WO2022178678A1 - 一种光学系统、装置及终端 - Google Patents
一种光学系统、装置及终端 Download PDFInfo
- Publication number
- WO2022178678A1 WO2022178678A1 PCT/CN2021/077509 CN2021077509W WO2022178678A1 WO 2022178678 A1 WO2022178678 A1 WO 2022178678A1 CN 2021077509 W CN2021077509 W CN 2021077509W WO 2022178678 A1 WO2022178678 A1 WO 2022178678A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarized light
- light
- module
- linearly polarized
- target
- Prior art date
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 82
- 230000010287 polarization Effects 0.000 claims abstract description 76
- 230000005540 biological transmission Effects 0.000 claims abstract description 53
- 239000003086 colorant Substances 0.000 claims abstract description 41
- 238000001514 detection method Methods 0.000 claims description 58
- 238000003384 imaging method Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 abstract description 23
- 238000010586 diagram Methods 0.000 description 26
- 238000005259 measurement Methods 0.000 description 22
- 238000013461 design Methods 0.000 description 18
- 230000010363 phase shift Effects 0.000 description 10
- 238000001314 profilometry Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 3
- 238000000691 measurement method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 238000000605 extraction Methods 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000009500 colour coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012876 topography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/2531—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object using several gratings, projected with variable angle of incidence on the object, and one detection device
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/24—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
- G01B11/25—Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures by projecting a pattern, e.g. one or more lines, moiré fringes on the object
- G01B11/254—Projection of a pattern, viewing through a pattern, e.g. moiré
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/10—Beam splitting or combining systems
- G02B27/1086—Beam splitting or combining systems operating by diffraction only
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/283—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
- G02B27/286—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
Definitions
- the present application relates to the field of optical technology, and in particular, to an optical system, a device, and a terminal.
- Structured light measurement technology can obtain the three-dimensional contour information of the target.
- it can be applied to driver authentication, in-vehicle monitoring systems, gesture recognition, and close-range obstacle detection.
- Phase Measuring Profilometry is widely used in structured light measurement due to its advantages of non-contact, high precision, and fast measurement speed.
- the measurement principle of phase measurement profilometry is to emit sinusoidal grating fringes to the measured target, and take an image of the sinusoidal grating fringes deformed by the modulation of the measured target, and then calculate the three-dimensional topography of the measured target from the obtained deformation image.
- the present application provides an optical system, a device and a terminal for synchronously projecting multi-frequency grating fringes, so as to improve the convenience and efficiency of the grating fringe projection and reception process.
- the present application provides an optical system, the optical system includes a light source module and a light emission module; the light source module is configured to output first polarized light, and the first polarized light includes linearly polarized light of N colors , wherein the linearly polarized lights of different colors have the same polarization angle and different transmission directions, and the N is an integer greater than 1; the light emitting module is used to receive the first polarized light, according to the first The polarized light generates a second polarized light, and the second polarized light is used to project the grating fringes of N colors, wherein the spatial frequencies of the grating fringes of different colors are different.
- the light source module of the optical system cooperates with the light emitting module to generate the second polarized light for projecting grating fringes of different spatial frequencies according to linearly polarized light of multiple colors. Therefore, the optical system can simultaneously project the grating fringes of multiple frequencies. , thereby simplifying the grating fringe projection process and improving the convenience and efficiency of grating fringe projection.
- the optical system can support the receiving end to achieve synchronous reception of multi-frequency grating fringes, thereby improving the convenience and efficiency of grating fringe reception.
- the optical system further includes a light detection module; the light detection module is configured to receive target polarized light corresponding to the second polarized light, and obtain a plurality of target polarized light according to the target polarized light
- Target grating fringe images the plurality of target grating fringe images include a plurality of target grating fringe images corresponding to each of the N colors, wherein the grating fringes in the at least two target grating fringe images corresponding to each color are The initial phase is different.
- the optical system further includes a light detection module, which can independently transmit and receive light.
- the light detection module can detect the second polarized light.
- the corresponding target polarized light, and according to the target polarized light, the grating fringes of various spatial frequencies and various initial phases, that is, the images of the multi-frequency and multi-phase grating fringes are obtained.
- multiple images of multi-frequency and poly-phase grating fringes can be determined at the same time through one polarized light projection and detection, which can greatly reduce the number of times of projecting and collecting multi-frequency and poly-phase grating fringes, and improve the multi-frequency and poly-phase grating fringes. Convenience and efficiency of the fringe measurement process.
- the target polarized light is the polarized light modulated by the target object for the second polarized light.
- the above-mentioned optical system can realize the convenient and efficient contour measurement of the target object.
- the optical system can synchronously project multi-frequency grating fringes to the target object, and the light detection module receives the target polarized light modulated by the second polarized light by the target object, and can obtain all the target polarized light.
- the multi-frequency grating fringes are modulated by the target object, the corresponding multi-frequency and multi-phase deformation grating fringe images are obtained, and then the three-dimensional contour measurement of the target object is performed according to the multi-frequency and multi-phase deformation grating fringe images.
- the light detection module includes an imaging module and a color polarization detection module; the imaging module is used to receive the target polarized light, wherein the target polarized light is used to project N colors of The initial target grating fringes, the initial target grating fringes are the grating fringes modulated by the grating fringes projected by the second polarized light; the color polarization detection module is used to perform at least the initial grating fringes corresponding to each color respectively. Phase shift with two different phase values and generate multiple target grating fringe images corresponding to each color.
- the imaging module in the light detection module receives the target polarized light modulated by the second polarized light
- the color polarization detection module in the light detection module receives the target polarized light according to the target polarized light received by the imaging module.
- the multi-frequency and multi-phase grating fringes are acquired, so that the light detection module can acquire the multi-frequency and multi-phase grating fringes in one polarized light receiving process, thereby improving the receiving efficiency of the grating fringes.
- the light source module includes N monochromatic light sources, N angle adjustment modules and beam combining modules; among the N monochromatic light sources, each monochromatic light source is used to output a line of a corresponding color polarized light; in the N angle adjustment modules, each angle adjustment module is used to adjust the polarization angle of the linearly polarized light from the corresponding monochromatic light source to the target angle; the beam combining module is used to The transmission directions of the N beams of linearly polarized light of the N angle adjustment modules are adjusted to respectively have different included angles with the target direction, so as to obtain the first polarized light.
- the N monochromatic light sources are in one-to-one correspondence with the N colors
- the N angle adjustment modules are in a one-to-one correspondence with the N monochromatic light sources.
- the light source module can separately adjust the linearly polarized light emitted by different monochromatic light sources, so that the polarization angles of each linearly polarized light emitted by different single light sources are consistent, but the transmission directions are different, so as to further generate Polarized light that projects multi-frequency grating fringes.
- the angle adjustment module includes a 1/2 wave plate, and the angle adjustment module is located between the corresponding monochromatic light source and the beam combining module.
- the angle adjustment module set between different monochromatic light sources and the beam combining module adopts a 1/2 wave plate, which can easily and quickly adjust the polarization angle of the linearly polarized light emitted by the monochromatic light source, and the system's Both the setup complexity and the operational complexity of the components are low.
- the beam combining module includes N-1 beam combining elements, wherein: the first beam combining element in the N-1 beam combining elements is used for transmitting the N angles from the Adjusting the first linearly polarized light of the first angle adjustment module in the modules, reflecting the second linearly polarized light from the second angle adjustment module of the N angle adjustment modules, and controlling the first linearly polarized light and the second linearly polarized light
- the transmission direction of the polarized light and the target direction have different included angles
- the first beam combining element is used to transmit the third linearly polarized light from the second beam combining element and reflect the third angle from the N angle adjustment modules
- the fourth linearly polarized light of the module is adjusted, and the transmission directions of the third linearly polarized light and the fourth linearly polarized light are controlled to have different included angles from the target direction.
- the beam combining element adjusts the transmission direction of the received linearly polarized light by selectively transmitting or reflecting the received linearly polarized light.
- the transmission direction of the linearly polarized light is adjusted so that the transmission directions of each linearly polarized light are different, and the spatial frequencies of the grating fringes projected by each linearly polarized light are different.
- either beam combining element includes a dichroic beam splitter.
- the use of multiple dichroic beamsplitters can easily and quickly adjust the polarization angles of the linearly polarized light emitted by multiple monochromatic light sources, and the system setup complexity and component operation complexity are both low .
- the target direction is the transmission direction of the linearly polarized light output by one of the N monochromatic light sources.
- the target direction is set as the transmission direction of the linearly polarized light emitted by one of the monochromatic light sources, and then using this direction as a reference to adjust the transmission direction of the linearly polarized light emitted by the other monochromatic light sources, the system can be improved. Ease of operation for settings.
- the light emitting module includes a first light splitting module, a direction adjustment module, a second light splitting module and a polarization adjusting module;
- the first light splitting module is used for receiving the first polarized light, and Splitting the first polarized light into a first linearly polarized light along a first direction and a second linearly polarized light along a second direction;
- the direction adjustment module is configured to receive the second linearly polarized light, and split the The transmission direction of the second linearly polarized light is adjusted to a third direction;
- the second light splitting module is used to receive the first linearly polarized light from the first light splitting module and the second linearly polarized light from the direction adjustment module light, and generate interference light after the interference of the first linearly polarized light and the second linearly polarized light;
- the polarization adjustment module is configured to receive the interference light, and adjust the polarization type of the interference light to a circular polarization type, The second polarized light is obtained.
- the light emitting module divides the first polarized light from the light source module into two polarized lights through the first light splitting module, and the two polarized lights are then converged on the second light splitting module, and interference fringes can be obtained after interference occurs. Interfering light can thus be used to project the grating fringes.
- the direction adjustment module can adjust the angle between the two beams of polarized light, thereby adjusting the shape characteristics of the grating fringes projected by the interference light.
- the polarization adjustment module can make the grating fringes projected by the polarized light appear by adjusting the polarization type of the polarized light. Through the cooperation of the modules, the light emitting module can output the second polarized light capable of projecting multi-frequency fringes.
- the direction adjustment module includes a first reflection mirror and a second reflection mirror; the first reflection mirror is used to receive the second linearly polarized light from the first light splitting module, and will receive the second linearly polarized light.
- the received second linearly polarized light is reflected to the second reflector; the second reflector is used to reflect the received second linearly polarized light, so that the second linearly polarized light is reflected along the third direction incident on the second light splitting module.
- the direction adjustment module can adjust the transmission direction of the linearly polarized light conveniently and quickly through the cooperation between the two mirrors, and the complexity of setting the system and the operation complexity of components are both low.
- the second direction is perpendicular to the first direction.
- the first light splitting module and the second light splitting module include polarized light splitting prisms.
- the polarizing beam splitter prism is an optical element used to separate the horizontally polarized light and the vertically polarized light, and can also combine the horizontally polarized light and the vertically polarized light. Therefore, through the cooperation of the two polarized beam splitting prisms, the first polarized light can be easily and efficiently split and then combined, so as to realize the interference of the polarized light.
