Nothing Special   »   [go: up one dir, main page]

WO2022181875A1 - Water management apparatus in hydrogen production system using water electrolysis - Google Patents

Water management apparatus in hydrogen production system using water electrolysis Download PDF

Info

Publication number
WO2022181875A1
WO2022181875A1 PCT/KR2021/003933 KR2021003933W WO2022181875A1 WO 2022181875 A1 WO2022181875 A1 WO 2022181875A1 KR 2021003933 W KR2021003933 W KR 2021003933W WO 2022181875 A1 WO2022181875 A1 WO 2022181875A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
electrolysis
hydrogen production
electrochemical
production system
Prior art date
Application number
PCT/KR2021/003933
Other languages
French (fr)
Korean (ko)
Inventor
문상봉
문창환
최윤기
신희선
Original Assignee
(주)엘켐텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엘켐텍 filed Critical (주)엘켐텍
Publication of WO2022181875A1 publication Critical patent/WO2022181875A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen production system using water electrolysis (hereinafter, water electrolysis), and more particularly, is disposed in the water circulation line of the hydrogen production system to secure the durability of the water electrolysis stack (electrochemical reactor). It relates to a device that manages water by removing radicals and metal ions, which are impurities generated in the electrolysis process and circulation process.
  • 1 to 3 show the basic principle of a typical electrochemical cell (electrochemical reactor) for obtaining hydrogen by electrolysis of water, a unit electrochemical cell, and a stack structure for electrochemistry.
  • FIG. 1 is a conceptual diagram of a membrane electrode assembly 100 constituting a part of a typical electrochemical cell that produces hydrogen gas and oxygen gas by electrochemically decomposing water.
  • the membrane electrode assembly 100 is the core of the electrochemical reaction. is a component
  • the electrochemical cell for electrolysis that electrolyzes water (H 2 0) to produce oxygen gas (O 2 ) and hydrogen gas (H 2 ) is a first electrochemical reaction layer 104, a second electrochemical reaction layer ( 108 ), a film 106 , a first diffusion layer 102 , and a second diffusion layer 110 .
  • the first electrochemical reaction layer 104 is composed of the first electrochemical catalyst 112 and the first carrier 114
  • the second electrochemical reaction layer 108 is the second electrochemical catalyst 116 and and a second carrier 118 .
  • the first diffusion layer 102 and the second diffusion layer 110 assist in transport of electrons and reactants or products to (or to) the first and second electrochemical catalysts 112 and 116 .
  • the first and second electrochemical catalysts 112 and 116 are the most important materials for electrolysis or for making electrical energy, and the first and second carriers 114 and 118 are the first and second electrochemical catalysts 112 and 118. 116) serves as a support and provides a path for electrons to move.
  • the first and second electrochemical catalysts 112 and 116 are mixed with the first and second carriers 114 and 118, a binder and a solvent to form a slurry or paste.
  • the first and second electrochemical reaction layers 104 and 108 are formed by coating on the film 106 or on the first and second diffusion layers 102 and 110 .
  • the "electrochemical reaction layer 104, 108-membrane 106" or “electrochemical reaction layer 104, 108-membrane 106-diffusion layer 102, 110" made in this way is applied to the membrane electrode assembly ( 100) (Membrane Electrode Assembly, hereinafter referred to as "MEA").
  • MEA Membrane Electrode Assembly
  • the gap between the first electrochemical reaction layer 104 and the second electrochemical reaction layer 108 formed in the MEA 100 has a thickness value of a physical film, and the first electrochemical reaction layer 104 and the second electrochemical reaction layer 104 Since bubbles do not exist in the reaction layer 108 , it is possible to operate at a low voltage and a high current.
  • the conductivity of the electrolyte is not used as in the alkaline electrochemical cell, water as a raw material can be used with high purity, and there is an advantage in that high purity hydrogen and oxygen can be obtained.
  • a process of electrolyzing water using the configuration shown in FIG. 1 will be described as follows.
  • the place where the oxidation reaction occurs is the first electrochemical reaction layer 104
  • the place where the reduction reaction occurs is the second electrochemical reaction layer 108
  • the oxidation reaction and the reduction reaction occur simultaneously.
  • oxygen gas (O 2 ) flows out of the electrochemical cell (electrolysis cell) by diffusion, and hydrogen ions (H + ) pass through the membrane 106 by an electric field and the second electrochemical catalyst 116 ) (reduction catalyst, negative electrode active material, also referred to as a hydrogen gas generating electrode), and the electrons (e - ) generated by the reaction are transferred from the first electrochemical catalyst 112 to the first diffusion layer 102, an external circuit (not shown). city) through the second diffusion layer 110 and the second electrochemical catalyst 116 .
  • FIG. 2 is a structural diagram of a typical electrochemical cell for electrolyzing water with the MEA of FIG. 1 .
  • the electrochemical cell 200 is a first end plate 202 (End Plate), a first insulating plate 204, a first current supply plate 206, a first electrochemical reaction chamber frame 208, the first electrochemical reaction chamber 210, the MEA (100 in FIG. 1), the second electrochemical reaction chamber 212, the second electrochemical reaction chamber frame 214, the second current supply plate 216 ), a second insulating plate 218 and a second end plate 220, and there is a DC power supply as a power converter 224 for supplying current to the electrochemical cell.
  • a power converter 224 for supplying current to the electrochemical cell.
  • the first end plate 202 and the second end plate 220 provide bolt/nut fastening holes (not shown) for assembling a unit electrochemical cell, and passages of reactants and products (not shown), and the first insulating plate 204 and the second insulating plate 218 are electrically connected between the first end plate 202 and the first current supply plate 206 and between the second end plate 220 and the second current supply plate 216, respectively. Insulating function, the first current supply plate 206 and the second current supply plate 216 are connected to the power conversion device 224 serves to supply the required current to the electrochemical cell (200).
  • the first electrochemical reaction layer 104 when the first electrochemical reaction layer 104 is located in the first electrochemical reaction chamber 210 and the oxidation reaction occurs, it becomes a space for movement of water as a reactant and oxygen as a product, and the film 106 is formed In the second electrochemical reaction chamber 212 located on the opposite side of the first electrochemical reaction chamber 210 to the center, for the movement of hydrogen generated by the reduction reaction and the water moved in the first electrochemical reaction chamber 210 . space is provided.
  • the first electrochemical reaction chamber 210 is blocked from the outside by the first electrochemical reaction chamber frame 208
  • the second electrochemical reaction chamber 212 is externally by the second electrochemical reaction chamber frame 214 . and is blocked
  • gaskets (or packings) 222 for preventing external leakage of reactants and products are installed between the MEA 100 and the first electrochemical reaction chamber frame 208 and the second electrochemical reaction chamber frame 214 , respectively. .
  • the first electrochemical reaction chamber frame 208 , the second electrochemical reaction chamber frame 214 , and the gasket 222 include the inflow of reactants or products through the electrochemical cell and It has an appropriate hole for easy outflow, and the first electrochemical reaction chamber frame 208 and the second electrochemical reaction chamber frame 214 have a fluid (oxygen, hydrogen, water) flow path (a dotted line in FIG. 2A). indicated by ) is formed.
  • FIG. 3 is a conceptual diagram of a conventional general electrochemical stack.
  • a plurality of unit electrochemical cells are required.
  • an aggregate of two or more stacked electrochemical cells is called an electrochemical stack.
  • the unit electrochemical cells are assembled by coupling the bolt 306 and the nut 310 through holes formed at the edges of the first and second end plates 202 and 220 .
  • a bipolar plate 304 in which the first electrochemical reaction chamber frame 208 and the second electrochemical reaction chamber frame 214 of FIG. 2 are integrated is applied to the electrochemical stack 300 .
  • the bipolar plate 304 is an integral plate and has the functions of an anode chamber and a cathode chamber.
  • FIG. 4 is a view illustrating a system for producing hydrogen by electrolyzing water using an electrolysis stack having the same concept as the electrochemical stack of FIG. 3 .
  • the hydrogen production system 400 shown in FIG. 4 purifies the hydrogen gas generated from the electrolysis stack 420 , a water treatment unit for processing water supplied to the electrolysis stack 420 , and the electrolysis stack 420 , and It consists of a gas processing unit that controls the pressure.
  • Water which is a raw material used in the electrolysis stack 420, uses 1 Mega ohm cm or more of pure water, and the pure water is supplied by the control of the automatic valve 402 installed in the pure water supply line s1, and the automatic valve 402 control is It is controlled by the level sensor 405 for detecting the water level in the oxygen-water separation tank 404 (dashed line e2). Water in the oxygen-water separation tank 404 is supplied to the electrolysis stack 420 by the circulation pump 406 installed in the circulation pipe s2, and a circulation line s9 circulated in the hydrogen-water separator 424.
  • Oxygen and unreacted water generated in the first electrochemical reaction chamber 414 are moved to the oxygen-water separation tank 404 through the discharge pipe s4, and a temperature sensor 416 for monitoring the temperature in the discharge pipe s4 ) is installed. Oxygen separated in the oxygen-water separation tank 404 is discharged to the outside through the oxygen discharge pipe s5, and the water undergoes a recirculation process.
  • the hydrogen gas generated in the second electrochemical reaction chamber 422 is accompanied by water, and is moved to the hydrogen-water separation tank 424 through the discharge pipe s6 to separate the gas and water.
  • the hydrogen-water separation tank 424 is provided with a level sensor 426 for water level detection for water level control. If, when the water level in the hydrogen-water separation tank 424 exceeds a predetermined value, the automatic valve 428 is opened (electrical signal e3) and is supplied to the circulation pipe s2 through the circulation line s9.
  • the hydrogen gas separated in the hydrogen-water separation tank 424 is supplied to the hydrogen gas purifier 430 through the gas pipe s7 to remove moisture contained in the hydrogen.
  • a bed filled with a desiccant is applied to the hydrogen gas purifier 430 .
  • Hydrogen that has passed through the hydrogen gas purifier 430 is supplied to a site requiring hydrogen through a high-purity hydrogen gas pipe s8.
  • Pressure sensors 432 and 438 for measuring pressure are installed at the front and rear ends of the pressure control valve 434 , and a check valve 436 for maintaining the flow of gas in a certain direction is installed.
  • This invention is arranged in the water circulation line of the hydrogen production system using water electrolysis to secure the durability of the water electrolysis stack (electrochemical reactor) to remove radicals and metal ions, which are impurities generated during the electrolysis and circulation of water.
  • An object of the present invention is to provide a device for managing water.
  • This invention for achieving the above object is a device for managing water by being disposed in a water circulation line of a hydrogen production system using water electrolysis and removing impurities generated in the electrolysis process and circulation process of water, and the electrolysis process of water
  • a first reaction column for removing radicals generated in It is characterized in that it contains a filling.
  • the first reaction tower and the second reaction tower may be connected in series or in parallel.
  • the metal ion is preferably Fe 2+ or Cu 2+ ion.
  • the carrier may be composed of any one of titanium oxide, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, titanium carbide, silica gel, alumina or other inorganic porous material. have.
  • the radical scavenger catalyst is preferably CeO2, ZrO2 , or a complex oxide thereof.
  • the amount of the radical scavenger catalyst is more preferably in the range of 1 to 5% by weight based on the weight of the carrier.
  • the second reaction tower may include a chelate resin.
  • This invention has the advantage of lowering the hydrogen production cost during hydrogen production by removing impurities affecting the durability during a long-term operation in the water electrolysis process to secure the durability of the device. That is, this invention is arranged in the water circulation line of the hydrogen production system to remove radicals and metal ions, which are impurities generated in the electrolysis process and circulation process of water, to secure the durability of the water electrolysis stack (electrochemical reactor). Manufacturing cost can be lowered.
  • FIG. 1 is a conceptual diagram of an MEA, which is a part of a typical electrochemical cell that electrochemically decomposes water to produce hydrogen gas and oxygen gas.
  • FIG. 2 is a structural diagram of a typical electrochemical cell for electrolyzing water with the MEA of FIG. 1 .
  • 3 is a conceptual diagram of a conventional general electrochemical stack.
  • FIG. 4 is a view showing a system for producing hydrogen by electrolyzing water using the electrochemical stack of FIG. 3 .
  • FIG. 5 is a view showing a hydrogen production system using water electrolysis having a water management device according to an embodiment of the present invention.
  • FIG. 6 is a conceptual view of the first reaction tower shown in FIG.
  • Fig. 7 is a structural diagram of the filling material shown in Fig. 6;
  • FIG. 8 is a view showing a hydrogen production system using water electrolysis having a water management device according to another embodiment of the present invention.
  • FIG. 5 is a view showing a hydrogen production system using water electrolysis having a water management device according to an embodiment of the present invention.
  • the water management device according to an embodiment of the present invention is disposed in the water circulation line of the hydrogen production system 400A configured in the same concept as in FIG. 4 to receive power in the electrolysis process and circulation process of water. This is to manage water by removing impurities that affect the durability of the stack (electrochemical reactor). Therefore, in this embodiment, the description of the hydrogen production system having the same concept as that of FIG. 4 is omitted and the same or similar reference numerals are used.
  • the water management device of this embodiment is configured to remove radicals generated in the electrolysis process of water and metal ions generated in the water cycle process. That is, the water management device of this embodiment includes the first reaction tower 500 for removing radicals generated in the water electrolysis stack (FIG. 3), and Fe 2+ or Cu generated in the hydrogen production system (FIG. 4).
  • a second reaction tower 600 for removing 2+ ions is provided, and the first reaction tower 500 and the second reaction tower 600 are provided in series.
  • the second reaction tower (adsorption tower) 600 is generally a commercially available chelate resin applied for heavy metal removal is preferably applied.
  • the OH radical generation reaction is known as the Fenton reaction.
  • FIG. 6 is a conceptual diagram of the first reaction tower shown in FIG. 5
  • FIG. 7 is a structural diagram of the packing shown in FIG.
  • the first reaction tower 500 is configured similarly to a generally used water purification tower, with a filler 510 and a filler 520 for preventing the outflow of the filler 510 .
  • the packing 510 is composed of a catalyst 512 for radical scavenger (scavenger) in the carrier 511 as shown in FIG.
  • the carrier 511 titanium oxide, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, titanium carbide, silica gel, alumina or other inorganic porous material is used, and preferably with regular and fine pores.
  • a titanium-based inorganic material having a structure is suitable.
  • the carrier 610 preferably has a particle diameter of 0.02 mm or more.
  • the radical scavenger catalyst 512 applied on the carrier 511 is preferably CeO2, ZrO2 , or a complex oxide thereof.
  • the amount of the radical scavenger catalyst 512 applied on the carrier 511 is preferably in the range of 1 to 5% by weight based on the weight of the carrier 511 . The reason is that the radical removal rate becomes low at 1 wt% or less, and at 5 wt% or more, the radical removal amount is an inflection point at which the amount becomes constant.
  • the process of forming the radical scavenger catalyst 512 on the carrier 511 may be obtained by mixing the carrier and the precursor, adsorbing the precursor on the carrier, and then sintering.
  • the reaction formula for this process is as follows.
  • the thermal decomposition temperature for Scheme 6 is preferably 225 to 400 °C. The reason is that it is difficult to obtain CeO 2 crystallinity at 225° C. or lower, and metal crystallinity is obtained at 400° C. or higher, resulting in lower catalytic activity.
  • FIG. 8 is a view showing a hydrogen production system using water electrolysis having a water management device according to another embodiment of the present invention.
  • the water management device according to this embodiment is installed in the hydrogen production system 400B configured in the same concept as in FIG. 4 , but with the first reaction tower 500 having the same configuration as above and The second reaction tower 600 is configured in parallel.
  • It consists of a process of forming the first and second electrochemical reaction layers 104 and 108 , a process of forming on the film 106 , an ink manufacturing process, an ink transfer process, and a thermocompression bonding process.
  • first and second electrochemical catalysts 112 and 116 commercially available Pt/C (Premetek, 30% by weight of platinum) was used.
  • the ink obtained in the process was transferred to a dedicated syringe for electrospray, transferred to a carbon sheet, and dried at 90° C. for 30 minutes in an atmospheric atmosphere to prepare an electrochemical reaction layer.
  • the thickness of the electrochemical reaction layer was adjusted so that the oxide catalyst loading amount was about 1 mg/cm 2 .
  • the electrochemical catalysts 112 and 116 prepared above were subjected to thermocompression treatment for 2 minutes at a pressure of 10 MPa under a condition of 120 ° C. .
  • titanium oxide As the carrier 511 used for the filler 510, titanium oxide (Degussa, P25) with excellent durability was applied. The purchased carrier was left in a weak acid (sulfuric acid, 1 Mole) and washed with pure water.
  • As the radical scavenger catalyst 512 applied on the carrier 5% by weight of a CeO 2 and ZrO 2 composite was applied. The molar ratio of CeO 2 and ZrO 2 formed on the carrier was set to 90:10.
  • Preparation was prepared by mixing a carrier (95 wt%) and CeO 2 , ZrO 2 precursor CeCl 4 and ZrCl 4 in a molar ratio, mixing them in IPA, and drying them at 80° C. overnight, then sintering them at 400° C. for 2 hours to obtain a filling.
  • the obtained packing was filled in the reaction tower to prepare a first reaction tower.
  • Chelex 100 for removing Fe 2+ or Cu 2+ ions from Bio-rad was selected and applied.
  • the temperature of the electrochemical cell (or stack, 300) and system 400A was maintained at 50° C. (416 temperature sensor in FIG. 5), and the current density was accelerated to 3 A/cm 2 (typical current density 1 A/cm 2 ).
  • the evaluation was performed and shown in FIG. 9 .
  • the temperature of the electrochemical cell (or stack, 300) and system 400B was maintained at 50° C. (416 temperature sensor in FIG. 8), and the current density was accelerated to 3 A/cm 2 (typical current density of 1 A/cm 2 ). It was evaluated and shown as Invention Example 2 in FIG. 9 .
  • the temperature of the electrochemical cell (or stack, 300) and system 400 was maintained at 50° C. (416 temperature sensor in FIG. 4), and the current density accelerated to 3 A/cm 2 (typical current density 1 A/cm 2 ). It was evaluated and shown as Comparative Example 1 in FIG. 9 .
  • FIG. 9 is a graph showing the comparison of the performance of Inventive Examples 1 and 2 and Comparative Example 1 according to the present invention, in which the durability of the water electrolytic stack is compared and evaluated through accelerated operation.
  • carrier 512 radical scavenger catalyst

