではダイナミックシグナリングの例を示したが、ダイナミックシグナリングではなく、RRCシグナリング等の上位レイヤシグナリングでもよい。例えば、1TB送信を行うためのRRCパラメータを設定し、該1TB送信を行うためのRRCパラメータが設定された場合はDMRSの配置をスマートDMRS配置とするとしてもよい。あるいは、繰り返し送信とするか1TBとするかはRRCシグナリングで設定し、DMRS配置についてはDCIによるダイナミックシグナリングで通知するとしてもよい。あるいは、スマートDMRS配置に関するRRCパラメータ(情報エレメント)が定義され、スマートDMRS配置に関するRRCパラメータ(情報エレメント)が設定された場合には、スマートDMRS配置を適用するとしてもよい。さらに、該スマートDMRS配置に関するRRCパラメータは複数のパラメータセットから1つが設定され、そのパラメータセットの中から1つの値が指定されてもよい。パラメータセットとしては、スマートDMRS配置を適用する、連続したスロットの数が指定されてもよい。このようにシグナリングを切り分けることで、他の端末装置の状況に応じて、ダイナミックにDMRSの配置を変更することが可能となる。なお、1つのTBで送信を行う無線リソースに対してスマートDMRSを適用する例を示したがこれに限定されず、割り当てられた無線リソースをスロット境界で区切って、スマートDMRSを適用してもよい。なおスマートDMRSが適用された場合、該当するDMRSでは、それぞれのDMRSシンボルは(所定の範囲内で)同一電力、同一位相で送信される。 The above will be explained with reference to the drawings. An example is shown in FIG. The upper part of FIG. 5 shows an example of repeated transmission. The figure shows an example in which the actual repetition is three times, each consisting of 8 symbols, 2 symbols, and 6 symbols. FIG. 5 is an example of PUSCH mapping type B and the DMRS addition position is set to "pos3". FIG. 6 shows a table showing DMRS positions up to Release 16. From FIG. 6, with PUSCH mapping type B, when the DMRS addition position is "pos3", in the case of 8 symbols, "l 0 , 3, 6", in the case of 2 symbols, "l 0 ", in the case of 6 symbols is "l 0 , 4". In the case of PUSCH mapping type B, since "l 0 =0" according to the NR specification, DMRS symbols are arranged at the hatched positions in FIG. The lower part of FIG. 5 shows an example in which 1 TB is transmitted using resources allocated by multiple repeated transmissions or multiple slot transmissions instead of repeated transmissions. The figure shows an example in which the specifications up to NR release 16 are followed and the DMRS is determined every 14 symbols at maximum. Since the allocation is 16 symbols, it is divided into 14 symbols and 2 symbols. From FIG. 6, with PUSCH mapping type B, when the DMRS additional position is "pos3", DMRS symbols are arranged at positions (positions) of "l 0 , 3, 6, 9" with 14 symbols allocated, and with 2 symbols A DMRS symbol is placed at the position of 'l 0 '. As a result, the DMRS allocation for 1 TB transmission has less DMRS bias (only one data symbol between DMRSs) than the DMRS allocation for repeated transmission in the upper part of FIG. Note that in the example of FIG. 5, the number of DMRS symbols is one less for 1 TB. Another example is shown in FIG. FIG. 7 shows an example of PUSCH mapping type B, in which "pos0" is set as the DMRS additional position. In the example of FIG. 7 as well, the DMRS bias (only one data symbol between DMRSs) is reduced. In this way, when switching between repeated transmission and 1 TB transmission by dynamic signaling, the DMRS arrangement is also changed. This allows DMRS deployment to be switched without additional signaling. Although an example of dynamic signaling is shown above, higher layer signaling such as RRC signaling may be used instead of dynamic signaling. For example, RRC parameters for performing 1 TB transmission may be set, and when the RRC parameters for performing 1 TB transmission are set, DMRS allocation may be smart DMRS allocation. Alternatively, whether to repeat transmission or 1 TB may be set by RRC signaling, and DMRS allocation may be notified by dynamic signaling by DCI. Alternatively, smart DMRS deployment may be applied when RRC parameters (information elements) for smart DMRS deployment are defined and RRC parameters (information elements) for smart DMRS deployment are configured. Furthermore, one of a plurality of parameter sets may be set as the RRC parameter for the smart DMRS deployment, and one value may be designated from the parameter set. The parameter set may specify the number of consecutive slots to apply smart DMRS deployment. By separating signaling in this way, it is possible to dynamically change the arrangement of DMRSs according to the situation of other terminal devices. Although an example in which smart DMRS is applied to radio resources for transmission in one TB is shown, the present invention is not limited to this, and smart DMRS may be applied by dividing the allocated radio resources by slot boundaries. . Note that when smart DMRS is applied, each DMRS symbol is transmitted with the same power and the same phase (within a predetermined range) in the relevant DMRS.