- the light emitting module further includes a projection module configured to receive the second polarized light and project the second polarized light to the target object.
- the optical system can be used to detect the contour of the target object. After the optical system generates the second polarized light, the multi-frequency grating fringes projected by the second polarized light can be projected to the target object through the projection module for subsequent detection process. .
- the light adjustment module includes a 1/4 wave plate and is located between the second light splitting module and the projection module.
- the light adjustment module arranged between the second light splitting module and the projection module adopts a 1/4 wave plate, which can easily and quickly adjust the polarization type of the linearly polarized light emitted by the light emission module, and the system setting Both the complexity and the operational complexity of the components are low.
- the present application provides an apparatus comprising the optical system as described in the first aspect or any possible design of the first aspect.
- the present application provides a terminal, where the terminal includes the optical system described in the first aspect or any possible design of the first aspect.
- the terminal is any one of the following: a vehicle, an unmanned aerial vehicle, or a robot.
- 1 is a schematic diagram of a structured light system based on phase measurement profilometry provided by the application;
- FIG. 3 is a schematic diagram of a light source module provided by the present application.
- FIG. 4 is a schematic diagram of the composition of a light source module provided by the present application.
- FIG. 5 is a schematic diagram of a light emission module provided by the present application.
- FIG. 6 is a schematic diagram of a light detection module provided by the present application.
- FIG. 7 is a schematic structural diagram of a color polarization detection module provided by the application.
- FIG. 8 is a schematic diagram of a polarization array and a pixel array provided by the application.
- FIG. 9 is a schematic diagram of a target grating fringe image provided by the application.
- FIG. 10 is a schematic diagram of the composition of a possible optical system provided by the present application.
- At least one refers to one or more, and "a plurality” refers to two or more.
- And/or which describes the association relationship of the associated objects, means that there can be three kinds of relationships, for example, A and/or B, it can mean that A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
- the character “/” generally indicates that the associated objects are an “or” relationship.
- At least one (item) of the following or its similar expression refers to any combination of these items, including any combination of single item (item) or plural item (item).
- At least one (a) of a, b or c may represent: a, b, c, a and b, a and c, b and c, or a, b and c, where a, b, c Can be single or multiple.
- FIG. 1 is a schematic diagram of a structured light system based on phase measurement profilometry.
- the main principle of the measurement method based on phase measurement profilometry is to project sinusoidal grating fringes to the target object through a projector. Modulation and deformation occur, the camera captures the image of the deformed grating fringe, and then the three-dimensional contour information of the target object can be calculated from the deformed grating fringe image.
- phase measurement profilometry mainly includes two steps: phase extraction based on phase shifting and phase unwrapping based on multi-frequency fringes.
- phase-shift-based phase extraction step grating fringes with different initial phases need to be projected to the target object
- multi-frequency fringe-based phase unwrapping step grating fringes with different spatial frequencies need to be projected onto the target object respectively.
- the two steps of projecting grating fringes of different initial phases to the target object and projecting grating fringes of different spatial frequencies to the target object are time-divisional.
- the current structured light measurement system or measurement method has the problems of complex process, poor convenience and low measurement efficiency.
- the above method cannot be applied to the detection of moving target objects, for example, in an autonomous driving scenario, it cannot meet the needs of imaging moving targets.
- the embodiments of the present application provide an optical system, which can realize synchronous projection of multi-wavelength and multi-spatial frequency grating fringes, and can further realize the detection of multi-phase grating fringes based on polarization synchronous phase shifting.
- the optical system can be applied to, but not limited to, target detection, structured light measurement and other scenarios.
- the optical system can be applied to the fields of automatic driving, assisted driving, security monitoring and the like.
- the optical system may be provided on the vehicle for detecting objects around the vehicle (eg, pedestrians, other vehicles, obstacles, etc.).
- the optical system may be disposed inside the vehicle to implement functions such as target detection and identification, vehicle interior monitoring, and the like.
- the optical system can also be applied to various terminals such as terminals, robots, unmanned aerial vehicles, and vehicle-mounted terminals.
- FIG. 2 is a schematic diagram of an optical system according to an embodiment of the present application. As shown in FIG. 2 , the optical system 200 includes at least a light source module 201 and a light emission module 202 .
- the light source module 201 is configured to output first polarized light, where the first polarized light includes linearly polarized light of N colors, wherein the linearly polarized light of different colors has the same polarization angle and different transmission directions, the N is an integer greater than 1; the light emitting module 202 is configured to receive the first polarized light, generate a second polarized light according to the first polarized light, and the second polarized light is used to project N colors of light.
- Grating fringes wherein the spatial frequencies of the grating fringes of different colors are different.
- the optical system 200 may further include a light detection module 203, and the light detection module 203 is configured to receive target polarized light corresponding to the second polarized light, and detect the target polarized light according to the target polarized light.
- the multiple target grating fringe images include multiple target grating fringe images corresponding to each color in the N colors, wherein at least two target grating fringe images corresponding to each color The initial phases of the grating fringes are different.
- the target polarized light may be the polarized light modulated by the target object for the second polarized light.
- the second polarized light can be projected to the target object 204 , and the second polarized light passes through the target object 204
- the target polarized light is obtained after modulation.
- the light detection module 203 receives the target polarized light from the target object 204, and then acquires the plurality of target grating fringe images according to the target polarized light.
- the target polarized light obtained after the second polarized light is modulated by the target object 204 can be understood as: the grating stripes of N colors projected by the second polarized light are modulated by the target object 204 Deformation occurs to obtain target grating fringes of N colors, and the target grating fringes of N colors are projected by the target polarized light.
- the light source module 201 cooperates with the light emission module 202, so that the light emission module 202 can output the second polarized light for projecting multi-frequency grating fringes (grating fringes with multiple spatial frequencies), and the light detection module 203 receives the second polarized light.
- the target polarized light corresponding to the second polarized light is obtained, and a plurality of target grating fringe images are obtained according to the target polarized light.
- the multiple target grating fringe images include grating fringe images of N colors, and the spatial frequencies of grating fringes of different colors are different, so a multi-frequency grating fringe image can be obtained.
- the grating fringe image corresponding to each color there are grating fringe images with different initial phases of the grating fringes, so a multi-phase grating fringe image (grating fringes with multiple initial phases) can be obtained.
- grating fringes with different spatial frequencies can be projected at the same time through one polarized light transmission, and multi-frequency grating fringe images and different spatial frequencies can be simultaneously acquired through the corresponding one-time polarized light reception.
- the multi-phase grating fringe image at the frequency greatly reduces the number of times of projecting and collecting grating fringes, simplifies the acquisition process of multi-frequency and multi-phase grating fringes, and greatly improves the convenience and measurement efficiency.
- multi-frequency and multi-phase grating fringes can be obtained simultaneously through the process of polarized light projection and reception. Therefore, the method can detect moving targets and ensure detection accuracy.
- the light source module 201 the light emission module 202 , and the light detection module 203 in the optical system 200 will be described in detail below.
- N 3
- N colors are red, green, and blue as an example for description.
- Light source module 201
- the light source module 201 includes N monochromatic light sources, N angle adjustment modules and beam combining modules; among the N monochromatic light sources, each monochromatic light source is used to output linearly polarized light of a corresponding color; Among the angle adjustment modules, each angle adjustment module is used to adjust the polarization angle of the linearly polarized light from the corresponding monochromatic light source to the target angle; the beam combining module is used to adjust the polarization angle from the N angle adjustment modules The transmission directions of the N beams of linearly polarized light are adjusted to respectively have different included angles with the target direction, so as to obtain the first polarized light.
- the beam combining module includes N-1 beam combining elements
- the first beam combining element in the N-1 beam combining elements is used for transmitting the first angle adjustment module from the N angle adjustment modules the first linearly polarized light, reflects the second linearly polarized light from the second angle adjustment module in the N angle adjustment modules, and controls the transmission direction and the target direction of the first linearly polarized light and the second linearly polarized light have different included angles; or, the first beam-combining element is used to transmit the third linearly polarized light from the second beam-combining element and reflect the fourth linearly polarized light from the third angle adjustment module in the N angle adjustment modules light, and control the transmission directions of the third linearly polarized light and the fourth linearly polarized light to have different included angles from the target direction.
- FIG. 3 is a schematic diagram of a light source module according to an embodiment of the present application.
- the light source module 201 includes three monochromatic light sources and three angle adjustment modules corresponding to the three monochromatic light sources one-to-one, wherein the three monochromatic light sources are red respectively.
- the light source 301, the green light source 302 and the blue light source 303, the three angle adjustment modules are respectively a first angle adjustment module 304 corresponding to the red light source, a second angle adjustment module 305 corresponding to the green light source and a third angle adjustment module corresponding to the blue light source Module 306 ;
- the light source module 201 further includes a beam combining module 307 .
- the main optical axis direction can be set as the reference direction.
- the first angle adjustment module 304 , the second angle adjustment module 305 , and the third angle adjustment module 306 include a half-wave plate (half-wave plate), wherein, as an optional implementation manner , the first angle adjustment module 304 , the second angle adjustment module 305 , and the third angle adjustment module 306 may be the 1/2 wave plate shown in FIG. 3 .
- the first angle adjustment module 304 is located between the red light source 301 and the beam combination module 307
- the second angle adjustment module 305 is located between the green light source 302 and the combination module 307
- the third angle adjustment module 306 is located between the blue light source 303 and the beam combining module 307 .
- the angle adjustment module is a 1/2 wave plate
- the red linearly polarized light emitted by the red light source 301 passes through the first angle adjustment module 304, its polarization angle is adjusted to the target angle, wherein the position of the 1/2 wave plate is
- the adjustment amount for the polarization angle of the red linearly polarized light is different.
- the target angle may be a set angle.
- the green linearly polarized light emitted by the green light source 302 passes through the second angle adjustment module 305, its polarization angle is adjusted to the target angle, and the blue linearly polarized light emitted by the blue light source 303 passes through the After the third angle adjustment module 306, its polarization angle is adjusted to the target angle.
- the beam combining module 307 includes two beam combining elements, which are a third beam combining element 308 and a fourth beam combining element 309 respectively.
- the third beam combining element 308 and the fourth beam combining element 309 include dichroic beam splitters, wherein, as an optional implementation manner, the third beam combining element 308 and the fourth beam combining element 309 may be The dichroic beamsplitter shown in Figure 3.
- the third beam combining element 308 transmits the red linearly polarized light from the first angle adjustment module 304, reflects the green linearly polarized light from the second angle adjustment module 305, and controls the two The transmission direction of the linearly polarized light and the target direction have different included angles;
- the fourth beam combining element 309 transmits the linearly polarized light from the third beam combining element 308, while reflecting the blue linearly polarized light from the third angle adjustment module 306, And control the transmission direction of the two beams of linearly polarized light to have different angles with the target direction, wherein the linearly polarized light from the third beam-combining element 308 received by the fourth beam-combining element 309 includes red and green two-color linearly polarized light .