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

The present invention relates to a water management apparatus, which is disposed on a water circulation line of a hydrogen production system using water electrolysis to remove impurities generated during water electrolysis and circulation procedures, the apparatus comprising a first reaction tower (500) removing radicals generated during the water electrolysis procedure and a second reaction tower (600) removing metal ions generated during the water circulation procedure, wherein the first reaction tower (500) comprises a filling (510) composed of a radical scavenger catalyst (512) on a carrier (511).

Description

물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치Water management device in hydrogen production system using water electrolysis
이 발명은 물 전기분해(이하, 수전해)를 이용한 수소 생산 시스템에 관한 것으로서, 더욱 상세하게는 수전해 스택(전기화학 반응기)의 내구성을 확보하기 위해 수소 생산 시스템의 물 순환라인에 배치되어 물의 전기분해 과정 및 순환 과정에서 발생하는 불순물인 라디칼과 금속이온을 제거해 물을 관리하는 장치에 관한 것이다. The present invention relates to a hydrogen production system using water electrolysis (hereinafter, water electrolysis), and more particularly, is disposed in the water circulation line of the hydrogen production system to secure the durability of the water electrolysis stack (electrochemical reactor). It relates to a device that manages water by removing radicals and metal ions, which are impurities generated in the electrolysis process and circulation process.
일반적으로 수소를 생산하는 방법은 다양하나, 재생에너지를 이용한 전력원과 물을 이용하여 물을 전기분해하여 수소를 얻는 방법은 수소 제조 과정 중에서 CO2가 발생하지 않아, CO2 free 수소, 또는 그린 수소란 다른 명칭으로 최근 각광을 받고 있다.In general, there are various methods of producing hydrogen, but the method of obtaining hydrogen by electrolysis of water using a power source and water using renewable energy does not generate CO 2 during the hydrogen production process, so CO 2 free hydrogen, or green Hydrogen has recently been in the spotlight under another name.
도 1 내지 도 3은 물을 전기분해하여 수소를 얻는 전형적인 전기화학 셀(전기화학 반응기)의 기본원리, 단위 전기화학 셀, 전기화학용 스택 구조를 나타낸 것이다.1 to 3 show the basic principle of a typical electrochemical cell (electrochemical reactor) for obtaining hydrogen by electrolysis of water, a unit electrochemical cell, and a stack structure for electrochemistry.
도 1은 물을 전기화학적으로 분해하여 수소가스와 산소가스를 생산하는 전형적인 전기화학 셀의 일부분을 구성하는 막전극접합체(100)의 개념도로서, 막전극접합체(100)는 전기화학 반응이 일어나는 핵심 구성요소이다.1 is a conceptual diagram of a membrane electrode assembly 100 constituting a part of a typical electrochemical cell that produces hydrogen gas and oxygen gas by electrochemically decomposing water. The membrane electrode assembly 100 is the core of the electrochemical reaction. is a component
물(H20)을 전기분해하여 산소가스(O2)와 수소가스(H2)를 생산하는 전기분해용 전기화학 셀은 제1 전기화학 반응층(104), 제2 전기화학 반응층(108), 막(106), 제1 확산층(102) 및 제2 확산층(110)을 포함하여 구성된다. 이때, 제1 전기화학 반응층(104)은 제1 전기화학 촉매(112)와 제1 담체(114)로 구성되고, 제2 전기화학 반응층(108)은 제2 전기화학 촉매(116)와 제2 담체(118)로 구성된다.The electrochemical cell for electrolysis that electrolyzes water (H 2 0) to produce oxygen gas (O 2 ) and hydrogen gas (H 2 ) is a first electrochemical reaction layer 104, a second electrochemical reaction layer ( 108 ), a film 106 , a first diffusion layer 102 , and a second diffusion layer 110 . At this time, the first electrochemical reaction layer 104 is composed of the first electrochemical catalyst 112 and the first carrier 114, the second electrochemical reaction layer 108 is the second electrochemical catalyst 116 and and a second carrier 118 .
제1 확산층(102)과 제2 확산층(110)은 제1, 제2 전기화학 촉매(112, 116)로(또는 에서) 전자와 반응물 또는 생성물의 이동을 돕는다. 제1, 제2 전기화학 촉매(112, 116)는 전기분해를 하거나 전기에너지를 만드는 가장 중요한 물질이며, 제1, 제2 담체(114, 118)는 제1, 제2 전기화학 촉매(112, 116)의 지지체 역할과 전자의 이동경로를 제공한다.The first diffusion layer 102 and the second diffusion layer 110 assist in transport of electrons and reactants or products to (or to) the first and second electrochemical catalysts 112 and 116 . The first and second electrochemical catalysts 112 and 116 are the most important materials for electrolysis or for making electrical energy, and the first and second carriers 114 and 118 are the first and second electrochemical catalysts 112 and 118. 116) serves as a support and provides a path for electrons to move.
제1, 제2 전기화학 촉매(112, 116)는 제1, 제2 담체(114, 118), 바인더(Binder) 및 용매(Solvent)와 같이 혼합되어 슬러리(Slurry)나 페이스트(Paste) 상태로 만들어진 후, 막(106)에 도포하거나 또는 제1, 제2 확산층(102, 110)에 도포하여 제1, 제2 전기화학 반응층(104, 108)으로 만들어진다. 이때, 이와 같이 만들어진 "전기화학 반응층(104, 108)-막(106)" 또는 "전기화학 반응층(104, 108)-막(106)-확산층(102, 110)"을 막전극접합체(100)(Membrane Electrode Assembly, 이하 "MEA"라 함)라고 한다.The first and second electrochemical catalysts 112 and 116 are mixed with the first and second carriers 114 and 118, a binder and a solvent to form a slurry or paste. After being made, the first and second electrochemical reaction layers 104 and 108 are formed by coating on the film 106 or on the first and second diffusion layers 102 and 110 . At this time, the "electrochemical reaction layer 104, 108-membrane 106" or "electrochemical reaction layer 104, 108-membrane 106- diffusion layer 102, 110" made in this way is applied to the membrane electrode assembly ( 100) (Membrane Electrode Assembly, hereinafter referred to as "MEA").
MEA(100)에 형성된 제1 전기화학 반응층(104)과 제2 전기화학 반응층(108)의 간격은 물리적인 막의 두께 값을 가지며, 제1 전기화학 반응층(104)과 제2 전기화학 반응층(108) 내에는 기포가 존재하지 않아 저전압, 고전류의 운전이 가능하다. 또한, 알카리 전기화학 셀에서와 같이 전해액의 전도성을 이용하지 않기 때문에 원료인 물을 고순도로 사용가능하고, 이에 고순도의 수소와 산소를 얻을 수 있는 장점이 있다.The gap between the first electrochemical reaction layer 104 and the second electrochemical reaction layer 108 formed in the MEA 100 has a thickness value of a physical film, and the first electrochemical reaction layer 104 and the second electrochemical reaction layer 104 Since bubbles do not exist in the reaction layer 108 , it is possible to operate at a low voltage and a high current. In addition, since the conductivity of the electrolyte is not used as in the alkaline electrochemical cell, water as a raw material can be used with high purity, and there is an advantage in that high purity hydrogen and oxygen can be obtained.
도 1에 도시된 구성을 이용하여, 물을 전기분해하는 과정을 설명하면 다음과 같다. 여기서, 산화 반응이 일어나는 곳을 제1 전기화학 반응층(104)으로 하고, 환원 반응이 일어나는 곳을 제2 전기화학 반응층(108)으로 하며, 산화 반응과 환원 반응은 동시에 일어난다.A process of electrolyzing water using the configuration shown in FIG. 1 will be described as follows. Here, the place where the oxidation reaction occurs is the first electrochemical reaction layer 104 , and the place where the reduction reaction occurs is the second electrochemical reaction layer 108 , and the oxidation reaction and the reduction reaction occur simultaneously.
먼저, 물(H20)이 제1 확산층(102)을 거쳐 제1 전기화학 반응층(104)에 공급되면, 물은 제1 전기화학 촉매(112)(산화촉매, 양극 활물질, 산소가스 발생극 이라고도 함)에서 아래 반응식 1과 같이 산소가스(O2)와 전자(e-) 그리고 수소이온(H+)(프로톤)으로 분해반응이 일어난다. 이때, 산소가스(O2)는 확산에 의해 전기화학 셀(전기분해 셀)의 외부로 유출되며, 수소이온(H+)은 전기장에 의해 막(106)을 통과하여 제2 전기화학 촉매(116)(환원촉매, 음극 활물질, 수소가스 발생극 이라고도 함)로 이동하며, 반응에 의하여 생성된 전자(e-)는 제1 전기화학 촉매(112)에서 제1 확산층(102), 외부회로(미도시)를 거쳐 제2 확산층(110), 제2 전기화학 촉매(116)로 이동한다.First, when water (H 2 0) is supplied to the first electrochemical reaction layer 104 through the first diffusion layer 102, water is generated by the first electrochemical catalyst 112 (oxidation catalyst, positive electrode active material, oxygen gas) At the pole), a decomposition reaction takes place into oxygen gas (O 2 ), electrons (e - ), and hydrogen ions (H + ) (protons) as shown in Reaction Equation 1 below. At this time, oxygen gas (O 2 ) flows out of the electrochemical cell (electrolysis cell) by diffusion, and hydrogen ions (H + ) pass through the membrane 106 by an electric field and the second electrochemical catalyst 116 ) (reduction catalyst, negative electrode active material, also referred to as a hydrogen gas generating electrode), and the electrons (e - ) generated by the reaction are transferred from the first electrochemical catalyst 112 to the first diffusion layer 102, an external circuit (not shown). city) through the second diffusion layer 110 and the second electrochemical catalyst 116 .
한편, 제2 전기화학 촉매(116)에서는 제1 전기화학 촉매(112)에서 이동한 수소이온(H+)과 전자(e-)가 반응하여 반응식 2와 같이 수소가스(H2)가 생성된다. 그리고, 제1 전기화학 반응층(104)으로 공급된 물 중에서 일부는 전기장에 의해 제2 전기화학 반응층(108)으로 이동하여 수소가스(H2)와 함께 전기분해 셀의 외부로 유출된다.On the other hand, in the second electrochemical catalyst 116, hydrogen ions (H + ) and electrons (e - ) moved from the first electrochemical catalyst 112 react to generate hydrogen gas (H 2 ) as shown in Scheme 2 . And, some of the water supplied to the first electrochemical reaction layer 104 moves to the second electrochemical reaction layer 108 by the electric field and flows out together with the hydrogen gas (H 2 ) to the outside of the electrolysis cell.
제1 전기화학 촉매(112)와 제2 전기화학 촉매(116)에서 각각 일어난 전기화학적 반응을 표현하면 아래의 반응식 1 및 반응식 2와 같고, 전기화학 셀에서의 전체 반응(총괄 반응)은 반응식 3과 같다.When the electrochemical reaction that occurred in the first electrochemical catalyst 112 and the second electrochemical catalyst 116, respectively, is expressed, the following Reaction Schemes 1 and 2 are the same, and the overall reaction (general reaction) in the electrochemical cell is Scheme 3 same as