 次に、従来のトランスポートブロックサイズの決定法について説明を行う。まず、端末装置の制御部は、再送要求による再送ではない場合、スロット内のリソースエレメント数(NRE)を以下のように決定する。初めに、PUSCH用に割り当てられた1つの物理リソースブロック(PRB)内のリソースエレメント(RE)の数(N’RE)をN’RE=NSC×Nsymb-NDMRS-Nohに基づいて決定する。ここで、NSCは1つの物理リソースブロックにおける周波数領域のサブキャリア数であり、12、NsymbはPUSCHの割り当てにおけるシンボル数、NDMRSはRRCシグナリングあるいはダイナミックシグナリングによって示されるPRB毎のDMRSのためのREの数、NohはRRCシグナリングによって設定されるオーバヘッドである。もしRRCシグナリングによってNohが設定されない場合、Nohは0と仮定される。PUSCHリピティションタイプBの場合、NDMRSはセグメンテーションのないLシンボルの長さ(デュレーション)の名目上の繰り返しを仮定して決定される。次に、端末装置はPUSCHのために割り当てられるREの総数(NRE)をNRE=min(156、N’RE)×nPRBによって決定する。ここで、nPRBは端末装置に割り当てられるPRBの総数である。得られたNREを用いて、量子化なし中間変数Ninfoを算出する。NinfoはNinfo=NRE×R×Q×νで与えられる。ここでRは目標符号化率、Qは変調オーダーであり、RRCシグナリングあるいはDCIによって通知されるMCSインデックスとMCSテーブルから算出される。νは送信レイヤ数である。量子化なし中間変数Ninfoが3284以下の場合、量子化中間変数N’infoをN’info=max(24、2n×floor(Ninfo/2))に基づいて決定する。ここでn=max(3、floor(log(Ninfo))-6)である。図11を用い、N’infoを超えない最も近い値をTBSとして決定する。量子化なし中間変数Ninfo>3284の場合についてはここでは説明を省略するが、図11のような表を用いずにN’infoを式に基づいて算出する仕様がNRにて採用されている。 Next, a conventional transport block size determination method will be described. First, the control unit of the terminal device determines the number of resource elements (N RE ) in the slot as follows when the retransmission is not due to a retransmission request. First, the number of resource elements (REs) in one physical resource block (PRB) allocated for PUSCH (N' RE ) based on N' RE = N SC × N symb - N DMRS - N oh decide. where N SC is the number of frequency domain subcarriers in one physical resource block, 12, N symb is the number of symbols in PUSCH allocation, and N DMRS is for DMRS per PRB indicated by RRC signaling or dynamic signaling. , N oh is the overhead set by RRC signaling. If Noh is not configured by RRC signaling, Noh is assumed to be zero. For PUSCH repetition type B, N DMRS is determined assuming a nominal repetition of length (duration) of L symbols without segmentation. Next, the terminal determines the total number of REs allocated for PUSCH (N RE ) by N RE =min(156, N′ RE )×n PRB . Here, n PRB is the total number of PRBs allocated to the terminal device. Using the obtained N RE , an intermediate variable N info without quantization is calculated. N info is given by N info =N RE ×R×Q m ×ν. Here, R is the target coding rate and Qm is the modulation order, which are calculated from the MCS index and the MCS table notified by RRC signaling or DCI. ν is the number of transmission layers. If the non-quantized intermediate variable N info is less than or equal to 3284, determine the quantized intermediate variable N' info based on N' info =max(24, 2n×floor(N info /2 n )). where n=max(3, floor(log 2 (N info ))−6). Using FIG. 11, determine the closest value that does not exceed N' info as TBS. Description of the case of non-quantized intermediate variables N info > 3284 is omitted here, but specifications for calculating N' info based on a formula without using a table such as the one shown in FIG. 11 are adopted in NR. .
 次に本実施形態におけるトランスポートブロックサイズの決定法について説明を行う。繰り返し送信を行う場合、初回の繰り返しに対して従来のTBSの決定法を適用する。基地局からの上位層シグナリングおよび/あるいはダイナミックシグナリングによって、一括したTB送信を行う場合、TBSの算出に用いるNREを変更することでNinfoを変更する。1つの方法としては、割り当て確保のための名目上の繰り返し数Xを用いて、N’RE=X×(NSC×Nsymb-NDMRS)-Nohに基づいて決定する方法がある。なお、N’RE=X×(NSC×Nsymb-NDMRS-Noh)とし、NohもX倍するとしてもよい。なおXは名目上の繰り返し数ではなく実際の繰り返し数であってもよい。別の方法として、N’RE=NSC×N’symb-NDMRS-Nohとして、N’symbをNsymbとは異なるものとして定義する方法がある。例えば、繰り返しのためのシグナリングがあり、さらに一括TBのための設定があった場合、1つのPUSCH送信に用いるシンボル数を繰り返し全体で割り当てられるのシンボル数をN’symbとする。例えば、図5においてNsymbは実際の繰り返し1に含まれるシンボル数である8であるが、一括TBの場合、N’symb=16となる。なお、これによりN’symbをNsymbとは異なるものとして定義することができる。 Next, a method for determining the transport block size in this embodiment will be described. For repeated transmissions, the conventional TBS determination method is applied to the first iteration. When collective TB transmission is performed by higher layer signaling and/or dynamic signaling from the base station, N info is changed by changing the N RE used for TBS calculation. One method is to use a nominal iteration number X for allocation reservation, and determine based on N′ RE =X×(N SC ×N symb −N DMRS )−N oh . Note that N′ RE =X×(N SC ×N symb −N DMRS −N oh ), and N oh may also be multiplied by X. Note that X may be the actual number of repetitions instead of the nominal number of repetitions. Another way is to define N' symb as different from N symb as N' RE =N SC ×N' symb -N DMRS -N oh . For example, when there is signaling for repetition and there is also a setting for collective TB, the number of symbols used for one PUSCH transmission is set to N′ symb , which is the number of symbols allocated for the entire repetition. For example, in FIG. 5, N symb is 8, which is the actual number of symbols included in repetition 1, but in the case of lumped TB, N′ symb =16. Note that this allows N' symb to be defined as different from N symb .