- the transmission direction of the linearly polarized light can be calibrated by the angle between the light direction of the linearly polarized light and the main optical axis.
- the transmission directions of different linearly polarized lights are different, which can be understood as: The angles between the optical axes are different.
- the adjustment amount for the transmission direction of the incident linearly polarized light is different. Therefore, the position of the dichroic beam splitter can be adjusted to control different color lines.
- the direction of transmission of polarized light is referred to control different color lines.
- the polarized light emitted by the fourth beam combining element 309 is the first polarized light output by the light source module 201 .
- the transmission directions of the three colors of the linearly polarized light are different, and it can be understood that the angles between the light directions of the three colors of the linearly polarized light and the direction of the main optical axis are different , it can also be understood that there is an included angle between the light directions of the linearly polarized light of any two colors of the three colors, and the angle of the included angle can be greater than zero and less than the set threshold, and the angle of the included angle
- the size can be adjusted by adjusting the angle between the dichroic beam splitter and the main optical axis.
- the first polarized light output by the light source module 201 is transmitted to the light emitting module 202 and used by the light emitting module 202 to generate the second polarized light.
- the target direction may be the main optical axis direction, or the target direction may be the transmission direction of linearly polarized light output by one of the three monochromatic light sources, or,
- the stated target direction is the set direction.
- At most one monochromatic light source emits linearly polarized light whose transmission direction coincides with the main optical axis direction or the target direction.
- the transmission direction of the red linearly polarized light emitted by the red light source 301 is the target direction, and coincides with the direction of the main optical axis.
- the transmission direction of the green linearly polarized light emitted by the green light source 302 and the transmission direction of the blue linearly polarized light emitted by the blue light source 303 are respectively perpendicular to the direction of the main optical axis.
- the red linearly polarized light emitted by the red light source 301 is vertically incident on the first angle adjustment module 304, and after being adjusted by the first angle adjustment module 304, it transmits through the beam combining element 308 and the beam combining element 309 in turn; the green light emitted by the green light source 302
- the polarized light is vertically incident on the second angle adjustment module 305, and after being adjusted by the second angle adjustment module 305, it reaches the beam combining element 308 and is reflected, transmitted in a different transmission direction from the red linearly polarized light, and transmitted through the beam combining element Element 309;
- the blue linearly polarized light emitted by the blue light source 303 is vertically incident on the third angle adjustment module 306, and after being adjusted by the third angle adjustment module 306, it reaches the beam combining element 309 and is reflected, along with the red and green Two colors of linearly polarized light are transmitted in different transmission directions.
- the green linearly polarized light can be controlled to be reflected by the beam combining element 308 Then, it is transmitted in a different transmission direction from the red linearly polarized light; by adjusting the rotation angle of the dichroic beam splitter corresponding to the beam combining element 309, the blue linearly polarized light can be controlled to be reflected by the beam combining element 309, and then travel along the same direction as the red linearly polarized light after being reflected by the beam combining element 309. , The green two-color linearly polarized light is transmitted in different transmission directions.
- FIG. 4 is a schematic diagram of the composition of a light source module according to an embodiment of the present application.
- the target direction is the main optical axis direction
- the transmission direction of the red linearly polarized light emitted by the red light source 401 the transmission direction of the green linearly polarized light emitted by the green light source 402 , and the blue line emitted by the blue light source 403
- the transmission directions of the polarized light respectively have different included angles with the direction of the main optical axis.
- the red linearly polarized light emitted by the red light source 401 is vertically incident on the first angle adjustment module 404, and after being adjusted by the first angle adjustment module 404, it is transmitted through the third beam combining element 408 and the fourth beam combining element 409 in turn; the green light source
- the green linearly polarized light emitted by 402 is vertically incident on the second angle adjustment module 405, and after being adjusted by the second angle adjustment module 405, it reaches the third beam combining element 408 and is reflected along a transmission direction different from the red linearly polarized light.
- the fourth beam combining element 409 transmits and transmits through the fourth beam combining element 409; the blue linearly polarized light emitted by the blue light source 403 is vertically incident on the third angle adjustment module 406, and after being adjusted by the third angle adjustment module 406, it reaches the fourth beam combination
- the element 409 is reflected and transmitted in a different transmission direction than the red and green linearly polarized light.
- the green linearly polarized light can be controlled to be transmitted in a different transmission direction from the red linearly polarized light after being reflected by the third beam combining element 408;
- the blue linearly polarized light can be controlled to be reflected by the fourth beam-combining element 409 to transmit along a different transmission line from the red and green linearly polarized light. direction transmission.
- the light source module 201 uses a variety of monochromatic light sources to generate linearly polarized lights of different colors respectively, and adjusts the polarization angles of the linearly polarized lights of different colors to be the same and the transmission directions are different through the angle adjustment modules corresponding to the different monochromatic light sources. Multiple linearly polarized lights with different wavelengths and the same polarization characteristics are simultaneously generated, so as to further generate polarized light for simultaneously projecting multi-frequency grating fringes.
- FIG. 5 is a schematic diagram of a light emission module according to an embodiment of the present application.
- the light emission module 202 includes a first light splitting module 501, a direction adjustment module 502, a second light splitting module 503 and a polarization adjusting module 504;
- the first light splitting module 501 is configured to receive the first polarized light from the light source module 201 and split the first polarized light into a first linearly polarized light along the first direction and a first linearly polarized light along the second direction.
- the second linearly polarized light is used to receive the second linearly polarized light and adjust the transmission direction of the second linearly polarized light to a third direction;
- the second light splitting module 503 is used to receive The first linearly polarized light from the first light splitting module 501 and the second linearly polarized light from the direction adjustment module 502 generate interference light after the interference of the first linearly polarized light and the second linearly polarized light;
- the polarization adjustment module 504 is configured to receive the interference light and adjust the polarization type of the interference light to a circular polarization type to obtain the second polarized light.
- the direction adjustment module includes a first reflection mirror 505 and a second reflection mirror 506; wherein the first reflection mirror 505 is configured to receive the second linear polarization from the first light splitting module and reflect the received second linearly polarized light to the second mirror 506; the second mirror 506 is used to reflect the received second linearly polarized light, so that the second linearly polarized light is reflected The rear is incident on the second light splitting module 503 along the third direction.
- the first light splitting module 501 and the second light splitting module 503 include polarized light splitting prisms, wherein, as an optional implementation manner, the first light splitting module 501 and the second light splitting module 503
- the two beam splitting module 503 may be a polarized beam splitting prism.
- the first polarizing beam splitting prism corresponding to the first beam splitting module 501 and the second polarizing beam splitting prism corresponding to the second beam splitting module 503 are symmetrically distributed.
- the light emitting module 202 further includes a projection module 507, and the projection module 507 is configured to receive the second polarized light and project the second polarized light to the target object.
- the projection module 507 includes a projection lens or other elements with a projection function, wherein, as an optional implementation manner, the projection module 507 can be a projection lens or other elements with a projection function.
- the polarization adjustment module 504 includes a quarter wave plate, and is located between the second light splitting module 503 and the projection module 507 , wherein, as an optional implementation manner, The polarization adjustment module 504 may be a 1/4 wave plate.
- the first direction may be a horizontal polarization direction
- the second direction may be a vertical polarization direction, perpendicular to the first direction.
- the first light splitting module 501 splits the first polarized light into mutually perpendicular transmitted light and reflected light, and the transmitted light is horizontal linear polarization along the horizontal polarization direction.
- the light (p light) is the first linearly polarized light
- the reflected light is vertically polarized light (s light) along the vertical polarization direction.
- the first linearly polarized light transmitted by the first beam splitting module 501 is transmitted through the second beam splitting prism, and then enters the polarization adjustment module 504; After being reflected by the first reflecting mirror 505, the second linearly polarized light reaches the second reflecting mirror 506, is reflected by the second reflecting mirror 506, and is then reflected by the second light splitting module 503, and then enters the second linearly polarized light.
- the polarization adjustment module 504 is described.
- the first linearly polarized light and the second linearly polarized light interfere, and after the obtained interference light passes through the polarization adjustment module, its polarization type becomes circularly polarized light, and the second polarized light is obtained.
- the distance between the first linearly polarized light and the second linearly polarized light can be adjusted by adjusting the rotation angle of the first reflecting mirror 505 and/or the second reflecting mirror 506 (the angle between the mirror plane and the horizontal or vertical direction).
- the included angle of further controls the spatial frequency of the grating fringes projected by the second polarized light obtained from the first linearly polarized light and the second linearly polarized light.
- the actual first polarized light includes three linearly polarized lights corresponding to three colors output from the light source module 201 .
- the polarization adjustment module obtains the second polarized light
- the second polarized light is transmitted to the projection module 507, and the projection module 507 transmits the second polarized light to the second polarized light.
- Polarized light is projected onto the target object.
- the light emission module 202 splits the first polarized light from the light source module 201 into two different polarized lights, and then obtains the second polarized light by interfering with the obtained two polarized lights, so that the second polarized light can be obtained.
- the two-polarized light simultaneously projects grating fringes of various spatial frequencies, so as to further obtain multi-frequency and multi-phase grating fringe images.
- FIG. 6 is a schematic diagram of a light detection module according to an embodiment of the present application.
- the light detection module 203 includes an imaging module 601 and a color polarization detection module 602 .
- the imaging module 601 is configured to receive target polarized light corresponding to the second polarized light point, wherein the target polarized light is used to project initial target grating fringes of N colors, and the initial target grating fringes is the modulated grating fringes of the grating fringes projected by the second polarized light; the color polarization detection module 602 is used to perform phase shifts of at least two different phase values on the initial grating fringes corresponding to each color, and Generate multiple target raster fringe images for each color.
- the target polarized light may be the polarized light modulated by the target object for the second polarized light.
- the imaging module 601 in the module 203 is transmitted to the color polarization detection module 602 via the imaging module 601 .
- the imaging module 601 includes imaging elements such as an imaging mirror, wherein, as an optional implementation, the imaging module 601 may be an imaging mirror; the color polarization detection module may include a Color polarization detectors (or sensors) with different polarization coatings and different color coatings, or may include color polarization cameras with multicolor light sources and pixel-level coatings, etc., wherein, as an optional implementation, the color polarization detection The module may be the color polarization detector.
- FIG. 7 is a schematic structural diagram of a color polarization detection module according to an embodiment of the present application.
- the color polarization detection module is used to perform different phase shifts on the grating fringes projected by the target polarized light based on polarization, and receive target polarized light of different colors, so as to realize multi-frequency and multi-phase grating fringes the gating.
- the hardware composition of the color polarization detection module 602 includes a pixel array on the bottom layer, a polarization array on the middle layer, and a microlens array on the top layer.