[반응식 1][Scheme 1]
2H2O → 4H+ + 4e- + O2 (양극)2H 2 O → 4H + + 4e - + O 2 (anode)
[반응식 2][Scheme 2]
4H+ + 4e- → 2H2 (음극)4H + + 4e - → 2H 2 (cathode)
[반응식 3][Scheme 3]
2H2O → O2 (양극) + 2H2 (음극)2H 2 O → O 2 (anode) + 2H 2 (cathode)
도 2는 도 1의 MEA를 구비하여 물을 전기분해하는 전형적인 전기화학 셀의 구조도이다. 도 2에 도시된 바와 같이, 전기화학 셀(200)은 제1 엔드플레이트(202)(End Plate), 제1 절연판(204), 제1 전류공급판(206), 제1 전기화학 반응실 프레임(208), 제1 전기화학 반응실(210), MEA(도 1의 100), 제2 전기화학 반응실(212), 제2 전기화학 반응실 프레임(214), 제2 전류공급판(216), 제2 절연판(218) 및 제2 엔드플레이트(220)로 구성되며, 전기화학 셀에 전류를 공급하는 전력변환장치(224)로 직류전원 공급장치가 있다.FIG. 2 is a structural diagram of a typical electrochemical cell for electrolyzing water with the MEA of FIG. 1 . 2, the electrochemical cell 200 is a first end plate 202 (End Plate), a first insulating plate 204, a first current supply plate 206, a first electrochemical reaction chamber frame 208, the first electrochemical reaction chamber 210, the MEA (100 in FIG. 1), the second electrochemical reaction chamber 212, the second electrochemical reaction chamber frame 214, the second current supply plate 216 ), a second insulating plate 218 and a second end plate 220, and there is a DC power supply as a power converter 224 for supplying current to the electrochemical cell.
제1 엔드플레이트(202)와 제2 엔드플레이트(220)는 단위 전기화학 셀 조립을 위한 볼트/너트 체결 구멍(미도시), 반응물 및 생성물의 통로(미도시) 기능을 제공하며, 제1 절연판(204)과 제2 절연판(218)은 각각 제1 엔드플레이트(202)와 제1 전류공급판(206) 사이 및 제2 엔드플레이트(220)와 제2 전류공급판(216) 사이에서의 전기적 절연 기능을 하고, 제1 전류공급판(206)과 제2 전류공급판(216)은 전력변환장치(224)와 연결되어 전기화학 셀(200)에 필요한 전류를 공급하는 역할을 한다.The first end plate 202 and the second end plate 220 provide bolt/nut fastening holes (not shown) for assembling a unit electrochemical cell, and passages of reactants and products (not shown), and the first insulating plate 204 and the second insulating plate 218 are electrically connected between the first end plate 202 and the first current supply plate 206 and between the second end plate 220 and the second current supply plate 216, respectively. Insulating function, the first current supply plate 206 and the second current supply plate 216 are connected to the power conversion device 224 serves to supply the required current to the electrochemical cell (200).
한편, 제1 전기화학 반응실(210)에 제1 전기화학 반응층(104)이 위치하여 산화 반응이 일어나는 경우, 반응물인 물과 생성물인 산소의 이동을 위한 공간이 되며, 막(106)을 중심으로 제1 전기화학 반응실(210)의 반대편에 위치하는 제2 전기화학 반응실(212)에서는 환원 반응에 의해 생성된 수소와 제1 전기화학 반응실(210)에서 이동한 물의 이동을 위한 공간이 제공된다.On the other hand, when the first electrochemical reaction layer 104 is located in the first electrochemical reaction chamber 210 and the oxidation reaction occurs, it becomes a space for movement of water as a reactant and oxygen as a product, and the film 106 is formed In the second electrochemical reaction chamber 212 located on the opposite side of the first electrochemical reaction chamber 210 to the center, for the movement of hydrogen generated by the reduction reaction and the water moved in the first electrochemical reaction chamber 210 . space is provided.
제1 전기화학 반응실(210)은 제1 전기화학 반응실 프레임(208)에 의해 외부와 차단되고, 제2 전기화학 반응실(212)은 제2 전기화학 반응실 프레임(214)에 의해 외부와 차단된다. 그리고, MEA(100)와 제1 전기화학 반응실 프레임(208), 제2 전기화학 반응실 프레임(214) 사이에는 반응물과 생성물의 외부 누설을 막는 가스켓(또는 패킹)(222)이 각각 설치된다.The first electrochemical reaction chamber 210 is blocked from the outside by the first electrochemical reaction chamber frame 208 , and the second electrochemical reaction chamber 212 is externally by the second electrochemical reaction chamber frame 214 . and is blocked In addition, gaskets (or packings) 222 for preventing external leakage of reactants and products are installed between the MEA 100 and the first electrochemical reaction chamber frame 208 and the second electrochemical reaction chamber frame 214 , respectively. .
전기화학 셀(200)을 구성하는 구성요소 중에서 제1 전기화학 반응실 프레임(208), 제2 전기화학 반응실 프레임(214), 가스켓(222)은 전기화학 셀을 통하여 반응물 또는 생성물의 유입 및 유출이 용이하도록 적당한 홀을 가지며, 제1 전기화학 반응실 프레임(208)과 제2 전기화학 반응실 프레임(214)에는 유체(산소, 수소, 물)의 유로(도 2의 (가)에 점선으로 표시됨)가 형성되어 있다.Among the components constituting the electrochemical cell 200 , the first electrochemical reaction chamber frame 208 , the second electrochemical reaction chamber frame 214 , and the gasket 222 include the inflow of reactants or products through the electrochemical cell and It has an appropriate hole for easy outflow, and the first electrochemical reaction chamber frame 208 and the second electrochemical reaction chamber frame 214 have a fluid (oxygen, hydrogen, water) flow path (a dotted line in FIG. 2A). indicated by ) is formed.
도 3은 종래의 일반적인 전기화학용 스택의 개념도이다. 전기분해 반응에서 원하는 양의 생성물을 얻기 위해서는 단위 전기화학 셀이 복수개 필요하며, 이때 2개 이상 적층한 전기화학 셀들의 집합체를 전기화학용 스택이라고 한다.3 is a conceptual diagram of a conventional general electrochemical stack. In order to obtain a desired amount of product in the electrolysis reaction, a plurality of unit electrochemical cells are required. In this case, an aggregate of two or more stacked electrochemical cells is called an electrochemical stack.
도 3에 도시된 바와 같이, 전기화학용 스택(300)을 구성하기 위해 전기화학 셀을 적층할 때, 기본 전기화학 셀(200) 사이에 원하는 수의 단위 전기화학 셀을 반복 설치한다. 전기화학용 스택에서 단위 전기화학 셀들은 제1, 제2 엔드플레이트(202, 220)의 가장자리에 형성된 구멍을 통해 볼트(306)와 너트(310)의 결합으로 조립된다.As shown in FIG. 3 , when the electrochemical cells are stacked to form the electrochemical stack 300 , a desired number of unit electrochemical cells are repeatedly installed between the basic electrochemical cells 200 . In the electrochemical stack, the unit electrochemical cells are assembled by coupling the bolt 306 and the nut 310 through holes formed at the edges of the first and second end plates 202 and 220 .
전기화학용 스택(300)에는 도 2의 제1 전기화학 반응실 프레임(208)과 제2 전기화학 반응실 프레임(214)이 일체화된 바이폴라판(bipolar plate, 304)이 적용된다. 바이폴라판(304)은 일체형 판으로 양극실과 음극실의 기능을 갖는다. A bipolar plate 304 in which the first electrochemical reaction chamber frame 208 and the second electrochemical reaction chamber frame 214 of FIG. 2 are integrated is applied to the electrochemical stack 300 . The bipolar plate 304 is an integral plate and has the functions of an anode chamber and a cathode chamber.
도 4는 도 3의 전기화학용 스택과 동일 개념의 전기분해 스택을 이용해 물을 전기분해하여 수소를 생산하는 시스템을 나타낸 도면이다. 도 4에 도시된 수소 생산 시스템(400)은 전기분해 스택(420), 전기분해 스택(420)에 공급하는 물을 처리하는 수처리부, 그리고 전기분해 스택(420)에서 발생되는 수소가스를 정제하고 압력을 제어하는 가스처리부로 구성된다.4 is a view illustrating a system for producing hydrogen by electrolyzing water using an electrolysis stack having the same concept as the electrochemical stack of FIG. 3 . The hydrogen production system 400 shown in FIG. 4 purifies the hydrogen gas generated from the electrolysis stack 420 , a water treatment unit for processing water supplied to the electrolysis stack 420 , and the electrolysis stack 420 , and It consists of a gas processing unit that controls the pressure.
전기분해 스택(420)에 사용하는 원료인 물은 1Mega ohm cm 이상의 순수가 사용되고, 순수는 순수 공급라인(s1) 중에 설치된 자동밸브(402)의 조절에 의해 공급되며, 자동밸브(402) 조절은 산소-물 분리조(404)의 수위 감지용 레벨센서(405)에 의해 제어된다(점선 e2). 산소-물 분리조(404)의 물은 순환배관(s2) 중에 설치된 순환펌프(406)에 의해 전기분해 스택(420)으로 공급되고, 수소-물 분리기(424)에서 순환되는 순환라인(s9)과 합쳐져 열교환기(408), 수질 감지센서(410) 및 이온교환필터(412)가 설치된 배관을 거쳐, 전기분해 스택(420)의 제1 전기화학 반응실(414, 산화 반응이 일어나는 곳)로 공급된다. 한편, 전력변환장치(440)에서 전선(e1)을 통하여 전기분해 스택(420)에 직류전류가 공급되면, 물 분해 반응이 일어나게 된다.Water, which is a raw material used in the electrolysis stack 420, uses 1 Mega ohm cm or more of pure water, and the pure water is supplied by the control of the automatic valve 402 installed in the pure water supply line s1, and the automatic valve 402 control is It is controlled by the level sensor 405 for detecting the water level in the oxygen-water separation tank 404 (dashed line e2). Water in the oxygen-water separation tank 404 is supplied to the electrolysis stack 420 by the circulation pump 406 installed in the circulation pipe s2, and a circulation line s9 circulated in the hydrogen-water separator 424. combined with the heat exchanger 408, the water quality detection sensor 410, and the ion exchange filter 412 through the installed pipe to the first electrochemical reaction chamber 414 of the electrolysis stack 420 (where the oxidation reaction takes place) is supplied On the other hand, when a DC current is supplied to the electrolysis stack 420 through the wire e1 from the power conversion device 440, a water decomposition reaction occurs.
제1 전기화학 반응실(414)에서 발생한 산소와 미반응 물은 배출배관(s4)을 거쳐 산소-물 분리조(404)로 이동되고, 배출배관(s4)에는 온도를 감시하는 온도센서(416)가 설치된다. 산소-물 분리조(404)에서 분리된 산소는 산소 배출배관(s5)을 통하여 외부로 배출되며, 물은 재순환 과정을 거치게 된다.Oxygen and unreacted water generated in the first electrochemical reaction chamber 414 are moved to the oxygen-water separation tank 404 through the discharge pipe s4, and a temperature sensor 416 for monitoring the temperature in the discharge pipe s4 ) is installed. Oxygen separated in the oxygen-water separation tank 404 is discharged to the outside through the oxygen discharge pipe s5, and the water undergoes a recirculation process.
제2 전기화학 반응실(422)에서 발생한 수소가스에는 물이 동반되며, 배출관(s6)을 거쳐 수소-물 분리조(424)로 이동되어 가스와 물이 분리된다. 수소-물 분리조(424)에는 수위 조절을 위한 수위 감지용 레벨센서(426)가 구비된다. 만약, 수소-물 분리조(424)의 수위가 일정값 이상이 되면 자동밸브(428)가 오픈되어(전기적 신호 e3) 순환라인(s9)을 거쳐 순환배관(s2)으로 공급된다.The hydrogen gas generated in the second electrochemical reaction chamber 422 is accompanied by water, and is moved to the hydrogen-water separation tank 424 through the discharge pipe s6 to separate the gas and water. The hydrogen-water separation tank 424 is provided with a level sensor 426 for water level detection for water level control. If, when the water level in the hydrogen-water separation tank 424 exceeds a predetermined value, the automatic valve 428 is opened (electrical signal e3) and is supplied to the circulation pipe s2 through the circulation line s9.
한편, 수소-물 분리조(424)에서 분리된 수소가스는 가스배관(s7)을 거쳐 수소가스 정제기(430)로 공급되어 수소 중에 함유된 수분이 제거된다. 일반적으로 수소가스 정제기(430)는 흡습제가 충진된 베드가 적용된다. 수소가스 정제기(430)를 거친 수소는 고순도 수소가스배관(s8)을 거쳐 수소를 필요로 하는 현장에 공급된다. 이때, 고순도 수소가스배관(s8)에는 수소의 압력을 조절하는 압력조절밸브(434)가 있어 전기분해 스택(420)에서 발생하는 수소가스의 압력이 조절된다. 압력조절밸브(434)의 전단과 후단에는 압력을 측정하는 압력센서(432, 438)가 설치되고, 가스의 흐름을 일정 방향으로 유지하는 체크밸브(436)가 설치된다.Meanwhile, the hydrogen gas separated in the hydrogen-water separation tank 424 is supplied to the hydrogen gas purifier 430 through the gas pipe s7 to remove moisture contained in the hydrogen. In general, a bed filled with a desiccant is applied to the hydrogen gas purifier 430 . Hydrogen that has passed through the hydrogen gas purifier 430 is supplied to a site requiring hydrogen through a high-purity hydrogen gas pipe s8. At this time, there is a pressure regulating valve 434 for controlling the pressure of hydrogen in the high-purity hydrogen gas pipe s8 so that the pressure of hydrogen gas generated in the electrolysis stack 420 is adjusted. Pressure sensors 432 and 438 for measuring pressure are installed at the front and rear ends of the pressure control valve 434 , and a check valve 436 for maintaining the flow of gas in a certain direction is installed.
상기와 같이 물을 전기분해하여 수소를 생산하는 공정에서 핵심공정인 전기분해 스택(420)의 장기간 내구성 확보는 수소 생산 가격 및 시스템 가격을 낮추는 중요한 인자이다. As described above, securing long-term durability of the electrolysis stack 420, which is a key process in the process of producing hydrogen by electrolysis of water, is an important factor in lowering the hydrogen production price and system price.
[선행기술문헌][Prior art literature]
[비특허문헌][Non-patent literature]
Ka Hung Wong and Erik Kjeang, "The Electrochemical Society Macroscopic In-Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells", Journal of The Electrochemical Society, 161 (9) F823-F832 (2014) Journal of Power Sources, Vol.420, 54-62, 2019Ka Hung Wong and Erik Kjeang, "The Electrochemical Society Macroscopic In-Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells", Journal of The Electrochemical Society, 161 (9) F823-F832 (2014) Journal of Power Sources, Vol. 420, 54-62, 2019
Frensch SH, Serre G, Fouda-Onana F, Jensen HC, Christensen ML, Araya SS, Kaer SK DOI, "Impact of iron and hydrogen peroxide on membrane degradation for polymer electrolyte membrane water electrolysis: Computational and experimental investigation on fluoride emission", Journal of Power Sources, Vol.420, 54-62, 2019Frensch SH, Serre G, Fouda-Onana F, Jensen HC, Christensen ML, Araya SS, Kaer SK DOI, "Impact of iron and hydrogen peroxide on membrane degradation for polymer electrolyte membrane water electrolysis: Computational and experimental investigation on fluoride emission", Journal of Power Sources, Vol.420, 54-62, 2019
윤대진, 오연선, 서현, 문상봉, 정장훈, "수전해용 공유가교 SPEEK/Cs-TSiA 막의 Ceria의 함량에 따른 제조 및 성능 연구", Trans. of the Korean Hydrogen and New Energy Society (2015. 6), Vol. 26, No. 3, pp. 212~220Daejin Yoon, Yeonseon Oh, Hyunseo Seo, Sangbong Moon, and Hoon Jeong, "Manufacturing and Performance Study according to Ceria Content of Covalently Crosslinked SPEEK/Cs-TSiA Membrane for Water Electrolysis", Trans. of the Korean Hydrogen and New Energy Society (2015. 6), Vol. 26, No. 3, pp. 212~220
Zhiyan Rui, JianguoLiu, "Review Understanding of free radical scavengers used in highly durable proton exchange membranes", Progress in Natural Science: Materials International, Vol. 30, 2020, pp.732-742Zhiyan Rui, JianguoLiu, "Review Understanding of free radical scavengers used in highly durable proton exchange membranes", Progress in Natural Science: Materials International, Vol. 30, 2020, pp.732-742
이 발명은 수전해 스택(전기화학 반응기)의 내구성을 확보하기 위해 물 전기분해를 이용한 수소 생산 시스템의 물 순환라인에 배치되어 물의 전기분해 과정 및 순환 과정에서 발생하는 불순물인 라디칼과 금속이온을 제거해 물을 관리하는 장치를 제공하는 데 그 목적이 있다.This invention is arranged in the water circulation line of the hydrogen production system using water electrolysis to secure the durability of the water electrolysis stack (electrochemical reactor) to remove radicals and metal ions, which are impurities generated during the electrolysis and circulation of water. An object of the present invention is to provide a device for managing water.
상기와 같은 목적을 달성하기 위한 이 발명은 물 전기분해를 이용한 수소 생산 시스템의 물 순환라인에 배치되어 물의 전기분해 과정 및 순환 과정에서 발생하는 불순물을 제거해 물을 관리하는 장치로서, 물의 전기분해 과정에서 발생하는 라디칼을 제거하는 제1 반응탑과, 물의 순환 과정에서 발생하는 금속이온을 제거하는 제2 반응탑을 포함하며, 상기 제1 반응탑은 담체 위에 라디칼 스캐빈저(scavenger) 촉매로 구성된 충전물을 포함하는 것을 특징으로 한다. This invention for achieving the above object is a device for managing water by being disposed in a water circulation line of a hydrogen production system using water electrolysis and removing impurities generated in the electrolysis process and circulation process of water, and the electrolysis process of water A first reaction column for removing radicals generated in It is characterized in that it contains a filling.
또한, 이 발명에 따르면, 상기 제1 반응탑과 상기 제2 반응탑은 직렬 또는 병렬로 연결될 수 있다. Also, according to the present invention, the first reaction tower and the second reaction tower may be connected in series or in parallel.
또한, 이 발명에 따르면, 상기 금속이온은 Fe2+ 또는 Cu2+ 이온인 것이 바람직하다. In addition, according to the present invention, the metal ion is preferably Fe 2+ or Cu 2+ ion.
또한, 이 발명에 따르면, 상기 담체는 티타늄 산화물, 카본블랙, 그래파이트, 흑연, 활성탄, 카본 파이버, 카본 나노튜브, 풀러린, 티타늄 카바이드, 실리카겔, 알루미나 또는 그 밖의 다른 무기 다공성체 중 어느 하나로 구성될 수 있다. In addition, according to the present invention, the carrier may be composed of any one of titanium oxide, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, titanium carbide, silica gel, alumina or other inorganic porous material. have.
또한, 이 발명에 따르면, 상기 라디칼 스캐빈저 촉매는 CeO2, ZrO2 또는 이들의 복합 산화물인 것이 바람직하다. Further, according to the present invention, the radical scavenger catalyst is preferably CeO2, ZrO2 , or a complex oxide thereof.
또한, 이 발명에 따르면, 상기 라디칼 스캐빈저 촉매의 양은 상기 담체 중량 대비 1~5 중량% 범위인 것이 더 바람직하다. In addition, according to the present invention, the amount of the radical scavenger catalyst is more preferably in the range of 1 to 5% by weight based on the weight of the carrier.
또한, 이 발명에 따르면, 상기 제2 반응탑은 킬레이트 레진(chelate resin)을 포함할 수 있다.In addition, according to the present invention, the second reaction tower may include a chelate resin.
이 발명은 물 전기분해 공정에서 장기간 운전하는 과정 중에 내구성에 영향을 주는 불순물을 제거하여, 장치의 내구성을 확보하여 수소 생산시 수소 제조 원가를 낮추는 장점이 있다. 즉, 이 발명은 수소 생산 시스템의 물 순환라인에 배치되어 물의 전기분해 과정 및 순환 과정에서 발생하는 불순물인 라디칼과 금속이온을 제거해 수전해 스택(전기화학 반응기)의 내구성 확보를 통해 수소 생산시 수소 제조 원가를 낮출 수가 있다.This invention has the advantage of lowering the hydrogen production cost during hydrogen production by removing impurities affecting the durability during a long-term operation in the water electrolysis process to secure the durability of the device. That is, this invention is arranged in the water circulation line of the hydrogen production system to remove radicals and metal ions, which are impurities generated in the electrolysis process and circulation process of water, to secure the durability of the water electrolysis stack (electrochemical reactor). Manufacturing cost can be lowered.
도 1은 물을 전기화학적으로 분해하여 수소가스와 산소가스를 생산하는 전형적인 전기화학 셀의 일부분인 MEA의 개념도이다.1 is a conceptual diagram of an MEA, which is a part of a typical electrochemical cell that electrochemically decomposes water to produce hydrogen gas and oxygen gas.
도 2는 도 1의 MEA를 구비하여 물을 전기분해하는 전형적인 전기화학 셀의 구조도이다.FIG. 2 is a structural diagram of a typical electrochemical cell for electrolyzing water with the MEA of FIG. 1 .
도 3은 종래의 일반적인 전기화학용 스택의 개념도이다.3 is a conceptual diagram of a conventional general electrochemical stack.
도 4는 도 3의 전기화학용 스택을 이용해 물을 전기분해하여 수소를 생산하는 시스템을 나타낸 도면이다.FIG. 4 is a view showing a system for producing hydrogen by electrolyzing water using the electrochemical stack of FIG. 3 .
도 5는 이 발명의 한 실시예에 따른 물 관리 장치를 구비하는 물 전기분해를 이용한 수소 생산 시스템을 나타낸 도면이다.5 is a view showing a hydrogen production system using water electrolysis having a water management device according to an embodiment of the present invention.
도 6은 도 5에 도시된 제1 반응탑의 개념도이다.6 is a conceptual view of the first reaction tower shown in FIG.
도 7은 도 6에 도시된 충전물의 구조도이다.Fig. 7 is a structural diagram of the filling material shown in Fig. 6;
도 8은 이 발명의 다른 실시예에 따른 물 관리 장치를 구비하는 물 전기분해를 이용한 수소 생산 시스템을 나타낸 도면이다.8 is a view showing a hydrogen production system using water electrolysis having a water management device according to another embodiment of the present invention.
도 9은 이 발명에 따른 발명예 1, 발명예 2와 비교예 1의 성능을 비교하여 나타낸 그래프이다.9 is a graph showing the comparison of the performance of Inventive Examples 1 and 2 and Comparative Example 1 according to the present invention.
이하, 첨부된 도면을 참조하여 이 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 이 발명을 용이하게 실시할 수 있는 바람직한 실시예를 상세히 설명한다. 다만, 이 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 이 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. 또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면부호를 사용한다.Hereinafter, with reference to the accompanying drawings, a preferred embodiment in which a person of ordinary skill in the art to which this invention pertains can easily practice this invention will be described in detail. However, when it is determined that a detailed description of a related well-known function or configuration may unnecessarily obscure the gist of the present invention in describing the operating principle of the preferred embodiment of the present invention in detail, the detailed description thereof will be omitted. In addition, the same reference numerals are used for parts having similar functions and actions throughout the drawings.
도 5는 이 발명의 한 실시예에 따른 물 관리 장치를 구비하는 물 전기분해를 이용한 수소 생산 시스템을 나타낸 도면이다. 도 5에 도시된 바와 같이, 이 발명의 한 실시예에 따른 물 관리 장치는 도 4와 동일 개념으로 구성되는 수소 생산 시스템(400A)의 물 순환라인에 배치되어 물의 전기분해 과정 및 순환 과정에서 수전해 스택(전기화학 반응기)의 내구성에 영향을 주는 불순물을 제거하여 물을 관리하기 위한 것이다. 따라서, 이 실시예에서는 도 4와 동일 개념을 갖는 수소 생산 시스템에 대한 설명을 생략하고 동일하거나 유사한 도면부호를 사용하기로 한다.5 is a view showing a hydrogen production system using water electrolysis having a water management device according to an embodiment of the present invention. As shown in FIG. 5, the water management device according to an embodiment of the present invention is disposed in the water circulation line of the hydrogen production system 400A configured in the same concept as in FIG. 4 to receive power in the electrolysis process and circulation process of water. This is to manage water by removing impurities that affect the durability of the stack (electrochemical reactor). Therefore, in this embodiment, the description of the hydrogen production system having the same concept as that of FIG. 4 is omitted and the same or similar reference numerals are used.
도 5에 도시된 바와 같이, 이 실시예의 물 관리 장치는 물의 전기분해 과정에서 발생하는 라디칼의 제거와, 물의 순환 과정에서 발생하는 금속이온의 제거를 위해 구성한 것이다. 즉, 이 실시예의 물 관리 장치는 수전해 스택(도 3)내에서 발생하는 라디칼을 제거하기 위한 제1 반응탑(500)과, 수소 생산 시스템(도 4)내에서 발생하는 Fe2+ 또는 Cu2+ 이온을 제거하기 위한 제2 반응탑(600)을 구비하되, 제1 반응탑(500)과 제2 반응탑(600)을 직렬로 구비한 것이다. 여기서, 제2 반응탑(흡착탑)(600)은 일반적으로 상용화된 중금속 제거에 적용하는 킬레이트 레진(chelate resin)을 적용하는 것이 바람직하다.As shown in FIG. 5 , the water management device of this embodiment is configured to remove radicals generated in the electrolysis process of water and metal ions generated in the water cycle process. That is, the water management device of this embodiment includes the first reaction tower 500 for removing radicals generated in the water electrolysis stack (FIG. 3), and Fe 2+ or Cu generated in the hydrogen production system (FIG. 4). A second reaction tower 600 for removing 2+ ions is provided, and the first reaction tower 500 and the second reaction tower 600 are provided in series. Here, the second reaction tower (adsorption tower) 600 is generally a commercially available chelate resin applied for heavy metal removal is preferably applied.
이 발명에 따른 물 관리 장치의 개발의 필요성 확인을 위해, 먼저 OH 라디칼 생성과정을 설명하면 다음과 같다.In order to confirm the necessity of the development of the water management device according to the present invention, the OH radical generation process will be described as follows.
전기분해 셀의 양극에서 발생한 산소가스(O2)와 수소이온(H+)은 과산화수소(H2O2)를 생성하고(반응식 4), 과산화수소는 도 4의 수소 생산 시스템의 배관(금속제)에서 용출되는 Fe2+ 또는 Cu2+ 등과 반응하여, 도 1의 막(106, 양이온 교환막)의 내구성에 영향을 주는 OH 라디칼을 생성한다(반응식 5). OH 라디칼 생성 반응은 펜톤 반응으로 알려져 있다.Oxygen gas (O 2 ) and hydrogen ions (H + ) generated at the anode of the electrolysis cell generate hydrogen peroxide (H 2 O 2) (reaction formula 4), and the hydrogen peroxide is in the pipe (metal) of the hydrogen production system of FIG. It reacts with the eluted Fe 2+ or Cu 2+ to generate OH radicals that affect the durability of the membrane 106 (cation exchange membrane) of FIG. 1 (Scheme 5). The OH radical generation reaction is known as the Fenton reaction.
[반응식 4][Scheme 4]
O2 + 2H+ + 2e- → H2O2 O 2 + 2H + + 2e - → H 2 O 2
[반응식 5][Scheme 5]
H2O2 + Fe2+ → Fe3+ + HO· + HO- H 2 O 2 + Fe 2+ → Fe 3+ + HO · + HO -
상기 반응식 5에 의해 생성된 OH 라디칼은 전기화학 셀의 핵심 구성요소인 도 1의 MEA내 고분자 성분의 막(106)을 공격하여 내구성을 약화시키는 것으로 알려져 있다.It is known that the OH radical generated by Scheme 5 attacks the membrane 106 of the polymer component in the MEA of FIG. 1, which is a key component of the electrochemical cell, to weaken the durability.
도 6 및 도 7은 반응식 5에 의해 생성된 OH 라디칼을 제거하기 위한 것으로서, 도 6은 도 5에 도시된 제1 반응탑의 개념도이고, 도 7은 도 6에 도시된 충전물의 구조도이다.6 and 7 are for removing OH radicals generated by Scheme 5. FIG. 6 is a conceptual diagram of the first reaction tower shown in FIG. 5, and FIG. 7 is a structural diagram of the packing shown in FIG.
도 6에 도시된 바와 같이, 제1 반응탑(500)은 일반적으로 사용되는 물 정제탑과 유사하게 구성되는 바, 충전물(510)과 충전물(510)의 유출을 방지하는 방지물(520)로 구성된다. 한편, 충전물(510)은 도 7과 같이 담체(511)에 라디칼 스캐빈저(scavenger)를 위한 촉매(512)로 구성된다. 담체(511)로는 티타늄 산화물, 카본블랙, 그래파이트, 흑연, 활성탄, 카본 파이버, 카본 나노튜브, 풀러린, 티타늄 카바이드, 실리카겔, 알루미나 또는 그 밖의 다른 무기 다공성체를 사용하며, 바람직하게는 규칙적이고 미세한 기공구조를 갖는 티타늄 계열 무기체가 적합하다. 한편, 담체(610)는 0.02mm 이상의 입경을 갖는 것이 바람직하다. As shown in FIG. 6 , the first reaction tower 500 is configured similarly to a generally used water purification tower, with a filler 510 and a filler 520 for preventing the outflow of the filler 510 . is composed On the other hand, the packing 510 is composed of a catalyst 512 for radical scavenger (scavenger) in the carrier 511 as shown in FIG. As the carrier 511, titanium oxide, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, titanium carbide, silica gel, alumina or other inorganic porous material is used, and preferably with regular and fine pores. A titanium-based inorganic material having a structure is suitable. On the other hand, the carrier 610 preferably has a particle diameter of 0.02 mm or more.
담체(511) 위에 적용되는 라디칼 스캐빈저 촉매(512)로는 CeO2, ZrO2 또는 이들의 복합 산화물이 바람직하다. 담체(511) 위에 적용되는 라디칼 스캐빈저 촉매(512)의 양은 담체(511) 중량 대비 1~5 중량% 범위인 것이 바람직하다. 그 이유는 1 중량% 이하에서는 라디칼 제거율이 낮아지고, 5 중량% 이상에서는 라디칼 제거량이 일정해지는 변곡점이기 때문이다.The radical scavenger catalyst 512 applied on the carrier 511 is preferably CeO2, ZrO2 , or a complex oxide thereof. The amount of the radical scavenger catalyst 512 applied on the carrier 511 is preferably in the range of 1 to 5% by weight based on the weight of the carrier 511 . The reason is that the radical removal rate becomes low at 1 wt% or less, and at 5 wt% or more, the radical removal amount is an inflection point at which the amount becomes constant.
담체(511) 위에 라디칼 스캐빈저 촉매(512)를 형성하는 과정은 담체와 전구체를 혼합하여 담체 위에 전구체를 흡착한 후 소결하여 얻을 수 있다. 이 과정의 반응식은 다음과 같다. The process of forming the radical scavenger catalyst 512 on the carrier 511 may be obtained by mixing the carrier and the precursor, adsorbing the precursor on the carrier, and then sintering. The reaction formula for this process is as follows.
[반응식 6][Scheme 6]
Ce(NO3)3·6H2O (CeCl3 또는 CeCl4)→ CeO2 + NOx Ce(NO 3 ) 3 .6H 2 O (CeCl 3 or CeCl 4 )→ CeO 2 + NO x
반응식 6을 위한 열분해 온도는 225~400℃가 바람직하다. 그 이유는 225℃ 이하에서는 CeO2 결정성을 얻기 힘들고, 400℃ 이상에서는 금속 결정성을 얻게 되어 촉매활성이 낮아지기 때문이다.The thermal decomposition temperature for Scheme 6 is preferably 225 to 400 °C. The reason is that it is difficult to obtain CeO 2 crystallinity at 225° C. or lower, and metal crystallinity is obtained at 400° C. or higher, resulting in lower catalytic activity.
도 8은 이 발명의 다른 실시예에 따른 물 관리 장치를 구비하는 물 전기분해를 이용한 수소 생산 시스템을 나타낸 도면이다. 도 8에 도시된 바와 같이, 이 실시예에 따른 물 관리 장치는 도 4와 동일 개념으로 구성되는 수소 생산 시스템(400B)에 설치하되, 상기와 동일 구성관계를 갖는 제1 반응탑(500)과 제2 반응탑(600)을 병렬로 구성한 것이다.8 is a view showing a hydrogen production system using water electrolysis having a water management device according to another embodiment of the present invention. As shown in FIG. 8 , the water management device according to this embodiment is installed in the hydrogen production system 400B configured in the same concept as in FIG. 4 , but with the first reaction tower 500 having the same configuration as above and The second reaction tower 600 is configured in parallel.
아래에서는 이 발명의 실시예에 따른 결과에 대해 설명한다.Hereinafter, the results according to the embodiment of the present invention will be described.
[발명예 1][Invention Example 1]
수소 생산용 전기화학 셀을 제작 평가한 후, 도 5에 도시된 수소 생산 시스템(400A)에 적용하였다.After the production and evaluation of the electrochemical cell for hydrogen production, it was applied to the hydrogen production system 400A shown in FIG. 5 .
(1) MEA(100)의 제조 공정(1) Manufacturing process of MEA (100)
제1, 제2 전기화학 반응층(104, 108)의 형성 공정, 막(106) 위에 형성하는 공정, 잉크 제조 공정, 잉크 전사 공정 및 열압착 공정으로 구성된다.It consists of a process of forming the first and second electrochemical reaction layers 104 and 108 , a process of forming on the film 106 , an ink manufacturing process, an ink transfer process, and a thermocompression bonding process.
(1-1) 제1, 제2 전기화학 촉매(112, 116)의 합성 공정(1-1) Synthesis process of the first and second electrochemical catalysts 112 and 116
제1, 제2 전기화학 촉매(112, 116)는 상용화된 Pt/C(Premetek사, 백금담질량 30%)를 사용하였다.As the first and second electrochemical catalysts 112 and 116, commercially available Pt/C (Premetek, 30% by weight of platinum) was used.
(1-2) 제1, 제2 전기화학 촉매(112, 116)의 잉크 제조 공정(1-2) Ink manufacturing process of the first and second electrochemical catalysts 112 and 116
전기화학 촉매(112, 116)로 Pt/C(Premetek사, 백금담질량 30%), 바인더로 나피온 용액(등록상품, 듀폰사)을 사용하였다. 사용된 촉매와 Nafion 용액은 고체 중량 대비 1:7.5가 되도록 이소프로필 알코올 용매에 혼합하였다. 촉매의 분산을 위하여 교반과 초음파를 번갈아 1시간씩 2번 처리하였다.Pt/C (Premetek, 30% platinum loading) as the electrochemical catalysts 112 and 116, and Nafion solution (registered product, DuPont) were used as the binder. The catalyst and Nafion solution used were mixed in an isopropyl alcohol solvent in a ratio of 1:7.5 based on the solid weight. In order to disperse the catalyst, stirring and ultrasonication were alternately treated twice for 1 hour each.
(1-3) 제1, 제2 전기화학 촉매(112, 116)의 전사 공정(1-3) Transfer process of the first and second electrochemical catalysts 112 and 116
(1-2) 공정에서 얻은 잉크를 전기방사(Electro spray) 전용 주사기에 옮기고, 카본 시트에 전사한 후 대기 분위기 중 90℃에서 30분간 건조시킴으로써 전기화학 반응층을 제작하였다. 전기화학 반응층의 두께는 산화물 촉매 담지량이 약 1㎎/㎠가 되도록 조절하였다.(1-2) The ink obtained in the process was transferred to a dedicated syringe for electrospray, transferred to a carbon sheet, and dried at 90° C. for 30 minutes in an atmospheric atmosphere to prepare an electrochemical reaction layer. The thickness of the electrochemical reaction layer was adjusted so that the oxide catalyst loading amount was about 1 mg/cm 2 .
(1-4) 열압착 공정(1-4) Thermocompression bonding process
상기에서 제작된 전기화학 촉매(112, 116)는 각각으로 막(106)의 일측 및 반대쪽 각각의 표면에 120℃의 조건에서 10MPa의 압력으로 2분 동안 열압착 처리를 하여 MEA(100)를 얻었다.The electrochemical catalysts 112 and 116 prepared above were subjected to thermocompression treatment for 2 minutes at a pressure of 10 MPa under a condition of 120 ° C. .
(2) 수전해 시스템의 구성(2) Composition of water electrolysis system
상기 절차에 의해 MEA를 제작한 후 1NM3 H2/hr 전기화학 셀(또는 스택, 300)을 제작하였고, 스택을 이용해 물을 전기분해하여 수소를 생산하는 시스템(400)을 도 4과 같이 구성하였다.After manufacturing the MEA by the above procedure, a 1NM 3 H 2 /hr electrochemical cell (or stack, 300) was manufactured, and a system 400 for producing hydrogen by electrolysis of water using the stack is configured as shown in FIG. 4 . did.
(3) 물 정제 공정 구성(3) Water purification process composition
(3-1) 제1 반응탑(500)의 제작(3-1) Preparation of the first reaction tower 500
충전물(510)에 사용하는 담체(511)는 내구성이 우수한 티타늄 산화물(데구사 제품, P25)을 적용하였다. 구입한 담체를 약산(황산, 1Mole)에 방치한 후 순수로 세정하였다. 담체 위에 적용되는 라디칼 스캐빈저 촉매(512)로는 CeO2와 ZrO2 복합물을 중량 5% 적용하였다. 담체 위에 형성되는 CeO2와 ZrO2의 몰비는 90:10으로 하였다. As the carrier 511 used for the filler 510, titanium oxide (Degussa, P25) with excellent durability was applied. The purchased carrier was left in a weak acid (sulfuric acid, 1 Mole) and washed with pure water. As the radical scavenger catalyst 512 applied on the carrier, 5% by weight of a CeO 2 and ZrO 2 composite was applied. The molar ratio of CeO 2 and ZrO 2 formed on the carrier was set to 90:10.
제조는 담체(95 중량%)와 CeO2 , ZrO2 전구체 CeCl4와 ZrCl4를 몰비로 구성하여 IPA에 혼합하여 80℃, 밤새도록 건조한 후 이를 400℃, 2시간 소결하여 충전물를 얻었다. 얻어진 충전물을 반응탑에 충진하여 제1 반응탑을 제작하였다. Preparation was prepared by mixing a carrier (95 wt%) and CeO 2 , ZrO 2 precursor CeCl 4 and ZrCl 4 in a molar ratio, mixing them in IPA, and drying them at 80° C. overnight, then sintering them at 400° C. for 2 hours to obtain a filling. The obtained packing was filled in the reaction tower to prepare a first reaction tower.
(3-2) 제2 반응탑(600)의 제작(3-2) Preparation of the second reaction tower 600
Bio-rad사의 Fe2+ 또는 Cu2+ 이온 제거용 Chelex 100을 선정하여 적용하였다. Chelex 100 for removing Fe 2+ or Cu 2+ ions from Bio-rad was selected and applied.
(3-3) 공정의 구성(3-3) Construction of the process
도 5와 같이 제1 반응탑(500)과 제2 반응탑(600)을 직렬로 운영하였다.5, the first reaction tower 500 and the second reaction tower 600 were operated in series.
(4) 평가방법(4) Evaluation method
전기화학 셀(또는 스택, 300) 및 시스템(400A)의 온도는 50℃(도 5의 416 온도센서)를 유지했고, 전류밀도는 3A/cm2(일반적인 전류밀도 1A/cm2)로 가속화 내구성 평가를 하여 도 9에 도시하였다.The temperature of the electrochemical cell (or stack, 300) and system 400A was maintained at 50° C. (416 temperature sensor in FIG. 5), and the current density was accelerated to 3 A/cm 2 (typical current density 1 A/cm 2 ). The evaluation was performed and shown in FIG. 9 .
[발명예 2][Invention Example 2]
수소 생산용 전기화학 셀을 제작 평가한 후, 도 8에 도시된 수소 생산 시스템(400B)에 적용하였다.After the production and evaluation of the electrochemical cell for hydrogen production, it was applied to the hydrogen production system 400B shown in FIG. 8 .
(1) MEA(100)의 제조 공정: 발명예 1과 동일하게 적용하였다.(1) Manufacturing process of MEA (100): It was applied in the same manner as in Invention Example 1.
(2) 수전해 시스템의 구성: 발명예 1과 동일하게 적용하였다.(2) Configuration of water electrolysis system: It was applied in the same manner as in Invention Example 1.
(3) 물 정제 공정 구성(3) Water purification process composition
(3-1) 제1 반응탑(500) 제작: 발명예 1과 동일하게 적용하였다.(3-1) Preparation of the first reaction tower 500: It was applied in the same manner as in Inventive Example 1.
(3-2) 제2 반응탑(600) 제작: 발명예 1과 동일하게 적용하였다.(3-2) Preparation of the second reaction tower 600: It was applied in the same manner as in Inventive Example 1.
(3-3) 공정구성: 도 8과 같이 제1 반응탑(500)과 제2 반응탑(600)을 병렬로 운영하였다.(3-3) Process configuration: As shown in FIG. 8 , the first reaction tower 500 and the second reaction tower 600 were operated in parallel.
(4) 평가방법(4) Evaluation method
전기화학 셀(또는 스택, 300) 및 시스템(400B)의 온도는 50℃(도 8의 416 온도센서)를 유지했고, 전류밀도는 3A/cm2(일반적인 전류밀도 1A/cm2)로 가속화 내구성 평가를 하여 도 9에 발명예 2로 도시하였다.The temperature of the electrochemical cell (or stack, 300) and system 400B was maintained at 50° C. (416 temperature sensor in FIG. 8), and the current density was accelerated to 3 A/cm 2 (typical current density of 1 A/cm 2 ). It was evaluated and shown as Invention Example 2 in FIG. 9 .
[비교예 1][Comparative Example 1]
수소 생산용 전기화학 셀을 제작 평가한 후, 도 4에 도시된 수소 생산 시스템(400)에 적용하였다.After the production and evaluation of the electrochemical cell for hydrogen production, it was applied to the hydrogen production system 400 shown in FIG. 4 .
(1) MEA(100) 제조 공정: 발명예 1과 동일하게 적용하였다.(1) MEA (100) manufacturing process: It was applied in the same manner as in Inventive Example 1.
(2) 수전해 시스템의 구성: 발명예 1과 동일하게 적용하였다.(2) Configuration of water electrolysis system: It was applied in the same manner as in Invention Example 1.
(3) 물 정제 공정 구성: 제1 반응탑(500)과 제2 반응탑(600)이 없는 일반 공정으로 구성하였다.(3) Water purification process configuration: It was configured as a general process without the first reaction tower 500 and the second reaction tower 600 .
(4) 평가방법(4) Evaluation method
전기화학 셀(또는 스택, 300) 및 시스템(400)의 온도는 50℃(도 4의 416 온도센서)를 유지했고, 전류밀도는 3A/cm2(일반적인 전류밀도 1A/cm2)로 가속화 내구성 평가를 하여 도 9에 비교예 1로 도시하였다.The temperature of the electrochemical cell (or stack, 300) and system 400 was maintained at 50° C. (416 temperature sensor in FIG. 4), and the current density accelerated to 3 A/cm 2 (typical current density 1 A/cm 2 ). It was evaluated and shown as Comparative Example 1 in FIG. 9 .
[결과][result]
도 9은 이 발명에 따른 발명예 1, 발명예 2와 비교예 1의 성능을 비교하여 나타낸 그래프로서, 수전해 스택을 가속화 운전을 통해 내구성을 비교 평가한 것이다. 9 is a graph showing the comparison of the performance of Inventive Examples 1 and 2 and Comparative Example 1 according to the present invention, in which the durability of the water electrolytic stack is compared and evaluated through accelerated operation.
도 9에 나타난 바와 같이, 발명예 1(제1, 제2 반응탑(500, 600)을 직렬로 운전하는 경우)와 발명예 2(제1, 제2 반응탑(500, 600)을 병렬로 운전하는 경우)가, 비교예 1(제1, 제2 반응탑(500, 600)이 없는 경우)의 내구성(800시간 내외) 보다 1.5배 이상 내구성이 개선됨을 확인하였다.9, Inventive Example 1 (when the first and second reaction towers 500 and 600 are operated in series) and Inventive Example 2 (the first and second reaction towers 500 and 600 are operated in parallel) operation), it was confirmed that the durability is improved by 1.5 times or more than the durability (within 800 hours) of Comparative Example 1 (when the first and second reaction towers 500 and 600 are not present).
상기와 같은 가속화 실험 결과를 적용한 상술한 발명예들을 통해 알 수 있듯이, 제1, 제2 반응탑(500, 600)을 물처리 공정에 적용하는 경우, 수전해 시스템 내 스택의 내구성을 개선하고, 이로서 수소 제조가격을 낮추는 것이 가능하다.As can be seen through the above-described invention examples to which the accelerated test results are applied as described above, when the first and second reaction towers 500 and 600 are applied to the water treatment process, the durability of the stack in the water electrolysis system is improved, This makes it possible to lower the hydrogen production cost.
[부호의 설명][Explanation of code]
100 : MEA 200 : 전기화학 셀100: MEA 200: electrochemical cell
300 : 전기화학용 스택 400, 400A, 400B : 수소 생산 시스템300: electrochemical stack 400, 400A, 400B: hydrogen production system
500 : 제1 반응탑 510 : 충전물500: first reaction tower 510: packing
511 : 담체 512: 라디칼 스캐빈저 촉매511: carrier 512: radical scavenger catalyst
520 : 방지물 600 : 제2 반응탑520: prevention material 600: second reaction tower