 NDMRSも設定する必要があるが、繰り返し全体で割り当てられるのシンボル数を考慮して決定される必要がある。図5においてNDMRS=5となる。ところがNDMRSは、1スロットを基準として設定される値であり、現在の仕様では、14OFDMシンボルを超えるシンボル数が想定されていない。そこで、14シンボルを超える割り当てがあった場合、14シンボル毎に区切り、NDMRSが設定されるとしてもよい。この時、同様にN’symbは14以下の値としてもよいし、N’symbはDMRS数NDMRSとは独立して算出するとしてもよい。この場合、NDMRS=4となる。なお、基準となる値は14に固定ではなく、RRCシグナリング等で設定されるとしてもよい。 N DMRS should also be configured, but should be determined considering the number of symbols to be allocated across repetitions. N DMRS =5 in FIG. However, N DMRS is a value set on the basis of one slot, and the current specifications do not assume the number of symbols exceeding 14 OFDM symbols. Therefore, when there are allocations exceeding 14 symbols, N DMRSs may be set by separating every 14 symbols. At this time, similarly, N'symb may be a value of 14 or less, or N'symb may be calculated independently of the DMRS number N DMRS . In this case, N DMRS =4. Note that the reference value is not fixed at 14, and may be set by RRC signaling or the like.
 無線送信部2070は、多重された信号をIFFT(Inverse Fast Fourier Transform)して、OFDMシンボルを生成する。無線送信部2070は、前記OFDMシンボルにCPを付加し、ベースバンドのディジタル信号を生成する。さらに、無線送信部2070は、前記ベースバンドのディジタル信号をアナログ信号に変換し、余分な周波数成分を除去し、アップコンバートにより搬送周波数に変換し、電力増幅し、送信アンテナ208を介して基地局装置10に送信する。 The radio transmission unit 2070 performs IFFT (Inverse Fast Fourier Transform) on the multiplexed signal to generate OFDM symbols. Radio transmission section 2070 adds a CP to the OFDM symbol to generate a baseband digital signal. Further, the radio transmission section 2070 converts the baseband digital signal to an analog signal, removes unnecessary frequency components, converts it to a carrier frequency by up-conversion, amplifies the power, and transmits the signal to the base station via the transmission antenna 208. Send to device 10 .
 受信部212は、無線受信部(無線受信ステップ)2120、多重分離部(多重分離ステップ)2122、伝搬路推定部(伝搬路推定ステップ)2144、等化部(等化ステップ)2126、復調部(復調ステップ)2128、復号部(復号ステップ)2130を含んで構成される。 The receiving unit 212 includes a radio receiving unit (radio receiving step) 2120, a demultiplexing unit (demultiplexing step) 2122, a channel estimating unit (channel estimating step) 2144, an equalizing unit (equalizing step) 2126, a demodulating unit ( demodulation step) 2128 and a decoding unit (decoding step) 2130 .
 無線受信部2120は、受信アンテナ210を介して受信した下りリンク信号を、ダウンコンバートによりベースバンド信号に変換し、不要な周波数成分を除去し、信号レベルが適切に維持されるように増幅レベルを制御し、受信した信号の同相成分および直交成分に基づいて、直交復調し、直交復調されたアナログ信号をディジタル信号に変換する。無線受信部2120は、変換したディジタル信号からCPに相当する部分を除去し、CPを除去した信号に対してFFTを行い、周波数領域の信号を抽出する。 Radio receiving section 2120 down-converts the downlink signal received via receiving antenna 210 into a baseband signal, removes unnecessary frequency components, and adjusts the amplification level so that the signal level is appropriately maintained. Based on the in-phase and quadrature components of the received signal, it performs quadrature demodulation, and converts the quadrature-demodulated analog signal to a digital signal. Radio receiving section 2120 removes the portion corresponding to the CP from the converted digital signal, performs FFT on the CP-removed signal, and extracts the signal in the frequency domain.
 多重分離部2122は、前記抽出した周波数領域の信号を下りリンク参照信号、PDCCH、PDSCH、PBCHに分離する。伝搬路推定部2124は、下りリンク参照信号(DM-RSなど)を用いて、周波数応答(または遅延プロファイル)を推定する。復調用に伝搬路推定された周波数応答結果は、等化部1126へ入力される。伝搬路推定部2124は、下りリンク参照信号(CSI-RSなど)を用いて、上りリンクのチャネル状況の測定(RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)、RSSI(Received Signal Strength Indicator)、SINR(Signal to Interference plus Noise power Ratio)の測定)を行う。下りリンクのチャネル状況の測定は、PUSCHのためのMCSの決定などに用いられる。下りリンクのチャネル状況の測定結果は、CQIインデックスの決定などに用いられる。 The demultiplexing unit 2122 demultiplexes the extracted frequency-domain signals into downlink reference signals, PDCCH, PDSCH, and PBCH. A channel estimator 2124 estimates a frequency response (or delay profile) using a downlink reference signal (DM-RS, etc.). A frequency response result obtained by channel estimation for demodulation is input to equalization section 1126 . The propagation path estimation unit 2124 uses a downlink reference signal (such as CSI-RS) to measure uplink channel conditions (RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality), RSSI (Received Signal Strength Indicator) and SINR (Signal to Interference plus Noise power Ratio) measurement). Measurement of downlink channel conditions is used for determination of MCS for PUSCH and the like. Measurement results of downlink channel conditions are used for determination of CQI index and the like.