- the microlens array is used for transmitting the target polarized light; the polarizing array is used for phase shifting the target polarized light with at least two different phase values, so as to obtain a multiphase grating fringe signal; the pixel The array is used to receive target polarized light of different colors, so as to obtain multi-frequency grating fringe signals.
- the color polarization detection module 602 After acquiring the multi-phase grating fringe signal and the multi-frequency grating fringe signal, the color polarization detection module 602 correspondingly generates multi-frequency and multi-phase grating fringe images to obtain multiple target grating fringe images.
- FIG. 8 is a schematic diagram of a polarization array and a pixel array according to an embodiment of the present application.
- the following is an example of performing phase shifting of the target polarized light with four different phase values.
- the minimum processing unit of the polarizing array is in pixels.
- each pixel unit corresponds to a phase shift of a phase value
- the target polarized light projected to the pixel unit is subjected to the phase shift of the phase value corresponding to the pixel unit.
- the polarization array includes four phase-shifts of phase values, that is, the pixel units including four different polarization directions are respectively related to the phase-shift of the four phase values.
- the corresponding four adjacent pixel units are regarded as a group, wherein the phase values corresponding to the four adjacent pixel units may be 0°, 45°, 90°, and 135°, respectively.
- four pixel units corresponding to a group of four pixel units in the polarizing array correspond to coatings of the same color, which are used to filter out other received target polarized light
- the light signal of the color only receives the light signal of the corresponding color of the pixel unit.
- FIG. 9 is a schematic diagram of a target grating fringe image provided by an embodiment of the present application.
- the light detection module 203 can obtain 12 different targets according to the polarized light of the target Raster fringe image.
- the acquired 12 target grating fringe images include 4 red grating fringe images shown in (a) schematic diagram, 4 green grating fringe images shown in (b) schematic diagram, and (c) ) of the 4 blue raster fringe images shown in the schematic diagram.
- the color polarization detection module 602 can selectively receive the phase-shifted grating fringes of the grating fringes of the same spatial frequency and selectively receive gratings of different colors through the polarization array according to the target polarized light received once.
- the fringe can realize the simultaneous acquisition of multi-frequency and multi-phase grating fringe images, which greatly reduces the times of projecting and collecting grating fringes, simplifies the acquisition process of multi-frequency and multi-phase grating fringes, and greatly improves the convenience and measurement efficiency.
- FIG. 10 is a schematic diagram of the composition of a possible optical system provided by an embodiment of the present application. As shown in FIG. 10 , for the modules and elements included in the optical system, reference may be made to the descriptions in the foregoing embodiments, and details are not repeated here.
- optical system architecture shown in FIG. 10 is only a possible implementation manner of the optical system 200 provided by the embodiment of the present application, and does not limit the optical system provided by the embodiment of the present application.
- the optical detection module 203 can calculate the target object according to the multiple grating fringe images The outline information of the object.
- the light detection module 203 may adopt a four-step phase-shifting method, and use the four grating fringe images in the schematic diagrams (a), (b), and (c) of FIG. 9 as One group, calculate the corresponding phase map of each group, and then calculate a phase value according to the phase maps corresponding to the three sets of grating fringe images, and finally perform contour detection on the target object according to the determined phase value.
- the light intensity formula for the four-step phase-shifting method is as follows:
- I(x, y, ⁇ j ) is the light intensity function
- A(x, y) is the background light intensity
- B(x, y) is the modulation depth of the fringes
- ⁇ j is the moving phase value
- I(x, y, ⁇ j ) is the light intensity function
- A(x, y) is the background light intensity
- B(x, y) is the modulation depth of the fringes
- ⁇ j is the moving phase value
- phase of the measured object point representing the height information of the measured object.
- I 0 (x, y), I 1 (x, y), I 2 (x, y), I 3 (x, y) are the light intensities of the four grating fringe images, respectively.
- the optical detection module 203 obtains the (wrapped) phase corresponding to each group of grating fringe images by the above method, in the phase unwrapping step, the method of calculating the synthetic wavelength can be used to realize the phase unwrapping.
- the pixel array shown in FIG. 8 above includes three phase-value shifts, that is, pixel units with three different polarization directions, respectively The shifts of the three phase values correspond to three adjacent pixel units as a group.
- the contour detection of the target object may adopt a three-step phase-shifting correlation calculation method, which will not be repeated here.
- an embodiment of the present application further provides an apparatus, and the terminal may include the optical system provided by the embodiment of the present application.