Claims (7)

  1. 물 전기분해를 이용한 수소 생산 시스템의 물 순환라인에 배치되어 물의 전기분해 과정 및 순환 과정에서 발생하는 불순물을 제거해 물을 관리하는 장치로서,A device that manages water by removing impurities generated during the electrolysis and circulation of water by being placed in the water circulation line of a hydrogen production system using water electrolysis,
    물의 전기분해 과정에서 발생하는 라디칼을 제거하는 제1 반응탑과,A first reaction tower for removing radicals generated in the electrolysis process of water;
    물의 순환 과정에서 발생하는 금속이온을 제거하는 제2 반응탑을 포함하며,It includes a second reaction tower for removing metal ions generated in the water cycle process,
    상기 제1 반응탑은 담체 위에 라디칼 스캐빈저(scavenger) 촉매로 구성된 충전물을 포함하는 것을 특징으로 하는 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치.The first reaction tower is a water management device in a hydrogen production system using water electrolysis, characterized in that it comprises a charge composed of a radical scavenger catalyst on a carrier.
  2. 청구항 1에 있어서, The method according to claim 1,
    상기 제1 반응탑과 상기 제2 반응탑은 직렬 또는 병렬로 연결되는 것을 특징으로 하는 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치.The first reaction tower and the second reaction tower are water management apparatus in a hydrogen production system using water electrolysis, characterized in that connected in series or parallel.
  3. 청구항 1에 있어서, The method according to claim 1,
    상기 금속이온은 Fe2+ 또는 Cu2+ 이온인 것을 특징으로 하는 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치.The metal ion is a water management device in a hydrogen production system using water electrolysis, characterized in that Fe 2+ or Cu 2+ ion.
  4. 청구항 1에 있어서, The method according to claim 1,
    상기 담체는 티타늄 산화물, 카본블랙, 그래파이트, 흑연, 활성탄, 카본 파이버, 카본 나노튜브, 풀러린, 티타늄 카바이드, 실리카겔, 알루미나 또는 그 밖의 다른 무기 다공성체 중 어느 하나로 구성되는 것을 특징으로 하는 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치.The carrier is water electrolysis, characterized in that it is composed of any one of titanium oxide, carbon black, graphite, graphite, activated carbon, carbon fiber, carbon nanotube, fullerene, titanium carbide, silica gel, alumina or other inorganic porous material. Water management system in the hydrogen production system using.
  5. 청구항 4에 있어서, 5. The method according to claim 4,
    상기 라디칼 스캐빈저 촉매는 CeO2, ZrO2 또는 이들의 복합 산화물인 것을 특징으로 하는 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치. The radical scavenger catalyst is CeO2, ZrO2 , or a water management device in a hydrogen production system using water electrolysis, characterized in that a complex oxide thereof.
  6. 청구항 5에 있어서,6. The method of claim 5,
    상기 라디칼 스캐빈저 촉매의 양은 상기 담체 중량 대비 1~5 중량% 범위인 것을 특징으로 하는 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치.The amount of the radical scavenger catalyst is a water management device in a hydrogen production system using water electrolysis, characterized in that in the range of 1 to 5% by weight relative to the weight of the carrier.
  7. 청구항 1에 있어서, The method according to claim 1,
    상기 제2 반응탑은 킬레이트 레진(chelate resin)을 포함하는 것을 특징으로 하는 물 전기분해를 이용한 수소 생산 시스템에서의 물 관리 장치.The second reaction tower is a water management device in a hydrogen production system using water electrolysis, characterized in that it comprises a chelate resin (chelate resin).
PCT/KR2021/003933 2021-02-25 2021-03-30 Water management apparatus in hydrogen production system using water electrolysis WO2022181875A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0025773 2021-02-25
KR20210025773 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181875A1 true WO2022181875A1 (en) 2022-09-01

Family

ID=83048545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003933 WO2022181875A1 (en) 2021-02-25 2021-03-30 Water management apparatus in hydrogen production system using water electrolysis

Country Status (2)

Country Link
KR (1) KR102610119B1 (en)
WO (1) WO2022181875A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081172A (en) * 1994-06-16 1996-01-09 Kurita Water Ind Ltd Treatment of ammonia nitrogen-containing water
JP2002516755A (en) * 1998-05-29 2002-06-11 プロートン エネルギー システムズ.インク Water electrolysis fluid management system
JP4177521B2 (en) * 1999-06-30 2008-11-05 関西電力株式会社 Method for treating wastewater containing metal and ammonia
JP2011167633A (en) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus
JP5062974B2 (en) * 2005-06-14 2012-10-31 旭化成ケミカルズ株式会社 Ion processing apparatus and method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013243118A (en) 2012-04-26 2013-12-05 Nissan Motor Co Ltd Metal air battery, and method for recovering metal from used metal air battery
KR101801364B1 (en) 2016-10-07 2017-11-24 김상선 Hydrogen generation apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH081172A (en) * 1994-06-16 1996-01-09 Kurita Water Ind Ltd Treatment of ammonia nitrogen-containing water
JP2002516755A (en) * 1998-05-29 2002-06-11 プロートン エネルギー システムズ.インク Water electrolysis fluid management system
JP4177521B2 (en) * 1999-06-30 2008-11-05 関西電力株式会社 Method for treating wastewater containing metal and ammonia
JP5062974B2 (en) * 2005-06-14 2012-10-31 旭化成ケミカルズ株式会社 Ion processing apparatus and method
JP2011167633A (en) * 2010-02-18 2011-09-01 Kurita Water Ind Ltd Water treatment method and apparatus

Also Published As

Publication number Publication date
KR20220121658A (en) 2022-09-01
KR102610119B1 (en) 2023-12-05

Similar Documents

Publication Publication Date Title
US5770033A (en) Methods and apparatus for using gas and liquid phase cathodic depolarizers
US5460705A (en) Method and apparatus for electrochemical production of ozone
US5635039A (en) Membrane with internal passages to permit fluid flow and an electrochemical cell containing the same
KR101769756B1 (en) Electrochemical cell and electrochemical stack using the same
CN100337723C (en) Electrochemical generator
WO2019135451A1 (en) Electrochemical hydrogenation reactor and method for producing hydride by using same
RO115180B1 (en) Electrochemical process and cell for the direct preparation of halogen gas
KR20100039240A (en) Operation method of ozonizer and ozonizer apparatus used therefor
WO2022177160A1 (en) Membrane-electrode assembly for polymer electrolyte water electrolysis stack and manufacturing method therefor
JP3739826B2 (en) Polymer electrolyte fuel cell system
KR101769751B1 (en) Electrochemical stack having electrochemical reaction chamber frame
WO2021107420A1 (en) Photoelectrode for photoelectrochemical water treatment, preparation method thereof and use thereof
WO2022114926A1 (en) Method for producing electrolyte for vanadium redox flow battery
KR102470199B1 (en) Hydrogen purification apparatus in hydrogen generating system using water electrolysis
WO2022181875A1 (en) Water management apparatus in hydrogen production system using water electrolysis
JP4512788B2 (en) High temperature steam electrolyzer
KR101769754B1 (en) Electrochemical reaction chamber frame, and electrochemical cell and electrochemical stack having the same
WO2023249360A1 (en) Antioxidant based on graphene oxide-cerium polyphosphate nanocomposite and method for preparing same
US20050255347A1 (en) Electrode paste for manufacturing a catalyst layer for an electrochemical cell and method for manufacturing a catalyst layer
WO2019212071A1 (en) Electrochemical dehydration reactor and method for manufacturing hydrogen by using same
US3196048A (en) Cathode catalyst for fuel cells
KR20200052752A (en) Long Life Membrane Electrode Assembly and the Electrochemical Cell using Membrane Electrode Assembly
CN116590728A (en) AEM electrolytic water hydrogen production electrolytic tank
CN112376072A (en) Membrane electrode for producing ozone water by using tap water and preparation method thereof
WO2021096256A1 (en) Water-electrolysis hydrogen purification method using hydrogen separator containing palladium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928171

Country of ref document: EP

Kind code of ref document: A1