 等化部2126は、伝搬路推定部2124より入力された周波数応答よりMMSE規範に基づく等化重みを生成する。等化部2126は、多重分離部2122からの入力信号(PUCCH、PDSCH、PBCHなど)に該等化重みを乗算する。復調部2128は、予め決められている/制御部204から指示される変調オーダーの情報に基づき、復調処理を行う。 The equalization section 2126 generates equalization weights based on the MMSE criterion from the frequency response input from the channel estimation section 2124 . Equalization section 2126 multiplies the input signal (PUCCH, PDSCH, PBCH, etc.) from demultiplexing section 2122 by the equalization weight. The demodulation section 2128 performs demodulation processing based on information on the modulation order determined in advance/instructed by the control section 204 .
 復号部2130は、予め決められている符号化率/制御部204から指示される符号化率の情報に基づいて、前記復調部2128の出力信号に対して復号処理を行う。復号部2130は、復号後のデータ(DL-SCHなど)を上位層処理部202に入力する。 The decoding unit 2130 performs decoding processing on the output signal of the demodulation unit 2128 based on the coding rate information instructed by the predetermined coding rate/control unit 204 . The decoding unit 2130 inputs the decoded data (DL-SCH etc.) to the upper layer processing unit 202 .
(第2の実施形態)
 繰り返し送信では、基準となる繰り返し単位(OFDMシンボル数)Lと繰り返し数Kが、基地局装置から端末装置にRRCシグナリングあるいはDCIによって通知される。ところが、上りリンク送信を行うことを考えた場合、L×Kのシンボル数が連続で上りリンク用に確保されているとは限らない。つまりTDD(Time Division Multiplexing)の場合、下りリンク(DL)、ガードシンボルの割り当てが必要となり連続的に上りリンクリソースを確保できず、割り当ての一部(またはすべて)が使用できない可能性がある。リリース16までの仕様では、図8に示すように、DL割り当て等による無効なシンボルも含めて、名目上の繰り返しを規定し、無効なシンボルを考慮した実際の繰り返しを定義する仕様になっている。ここで、繰り返し単位Lとして2以上の値が設定されている場合において、図に示すように名目上の繰り返しに基づく実際の繰り返し送信が1シンボルしか確保できない場合、実際の繰り返し送信は行われず、送信がスキップ(省略)される。ただし、L=1の時はこの限りではない。これは、ジョイントチャネル推定が適用されない場合、DMRSシンボルのみを送信する繰り返しは、意味がないためと考えられる。一方、ジョイントチャネル推定を行う場合、DMRSシンボルのみを送信する繰り返しも前後の繰り返しのデータ復調のために使用することができる。そこで非特許文献2では、図9のように、L=2以上で実際の繰り返し送信が1シンボルしか確保できない場合においても伝送を省略せず、DMRSを送信し、ジョイントチャネル推定に利用することが提案されている。
(Second embodiment)
In repeated transmission, a reference repetition unit (number of OFDM symbols) L and repetition number K are notified from the base station apparatus to the terminal apparatus by RRC signaling or DCI. However, when considering uplink transmission, the number of symbols of L×K is not necessarily continuously reserved for uplink use. That is, in the case of TDD (Time Division Multiplexing), downlink (DL) and guard symbol allocation are required, and uplink resources cannot be secured continuously, and there is a possibility that part (or all) of the allocation cannot be used. As shown in Figure 8, the specifications up to Release 16 define nominal repetitions, including invalid symbols due to DL assignments, etc., and define actual repetitions in consideration of invalid symbols. . Here, when a value of 2 or more is set as the repetition unit L, when only one symbol can be secured for actual repetition transmission based on nominal repetition as shown in the figure, actual repetition transmission is not performed, Transmission is skipped (omitted). However, this is not the case when L=1. This may be because the repetition of transmitting only DMRS symbols does not make sense if joint channel estimation is not applied. On the other hand, when joint channel estimation is performed, iterations that transmit only DMRS symbols can also be used for data demodulation of previous and subsequent iterations. Therefore, in Non-Patent Document 2, as shown in FIG. 9, even when L=2 or more and only one symbol can actually be secured for repeated transmission, transmission is not omitted, and DMRS is transmitted and used for joint channel estimation. Proposed.
 しかしながら、1(シングル)シンボルからなる繰り返し送信においてDMRSのみを送信する場合、PUSCHマッピングタイプB(リピティションタイプB)の場合、次の繰り返しの先頭もDMRSとなることから、DMRSが過剰となる。そこで、図10に示すように、所定の条件でシングルシンボルを用いてデータ伝送を行うことについて以下で説明を行う。 However, when only DMRS is transmitted in repeated transmissions consisting of 1 (single) symbol, in the case of PUSCH mapping type B (repetition type B), the beginning of the next repetition is also DMRS, resulting in excessive DMRS. Therefore, as shown in FIG. 10, data transmission using a single symbol under predetermined conditions will be described below.