- the embodiments of the present application further provide a terminal, and the terminal may include the optical system provided by the embodiments of the present application.
- the terminal may be a vehicle, a drone, a robot, a vehicle-mounted terminal, or the like.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Length Measuring Devices By Optical Means (AREA)
Abstract
一种光学系统、装置及终端,光学系统(200)包括光源模块(201)和光发射模块(202);光源模块(201)用于输出第一偏振光,第一偏振光包含N个颜色的线偏振光,其中,不同颜色的线偏振光具有相同的偏振角度和不同的传输方向,N为大于1的整数;光发射模块(202),用于接收第一偏振光,根据第一偏振光生成第二偏振光,第二偏振光用于投射N个颜色的光栅条纹,其中,不同颜色的光栅条纹的空间频率不同。光学系统用于同步投射多频光栅条纹,提高光栅条纹投射和接收过程的便捷性及高效性,可应用于智能驾驶领域及智能网联车、智能汽车相关领域,例如在各领域中可用于对目标对象进行探测和跟踪。
Description
本申请涉及光学技术领域,尤其涉及一种光学系统、装置及终端。
结构光测量技术能够获取目标的三维轮廓信息,在自动驾驶领域,可以应用到驾驶员身份验证、车内监视系统、手势识别、近距离障碍物探测等场景中。
其中,相位测量轮廓术(Phase Measuring Profilometry,PMP)由于具有非接触、精度高、测量速度快等优点,被广泛应用于结构光测量中。相位测量轮廓术的测量原理是向被测目标发射正弦光栅条纹,并拍摄经被测目标调制而发生形变的正弦光栅条纹图像,然后从获得的形变图像中计算出被测目标的三维形貌。
目前,利用PMP进行结构光测量时需要向被测目标分别投射不同相位、不同空间频率的光栅条纹,并对应拍摄多张经被测目标调制得到的形变条纹图像,从而计算被测目标的三维轮廓信息。该方法的测量过程复杂,存在便捷性差及测量效率较低的问题。
发明内容
本申请提供一种光学系统、装置及终端,用于同步投射多频光栅条纹,提高光栅条纹投射和接收过程的便捷性及高效性。
第一方面,本申请提供一种光学系统,所述光学系统包括光源模块和光发射模块;所述光源模块,用于输出第一偏振光,所述第一偏振光包含N个颜色的线偏振光,其中,不同颜色的线偏振光具有相同的偏振角度和不同的传输方向,所述N为大于1的整数;所述光发射模块,用于接收所述第一偏振光,根据所述第一偏振光生成第二偏振光,所述第二偏振光用于投射N个颜色的光栅条纹,其中,不同颜色的光栅条纹的空间频率不同。
在该方案中,光学系统的光源模块和光发射模块配合,实现根据多种颜色的线偏振光生成用于投射不同空间频率光栅条纹的第二偏振光,因此该光学系统能够同步投射多频光栅条纹,进而简化光栅条纹投射流程,提高光栅条纹投射的便捷性和高效性,对应的,该光学系统能够支持接收端实现多频光栅条纹的同步接收,进而提高光栅条纹接收的便捷性和高效性。
在一种可能的设计中,所述光学系统还包括光探测模块;所述光探测模块,用于接收对应于所述第二偏振光的目标偏振光,并根据所述目标偏振光获取多个目标光栅条纹图像,所述多个目标光栅条纹图像包括所述N个颜色中每个颜色对应的多个目标光栅条纹图像,其中,每个颜色对应的至少两个目标光栅条纹图像中光栅条纹的初始相位不同。
在该方案中,光学系统进一步包括光探测模块,该光学系统可独立实现光的发射与接收,光源模块和光发射模块配合投射出第二偏振光后,光探测模块可探测所述第二偏振光对应的目标偏振光,并根据所述目标偏振光获得多种空间频率和多种初始相位的光栅条纹即多频多相光栅条纹的图像。因此,该光学系统中,可通过一次偏振光投射和探测,同时确定多张多频多相光栅条纹的图像,能够大大减少投射和采集多频多相光栅条纹的次数,提高多频多相光栅条纹测量过程的便捷性和高效性。
在一种可能的设计中,所述目标偏振光为所述第二偏振光经目标对象调制后的偏振光。
在该方案中,上述光学系统可实现便捷高效的对目标对象进行轮廓测量。光学系统通过投射所述第二偏振光,能够向所述目标对象同步投射多频光栅条纹,通过光探测模块接收所述第二偏振光经所述目标对象调制后的目标偏振光,能够获取所述多频光栅条纹经所述目标对象调制后对应的多频多相的形变光栅条纹图像,进而根据多频多相的形变光栅条纹图像对所述目标对象进行三维轮廓测量。
在一种可能的设计中,所述光探测模块包括成像模块和彩色偏振探测模块;所述成像模块,用于接收所述目标偏振光,其中,所述目标偏振光用于投射N个颜色的初始目标光栅条纹,所述初始目标光栅条纹为所述第二偏振光投射的光栅条纹经调制后的光栅条纹;所述彩色偏振探测模块,用于分别对每个颜色对应的初始光栅条纹进行至少两种不同相位值的移相,并生成每个颜色对应的多个目标光栅条纹图像。
在该方案中,所述光探测模块中的成像模块接收第二偏振光经调制后的目标偏振光,所述光探测模块中的彩色偏振探测模块根据所述成像模块接收的所述目标偏振光获取多频多相光栅条纹,使得所述光探测模块在一次偏振光接收过程中就能获取到多频多相光栅条纹,提高了光栅条纹接收的效率。
在一种可能的设计中,所述光源模块包括N个单色光源、N个角度调整模块和合束模块;在所述N个单色光源中,每个单色光源用于输出对应颜色的线偏振光;在所述N个角度调整模块中,每个角度调整模块用于将来自对应的单色光源的线偏振光的偏振角度调整为目标角度;所述合束模块,用于将来自所述N个角度调整模块的N束线偏振光的传输方向调整为分别与目标方向具有不同夹角,得到所述第一偏振光。
在一种可能的设计中,所述N个单色光源与所述N个颜色一一对应,所述N个角度调整模块与所述N个单色光源一一对应。
在该方案中,光源模块能够分别对不同单色光源发出的线偏振光进行调整,使得不同单设光源发出的各束线偏振光的偏振角度一致,而传输方向不同,以便于进一步生成用于投射多频光栅条纹的偏振光。
在一种可能的设计中,所述角度调整模块包括1/2波片,所述角度调整模块位于对应的单色光源与所述合束模块之间。
在该方案中,在不同单色光源与合束模块之间设置的角度调整模块采用1/2波片,可方便快速的对单色光源发出的线偏振光的偏振角度进行调整,且系统的设置复杂度和元件的操作复杂度均较低。
在一种可能的设计中,所述合束模块包括N-1个合束元件,其中:所述N-1个合束元件中的第一合束元件,用于透射来自所述N个角度调整模块中第一角度调整模块的第一线偏振光,反射来自所述N个角度调整模块中第二角度调整模块的第二线偏振光,以及控制所述第一线偏振光和所述第二线偏振光的传输方向与目标方向具有不同夹角;或者所述第一合束元件,用于透射来自第二合束元件的第三线偏振光,反射来自所述N个角度调整模块中第三角度调整模块的第四线偏振光,以及控制所述第三线偏振光和所述第四线偏振光的传输方向与目标方向具有不同夹角。
在该方案中,合束元件通过选择性透射或反射接收到的线偏振光,对接收到的线偏振光的传输方向进行调整,通过多个合束元件可以分别对多个单色光源发出的线偏振光的传输方向进行调整,使得各束线偏振光的传输方向不同,且各束线偏振光投射的光栅条纹的 空间频率不同。
在一种可能的设计中,任一个合束元件包括二向色分光片。
在该方案中,采用多个二向色分光片可方便快速的对多个单色光源发出的线偏振光的偏振角度分别进行调整,且系统的设置复杂度和元件的操作复杂度均较低。
在一种可能的设计中,所述目标方向为所述N个单色光源中的一个单色光源输出的线偏振光的传输方向。
在该方案中,将目标方向设置为其中一个单色光源发出的线偏振光的传输方向,再以该方向为参考,对其它单色光源发出的线偏振光的传输方向进行调整,可以提高系统设置的操作简便性。
在一种可能的设计中,所述光发射模块包括第一分光模块、方向调整模块、第二分光模块和偏振调整模块;所述第一分光模块,用于接收所述第一偏振光,并将所述第一偏振光分束为沿第一方向的第一线偏振光和沿第二方向的第二线偏振光;所述方向调整模块,用于接收所述第二线偏振光,并将所述第二线偏振光的传输方向调整为第三方向;所述第二分光模块,用于接收来自所述第一分光模块的所述第一线偏振光和来自所述方向调整模块的第二线偏振光,并生成所述第一线偏振光和第二线偏振光干涉后的干涉光;所述偏振调整模块用于接收所述干涉光,并将所述干涉光的偏振类型调整为圆偏振类型,得到所述第二偏振光。
在该方案中,光发射模块通过第一分光模块,将来自光源模块的第一偏振光分成两束偏振光,这两束偏振光再汇聚在第二分光模块,发生干涉后可得到干涉条纹,因此干涉光能够用于投射光栅条纹。而方向调整模块能够调整两束偏振光之间的角度,进而调整干涉光投射的光栅条纹的形状特征。偏振调整模块通过调整偏振光的偏振类型,可使偏振光投射的光栅条纹显现出来。通过各模块的配合,能够使光发射模块输出能够投射多频条纹的第二偏振光。
在一种可能的设计中,所述方向调整模块包括第一反射镜和第二反射镜;所述第一反射镜,用于接收来自所述第一分光模块的第二线偏振光,并将接收到的第二线偏振光反射至所述第二反射镜;所述第二反射镜,用于反射接收到的第二线偏振光,以使所述第二线偏振光被反射后沿所述第三方向入射至所述第二分光模块。
在该方案中,方向调整模块通过两个反射镜之间的配合,可以方便快捷的对线偏振光的传输方向进行调整,且系统的设置复杂度和元件的操作复杂度均较低。
在一种可能的设计中,所述第二方向与所述第一方向垂直。
在一种可能的设计中,所述第一分光模块和所述第二分光模块包括偏振分光棱镜。
在该方案中,偏振分光棱镜是一种用于分离光线的水平偏振和垂直偏振的光学元件,同时也可以合束水平偏振的光线和竖直偏振的光线。因此,通过两个偏振分光棱镜的配合,可以便捷高效的对第一偏振光进行分束及后续合束,以实现偏振光的干涉。
在一种可能的设计中,所述光发射模块还包括投影模块,所述投影模块用于接收所述第二偏振光,并将所述第二偏振光投射至目标对象。
在该方案中,光学系统可用于对目标对象进行轮廓探测,光学系统生成第二偏振光后,可通过投影模块将第二偏振光投射的多频光栅条纹投影到目标对象,以便进行后续探测流程。
在一种可能的设计中,所述光调整模块包括1/4波片,且位于所述第二分光模块与所 述投影模块之间。
在该方案中,在第二分光模块与投影模块之间设置的光调整模块采用1/4波片,可方便快速的对光发射模块发出的线偏振光的偏振类型进行调整,且系统的设置复杂度和元件的操作复杂度均较低。
第二方面,本申请提供一种装置,所述装置包括如上述第一方面或第一方面任一可能的设计中所述的光学系统。
第三方面,本申请提供一种终端,所述终端包括如上述第一方面或第一方面任一可能的设计中所述的光学系统。
在一种可能的设计中,所述终端为以下任一种:车辆、无人机、机器人。
图1为本申请提供的一种基于相位测量轮廓术的结构光系统的示意图;
图2为本申请提供的一种光学系统的示意图;
图3为本申请提供的一种光源模块的示意图;
图4为本申请提供的一种光源模块的组成示意图;
图5为本申请提供的一种光发射模块的示意图;
图6为本申请提供的一种光探测模块的示意图;
图7为本申请提供的一种彩色偏振探测模块的结构示意图;
图8为本申请提供的一种偏振阵列和像素阵列的示意图;
图9为本申请提供的一种目标光栅条纹图像的示意图;
图10为本申请提供的一种可能的光学系统的组成示意图。
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。其中,在本申请实施例的描述中,以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
应理解,本申请实施例中“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A、B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一(项)个”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a、b或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a、b和c,其中a、b、c可以是单个,也可以是多个。
图1为一种基于相位测量轮廓术的结构光系统的示意图。如图1所示,目前在结构光测量技术中,基于相位测量轮廓术的测量方法的主要原理是通过投影仪向目标对象投射正弦光栅条纹,正弦光栅条纹被投射到目标对象后受到目标对象的调制而发生形变,摄像机拍摄发生形变的光栅条纹的图像,进而可以从发生形变的光栅条纹图像中计算出目标对象 的三维轮廓信息。
其中,相位测量轮廓术的实施主要包括基于移相的相位提取和基于多频条纹的相位解缠两个步骤。在基于移相的相位提取步骤中,需要向目标对象分别投射不同初始相位的光栅条纹,在基于多频条纹的相位解缠步骤中,需要向目标对象分别投射不同空间频率的光栅条纹。通过获取两个步骤中光栅条纹经目标对象调制后对应的形变光栅条纹,可以计算目标对象的三维轮廓信息。