 例えば、RRCシグナリングでジョイントチャネル推定に関する設定が行われ、L=2以上で実際の繰り返しにおけるシンボル数が1となった場合、該1シンボルはDMRSではなくデータシンボルを送信することで、過剰なDMRSを避け、伝送特性を改善できる。なお、DMRSとデータ両方を含むOFDMシンボルで、1OFDMシンボルが構成されてもよい。上記では、PUSCHマッピングタイプB(かつリピティションタイプB)の場合について説明を行ったが、PUSCHマッピングタイプAの場合に適用してもよい。PUSCHマッピングタイプAの場合、送信の先頭シンボルがDMRSとは限らないため、実際の繰り返しにおけるシンボル数が1となった場合、データシンボルを送信することになる。なお、図10では繰り返しを行う場合の例を示しているが、RRCシグナリングおよび/またはダイナミックシグナリングによって、実際の繰り返しではなく1つのPUSCHで1つのトランスポートブロックを送信してもよい。 For example, if the joint channel estimation is configured in the RRC signaling, and the number of symbols in the actual repetition is 1 with L=2 or more, the 1 symbol is a data symbol instead of a DMRS, resulting in excess DMRS. can be avoided and transmission characteristics can be improved. Note that one OFDM symbol may be composed of OFDM symbols including both DMRS and data. Although the case of PUSCH mapping type B (and repetition type B) has been described above, it may be applied to the case of PUSCH mapping type A as well. In the case of PUSCH mapping type A, since the head symbol of transmission is not always DMRS, when the number of symbols in actual repetition is 1, data symbols are transmitted. Although FIG. 10 shows an example of repetition, RRC signaling and/or dynamic signaling may be used to transmit one transport block on one PUSCH instead of actual repetition.
 なお、上述したように、繰り返し毎にリダンダンシーバージョンを変更するが、1(シングル)シンボルからなる繰り返し送信においてDMRSを送信する場合、実際の繰り返しとみなさず、符号化ビット系列におけるパンクチャパターンを示すリダンダーシーバージョンの変更のためカウントの対象とはしないとしてもよい。ただし、DMRSとデータ信号両方を含むOFDMシンボルを送信する場合は、リダンダーシーバージョンの変更のためカウントの対象とするとしてもよい。また、1(シングル)シンボルからなる繰り返し送信において、その繰り返しが最後の送信である場合、もしくは次のOFDMシンボルは周波数ホッピングによって異なる周波数(サブキャリア)での送信が適用される場合、DMRSの送信ではなく無送信、データ送信、あるいはDMRSとデータからなるOFDMの送信のいずれかを行ってもよい。なお、周波数ホッピングに関する周波数オフセットが0にされており、実際には同一周波数で送信される場合でも、周波数ホッピングがRRCシグナリング等で設定されていれば、DMRSの送信ではなく無送信、データ送信、あるいはDMRSとデータからなるOFDMの送信のいずれかを行ってもよい。 As described above, the redundancy version is changed for each repetition, but when DMRS is transmitted in repeated transmission of one (single) symbol, it is not regarded as an actual repetition, and a redundancy indicating a puncture pattern in an encoded bit sequence is used. It may not be counted because it is a Darcy version change. However, when an OFDM symbol including both DMRS and data signals is transmitted, it may be counted for changing the redundancy version. Also, in repeated transmission consisting of 1 (single) symbol, if the repetition is the last transmission, or if the next OFDM symbol is transmitted on a different frequency (subcarrier) by frequency hopping, DMRS transmission Instead, either no transmission, data transmission, or OFDM transmission consisting of DMRS and data may be performed. In addition, even if the frequency offset related to frequency hopping is set to 0 and transmission is actually performed on the same frequency, if frequency hopping is set by RRC signaling or the like, no transmission, data transmission, Alternatively, either OFDM transmission consisting of DMRS and data may be performed.
 本発明に関わる装置で動作するプログラムは、本発明に関わる上述した実施形態の機能を実現するように、Central Processing Unit(CPU)等を制御してコンピュータを機能させるプログラムであっても良い。プログラムあるいはプログラムによって取り扱われる情報は、処理時に一時的にRandom Access Memory(RAM)などの揮発性メモリに読み込まれ、あるいはフラッシュメモリなどの不揮発性メモリやHard Disk Drive(HDD)に格納され、必要に応じてCPUによって読み出し、修正・書き込みが行なわれる。 The program that runs on the device related to the present invention may be a program that controls the Central Processing Unit (CPU) and the like to make the computer function so as to realize the functions of the above-described embodiments related to the present invention. The program or information handled by the program is temporarily read into volatile memory such as Random Access Memory (RAM) during processing, or stored in non-volatile memory such as flash memory or Hard Disk Drive (HDD), The CPU reads, modifies, and writes accordingly.
 なお、上述した実施形態における装置の一部、をコンピュータで実現するようにしても良い。その場合、実施形態の機能を実現するためのプログラムをコンピュータが読み取り可能な記録媒体に記録しても良い。この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することによって実現しても良い。ここでいう「コンピュータシステム」とは、装置に内蔵されたコンピュータシステムであって、オペレーティングシステムや周辺機器等のハードウェアを含むものとする。また、「コンピュータが読み取り可能な記録媒体」とは、半導体記録媒体、光記録媒体、磁気記録媒体等のいずれであっても良い。 It should be noted that part of the devices in the above-described embodiments may be realized by a computer. In that case, the program for realizing the functions of the embodiment may be recorded in a computer-readable recording medium. It may be realized by causing a computer system to read and execute the program recorded on this recording medium. The "computer system" here is a computer system built in the device, and includes hardware such as an operating system and peripheral devices. The "computer-readable recording medium" may be any of semiconductor recording media, optical recording media, magnetic recording media, and the like.
 さらに「コンピュータが読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムを送信する場合の通信線のように、短時間、動的にプログラムを保持するもの、その場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリのように、一定時間プログラムを保持しているものも含んでも良い。また上記プログラムは、前述した機能の一部を実現するためのものであっても良く、さらに前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるものであっても良い。 Furthermore, "computer-readable recording medium" means a medium that dynamically stores programs for a short period of time, such as a communication line for transmitting a program via a network such as the Internet or a communication line such as a telephone line. , such as a volatile memory inside a computer system that serves as a server or a client in that case, may also include something that holds the program for a certain period of time. Further, the program may be for realizing part of the functions described above, or may be capable of realizing the functions described above in combination with a program already recorded in the computer system.
 また、上述した実施形態に用いた装置の各機能ブロック、または諸特徴は、電気回路、すなわち典型的には集積回路あるいは複数の集積回路で実装または実行され得る。本明細書で述べられた機能を実行するように設計された電気回路は、汎用用途プロセッサ、デジタルシグナルプロセッサ(DSP)、特定用途向け集積回路(ASIC)、フィールドプログラマブルゲートアレイ(FPGA)、またはその他のプログラマブル論理デバイス、ディスクリートゲートまたはトランジスタロジック、ディスクリートハードウェア部品、またはこれらを組み合わせたものを含んでよい。汎用用途プロセッサは、マイクロプロセッサであってもよいし、従来型のプロセッサ、コントローラ、マイクロコントローラ、またはステートマシンであっても良い。前述した電気回路は、ディジタル回路で構成されていてもよいし、アナログ回路で構成されていてもよい。また、半導体技術の進歩により現在の集積回路に代替する集積回路化の技術が出現した場合、当該技術による集積回路を用いることも可能である。 Also, each functional block or feature of the apparatus used in the embodiments described above may be implemented or performed in an electrical circuit, typically an integrated circuit or multiple integrated circuits. An electrical circuit designed to perform the functions described herein may be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), field programmable gate array (FPGA), or other programmable logic devices, discrete gate or transistor logic, discrete hardware components, or combinations thereof. A general-purpose processor may be a microprocessor, or any conventional processor, controller, microcontroller, or state machine. The electric circuit described above may be composed of a digital circuit, or may be composed of an analog circuit. In addition, when an integrated circuit technology that replaces current integrated circuits emerges due to advances in semiconductor technology, it is also possible to use integrated circuits based on this technology.
 なお、本願発明は上述の実施形態に限定されるものではない。実施形態では、装置の一例を記載したが、本願発明は、これに限定されるものではなく、屋内外に設置される据え置き型、または非可動型の電子機器、たとえば、AV機器、キッチン機器、掃除・洗濯機器、空調機器、オフィス機器、自動販売機、その他生活機器などの端末装置もしくは通信装置に適用出来る。 It should be noted that the present invention is not limited to the above-described embodiments. In the embodiments, an example of the device was described, but the present invention is not limited to this, and stationary or non-movable electronic equipment installed indoors and outdoors, such as AV equipment, kitchen equipment, It can be applied to terminal devices or communication devices such as cleaning/washing equipment, air conditioning equipment, office equipment, vending machines, and other household equipment.
 以上、この発明の実施形態に関して図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計変更等も含まれる。また、本発明は、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、上記各実施形態に記載された要素であり、同様の効果を奏する要素同士を置換した構成も含まれる。 Although the embodiment of this invention has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and design changes etc. within the scope of the gist of this invention are also included. In addition, the present invention can be modified in various ways within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments are also included in the technical scope of the present invention. be Moreover, it is an element described in each said embodiment, and the structure which replaced the element with which the same effect is produced is also included.
 本発明は、基地局装置、端末装置および通信方法に用いて好適である。