但是,在目前的结构光测量系统或测量方法中,向目标对象投射不同初始相位的光栅条纹、向目标对象分别投射不同空间频率的光栅条纹这两个步骤的实施是时分的,因此在探测过程中,需要分多次分别向目标对象投射不同类型的光栅条纹,并采集对应的多帧形变光栅条纹图像,才能进一步对目标对象的三维轮廓信息进行计算。
因此,目前的结构光测量系统或测量方法存在过程复杂、便捷性差及测量效率低等问题。
此外,上述方法中,在探测过程需要采集多帧形变光栅条纹图像,因此,为了保证探测的准确度,需要被测目标对象维持静止状态。因此,上述方法无法适用于对运动目标对象的检测,例如,在自动驾驶场景下,无法满足对运动目标成像的需求。
基于上述问题,本申请实施例提供一种光学系统,该光学系统能够实现多波长多空间频率光栅条纹的同步投影,还可以进一步实现基于偏振同步移相的多相位光栅条纹的探测。
所述光学系统可以但不限于应用到目标检测、结构光测量等场景中。本申请实施例中,所述光学系统可应用于自动驾驶、辅助驾驶、安防监控等领域。例如,所述光学系统可以设置在车辆上,用于对车辆周边的目标(如行人、其它车辆、障碍物等)进行检测。又例如,所述光学系统可以设置在车辆内部,用于实现目标检测和识别、车辆内部监视等功能。本申请实施例中,所述光学系统还可以应用到终端、机器人、无人机、车载终端等各种终端中。
需要说明的是,上述各场景仅是对本申请实施例所提供的光学系统可能应用的场景的示例性说明,并不构成对所述光学系统的应用场景的限制。
下面结合附图,对本申请实施例提供的光学系统进行说明。
图2为本申请实施例提供的一种光学系统的示意图。如图2所示,所述光学系统200中至少包括光源模块201和光发射模块202。
所述光源模块201,用于输出第一偏振光,所述第一偏振光包含N个颜色的线偏振光,其中,不同颜色的线偏振光具有相同的偏振角度和不同的传输方向,所述N为大于1的整数;所述光发射模块202,用于接收所述第一偏振光,根据所述第一偏振光生成第二偏振光,所述第二偏振光用于投射N个颜色的光栅条纹,其中,不同颜色的光栅条纹的空间频率不同。
在本申请一些实施例中,所述光学系统200还可以包含光探测模块203,所述光探测模块203,用于接收对应于所述第二偏振光的目标偏振光,并根据所述目标偏振光获取多个目标光栅条纹图像,所述多个目标光栅条纹图像包括所述N个颜色中每个颜色对应的多个目标光栅条纹图像,其中,每个颜色对应的至少两个目标光栅条纹图像中光栅条纹的初始相位不同。
在本申请一些实施例中,所述目标偏振光可以为所述第二偏振光经目标对象调制后的 偏振光。具体的,如图2中所示,所述光发射模块202生成所述第二偏振光后,可以向目标对象204投射所述第二偏振光,所述第二偏振光经所述目标对象204调制后得到所述目标偏振光。所述光探测模块203接收来自所述目标对象204的目标偏振光,进而根据所述目标偏振光获取所述多个目标光栅条纹图像。
其中,所述第二偏振光经所述目标对象204调制后得到所述目标偏振光,可以理解为:所述第二偏振光投射出的N个颜色的光栅条纹经所述目标对象204调制后发生形变,得到N个颜色的目标光栅条纹,所述N个颜色的目标光栅条纹是由所述目标偏振光投射出来的。
在上述光学系统200中,光源模块201和光发射模块202配合,能够实现光发射模块202输出用于投射多频光栅条纹(多种空间频率的光栅条纹)的第二偏振光,光探测模块203接收对应于所述第二偏振光的目标偏振光,并根据目标偏振光获得多个目标光栅条纹图像。一方面,所述多个目标光栅条纹图像包含N个颜色的光栅条纹图像,而不同颜色的光栅条纹的空间频率是不同的,因此可以得到多频光栅条纹图像。另一方面,每个颜色对应的光栅条纹图像中,存在光栅条纹的初始相位不同的光栅条纹图像,因此可以得到多相光栅条纹(多种初始相位的光栅条纹)图像。这样,在光学系统200中,通过一次偏振光传输,就可以同时投射出多种不同空间频率的光栅条纹,通过对应的一次偏振光接收,就可以同时获取到多频光栅条纹图像,以及不同空间频率下的多相光栅条纹图像,大大减少了投射和采集光栅条纹的次数,简化了多频多相光栅条纹的获取流程,便捷性和测量效率都得到极大提高。
此外,本申请的方法中,通过一次偏振光投射和接收的过程,可以实现同时获取多频、多相光栅条纹,因此,该方法能够对运动目标进行探测,并能保证检测准确度。
下面对光学系统200中的光源模块201、光发射模块202、光探测模块203分别进行详细说明。
为了便于介绍,在下文中,以上述N取值为3、对应的N种颜色分别为红色、绿色和蓝色为例进行说明。
一、光源模块201
所述光源模块201包括N个单色光源、N个角度调整模块和合束模块;在所述N个单色光源中,每个单色光源用于输出对应颜色的线偏振光;在所述N个角度调整模块中,每个角度调整模块用于将来自对应的单色光源的线偏振光的偏振角度调整为目标角度;所述合束模块,用于将来自所述N个角度调整模块的N束线偏振光的传输方向调整为分别与目标方向具有不同夹角,得到所述第一偏振光。
其中,所述合束模块包括N-1个合束元件,所述N-1个合束元件中的第一合束元件,用于透射来自所述N个角度调整模块中第一角度调整模块的第一线偏振光,反射来自所述N个角度调整模块中第二角度调整模块的第二线偏振光,以及控制所述第一线偏振光和所述第二线偏振光的传输方向与目标方向具有不同夹角;或者,所述第一合束元件,用于透射来自第二合束元件的第三线偏振光,反射来自所述N个角度调整模块中第三角度调整模块的第四线偏振光,以及控制所述第三线偏振光和所述第四线偏振光的传输方向与目标方向具有不同夹角。
图3为本申请实施例提供的一种光源模块的示意图。
示例性的,如图3所示,所述光源模块201包括3个单色光源及与所述3个单色光源一一对应的3个角度调整模块,其中,3个单色光源分别为红色光源301、绿色光源302和蓝色光源303,3个角度调整模块分别为对应红色光源的第一角度调整模块304、对应绿色光源的第二角度调整模块305和对应蓝色光源的第三角度调整模块306;所述光源模块201还包括合束模块307。
示例性的,如图3中所示,可以设定的主光轴方向作为参考方向。
在本申请一些实施例中,第一角度调整模块304、第二角度调整模块305、第三角度调整模块306包括1/2波片(半波片),其中,作为一种可选的实施方式,所述第一角度调整模块304、第二角度调整模块305、第三角度调整模块306可以为图3中所示的1/2波片。
在本申请一些实施例中,所述第一角度调整模块304位于所述红色光源301和所述合束模块307之间,所述第二角度调整模块305位于所述绿色光源302和所述合束模块307之间,所述第三角度调整模块306位于所述蓝色光源303和所述合束模块307之间。
在角度调整模块为1/2波片时,所述红色光源301发出的红色线偏振光经过第一角度调整模块304后,其偏振角度被调整为目标角度,其中,1/2波片的位置与所述红色线偏振光的传输方向之间具有不同夹角时,对所述红色线偏振光的偏振角度的调整量不同。所述目标角度可以为设定的角度。同理,所述绿色光源302发出的绿色线偏振光经过第二角度调整模块305后,其偏振角度被调整为所述目标角度,以及,所述蓝色光源303发出的蓝色线偏振光经过第三角度调整模块306后,其偏振角度被调整为所述目标角度。
在本申请一些实施例中,所述合束模块307包括2个合束元件,分别为第三合束元件308和第四合束元件309。
可选的,第三合束元件308和第四合束元件309包括二向色分光片,其中,作为一种可选的实施方式,第三合束元件308和第四合束元件309可以为图3中所示的二向色分光片。
在合束元件为二向色分光片时,第三合束元件308透射来自第一角度调整模块304的红色线偏振光,同时反射来自第二角度调整模块305的绿色线偏振光,并控制两束线偏振光的传输方向与目标方向具有不同夹角;第四合束元件309透射来自第三合束元件308的线偏振光,同时反射来自第三角度调整模块306的蓝色线偏振光,并控制两束线偏振光的传输方向与目标方向具有不同夹角,其中,第四合束元件309接收到的来自第三合束元件308的线偏振光包含红、绿两色的线偏振光。
其中,线偏振光的传输方向可以由该线偏振光的光线方向与主光轴之间的夹角来标定,不同线偏振光的传输方向不同,可以理解为:不同线偏振光的光线与主光轴之间的夹角不同。二向色分光片的位置与主光轴之间具有不同夹角时,对入射的线偏振光的传输方向的调整量不同,因此可以通过调整二向色分光片的位置,来控制不同颜色线偏振光的传输方向。
示例性的,如图3中所示,所述第四合束元件309发出的偏振光即为所述光源模块201输出的第一偏振光。在所述第一偏振光中,3种颜色的线偏振光的传输方向各不相同,可以理解为,所述三种颜色的线偏振光的光线方向与主光轴方向之间的夹角不同,也可以理解为,所述三种颜色中任意两种颜色的线偏振光的光线方向之间具有夹角,该夹角的角度大小可以为大于零且小于设定阈值,该夹角的角度大小可以通过调节二向色分光片与主光 轴之间的夹角来调整。所述光源模块201输出的所述第一偏振光被传输到所述光发射模块202,并用于所述光发射模块202生成第二偏振光。
在本申请一些实施例中,所述目标方向可以为主光轴方向,或者,所述目标方向可以为3个单色光源中的一个单色光源输出的线偏振光的传输方向,或者,所述目标方向为设定的方向。
在本申请一些实施例中,3个单色光源中,至多存在一个单色光源发出的线偏振光的传输方向与所述主光轴方向或所述目标方向重合。
下面对光源模块201中各元件的布局给出两种示例。
示例1
如图3中所示,红色光源301发出的红色线偏振光的传输方向为目标方向,且与所述主光轴方向重合。绿色光源302发出的绿色线偏振光的传输方向、蓝色光源303发出的蓝色线偏振光的传输方向分别与所述主光轴方向垂直。
红色光源301发出的红色线偏振光垂直入射至第一角度调整模块304,经所述第一角度调整模块304调整后,依次透射经过合束元件308和合束元件309;绿色光源302发出的绿色线偏振光垂直入射至第二角度调整模块305,经所述第二角度调整模块305调整后,到达合束元件308并被反射,沿与红色线偏振光不同的传输方向传输,并透射经过合束元件309;蓝色光源303发出的蓝色线偏振光垂直入射至第三角度调整模块306,经所述第三角度调整模块306调整后,到达合束元件309并被反射,沿与红、绿两色线偏振光不同的传输方向传输。
其中,可以通过调整合束元件308对应的二向色分光片的旋转角度(二向色分光片的平面与主光轴之间的夹角),来控制绿色线偏振光经合束原件308反射后,沿与红色线偏振光不同的传输方向传输;可以通过调整合束元件309对应的二向色分光片的旋转角度,来控制蓝色线偏振光经合束原件309反射后,沿与红、绿两色线偏振光不同的传输方向传输。
示例2
图4为本申请实施例提供的一种光源模块的组成示意图。
如图4中所示,目标方向为主光轴方向,红色光源401发出的红色线偏振光的传输方向、绿色光源402发出的绿色线偏振光的传输方向、蓝色光源403发出的蓝色线偏振光的传输方向分别与所述主光轴方向具有不同夹角。
红色光源401发出的红色线偏振光垂直入射至第一角度调整模块404,经所述第一角度调整模块404调整后,依次透射经过第三合束元件408和第四合束元件409;绿色光源402发出的绿色线偏振光垂直入射至第二角度调整模块405,经所述第二角度调整模块405调整后,到达第三合束元件408并被反射,沿与红色线偏振光不同的传输方向传输,并透射经过第四合束元件409;蓝色光源403发出的蓝色线偏振光垂直入射至第三角度调整模块406,经所述第三角度调整模块406调整后,到达第四合束元件409并被反射,沿与红、绿两色线偏振光不同的传输方向传输。
其中,可以通过调整第三合束元件408对应的二向色分光片的旋转角度,来控制绿色线偏振光经第三合束元件408反射后,沿与红色线偏振光不同的传输方向传输;可以通过调整第四合束元件409对应的二向色分光片的旋转角度,来控制蓝色线偏振光经第四合束 元件409反射后,沿与红、绿两色线偏振光不同的传输方向传输。
上述实施例中,光源模块201利用多种单色光源分别生成不同颜色的线偏振光,通过不同单色光源对应的角度调整模块分别调整不同颜色线偏振光的偏振角度相同和传输方向不同,能够同时生成多束具有不同波长和相同偏振特征的线偏振光,以便进一步生成用于同时投射多频光栅条纹的偏振光。
二、光发射模块202
图5为本申请实施例提供的一种光发射模块的示意图。如图5所示,所述光发射模块202包括第一分光模块501、方向调整模块502、第二分光模块503和偏振调整模块504;
其中,所述第一分光模块501,用于接收来自光源模块201的第一偏振光,并将所述第一偏振光分束为沿第一方向的第一线偏振光和沿第二方向的第二线偏振光;所述方向调整模块502,用于接收所述第二线偏振光,并将所述第二线偏振光的传输方向调整为第三方向;所述第二分光模块503,用于接收来自所述第一分光模块501的所述第一线偏振光和来自所述方向调整模块502的第二线偏振光,并生成所述第一线偏振光和第二线偏振光干涉后的干涉光;所述偏振调整模块504用于接收所述干涉光,并将所述干涉光的偏振类型调整为圆偏振类型,得到所述第二偏振光。
在本申请一些实施例中,所述方向调整模块包括第一反射镜505和第二反射镜506;其中,所述第一反射镜505,用于接收来自所述第一分光模块的第二线偏振光,并将接收到的第二线偏振光反射至所述第二反射镜506;所述第二反射镜506,用于反射接收到的第二线偏振光,以使所述第二线偏振光被反射后沿所述第三方向入射至所述第二分光模块503。