 
INDUSTRIAL APPLICABILITY The present invention is suitable for use in base station apparatuses, terminal apparatuses, and communication methods.

Claims (6)

  1.  基地局装置宛に送信を行う端末装置であって、
    前記基地局装置から、繰り返し単位と繰り返し数の2つのパラメータを含む上位レイヤシグナリングを受信する上位層処理部と、
    前記上位レイヤシグナリングと、下りリンク制御情報に含まれる所定のフィールドを用いて、前記2つのパラメータを用いた繰り返し送信を行う第1の送信と、前記2つのパラメータによって割り当てられた無線リソースを用いた1つのトランスポートブロックの送信を行う第2の送信を切り替える制御部と、
    前記下りリンク制御情報に含まれる所定のフィールドによって、前記第1の送信に関連したDMRS配置と前記第2の送信に関連したDMRS配置とを切り替える多重部、
    とを備える端末装置。
    A terminal device that transmits to a base station device,
    an upper layer processing unit that receives higher layer signaling including two parameters of a repetition unit and a repetition number from the base station apparatus;
    Using the higher layer signaling and a predetermined field included in downlink control information, the first transmission that performs repeated transmission using the two parameters, and the radio resources allocated by the two parameters a control unit that switches a second transmission that transmits one transport block;
    A multiplexing unit that switches between the DMRS allocation related to the first transmission and the DMRS allocation related to the second transmission according to a predetermined field included in the downlink control information;
    and a terminal device.
  2. 前記多重部は、前記第1の送信に関連したDMRS配置の際は、前記繰り返し毎に少なくとも1つの参照信号を配置し、前記第2の送信に関連したDMRS配置の際は、前記2つのパラメータによって割り当てられた無線リソースに少なくとも1つの参照信号を配置する、請求項1記載の端末装置。 The multiplexing unit configures at least one reference signal for each repetition during DMRS configuration associated with the first transmission, and the two parameters during DMRS configuration associated with the second transmission. 2. The terminal device according to claim 1, which arranges at least one reference signal in a radio resource allocated by .
  3. 前記多重部は、前記第2の送信に関連したDMRS配置を行う場合、前記2つのパラメータによって割り当てられた無線リソースを14シンボル毎に分割し、前記分割されたシンボルの所定の位置にDMRSを配置する、請求項1記載の端末装置。 When performing DMRS allocation related to the second transmission, the multiplexing unit divides the radio resources allocated by the two parameters into 14 symbols, and arranges DMRSs at predetermined positions of the divided symbols. The terminal device according to claim 1, wherein
  4.  端末装置が送信する信号を受信する基地局装置であって、
    前記端末装置に対する、繰り返し単位と繰り返し数の2つのパラメータを含む上位レイヤシグナリングを生成する上位層処理部と、
    下りリンク制御情報に含まれる所定のフィールドを用いて、前記2つのパラメータを用いた繰り返し送信を行う第1の送信と、前記2つのパラメータによって割り当てられた無線リソースを用いた1つのトランスポートブロックの送信を行う第2の送信の切り替えと、前記第1の送信に関連したDMRS配置と前記第2の送信に関連したDMRS配置との切り替えを通知する下りリンク制御信号部、
    とを備える基地局装置。
    A base station device that receives a signal transmitted by a terminal device,
    a higher layer processing unit that generates higher layer signaling including two parameters of a repetition unit and a repetition number for the terminal device;
    Using a predetermined field included in the downlink control information, a first transmission that performs repeated transmission using the two parameters, and one transport block using the radio resources allocated by the two parameters a downlink control signal unit for notifying switching of the second transmission to be transmitted and switching between the DMRS allocation related to the first transmission and the DMRS allocation related to the second transmission;
    and a base station device.
  5. 前記下りリンク制御信号部は、前記第1の送信に関連したDMRS配置の際は、前記繰り返し毎に少なくとも1つの参照信号を配置し、前記第2の送信に関連したDMRS配置の際は、前記2つのパラメータによって割り当てられた無線リソースに少なくとも1つの参照信号を配置することを通知する、請求項4記載の基地局装置。 The downlink control signal unit arranges at least one reference signal for each repetition during DMRS allocation related to the first transmission, and arranges at least one reference signal during DMRS allocation related to the second transmission. 5. The base station apparatus according to claim 4, which notifies that at least one reference signal is allocated to radio resources allocated by two parameters.
  6. 前記下りリンク制御信号部は、前記第2の送信に関連したDMRS配置を行う場合、前記2つのパラメータによって割り当てられた無線リソースを14シンボル毎に分割し、前記分割されたシンボルの所定の位置にDMRSを配置する、請求項4記載の基地局装置。 When performing the DMRS arrangement related to the second transmission, the downlink control signal unit divides the radio resources allocated by the two parameters into 14 symbols, and places the divided symbols at predetermined positions. 5. The base station apparatus according to claim 4, wherein DMRS is arranged.
PCT/JP2022/008703 2021-03-04 2022-03-02 Terminal device and base station device WO2022186230A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023503879A JPWO2022186230A1 (en) 2021-03-04 2022-03-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-034379 2021-03-04
JP2021034379 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022186230A1 true WO2022186230A1 (en) 2022-09-09

Family

ID=83154478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008703 WO2022186230A1 (en) 2021-03-04 2022-03-02 Terminal device and base station device

Country Status (2)

Country Link
JP (1) JPWO2022186230A1 (en)
WO (1) WO2022186230A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220312442A1 (en) * 2021-03-23 2022-09-29 Qualcomm Incorporated Uplink configured grant transmission repetition techniques in wireless communications

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "TB Processing over Multi-Slot PUSCH", 3GPP DRAFT; R1-2101521, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971682 *
NEC: "Discussion on TB processing over multi-slot PUSCH", 3GPP DRAFT; R1-2100943, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 19 January 2021 (2021-01-19), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971282 *
NTT DOCOMO, INC.: "Joint channel estimation for PUSCH", 3GPP DRAFT; R1-2101643, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 18 January 2021 (2021-01-18), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051971798 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220312442A1 (en) * 2021-03-23 2022-09-29 Qualcomm Incorporated Uplink configured grant transmission repetition techniques in wireless communications
US11968662B2 (en) * 2021-03-23 2024-04-23 Qualcomm Incorporated Uplink configured grant transmission repetition techniques in wireless communications
US20240349276A1 (en) * 2021-03-23 2024-10-17 Qualcomm Incorporated Uplink configured grant transmission repetition techniques in wireless communications

Also Published As

Publication number Publication date
JPWO2022186230A1 (en) 2022-09-09

Similar Documents

Publication Publication Date Title
JP6723388B2 (en) Base station device, terminal device and communication method thereof
JP6926043B2 (en) Terminal equipment, base station equipment and their communication methods
WO2019216410A1 (en) Terminal device and base station device
WO2020138004A1 (en) Terminal device and base station device
CN111316729B (en) Terminal device and base station device
WO2019131021A1 (en) Base station device, terminal device and communication method therefor
CN110754113A (en) Base station device, terminal device, and communication method therefor
WO2020090646A1 (en) Terminal device and base station device
WO2019123867A1 (en) Base station device, terminal device and communication method thereof
WO2020138005A1 (en) Terminal device and base station device
WO2022186230A1 (en) Terminal device and base station device
WO2020090645A1 (en) Terminal device and base station device
WO2022080391A1 (en) Terminal device, and base station device
WO2022080390A1 (en) Terminal device, and base station device
WO2022030598A1 (en) Terminal device and base station device
WO2023026673A1 (en) Terminal device, and base station device
CN112997569B (en) Terminal device and wireless communication method
WO2019194271A1 (en) Terminal device
JP2019033415A (en) Base station device, terminal device and communication method for the same
WO2019156084A1 (en) Terminal device and base station device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763284

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023503879

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763284

Country of ref document: EP

Kind code of ref document: A1