在本申请一些实施例中,所述第一分光模块501和所述第二分光模块503包括偏振分光棱镜,其中,作为一种可选的实施方式,所述第一分光模块501和所述第二分光模块503可以为偏振分光棱镜。所述第一分光模块501对应的第一偏振分光棱镜和所述第二分光模块503对应的第二偏振分光棱镜对称分布。
在本申请一些实施例中,所述光发射模块202还包括投影模块507,所述投影模块507用于接收所述第二偏振光,并将所述第二偏振光投射至所述目标对象。所述投影模块507包括投影镜头或其它具有投影功能的元件,其中,作为一种可选的实施方式,所述投影模块507可以为投影镜头或其它具有投影功能的元件。
在本申请一些实施例中,所述偏振调整模块504包括1/4波片,且位于所述第二分光模块503与所述投影模块507之间,其中,作为一种可选的实施方式,所述偏振调整模块504可以为1/4波片。
示例性的,在所述第一分光模块501和所述第二分光模块503均为偏振分光棱镜时,所述第一方向可以为水平偏振方向,所述第二方向可以为竖直偏振方向,与所述第一方向垂直。所述第一分光模块501接收来自光源模块201的第一偏振光后,将所述第一偏振光分束为互相垂直的透射光和反射光,所述透射光为沿水平偏振方向的水平线偏振光(p光)即第一线偏振光,所述反射光为沿竖直偏振方向的竖直偏振光(s光)。其中,经所述第一分光模块501透射的所述第一线偏振光经所述第二分光棱镜透射后,入射至所述偏振调整模块504;经所述第一分光模块501反射的所述第二线偏振光经所述第一反射镜505反射后,到达所述第二反射镜506,并经所述第二反射镜506反射,再经所述第二分光模块503 反射后,入射至所述偏振调整模块504。所述第一线偏振光和所述第二线偏振光发生干涉,得到的干涉光经过所述偏振调整模块后,其偏振类型变为圆偏振光,得到所述第二偏振光。
其中,可以通过调整第一反射镜505和/或第二反射镜506的旋转角度(反射镜平面与水平或竖直方向的夹角),来调整第一线偏振光和第二线偏振光之间的夹角,进而控制根据第一线偏振光和第二线偏振光得到的第二偏振光投射出的光栅条纹的空间频率。
需要注意的是,为方便描述,图5中仅以一条线表示所述第一偏振光,实际所述第一偏振光包含上述光源模块201中输出的3个颜色对应的3束线偏振光。
在对目标对象进行轮廓检测的场景中,所述偏振调整模块得到所述第二偏振光后,将所述第二偏振光传输至所述投影模块507,所述投影模块507将所述第二偏振光投影到所述目标对象。
上述实施例中,光发射模块202通过先将来自光源模块201的第一偏振光分束为不同的两束偏振光,再由得到的两束偏振光发生干涉得到第二偏振光,能够使第二偏振光同时投射出多种空间频率的光栅条纹,以便进一步获取多频、多相光栅条纹图像。
三、光探测模块203
图6为本申请实施例提供的一种光探测模块的示意图。如图6所示,所述光探测模块203包括成像模块601和彩色偏振探测模块602。
其中,所述成像模块601,用于接收对应于所述第二偏振光点的目标偏振光,其中,所述目标偏振光用于投射N个颜色的初始目标光栅条纹,所述初始目标光栅条纹为所述第二偏振光投射的光栅条纹经调制后的光栅条纹;所述彩色偏振探测模块602,用于分别对每个颜色对应的初始光栅条纹进行至少两种不同相位值的移相,并生成每个颜色对应的多个目标光栅条纹图像。
在所述光学系统200应用于对目标进行轮廓检测的场景中时,所述目标偏振光可以为所述第二偏振光经目标对象调制后的偏振光。
具体的,光发射模块202向目标对象投射第二偏振光后,所述第二偏振光投射出的光栅条纹由于所述目标对象的调制作用发生形变,产生对应的目标偏振光,反射到光探测模块203中的成像模块601,并经由所述成像模块601传输至所述彩色偏振探测模块602。
在本申请一些实施例中,所述成像模块601包括成像镜等成像元件,其中,作为一种可选的实施方式,所述成像模块601可以为成像镜;所述彩色偏振探测模块可以包括具有不同偏振镀膜和不同彩色镀膜的彩色偏振探测器(或传感器),或者可以包括具有多色光源和像素级镀膜的彩色偏振相机等,其中,作为一种可选的实施方式,所述彩色偏振探测模块可以为所述彩色偏振探测器。
图7为本申请实施例提供的一种彩色偏振探测模块的结构示意图。
本申请实施例中,所述彩色偏振探测模块用于基于偏振对所述目标偏振光投射的光栅条纹进行不同移相,以及对不同颜色的目标偏振光进行接收,实现多频、多相光栅条纹的选通。如图7所示,所述彩色偏振探测模块602的硬件组成中包括位于底层的像素阵列、位于中间层的偏振阵列和位于顶层的微透镜阵列。其中,所述微透镜阵列用于透射所述目标偏振光;所述偏振阵列用于对所述目标偏振光进行至少两种不同相位值的移相,以便得到多相光栅条纹信号;所述像素阵列用于分别接收不同颜色的目标偏振光,以便得到多频 光栅条纹信号。所述彩色偏振探测模块602获取到多相光栅条纹信号和多频光栅条纹信号后,对应生成多频、多相光栅条纹图像,得到多个目标光栅条纹图像。
图8为本申请实施例提供的一种偏振阵列和像素阵列的示意图。
以下对所述目标偏振光进行四种不同相位值的移相为例进行说明。
如图8中所示,偏振阵列的最小处理单元以像素为单位。在该偏振阵列中,每个像素单元对应一种相位值的移相,投射到该像素单元的目标偏振光被执行该像素单元对应的相位值的移相。对所述目标偏振光进行四种不同相位值的移相时,该偏振阵列中包含四种相位值的移相,即包含四种不同偏振方向的像素单元,分别与四种相位值的移相对应的四个相邻的像素单元作为一组,其中,四个相邻的像素单元对应的相位值可以分别为0°、45°、90°、135°。
如图8中所示,在像素阵列中,与所述偏振阵列中一组的四个像素单元对应的四个像素单元对应同一颜色的镀膜,用于在接收到的目标偏振光中滤除其它颜色的光信号,仅接收像素单元对应颜色的光信号。
图9为本申请实施例提供的一种目标光栅条纹图像的示意图。在利用红、绿、蓝3种颜色的偏振光投射光栅条纹、对目标偏振光进行四种不同相位值的移相的场景下,光探测模块203可以根据目标偏振光,获取12张不同的目标光栅条纹图像。如图9所示,获取的12张目标光栅条纹图像包括图9中(a)示意图所示的4张红色的光栅条纹图像、(b)示意图所示的4张绿色的光栅条纹图像以及(c)示意图所示的4张蓝色的光栅条纹图像。其中,(a)示意图所示的4张红色的光栅条纹图像中,光栅条纹的初始相位各不相同,(b)、(c)示意图中同理。其中,图9中以人作为目标对象为例进行示意。
通过上述方式,所述彩色偏振探测模块602可以根据一次接收到的目标偏振光,通过偏振阵列,选择性接收同一空间频率的光栅条纹经移相后的光栅条纹,以及选择性接收不同颜色的光栅条纹,实现同时获取多频、多相光栅条纹图像,大大减少了投射和采集光栅条纹的次数,简化了多频多相光栅条纹的获取流程,便捷性和测量效率都得到极大提高。
图10为本申请实施例提供的一种可能的光学系统的组成示意图。如图10所示,该光学系统中包含的各模块和元件可分别参考上述实施例中的描述,此处不再赘述。
可以理解的是,图10中所示的光学系统架构仅为本申请实施例提供的光学系统200的一种可能的实现方式,并不对本申请实施例提供的光学系统造成限制。
在所述光学系统200应用于对目标对象进行轮廓检测的场景中时,光探测模块203获取经目标对象调制的多张光栅条纹图像后,可以根据所述多张光栅条纹图像,计算所述目标对象的轮廓信息。
基于以上图9所示的探测结果,所述光探测模块203可以采用四步移相方法,分别将图9的(a)、(b)、(c)各示意图中的四张光栅条纹图像作为一组,计算每组对应的相位图,再根据3组光栅条纹图像对应的相位图计算得到一个相位值,最后根据确定的相位值对目标对象进行轮廓检测。
四步移相方法的光强公式如下所示:
在标准的四步移相方法中计算的是光栅条纹图像的包裹相位,对应的四幅图像的相位位移分别为δ
0=0,δ
1=π/2,δ
2=π,δ
3=3π/2。
求解上述公式可得四步移相公式为:
其中,I
0(x,y)、I
1(x,y)、I
2(x,y)、I
3(x,y)分别为四张光栅条纹图像的光强。
通过联立上述4个公式求解,可以得到如下相位函数:
光探测模块203通过上述方法求出每组光栅条纹图像对应的(包裹)相位后,在相位解缠步骤可以采用计算合成波长的方法来实现相位解缠。
在对目标偏振光进行三种不同相位值的移相的场景下,上述图8中所示的像素阵列中包含三种相位值的移相,即包含三种不同偏振方向的像素单元,分别与三种相位值的移相对应的三个相邻的像素单元作为一组。该方式中,对目标对象进行轮廓检测,可以采用三步移相的相关计算方法,此处不再赘述。
基于相同的技术构思,本申请实施例还提供一种装置,该终端可以包括本申请实施例所提供的光学系统。
基于相同的技术构思,本申请实施例还提供一种终端,该终端可以包括本申请实施例所提供的光学系统。
可选的,所述终端可以为车辆、无人机、机器人、车载终端等。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请实施例的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。
Claims (17)
- 一种光学系统,其特征在于,包括光源模块和光发射模块;所述光源模块,用于输出第一偏振光,所述第一偏振光包含N个颜色的线偏振光,其中,不同颜色的线偏振光具有相同的偏振角度和不同的传输方向,所述N为大于1的整数;所述光发射模块,用于接收所述第一偏振光,根据所述第一偏振光生成第二偏振光,所述第二偏振光用于投射N个颜色的光栅条纹,其中,不同颜色的光栅条纹的空间频率不同。
- 根据权利要求1所述的光学系统,其特征在于,所述光学系统还包括光探测模块;所述光探测模块,用于接收对应于所述第二偏振光的目标偏振光,并根据所述目标偏振光获取多个目标光栅条纹图像,所述多个目标光栅条纹图像包括所述N个颜色中每个颜色对应的多个目标光栅条纹图像,其中,每个颜色对应的至少两个目标光栅条纹图像中光栅条纹的初始相位不同。
- 根据权利要求2所述的光学系统,其特征在于,所述光探测模块包括成像模块和彩色偏振探测模块;所述成像模块,用于接收所述目标偏振光,其中,所述目标偏振光用于投射N个颜色的初始目标光栅条纹,所述初始目标光栅条纹为所述第二偏振光投射的光栅条纹经调制后的光栅条纹;所述彩色偏振探测模块,用于分别对每个颜色对应的初始光栅条纹进行至少两种不同相位值的移相,并生成每个颜色对应的多个目标光栅条纹图像。
- 根据权利要求1~3任一所述的光学系统,其特征在于,所述光源模块包括N个单色光源、N个角度调整模块和合束模块;在所述N个单色光源中,每个单色光源用于输出对应颜色的线偏振光;在所述N个角度调整模块中,每个角度调整模块用于将来自对应的单色光源的线偏振光的偏振角度调整为目标角度;所述合束模块,用于将来自所述N个角度调整模块的N束线偏振光的传输方向调整为分别与目标方向具有不同夹角,得到所述第一偏振光。
- 根据权利要求4所述的光学系统,其特征在于,所述角度调整模块包括1/2波片,所述角度调整模块位于对应的单色光源与所述合束模块之间。
- 根据权利要求4或5所述的光学系统,其特征在于,所述合束模块包括N-1个合束元件,其中:所述N-1个合束元件中的第一合束元件,用于透射来自所述N个角度调整模块中第一角度调整模块的第一线偏振光,反射来自所述N个角度调整模块中第二角度调整模块的第二线偏振光,以及控制所述第一线偏振光和所述第二线偏振光的传输方向与目标方向具有不同夹角;或者所述第一合束元件,用于透射来自第二合束元件的第三线偏振光,反射来自所述N个角度调整模块中第三角度调整模块的第四线偏振光,以及控制所述第三线偏振光和所述第四线偏振光的传输方向与目标方向具有不同夹角。
- 根据权利要求6所述的光学系统,其特征在于,任一个合束元件包括二向色分光片。
- 根据权利要求4~7任一所述的光学系统,其特征在于,所述目标方向为所述N个单 色光源中的一个单色光源输出的线偏振光的传输方向。
- 根据权利要求1~8任一所述的光学系统,其特征在于,所述光发射模块包括第一分光模块、方向调整模块、第二分光模块和偏振调整模块;所述第一分光模块,用于接收所述第一偏振光,并将所述第一偏振光分束为沿第一方向的第一线偏振光和沿第二方向的第二线偏振光;所述方向调整模块,用于接收所述第二线偏振光,并将所述第二线偏振光的传输方向调整为第三方向;所述第二分光模块,用于接收来自所述第一分光模块的所述第一线偏振光和来自所述方向调整模块的第二线偏振光,并生成所述第一线偏振光和第二线偏振光干涉后的干涉光;所述偏振调整模块用于接收所述干涉光,并将所述干涉光的偏振类型调整为圆偏振类型,得到所述第二偏振光。
- 根据权利要求9所述的光学系统,其特征在于,所述方向调整模块包括第一反射镜和第二反射镜;所述第一反射镜,用于接收来自所述第一分光模块的第二线偏振光,并将接收到的第二线偏振光反射至所述第二反射镜;所述第二反射镜,用于反射接收到的第二线偏振光,以使所述第二线偏振光被反射后沿所述第三方向入射至所述第二分光模块。
- 根据权利要求9或10所述的光学系统,其特征在于,所述第二方向与所述第一方向垂直。
- 根据权利要求9~11任一所述的光学系统,其特征在于,所述第一分光模块和所述第二分光模块包括偏振分光棱镜。
- 根据权利要求9~12任一所述的光学系统,其特征在于,所述光发射模块还包括投影模块,所述投影模块用于接收所述第二偏振光,并将所述第二偏振光投射至目标对象。
- 根据权利要求13所述的光学系统,其特征在于,所述光调整模块包括1/4波片,且位于所述第二分光模块与所述投影模块之间。
- 一种装置,其特征在于,所述装置包括如权利要求1至14任一项所述的光学系统。
- 一种终端,其特征在于,所述终端包括如权利要求1至14任一项所述的光学系统。
- 根据权利要求16所述的终端,其特征在于,所述终端为以下任一种:车辆、无人机、机器人。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023550262A JP2024509390A (ja) | 2021-02-23 | 2021-02-23 | 光学システム、装置、及び端末 |
EP21927124.4A EP4286791A4 (en) | 2021-02-23 | 2021-02-23 | OPTICAL SYSTEM, DEVICE AND TERMINAL |
CN202180000433.5A CN112739981B (zh) | 2021-02-23 | 2021-02-23 | 一种光学系统、装置及终端 |
PCT/CN2021/077509 WO2022178678A1 (zh) | 2021-02-23 | 2021-02-23 | 一种光学系统、装置及终端 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/077509 WO2022178678A1 (zh) | 2021-02-23 | 2021-02-23 | 一种光学系统、装置及终端 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022178678A1 true WO2022178678A1 (zh) | 2022-09-01 |
Family
ID=75596492
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/077509 WO2022178678A1 (zh) | 2021-02-23 | 2021-02-23 | 一种光学系统、装置及终端 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4286791A4 (zh) |
JP (1) | JP2024509390A (zh) |
CN (1) | CN112739981B (zh) |
WO (1) | WO2022178678A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1419647A (zh) * | 2000-03-24 | 2003-05-21 | 索尔维森公司 | 可同时投射多相移图案而对物体进行三维检测的系统 |
EP1687588A2 (en) * | 2003-11-17 | 2006-08-09 | University de Liege | Process and apparatus for measuring the three-dimensional shape of an object |
CN101936718A (zh) * | 2010-03-23 | 2011-01-05 | 上海复蝶智能科技有限公司 | 正弦条纹投影装置以及三维轮廓测量方法 |
US10036630B1 (en) * | 2017-05-22 | 2018-07-31 | Asm Technology Singapore Pte Ltd | Three-dimensional imaging using a multi-phase projector |
CN109163673A (zh) * | 2018-08-17 | 2019-01-08 | 华中科技大学 | 一种多波长和相移干涉双同步的表面实时测量方法及系统 |
CN110186390A (zh) * | 2019-05-21 | 2019-08-30 | 中国计量大学 | 紧凑型瞬态多波长移相干涉装置及其测量方法 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000346612A (ja) * | 1999-06-04 | 2000-12-15 | Sony Corp | 干渉計および干渉測定方法 |
EP2813809A1 (en) * | 2013-06-06 | 2014-12-17 | Canon Kabushiki Kaisha | Device and method for measuring the dimensions of an objet and method for producing an item using said device |
TWI489079B (zh) * | 2013-11-01 | 2015-06-21 | Young Optics Inc | 投影裝置與深度量測系統 |
US10921255B2 (en) * | 2014-12-09 | 2021-02-16 | Bioaxial Sas | Optical measuring device and process |
JP6271493B2 (ja) * | 2015-05-25 | 2018-01-31 | Ckd株式会社 | 三次元計測装置 |
JP6524223B2 (ja) * | 2015-06-01 | 2019-06-05 | オリンパス株式会社 | 干渉縞投影装置及び計測装置 |
JPWO2017183181A1 (ja) * | 2016-04-22 | 2019-02-28 | オリンパス株式会社 | 三次元形状測定装置 |
CN108121177B (zh) * | 2016-11-29 | 2019-11-22 | 上海微电子装备(集团)股份有限公司 | 一种对准测量系统及对准方法 |
CN109855530B (zh) * | 2017-11-30 | 2021-03-09 | 上海微电子装备(集团)股份有限公司 | 干涉仪系统及其使用方法 |
CN207675118U (zh) * | 2017-11-30 | 2018-07-31 | 青岛全维医疗科技有限公司 | 数字全息三维显微系统 |
CN109143604A (zh) * | 2018-08-09 | 2019-01-04 | 深圳市华星光电技术有限公司 | 投影显示装置 |
-
2021
- 2021-02-23 EP EP21927124.4A patent/EP4286791A4/en active Pending
- 2021-02-23 CN CN202180000433.5A patent/CN112739981B/zh active Active
- 2021-02-23 WO PCT/CN2021/077509 patent/WO2022178678A1/zh active Application Filing
- 2021-02-23 JP JP2023550262A patent/JP2024509390A/ja active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1419647A (zh) * | 2000-03-24 | 2003-05-21 | 索尔维森公司 | 可同时投射多相移图案而对物体进行三维检测的系统 |
EP1687588A2 (en) * | 2003-11-17 | 2006-08-09 | University de Liege | Process and apparatus for measuring the three-dimensional shape of an object |
CN101936718A (zh) * | 2010-03-23 | 2011-01-05 | 上海复蝶智能科技有限公司 | 正弦条纹投影装置以及三维轮廓测量方法 |
US10036630B1 (en) * | 2017-05-22 | 2018-07-31 | Asm Technology Singapore Pte Ltd | Three-dimensional imaging using a multi-phase projector |
CN109163673A (zh) * | 2018-08-17 | 2019-01-08 | 华中科技大学 | 一种多波长和相移干涉双同步的表面实时测量方法及系统 |
CN110186390A (zh) * | 2019-05-21 | 2019-08-30 | 中国计量大学 | 紧凑型瞬态多波长移相干涉装置及其测量方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4286791A4 * |
Also Published As
Publication number | Publication date |
---|---|
EP4286791A1 (en) | 2023-12-06 |
JP2024509390A (ja) | 2024-03-01 |
CN112739981B (zh) | 2022-05-06 |
CN112739981A (zh) | 2021-04-30 |
EP4286791A4 (en) | 2024-03-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230392920A1 (en) | Multiple channel locating | |
KR101139178B1 (ko) | 디지털 홀로그래피를 이용한 입체 측정장치 | |
US5675407A (en) | Color ranging method for high speed low-cost three dimensional surface profile measurement | |
JP6621580B2 (ja) | レーザー計測システムおよび方法 | |
US20120307260A1 (en) | Hybrid system | |
JPH11508371A (ja) | テレセントリック立体カメラと方法 | |
JP7419394B2 (ja) | モードフィールド拡大器を備えたlidarシステム | |
WO2008068791A1 (en) | Three-dimensional optical radar method and device which use three rgb beams modulated by laser diodes, in particular for metrological and fine arts applications | |
US20120314039A1 (en) | 3d image acquisition apparatus employing interchangable lens | |
CN109270551A (zh) | 一种面阵扫描式激光远距离三维测量系统 | |
CN104251995A (zh) | 彩色激光三维扫描技术 | |
CN113465545B (zh) | 一种基于高速led阵列的三维测量系统及其测量方法 | |
KR20150068545A (ko) | 복합 영상 센싱 시스템 | |
CN112255639B (zh) | 一种感兴趣区域深度感知传感器及深度感知传感模块 | |
CN103630118B (zh) | 一种立体高光谱成像装置 | |
WO2022178678A1 (zh) | 一种光学系统、装置及终端 | |
CN103697825B (zh) | 一种超分辨3d激光测量系统及方法 | |
CN115499637B (zh) | 一种具有雷达功能的摄像装置 | |
CN209086436U (zh) | 一种面阵扫描式激光远距离三维测量系统 | |
US20210014401A1 (en) | Three-dimensional distance measuring method and device | |
JPH11142122A (ja) | レンジファインダ装置 | |
CN115462735A (zh) | 一种高精度单目内窥立体成像系统及成像方法 | |
CA2975687C (en) | Three-dimensional synthetic aperture imaging using spatial amplitude modulation | |
Ma et al. | 3D Single-Pixel Imaging by Virtual Binocular Vision | |
KR102656429B1 (ko) | 단일 파장 레이저와 파장 필터를 이용한 형상 및 분광 정보 동시 측정 시스템 및 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21927124 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023550262 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2021927124 Country of ref document: EP Effective date: 20230830 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |