Nothing Special   »   [go: up one dir, main page]

WO2022177014A1 - セルロースナノファイバーを含む組成物 - Google Patents

セルロースナノファイバーを含む組成物 Download PDF

Info

Publication number
WO2022177014A1
WO2022177014A1 PCT/JP2022/007029 JP2022007029W WO2022177014A1 WO 2022177014 A1 WO2022177014 A1 WO 2022177014A1 JP 2022007029 W JP2022007029 W JP 2022007029W WO 2022177014 A1 WO2022177014 A1 WO 2022177014A1
Authority
WO
WIPO (PCT)
Prior art keywords
rubber
mass
cellulose nanofibers
cellulose
less
Prior art date
Application number
PCT/JP2022/007029
Other languages
English (en)
French (fr)
Inventor
亮介 小澤
一文 河原
敦志 馬場
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to KR1020237028543A priority Critical patent/KR102650295B1/ko
Priority to CN202280009060.2A priority patent/CN116783077A/zh
Priority to JP2023500964A priority patent/JP7374372B2/ja
Priority to US18/278,133 priority patent/US20240124690A1/en
Priority to EP22756331.9A priority patent/EP4296077A4/en
Publication of WO2022177014A1 publication Critical patent/WO2022177014A1/ja
Priority to JP2023182623A priority patent/JP2024012361A/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L21/00Compositions of unspecified rubbers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/15Heterocyclic compounds having oxygen in the ring
    • C08K5/151Heterocyclic compounds having oxygen in the ring having one oxygen atom in the ring
    • C08K5/1535Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • AHUMAN NECESSITIES
    • A43FOOTWEAR
    • A43BCHARACTERISTIC FEATURES OF FOOTWEAR; PARTS OF FOOTWEAR
    • A43B13/00Soles; Sole-and-heel integral units
    • A43B13/02Soles; Sole-and-heel integral units characterised by the material
    • A43B13/04Plastics, rubber or vulcanised fibre
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2409/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2409/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/54Aqueous solutions or dispersions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/14Polymer mixtures characterised by other features containing polymeric additives characterised by shape
    • C08L2205/16Fibres; Fibrils
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/32Properties characterising the ingredient of the composition containing low molecular weight liquid component
    • C08L2207/324Liquid component is low molecular weight polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2310/00Masterbatches
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F1/00Springs
    • F16F1/36Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers
    • F16F1/3605Springs made of rubber or other material having high internal friction, e.g. thermoplastic elastomers characterised by their material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16GBELTS, CABLES, OR ROPES, PREDOMINANTLY USED FOR DRIVING PURPOSES; CHAINS; FITTINGS PREDOMINANTLY USED THEREFOR
    • F16G1/00Driving-belts
    • F16G1/06Driving-belts made of rubber

Definitions

  • One aspect of the present disclosure relates to a composition or the like containing cellulose nanofibers.
  • rubber moldings are required to have a high balance of various properties such as mechanical strength, flexibility, wear resistance, and processability. It is common practice to incorporate a filler into the rubber molding for the purpose of In order for a rubber molding containing such a filler to exhibit desired properties, it is important that the filler is well dispersed in the rubber.
  • Patent Literature 1 describes a rubber composition for tires characterized by blending oxidized cellulose nanofibers with a diene rubber containing a modified diene rubber for the purpose of improving mechanical properties. .
  • cellulose which is a low specific gravity and renewable material
  • cellulose nanofiber is very promising as a filler for polymer moldings because it has a good reinforcing effect per amount used on the polymer molding when it is combined with various polymers to form a polymer molding.
  • cellulose nanofibers can be used for rubber moldings, it is possible to provide rubber moldings that have low specific gravity and excellent physical properties, can be used for various purposes, and are advantageous in terms of transportation costs and disposal costs.
  • Patent Document 1 describes a rubber composition for tires in which cellulose oxide nanofibers as a filler are dispersed in a diene rubber containing a modified diene rubber.
  • this technique is a technique in which the modified diene rubber improves the dispersibility by improving the affinity of the oxidized cellulose nanofibers for the diene rubber. Even if the cellulose nanofibers do not have an ionic group, a rubber molded article in which cellulose nanofibers are satisfactorily dispersed in rubber has not yet been provided.
  • One aspect of the present invention solves the above problems and provides a rubber composition in which cellulose nanofibers are well dispersed in the rubber and which enables the formation of a molded article having excellent elastic modulus, wear resistance, etc. With the goal.
  • a rubber composition comprising cellulose nanofibers, a first rubber component that is liquid rubber, and a surfactant.
  • the rubber composition according to aspect 1 wherein the cellulose nanofibers do not have an ionic group.
  • the rubber composition according to aspect 1 or 2 wherein the liquid rubber has a number average molecular weight of 1,000 to 80,000.
  • the described rubber composition [9] The rubber composition according to any one of the above aspects 1 to 8, wherein the cellulose nanofibers have a degree of substitution of 0. [10] The rubber composition according to any one of aspects 1 to 9, containing 0.5% by mass to 10% by mass of the cellulose nanofibers. [11] The rubber composition according to any one of the aspects 1 to 10, containing 10 parts by mass to 200 parts by mass of the surfactant with respect to 100 parts by mass of the cellulose nanofibers. [12] The rubber composition according to any one of aspects 1 to 11, wherein the surfactant is a nonionic surfactant or a cationic surfactant. [13] The rubber composition according to aspect 12 above, wherein the surfactant is a nonionic surfactant.
  • nonionic surfactant is a compound having a hydrophilic group selected from the group consisting of a hydroxyl group, a carboxyl group, a sulfonic acid group, and an amino group, and a hydrocarbon group. rubber composition.
  • the nonionic surfactant has the following general formula (1): R-( OCH2CH2 ) m - OH (1) [In the formula, R represents a monovalent aliphatic group having 6 to 30 carbon atoms, and m is a natural number smaller than the number of carbon atoms of R.
  • R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group having 1 to 30 carbon atoms, or -COR 3 ⁇ wherein R 3 represents an aliphatic group having 1 to 30 carbon atoms. ⁇ , or --(CH 2 CH 2 O) y --R 4 ⁇ wherein R 4 represents a hydrogen atom or an aliphatic group having 1-30 carbon atoms, and y is an integer of 1-30.
  • represents.
  • the rubber composition according to aspect 13 or 14 above which is one or more selected from the group consisting of: [16] The rubber composition according to any one of the above aspects 1 to 15, wherein at least part of the surface of the cellulose nanofibers is covered with the first rubber component. [17] A powder composed of the rubber composition according to any one of aspects 1 to 16 above. [18] The powder according to aspect 17 above, which has a compacted bulk density of 0.01 g/cm 3 to 0.30 g/cm 3 . [19] A masterbatch, which is a kneaded product of the powder according to aspect 17 or 18 and a second rubber component.
  • a method for producing a masterbatch comprising the step of kneading the powder according to aspect 17 or 18 and a second rubber component to obtain a masterbatch.
  • a rubber composite which is a kneaded product of the powder according to Aspect 17 or 18 or the masterbatch according to Aspect 19 and a third rubber component.
  • a method for producing a rubber cured product comprising: [27] A shoe outsole comprising the cured rubber product according to aspect 25 above. [28] A tire comprising the cured rubber product according to aspect 25 above. [29] An anti-vibration rubber comprising the cured rubber product according to aspect 25 above. [30] A power transmission belt comprising the cured rubber product according to aspect 25 above.
  • FIG. 10 is a diagram showing an observation image of a cross section of the powder obtained in Example 10, which was observed with a scanning electron microscope.
  • present embodiments Exemplary embodiments of the present invention (hereinafter abbreviated as "present embodiments") will be described below, but the present invention is in no way limited to these embodiments.
  • characteristic values of the present disclosure are values measured by the method described in the [Examples] section of the present disclosure or a method understood to be equivalent thereto by those skilled in the art.
  • ⁇ Rubber composition>> One aspect of the present disclosure provides a rubber composition that includes cellulose nanofibers, a surfactant, and a first rubber component that is liquid rubber.
  • Cellulose nanofibers are inherently hydrophilic due to their hydroxyl groups, while rubber is inherently hydrophobic, and it is usually difficult to uniformly disperse cellulose nanofibers in rubber.
  • the present inventors have made various studies from such a viewpoint, and as a result, prepared a rubber composition by dispersing cellulose nanofibers in a specific rubber having fluidity at a predetermined temperature, and then using the rubber composition as, for example, a rubber By kneading rubber with rubber in the form of a masterbatch for industrial use, a cured rubber product is formed that does not impair the expected physical properties of rubber and exhibits a good reinforcing effect of cellulose nanofibers. I found that it can be done.
  • the cellulose nanofibers are well dispersed in the rubber, and a cured rubber having good properties (especially, elastic modulus, hardness, etc.) can be formed.
  • the cured product has cellulose nanofibers well dispersed in the rubber and can form a molded product having excellent elastic modulus, abrasion resistance, and the like. Preferred examples of each component of the rubber composition of the present embodiment are described below.
  • Natural cellulose and regenerated cellulose can be used as raw materials for cellulose nanofibers.
  • natural cellulose include wood pulp obtained from wood species (hardwood or softwood), non-wood pulp obtained from non-wood species (cotton, bamboo, hemp, bagasse, kenaf, cotton linter, sisal, straw, etc.), animals (e.g. Ascidians), algae, and cellulose aggregates produced by microorganisms (eg, acetic acid bacteria) can be used.
  • regenerated cellulose regenerated cellulose fibers (viscose, cupra, tencel, etc.), cellulose derivative fibers, regenerated cellulose obtained by electrospinning, ultrafine yarns of cellulose derivatives, and the like can be used.
  • cellulose nanofibers are produced by treating pulp or the like with hot water at 100° C. or higher, hydrolyzing hemicellulose to make it brittle, and then using a high-pressure homogenizer, a microfluidizer, a ball mill, a disk mill, a mixer (for example, homogenizer It is a fine cellulose fiber mechanically defibrated by a pulverization method such as a mixer.
  • the cellulose nanofibers have a number average fiber diameter of 1 nm or more and 1000 nm or less.
  • Cellulose nanofibers may be chemically modified as described later, but are preferably not chemically modified in terms of reinforcing effect as a filler.
  • cellulose nanofibers that have been defibrated by chemical oxidation treatment such as 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) phosphate ester have the ions introduced into the cellulose nanofibers.
  • the heat resistance tends to be low due to the functional group (for example, carboxyl group), and the fiber diameter after fibrillation tends to be small.
  • the cellulose nanofibers that are only mechanically defibrated that is, are not subjected to chemical defibration treatment such as oxidation
  • the cellulose nanofibers do not have ionic groups.
  • that the cellulose nanofibers do not have ionic groups means that the amount of ionic groups measured by conductivity titration is 0.1 mmol/g or less.
  • the slurry can be prepared by dispersing cellulose fibers in a liquid medium, and the dispersion may be performed using a high-pressure homogenizer, a microfluidizer, a ball mill, a disk mill, a mixer (e.g., homomixer), or the like. may be obtained as a product of the slurry preparation process of the present disclosure.
  • the liquid medium in the slurry may further comprise, in addition to water, optionally other liquid mediums (eg, organic solvents), either singly or in combination of two or more.
  • organic solvents include commonly used water-miscible organic solvents such as: alcohols with boiling points of 50° C. to 170° C. (e.g.
  • ethers eg, propylene glycol monomethyl ether, 1,2-dimethoxyethane, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, etc.
  • carboxylic acids eg, formic acid, acetic acid, lactic acid, etc.
  • ketones eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, etc.
  • nitrogen-containing solvents dimethylformamide, dimethylacetamide, acetonitrile, etc.
  • the liquid medium in the slurry is substantially
  • the alkali-soluble components and sulfuric acid-insoluble components may be reduced through a purification process such as delignification by cooking treatment and a bleaching process.
  • refining and bleaching processes such as delignification by digestion cut the molecular chains of cellulose and change the weight-average molecular weight and number-average molecular weight. It is desirable that the weight-average molecular weight of the fiber and the ratio between the weight-average molecular weight and the number-average molecular weight are controlled within appropriate ranges.
  • the refining process such as delignification by cooking treatment and the bleaching process reduce the molecular weight of cellulose molecules
  • these processes reduce the molecular weight of cellulose nanofibers and denature the cellulose raw material to produce alkali-soluble components.
  • the refining and bleaching steps of the cellulose raw material are controlled so that the amount of alkali-soluble matter contained in the cellulose raw material is within a certain range. desirable.
  • the number average fiber diameter of the cellulose nanofibers is preferably 2 to 1000 nm from the viewpoint of obtaining the effect of improving the physical properties of the cellulose nanofibers.
  • the number average fiber diameter of the cellulose nanofibers is more preferably 4 nm or more, or 5 nm or more, or 10 nm or more, or 15 nm or more, or 20 nm or more, and more preferably 500 nm or less, or 450 nm or less, or 400 nm or less, or 350 nm. or less, or 300 nm or less, or 250 nm or less.
  • the average fiber length (L)/fiber diameter (D) ratio of cellulose nanofibers is preferably 30 or more from the viewpoint of satisfactorily improving the mechanical properties of a rubber composite containing cellulose nanofibers with a small amount of cellulose nanofibers. , or 50 or more, or 80 or more, or 100 or more, or 120 or more, or 150 or more. Although the upper limit is not particularly limited, it is preferably 5000 or less from the viewpoint of handleability.
  • the fiber length, fiber diameter, and L/D ratio of cellulose nanofibers are measured by dispersing an aqueous dispersion of cellulose nanofibers with a high-shear homogenizer (for example, Nippon Seiki Co., Ltd., trade name "Excel Auto Homogenizer ED- 7”), treatment conditions: A water dispersion dispersed at a rotation speed of 15,000 rpm for 5 minutes was diluted with pure water to 0.1 to 0.5% by mass, cast on mica, and air-dried. A sample is used as a measurement sample, and measured with a scanning electron microscope (SEM) or an atomic force microscope (AFM).
  • SEM scanning electron microscope
  • AFM atomic force microscope
  • the length (L) and diameter (D) of 100 randomly selected cellulose nanofibers in an observation field whose magnification is adjusted so that at least 100 cellulose nanofibers can be observed. is measured and the ratio (L/D) is calculated.
  • the number average value of fiber length (L), the number average value of fiber diameter (D), and the number average value of ratio (L/D) are calculated.
  • the fiber length, fiber diameter, and L/D ratio of cellulose nanofibers contained in powder, rubber composition, rubber masterbatch, rubber composite, etc. are measured by the above-described measurement method using these as measurement samples. You can check by doing
  • the fiber length, fiber diameter, and L/D ratio of the cellulose nanofibers contained in the powder, rubber composition, rubber masterbatch, rubber composite, etc. are organic or inorganic capable of dissolving the polymer components contained therein.
  • the cellulose nanofibers are separated and thoroughly washed with the solvent, an aqueous dispersion is prepared by replacing the solvent with pure water, and the cellulose nanofiber concentration is adjusted to 0.1 to It can be confirmed by diluting it with pure water to 0.5% by mass, casting it on mica, air-drying it, and measuring it as a measurement sample by the above-described measurement method. At this time, 100 or more randomly selected cellulose nanofibers to be measured are measured.
  • the crystallinity of cellulose nanofibers is preferably 55% or more. When the crystallinity is within this range, the mechanical properties (strength and dimensional stability) of cellulose itself are high, so when cellulose nanofibers are dispersed in rubber, the rubber composite tends to have high strength and dimensional stability. be.
  • a more preferred lower limit of crystallinity is 60%, still more preferably 70%, and most preferably 80%.
  • the crystallinity of the cellulose nanofibers has no particular upper limit, and the higher the better, but the preferred upper limit is 99% from the viewpoint of production.
  • Alkali-soluble polysaccharides such as hemicellulose and acid-insoluble components such as lignin are present between microfibrils of plant-derived cellulose nanofibers and between microfibril bundles.
  • Hemicellulose is a polysaccharide composed of sugars such as mannan and xylan, and plays a role of connecting microfibrils by forming hydrogen bonds with cellulose.
  • Lignin is a compound having an aromatic ring and is known to covalently bond with hemicellulose in plant cell walls. If the residual amount of impurities such as lignin in the cellulose nanofibers is large, discoloration may occur due to heat during processing. It is desirable that the crystallinity of the nanofibers be within the above range.
  • cellulose As crystalline forms of cellulose, type I, type II, type III, type IV, etc. are known. Among them, types I and II are particularly widely used, and types III and IV are available on a laboratory scale. However, it is not widely used on an industrial scale.
  • the cellulose nanofibers of the present disclosure have relatively high structural mobility, and by dispersing the cellulose nanofibers in rubber, the coefficient of linear expansion is lower, and the strength and elongation during tensile and bending deformation are superior.
  • Cellulose nanofibers containing cellulose type I crystals or cellulose type II crystals are preferable, and cellulose nanofibers containing cellulose type I crystals and having a degree of crystallinity of 55% or more are more preferable, since a molded article having a higher degree of crystallinity can be obtained. .
  • the degree of polymerization of the cellulose nanofiber is preferably 100 or more, more preferably 150 or more, more preferably 200 or more, more preferably 300 or more, more preferably 400 or more, more preferably 450 or more, preferably 3500 or more. Below, more preferably 3300 or less, more preferably 3200 or less, more preferably 3100 or less, more preferably 3000 or less.
  • the degree of polymerization of cellulose nanofibers is preferably not too high, and from the viewpoint of developing mechanical properties, it is desired that the degree of polymerization is not too low.
  • the degree of polymerization of cellulose nanofibers means the average degree of polymerization measured according to the reduction specific viscosity method with a copper ethylenediamine solution described in the confirmation test (3) of the "15th Edition Japanese Pharmacopoeia Commentary (published by Hirokawa Shoten)". do.
  • the weight average molecular weight (Mw) of cellulose nanofibers is 100,000 or more, more preferably 200,000 or more.
  • the ratio (Mw/Mn) between the weight average molecular weight and the number average molecular weight (Mn) is 6 or less, preferably 5.4 or less.
  • the larger the weight average molecular weight the smaller the number of terminal groups of the cellulose molecule.
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) represents the width of the molecular weight distribution, the smaller the Mw/Mn, the smaller the number of ends of the cellulose molecules.
  • the weight average molecular weight (Mw) of cellulose nanofibers may be, for example, 600,000 or less, or 500,000 or less, from the viewpoint of availability of cellulose raw materials.
  • the ratio (Mw/Mn) between the weight average molecular weight and the number average molecular weight (Mn) may be, for example, 1.5 or more, or 2 or more from the viewpoint of ease of production of cellulose nanofibers.
  • Mw can be controlled within the above range by selecting a cellulose raw material having an Mw suitable for the purpose, and by appropriately subjecting the cellulose raw material to physical and/or chemical treatments within an appropriate range.
  • the Mw/Mn is also within the above range by selecting a cellulose raw material having Mw/Mn according to the purpose, by appropriately performing physical treatment and/or chemical treatment on the cellulose raw material in an appropriate range, etc.
  • the physical treatment includes dry or wet grinding such as microfluidizer, ball mill, disk mill, crusher, homomixer, high-pressure homogenizer, and ultrasonic device.
  • dry or wet grinding such as microfluidizer, ball mill, disk mill, crusher, homomixer, high-pressure homogenizer, and ultrasonic device.
  • mechanical forces such as impact, shear, shear, friction, etc., include cooking, bleaching, acid treatment, regenerated cellulose, and the like.
  • the weight-average molecular weight and number-average molecular weight of cellulose nanofibers referred to here are obtained by dissolving cellulose nanofibers in N,N-dimethylacetamide to which lithium chloride has been added, and then gelling with N,N-dimethylacetamide as a solvent. It is a value determined by permeation chromatography.
  • Methods for controlling the degree of polymerization (that is, the average degree of polymerization) or molecular weight of cellulose nanofibers include hydrolysis treatment.
  • the hydrolysis treatment promotes depolymerization of the amorphous cellulose inside the cellulose nanofibers and reduces the average degree of polymerization.
  • the hydrolysis treatment removes impurities such as hemicellulose and lignin in addition to the amorphous cellulose described above, so that the interior of the fiber becomes porous.
  • the method of hydrolysis is not particularly limited, but includes acid hydrolysis, alkaline hydrolysis, hydrothermal hydrolysis, steam explosion, microwave decomposition, and the like. These methods may be used alone or in combination of two or more.
  • acid hydrolysis method for example, ⁇ -cellulose obtained as pulp from a fibrous plant is used as a cellulose raw material, and this is dispersed in an aqueous medium, and an appropriate amount of protonic acid, carboxylic acid, Lewis acid, heteropoly acid, etc. is added.
  • the average degree of polymerization can be easily controlled.
  • the reaction conditions such as temperature, pressure and time at this time vary depending on the cellulose species, cellulose concentration, acid species, acid concentration, etc., but are appropriately adjusted so as to achieve the desired average degree of polymerization.
  • the conditions include using a mineral acid aqueous solution of 2% by mass or less and treating the cellulose nanofibers at 100° C. or higher under pressure for 10 minutes or longer.
  • the catalyst component such as acid permeates into the inside of the cellulose nanofibers, promoting hydrolysis, reducing the amount of the catalyst component to be used, and facilitating subsequent purification.
  • the dispersion of the cellulose raw material at the time of hydrolysis may contain a small amount of an organic solvent within a range that does not impair the effects of the present invention.
  • Alkali-soluble polysaccharides that can be contained in cellulose nanofibers include ⁇ -cellulose and ⁇ -cellulose in addition to hemicellulose.
  • Alkali-soluble polysaccharides are components obtained as alkali-soluble parts of holocellulose obtained by solvent extraction and chlorine treatment of plants (for example, wood) (that is, components obtained by removing ⁇ -cellulose from holocellulose). It is understood by those skilled in the art.
  • Alkali-soluble polysaccharides are polysaccharides containing hydroxyl groups and have poor heat resistance, and are subject to decomposition when exposed to heat, yellowing during heat aging, and reduced strength of cellulose nanofibers. It is preferable that the content of alkali-soluble polysaccharides in the cellulose nanofibers is as small as possible, because it may cause inconveniences.
  • the average content of alkali-soluble polysaccharides in cellulose nanofibers is preferably 20% by mass or less with respect to 100% by mass of cellulose nanofibers, from the viewpoint of obtaining good dispersibility of cellulose nanofibers. Or 18% by mass or less, or 15% by mass or less, or 12% by mass or less. From the viewpoint of ease of production of cellulose nanofibers, the content may be 1% by mass or more, 2% by mass or more, or 3% by mass or more.
  • the average content of alkali-soluble polysaccharides can be obtained by the method described in Non-Patent Document (Wood Science Experiment Manual, edited by Japan Wood Science Society, pp. 92-97, 2000), and the holocellulose content (Wise method) It is obtained by subtracting the ⁇ -cellulose content from This method is understood in the art as a method for measuring the amount of hemicellulose.
  • the alkali-soluble polysaccharide content is calculated three times for each sample, and the number average of the calculated alkali-soluble polysaccharide contents is taken as the average alkali-soluble polysaccharide content.
  • the average content of acid-insoluble components in the cellulose nanofibers is preferably 10% by mass with respect to 100% by mass of the cellulose nanofibers, from the viewpoint of avoiding a decrease in heat resistance of the cellulose nanofibers and accompanying discoloration. or less, or 5% by mass or less, or 3% by mass or less. From the viewpoint of ease of production of cellulose nanofibers, the content may be 0.1% by mass or more, 0.2% by mass or more, or 0.3% by mass or more.
  • the average content of acid-insoluble components is determined by quantifying the acid-insoluble components using the Clason method described in Non-Patent Document (Wood Science Experiment Manual, edited by Japan Wood Research Society, pp. 92-97, 2000). This method is understood in the industry as a method for measuring the amount of lignin. After stirring the sample in a sulfuric acid solution to dissolve cellulose, hemicellulose, etc., the sample was filtered through a glass fiber filter paper, and the obtained residue corresponds to the acid-insoluble component. The acid-insoluble component content is calculated from this acid-insoluble component weight, and the number average of the acid-insoluble component content calculated for the three samples is taken as the acid-insoluble component average content.
  • the thermal decomposition initiation temperature (T D ) of cellulose nanofibers is, in one aspect, 270° C. or higher, preferably 275° C. or higher, more preferably 275° C. or higher, from the viewpoint that the heat resistance and mechanical strength desired for in-vehicle applications can be exhibited. 280° C. or higher, more preferably 285° C. or higher.
  • a higher thermal decomposition initiation temperature is more preferable, but from the viewpoint of ease of production of cellulose nanofibers, it may be, for example, 320° C. or lower, or 300° C. or lower.
  • T D is a value obtained from a graph in thermogravimetric (TG) analysis, in which the horizontal axis is temperature and the vertical axis is weight residual rate %.
  • TG thermogravimetric
  • the 1% weight reduction temperature (T 1% ) is the temperature at which the weight is reduced by 1% by weight from the weight of 150° C. when the temperature is continued to be increased by the method of T D described above.
  • the 250° C. weight loss rate (T 250° C. ) of cellulose nanofibers is the weight loss rate when cellulose nanofibers are held at 250° C. under nitrogen flow for 2 hours in TG analysis.
  • Cellulose nanofibers may be chemically modified cellulose nanofibers.
  • Cellulose nanofibers may be chemically modified in advance, for example, at the raw material pulp or linter stage, during defibration treatment, or after fibrillation treatment, or during or after the slurry preparation process, or the drying (granulation) process. It may be chemically modified during or after.
  • modifiers for cellulose nanofibers compounds that react with the hydroxyl groups of cellulose can be used, including esterifying agents, etherifying agents, and silylating agents.
  • modifiers with polar groups such as carboxylic acids and phosphate esters, tend to reduce heat resistance by introducing ionic groups (e.g., carboxyl groups) into cellulose nanofibers. From the viewpoint of the reinforcing effect as a filler, it is preferable not to use it.
  • the chemical modification is acylation using an esterifying agent, particularly preferably acetylation.
  • Preferred esterifying agents are acid halides, acid anhydrides, carboxylic acid vinyl esters and carboxylic acids.
  • the acid halide may be at least one selected from the group consisting of compounds represented by the following formulas.
  • Specific examples of acid halides include acetyl chloride, acetyl bromide, acetyl iodide, propionyl chloride, propionyl bromide, propionyl iodide, butyryl chloride, butyryl bromide, butyryl iodide, benzoyl chloride, benzoyl bromide, iodine Examples include, but are not limited to, benzoyl chloride and the like.
  • alkaline compounds can be added for the purpose of acting as a catalyst and at the same time neutralizing the by-product acidic substances.
  • alkaline compounds include, but are not limited to: tertiary amine compounds such as triethylamine and trimethylamine; and nitrogen-containing aromatic compounds such as pyridine and dimethylaminopyridine.
  • Any appropriate acid anhydrides can be used as the acid anhydride.
  • Anhydrides of saturated aliphatic monocarboxylic acids such as acetic acid, propionic acid, (iso)butyric acid and valeric acid; anhydrides of unsaturated aliphatic monocarboxylic acids such as (meth)acrylic acid and oleic acid;
  • Anhydrides of alicyclic monocarboxylic acids such as cyclohexanecarboxylic acid and tetrahydrobenzoic acid;
  • Anhydrides of aromatic monocarboxylic acids such as benzoic acid and 4-methylbenzoic acid;
  • Dibasic carboxylic acid anhydrides include, for example, anhydrides of saturated aliphatic dicarboxylic acids such as succinic acid and adipic acid; unsaturated aliphatic dicarboxylic acid anhydrides such as maleic anhydride and itaconic anhydride; 1-cyclohexene-1 anhydride , 2-dicar
  • an acidic compound such as sulfuric acid, hydrochloric acid, phosphoric acid, etc., or a Lewis acid (for example, a Lewis acid compound represented by MYn, where M is B, As, Ge, etc.) is used as a catalyst.
  • a Lewis acid for example, a Lewis acid compound represented by MYn, where M is B, As, Ge, etc.
  • n is an integer corresponding to the valence of M, 2 or 3 and Y represents a halogen atom, OAc, OCOCF 3 , ClO 4 , SbF 6 , PF 6 or OSO 2 CF 3 (OTf).), or adding one or more of an alkaline compound such as triethylamine or pyridine You may
  • R-COO-CH CH2 ⁇
  • R is an alkyl group having 1 to 24 carbon atoms, an alkenyl group having 2 to 24 carbon atoms, a cycloalkyl group having 3 to 16 carbon atoms, or an aryl group having 6 to 24 carbon atoms. ⁇ is preferred.
  • Carboxylic acid vinyl esters include vinyl acetate, vinyl propionate, vinyl butyrate, vinyl caproate, vinyl cyclohexanecarboxylate, vinyl caprylate, vinyl caprate, vinyl laurate, vinyl myristate, vinyl palmitate, vinyl stearate, pivaline It is more preferably at least one selected from the group consisting of vinyl acid, vinyl octylate, divinyl adipate, vinyl methacrylate, vinyl crotonate, vinyl octylate, vinyl benzoate, and vinyl cinnamate.
  • alkali metal hydroxides For the esterification reaction with a carboxylic acid vinyl ester, alkali metal hydroxides, alkaline earth metal hydroxides, alkali metal carbonates, alkaline earth metal carbonates, alkali metal hydrogencarbonates, primary to tertiary grades are used as catalysts.
  • One or more selected from the group consisting of amines, quaternary ammonium salts, imidazole and its derivatives, pyridine and its derivatives, and alkoxides may be added.
  • alkali metal hydroxides and alkaline earth metal hydroxides include sodium hydroxide, potassium hydroxide, lithium hydroxide, calcium hydroxide, barium hydroxide, and the like.
  • Alkali metal carbonates, alkaline earth metal carbonates and alkali metal hydrogen carbonates include lithium carbonate, sodium carbonate, potassium carbonate, cesium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lithium hydrogen carbonate, sodium hydrogen carbonate, carbonate Examples include potassium hydrogen and cesium hydrogen carbonate.
  • Primary to tertiary amines are primary amines, secondary amines, and tertiary amines, and specific examples include ethylenediamine, diethylamine, proline, N,N,N',N'-tetramethylethylenediamine, N,N,N',N'-tetramethyl-1,3-propanediamine, N,N,N',N'-tetramethyl-1,6-hexanediamine, tris(3-dimethylaminopropyl)amine, Examples include N,N-dimethylcyclohexylamine and triethylamine.
  • imidazole and its derivatives examples include 1-methylimidazole, 3-aminopropylimidazole, carbonyldiimidazole and the like.
  • Pyridine and its derivatives include N,N-dimethyl-4-aminopyridine and picoline.
  • Alkoxides include sodium methoxide, sodium ethoxide, potassium-t-butoxide and the like.
  • Examples of carboxylic acids include at least one selected from the group consisting of compounds represented by the following formulas.
  • R-COOH (Wherein, R represents an alkyl group having 1 to 16 carbon atoms, an alkenyl group having 2 to 16 carbon atoms, a cycloalkyl group having 3 to 16 carbon atoms, or an aryl group having 6 to 16 carbon atoms.)
  • carboxylic acids include acetic acid, propionic acid, butyric acid, caproic acid, cyclohexanecarboxylic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, pivalic acid, methacrylic acid, crotonic acid, and octyl. At least one selected from the group consisting of acid, benzoic acid, and cinnamic acid is included.
  • the catalyst used is an acidic compound such as sulfuric acid, hydrochloric acid, phosphoric acid, or a Lewis acid (for example, a Lewis acid compound represented by MYn, where M is B, As, Ge, etc.).
  • n is an integer corresponding to the valence of M, and 2 or 3 and Y represents a halogen atom, OAc, OCOCF3 , ClO4 , SbF6 , PF6 or OSO2CF3 ( OTf)), or one or more of an alkaline compound such as triethylamine or pyridine may
  • esterification reagents at least one selected from the group consisting of acetic anhydride, propionic anhydride, butyric anhydride, vinyl acetate, vinyl propionate, vinyl butyrate, and acetic acid, especially acetic anhydride and vinyl acetate, It is preferable from the viewpoint of reaction efficiency.
  • the cellulose nanofibers When the cellulose nanofibers are chemically modified (for example, by hydrophobization such as acylation), the cellulose nanofibers tend to have good dispersibility in rubber, but the cellulose nanofibers of the present disclosure are unsubstituted Alternatively, even with a low degree of substitution, it can exhibit good dispersibility in rubber.
  • hydrophobization such as acylation
  • the cellulose nanofibers have a degree of substitution of 0 (ie, unsubstituted).
  • the degree of acyl substitution (DS) of the cellulose nanofibers is greater than 0, or 0.1 or more, or 0.2 or more, or It may be 0.25 or more, or 0.3 or more, or 0.5 or more.
  • the esterified cellulose nanofiber since the unmodified cellulose skeleton remains in the esterified cellulose nanofiber, the esterified cellulose nanofiber has both high tensile strength and dimensional stability derived from cellulose and high thermal decomposition initiation temperature derived from chemical modification.
  • the degree of acyl substitution (DS) of cellulose nanofibers is 1.2 or less, or 1.0 or less, or 0.8 or less, or 0.7 or less, or 0.6 or less, or It may be 0.5 or less.
  • the degree of acyl substitution is determined by the peak derived from the acyl group and the peak derived from the cellulose skeleton from the attenuated total reflection (ATR) infrared absorption spectrum of the esterified cellulose nanofiber.
  • ATR attenuated total reflection
  • the content of cellulose nanofibers in the rubber composition is preferably 0.5% by mass or more, or 1% by mass or more, or 3% by mass or more, from the viewpoint of obtaining a good reinforcing effect of cellulose nanofibers. From the viewpoint of obtaining a rubber molding having good rubber elasticity, it is preferably 80% by mass or less, or 60% by mass or less, or 33% by mass or less, or 30% by mass or less, or 20% by mass or less, or 10% by mass or less. is.
  • liquid rubber means a substance that has fluidity at 23° C. and forms a rubber elastic body through cross-linking (more specifically vulcanization) and/or chain extension. That is, the liquid rubber is an uncured material in one aspect.
  • liquid rubber dissolved in cyclohexane is placed in a vial having a barrel diameter of 21 mm and a total length of 50 mm at 23° C., and then dried to dissolve the liquid rubber into the vial. It means that when the vial is filled up to a height of 1 mm and sealed, and left to stand for 24 hours with the vial upside down, a movement of 0.1 mm or more in the height direction can be confirmed.
  • the liquid rubber may have a general rubber monomer composition, and preferably has a relatively low molecular weight from the viewpoint of ease of handling and good dispersibility of cellulose nanofibers.
  • the liquid rubber exhibits a liquid form by having a number average molecular weight (Mn) of 80,000 or less.
  • Mn number average molecular weight
  • the molecular weight and molecular weight distribution of the rubber component are chromatograms measured using gel permeation chromatography using a series of three columns filled with polystyrene gel, and standard polystyrene is used. It is a value obtained by calculating from the calibration curve. Tetrahydrofuran is used as the solvent.
  • the liquid rubber is vulcanized during curing from the viewpoint of improving the mechanical properties of the rubber cured product.
  • the number average molecular weight (Mn) of the liquid rubber is preferably 1,000 or more, or 1,500, from the viewpoint of obtaining a rubber composition having excellent storage modulus, dispersibility in a matrix component in a rubber composite, and the like. or more, or 2,000 or more, having high fluidity suitable for good dispersion of cellulose nanofibers in the liquid rubber, and having good rubber elasticity so that the liquid rubber does not become too hard after curing. point, preferably 80,000 or less, or 50,000 or less, or 40,000 or less, or 30,000 or less, or 10,000 or less.
  • the weight-average molecular weight (Mw) of the liquid rubber is preferably 1,000 or more, or 2,000, from the viewpoint of obtaining a rubber composition having excellent storage modulus, dispersibility in a matrix component in a rubber composite, and the like. or more, or 4,000 or more, having high fluidity suitable for good dispersion of cellulose nanofibers in the liquid rubber, and having good rubber elasticity so that the liquid rubber does not become too hard after curing. point, preferably 240,000 or less, or 150,000 or less, or 30,000 or less.
  • the ratio (Mw/Mn) of the number-average molecular weight (Mn) to the weight-average molecular weight (Mw) of the liquid rubber is highly compatible with a plurality of properties of the rubber molded body due to the fact that the molecular weight varies to some extent (in one aspect, From the point that it is possible to achieve a high degree of compatibility between the storage elastic modulus and the rubber elasticity of the rubber molded article, it is preferably 1.5 or more, or 1.8 or more, or 2.0 or more, and the variation in molecular weight is excessive. It is preferably 10 or less, 8 or less, or 5 or less in that the desired physical properties of the rubber molded article are stably obtained without being too large.
  • the liquid rubber may be a conjugated diene polymer, a non-conjugated diene polymer, or a hydrogenated product thereof.
  • the above polymers or hydrogenated products thereof may be oligomers.
  • the liquid rubber may have reactive groups (e.g., one or more selected from the group consisting of hydroxyl, carboxy, isocyanato, thio, amino and halo groups) at both ends, It may therefore be bifunctional. These reactive groups contribute to cross-linking and/or chain extension of the liquid rubber.
  • the conjugated diene-based polymer may be a homopolymer, or a copolymer of two or more conjugated diene monomers or a copolymer of a conjugated diene monomer and another monomer. good.
  • the copolymer may be random or block.
  • Conjugated diene monomers include 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene, 1,3-pentadiene, 3-methyl-1,3-pentadiene, 1,3-heptadiene, and 1,3-hexadiene, which may be used singly or in combination of two or more.
  • the conjugated diene-based polymer is a copolymer of the conjugated diene monomer and the aromatic vinyl monomer.
  • the aromatic vinyl monomer is not particularly limited as long as it is a monomer copolymerizable with a conjugated diene monomer. Examples include styrene, m- or p-methylstyrene, ⁇ -methylstyrene, ethylstyrene, p -tert-butylstyrene, vinylethylbenzene, vinylxylene, vinylnaphthalene, diphenylethylene, and divinylbenzene, which may be used singly or in combination of two or more. Styrene is preferable from the viewpoint of the moldability of the rubber composite and the impact resistance of the molded article.
  • random copolymers examples include butadiene-isoprene random copolymers, butadiene-styrene random copolymers, isoprene-styrene random copolymers, and butadiene-isoprene-styrene random copolymers.
  • the composition distribution of each monomer in the copolymer chain includes completely random copolymers that are close to a statistically random composition, and tapered (gradient) random copolymers that have a composition distribution gradient.
  • the bonding pattern of the conjugated diene-based polymer, ie, the composition of 1,4-bonds, 1,2-bonds, etc. may be uniform or different between molecules.
  • a block copolymer may be a copolymer consisting of two or more blocks.
  • an aromatic vinyl monomer block A and a block B that is a conjugated diene monomer block and/or a copolymer block of an aromatic vinyl monomer and a conjugated diene monomer It may be a block copolymer having a structure such as -B, ABA, ABAB.
  • the boundaries of each block do not necessarily need to be clearly distinguished.
  • block B is a copolymer of an aromatic vinyl monomer and a conjugated diene monomer
  • the mers may be distributed uniformly or tapered.
  • Block B may also have a plurality of portions in which the aromatic vinyl monomer is uniformly distributed and/or a plurality of portions in which the aromatic vinyl monomer is distributed in a tapered manner. Furthermore, block B may have a plurality of segments with different aromatic vinyl monomer contents. When multiple blocks A and B are present in the copolymer, their molecular weights and compositions may be the same or different.
  • the block copolymer has a bond type, molecular weight, aromatic vinyl compound type, conjugated diene compound type, 1,2-vinyl content or the total amount of 1,2-vinyl content and 3,4-vinyl content, aromatic vinyl It may be a mixture of two or more different ones in one or more of the compound component content, hydrogenation rate, and the like.
  • the amount of vinyl bonds in the conjugated diene bond units in the conjugated diene polymer is preferably 10 mol% or more and 75 mol% or less, or 13 mol% or more and 65 mol% or less.
  • the amount of vinyl bonds in the conjugated diene bond unit (for example, the amount of 1,2-bonds in butadiene) can be determined by the 13 C-NMR method (quantitative mode). That is, by integrating the peak areas appearing below in 13 C-NMR, a value proportional to the amount of carbon in each structural unit can be obtained, and as a result, it can be converted into mass % of each structural unit.
  • the amount of the aromatic vinyl monomer bound to the conjugated diene monomer is , preferably 5.0% by mass or more and 70% by mass or less, or 10% by mass or more and 50% by mass or less with respect to the total mass of the conjugated diene polymer.
  • the amount of aromatic vinyl bonds can be determined from the ultraviolet absorbance of the phenyl group, and the amount of conjugated diene bonds can also be determined based on this.
  • Examples of the hydrogenated conjugated diene polymer include the hydrogenated conjugated diene polymers exemplified above. Examples include butadiene homopolymer, isoprene homopolymer, styrene-butadiene copolymer, acrylonitrile- It may be a hydrogenated product of a butadiene copolymer.
  • the non-conjugated diene-based polymer may be a homopolymer, or a copolymer of two or more non-conjugated diene monomers or a copolymer of a non-conjugated diene monomer and another monomer.
  • the copolymer may be random or block.
  • Olefin polymers such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene- ⁇ -olefin copolymer, Butyl rubber, brominated butyl rubber, acrylic rubber, fluorine rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylic acid ester-conjugated diene copolymer rubber, urethane rubber, polysulfide rubber, etc. be done.
  • Olefin polymers such as ethylene-propylene rubber, ethylene-propylene-diene rubber, ethylene-butene-diene rubber, ethylene- ⁇ -olefin copolymer, Butyl rubber, brominated butyl rubber, acrylic rubber, fluorine rubber, silicone rubber, chlorinated polyethylene rubber, epichlorohydrin rubber, ⁇ , ⁇ -unsaturated nitrile-acrylic acid ester
  • Monomers that can be copolymerized with ethylene units in the ethylene- ⁇ -olefin copolymer include: propylene, butene-1, pentene-1, 4-methylpentene-1, hexene-1, heptene-1, octene-1, nonene. -1, decene-1, undecene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, eicosene-1, isobutylene, etc.
  • Aliphatic substituted vinyl monomers such as styrene and substituted styrene; Esters such as vinyl acetate, acrylates, methacrylates, glycidyl acrylates, glycidyl methacrylates, and hydroxyethyl methacrylates Nitrogen-containing vinyl monomers such as acrylamide, allylamine, vinyl-p-aminobenzene and acrylonitrile; dienes such as butadiene, cyclopentadiene, 1,4-hexadiene and isoprene.
  • Aromatic vinyl monomers such as styrene and substituted styrene
  • Esters such as vinyl acetate, acrylates, methacrylates, glycidyl acrylates, glycidyl methacrylates, and hydroxyethyl methacrylates
  • Nitrogen-containing vinyl monomers such as acrylamide, allylamine, vinyl-p-aminobenzene and acrylonit
  • copolymers of ethylene and one or more ⁇ -olefins having 3 to 20 carbon atoms more preferably copolymers of ethylene and one or more ⁇ -olefins having 3 to 16 carbon atoms, most preferably ethylene and It is a copolymer with one or more ⁇ -olefins having 3 to 12 carbon atoms.
  • the molecular weight of the ethylene- ⁇ -olefin copolymer is preferably 10,000 or more, more preferably 10,000 to 100,000, more preferably 10,000, more preferably 10,000 or more, from the viewpoint of developing impact resistance. 000 to 80,000, more preferably 20,000 to 60,000.
  • the molecular weight distribution (weight average molecular weight/number average molecular weight: Mw/Mn) is preferably 3 or less, more preferably 1.8 to 2.7, from the viewpoint of achieving both fluidity and impact resistance.
  • the preferred ethylene unit content of the ethylene- ⁇ -olefin copolymer is 30 to 95% by mass based on the total amount of the ethylene- ⁇ -olefin copolymer from the viewpoint of handleability during processing.
  • ethylene- ⁇ -olefin copolymers are, for example, JP-B-4-12283, JP-A-60-35006, JP-A-60-35007, JP-A-60-35008, It can be produced by the production methods described in JP-A-5-155930, JP-A-3-163088, US Pat. No. 5,272,236, and the like.
  • the liquid rubber is at least one selected from the group consisting of diene rubber (in one aspect, the conjugated diene polymer described above), silicone rubber, urethane rubber, polysulfide rubber, and hydrogenated products thereof. including.
  • the liquid rubber having a viscosity at 80°C of a predetermined value or less is advantageous when uniformly dispersing the rubber composition in the matrix rubber component in the rubber composite.
  • the viscosity of the liquid rubber at 80° C. is preferably 1,000 from the viewpoints of good dispersion of the rubber composition in the matrix rubber component in the rubber composite and good dispersion of the cellulose nanofibers in the liquid rubber.
  • the viscosity of the liquid rubber at 25° C. is preferably 1,000,000 mPa ⁇ s or less, or 500,000 mPa ⁇ s or less, or 200,000 mPa ⁇ s from the viewpoint of good dispersion of the cellulose nanofibers in the liquid rubber. and preferably 100 mPa ⁇ s or more, or 300 mPa ⁇ s or more, or 500 mPa ⁇ s or more from the viewpoint of obtaining a rubber composite having excellent physical properties (especially storage elastic modulus).
  • the viscosity of the liquid rubber at 0°C is a predetermined value or less.
  • the viscosity of the liquid rubber at 0° C. is preferably 2,000,000 mPa ⁇ s or less, or 1,000,000 mPa ⁇ s or less, or 400,000 mPa from the viewpoint of good dispersion of the cellulose nanofibers in the liquid rubber. ⁇ s or less, and from the viewpoint of obtaining a rubber composite having excellent physical properties (especially storage modulus), it is preferably 200 mPa ⁇ s or more, or 600 mPa ⁇ s or more, or 1,000 mPa ⁇ s or more.
  • the low temperature dependence of the viscosity of the liquid rubber is preferable in that the cellulose nanofibers can be well dispersed in the liquid rubber over a wide mixing temperature range. From this point of view, it is particularly preferable that all the viscosities of the liquid rubber at 80°C, 25°C and 0°C are within the above ranges.
  • the viscosity of liquid rubber is a value measured using a Brookfield viscometer at a rotation speed of 10 rpm.
  • the content of the liquid rubber in the rubber composition is preferably 0.1% by mass or more, or 0.5% by mass or more, or 1% by mass or more, or 5% by mass or more, from the viewpoint of obtaining the above advantages of the liquid rubber. % by mass or more, or 10% by mass or more, and preferably 99% by mass or less, or 95% by mass, from the viewpoint of obtaining the advantages of these components by containing a suitable amount of other components (cellulose nanofibers, etc.). or less, or 90% by mass or less, or 80% by mass or less, or 70% by mass or less, or 60% by mass or less, or 50% by mass or less.
  • the mass ratio of cellulose nanofibers to 100 parts by mass in total of cellulose nanofibers and liquid rubber in the rubber composition is 1 part by mass or more, or 5 parts by mass or more, or 10 parts by mass or more, or 20 parts by mass. parts or more, or 30 parts by mass or more, or 33 parts by mass or more, or 40 parts by mass or more, or 50 parts by mass or more, and in one aspect, 99 parts by mass or less, or 95 parts by mass or less, or 90 parts by mass or less; Or 80 parts by mass or less, or 70 parts by mass or less, or 60 parts by mass or less, or 50 parts by mass or less.
  • the rubber composition includes a surfactant.
  • the surfactant is a nonionic surfactant, or a cationic surfactant, or a combination thereof.
  • the surfactant is preferably a nonionic surfactant.
  • Nonionic surfactants and cationic surfactants can enter into the pores of aggregates of cellulose nanofibers to make the aggregates porous. For example, when a nonionic surfactant and / or cationic surfactant is infiltrated into the aggregate in a wet state and then dried to form a dry body, the nonionic surfactant and cationic surfactant are used. Since shrinkage during drying can be reduced compared to a dry body obtained by drying aggregates without drying, cellulose nanofibers are well dispersed when the dry body is mixed with liquid rubber.
  • the nonionic surfactant is preferably a compound having a hydrophilic group selected from the group consisting of a hydroxyl group, a carboxyl group, a sulfonic acid group and an amino group, and a hydrocarbon group.
  • the nonionic surfactant has an aliphatic group with 6 to 30 carbon atoms as the hydrophobic moiety.
  • the cellulose nanofibers of the present embodiment typically form loose aggregates, whereas the nonionic surfactant has good affinity with the rubber component due to the contribution of the carbon chain of the hydrophobic portion.
  • the carbon chain of the hydrophobic portion is not too long, it can easily enter the voids of the cellulose nanofiber aggregate to make the aggregate porous.
  • the dry body obtained by drying the aggregate without using the nonionic surfactant and Since the drying shrinkage can be reduced compared to that of the cellulose nanofibers, the cellulose nanofibers are well dispersed when the dried body is mixed with the rubber component.
  • the above aliphatic group may be chain or alicyclic or a combination thereof.
  • the number of carbon atoms in the aliphatic group is 6 or more, or 8 or more, or 10 or more. From the viewpoint of penetrability into, in one aspect, it is 30 or less, or 25 or less, or 20 or less.
  • the nonionic surfactant preferably has, as a hydrophilic moiety, one or more structures selected from the group consisting of oxyethylene, glycerol and sorbitan (specifically, a repeating structure having one or more of these as repeating units ). These structures are preferred in that they show high hydrophilicity and that various nonionic surfactants can be easily obtained by combining them with various hydrophobic moieties.
  • the number of carbon atoms in the hydrophobic portion, n, and the number of repeating units, m, in the hydrophilic portion are from the viewpoint of obtaining good dispersibility of the cellulose nanofibers in the rubber component.
  • the repeating number m of the hydrophilic portion is preferably 1 or more, or 2 or more, or 3 or more, or 5 or more, from the viewpoint of good penetration of the nonionic surfactant into the voids of the cellulose nanofiber aggregate. and is preferably 30 or less, or 25 or less, or 20 or less, or 18 or less, from the viewpoint of obtaining good dispersibility of the cellulose nanofibers in the rubber component.
  • the nonionic surfactant is preferably The following general formula (1): R-( OCH2CH2 ) m - OH (1) [In the formula, R represents a monovalent aliphatic group having 6 to 30 carbon atoms, and m is a natural number smaller than the number of carbon atoms of R. ], and the following general formula (2): R 1 OCH 2 —(CHOH) 4 —CH 2 OR 2 (2) [In the formula, R 1 and R 2 each independently represent a hydrogen atom, an aliphatic group having 1 to 30 carbon atoms, or -COR 3 ⁇ wherein R 3 represents an aliphatic group having 1 to 30 carbon atoms.
  • R corresponds to the aforementioned hydrophobic moiety
  • (OCH 2 CH 2 ) ie, oxyethylene units
  • the number of carbon atoms in R and the repeating number m of (OCH 2 CH 2 ) are preferably in the same range as described above for the number of carbon atoms in the hydrophobic moiety n and the repeating number m in the hydrophilic moiety.
  • the number of carbon atoms in the aliphatic group having 1 to 30 carbon atoms is preferably 6 or more, or 8 or more, or 10 or more. Yes, preferably 24 or less, or 20 or less, or 18 or less. Also, y is 1 or more, preferably 2 or more, or 4 or more, and preferably 30 or less, or 25 or less, or 20 or less.
  • cationic surfactants include benzalkonium chloride, alkyltrimethylammonium chloride, stearyldimethylammonium chloride, stearyltrimethylammonium chloride, lanolin fatty acid aminopropylethyldimethylammonium ethyl sulfate, stearyldimethylbenzylammonium chloride, stearylamine acetate, Coconut amine acetate etc. are mentioned.
  • the amount of surfactant in the rubber composition, or the amount of nonionic surfactant, or the amount of cationic surfactant, or the total amount of nonionic surfactant and cationic surfactant is cellulose nano With respect to 100 parts by mass of the fiber, preferably 10 parts by mass or more, or 15 parts by mass or more, or 20 parts by mass or more, preferably 200 parts by mass or less, or 150 parts by mass or less, or 100 parts by mass or less, Or 90 parts by mass or less, or 80 parts by mass or less, or 70 parts by mass or less, or 60 parts by mass or less, or 50 parts by mass or less, or 45 parts by mass or less, or 40 parts by mass or less.
  • the rubber composition may further contain additional components in addition to the cellulose nanofibers, liquid rubber and surfactants described above.
  • Additional ingredients include additional polymers, dispersants, organic or inorganic fillers, heat stabilizers, antioxidants, antistatic agents, colorants, and the like.
  • the additional polymer include a rubber component, a thermoplastic elastomer, and the like, which will be exemplified later as the matrix component of the rubber composite.
  • the content of any additional component in the rubber composition is appropriately selected within a range that does not impair the desired effect of the present invention, for example, 0.01 to 50% by mass, or 0.1 to 30% by mass. can be
  • the method for producing the rubber composition is not particularly limited.
  • the components that make up the rubber composition are mixed with a rotation/revolution mixer, planetary mixer, homogenizer, homogenizer, propeller stirrer, rotary stirrer, electromagnetic stirrer, open roll, Banbury mixer, single-screw extruder, and twin-screw extruder.
  • the rubber composition may be obtained by mixing with a stirring means such as.
  • a stirring means such as.
  • a mixing method using a homogenizer is preferred in that high shear force and pressure can be applied to promote dispersion.
  • the order of addition of the components during mixing is not limited, but for example, (1) A method of obtaining a rubber composition by simultaneously adding and mixing cellulose nanofibers, a surfactant, a liquid rubber, and optionally other components, (2) A method of obtaining a rubber composition by mixing components other than liquid rubber in advance to obtain a pre-mixture, and then mixing the pre-mixture with liquid rubber; etc.
  • the method of (2) above for example, By mixing the cellulose nanofibers and the surfactant, the surfactant penetrates into the voids of the cellulose nanofiber aggregates, Next, liquid rubber is added and mixed to infiltrate the liquid rubber into the voids. method.
  • the pre-mixture may be dried before mixing with the liquid rubber. Further, after the rubber composition is obtained, it may be dried, and the later-described powder may be formed by controlling the drying conditions.
  • ⁇ Powder ⁇ One aspect of the present disclosure provides a powder composed of the rubber composition of the present disclosure.
  • the powder may have one or more of the following properties.
  • the powder has excellent processing properties, and the cellulose nanofibers can exhibit an excellent dispersion state in the rubber component.
  • the cellulose nanofibers are for the purpose of facilitating dispersion without aggregation in these rubber components. At least part of the surface of the cellulose nanofiber is preferably coated with the first rubber component.
  • the state in which at least part of the surface of the cellulose nanofibers is covered with the first rubber component is such that the first rubber component and the cellulose nanofibers are in direct contact, and the average length of the contact portion is It is a state in which the length is twice or more the average fiber diameter of the cellulose nanofibers.
  • the state in which the surface of the cellulose nanofibers in the powder is coated with the first rubber component is observed with an electron microscope (scanning electron microscope in one aspect) or an atomic force microscope. Electron microscopy is used when both force microscopy is detectable.
  • the average fiber diameter is a value measured by the method of the present disclosure using powder as a measurement sample.
  • the average length of the contact portion is measured by using a powder as a measurement sample and using an electron microscope (scanning electron microscope in one embodiment) or an atomic force microscope. Specifically, in an observation field whose magnification is adjusted so that at least 30 cellulose nanofibers are observed, each of 30 randomly selected cellulose nanofibers is contacted with the first rubber component. The length of each portion is measured and the number average is calculated.
  • the loose bulk density of the powder is preferably 0.01 g/g/ cm 3 or more, or 0.05 g/cm 3 or more, or 0.10 g/cm 3 or more, or 0.15 g/cm 3 or more, or 0.20 g/cm 3 or more; It is preferably 0.50 g/cm 3 or less, because the cellulose nanofibers can be disintegrated and well dispersed in the rubber, and because the powder is not too heavy and poor mixing between the powder and the rubber can be avoided. or 0.40 g/cm 3 or less, or 0.30 g/cm 3 or less, or 0.25 g/cm 3 or less, or 0.20 g/cm 3 or less.
  • the compacted bulk density of the powder is controlled within a range that is useful for controlling the loose bulk density and the degree of compaction within suitable ranges.
  • /cm 3 or more or 0.10 g/cm 3 or more, or 0.15 g/cm 3 or more, or 0.20 g/cm 3 or more, preferably 1.00 g/cm 3 or less, or 0.80 g/cm cm 3 or less, or 0.70 g/cm 3 or less, or 0.60 g/cm 3 or less, or 0.50 g/cm 3 or less, or 0.40 g/cm 3 or less, or 0.30 g/cm 3 or less .
  • the above loose bulk density and hardened bulk density are values measured using a powder tester (model number: PT-X) manufactured by Hosokawa Micron Co., Ltd. according to the procedure described in the [Example] section of the present disclosure.
  • Examples of methods for producing powder include a slurry preparation step of preparing a slurry containing cellulose nanofibers and a liquid medium, and a drying step of drying the slurry to form powder.
  • Liquid media include water-miscible organic solvents such as: alcohols with a boiling point of 50° C. to 170° C. (e.g. methanol, ethanol, n-propanol, i-propanol, n-butanol, i-butanol, s-butanol, t- butanol, etc.); ethers (eg, propylene glycol monomethyl ether, 1,2-dimethoxyethane, diisopropyl ether, tetrahydrofuran, 1,4-dioxane, etc.); carboxylic acids (eg, formic acid, acetic acid, lactic acid, etc.); esters (eg, ethyl acetate, vinyl acetate, etc.); ketones (eg, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopent
  • water-miscible organic solvents such as: alcohol
  • the concentration of cellulose nanofibers in the slurry is preferably 5% by mass or more, or 10% by mass or more, or 15% by mass or more, or 20% by mass or more, or 25% by mass. % or more, and from the viewpoint of maintaining good handleability by avoiding excessive increase in slurry viscosity and solidification due to aggregation, preferably 60% by mass or less, or 55% by mass or less, or 50% by mass or less , or 45% by mass or less.
  • cellulose nanofibers are often produced in a dilute dispersion, and by concentrating such a dilute dispersion, the concentration of cellulose nanofibers in the slurry may be adjusted to the preferred range. . Methods such as suction filtration, pressure filtration, centrifugal deliquoring, and heating can be used for concentration.
  • drying process powder is formed by drying the slurry under controlled drying conditions.
  • the timing of addition of components other than cellulose nanofibers may be before, during, and/or after drying the slurry.
  • a drying device such as a spray dryer or an extruder can be used for drying.
  • the drying device may be a commercially available product, and examples thereof include a micromist spray dryer (manufactured by Fujisaki Denki), a spray dryer (manufactured by Okawara Kakoki), and a twin-screw extruder (manufactured by Japan Steel Works).
  • proper control of drying rate, drying temperature and/or pressure (degree of vacuum), especially drying rate can be advantageous in achieving the desired shape of the powder.
  • the drying rate which is the desorbed amount (parts by mass) of the liquid medium per minute per 100 parts by mass of the slurry, is, for example, 10%/ minutes or more, or 50%/minute or more, or 100%/minute or more, and by avoiding excessive pulverization of the cellulose nanofibers, aggregation of the cellulose nanofibers is suppressed and good handleability is obtained. From a viewpoint, it may be, for example, 10000%/min or less, or 1000%/min or less, or 500%/min or less.
  • Drying speed (%/min) (moisture content of slurry at the start of drying (% by mass) - moisture content of powder at the end of drying (% by mass)) / time required from the start of drying to the end of drying (min) (i.e. averaged over the drying process).
  • the start of drying is the time at which the slurry or cake to be dried is supplied to the apparatus and the process of drying at the desired drying temperature, degree of pressure reduction, and shear rate is started.
  • the drying time does not include the time during which the premixing is performed in a different condition than the drying process.
  • the drying end point is the time point when the moisture content becomes 7% by mass or less for the first time when sampling is performed at intervals of 10 minutes at the longest from the start of drying.
  • the time required from the start of drying to the end of drying can be interpreted as residence time.
  • the residence time can be calculated from the heating air volume and the volume of the drying chamber.
  • the residence time can be calculated from the number of screw revolutions and the total number of screw pitches.
  • the drying temperature is, for example, 20° C. or higher, or 30° C. or higher, or 40° C. or higher, or 50° C. or higher, from the viewpoint of drying efficiency and moderate aggregation of cellulose nanofibers to form a powder having a desired particle size. from the viewpoint of making it difficult for the cellulose nanofibers and additional components to thermally deteriorate and from the viewpoint of avoiding excessive pulverization of the cellulose nanofibers, for example, 200° C. or less, or 150° C. or less, or 140° C. or less, or It may be 130° C. or lower, or 100° C. or lower.
  • the drying temperature is the temperature of the heat source that contacts the slurry, and is defined by, for example, the surface temperature of the temperature control jacket of the drying device, the surface temperature of the heating cylinder, or the temperature of the hot air.
  • the degree of reduced pressure is ⁇ 1 kPa or less, or ⁇ 10 kPa or less, or ⁇ 20 kPa or less, or ⁇ 30 kPa or less, or ⁇ from the viewpoint of drying efficiency and moderate aggregation of cellulose nanofibers to form a powder having a desired particle size. It may be 40 kPa or less, or -50 kPa or less, and from the viewpoint of avoiding excessive pulverization of cellulose nanofibers, it may be -100 kPa or more, or -95 kPa or more, or -90 kPa or more.
  • the residence time of the slurry at a temperature of 20 ° C. to 200 ° C. is preferably set to 0.01 minutes to 10 minutes, or 0.05 minutes to 5 minutes, or 0.1 minutes to 2 minutes. good. Drying under such conditions rapidly dries the cellulose nanofibers and favorably produces a powder having a desired particle size.
  • the slurry when using a spray dryer, the slurry is sprayed and introduced into a drying chamber through which hot gas is circulated using a spray mechanism (rotating disc, pressure nozzle, etc.).
  • the slurry droplet size at the time of spray introduction may be, for example, 0.01 ⁇ m to 500 ⁇ m, or 0.1 ⁇ m to 100 ⁇ m, or 0.5 ⁇ m to 10 ⁇ m.
  • the hot gas may be nitrogen, an inert gas such as argon, air, or the like.
  • the hot gas temperature may be, for example, 50°C to 300°C, or 80°C to 250°C, or 100°C to 200°C.
  • the contact of the droplets of slurry with the hot gas within the drying chamber may be co-current, counter-current, or counter-current.
  • a cyclone, a drum, or the like collects the particulate powder produced by drying the droplets.
  • the slurry when using an extruder, the slurry is fed from a hopper into a kneading unit equipped with a screw, and the slurry is continuously transported by the screw in the kneading unit under reduced pressure and / or heating to dry the slurry.
  • a conveying screw, a counterclockwise screw, and a kneading disk may be combined in any order.
  • the drying temperature may be, for example, 50°C to 300°C, or 80°C to 250°C, or 100°C to 200°C.
  • One aspect of the disclosure provides a masterbatch comprising the rubber composition of the disclosure.
  • the masterbatch is a kneaded mixture of the powder of the present disclosure and the second rubber component.
  • the second rubber component may be natural rubber, a conjugated diene polymer, a non-conjugated diene polymer, or hydrogenated products thereof.
  • the above polymers or hydrogenated products thereof may be oligomers.
  • Examples of the monomer composition of the second rubber component are the same as those described above for the liquid rubber.
  • the second rubber component may be a liquid rubber as described above, or may be a rubber that is not a liquid rubber.
  • the conjugated diene-based polymer as the second rubber component that constitutes the matrix component may be partially hydrogenated or completely hydrogenated.
  • the hydrogenation rate of the hydrogenated material is preferably 50% or more, or 80% or more, or 98% or more from the viewpoint of suppressing thermal deterioration during processing, and is preferably 50% or more from the viewpoint of low temperature toughness. or less, or 20% or less, or 0% (ie non-hydrogenated).
  • the amount of vinyl bonds in the conjugated diene bond unit depends on the crystallization of the soft segment. From the viewpoint of suppression, it is preferably 5 mol% or more, or 10 mol% or more, or 13 mol% or more, or 15 mol% or more, preferably 80 mol% or less, or 75 mol% or less, or 65 mol % or less, or 50 mol % or less, or 40 mol % or less.
  • the second rubber component contains one or more selected from the group consisting of styrene-butadiene rubber, butadiene rubber and isoprene rubber.
  • the number average molecular weight (Mn) of the second rubber component is preferably 100,000 or more, or 150,000 or more, or 200,000 or more, from the viewpoint of obtaining a rubber composite having excellent storage modulus and the like, From the viewpoint of ease of dispersing the cellulose nanofibers in the second rubber component, and from the viewpoint that the second rubber component does not become too hard after curing and has good rubber elasticity, it is preferably 800,000 or less, or 750,000 or less, or 700,000 or less, or 600,000 or less.
  • the second rubber component may be a modified rubber.
  • epoxy group, acid anhydride group, carboxyl group, aldehyde group, hydroxyl group , an alkoxy group, an amino group, an amide group, an imide group, a nitro group, an isocyanate group, a mercapto group, and the like may be introduced.
  • Modified rubbers include epoxy-modified natural rubber, epoxy-modified butadiene rubber, epoxy-modified styrene-butadiene rubber, carboxy-modified natural rubber, carboxy-modified butadiene rubber, carboxy-modified styrene-butadiene rubber, acid anhydride-modified natural rubber, and acid anhydride-modified butadiene rubber. , acid anhydride-modified styrene-butadiene rubber, and the like.
  • the amount of the modifying group with respect to 100 mol% of the total monomer units is preferably 0.1 mol% or more, or 0.2 mol% or more, or 0.3 mol % or more, and preferably 5 mol % or less, or 3 mol % or less.
  • the amount of modified groups is determined by FT-IR (Fourier transform infrared spectroscopy), solid-state NMR (nuclear magnetic resonance), solution NMR, or elemental analysis of elements not contained in the previously specified monomer composition and unmodified rubber. It can be confirmed by a method of calculating the molar ratio of modifying groups in combination with quantification.
  • the content of the second rubber component in the masterbatch is preferably 20% by mass or more, or 30% by mass or more, or 40% by mass or more, preferably 99% by mass or less, or 95% by mass or less, Or it is 90% by mass or less.
  • the second rubber component can include or be a thermoplastic elastomer.
  • an elastomer is, in one aspect, a material (specifically a natural or synthetic polymeric material) that is elastic at room temperature (23° C.).
  • being an elastic body means that the storage elastic modulus at 23° C. and 10 Hz measured by dynamic viscoelasticity measurement is 1 MPa or more and 100 MPa or less.
  • the thermoplastic elastomer may be a conjugated diene-based polymer or a non-conjugated diene-based polymer, and in one aspect is a crosslinked product. Suitable monomer compositions of the thermoplastic elastomer may be the same as those described above in the sections (Conjugated diene polymer) and (Non-conjugated diene polymer).
  • the number average molecular weight (Mn) of the thermoplastic elastomer is preferably 10,000 to 500,000 or 40,000 to 250,000 from the viewpoint of achieving both impact strength and fluidity.
  • the thermoplastic elastomer may have a core-shell structure.
  • Elastomers having a core-shell structure include core-shell type elastomers having a core that is a particulate rubber and a shell that is a glassy graft layer formed on the outside of the core.
  • core butadiene rubber, acrylic rubber, silicone-acrylic composite rubber, and the like are suitable.
  • shell glassy polymers such as styrene resin, acrylonitrile-styrene copolymer, and acrylic resin are suitable.
  • Thermoplastic elastomers are styrene-butadiene block copolymers, styrene-ethylene-butadiene block copolymers, styrene-ethylene-butylene block copolymers, styrene-butadiene- butylene block copolymer, styrene-isoprene block copolymer, styrene-ethylene-propylene block copolymer, styrene-isobutylene block copolymer, hydrogenated styrene-butadiene block copolymer, styrene-ethylene-butadiene block selected from the group consisting of hydrogenated copolymers, hydrogenated styrene-butadiene-butylene block copolymers, hydrogenated styrene-isoprene block copolymers, and homopolymers of styrene (polystyrene) It is
  • thermoplastic elastomer may have an acidic functional group.
  • that the thermoplastic elastomer has an acidic functional group means that an acidic functional group is added to the molecular skeleton of the elastomer via a chemical bond.
  • the acidic functional group means a functional group capable of reacting with a basic functional group, and specific examples include a hydroxyl group, a carboxyl group, a carboxylate group, a sulfo group, an acid anhydride group, and the like. mentioned.
  • the addition amount of the acidic functional groups in the elastomer is preferably 0.01% by mass or more, more preferably 0.1% by mass or more, based on 100% by mass of the elastomer. , more preferably 0.2% by mass or more, preferably 5% by mass or less, more preferably 3% by mass or less, and still more preferably 2% by mass or less.
  • the number of acidic functional groups is determined by measuring a calibration curve sample mixed with an acidic substance in advance using an infrared absorption spectrometer, and based on a calibration curve prepared using the characteristic absorption band of the acid. It is a value obtained by measuring a sample.
  • elastomers having acidic functional groups include elastomers having a core-shell structure having a layer formed by using acrylic acid or the like as a copolymer component as a shell, ethylene- ⁇ olefin copolymers containing acrylic acid or the like as monomers, polyolefins, aromatic Grafting an ⁇ , ⁇ -unsaturated dicarboxylic acid or a derivative thereof to a group compound-conjugated diene copolymer or an aromatic compound-conjugated diene copolymer hydrogenated product in the presence or absence of a peroxide. and modified elastomers.
  • the elastomer is an acid anhydride-modified elastomer.
  • polyolefins, aromatic-conjugated diene copolymers, or aromatic-conjugated diene copolymer hydrogenates, in the presence or absence of peroxides, have ⁇ , ⁇ -unsaturation.
  • a modified product obtained by grafting a dicarboxylic acid or a derivative thereof is more preferable, and in particular, an ethylene- ⁇ -olefin copolymer or an aromatic compound-conjugated diene block copolymer hydrogenated product is treated in the presence of a peroxide or Modifications grafted in the absence of ⁇ , ⁇ -unsaturated dicarboxylic acids and their derivatives are particularly preferred.
  • ⁇ , ⁇ -unsaturated dicarboxylic acids and derivatives thereof include maleic acid, fumaric acid, maleic anhydride, and fumaric anhydride, with maleic anhydride being particularly preferred.
  • the elastomer may be a mixture of an elastomer with acidic functional groups and an elastomer without acidic functional groups.
  • the mixing ratio of the elastomer having an acidic functional group and the elastomer having no acidic functional group when the total of both is 100% by mass, the elastomer having an acidic functional group contributes to the high toughness and physical property stability of the rubber composite. is preferably 10% by mass or more, more preferably 20% by mass or more, even more preferably 30% by mass or more, and most preferably 40% by mass or more.
  • the upper limit is not particularly limited, and substantially all elastomers may be elastomers having an acidic functional group, but from the viewpoint of not causing problems with fluidity, it is preferably 80% by mass or less.
  • the content of the thermoplastic elastomer in the masterbatch is preferably 20% by mass or more, or 30% by mass or more, and preferably 99% by mass or less, or 95% by mass or less, or 90% by mass or less.
  • the masterbatch When the masterbatch contains uncured rubber, the masterbatch typically contains a vulcanizing agent and optionally a vulcanization accelerator.
  • the vulcanizing agent and vulcanization accelerator conventionally known ones may be appropriately selected according to the type of uncured rubber in the masterbatch.
  • vulcanizing agents organic peroxides, azo compounds, oxime compounds, nitroso compounds, polyamine compounds, sulfur, sulfur compounds and the like can be used.
  • Sulfur compounds include sulfur monochloride, sulfur dichloride, disulfide compounds, polymeric polysulfur compounds, and the like.
  • the amount of vulcanizing agent is preferably 0.01 to 20 parts by weight, or 0.1 to 15 parts by weight, based on 100 parts by weight of uncured rubber in the masterbatch.
  • vulcanization accelerators examples include sulfenamide-based, guanidine-based, thiuram-based, aldehyde-amine-based, aldehyde-ammonia-based, thiazole-based, thiourea-based, and dithiocarbamate-based vulcanization accelerators.
  • Zinc white, stearic acid, etc. may be used as a vulcanizing aid.
  • the amount of vulcanization accelerator is preferably 0.01 to 20 parts by weight, or 0.1 to 15 parts by weight with respect to 100 parts by weight of uncured rubber in the masterbatch.
  • the masterbatch may contain conventionally known various rubber additives (stabilizers, softeners, antioxidants, etc.). Rubber stabilizers include 2,6-di-tert-butyl-4-hydroxytoluene (BHT), n-octadecyl-3-(4'-hydroxy-3',5'-di-tert-butylphenyl) One or two or more antioxidants such as propionate and 2-methyl-4,6-bis[(octylthio)methyl]phenol may be used. One or more of process oil, extender oil and the like may be used as the softener for rubber. However, in one aspect, the masterbatch of the present embodiment can form a flexible molded body, and therefore in one aspect, it can contain no rubber softener.
  • BHT 2,6-di-tert-butyl-4-hydroxytoluene
  • antioxidants such as propionate and 2-methyl-4,6-bis[(octylthio)methyl]phenol may be used.
  • the masterbatch may optionally contain additional ingredients to improve its performance. Additional ingredients include dispersants, organic or inorganic fillers, heat stabilizers, antioxidants, antistatic agents, colorants, and the like. The content ratio of any additional component in the masterbatch is appropriately selected within a range in which the desired effects of the present invention are not impaired. It's okay.
  • the masterbatch contains 10 parts by mass to 50 parts by mass, or 15 parts by mass to 40 parts by mass, or 20 parts by mass to 30 parts by mass of cellulose nanofibers with respect to 100 parts by mass of the rubber component. 1 part by mass to 50 parts by mass, or 2 parts by mass to 40 parts by mass, or 3 parts by mass to 30 parts by mass of the agent.
  • the amount of the rubber component is the total amount of the rubber components present in the masterbatch (in one aspect, the total amount of the first rubber component and the second rubber component).
  • the composition of ingredients of the masterbatch may be similar to those described above for the rubber composition.
  • the mass ratio (masterbatch/additional component) to the additional component (in one aspect, the second rubber component) is 1/99 to 99/1, or 5/95 to 95/5, or 10/ 90 to 90/10, or 20/80 to 80/20, or 30/70 to 70/30, or 40/60 to 60/40.
  • One aspect of the present disclosure provides a method for producing a masterbatch, including the step of kneading the powder of the present disclosure and a second rubber component to obtain a masterbatch.
  • kneading conditions are not particularly limited, for example, a kneader used for general rubber kneading such as a Banbury mixer or an open roll can be used.
  • One aspect of the present disclosure also provides a rubber composite (obtained by mixing them in one aspect) comprising the rubber composition of the present embodiment and a matrix component (that is, a component other than the rubber composition). do.
  • rubber composites are derived from the powders or masterbatches of the present disclosure.
  • the rubber composite contains the cellulose nanofibers described above, the liquid rubber described above, and the surfactant described above, and further includes a third rubber component and optionally additional components as matrix components.
  • the third rubber component may be one or more selected from the group consisting of uncured rubbers and thermoplastic elastomers.
  • the rubber composite is a kneaded product of the powder of the present disclosure or the masterbatch of the present disclosure and a third rubber component.
  • Specific preferred embodiments of the third rubber component may be the same as those described above for the second rubber component.
  • the first, second and third rubber components can differ from each other (heterogeneous) in one or more of constituent monomer component species, constituent monomer component ratios and molecular weights, or In two or more of the rubber components, the constituent monomer component species, the constituent monomer component ratios, and the molecular weights may be the same (identical).
  • the constituent monomer component species, the constituent monomer component ratios, and the molecular weights may be the same (identical).
  • at least part of the surface of the cellulose nanofibers is covered with the first rubber component.
  • the state of the coating is confirmed by scanning electron microscopy or atomic force microscopy as described above.
  • the first rubber component is indistinguishable from the second and/or third rubber component by neither scanning electron microscopy nor atomic force microscopy, at least part of the surface of the cellulose nanofibers If it is coated with the rubber component that is not distinguished, it may be considered that at least part of the surface is coated with the first rubber component.
  • the first rubber component and the second and/or third rubber component may be of the same type or, even if they are of different types, very close in properties. Therefore, it is considered that by coating the cellulose nanofibers with the indistinguishable rubber component, the advantage obtained when the cellulose nanofibers are coated with the first rubber component can be exhibited.
  • the mass ratio of the powder to the third rubber component is 1/99 to 99/1, or 5/95 to 95/5, or 10/90 to 90/10, or 20/80 to 80/20, or 30/70 to 70/30, or 40/60 to 60/40.
  • the mass ratio of the masterbatch and the third rubber component is, in one aspect, 1/99 to 99/1, or 5/95 to 95/5, or 10/90 to 90/10, or 20/80 to 80/20, or 30/70 to 70/30, or 40/60 to 60/40.
  • the rubber composite is formed by kneading the powder of the present disclosure and a third rubber component, or by forming a masterbatch by the method for producing a masterbatch of the present disclosure, and then combining the masterbatch and the third rubber component. It can be produced by a method including a step of obtaining a rubber composite by kneading.
  • the above-mentioned kneading conditions are not particularly limited, but kneaders used for general rubber kneading such as Banbury mixers and open rolls can be used.
  • the content of cellulose nanofibers in the rubber composite is preferably 0.5% by mass or more, or 1% by mass or more, or 2% by mass or more, and preferably 30% by mass or less, or 20% by mass or less. , or 15% by mass or less, or 10% by mass or less.
  • the total content of the polymer components in the rubber composite is preferably 1% by mass or more, or 2% by mass or more, or 5% by mass or more. % by mass or more, preferably 99% by mass or less, or 95% by mass or less, or 90% by mass or less.
  • the mass ratio of cellulose nanofiber/total polymer component in the rubber composite is preferably 1/99 to 50/50, or 2/98 to 40/60, or 3/97 to 30/70.
  • the content of the surfactant in the rubber composite may be 0.1% by mass or more, or 0.5% by mass or more, or 1% by mass or more, and in one aspect, 10% by mass or less. , or 5% by mass or less, or 1% by mass or less.
  • the amount of the vulcanizing agent and/or vulcanization accelerator for the uncured rubber in the rubber composite is the vulcanizing agent and/or vulcanization accelerator for the uncured rubber in the masterbatch may be in the same range as exemplified as the amount of
  • the amounts of the rubber additives and additional components in the rubber composite may be in the same ranges as those exemplified as the amounts in the masterbatch.
  • One aspect of the present disclosure provides a cured rubber product that is a cured product of a curable component containing the rubber composition of the present disclosure.
  • a desired molded article can be produced by molding the rubber composition of the present disclosure into a desired shape together with other desired components.
  • the rubber composition of the present disclosure is mixed with a third rubber component and optionally additional components to form a rubber composite, and the rubber composite, alone or with other components, is formed into a desired shape. By doing so, a desired compact may be produced.
  • the method of combining the ingredients and the method of molding are not particularly limited, and may be selected according to the desired molded article.
  • the molding method is not limited to, (1)
  • the rubber composition or masterbatch contains uncured rubber, and the rubber composition or masterbatch is molded alone or with additional components before, during and/or after molding the uncured rubber.
  • a method of obtaining a molded article containing a cured rubber product by curing the (2)
  • (3) a method in which the rubber component in the rubber composition is a thermoplastic elastomer, and the rubber composition is melt-molded alone or together with additional components to obtain a molded product; etc.
  • Molding may be by injection molding, extrusion, extrusion profile molding, blow molding, compression molding, and the like.
  • the mass ratio of the masterbatch/additional component in the cured rubber is, for example, 1/99 to 99/1, or 5/95 to 95/5, or 10/90 to 90/10. , or 20/80 to 80/20, or 30/70 to 70/30, or 40/60 to 60/40.
  • the cured rubber is a cured rubber composite of the present disclosure.
  • the rubber cured product can be produced by a method including a step of obtaining a rubber composite by the rubber composite production method of the present disclosure, and a step of curing the rubber composite to obtain a rubber cured product.
  • a cured rubber product can be obtained by a vulcanizing press conforming to JIS K6299.
  • the cured rubber may form moldings of various shapes.
  • Molded products are industrial machine parts, general machine parts, automobile/railroad/vehicle/ship/aerospace related parts, electronic/electrical parts, construction/civil engineering materials, daily goods, sports/leisure goods, wind power generation housing materials. , containers and packaging materials.
  • applications include automobile parts (for example, tires, bumpers, fenders, door panels, various moldings, emblems, engine hoods, wheel caps, roofs, spoilers, various aero parts, instrument panels, and consoles.
  • interior parts such as boxes and trims
  • battery parts in-vehicle secondary battery parts, lithium-ion secondary battery parts, solid methanol battery fuel cases, fuel cell piping, etc.
  • electronic and electrical equipment parts e.g., various computers and their peripheral equipment, junction boxes, various connectors, various OA equipment, televisions, videos, disc players, chassis, refrigerators, air conditioners, liquid crystal projectors, etc.), daily necessities (shoes outsoles, etc.), etc. you can
  • One aspect of the present disclosure provides a shoe outsole, a tire, an anti-vibration rubber, or a transmission belt containing the cured rubber of the present disclosure.
  • ⁇ Rubber composition> [Appearance (dispersibility of cellulose nanofibers)]
  • the rubber compositions obtained in Examples 1 to 5 and Comparative Examples 2 and 3 were observed with an optical microscope under the following conditions. 1 mg of the sample was sandwiched between two cover glasses, and was flattened and spread so as to have a uniform thickness. The above sample was placed on the stage of a polarizing microscope BX51P manufactured by Olympus. A differential interference prism U-DICR manufactured by Olympus was inserted, and differential interference observation was performed. The dispersibility of the filler was evaluated according to the following criteria. A: Almost uniformly dispersed. B: Dispersed, but aggregates are observed. C: Many aggregations are confirmed.
  • ⁇ Dry powder> The dry powder was evaluated as follows using a powder tester (model number: PT-X) manufactured by Hosokawa Micron Corporation.
  • a resin adapter with a sufficient capacity (inner diameter 50.46 mm x length 40 mm) is connected to the top of the same bottomed cylindrical container used for the loose bulk density so as to be in close contact, and the same as the loose bulk density measurement.
  • the bottomed cylindrical container was vibrated for 30 seconds with an amplitude of 1.5 mm and 50 Hz by a motor having an eccentric weight attached to the rotating shaft while the adapter was connected.
  • the adapter is removed, the dried body is scraped off, and the weight is measured to the nearest 0.01 g.
  • the solid bulk density was calculated by dividing the number average value of three measurements of the weight by the inner volume of the bottomed cylindrical container.
  • the rubber cured product was evaluated as follows. (1) Tensile strength It was evaluated by the tensile test method of JIS K-6251. (2) Storage modulus Storage modulus at 50° C., frequency of 10 Hz, and strain of 3% was evaluated by a torsion method using a viscoelasticity tester ARES-G2 manufactured by TA Instruments. (3) Dispersibility of Cellulose Nanofibers A 5 cm square region on the vulcanization press surface of the cured rubber was visually observed to evaluate the state of dispersion of cellulose nanofibers according to the following criteria. A: Aggregate cannot be visually confirmed B: A small number of aggregates (1 to 10) are confirmed. C: Many aggregations (11 or more) are confirmed.
  • Liquid rubber-1 butadiene-styrene random copolymer (RICON 184, available from Clay Valley), viscosity at 25°C 40000 cP, number average molecular weight (Mn) 3,200, weight average molecular weight (Mw) 14,000, Mw/Mn 4.3, vinyl content 19 mol%, aromatic styrene content 8 mol%
  • Liquid rubber-2 butadiene-styrene random copolymer (RICON 100, available from Clay Valley), viscosity at 25°C 75000 cP, number average molecular weight (Mn) 2,100, weight average molecular weight (Mw) 4,500, Mw/Mn 2.1, vinyl content 42 mol%, aromatic styrene content 9 mol%
  • Rubber-1 Asaprene Y031 (available from Asahi Kasei Corporation)
  • CNF-1 microfibrous cellulose (Celish KY-100G, available from Daicel Miraise Co., Ltd.)
  • CNF-2 Microfibrous Cellulose 3 parts by mass of cotton linter pulp was immersed in 27 parts by mass of water and dispersed with a pulper. 170 parts by mass of water was added to 30 parts by mass of pulper-treated cotton linter pulp slurry (including 3 parts by mass of cotton linter pulp) and dispersed in water (solid content: 1.5% by mass). The aqueous dispersion was beaten for 30 minutes using an SDR14 model laboratory refiner (pressurized DISK type) manufactured by Co., Ltd. with a clearance between discs of 1 mm. Subsequently, thorough beating was carried out under conditions in which the clearance was reduced to a level close to zero to obtain a beating water dispersion (solid concentration: 1.5% by mass).
  • the resulting beaten water dispersion was directly subjected to a fineness treatment using a high-pressure homogenizer (NSO15H manufactured by Nilo Soavi (Italy)) under an operating pressure of 100 MPa for 10 times to obtain a fine cellulose fiber slurry (solid concentration: 1.5). mass %) was obtained. Then, it was concentrated to a solid content of 10% by mass using a dehydrator to obtain a concentrated cake of CNF-2.
  • a high-pressure homogenizer NSO15H manufactured by Nilo Soavi (Italy)
  • Surfactant-1 Polyoxyethylene (2) monolauryl ether (Emulgen 102KG, available from Kao Corporation) The number in parentheses is the number of repetitions of the oxyethylene chain
  • Surfactant-2 Sorbitan monooleate (Rheodol SP -O10V, available from Kao Corporation)
  • Surfactant-3 Polyoxyethylene (6) sorbitan monolaurate (Rhedol TW-L106, available from Kao Corporation)
  • the number in parentheses is the number of repetitions of the oxyethylene chain
  • Surfactant-4 Ethylene glycol-pro Ping glycol copolymer (PEG-PPG) (Sannix GL-3000, available from Sanyo Kasei Co., Ltd.)
  • SEBS H1052 Product name "Tuftec H1052", manufactured by Asahi Kasei Corporation
  • Silica-1 Precipitated silica (ULTRASIL 7000GR, available from Degussa)
  • Si75 bis(3-(triethoxysilyl)propyl)disulfide (available from Evonik Japan Co., Ltd.)
  • ⁇ Vulcanizing aid> Zinc oxide: available from Fujifilm Wako Pure Chemical Co., Ltd.
  • Stearic acid available from Fujifilm Wako Pure Chemical Co., Ltd.
  • Nocrac 6C N-phenyl-N'-(1,3-dimethylbutyl)-p-phenylenediamine (available from Ouchi Shinko Kagaku Co., Ltd.)
  • Noccellar CZ N-cyclohexyl-2-benzothiazolylsulfenamide (available from Ouchi Shinko Kagaku Co., Ltd.)
  • Noccellar D 1,3-diphenylguanidine (available from Ouchi Shinko Kagaku Co., Ltd.)
  • Example 1 Purified water was added to Celish KY100G (manufactured by Daicel Finechem) (aqueous dispersion of cellulose fibers) to prepare an aqueous dispersion with a final cellulose nanofiber content of 5% by mass. Liquid rubber-1 (RICON 184) and surfactant-1 are added to this, and the final composition is 90% by mass of water, 5% by mass of cellulose fiber, 2.86% by mass of liquid rubber, and 2.14% of surfactant. Aqueous dispersions were prepared so as to be mass %. The water dispersion was mixed for 5 minutes using a rotation/revolution mixer ARE-310 manufactured by THINKY Co., Ltd.
  • the resulting dispersion was dried at 80° C. using SPH-201 manufactured by Espec Co., Ltd. to obtain a dried product.
  • the resulting dried body was pulverized with a mini speed mill MS-05 manufactured by Labnect Co., Ltd., and 20 parts by mass of the dried body was added to 80 parts by mass of liquid rubber-1 (RICON184), and a rotation and revolution mixer ARE- manufactured by Thinky Co., Ltd. 310 was used to mix for 15 minutes to obtain a rubber composition.
  • Example 2 Purified water was added to Celish KY100G (manufactured by Daicel Finechem) (aqueous dispersion of cellulose fibers) to prepare an aqueous dispersion with a final cellulose nanofiber content of 5% by mass. Surfactant-1 was added to this to prepare an aqueous dispersion having a final composition of 92.86% by mass of water, 5% by mass of cellulose fiber and 2.14% by mass of surfactant. The water dispersion was mixed for 5 minutes using a rotation/revolution mixer ARE-310 manufactured by THINKY Co., Ltd. to obtain a dispersion of a cellulose nanofiber composition. The resulting dispersion was dried at 80° C.
  • Celish KY100G manufactured by Daicel Finechem
  • Example 3 A rubber composition was produced under the same conditions as in Example 2, except that Surfactant-1 was replaced with Surfactant-2.
  • Example 4 A rubber composition was prepared under the same conditions as in Example 2, except that Surfactant-1 was replaced with Surfactant-3.
  • Example 5 A rubber composition was produced under the same conditions as in Example 2, except that Surfactant-1 was replaced with Surfactant-4.
  • ⁇ Comparative Example 2 10 parts by mass of Silica-1 was added to 90 parts by mass of Liquid Rubber-1 (RICON 184) and mixed for 15 minutes using a rotation/revolution mixer ARE-310 manufactured by THINKY CORPORATION to obtain a rubber composition.
  • Example 1 the cellulose nanofibers were well dispersed in the rubber, and the storage elastic modulus at a frequency of 1 Hz was high.
  • Comparative Example 3 a large number of agglomerates were contained in the rubber, and although the storage elastic modulus was measured, stable measured values could not be obtained.
  • Example 6 ⁇ Dispersion of rubber composition in thermoplastic elastomer> ⁇ Example 6> Purified water was added to Celish KY100G (manufactured by Daicel Finechem) (aqueous dispersion of cellulose fibers) to prepare an aqueous dispersion with a final cellulose nanofiber content of 5% by mass. Liquid rubber-2 (RICON 100) and surfactant-1 were added to this, and the final composition was 90% by mass of water, 5% by mass of cellulose fiber, 7.86% by mass of liquid rubber, and 2.14% of surfactant. Aqueous dispersions were prepared so as to be mass %.
  • the water dispersion was mixed for 15 minutes using a rotation/revolution mixer ARE-310 manufactured by THINKY Co., Ltd. to obtain a dispersion of a cellulose nanofiber composition.
  • the resulting dispersion was dried at 80° C. using SPH-201 manufactured by Espec Co., Ltd. to obtain a rubber composition.
  • cellulose nanofiber-containing composition 7.1 g was added to 92.9 g of thermoplastic elastomer-1 (SEBS H1052) using a small kneader (Xplore) manufactured by Leo Labs, and melt-kneaded at 200° C. for 5 minutes. , to obtain rubber strands in which cellulose nanofibers are dispersed.
  • the resulting rubber strand was hot-pressed at 200° C. and 10 kN for 10 minutes to obtain a sheet. When the sheet was visually observed, a large number of aggregates were confirmed.
  • Example 7 Purified water was added to CNF-2 (aqueous dispersion of cellulose fibers) to prepare an aqueous dispersion with a final cellulose nanofiber content of 5% by mass. Liquid rubber-1 and surfactant-1 are added to this, and the final composition is 90% by mass of water, 5% by mass of cellulose fiber, 2.86% by mass of liquid rubber, and 2.14% by mass of surfactant. An aqueous dispersion was prepared so that The aqueous dispersion was mixed for 5 minutes using a rotation/revolution mixer ARE-310 manufactured by THINKY Co., Ltd. to obtain a dispersion of a cellulose nanofiber composition.
  • ARE-310 manufactured by THINKY Co., Ltd.
  • the resulting dispersion was dried at 80° C. using SPH-201 manufactured by Espec Co., Ltd. to obtain a dried product.
  • the resulting dried product was pulverized for 30 seconds with a mini speed mill MS-05 manufactured by Labonect Co., Ltd. to obtain a powder for producing a cured rubber product.
  • the loose bulk density and hardened bulk density of the resulting dry powder were measured by the methods described above.
  • Example 8 A rubber cured product was obtained in the same manner as in Example 7, except that the dried material was pulverized using a hammer mill manufactured by Flevit Co., Ltd., instead of Mini Speed Mill MS-05 manufactured by Labonect Co., Ltd.
  • Example 9 A rubber cured product was obtained in the same manner as in Example 7, except that the dried material was pulverized using a conical screen mill manufactured by Flevit Co., Ltd. instead of Mini Speed Mill MS-05 manufactured by Labonect Co., Ltd.
  • Example 10 A cured rubber product was obtained in the same manner as in Example 7, except that the dried material was pulverized using a pin mill manufactured by Flevit Co., Ltd., instead of Mini Speed Mill MS-05 manufactured by Labonect Co., Ltd.
  • the powder obtained by pulverizing the dried material was dyed with OsO 4 for 12 hours, mixed with an epoxy resin, and allowed to stand at room temperature for 48 hours to cure the epoxy resin.
  • the cured sample was cut with an ultramicrotome, a smooth cross section was prepared, Os plasma coating was performed for 1 second, and an acceleration voltage of 1.5 kV, WD of 3 mm, and a scanning electron microscope (Hitachi High Technologies, SU8220), the cellulose nanofibers were coated with a rubber component (Fig. 1).
  • the dark gray portion is the cellulose nanofiber
  • the light gray portion around the cellulose nanofiber is the first rubber component
  • the black portion is the epoxy resin. From FIG. 1, it was confirmed that the cellulose nanofibers were covered with the first rubber component.
  • Example 11 A rubber cured product was obtained in the same manner as in Example 7, except that Surfactant-2 was used instead of Surfactant-1.
  • Example 12 As the final composition when preparing the aqueous dispersion, instead of 90% by weight of water, 5% by weight of cellulose fiber, 2.86% by weight of liquid rubber, and 2.14% by weight of surfactant, 92.86% by weight of water , 5% by mass of cellulose fiber, 1.43% by mass of liquid rubber, and 0.71% by mass of surfactant.
  • a rubber cured product was obtained in the same manner as in Example 7, except that 7.14 parts by mass was added instead of adding 7.14 parts by mass.
  • Example 13 As the final composition when preparing the aqueous dispersion, instead of 90% by weight of water, 5% by weight of cellulose fiber, 2.86% by weight of liquid rubber, and 2.14% by weight of surfactant, 93.58% by weight of water , cellulose fiber 5% by mass, liquid rubber 0.71% by mass, and surfactant 0.71% by mass.
  • a rubber cured product was obtained in the same manner as in Example 7, except that 6.42 parts by mass was added instead of adding 6.42 parts by mass.
  • Example 14 The final composition when preparing the aqueous dispersion is 90% by weight of water, 5% by weight of cellulose fiber, 2.86% by weight of liquid rubber, and 85% by weight of water instead of 2.14% by weight of surfactant, cellulose An aqueous dispersion was prepared so that the fiber was 5% by mass, the liquid rubber was 7.86% by mass, and the surfactant was 2.14% by mass. A cured rubber product was obtained in the same manner as in Example 7, except that freeze grinding was performed using SPEX Freezer Mill 6875 instead.
  • Example 15 Toyo Seiki Labo Plastomill was heated to 70°C, 100 parts by mass of Rubber-1 (Asaprene Y031) was added and kneaded for 0.5 minutes. 30 parts by mass of the solid was added and kneaded for 5.5 minutes to prepare a masterbatch. After that, the Labo Plastomill was heated to 70° C., 67 parts by mass of Rubber-1 (Asaprene Y031) and 43 parts by mass of the masterbatch were added and kneaded for 0.5 minutes to obtain a vulcanizing aid (zinc white 2.0).
  • ⁇ Reference example 7> Purified water was added to CNF-2 (aqueous dispersion of cellulose fibers) to obtain an aqueous dispersion with a final cellulose nanofiber content of 5% by mass. Liquid rubber-1 and surfactant-1 are added to this, and the final composition is 82.86% by mass of water, 5% by mass of cellulose fiber, 10% by mass of liquid rubber, and 2.14% by mass of surfactant.
  • An aqueous dispersion was prepared so that The water dispersion was mixed for 5 minutes using a rotation/revolution mixer ARE-310 manufactured by THINKY Co., Ltd. to obtain a dispersion of a cellulose nanofiber composition. The resulting dispersion was dried at 80° C.
  • Table 2 shows the evaluation results of Examples 7-15 and Reference Examples 5-7.
  • the cellulose nanofibers were well dispersed in the rubber, and significant improvement in physical properties was confirmed.
  • the rubber composition according to the present disclosure can form a molded article having good physical properties, it is It can be suitably applied to a wide range of uses such as building/civil engineering materials, daily necessities, sports/leisure goods, housing members for wind power generation, containers/packaging members, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Tires In General (AREA)

Abstract

本開示の一態様は、セルロースナノファイバーがゴム中に良好に分散しており弾性率、耐摩耗性等に優れる成形体の形成を可能にする、ゴム組成物を提供する。本開示の一態様は、セルロースナノファイバーと、液状ゴムである第1のゴム成分と、界面活性剤とを含む、ゴム組成物を提供する。一態様において、セルロースナノファイバーはイオン性基を有さない。また、一態様においては、液状ゴムの数平均分子量が、1,000~80,000である。

Description

セルロースナノファイバーを含む組成物
 本開示の一態様は、セルロースナノファイバーを含む組成物等に関する。
 従来、ゴム成形体においては、機械強度、柔軟性、耐摩耗性、加工性等の種々の特性を高度にバランスさせることが求められており、例えば、弾性率、硬度,耐摩耗性等を向上させる目的で、ゴム成形体中にフィラーを含有させることが一般的に行われている。このようなフィラーを含むゴム成形体が所望の特性を発揮するためには、フィラーがゴム中に良好に分散していることが重要である。
 例えば特許文献1には、機械的特性を向上させることを目的として、変性ジエン系ゴムを含むジエン系ゴムに酸化セルロースナノファイバーを配合することを特徴とするタイヤ用ゴム組成物が記載されている.
特開2019-147877号公報
 近年、環境問題への意識の高まりから、ゴム成形体に含有させるフィラーとして、低比重且つ再生可能な材料であるセルロースの利用が種々模索されている。中でも、セルロースナノファイバーは、各種ポリマーと組合せてポリマー成形体を構成した際の当該ポリマー成形体に与える使用量当たりの補強効果が良好であることから、ポリマー成形体用のフィラーとして極めて有望である。このようなセルロースナノファイバーをゴム成形体に利用できれば、低比重で且つ各種物性に優れることで、多様な用途に利用でき、輸送コスト及び廃棄コストの点でも有利であるゴム成形体を提供できる。しかしながら、セルロースナノファイバーは、セルロース中の水酸基の寄与によって本質的に親水性であることから、一般に疎水性が高い材料であるゴムとの混和は困難である。特許文献1には、フィラーである酸化セルロースナノファイバーを、変性ジエン系ゴムを含むジエン系ゴム中に分散させたタイヤ用ゴム組成物が記載されている。しかしこの技術は、変性ジエン系ゴムが酸化セルロースナノファイバーのジエン系ゴムに対する親和性を向上させることによって、分散性を改良する技術である。イオン性基を有さないセルロースナノファイバーであってもゴム中にセルロースナノファイバーが良好に分散してなるゴム成形体は未だ提供されていない。
 本発明の一態様は、上記の課題を解決し、セルロースナノファイバーがゴム中に良好に分散しており弾性率、耐摩耗性等に優れる成形体の形成を可能にする、ゴム組成物の提供を目的とする。
 本開示は、以下の態様を包含する。
[1] セルロースナノファイバーと、液状ゴムである第1のゴム成分と、界面活性剤とを含む、ゴム組成物。
[2] 前記セルロースナノファイバーがイオン性基を有さない、上記態様1に記載のゴム組成物。
[3] 前記液状ゴムの数平均分子量が、1,000~80,000である、上記態様1又は2に記載のゴム組成物。
[4] 前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、上記態様1~3のいずれかに記載のゴム組成物。
[5] 前記液状ゴムの80℃での粘度が、1,000,000mPa・s以下である、上記態様1~4のいずれかに記載のゴム組成物。
[6] 前記液状ゴムの25℃での粘度が、1,000,000mPa・s以下である、上記態様1~5のいずれかに記載のゴム組成物。
[7] 前記液状ゴムの0℃での粘度が、1,000,000mPa・s以下である、上記態様1~6のいずれかに記載のゴム組成物。
[8] 前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、上記態様1~7のいずれかに記載のゴム組成物。
[9] 前記セルロースナノファイバーの置換度が0である、上記態様1~8のいずれかに記載のゴム組成物。
[10] 前記セルロースナノファイバーを0.5質量%~10質量%含む、上記態様1~9のいずれかに記載のゴム組成物。
[11] 前記セルロースナノファイバー100質量部に対して前記界面活性剤を10質量部~200質量部含む、上記態様1~10のいずれかに記載のゴム組成物。
[12] 前記界面活性剤が、ノニオン性界面活性剤又はカチオン性界面活性剤である、上記態様1~11のいずれかに記載のゴム組成物。
[13] 界面活性剤がノニオン性界面活性剤である、上記態様12に記載のゴム組成物。
[14] 前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、上記態様13に記載のゴム組成物。
[15] 前記ノニオン性界面活性剤が、下記一般式(1):
R-(OCH2CH2m-OH   (1)
[式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び
 下記一般式(2):
1OCH2-(CHOH)4-CH2OR2   (2)
[式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
からなる群から選択される1種以上である、上記態様13又は14に記載のゴム組成物。
[16] 少なくとも前記セルロースナノファイバーの表面の一部が前記第1のゴム成分により被覆されている、上記態様1~15のいずれかに記載のゴム組成物。
[17] 上記態様1~16のいずれかに記載のゴム組成物で構成されている、粉体。
[18] 固め嵩密度が0.01g/cm3~0.30g/cm3である、上記態様17に記載の粉体。
[19] 上記態様17又は18に記載の粉体と第2のゴム成分との混練物である、マスターバッチ。
[20] 上記態様17又は18に記載の粉体と第2のゴム成分とを混練してマスターバッチを得る工程を含む、マスターバッチの製造方法。
[21] 上記態様17若しくは18に記載の粉体又は上記態様19に記載のマスターバッチと、第3のゴム成分との混練物である、ゴム複合体。
[22] 少なくとも前記セルロースナノファイバーの表面の一部が前記第1のゴム成分により被覆されている、上記態様21に記載のゴム複合体。
[23] 上記態様17若しくは18に記載の粉体と第3のゴム成分とを混練すること、又は
 上記態様20に記載の方法でマスターバッチを形成し、次いで前記マスターバッチと第3のゴム成分とを混練すること、
によってゴム複合体を得る工程を含む、ゴム複合体の製造方法。
[24] 前記ゴム複合体において、少なくとも前記セルロースナノファイバーの表面の一部が前記第1のゴム成分により被覆されている、上記態様23に記載の方法。
[25] 上記態様21又は22に記載のゴム複合体の硬化物である、ゴム硬化物。
[26] 上記態様23又は24に記載の方法でゴム複合体を得る工程、及び、
 前記ゴム複合体を硬化させてゴム硬化物を得る工程、
を含む、ゴム硬化物の製造方法。
[27] 上記態様25に記載のゴム硬化物を含む、シューズアウトソール。
[28] 上記態様25に記載のゴム硬化物を含む、タイヤ。
[29] 上記態様25に記載のゴム硬化物を含む、防振ゴム。
[30] 上記態様25に記載のゴム硬化物を含む、伝動ベルト。
 本発明の一態様によれば、セルロースナノファイバーがゴム中に良好に分散しており弾性率、耐摩耗性等に優れる成形体の形成を可能にする、ゴム組成物が提供され得る。
実施例10で得た粉体の断面の走査型電子顕微鏡による観察画像を示す図である。
 以下、本発明の例示の実施の形態(以下、「本実施形態」と略記する。)について説明するが、本発明はこれら実施形態に何ら限定されない。なお本開示の特性値は、特記がない限り、本開示の[実施例]の項に記載される方法又はこれと同等であることが当業者に理解される方法で測定される値である。
 ≪ゴム組成物≫
 本開示の一態様は、セルロースナノファイバーと、界面活性剤と、液状ゴムである第1のゴム成分とを含むゴム組成物を提供する。セルロースナノファイバーは、その水酸基に起因して本質的に親水性である一方、ゴムは本質的に疎水性であり、通常、セルロースナノファイバーをゴム中に均一に分散させることは困難である。例えば分散剤の使用等によってある程度の分散性向上が可能であるが、成形体の物性低下防止の観点からは、添加剤の必要性を最小限にしつつセルロースナノファイバーをゴム中に均一分散させることが望まれる。本発明者らは、このような観点で種々検討した結果、所定温度で流動性を有する特定のゴムにセルロースナノファイバーを分散させてゴム組成物を調製し、その後当該ゴム組成物を、例えばゴム用マスターバッチの形態で、ゴムと混練してゴム複合体を製造することにより、ゴム本来の期待される物性を損なわず、且つセルロースナノファイバーによる補強効果が良好に発現されたゴム硬化物が形成され得ることを見出した。本実施形態のゴム組成物によれば、セルロースナノファイバーがゴム中に良好に分散しており良好な特性(特に、弾性率、硬度等)を有するゴム硬化物を形成でき、またそのようなゴム硬化物は、セルロースナノファイバーがゴム中に良好に分散しており弾性率、耐摩耗性等に優れる成形体を形成できる。
 以下、本実施形態のゴム組成物の各成分の好適例について説明する。
<セルロースナノファイバー>
 セルロースナノファイバーの原料としては、天然セルロース及び再生セルロースを用いることができる。天然セルロースとしては、木材種(広葉樹又は針葉樹)から得られる木材パルプ、非木材種(綿、竹、麻、バガス、ケナフ、コットンリンター、サイザル、ワラ等)から得られる非木材パルプ、動物(例えばホヤ類)や藻類、微生物(例えば酢酸菌)、が産生するセルロース集合体を使用できる。再生セルロースとしては、再生セルロース繊維(ビスコース、キュプラ、テンセル等)、セルロース誘導体繊維、エレクトロスピニング法により得られた再生セルロース又はセルロース誘導体の極細糸等を使用できる。
 セルロースナノファイバーは、一態様において、パルプ等を100℃以上の熱水等で処理し、ヘミセルロースを加水分解して脆弱化したのち、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミル、ディスクミル、ミキサー(例えばホモミキサー)等の粉砕法により機械的に解繊した微細なセルロース繊維である。一態様において、セルロースナノファイバーは数平均繊維径1nm以上1000nm以下である。セルロースナノファイバーは後述のように化学修飾されたものであってもよいが、フィラーとしての補強効果の点では、化学修飾されていないものが好ましい。例えば、2,2,6,6-テトラメチルピペリジン-1-オキシル(TEMPO)リン酸エステル等の化学的な酸化処理を行って解繊されたセルロースナノファイバーは、セルロースナノファイバーに導入されたイオン性基(例えばカルボキシ基)によって耐熱性が低くなる傾向があり、また解繊後の繊維径が小さくなる傾向がある。フィラーとしての補強効果の点では、解繊が機械的な解繊のみである(すなわち、酸化等の化学的な解繊処理がされていない)セルロースナノファイバーがより有利である。したがって、好ましい一態様において、セルロースナノファイバーは、イオン性基を有さない。なお本開示で、セルロースナノファイバーがイオン性基を有さないとは、電導度滴定法で測定されるイオン性基量が0.1mmol/g以下であることを意味する。
 スラリーは、セルロース繊維を液体媒体中に分散させることによって調製でき、分散は、高圧ホモジナイザー、マイクロフリュイダイザー、ボールミル、ディスクミル、ミキサー(例えばホモミキサー)等を用いて行ってよく、例えば上記解繊の生成物を本開示のスラリー調製工程の生成物として得てもよい。スラリー中の液体媒体は、水に加えて、任意に1種単独又は2種以上の組合せで他の液体媒体(例えば有機溶媒)を更に含み得る。有機溶媒としては、一般的に用いられる水混和性有機溶媒、例えば:沸点が50℃~170℃のアルコール(例えばメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、s-ブタノール、t-ブタノール等);エーテル(例えばプロピレングリコールモノメチルエーテル、1,2-ジメトキシエタン、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等);カルボン酸(例えばギ酸、酢酸、乳酸等);エステル(例えば酢酸エチル、酢酸ビニル等);ケトン(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等);含窒素溶媒(ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル等)、等を使用できる。典型的な態様においては、スラリー中の液体媒体は実質的に水のみである。
 セルロース原料は、アルカリ可溶分、及び硫酸不溶成分(リグニン等)を含有するため、蒸解処理による脱リグニン等の精製工程及び漂白工程を経て、アルカリ可溶分及び硫酸不溶成分を減らしても良い。他方、蒸解処理による脱リグニン等の精製工程及び漂白工程はセルロースの分子鎖を切断し、重量平均分子量、及び数平均分子量を変化させてしまうため、セルロース原料の精製工程及び漂白工程は、セルロースナノファイバーの重量平均分子量、及び重量平均分子量と数平均分子量との比が適切な範囲となるようにコントロールされていることが望ましい。
 また、蒸解処理による脱リグニン等の精製工程及び漂白工程はセルロース分子の分子量を低下させるため、これらの工程によって、セルロースナノファイバーが低分子量化すること、及びセルロース原料が変質してアルカリ可溶分の存在比率が増加することが懸念される。アルカリ可溶分は耐熱性に劣るため、セルロース原料の精製工程及び漂白工程は、セルロース原料に含有されるアルカリ可溶分の量が一定の値以下の範囲となるようにコントロールされていることが望ましい。
 一態様において、セルロースナノファイバーの数平均繊維径は、セルロースナノファイバーによる物性向上効果を良好に得る観点から、好ましくは2~1000nmである。セルロースナノファイバーの数平均繊維径は、より好ましくは4nm以上、又は5nm以上、又は10nm以上、又は15nm以上、又は20nm以上であり、より好ましくは500nm以下、又は450nm以下、又は400nm以下、又は350nm以下、又は300nm以下、又は250nm以下である。
 セルロースナノファイバーの平均繊維長(L)/繊維径(D)比は、セルロースナノファイバーを含むゴム複合体の機械的特性を少量のセルロースナノファイバーで良好に向上させる観点から、好ましくは、30以上、又は50以上、又は80以上、又は100以上、又は120以上、又は150以上である。上限は特に限定されないが、取扱い性の観点から好ましくは5000以下である。
 本開示で、セルロースナノファイバーの繊維長、繊維径、及びL/D比は、セルロースナノファイバーの水分散液を、高剪断ホモジナイザー(例えば日本精機(株)製、商品名「エクセルオートホモジナイザーED-7」)を用い、処理条件:回転数15,000rpm×5分間で分散させた水分散体を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとし、走査型電子顕微鏡(SEM)又は原子間力顕微鏡(AFM)で計測して求める。具体的には、少なくとも100本のセルロースナノファイバーが観測されるように倍率が調整された観察視野にて、無作為に選んだ100本のセルロースナノファイバーの長さ(L)及び径(D)を計測し、比(L/D)を算出する。セルロースナノファイバーについて、繊維長(L)の数平均値、繊維径(D)の数平均値、及び比(L/D)の数平均値を算出する。
 又は、粉体、ゴム組成物、ゴム用マスターバッチ、ゴム複合体等に含まれるセルロースナノファイバーの繊維長、繊維径、及びL/D比は、これらを測定サンプルとして、上述の測定方法により測定することで確認することができる。
 又は、粉体、ゴム組成物、ゴム用マスターバッチ、ゴム複合体等に含まれるセルロースナノファイバーの繊維長、繊維径、及びL/D比は、これらに含まれるポリマー成分を溶解できる有機又は無機の溶媒に当該ポリマー成分を溶解させ、セルロースナノファイバーを分離し、前記溶媒で充分に洗浄した後、溶媒を純水に置換した水分散液を調製し、セルロースナノファイバー濃度を、0.1~0.5質量%まで純水で希釈し、マイカ上にキャストし、風乾したものを測定サンプルとして上述の測定方法により測定することで確認することができる。この際、測定するセルロースナノファイバーは無作為に選んだ100本以上での測定を行う。
 セルロースナノファイバーの結晶化度は、好ましくは55%以上である。結晶化度がこの範囲にあると、セルロース自体の力学物性(強度、寸法安定性)が高いため、セルロースナノファイバーをゴムに分散した際に、ゴム複合体の強度、寸法安定性が高い傾向にある。より好ましい結晶化度の下限は、60%であり、さらにより好ましくは70%であり、最も好ましくは80%である。セルロースナノファイバーの結晶化度について上限は特に限定されず、高い方が好ましいが、生産上の観点から好ましい上限は99%である。
 植物由来のセルロースナノファイバーのミクロフィブリル同士の間、及びミクロフィブリル束同士の間には、ヘミセルロース等のアルカリ可溶多糖類、及びリグニン等の酸不溶成分が存在する。ヘミセルロースはマンナン、キシラン等の糖で構成される多糖類であり、セルロースと水素結合して、ミクロフィブリル間を結びつける役割を果たしている。またリグニンは芳香環を有する化合物であり、植物の細胞壁中ではヘミセルロースと共有結合していることが知られている。セルロースナノファイバー中のリグニン等の不純物の残存量が多いと、加工時の熱により変色をきたすことがあるため、押出加工時及び成形加工時のゴム複合体の変色を抑制する観点からも、セルロースナノファイバーの結晶化度は上述の範囲内にすることが望ましい。
 ここでいう結晶化度は、セルロースがセルロースI型結晶(天然セルロース由来)である場合には、サンプルを広角X線回折により測定した際の回折パターン(2θ/deg.が10~30)からSegal法により、以下の式で求められる。
結晶化度(%)=([2θ/deg.=22.5の(200)面に起因する回折強度]-[2θ/deg.=18の非晶質に起因する回折強度])/[2θ/deg.=22.5の(200)面に起因する回折強度]×100
 また結晶化度は、セルロースがセルロースII型結晶(再生セルロース由来)である場合には、広角X線回折において、セルロースII型結晶の(110)面ピークに帰属される2θ=12.6°における絶対ピーク強度h0 とこの面間隔におけるベースラインからのピーク強度h1 とから、下記式によって求められる。
結晶化度(%) =h1 /h0 ×100
 セルロースの結晶形としては、I型、II型、III型、IV型などが知られており、その中でも特にI型及びII型は汎用されており、III型、IV型は実験室スケールでは得られているものの工業スケールでは汎用されていない。本開示のセルロースナノファイバーとしては、構造上の可動性が比較的高く、当該セルロースナノファイバーをゴムに分散させることにより、線膨張係数がより低く、引っ張り、曲げ変形時の強度及び伸びがより優れた成形体が得られることから、セルロースI型結晶又はセルロースII型結晶を含有するセルロースナノファイバーが好ましく、セルロースI型結晶を含有し、かつ結晶化度が55%以上のセルロースナノファイバーがより好ましい。
 また、セルロースナノファイバーの重合度は、好ましくは100以上、より好ましくは150以上、より好ましくは200以上、より好ましくは300以上、より好ましくは400以上、より好ましくは450以上であり、好ましくは3500以下、より好ましく3300以下、より好ましくは3200以下、より好ましくは3100以下、より好ましくは3000以下である。
 加工性と機械的特性発現との観点から、セルロースナノファイバーの重合度を上述の範囲内とすることが望ましい。加工性の観点から、重合度は高すぎない方が好ましく、機械的特性発現の観点からは低すぎないことが望まれる。
 セルロースナノファイバーの重合度は、「第十五改正日本薬局方解説書(廣川書店発行)」の確認試験(3)に記載の銅エチレンジアミン溶液による還元比粘度法に従って測定される平均重合度を意味する。
 一態様において、セルロースナノファイバーの重量平均分子量(Mw)は100000以上であり、より好ましくは200000以上である。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)は6以下であり、好ましくは5.4以下である。重量平均分子量が大きいほどセルロース分子の末端基の数は少ないことを意味する。また、重量平均分子量と数平均分子量との比(Mw/Mn)は分子量分布の幅を表すものであることから、Mw/Mnが小さいほどセルロース分子の末端の数は少ないことを意味する。セルロース分子の末端は熱分解の起点となるため、セルロースナノファイバーのセルロース分子の重量平均分子量が大きいだけでなく、重量平均分子量が大きいと同時に分子量分布の幅が狭い場合に、特に高耐熱性のセルロースナノファイバー、及びセルロースナノファイバーとゴムとを含むゴム組成物が得られる。セルロースナノファイバーの重量平均分子量(Mw)は、セルロース原料の入手容易性の観点から、例えば600000以下、又は500000以下であってよい。重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)はセルロースナノファイバーの製造容易性の観点から、例えば1.5以上、又は2以上であってよい。Mwは、目的に応じたMwを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。Mw/Mnもまた、目的に応じたMw/Mnを有するセルロース原料を選択すること、セルロース原料に対して物理的処理及び/又は化学的処理を適度な範囲で適切に行うこと、等によって上記範囲に制御できる。セルロース原料のMw及びMw/Mnの各々は一態様において上記範囲内であってもよい。Mwの制御、及びMw/Mnの制御の両者において、上記物理的処理としては、マイクロフリュイダイザー、ボールミル、ディスクミル等の乾式粉砕若しくは湿式粉砕、擂潰機、ホモミキサー、高圧ホモジナイザー、超音波装置等による衝撃、剪断、ずり、摩擦等の機械的な力を加える物理的処理を例示でき、上記化学的処理としては、蒸解、漂白、酸処理、再生セルロース化等を例示できる。
 ここでいうセルロースナノファイバーの重量平均分子量及び数平均分子量とは、セルロースナノファイバーを塩化リチウムが添加されたN,N-ジメチルアセトアミドに溶解させたうえで、N,N-ジメチルアセトアミドを溶媒としてゲルパーミエーションクロマトグラフィによって求めた値である。
 セルロースナノファイバーの重合度(すなわち平均重合度)又は分子量を制御する方法としては、加水分解処理等が挙げられる。加水分解処理によって、セルロースナノファイバー内部の非晶質セルロースの解重合が進み、平均重合度が小さくなる。また同時に、加水分解処理により、上述の非晶質セルロースに加え、ヘミセルロースやリグニン等の不純物も取り除かれるため、繊維質内部が多孔質化する。
 加水分解の方法は、特に制限されないが、酸加水分解、アルカリ加水分解、熱水分解、スチームエクスプロージョン、マイクロ波分解等が挙げられる。これらの方法は、単独で使用してもよく、2種以上を併用してもよい。酸加水分解の方法では、例えば、繊維性植物からパルプとして得たα-セルロースをセルロース原料とし、これを水系媒体に分散させた状態で、プロトン酸、カルボン酸、ルイス酸、ヘテロポリ酸等を適量加え、攪拌しながら加温することにより、容易に平均重合度を制御できる。この際の温度、圧力、時間等の反応条件は、セルロース種、セルロース濃度、酸種、酸濃度等により異なるが、目的とする平均重合度が達成されるよう適宜調製されるものである。例えば、2質量%以下の鉱酸水溶液を使用し、100℃以上、加圧下で、10分間以上セルロースナノファイバーを処理するという条件が挙げられる。この条件のとき、酸等の触媒成分がセルロースナノファイバー内部まで浸透し、加水分解が促進され、使用する触媒成分量が少なくなり、その後の精製も容易になる。なお、加水分解時のセルロース原料の分散液は、水の他、本発明の効果を損なわない範囲において有機溶媒を少量含んでいてもよい。
 セルロースナノファイバーが含み得るアルカリ可溶多糖類は、ヘミセルロースのほか、β-セルロース及びγ-セルロースも包含する。アルカリ可溶多糖類とは、植物(例えば木材)を溶媒抽出及び塩素処理して得られるホロセルロースのうちのアルカリ可溶部として得られる成分(すなわちホロセルロースからα-セルロースを除いた成分)として当業者に理解される。アルカリ可溶多糖類は、水酸基を含む多糖であり耐熱性が悪く、熱がかかった場合に分解すること、熱エージング時に黄変を引き起こすこと、セルロースナノファイバーの強度低下の原因になること等の不都合を招来し得ることから、セルロースナノファイバー中のアルカリ可溶多糖類含有量は少ない方が好ましい。
 一態様において、セルロースナノファイバー中のアルカリ可溶多糖類平均含有率は、セルロースナノファイバーの良好な分散性を得る観点から、セルロースナノファイバー100質量%に対して、好ましくは、20質量%以下、又は18質量%以下、又は15質量%以下、又は12質量%以下である。上記含有率は、セルロースナノファイバーの製造容易性の観点から、1質量%以上、又は2質量%以上、又は3質量%以上であってもよい。
 アルカリ可溶多糖類平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載の手法より求めることができ、ホロセルロース含有率(Wise法)からαセルロース含有率を差し引くことで求められる。なおこの方法は当業界においてヘミセルロース量の測定方法として理解されている。1つのサンプルにつき3回アルカリ可溶多糖類含有率を算出し、算出したアルカリ可溶多糖類含有率の数平均をアルカリ可溶多糖類平均含有率とする。
 一態様において、セルロースナノファイバー中の酸不溶成分平均含有率は、セルロースナノファイバーの耐熱性低下及びそれに伴う変色を回避する観点から、セルロースナノファイバー100質量%に対して、好ましくは、10質量%以下、又は5質量%以下、又は3質量%以下である。上記含有率は、セルロースナノファイバーの製造容易性の観点から、0.1質量%以上、又は0.2質量%以上、又は0.3質量%以上であってもよい。
 酸不溶成分平均含有率は、非特許文献(木質科学実験マニュアル、日本木材学会編、92~97頁、2000年)に記載のクラーソン法を用いた酸不溶成分の定量として行う。なおこの方法は当業界においてリグニン量の測定方法として理解されている。硫酸溶液中でサンプルを撹拌してセルロース及びヘミセルロース等を溶解させた後、ガラスファイバーろ紙で濾過し、得られた残渣が酸不溶成分に該当する。この酸不溶成分重量より酸不溶成分含有率を算出し、そして、3サンプルについて算出した酸不溶成分含有率の数平均を酸不溶成分平均含有率とする。
 セルロースナノファイバーの熱分解開始温度(TD)は、車載用途等で望まれる耐熱性及び機械強度を発揮できるという観点から、一態様において270℃以上であり、好ましくは275℃以上、より好ましくは280℃以上、さらに好ましくは285℃以上である。熱分解開始温度は高いほど好ましいが、セルロースナノファイバーの製造容易性の観点から、例えば、320℃以下、又は300℃以下であってもよい。
 本開示で、TDとは、熱重量(TG)分析における、横軸が温度、縦軸が重量残存率%のグラフから求めた値である。セルロースナノファイバーの150℃(水分がほぼ除去された状態)での重量(重量減少量0wt%)を起点としてさらに昇温を続け、1wt%重量減少時の温度(T1%)と2wt%重量減少時の温度(T2%)とを通る直線を得る。この直線と、重量減少量0wt%の起点を通る水平線(ベースライン)とが交わる点の温度をTDと定義する。
 1%重量減少温度(T1%)は、上記TDの手法で昇温を続けた際の、150℃の重量を起点とした1重量%重量減少時の温度である。
 セルロースナノファイバーの250℃重量減少率(T250℃)は、TG分析において、セルロースナノファイバーを250℃、窒素フロー下で2時間保持した時の重量減少率である。
(化学修飾)
 セルロースナノファイバーは、化学修飾されたセルロースナノファイバーであってよい。セルロースナノファイバーは、例えば原料パルプ又はリンターの段階、解繊処理中、又は解繊処理後に予め化学修飾されたものであっても良いし、スラリー調製工程中又はその後、或いは乾燥(造粒)工程中又はその後に化学修飾されてもよい。
 セルロースナノファイバーの修飾化剤としては、セルロースの水酸基と反応する化合物を使用でき、エステル化剤、エーテル化剤、及びシリル化剤が挙げられる。一方,カルボン酸、リン酸エステルといった、極性基を有する修飾化剤は,セルロースナノファイバーにイオン性基(例えばカルボキシ基)が導入されることで耐熱性を低下させる傾向があり、また解繊後の繊維径を小さくする傾向があることから、フィラーとしての補強効果の観点からは、用いないことが好ましい。好ましい態様において、化学修飾は、エステル化剤を用いたアシル化であり、特に好ましくはアセチル化である。エステル化剤としては、酸ハロゲン化物、酸無水物、及びカルボン酸ビニルエステル、カルボン酸が好ましい。
 酸ハロゲン化物は、下記式で表される化合物からなる群より選択された少なくとも1種であってよい。
   R1-C(=O)-X
(式中、R1は炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数3~24のシクロアルキル基、又は炭素数6~24のアリール基を表し、XはCl、Br又はIである。)
 酸ハロゲン化物の具体例としては、塩化アセチル、臭化アセチル、ヨウ化アセチル、塩化プロピオニル、臭化プロピオニル、ヨウ化プロピオニル、塩化ブチリル、臭化ブチリル、ヨウ化ブチリル、塩化ベンゾイル、臭化ベンゾイル、ヨウ化ベンゾイル等が挙げられるが、これらに限定されない。中でも、酸塩化物は反応性と取り扱い性の点から好適に採用できる。尚、酸ハロゲン化物の反応においては、触媒として働くと同時に副生物である酸性物質を中和する目的で、アルカリ性化合物を1種又は2種以上添加してもよい。アルカリ性化合物としては、具体的には:トリエチルアミン、トリメチルアミン等の3級アミン化合物;及びピリジン、ジメチルアミノピリジン等の含窒素芳香族化合物;が挙げられるが、これに限定されない。
 酸無水物としては、任意の適切な酸無水物類を用いることができる。例えば、
 酢酸、プロピオン酸、(イソ)酪酸、吉草酸等の飽和脂肪族モノカルボン酸の無水物;(メタ)アクリル酸、オレイン酸等の不飽和脂肪族モノカルボン酸の無水物;
 シクロヘキサンカルボン酸、テトラヒドロ安息香酸等の脂環族モノカルボン酸の無水物;
 安息香酸、4-メチル安息香酸等の芳香族モノカルボン酸の無水物;
 二塩基カルボン酸無水物として、例えば、コハク酸、アジピン酸等の飽和脂肪族ジカルボン酸の無水物;無水マレイン酸、無水イタコン酸等の不飽和脂肪族ジカルボン酸無水物;無水1-シクロヘキセン-1,2-ジカルボン酸、無水ヘキサヒドロフタル酸、無水メチルテトラヒドロフタル酸等の脂環族ジカルボン酸無水物;及び、無水フタル酸、無水ナフタル酸等の芳香族ジカルボン酸無水物等;
 3塩基以上の多塩基カルボン酸無水物類として、例えば、無水トリメリット酸、無水ピロメリット酸等の(無水)ポリカルボン酸等が挙げられる。
 尚、酸無水物の反応においては、触媒として、硫酸、塩酸、燐酸等の酸性化合物、又はルイス酸、(例えば、MYnで表されるルイス酸化合物であって、MはB、As,Ge等の半金属元素、又はAl、Bi、In等の卑金属元素、又はTi、Zn、Cu等の遷移金属元素、又はランタノイド元素を表し、nはMの原子価に相当する整数であり、2又は3を表し、Yはハロゲン原子、OAc、OCOCF3、ClO4、SbF6、PF6又はOSO2CF3(OTf)を表す。)、又はトリエチルアミン、ピリジン等のアルカリ性化合物を1種又は2種以上添加してもよい。
 カルボン酸ビニルエステルとしては、下記式:
   R-COO-CH=CH2
{式中、Rは、炭素数1~24のアルキル基、炭素数2~24のアルケニル基、炭素数3~16のシクロアルキル基、又は炭素数6~24のアリール基のいずれかである。}で表されるカルボン酸ビニルエステルが好ましい。カルボン酸ビニルエステルは、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、カプロン酸ビニル、シクロヘキサンカルボン酸ビニル、カプリル酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ミリスチン酸ビニル、パルミチン酸ビニル、ステアリン酸ビニル、ピバリン酸ビニル、オクチル酸ビニルアジピン酸ジビニル、メタクリル酸ビニル、クロトン酸ビニル、オクチル酸ビニル、安息香酸ビニル、及び桂皮酸ビニルからなる群より選択された少なくとも1種であることがより好ましい。カルボン酸ビニルエステルによるエステル化反応のとき、触媒として、アルカリ金属水酸化物、アルカリ土類金属水酸化物、アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩、1~3級アミン、4級アンモニウム塩、イミダゾール及びその誘導体、ピリジン及びその誘導体、並びにアルコキシドからなる群より選ばれる1種又は2種以上を添加しても良い。
 アルカリ金属水酸化物及びアルカリ土類金属水酸化物としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化カルシウム、水酸化バリウム等が挙げられる。 アルカリ金属炭酸塩、アルカリ土類金属炭酸塩、アルカリ金属炭酸水素塩としては、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素セシウム等が挙げられる。
 1~3級アミンとは、1級アミン、2級アミン、及び3級アミンのことであり、具体例としては、エチレンジアミン、ジエチルアミン、プロリン、N,N,N’,N’-テトラメチルエチレンジアミン、N,N,N’,N’-テトラメチル-1,3-プロパンジアミン、N,N,N’,N’-テトラメチル-1,6-ヘキサンジアミン、トリス(3-ジメチルアミノプロピル)アミン、N,N-ジメチルシクロヘキシルアミン、トリエチルアミン等が挙げられる。
 イミダゾール及びその誘導体としては、1-メチルイミダゾール、3-アミノプロピルイミダゾール、カルボニルジイミダゾール等が挙げられる。
 ピリジン及びその誘導体としては、N,N-ジメチル-4-アミノピリジン、ピコリン等が挙げられる。
 アルコキシドとしては、ナトリウムメトキシド、ナトリウムエトキシド、カリウム-t-ブトキシド等が挙げられる。
 カルボン酸としては、下記式で表される化合物からなる群より選択される少なくとも1種が挙げられる。
   R-COOH
(式中、Rは、炭素数1~16のアルキル基、炭素数2~16のアルケニル基、炭素数3~16のシクロアルキル基、又は炭素数6~16のアリール基を表す。)
 カルボン酸の具体例としては、酢酸、プロピオン酸、酪酸、カプロン酸、シクロヘキサンカルボン酸、カプリル酸、カプリン酸、ラウリン酸、ミリスチン酸、パルミチン酸、ステアリン酸、ピバリン酸、メタクリル酸、クロトン酸、オクチル酸、安息香酸、及び桂皮酸からなる群より選択される少なくとも1種が挙げられる。
 これらカルボン酸の中でも、酢酸、プロピオン酸、及び酪酸からなる群から選択される少なくとも一種、特に酢酸が、反応効率の観点から好ましい。
 尚、カルボン酸の反応においては、触媒として、硫酸、塩酸、燐酸等の酸性化合物、又はルイス酸、(例えば、MYnで表されるルイス酸化合物であって、MはB、As,Ge等の半金属元素、又はAl、Bi、In等の卑金属元素、又はTi、Zn、Cu等の遷移金属元素、又はランタノイド元素を表し、nはMの原子価に相当する整数であり、2又は3を表し、Yはハロゲン原子、OAc、OCOCF3、ClO4、SbF6、PF6又はOSO2CF3(OTf)を表す。)、又はトリエチルアミン、ピリジン等のアルカリ性化合物を1種又は2種以上添加してもよい。
 これらエステル化反応剤の中でも、特に、無水酢酸、無水プロピオン酸、無水酪酸、酢酸ビニル、プロピオン酸ビニル、酪酸ビニル、及び酢酸からなる群から選択された少なくとも一種、中でも無水酢酸及び酢酸ビニルが、反応効率の観点から好ましい。
 セルロースナノファイバーが化学修飾(例えばアシル化等の疎水化によって)されている場合、セルロースナノファイバーのゴム中での分散性は良好である傾向があるが、本開示のセルロースナノファイバーは、非置換又は低置換度であってもゴム中で良好な分散性を示すことができる。
 一態様において、セルロースナノファイバーの置換度は0(すなわち非置換)である。
 又は、一態様において、熱分解開始温度が高い化学修飾セルロースナノファイバーを得る観点から、セルロースナノファイバーのアシル置換度(DS)は、0超、又は0.1以上、又は0.2以上、又は0.25以上、又は0.3以上、又は0.5以上であってよい。また、エステル化セルロースナノファイバー中に未修飾のセルロース骨格が残存していることにより、セルロース由来の高い引張強度及び寸法安定性と化学修飾由来の高い熱分解開始温度を兼ね備えたエステル化セルロースナノファイバーを得ることができる点で、セルロースナノファイバーのアシル置換度(DS)は、1.2以下、又は1.0以下、又は0.8以下、又は0.7以下、又は0.6以下、又は0.5以下であってよい。
 化学修飾セルロースナノファイバーの修飾基がアシル基の場合、アシル置換度(DS)は、エステル化セルロースナノファイバーの減衰全反射型(ATR)赤外吸収スペクトルから、アシル基由来のピークとセルロース骨格由来のピークとのピーク強度比に基づいて算出することができる。アシル基に基づくC=Oの吸収バンドのピークは1730cm-1に出現し、セルロース骨格鎖に基づくC-Oの吸収バンドのピークは1030cm-1に出現する。エステル化セルロースナノファイバーのDSは、後述するエステル化セルロースナノファイバーの固体NMR測定から得られるDSと、セルロース骨格鎖C-Oの吸収バンドのピーク強度に対するアシル基に基づくC=Oの吸収バンドのピーク強度の比率で定義される修飾化率(IRインデックス1030)との相関グラフを作製し、相関グラフから算出された検量線
置換度DS = 4.13 × IRインデックス(1030)
を使用することで求めることができる。
 ゴム組成物中のセルロースナノファイバーの含有率は、セルロースナノファイバーによる良好な補強効果を得る観点から、好ましくは0.5質量%以上、又は1質量%以上、又は3質量%以上であり、良好なゴム弾性を有するゴム成形体を得る観点から、好ましくは、80質量%以下、又は60質量%以下、又は33質量%以下、又は30質量%以下、又は20質量%以下、又は10質量%以下である。
<第1のゴム成分(液状ゴム)>
 本開示で、液状ゴムとは、23℃において流動性を有しており、且つ架橋(より具体的には加硫)及び/又は鎖延長によってゴム弾性体を形成する物質を意味する。すなわち液状ゴムは一態様において未硬化物である。また流動性を有しているとは、一態様において、シクロヘキサンに溶解させた液状ゴムを23℃にて胴径21mm×全長50mmのバイアル瓶に入れた後乾燥させることによって、液状ゴムを当該バイアル瓶内に高さ1mmまで充填して密閉し、当該バイアル瓶を上下逆にした状態で24時間静置したときに高さ方向に0.1mm以上の物質の移動が確認できることを意味する。液状ゴムは、一般的なゴムの単量体組成を有してよく、取り扱いの容易性、及び良好なセルロースナノファイバーの分散性が得られる観点から、比較的低分子量であることが好ましい。液状ゴムは、一態様において、数平均分子量(Mn)が80,000以下であることによって液体形状を呈する。なお、本開示で、ゴム成分の分子量及び分子量分布は、ポリスチレン系ゲルを充填剤としたカラム3本を連結して用いたゲルパーミエーションクロマトグラフィを使用してクロマトグラムを測定し、標準ポリスチレンを使用して検量線により計算して得られる値である。なお溶媒としてはテトラヒドロフランを使用する。
 ゴム組成物を硬化させてゴム硬化物とする場合、ゴム硬化物の力学物性を向上させる観点から、液状ゴムは硬化時に加硫されることが望ましい。
 液状ゴムの数平均分子量(Mn)は、貯蔵弾性率、及びゴム複合体中のマトリクス成分への分散性等に優れるゴム組成物を得る観点から、好ましくは、1,000以上、又は1,500以上、又は2,000以上であり、セルロースナノファイバーを液状ゴム中に良好に分散させるのに適した高い流動性を有する点、及び、液状ゴムが硬化後に硬くなり過ぎず良好なゴム弾性を有する点で、好ましくは、80,000以下、又は50,000以下、又は40,000以下、又は30,000以下、又は10,000以下である。
 液状ゴムの重量平均分子量(Mw)は、貯蔵弾性率、及びゴム複合体中のマトリクス成分への分散性等に優れるゴム組成物を得る観点から、好ましくは、1,000以上、又は2,000以上、又は4,000以上であり、セルロースナノファイバーを液状ゴム中に良好に分散させるのに適した高い流動性を有する点、及び、液状ゴムが硬化後に硬くなり過ぎず良好なゴム弾性を有する点で、好ましくは、240,000以下、又は150,000以下、又は30,000以下である。
 液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)は、分子量がある程度ばらついていることによってゴム成形体の複数の特性の高度な両立(一態様において、ゴム成形体の貯蔵弾性率とゴム弾性との高度の両立)が可能である点で、好ましくは、1.5以上、又は1.8以上、又は2.0以上であり、分子量のばらつきが過度に大きくなくゴム成形体の所望の物性が安定して得られる点で、好ましくは、10以下、又は8以下、又は5以下である。
 液状ゴムは、共役ジエン系重合体若しくは非共役ジエン系重合体又はこれらの水素添加物であってよい。上記の重合体又はその水素添加物はオリゴマーであってもよい。一態様において、液状ゴムは、両末端に反応性基(例えば、水酸基、カルボキシ基、イソシアナト基、チオ基、アミノ基及びハロ基からなる群から選択される1種以上)を有してよく、したがって2官能性であってよい。これら反応性基は液状ゴムの架橋及び/又は鎖延長に寄与する。
[共役ジエン系重合体]
 共役ジエン系重合体は、単独重合体であってよく、又は、2種以上の共役ジエン単量体の共重合体若しくは共役ジエン単量体と他の単量体との共重合体であってよい。共重合体はランダム、ブロックいずれでもよい。
 共役ジエン単量体としては、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、1,3-ヘプタジエン、及び1,3-ヘキサジエンが挙げられ、これらを1種単独又は2種以上の組合せで用いてよい。
 一態様において、共役ジエン系重合体は、上記の共役ジエン単量体と芳香族ビニル単量体との共重合体である。
 芳香族ビニル単量体としては、共役ジエン単量体と共重合可能な単量体であれば特に限定されず、例えば、スチレン、m又はp-メチルスチレン、α-メチルスチレン、エチルスチレン、p-tert-ブチルスチレン、ビニルエチルベンゼン、ビニルキシレン、ビニルナフタレン、ジフェニルエチレン、及びジビニルベンゼンが挙げられ、これらを1種単独又は2種以上の組合せで用いてよい。ゴム複合体の成形加工性、及び成形体の耐衝撃性の観点からは、スチレンが好ましい。
 ランダム共重合体としては、ブタジエン-イソプレンランダム共重合体、ブタジエン-スチレンランダム共重合体、イソプレン-スチレンランダム共重合体、及びブタジエン-イソプレン-スチレンランダム共重合体が挙げられる。共重合体鎖中の各単量体の組成分布としては、統計的ランダムな組成に近い完全ランダム共重合体、及び組成分布に勾配があるテーパー(勾配)ランダム共重合体が挙げられる。共役ジエン系重合体の結合様式、すなわち1,4-結合、1,2-結合等の組成は、分子間で均一又は異なっていてよい。
 ブロック共重合体は、2つ以上のブロックからなる共重合体であってよい。例えば、芳香族ビニル単量体のブロックAと、共役ジエン単量体のブロック及び/又は芳香族ビニル単量体と共役ジエン単量体との共重合体のブロックであるブロックBとが、A-B、A-B-A、A-B-A-B等の構造を構成しているブロック共重合体であってよい。なお各ブロックの境界は必ずしも明瞭に区別される必要はなく、例えば、ブロックBが芳香族ビニル単量体と共役ジエン単量体との共重合体である場合、ブロックB中の芳香族ビニル単量体は均一又はテーパー状に分布してよい。また、ブロックBに、芳香族ビニル単量体が均一に分布している部分及び/又はテーパー状に分布している部分がそれぞれ複数存在してもよい。さらに、ブロックBに、芳香族ビニル単量体含有量が異なるセグメントが複数存在してもよい。共重合体中にブロックA、ブロックBがそれぞれ複数存在する場合、それらの分子量及び組成は同一でも異なってもよい。
 ブロック共重合体は、結合形式、分子量、芳香族ビニル化合物種、共役ジエン化合物種、1,2-ビニル含量又は1,2-ビニル含量と3,4-ビニル含量との合計量、芳香族ビニル化合物成分含有量、水素添加率等のうち1つ以上が互いに異なる2種以上の混合物でもよい。
 共役ジエン系重合体における共役ジエン結合単位中のビニル結合量(例えばブタジエンの1,2-又は3,4-結合)は、好ましくは、10モル%以上75モル%以下、又は13モル%以上65モル%以下である。
 共役ジエン結合単位中のビニル結合量(例えばブタジエンの1,2-結合量)は、13C-NMR法(定量モード)によって求めることができる。すなわち、13C-NMRにおいて下記に現れるピーク面積を積分すれば、各構造単位のカーボン量に比例する値を得ることができ、結果として各構造単位の質量%に換算することができる。
スチレン 145~147ppm
ビニル 110~116ppm
ジエン(シス) 24~28ppm
ジエン(トランス) 29~33ppm
 共役ジエン単量体と芳香族ビニル単量体との共重合体において、共役ジエン単量体と結合した芳香族ビニル単量体の量(本開示で、芳香族ビニル結合量ともいう。)は、共役ジエン系重合体の総質量に対して、好ましくは、5.0質量%以上70質量%以下、又は10質量%以上50質量%以下であってよい。芳香族ビニル結合量は、フェニル基の紫外線吸光度によって求めることができ、またこれに基づき共役ジエン結合量も求めることができる。
 共役ジエン系重合体の水素添加物としては、上記で例示した共役ジエン系重合体の水素添加物が挙げられ、例えば、ブタジエン単独重合体、イソプレン単独重合体、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体の水素添加物であってよい。
[非共役ジエン系重合体]
 非共役ジエン系重合体は、単独重合体であってよく、又は、2種以上の非共役ジエン単量体の共重合体若しくは非共役ジエン単量体と他の単量体との共重合体であってよい。共重合体はランダム、ブロックいずれでもよい。非共役ジエン系重合体としては、
 エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴム、エチレン-ブテン-ジエンゴム、エチレン-αオレフィン共重合体等のオレフィン系重合体、
 ブチルゴム、臭素化ブチルゴム、アクリルゴム、フッ素ゴム、シリコーンゴム、塩素化ポリエチレンゴム、エピクロルヒドリンゴム、α,β-不飽和ニトリル-アクリル酸エステル-共役ジエン共重合ゴム、ウレタンゴム、多硫化ゴム等が挙げられる。
 エチレン-α-オレフィン共重合体において、エチレン単位と共重合できるモノマーとしては:プロピレン、ブテン-1、ペンテン-1、4-メチルペンテン-1、ヘキセン-1、ヘプテン-1、オクテン-1、ノネン-1、デセン-1、ウンデセン-1、ドデセン-1、トリデセン-1、テトラデセン-1、ペンタデセン-1、ヘキサデセン-1、ヘプタデセン-1、オクタデセン-1、ノナデセン-1、エイコセン-1、イソブチレンなどの脂肪族置換ビニルモノマー;スチレン、置換スチレンなどの芳香族系ビニルモノマー;酢酸ビニル、アクリル酸エステル、メタアクリル酸エステル、グリシジルアクリル酸エステル、グリシジルメタアクリル酸エステル、ヒドロキシエチルメタアクリル酸エステルなどのエステル系ビニルモノマー;アクリルアミド、アリルアミン、ビニル-p-アミノベンゼン、アクリロニトリルなどの窒素含有ビニルモノマー;ブタジエン、シクロペンタジエン、1,4-ヘキサジエン、イソプレンなどのジエン、などを挙げることができる。
 好ましくはエチレンと炭素数3~20のα-オレフィン1種以上とのコポリマーであり、更に好ましくはエチレンと炭素数3~16のα-オレフィン1種以上とのコポリマーであり、最も好ましくはエチレンと炭素数3~12のα-オレフィン1種以上とのコポリマーである。また、エチレン-α-オレフィン共重合体の分子量は、耐衝撃性発現の観点から、10,000以上であることが好ましく、より好ましくは10,000~100,000であり、より好ましくは10,000~80,000であり、更に好ましくは20,000~60,000である。また、分子量分布(重量平均分子量/数平均分子量:Mw/Mn)は、流動性と耐衝撃性との両立の観点から、3以下が好ましく、さらには1.8~2.7がより好ましい。
 また、エチレン-α-オレフィン共重合体の好ましいエチレン単位の含有率は、加工時の取り扱い性の観点から、エチレン-α-オレフィン共重合体全量に対し30~95質量%である。
 これら好ましいエチレン-α-オレフィン共重合体は、例えば、特公平4-12283号公報、特開昭60-35006号公報、特開昭60-35007号公報、特開昭60-35008号公報、特開平5-155930号公報、特開平3-163088号公報、米国特許第5272236号明細書等に記載されている製造方法で製造可能である。
 一態様において、液状ゴムは、ジエン系ゴム(一態様において上記の共役ジエン系重合体)、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む。
 液状ゴムの80℃での粘度が所定以下であることは、ゴム組成物をゴム複合体中のマトリクスゴム成分に均一に分散させる際に有利である。液状ゴムの80℃での粘度は、ゴム組成物をゴム複合体中のマトリクスゴム成分へ良好に分散させる点、及びセルロースナノファイバーを液状ゴムに良好に分散させる観点から、好ましくは、1,000,000mPa・s以下、又は500,000mPa・s以下、又は250,000mPa・s以下、又は100,000mPa・s以下であり、物性(特に貯蔵弾性率)に優れるゴム複合体を得る観点から、好ましくは、50mPa・s以上、又は100mPa・s以上、又は300mPa・s以上である。
 液状ゴムの25℃での粘度は、セルロースナノファイバーを液状ゴムに良好に分散させる観点から、好ましくは、1,000,000mPa・s以下、又は500,000mPa・s以下、又は200,000mPa・s以下であり、物性(特に貯蔵弾性率)に優れるゴム複合体を得る観点から、好ましくは、100mPa・s以上、又は300mPa・s以上、又は500mPa・s以上である。
 液状ゴムの0℃での粘度が所定以下であることは、セルロースナノファイバーを液状ゴムに分散させる際に有利である。液状ゴムの0℃での粘度は、セルロースナノファイバーを液状ゴムに良好に分散させる点から、好ましくは、2,000,000mPa・s以下、又は1,000,000mPa・s以下、又は400,000mPa・s以下であり、物性(特に貯蔵弾性率)に優れるゴム複合体を得る観点から、好ましくは、200mPa・s以上、又は600mPa・s以上、又は1,000mPa・s以上である。
 液状ゴムの粘度の温度依存性が小さいことは、広範な混合温度範囲で、セルロースナノファイバーを液状ゴム中に良好に分散させることができる点で好ましい。この観点から、液状ゴムの80℃、25℃及び0℃の全ての粘度が上記範囲内であることが特に好ましい。
 液状ゴムの粘度は、B型粘度計を用いて、回転数10rpmで測定される値である。
 ゴム組成物中、液状ゴムの含有率は、液状ゴムによる上記利点を良好に得る観点から、好ましくは、0.1質量%以上、又は0.5質量%以上、又は1質量%以上、又は5質量%以上、又は10質量%以上であり、他の成分(セルロースナノファイバー等)を好適量含有させてこれら成分による利点を良好に得る観点から、好ましくは、99質量%以下、又は95質量%以下、又は90質量%以下、又は80質量%以下、又は70質量%以下、又は60質量%以下、又は50質量%以下である。
 ゴム組成物において、セルロースナノファイバーと液状ゴムとの合計100質量部に対するセルロースナノファイバーの質量比率は、一態様において、1質量部以上、又は5質量部以上、又は10質量部以上、又は20質量部以上、又は30質量部以上、又は33質量部以上、又は40質量部以上、又は50質量部以上であり、一態様において、99質量部以下、又は95質量部以下、又は90質量部以下、又は80質量部以下、又は70質量部以下、又は60質量部以下、又は50質量部以下である。
<界面活性剤>
 一態様において、ゴム組成物は界面活性剤を含む。一態様において、界面活性剤はノニオン性界面活性剤、又はカチオン性界面活性剤、又はこれらの組合せである。界面活性剤としては、耐熱性の観点から、ノニオン性界面活性剤が好ましい。ノニオン性界面活性剤及びカチオン性界面活性剤は、セルロースナノファイバーの集合体の空隙に入り込んで当該集合体を多孔質とすることができる。例えば、湿潤状態の当該集合体にノニオン性界面活性剤及び/又はカチオン性界面活性剤を浸入させた後乾燥して乾燥体を形成すると、当該ノニオン性界面活性剤及びカチオン性界面活性剤を使用せずに集合体を乾燥させて得た乾燥体と比べて乾燥時収縮が低減され得るため、乾燥体を液状ゴムと混合したときにセルロースナノファイバーが良好に分散する。
 ノニオン性界面活性剤は、好ましくは、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である。
 一態様において、ノニオン性界面活性剤は、疎水性部分として炭素数6~30の脂肪族基を有する。本実施形態のセルロースナノファイバーは、典型的には緩やかな集合体を形成しているところ、ノニオン性界面活性剤は、疎水性部分の炭素鎖の寄与によってゴム成分との親和性が良好であるとともに、当該疎水性部分の炭素鎖が長すぎないことによってセルロースナノファイバー集合体の空隙に容易に入り込んで当該集合体を多孔質とすることができる。例えば、湿潤状態の当該集合体にノニオン性界面活性剤を浸入させた後乾燥して乾燥体を形成すると、当該ノニオン性界面活性剤を使用せずに集合体を乾燥させて得た乾燥体と比べて乾燥時収縮が低減され得るため、乾燥体をゴム成分と混合したときにセルロースナノファイバーが良好に分散する。
 上記脂肪族基は、鎖状若しくは脂環式又はこれらの組合せであってよい。脂肪族基の炭素数は、セルロースナノファイバーのゴム成分中での良好な分散性を得る観点から、一態様において、6以上、又は8以上、又は10以上であり、セルロースナノファイバー集合体の空隙への浸入性の観点から、一態様において、30以下、又は25以下、又は20以下である。
 ノニオン性界面活性剤は、好ましくは、親水性部分として、オキシエチレン、グリセロール及びソルビタンからなる群から選択される1つ以上の構造(具体的にはこれらの1つ以上を繰り返し単位とする繰り返し構造)を有する。これら構造は、高い親水性を示すととともに、種々の疎水性部分との組合せで種々のノニオン性界面活性剤を容易に得ることができる点で好ましい。上記親水性部分を有するノニオン性界面活性剤において、疎水性部分の炭素数nと、上記親水性部分の繰り返し単位数mとは、セルロースナノファイバーのゴム成分中への良好な分散性を得る観点から、好ましくは、下記式:n>m の関係を満たす。上記親水性部分の繰り返し数mは、セルロースナノファイバー集合体の空隙へのノニオン性界面活性剤の良好な浸入性の観点から、好ましくは、1以上、又は2以上、又は3以上、又は5以上であり、セルロースナノファイバーのゴム成分中への良好な分散性を得る観点から、好ましくは、30以下、又は25以下、又は20以下、又は18以下である。
 ノニオン性界面活性剤は、好ましくは、
 下記一般式(1):
R-(OCH2CH2m-OH   (1)
[式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び
 下記一般式(2):
1OCH2-(CHOH)4-CH2OR2   (2)
[式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
からなる群から選択される1種以上である。
 一般式(1)において、Rは前述の疎水性部分に相当し、(OCH2CH2)(すなわちオキシエチレン単位)は前述の親水性部分に相当する。Rの炭素数及び(OCH2CH2)の繰り返し数mはそれぞれ、疎水性部分の炭素数n及び親水性部分の繰り返し数mについて前述したのと同様の範囲であることが好ましい。
 一般式(2)において、R1、R2、R3及びR4の各々について、炭素数1~30の脂肪族基の炭素数は、好ましくは、6以上、又は8以上、又は10以上であり、好ましくは、24以下、又は20以下、又は18以下である。
 またyは、1以上であり、好ましくは、2以上、又は4以上であり、好ましくは、30以下、又は25以下、又は20以下である。
 カチオン性界面活性剤としては、例えば、塩化ベンザルコニウム、塩化アルキルトリメチルアンモニウム、塩化ステアリルジメチルアンモニウム、塩化ステアリルトリメチルアンモニウム、エチル硫酸ラノリン脂肪酸アミノプロピルエチルジメチルアンモニウム、塩化ステアリルジメチルベンジルアンモニウム、ステアリルアミンアセテート、ココナットアミンアセテート等が挙げられる。
 ゴム組成物中の界面活性剤の量、又はノニオン性界面活性剤の量、又はカチオン性界面活性剤の量、又は、ノニオン性界面活性剤とカチオン性界面活性剤との合計量は、セルロースナノファイバー100質量部に対して、好ましくは、10質量部以上、又は15質量部以上、又は20質量部以上であり、好ましくは、200質量部以下、又は150質量部以下、又は100質量部以下、又は90質量部以下、又は80質量部以下、又は70質量部以下、又は60質量部以下、又は50質量部以下、又は45質量部以下、又は40質量部以下である。
<追加の成分>
 ゴム組成物は、前述のセルロースナノファイバー、液状ゴム及び界面活性剤に加えて、追加の成分を更に含んでもよい。追加の成分としては、追加のポリマー、分散剤、有機又は無機のフィラー、熱安定剤、酸化防止剤、帯電防止剤、着色剤等が挙げられる。追加のポリマーとしては、ゴム複合体のマトリクス成分として後述で例示するゴム成分、熱可塑性エラストマー等を例示できる。任意の追加の成分のゴム組成物中の含有割合は、本発明の所望の効果が損なわれない範囲で適宜選択されるが、例えば0.01~50質量%、又は0.1~30質量%であってよい。
<ゴム組成物の製造>
 ゴム組成物の製造方法は特に限定されない。ゴム組成物を構成する成分を、自転・公転式ミキサー、プラネタリミキサー、ホモジナイザー、ホモジナイザー、プロペラ式攪拌装置、ロータリー攪拌装置、電磁攪拌装置、オープンロール、バンバリーミキサー、単軸押出機、二軸押出機等の撹拌手段で混合して、ゴム組成物を得てよい。また、剪断を効率的に行うために加熱下で撹拌してもよい。高い剪断力と圧力とをかけて分散を促進できる点で、ホモジナイザーによる混合方法が好ましい。混合時の成分の添加順は限定されないが、例えば、
(1)セルロースナノファイバーと、界面活性剤と、液状ゴムと、任意にその他の成分とを同時に添加して混合してゴム組成物を得る方法、
(2)液状ゴム以外の成分を予め混合して予備混合物を得た後、当該予備混合物と液状ゴムとを混合してゴム組成物を得る方法、
等が挙げられる。
 また上記(2)の方法としては、例えば、
 セルロースナノファイバーと界面活性剤とを混合することでセルロースナノファイバー集合体の空隙に界面活性剤を浸入させ、
 次いで、液状ゴムを添加して混合することで当該空隙に液状ゴムを浸入させる、
方法が挙げられる。
 上記(2)の方法においては、予備混合物を得た後、液状ゴムとの混合前に予備混合物を乾燥させてもよい。また、ゴム組成物を得た後これを乾燥させてもよく、乾燥条件を制御することで後述の粉体を形成してもよい。
≪粉体≫
 本開示の一態様は、本開示のゴム組成物で構成されている粉体を提供する。当該粉体は、以下の特性のうち1つ以上を有してよい。これにより、粉体は優れた加工特性を有し、セルロースナノファイバーがゴム成分中で優れた分散状態を示し得る。
<セルロースナノファイバー表面の状態>
 一態様に係る粉体においては、第2のゴム成分、又は第3のゴム成分と混練した際に、セルロースナノファイバーがこれらゴム成分中で凝集することなく分散することを容易にするという目的から、少なくともセルロースナノファイバーの表面の一部が第1のゴム成分により被覆されていることが好ましい。少なくともセルロースナノファイバーの表面の一部が第1のゴム成分により被覆されている状態は、一態様において、第1のゴム成分とセルロースナノファイバーとが直接接触しており、その接触部の平均長さがセルロースナノファイバーの平均繊維径の2倍以上の長さにわたる状態である。粉体中のセルロースナノファイバーの表面が第1のゴム成分による被覆されている状態は、電子顕微鏡(一態様において走査型電子顕微鏡)又は原子間力顕微鏡で観察されるが、電子顕微鏡及び原子間力顕微鏡のいずれでも確認可能である場合には電子顕微鏡で確認される。上記平均繊維径は、粉体を測定サンプルとし、本開示の方法により測定される値である。上記接触部の平均長さは、粉体を測定サンプルとし、電子顕微鏡(一態様において走査型電子顕微鏡)又は原子間力顕微鏡で計測する。具体的には、少なくとも30本のセルロースナノファイバーが観測されるように倍率が調整された観察視野にて、無作為に選んだ30本のセルロースナノファイバーの各々について第1のゴム成分との接触部の長さを各々計測して数平均を算出し、更に30本で数平均して接触部の平均長さとする。
<ゆるめ嵩密度>
 一態様において、粉体のゆるめ嵩密度は、粉体の流動性が良好で混練機へのフィード性に優れる点、界面活性剤のゴムへの移行抑制の観点から、好ましくは、0.01g/cm3以上、又は0.05g/cm3以上、又は0.10g/cm3以上、又は0.15g/cm3以上、又は0.20g/cm3以上であり、粉体がゴム中で容易に崩壊してセルロースナノファイバーがゴム中に良好に分散できる点、及び、粉体が重質過ぎず粉体とゴムとの混合不良を回避できる点で、好ましくは、0.50g/cm3以下、又は0.40g/cm3以下、又は0.30g/cm3以下、又は0.25g/cm3以下、又は0.20g/cm3以下、である。
<固め嵩密度>
 粉体の固め嵩密度は、ゆるめ嵩蜜度及び圧縮度を好適範囲に制御するのに有用である範囲に制御され、一態様において、好ましくは、0.01g/cm3以上、又は0.05g/cm3以上、又は0.10g/cm3以上、又は0.15g/cm3以上、又は0.20g/cm3以上であり、好ましくは、1.00g/cm3以下、又は0.80g/cm3以下、又は0.70g/cm3以下、又は0.60g/cm3以下、又は0.50g/cm3以下、又は0.40g/cm3以下、又は0.30g/cm3以下である。
 上記のゆるめ嵩密度及び固め嵩密度は、ホソカワミクロン株式会社製パウダーテスター(型番:PT-X)を用い、本開示の[実施例]の項で説明する手順で測定される値である。
 粉体の製造方法としては、セルロースナノファイバーと液体媒体とを含むスラリーを調製するスラリー調製工程と、該スラリーを乾燥させて粉体を形成する乾燥工程とを含む方法を例示できる。
(スラリー調製工程)
 本工程ではスラリーを調製する。液体媒体としては、水混和性有機溶媒、例えば:沸点が50℃~170℃のアルコール(例えばメタノール、エタノール、n-プロパノール、i-プロパノール、n-ブタノール、i-ブタノール、s-ブタノール、t-ブタノール等);エーテル(例えばプロピレングリコールモノメチルエーテル、1,2-ジメトキシエタン、ジイソプロピルエーテル、テトラヒドロフラン、1,4-ジオキサン等);カルボン酸(例えばギ酸、酢酸、乳酸等);エステル(例えば酢酸エチル、酢酸ビニル等);ケトン(例えばアセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン等);含窒素溶媒(ジメチルホルムアミド、ジメチルアセトアミド、アセトニトリル等)、等を使用できる。典型的な態様においては、スラリー中の液体媒体は実質的に水のみである。スラリーは、セルロースナノファイバーと液体媒体で構成してもよいし、界面活性剤及び/又は第1のゴム成分、更に任意の追加成分を含んでもよい。
 スラリー中のセルロースナノファイバーの濃度は、後続の乾燥工程におけるプロセス効率の観点から、好ましくは、5質量%以上、又は10質量%以上、又は15質量%以上、又は20質量%以上、又は25質量%以上であり、スラリーの粘度の過度な増大、及び凝集による固化を回避して良好な取扱い性を保持する観点から、好ましくは、60質量%以下、又は55質量%以下、又は50質量%以下、又は45質量%以下である。例えば、セルロースナノファイバーの製造は希薄な分散液中で行われることが多いが、このような希薄分散液を濃縮することで、スラリー中のセルロースナノファイバー濃度を前記好ましい範囲に調整してもよい。濃縮には、吸引ろ過、加圧ろ過、遠心脱液、加熱等の方法を用いることができる。
(乾燥工程)
 本工程では、上記スラリーを、制御された乾燥条件で乾燥させることにより、粉体を形成する。セルロースナノファイバー以外の成分の添加タイミングは、スラリーの乾燥前、乾燥中、及び/又は乾燥後であってよい。乾燥には、スプレードライヤー、押出機等の乾燥装置を使用できる。乾燥装置は市販品であってもよく、例えば、マイクロミストスプレードライヤー(藤崎電機製)、スプレードライヤー(大川原化工機製)、二軸押出機(日本製鋼所製)等を例示できる。乾燥条件の中でも、乾燥速度、乾燥温度、及び/又は圧力(減圧度)、特に乾燥速度を適切に制御することは、粉体の所望の形状を実現するのに有利であり得る。
 スラリー100質量部当たりの液体媒体の1分当たりの脱離量(質量部)である乾燥速度は、スラリーを急速乾燥させることで望ましい粒子サイズの粉体を形成する観点から、例えば、10%/分以上、又は50%/分以上、又は100%/分以上であってよく、セルロースナノファイバーの過度な微粉化を回避することで当該セルロースナノファイバーの凝集を抑制するとともに良好な取扱い性を得る観点から、例えば、10000%/分以下、又は1000%/分以下、又は500%/分以下であってよい。乾燥速度は、下記式:
乾燥速度(%/分)=(乾燥開始時のスラリー水分率(質量%)-乾燥終点の粉体の水分率(質量%))/乾燥開始から乾燥終点までに要した時間(分)
に従って求められる値(すなわち、乾燥工程を通じての平均値)である。
 ここで、乾燥開始とは、乾燥対象となるスラリー又はケークを装置に供給して目的の乾燥温度、減圧度、ずり速度で乾燥する工程を始めた時点であり、乾燥温度、減圧度、ずり速度が乾燥工程とは異なる状態で予備混合をする時間は乾燥時間に含めない。
 また、乾燥終点とは、乾燥開始から長くとも10分の間隔でサンプリングを行い、水分率が初めて7質量%以下になった時点をいう。
 連続式の乾燥装置の場合、乾燥開始から乾燥終点までに要した時間は、滞留時間と解釈することができる。スプレードライヤーの場合、滞留時間は加熱風量と乾燥室の容積によって計算することができる。また、押出機を乾燥装置として用いる場合、滞留時間はスクリュー回転数とスクリューの総ピッチ数から計算することができる。
 乾燥温度は、乾燥効率、及びセルロースナノファイバーを適度に凝集させて望ましい粒子サイズの粉体を形成する観点から、例えば20℃以上、又は30℃以上、又は40℃以上、又は50℃以上であってよく、セルロースナノファイバー及び追加の成分の熱劣化を生じ難くする観点、及びセルロースナノファイバーの過度な微粉化を回避する観点から、例えば200℃以下、又は150℃以下、又は140℃以下、又は130℃以下、又は100℃以下であってよい。
 乾燥温度は、スラリーに接触する熱源の温度であり、例えば、乾燥装置の温調ジャケットの表面温度や、加熱シリンダーの表面温度、熱風の温度で定義される。
 減圧度は、乾燥効率、及びセルロースナノファイバーを適度に凝集させて望ましい粒子サイズの粉体を形成する観点から、-1kPa以下、又は-10kPa以下、又は-20kPa以下、又は-30kPa以下、又は-40kPa以下、又は-50kPa以下であってよく、セルロースナノファイバーの過度な微粉化を回避する観点から、-100kPa以上、又は-95kPa以上、又は-90kPa以上であってよい。
 乾燥工程において、スラリーの温度20℃~200℃での滞留時間は、好ましくは、0.01分間~10分間、又は0.05分間~5分間、又は0.1分間~2分間に設定してよい。このような条件での乾燥により、セルロースナノファイバーが急速乾燥されて、望ましい粒子サイズの粉体が良好に生成する。
 例えばスプレードライヤ―を用いる場合には、熱ガスを流通させた乾燥室内に噴霧機構(回転ディスク、加圧ノズル等)でスラリーを噴霧導入して乾燥させる。噴霧導入時のスラリー液滴サイズは、例えば、0.01μm~500μm、又は0.1μm~100μm、又は0.5μm~10μmであってよい。熱ガスは、窒素、アルゴン等の不活性ガス、空気等であってよい。熱ガス温度は、例えば、50℃~300℃、又は80℃~250℃、又は100℃~200℃であってよい。乾燥室内でのスラリーの液滴と熱ガスとの接触は、並流、向流、又は並向流であってよい。液滴の乾燥により生じた粒子状の粉体を、サイクロン、ドラム等で補集する。
 また、例えば押出機を用いる場合には、スクリューを備える混練部内にホッパーよりスラリーを投入し、減圧及び/又は加熱下の混練部内でスラリーをスクリューで連続的に輸送することで当該スラリーを乾燥させる。スクリューの態様としては、搬送スクリュー、反時計回りスクリュー、及びニーディングディスクを任意の順番に組み合わせてよい。乾燥温度は、例えば、50℃~300℃、又は80℃~250℃、又は100℃~200℃であってよい。
≪マスターバッチ≫
 本開示の一態様は、本開示のゴム組成物を含むマスターバッチを提供する。一態様において、マスターバッチは、本開示の粉体と第2のゴム成分との混練物である。
<第2のゴム成分>
 第2のゴム成分は、天然ゴム、共役ジエン系重合体若しくは非共役ジエン系重合体又はこれらの水素添加物であってよい。上記の重合体又はその水素添加物はオリゴマーであってもよい。第2のゴム成分の単量体組成としては、液状ゴムについて前述したのと同様のものを例示できる。第2のゴム成分は、前述の液状ゴムであってよく、又は液状ゴムではないゴムであってよい。
 マトリクス成分を構成する第2のゴム成分としての共役ジエン系重合体は、部分水添又は完全水添されていてもよい。水素添加物の水素添加率は、加工時の熱劣化抑制の観点から、好ましくは、50%以上、又は80%以上、又は98%以上であり、低温靭性の観点からは、好ましくは、50%以下、又は20%以下、又は0%(すなわち非水添物)である。
 マトリクス成分を構成する第2のゴム成分としての共役ジエン系重合体における、共役ジエン結合単位中のビニル結合量(例えばブタジエンの1,2-又は3,4-結合)は、ソフトセグメントの結晶化抑制の観点から、好ましくは、5モル%以上、又は10モル%以上、又は13モル%以上、又は15モル%以上であり、好ましくは、80モル%以下、又は75モル%以下、又は65モル%以下、又は50モル%以下、又は40モル%以下である。
 好ましい態様において、第2のゴム成分は、スチレン-ブタジエンゴム、ブタジエンゴム及びイソプレンゴムからなる群から選択される1種以上を含む。
 第2のゴム成分の数平均分子量(Mn)は、貯蔵弾性率等に優れるゴム複合体を得る観点から、好ましくは、100,000以上、又は150,000以上、又は200,000以上であり、セルロースナノファイバーの第2のゴム成分中への分散容易性の観点、及び、第2のゴム成分が硬化後に硬くなり過ぎず良好なゴム弾性を有する点で、好ましくは、800,000以下、又は750,000以下、又は700,000以下、又は600,000以下である。
[変性ゴム]
 第2のゴム成分は、変性ゴムであってもよく、例えば、前述で例示した共役ジエン系重合体又は非共役ジエン系重合体において、エポキシ基、酸無水物基、カルボキシ基、アルデヒド基、水酸基、アルコキシ基、アミノ基、アミド基、イミド基、ニトロ基、イソシアネート基、メルカプト基等の変性基が導入されていてもよい。変性ゴムとしては、エポキシ変性天然ゴム、エポキシ変性ブタジエンゴム、エポキシ変性スチレンブタジエンゴム、カルボキシ変性天然ゴム、カルボキシ変性ブタジエンゴム、カルボキシ変性スチレンブタジエンゴム、酸無水物変性天然ゴム、酸無水物変性ブタジエンゴム、酸無水物変性スチレンブタジエンゴム等が例示される。
 全単量体単位100モル%に対する変性基の量は、セルロースナノファイバーと第2のゴム成分との親和性の観点から、好ましくは、0.1モル%以上、又は0.2モル%以上、又は0.3モル%以上であり、また好ましくは、5モル%以下、又は3モル%以下である。変性基量は、FT-IR(フーリエ変換赤外分光)、固体NMR(核磁気共鳴)、溶液NMR、又は、予め特定された単量体組成と未変性ゴムに含まれない元素の元素分析による定量とを組み合わせて変性基のモル比を算出する方法によって確認できる。
 マスターバッチ中、第2のゴム成分の含有率は、好ましくは、20質量%以上、又は30質量%以上、又は40質量%以上であり、好ましくは、99質量%以下、又は95質量%以下、又は90質量%以下である。
[熱可塑性エラストマー]
 一態様において、第2のゴム成分は、熱可塑性エラストマーを含み又は熱可塑性エラストマーであることができる。本開示で、エラストマーとは、一態様において、室温(23℃)において弾性体である物質(具体的には天然又は合成の重合体物質)である。また、弾性体であるとは、一態様において、動的粘弾性測定で測定される23℃、10Hzでの貯蔵弾性率が1MPa以上100MPa以下であることを意味する。熱可塑性エラストマーは、共役ジエン系重合体又は非共役ジエン系重合体であってよく、一態様において架橋物である。熱可塑性エラストマーの好適な単量体組成は、上記の(共役ジエン系重合体)及び(非共役ジエン系重合体)の項で前述したのと同様であってよい。
 熱可塑性エラストマーの数平均分子量(Mn)は、衝撃強度と流動性との両立の観点から、好ましくは、10,000~500,000、又は40,000~250,000である。
 熱可塑性エラストマーは、コアシェル構造を有してもよい。コアシェル構造を有するエラストマーとしては、粒子状のゴムであるコアと、当該コアの外部に形成された、ガラス質のグラフト層であるシェルとを持つコア-シェル型のエラストマーが挙げられる。コアとしては、ブタジエン系ゴム、アクリル系ゴム、シリコーン・アクリル複合系ゴム等が好適である。また、シェルとしては、スチレン樹脂、アクリロニトリル-スチレン共重合体、アクリル樹脂等のガラス状高分子が、好適である。
 熱可塑性エラストマーは、ゴム組成物との相溶性に一層優れる観点から、スチレン-ブタジエンブロック共重合体、スチレン-エチレン-ブタジエンブロック共重合体、スチレン-エチレン-ブチレンブロック共重合体、スチレン-ブタジエン-ブチレンブロック共重合体、スチレン-イソプレンブロック共重合体、スチレン-エチレン-プロピレンブロック共重合体、スチレン-イソブチレンブロック共重合体、スチレン-ブタジエンブロック共重合体の水素添加物、スチレン-エチレン-ブタジエンブロック共重合体の水素添加物、スチレン-ブタジエン-ブチレンブロック共重合体の水素添加物、スチレン-イソプレンブロック共重合体の水素添加物、及びスチレンの単独重合体(ポリスチレン)から成る群より選択される少なくとも1種であることが好ましく、スチレン-ブタジエンブロック共重合体、スチレン-ブタジエンブロック共重合体の水素添加物、及びポリスチレンからなる群より選択される1種以上であることがより好ましい。
 一態様においては、熱可塑性エラストマーの少なくとも一部が酸性官能基を有してよい。本開示で、熱可塑性エラストマーが酸性官能基を有しているとは、当該エラストマーの分子骨格中に、酸性官能基が化学結合を介して付加していることを意味する。また本開示で、酸性官能基とは、塩基性官能基などと反応可能な官能基を意味し、具体例としては、ヒドロキシル基、カルボキシル基、カルボキシレート基、スルホ基、酸無水物基等が挙げられる。
 エラストマー中の酸性官能基の付加量は、セルロースナノファイバーとエラストマー成分との親和性の観点から、エラストマー100質量%基準で、好ましくは0.01質量%以上、より好ましくは0.1質量%以上、更に好ましくは0.2質量%以上であり、好ましくは5質量%以下、より好ましくは3質量%以下、更に好ましくは2質量%以下である。なお、酸性官能基の数は、あらかじめ酸性物質を混合した検量線用サンプルを赤外吸収スペクトル測定装置により測定し、酸の特性吸収帯を用いて作成しておいた検量線を元に、当該試料を測定することで得られる値である。
 酸性官能基を有するエラストマーとしては、アクリル酸等を共重合成分として用いて形成した層をシェルとして有するコアシェル構造を有するエラストマー、アクリル酸等をモノマーとして含むエチレン-αオレフィン共重合体、ポリオレフィン、芳香族化合物-共役ジエン共重合体、又は芳香族化合物-共役ジエン共重合体水素添加物に、過酸化物の存在下又は非存在下で、α,β-不飽和ジカルボン酸又はその誘導体をグラフトさせた変性物であるエラストマー等が挙げられる。
 好ましい態様において、エラストマーは、酸無水物変性されたエラストマーである。
 これらの中では、ポリオレフィン、芳香族化合物-共役ジエン共重合体、又は芳香族化合物-共役ジエン共重合体水素添加物に、過酸化物の存在下又は非存在下で、α,β-不飽和ジカルボン酸又はその誘導体をグラフトさせた変性物がより好ましく、中でも特にエチレン-α-オレフィンの共重合体、又は芳香族化合物-共役ジエンブロック共重合体水素添加物に、過酸化物の存在下又は非存在下で、α,β-不飽和ジカルボン酸及びその誘導体をグラフトさせた変性物が特に好ましい。
 α,β-不飽和ジカルボン酸及びその誘導体の具体例としては、マレイン酸、フマル酸、無水マレイン酸、及び無水フマル酸が挙げられ、これらの中で無水マレイン酸が特に好ましい。
 一態様において、エラストマーは、酸性官能基を有するエラストマーと酸性官能基を有さないエラストマーとの混合物であってよい。酸性官能基を有するエラストマーと酸性官能基を有さないエラストマーとの混合割合は、両者の合計を100質量%としたとき、酸性官能基を有するエラストマーが、ゴム複合体の高靭性及び物性安定性を良好に維持する観点から、好ましくは10質量%以上、より好ましくは20質量%以上、さらにより好ましくは30質量%以上、最も好ましくは40質量%以上である。上限は特に限定されず、実質的にすべてのエラストマーが酸性官能基を有するエラストマーであってもよいが、流動性に課題を生じさせない観点から、80質量%以下が望ましい。
 マスターバッチ中、熱可塑性エラストマーの含有率は、好ましくは、20質量%以上、又は30質量%以上であり、好ましくは、99質量%以下、又は95質量%以下、又は90質量%以下である。
<加硫剤、加硫促進剤>
 マスターバッチが未硬化ゴムを含む場合、当該マスターバッチは、典型的には加硫剤を含み、任意に加硫促進剤を含んでよい。加硫剤及び加硫促進剤としては、従来公知のものをマスターバッチ中の未硬化ゴムの種類に応じて適宜選択してよい。加硫剤としては、有機過酸化物、アゾ化合物、オキシム化合物、ニトロソ化合物、ポリアミン化合物、硫黄、硫黄化合物等を使用できる。硫黄化合物としては、一塩化硫黄、二塩化硫黄、ジスルフィド化合物、高分子多硫化合物等が挙げられる。加硫剤の量は、マスターバッチ中の未硬化ゴム100質量部に対して、好ましくは、0.01質量部~20質量部、又は0.1質量部~15質量部である。
 加硫促進剤としては、スルフェンアミド系、グアニジン系、チウラム系、アルデヒド-アミン系、アルデヒド-アンモニア系、チアゾール系、チオ尿素系、ジチオカルバメート系等の加硫促進剤が挙げられる。なお加硫助剤として亜鉛華、ステアリン酸等を使用してもよい。加硫促進剤の量は、マスターバッチ中の未硬化ゴム100質量部に対して、好ましくは、0.01質量部~20質量部、又は0.1質量部~15質量部である。
[ゴム用添加剤]
 マスターバッチは、従来公知の各種ゴム用添加剤(安定剤、軟化剤、老化防止剤等)を含んでもよい。ゴム用安定剤としては、2,6-ジ-tert-ブチル-4-ヒドロキシトルエン(BHT)、n-オクタデシル-3-(4’-ヒドロキシ-3’,5’-ジ-tert-ブチルフェニル)プロピオネート、2-メチル-4,6-ビス[(オクチルチオ)メチル]フェノール等の酸化防止剤を1種又は2種以上用いてよい。また、ゴム用軟化剤としては、プロセスオイル、エクステンダーオイル等を1種又は2種以上用いてよい。但し、本実施形態のマスターバッチは、一態様において柔軟な成形体を形成可能であり、したがって一態様においてゴム用軟化剤を含まないことができる。
<追加の成分>
 マスターバッチは、その性能を向上させるために、必要に応じて追加の成分をさらに含んでも良い。追加の成分としては、分散剤、有機又は無機のフィラー、熱安定剤、酸化防止剤、帯電防止剤、着色剤等が挙げられる。任意の追加の成分のマスターバッチ中の含有割合は、本発明の所望の効果が損なわれない範囲で適宜選択されるが、例えば0.01~50質量%、又は0.1~30質量%であってよい。
 好ましい態様において、マスターバッチは、ゴム成分100質量部に対して、セルロースナノファイバーを10質量部~50質量部、又は15質量部~40質量部、又は20質量部~30質量部含み、界面活性剤を1質量部~50質量部、又は2質量部~40質量部、又は3質量部~30質量部含む。なお上記ゴム成分の量は、マスターバッチ中に存在するゴム成分の合計量(一態様において、第1のゴム成分と第2のゴム成分との合計量)である。一態様において、マスターバッチの成分組成はゴム組成物について前述したのと同様であってよい。マスターバッチにおいて、追加成分(一態様において、第2のゴム成分)との質量比率(マスターバッチ/追加成分)は、1/99~99/1、又は5/95~95/5、又は10/90~90/10、又は20/80~80/20、又は30/70~70/30、又は40/60~60/40であってよい。
 本開示の一態様は、本開示の粉体と第2のゴム成分とを混練してマスターバッチを得る工程を含む、マスターバッチの製造方法を提供する。混練条件は特に限定されないが、例えば、バンバリーミキサー、オープンロールなどの一般的なゴム混練で使用される混練機を使用することができる。
≪ゴム複合体≫
 本開示の一態様は、本実施形態のゴム組成物と、マトリクス成分(すなわち、当該ゴム組成物以外の成分)とを含む(一態様において、これらを混合して得られる)ゴム複合体も提供する。典型的な態様において、ゴム複合体は、本開示の粉体又はマスターバッチ由来である。ゴム複合体は、一態様において、前述のセルロースナノファイバー、前述の液状ゴム及び前述の界面活性剤を含み、更に、マトリクス成分として、第3のゴム成分、及び任意に追加成分を含む。第3のゴム成分は、未硬化ゴム及び熱可塑性エラストマーからなる群から選ばれる1種以上であってよい。
 一態様において、ゴム複合体は、本開示の粉体又は本開示のマスターバッチと、第3のゴム成分との混練物である。第3のゴム成分の具体的な好適態様は、第2のゴム成分について前述したのと同様であってよい。第1、第2及び第3のゴム成分は、構成モノマー成分種、構成モノマー成分比率及び分子量の1つ以上において互いに異なる(異種である)ことができ、又は、第1、第2及び第3のゴム成分のうち2つ以上において、構成モノマー成分種、構成モノマー成分比率及び分子量が互いに同じである(同種である)ことができる。好ましい一態様に係るゴム複合体においては、少なくともセルロースナノファイバーの表面の一部が第1のゴム成分により被覆されている。上記被覆の状態は、前述した走査型電子顕微鏡観察又は原子間力顕微鏡で確認される。但し、第1のゴム成分が、第2及び/又は第3のゴム成分と走査型電子顕微鏡観察及び原子間力顕微鏡のいずれによっても区別されない場合においては、少なくともセルロースナノファイバーの表面の一部が当該区別されないゴム成分により被覆されていれば、少なくとも当該表面の一部が第1のゴム成分により被覆されているものと見做してよい。このような場合、第1のゴム成分と第2及び/又は第3のゴム成分とが、同種であり、又は異種であっても特性が極めて近接している。したがって、当該区別されないゴム成分がセルロースナノファイバーを被覆していることで、第1のゴム成分がセルロースナノファイバーを被覆している場合に得られる利点が発現され得ると考えられる。
 粉体と第3のゴム成分との質量比率(粉体/第3のゴム成分)は、一態様において、1/99~99/1、又は5/95~95/5、又は10/90~90/10、又は20/80~80/20、又は30/70~70/30、又は40/60~60/40であってよい。
 マスターバッチと第3のゴム成分との質量比率(マスターバッチ/第3のゴム成分)は、一態様において、1/99~99/1、又は5/95~95/5、又は10/90~90/10、又は20/80~80/20、又は30/70~70/30、又は40/60~60/40であってよい。
 ゴム複合体は、本開示の粉体と第3のゴム成分とを混練すること、又は、本開示のマスターバッチの製造方法でマスターバッチを形成し、次いで当該マスターバッチと第3のゴム成分とを混練すること、によってゴム複合体を得る工程を含む方法により製造できる。上記の混練条件は特に限定されないが、例えば、バンバリーミキサー、オープンロールなどの一般的なゴム混練で使用される混練機を使用することができる。
 ゴム複合体中のセルロースナノファイバーの含有率は、好ましくは、0.5質量%以上、又は1質量%以上、又は2質量%以上であり、好ましくは、30質量%以下、又は20質量%以下、又は15質量%以下、又は10質量%以下である。
 ゴム複合体中のポリマー成分の合計含有率(一態様では、第1,第2及び第3のゴム成分の合計含有率)は、好ましくは、1質量%以上、又は2質量%以上、又は5質量%以上であり、好ましくは、99質量%以下、又は95質量%以下、又は90質量%以下である。
 ゴム複合体中のセルロースナノファイバー/ポリマー成分合計の質量比率は、好ましくは、1/99~50/50、又は2/98~40/60、又は3/97~30/70である。
 ゴム複合体中の界面活性剤の含有率は、一態様において、0.1質量%以上、又は0.5質量%以上、又は1質量%以上であってよく、一態様において、10質量%以下、又は5質量%以下、又は1質量%以下であってよい。
 一態様に係るゴム複合体において、ゴム複合体中の未硬化ゴムに対する加硫剤及び/又は加硫促進剤の量は、マスターバッチ中の未硬化ゴムに対する加硫剤及び/又は加硫促進剤の量として例示したのと同様の範囲であってよい。
 一態様に係るゴム複合体において、ゴム複合体中のゴム用添加剤、及び追加の成分の量は、マスターバッチ中の量として例示したのと同様の範囲であってよい。
≪ゴム硬化物及び成形体≫
 本開示の一態様は、本開示のゴム組成物を含む硬化性成分の硬化物であるゴム硬化物を提供する。一態様においては、本開示のゴム組成物を所望の他の成分とともに所望の形状に成形することで、所望の成形体を製造できる。一態様において、本開示のゴム組成物を第3のゴム成分及び任意に追加成分と混合してゴム複合体を形成し、更に当該ゴム複合体を単独で又は他の成分とともに所望の形状に成形することで、所望の成形体を製造してよい。配合成分の組合せ方法及び成形方法は特に限定されず、所望の成形体に応じて選択してよい。成形方法としては、これらに限定されないが、
(1)ゴム組成物又はマスターバッチが未硬化ゴムを含み、当該ゴム組成物又は当該マスターバッチを単独で、又は追加成分とともに成形する際の成形前、成形中及び/又は成形後に当該未硬化ゴムを硬化させることによって、ゴム硬化物を含む成形体を得る方法、
(2)ゴム組成物が未硬化ゴムを含み、ゴム組成物中の未硬化ゴムを硬化させてなるゴム硬化物をマスターバッチとして形成した後、これを追加成分とともに成形して成形体を得る方法、
(3)ゴム組成物中のゴム成分が熱可塑性エラストマーであり、当該ゴム組成物を単独で又は追加成分とともに溶融成形して成形体を得る方法、
等が挙げられる。成形は、射出成形、押出成形、押出異形成形、中空成形、圧縮成形等により行ってよい。
 上記(2)の方法において、ゴム硬化物中のマスターバッチ/追加成分の質量比率は、例えば、1/99~99/1、又は5/95~95/5、又は10/90~90/10、又は20/80~80/20、又は30/70~70/30、又は40/60~60/40であってよい。
 一態様において、ゴム硬化物は、本開示のゴム複合体の硬化物である。ゴム硬化物は、一態様において、本開示のゴム複合体の製造方法によってゴム複合体を得る工程、及び当該ゴム複合体を硬化させてゴム硬化物を得る工程を含む方法により製造できる。一態様においては、JIS K6299に準拠した加硫プレスによりゴム硬化物を得ることができる。
 ゴム硬化物は各種形状の成形体を形成してよい。成形体は、産業用機械部品、一般機械部品、自動車・鉄道・車両・船舶・航空宇宙関連部品、電子・電気部品、建築・土木材料、生活用品、スポーツ・レジャー用品、風力発電用筐体部材、容器・包装部材等の広範な用途で使用可能である。用途例としては、自動車部品(例えば、タイヤ、バンパー、フェンダー、ドアーパネル、各種モール、エンブレム、エンジンフード、ホイールキャップ、ルーフ、スポイラー、各種エアロパーツ等の外装部品、及び、インストゥルメントパネル、コンソールボックス、トリム等の内装部品)、電池部品(車載用二次電池部品、リチウムイオン二次電池部品、固体メタノール電池用燃料ケース、燃料電池用配管等)、電子・電気機器部品(例えば、各種コンピューター及びその周辺機器、ジャンクションボックス、各種コネクター、各種OA機器、テレビ、ビデオ、ディスクプレーヤー、シャーシ、冷蔵庫、エアコン、液晶プロジェクター等の部品)、生活用品(シューズアウトソール等)等の成形品として形成されてよい。
 本開示の一態様は、本開示のゴム硬化物を含む、シューズアウトソール、タイヤ、防振ゴム、又は伝動ベルトを提供する。
 以下、実施例を挙げて本発明の例示の態様を更に説明するが、本発明はこれら実施例に何ら限定されない。
≪評価方法≫
<液状ゴム>
[ビニル量、芳香族スチレン量]
 試料を重水素化クロロホルムに溶解させ、13C-NMR(JEOL社ECZ500)で、下記条件にて測定した。
共鳴周波数:125MHz
パルス幅:90°
繰り返し時間:8sec
積算:5120回
温度:室温
化学シフト基準:CDCl3 77.0ppm
[25℃における粘度]
 液状ゴムの粘度は、B型粘度計を用いて、回転数10rpmで測定した。
[数平均分子量(Mn)及び重量平均分子量(Mw)]
 ポリスチレン系ゲルを充填剤としたカラム3本を連結して用いたGPCを使用してクロマトグラムを測定し、標準ポリスチレンを使用して検量線により分子量(Mn,Mw)及び分子量分布(Mw/Mn)を計算した。溶媒はテトラヒドロフランを使用した。
<ゴム組成物>
[外観(セルロースナノファイバーの分散性)]
 実施例1~5、及び比較例2、3で得たゴム組成物について、以下の条件で光学顕微鏡観察を行った。試料1mgを2枚のカバーガラスで挟み、均一な厚みになるように押しつぶして広げた。オリンパス社製偏光顕微鏡BX51Pのステージ上に上記の試料を乗せた。オリンパス社製微分干渉プリズムU-DICRを挿入し、微分干渉観察を行った。フィラーの分散性を以下の基準で評価した。
 A:概ね均一に分散している。
 B:分散しているが、凝集が見られる。
 C:凝集が多数確認される。
[貯蔵弾性率]
 実施例1~5、及び比較例2、3のゴム組成物、並びに比較例1の液状ゴムについて、サーモフィッシャー・サイエンティフィック社製レオメータHAAKE MARS40を用いて、25℃、ひずみ0.002%にて、ギャップ1mmにて平行板を用いた周波数分散測定を行い、貯蔵弾性率を測定した。貯蔵弾性率が高いことは、セルロースナノファイバーがゴム中によく分散していることを表し、ゴム用のマスターバッチとしてゴムに混練した場合にセルロースナノファイバーが当該ゴムに良分散し、弾性率、貯蔵弾性率、硬度といった機械物性に優れるゴム組成物が得られることを意味する。
<乾燥粉体>
 乾燥粉体について、ホソカワミクロン株式会社製パウダーテスター(型番:PT-X)を用い、下記評価を行った。
[ゆるめ嵩密度]
 ステンレス製100mL(内径50.46mm×深さ50mm)有底円筒容器に乾燥体を、薬さじを用いて10g/分にて溢れる量まで入れ、当該乾燥体をすり切り後、0.01gの位で重量を測定した。当該重量の3回の測定の数平均値を上記有底円筒容器の内容積で除して、ゆるめ嵩密度として算出した。
[固め嵩密度]
 ゆるめ嵩密度で用いたのと同様の有底円筒容器の上部に、十分な容量の樹脂製アダプター(内径50.46mm×長さ40mm)を密着するように接続し、ゆるめ嵩密度の測定と同様の手順で乾燥体を溢れる量まで入れた後、アダプターを接続したまま有底円筒容器に回転軸に偏心錘を取り付けたモーターで振幅1.5mm、50Hzの振動を30秒間与えた。続いて、アダプターを除き、乾燥体をすり切り後、0.01gの位で重量を測定する。当該重量の3回の測定の数平均値を上記有底円筒容器の内容積で除して、固め嵩密度として算出した。
<ゴム硬化物>
 ゴム硬化物について、下記評価を行った。
(1)引張強度
 JIS K-6251の引張試験法により評価した。
(2)貯蔵弾性率
 TAインスツルメント社製 粘弾性試験装置ARES-G2にて、ねじり方式により、50℃、周波数10Hz、歪み3%における貯蔵弾性率を評価した。
(3)セルロースナノファイバーの分散性
 ゴム硬化物の加硫プレス面上の5cm四方の領域について目視にて、セルロースナノファイバーの分散状態を下記の基準で評価した。
 A:凝集物が目視確認できない
 B:凝集物が少数(1~10個)確認される。
 C:凝集が多数(11個以上)確認される。
≪使用材料≫
<液状ゴム>
 液状ゴム-1:ブタジエン-スチレンランダム共重合体(RICON 184、クレイバレー社から入手可能)、25℃における粘度40000cP、数平均分子量(Mn)3,200、重量平均分子量(Mw)14,000、Mw/Mn4.3、ビニル量19mol%、芳香族スチレン量8mol%
 液状ゴム-2:ブタジエン-スチレンランダム共重合体(RICON 100、クレイバレー社から入手可能)、25℃における粘度75000cP、数平均分子量(Mn)2,100、重量平均分子量(Mw)4,500、Mw/Mn2.1、ビニル量42mol%、芳香族スチレン量9mol%
<溶液重合ゴム>
 ゴム-1:アサプレンY031(旭化成(株)より入手可能)
<セルロースナノファイバー>
 CNF-1:微小繊維状セルロース(セリッシュKY-100G、ダイセルミライズ(株)から入手可能)
 CNF-2:微小繊維状セルロース
 コットンリンターパルプ3質量部を水27質量部に浸漬させて、パルパーで分散を行った。パルパー処理したコットンリンターパルプスラリー30質量部(内、コットンリンターパルプ3質量部)に水を170質量部入れて水中に分散させて(固形分率1.5質量%)、ディスクリファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmとして該水分散体を30分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で徹底的に叩解を行い、叩解水分散体(固形分濃度:1.5質量%)を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NSO15H)を用いて操作圧力100MPa下で10回微細化処理し、微細セルロース繊維スラリー(固形分濃度:1.5質量%)を得た。そして、脱水機により固形分率10質量%まで濃縮し、CNF-2の濃縮ケーキを得た。
<ノニオン性界面活性剤>
 界面活性剤-1:ポリオキシエチレン(2)モノラウリルエーテル(エマルゲン102KG、花王(株)から入手可能) ()内はオキシエチレン鎖の繰り返し数
 界面活性剤-2:ソルビタンモノオレエート(レオドールSP-O10V、花王(株)から入手可能)
 界面活性剤-3:ポリオキシエチレン(6)ソルビタンモノラウレート(レオドールTW-L106、花王(株)から入手可能) ()内はオキシエチレン鎖の繰り返し数
 界面活性剤-4:エチレングリコール-プロピングリコール共重合体(PEG-PPG)(サンニックスGL-3000、(株)三洋化成から入手可能)
<熱可塑性エラストマー>
 SEBS H1052:製品名「タフテック H1052」、旭化成株式会社製
<シリカ>
 シリカ-1:沈降シリカ(ULTRASIL 7000GR、デグサ社から入手可能)
<シランカップリング剤>
 Si75:ビス(3-(トリエトキシシリル)プロピル)ジスルフィド(エボニックジャパン(株)より入手可能)
<オイル>
 PF30:鉱油(JXTGエネルギー(株)より入手可能)
<加硫助剤>
 酸化亜鉛:富士フィルム和光純薬(株)より入手可能
 ステアリン酸:富士フィルム和光純薬(株)より入手可能
<ワックス>
 サンノック:精選特殊ワックス(大内新興化学(株)より入手可能)
<老化防止剤>
 ノクラック6C:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学(株)より入手可能)
<加硫促進剤>
 ノクセラーCZ:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(大内新興化学(株)より入手可能)
ノクセラーD:1,3-ジフェニルグアニジン(大内新興化学(株)より入手可能)
≪ゴム組成物の調製≫
<実施例1>
 セリッシュKY100G(ダイセルファインケム社製)(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となる水分散液とした。これに液状ゴム-1(RICON184)、及び界面活性剤-1を加え、最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤2.14質量%となるように水分散体を調製した。前記水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて5分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、乾燥体を得た。得られた乾燥体をラボネクト株式会社製ミニスピードミルMS-05で粉砕したうえで、液状ゴム-1(RICON184)80質量部に乾燥体20質量部を加え、株式会社シンキー製自転公転ミキサーARE-310を用いて15分混合し、ゴム組成物を得た。
<実施例2>
 セリッシュKY100G(ダイセルファインケム社製)(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となる水分散液とした。これに界面活性剤-1を加え、最終的な組成として、水92.86質量%、セルロース繊維5質量%、界面活性剤2.14質量%となるような水分散体を調製した。前記水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて5分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、乾燥体を得た。得られた乾燥体をラボネクト株式会社製ミニスピードミルMS-05で粉砕したうえで、液状ゴム-1(RICON 184)85.71質量部に乾燥体14.29質量部を加え、株式会社シンキー製自転公転ミキサーARE-310を用いて15分間混合し、ゴム組成物を得た。
<実施例3>
 界面活性剤-1を界面活性剤-2に代えた以外は実施例2と同じ条件にて、ゴム組成物を作製した。
<実施例4>
 界面活性剤-1を界面活性剤-3に代えた以外は実施例2と同じ条件にて、ゴム組成物を作製した。
<実施例5>
 界面活性剤-1を界面活性剤-4に代えた以外は実施例2と同じ条件にて、ゴム組成物を作製した。
<比較例1>
 液状ゴム-1(RICON184)をそのまま用いた。
<比較例2>
 液状ゴム-1(RICON 184)90質量部にシリカ-1を10質量部加え、株式会社シンキー製自転公転ミキサーARE-310を用いて15分間混合し、ゴム組成物を得た。
<比較例3>
 セリッシュKY100G(ダイセルファインケム社製)(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となるような水分散液とした。これに液状ゴム-1(RICON184)を加え、最終的な組成として、水92.86質量%、セルロース繊維が5質量%、液状ゴム-1が2.14質量%の水分散体を得た。前記水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて5分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、乾燥体を得た。得られた乾燥体をラボネクト株式会社製ミニスピードミルMS-05で粉砕したうえで、液状ゴム-1(RICON 184)85.71質量部に、粉砕した乾燥体14.29質量部を加え、株式会社シンキー製自転公転ミキサーARE-310を用いて15分間混合し、ゴム組成物を得た。
 結果を表1に示す。実施例1~5では、ゴム中にセルロースナノファイバーが良好に分散し、周波数1Hzにおける貯蔵弾性率が高かった。比較例3では、凝集塊がゴム中に多数含まれており、貯蔵弾性率測定に供したものの、安定した測定値が得られなかった。
Figure JPOXMLDOC01-appb-T000001
<ゴム組成物の熱可塑性エラストマーへの分散>
<実施例6>
 セリッシュKY100G(ダイセルファインケム社製)(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となる水分散液とした。これに液状ゴム-2(RICON100)、及び界面活性剤-1を加え、最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム7.86質量%、界面活性剤2.14質量%となるように水分散体を調製した。前記水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて15分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、ゴム組成物を得た。
 続いて、レオ・ラボ社製小型混練機(Xplore)にて、熱可塑性エラストマー-1(SEBS H1052)85gにゴム組成物15gを加え、200℃で5分間溶融混練し、セルロースナノファイバーが分散したゴムストランドを得た。得られたゴムストランドを200℃、10kNで10分間熱プレスし、シートを得た。シートを目視観察したところ、凝集物は認められなかった。
<比較例4>
 セリッシュKY100G(ダイセルファインケム社製)(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となる水分散液とした。これに界面活性剤-1を加え、最終的な組成として、水92.86質量%、セルロース繊維5質量%、界面活性剤2.14質量%となるように水分散体を調製した。前記水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて15分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、セルロースナノファイバー含有組成物を得た。
 続いて、レオ・ラボ社製小型混練機(Xplore)にて、熱可塑性エラストマー-1(SEBS H1052)92.9gにセルロースナノファイバー含有組成物7.1gを加え、200℃で5分間溶融混練し、セルロースナノファイバーが分散したゴムストランドを得た。得られたゴムストランドを200℃、10kNで10分間熱プレスし、シートを得た。シートを目視観察したところ、凝集物が多数確認された。
<ゴム硬化物の製造>
<実施例7>
 CNF-2(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となる水分散液とした。これに液状ゴム-1、及び界面活性剤-1を加え、最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤2.14質量%となるように水分散体を調製した。当該水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて5分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、乾燥体を得た。得られた乾燥体をラボネクト株式会社製ミニスピードミルMS-05で30秒間粉砕し、ゴム硬化物製造用粉体を得た。得られた乾燥粉体のゆるめ嵩密度及び固め嵩密度を前述の方法で測定した。
 続いて、東洋精機社製ラボプラストミルを70℃に加熱して、ゴム-1(アサプレンY031)100質量部を加えて0.5分間混練りし、これにゴム硬化物製造用粉体10質量部、加硫助剤(亜鉛華2.5質量部、及びステアリン酸2質量部)、ワックス1.5質量部、酸化防止剤2質量部を加えて5.5分間混練りして、1段目練りを実施した。次に70℃に加熱したラボプラストミルに、得られた1段目練り組成物を加えて0.5分間混練りし、これに表2に示す組成に従って硫黄1.7質量部、加硫促進剤(ノクセラーCZ1.7質量部、及びノクセラーD2質量部)を加えて2分間混練りした。得られた2段目練り組成物を160℃で20分間、加硫プレスにて加硫し、ゴム硬化物を得た。
<実施例8>
 乾燥体の粉砕を、ラボネクト株式会社製ミニスピードミルMS-05に代えて、フレビット社フレドライブのハンマーミルを用いて行った以外は実施例7と同様にしてゴム硬化物を得た。
<実施例9>
 乾燥体の粉砕を、ラボネクト株式会社製ミニスピードミルMS-05に代えて、フレビット社フレドライブのコニカルスクリーンミルを用いて行った以外は実施例7と同様にしてゴム硬化物を得た。
<実施例10>
 乾燥体の粉砕を、ラボネクト株式会社製ミニスピードミルMS-05に代えて、フレビット社フレドライブのピンミルを用いて行った以外は実施例7と同様にしてゴム硬化物を得た。
 乾燥体を粉砕した粉体について、OsO4による染色を12時間行った後、エポキシ樹脂と混合し、常温で48時間放置してエポキシ樹脂を硬化させた。硬化させた試料をウルトラミクロトームにより切削し、平滑断面を作製し、Osプラズマコーティングを1秒間実施して、加速電圧1.5kV、WD3mm、上方検出器の条件にて、走査型電子顕微鏡(日立ハイテクノロジーズ社,SU8220)にて観察を行ったところ、セルロースナノファイバーがゴム成分で被覆されていた(図1)。図1中、濃灰色部分がセルロースナノファイバーであり、セルロースナノファイバー周囲の薄灰色部分が第1のゴム成分であり、黒色部分がエポキシ樹脂である。図1から、セルロースナノファイバーが第1のゴム成分によって被覆されていることが確認された。
<実施例11>
 界面活性剤として、界面活性剤-1に代えて、界面活性剤-2を使用した以外は実施例7と同様にしてゴム硬化物を得た。
<実施例12>
 水分散体の調製時の最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤2.14質量%の代わりに、水92.86質量%、セルロース繊維5質量%、液状ゴム1.43質量%、界面活性剤0.71質量%となるように水分散体を調製したこと、1段目練りの際にゴム硬化物製造用粉体10質量部を加える代わりに、7.14質量部を加える以外は実施例7と同様にしてゴム硬化物を得た。
<実施例13>
 水分散体の調製時の最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤2.14質量%の代わりに、水93.58質量%、セルロース繊維5質量%、液状ゴム0.71質量%、界面活性剤0.71質量%となるように水分散体を調製したこと、1段目練りの際にゴム硬化物製造用粉体10質量部を加える代わりに、6.42質量部を加える以外は実施例7と同様にしてゴム硬化物を得た。
<実施例14>
 水分散体の調製時の最終的な組成として、水90質量%、セルロース繊維5質量%、液状ゴム2.86質量%、界面活性剤2.14質量%の代わりに、水85質量%、セルロース繊維5質量%、液状ゴム7.86質量%、界面活性剤2.14質量%となるように水分散体を調製したこと、乾燥体の粉砕を、ラボネクト株式会社製ミニスピードミルMS-05に代えて、SPEX社フリーザーミル6875を用いて凍結粉砕で行ったこと、以外は実施例7と同様にしてゴム硬化物を得た。
<実施例15>
 東洋精機社製ラボプラストミルを70℃に加熱して、ゴム-1(アサプレンY031)100質量部を加えて0.5分間混練りし、これに実施例7で製造したゴム硬化物製造用粉体30質量部を添加し、5.5分間混練してマスターバッチを作製した。その後、ラボプラストミルを70℃に加熱して、ゴム-1(アサプレンY031)67質量部と前記マスターバッチ43質量部を加えて0.5分間混練りし、加硫助剤(亜鉛華2.5質量部、及びステアリン酸2質量部)、ワックス1.5質量部、酸化防止剤2質量部を加えて5.5分間混練りして、1段目練りを実施した。続いて、硫黄1.7質量部、加硫促進剤(ノクセラーCZ1.7質量部、及びノクセラーD2質量部)を加えて2分間混練りした。得られた2段目練り組成物を160℃で20分間、加硫プレスにて加硫し、ゴム硬化物を得た。
<参考例5>
 乾燥体の乾燥を、エスペック株式会社製SPH-201を用いて80℃で乾燥させる代わりに、ヘンシェルミキサーを用いて80℃で減圧乾燥にて行ったこと、乾燥後の粉体を粉砕することなく用いたこと以外は実施例7と同様にしてゴム硬化物を得た。
<参考例6>
 乾燥体の粉砕時間を30秒間から5秒間にした以外は実施例7と同様にしてゴム硬化物を得た。
<参考例7>
 CNF-2(セルロース繊維の水分散液)に精製水を加えて最終的なセルロースナノファイバーの含有量が5質量%となる水分散液とした。これに液状ゴム-1、及び界面活性剤-1を加え、最終的な組成として、水82.86質量%、セルロース繊維5質量%、液状ゴム10質量%、界面活性剤2.14質量%となるように水分散体を調製した。前記水分散体を、株式会社シンキー製自転公転ミキサーARE-310を用いて5分間混合し、セルロースナノファイバー組成物の分散液を得た。得られた分散液を、エスペック株式会社製SPH-201を用いて80℃で乾燥させ、乾燥体を得た。得られた乾燥体をラボネクト株式会社製ミニスピードミルMS-05で30秒間処理した。処理後の乾燥体は、粉体にならず、数mmサイズの破片状であった。
 続いて、東洋精機社製ラボプラストミルを70℃に加熱して、ゴム-1(アサプレンY031)100質量部を加えて0.5分間混練りし、これにゴム硬化物製造用粉体17.14質量部、加硫助剤(亜鉛華2.5質量部、及びステアリン酸2質量部)、ワックス1.5質量部、酸化防止剤2質量部を加えて5.5分間混練りして、1段目練りを実施した。次に70℃に加熱したラボプラストミルに、得られた1段目練り組成物を加えて0.5分間混練りし、これに表2に示す組成に従って硫黄1.7質量部、加硫促進剤(ノクセラーCZ1.7質量部、及びノクセラーD2質量部)を加えて2分間混練りした。得られた2段目練り組成物を160℃で20分間、加硫プレスにて加硫し、ゴム硬化物を得た。
<実施例7~15、参考例5~7の評価結果>
 表2に、実施例7~15、参考例5~7の評価結果を示した。実施例ではセルロースナノファイバーがゴム中に良好に分散し、顕著な物性向上が確認できた。
Figure JPOXMLDOC01-appb-T000002
 本開示に係るゴム組成物は、良好な物性を有する成形体を形成し得ることから、産業用機械部品、一般機械部品、自動車・鉄道・車両・船舶・航空宇宙関連部品、電子・電気部品、建築・土木材料、生活用品、スポーツ・レジャー用品、風力発電用筐体部材、容器・包装部材、等の広範な用途に好適に適用され得る。

Claims (30)

  1.  セルロースナノファイバーと、液状ゴムである第1のゴム成分と、界面活性剤とを含む、ゴム組成物。
  2.  前記セルロースナノファイバーがイオン性基を有さない、請求項1に記載のゴム組成物。
  3.  前記液状ゴムの数平均分子量が、1,000~80,000である、請求項1又は2に記載のゴム組成物。
  4.  前記液状ゴムの数平均分子量(Mn)と重量平均分子量(Mw)との比(Mw/Mn)が、1.5~5である、請求項1~3のいずれか一項に記載のゴム組成物。
  5.  前記液状ゴムの80℃での粘度が、1,000,000mPa・s以下である、請求項1~4のいずれか一項に記載のゴム組成物。
  6.  前記液状ゴムの25℃での粘度が、1,000,000mPa・s以下である、請求項1~5のいずれか一項に記載のゴム組成物。
  7.  前記液状ゴムの0℃での粘度が、1,000,000mPa・s以下である、請求項1~6のいずれか一項に記載のゴム組成物。
  8.  前記液状ゴムが、ジエン系ゴム、シリコーンゴム、ウレタンゴム、及び多硫化ゴム並びにこれらの水素添加物からなる群から選択される1種以上を含む、請求項1~7のいずれか一項に記載のゴム組成物。
  9.  前記セルロースナノファイバーの置換度が0である、請求項1~8のいずれか一項に記載のゴム組成物。
  10.  前記セルロースナノファイバーを0.5質量%~10質量%含む、請求項1~9のいずれか一項に記載のゴム組成物。
  11.  前記セルロースナノファイバー100質量部に対して前記界面活性剤を10質量部~200質量部含む、請求項1~10のいずれか一項に記載のゴム組成物。
  12.  前記界面活性剤が、ノニオン性界面活性剤又はカチオン性界面活性剤である、請求項1~11のいずれか一項に記載のゴム組成物。
  13.  界面活性剤がノニオン性界面活性剤である、請求項12に記載のゴム組成物。
  14.  前記ノニオン性界面活性剤が、水酸基、カルボキシ基、スルホン酸基、及びアミノ基からなる群から選択される親水基と、炭化水素基とを有する化合物である、請求項13に記載のゴム組成物。
  15.  前記ノニオン性界面活性剤が、下記一般式(1):
    R-(OCH2CH2m-OH   (1)
    [式中、Rは炭素数6~30の1価の脂肪族基を表し、そしてmはRの炭素数よりも小さい自然数である。]で表される化合物、及び
     下記一般式(2):
    1OCH2-(CHOH)4-CH2OR2   (2)
    [式中、R1及びR2は各々独立に、水素原子、炭素数1~30の脂肪族基、-COR3{式中、R3は、炭素数1~30の脂肪族基を表す。}、又は-(CH2CH2O)y-R4{式中、R4は、水素原子、又は炭素数1~30の脂肪族基を表し、そしてyは1~30の整数である。}を表す。]で表される化合物、
    からなる群から選択される1種以上である、請求項13又は14に記載のゴム組成物。
  16.  少なくとも前記セルロースナノファイバーの表面の一部が前記第1のゴム成分により被覆されている、請求項1~15のいずれか一項に記載のゴム組成物。
  17.  請求項1~16のいずれか一項に記載のゴム組成物で構成されている、粉体。
  18.  固め嵩密度が0.01g/cm3~0.30g/cm3である、請求項17に記載の粉体。
  19.  請求項17又は18に記載の粉体と第2のゴム成分との混練物である、マスターバッチ。
  20.  請求項17又は18に記載の粉体と第2のゴム成分とを混練してマスターバッチを得る工程を含む、マスターバッチの製造方法。
  21.  請求項17若しくは18に記載の粉体又は請求項19に記載のマスターバッチと、第3のゴム成分との混練物である、ゴム複合体。
  22.  少なくとも前記セルロースナノファイバーの表面の一部が前記第1のゴム成分により被覆されている、請求項21に記載のゴム複合体。
  23.  請求項17若しくは18に記載の粉体と第3のゴム成分とを混練すること、又は
     請求項20に記載の方法でマスターバッチを形成し、次いで前記マスターバッチと第3のゴム成分とを混練すること、
    によってゴム複合体を得る工程を含む、ゴム複合体の製造方法。
  24.  前記ゴム複合体において、少なくとも前記セルロースナノファイバーの表面の一部が前記第1のゴム成分により被覆されている、請求項23に記載の方法。
  25.  請求項21又は22に記載のゴム複合体の硬化物である、ゴム硬化物。
  26.  請求項23又は24に記載の方法でゴム複合体を得る工程、及び、
     前記ゴム複合体を硬化させてゴム硬化物を得る工程、
    を含む、ゴム硬化物の製造方法。
  27.  請求項25に記載のゴム硬化物を含む、シューズアウトソール。
  28.  請求項25に記載のゴム硬化物を含む、タイヤ。
  29.  請求項25に記載のゴム硬化物を含む、防振ゴム。
  30.  請求項25に記載のゴム硬化物を含む、伝動ベルト。
PCT/JP2022/007029 2021-02-22 2022-02-21 セルロースナノファイバーを含む組成物 WO2022177014A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020237028543A KR102650295B1 (ko) 2021-02-22 2022-02-21 셀룰로오스 나노섬유를 포함하는 조성물
CN202280009060.2A CN116783077A (zh) 2021-02-22 2022-02-21 包含纤维素纳米纤维的组合物
JP2023500964A JP7374372B2 (ja) 2021-02-22 2022-02-21 セルロースナノファイバーを含む組成物
US18/278,133 US20240124690A1 (en) 2021-02-22 2022-02-21 Composition Containing Cellulose Nanofibers
EP22756331.9A EP4296077A4 (en) 2021-02-22 2022-02-21 COMPOSITION CONTAINING CELLULOSE NANOFIBERS
JP2023182623A JP2024012361A (ja) 2021-02-22 2023-10-24 セルロースナノファイバーを含む組成物

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021026110 2021-02-22
JP2021-026110 2021-02-22
JP2021196429 2021-12-02
JP2021-196429 2021-12-02

Publications (1)

Publication Number Publication Date
WO2022177014A1 true WO2022177014A1 (ja) 2022-08-25

Family

ID=82932280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007029 WO2022177014A1 (ja) 2021-02-22 2022-02-21 セルロースナノファイバーを含む組成物

Country Status (6)

Country Link
US (1) US20240124690A1 (ja)
EP (1) EP4296077A4 (ja)
JP (2) JP7374372B2 (ja)
KR (1) KR102650295B1 (ja)
TW (2) TWI840757B (ja)
WO (1) WO2022177014A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6035007A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− ポリオレフインの密度及び分子量を調節するための方法と触媒
JPS6035006A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 反応器ブレンドポリオレフインの製造方法及びその触媒
JPS6035008A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 幅広い分子量分布を有するポリエチレンの製造方法及びその触媒
JPH03163088A (ja) 1989-08-31 1991-07-15 Dow Chem Co:The 第4族金属配位錯体
JPH0412283B2 (ja) 1981-07-09 1992-03-04 Hoechst Ag
JPH05155930A (ja) 1991-05-31 1993-06-22 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
JP2019147877A (ja) 2018-02-27 2019-09-05 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2020063327A (ja) * 2018-10-15 2020-04-23 日信工業株式会社 複合材料の製造方法及び複合材料
JP2021001292A (ja) * 2019-06-24 2021-01-07 住友ゴム工業株式会社 ナノセルロース・界面活性剤複合体

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4480529B2 (ja) * 2004-09-15 2010-06-16 株式会社ブリヂストン ゴム組成物及びそれを用いたタイヤ
JP2008195790A (ja) * 2007-02-09 2008-08-28 Bridgestone Corp 光硬化性液状ゴム組成物
JP5797129B2 (ja) * 2012-02-14 2015-10-21 地方独立行政法人京都市産業技術研究所 セルロースナノファイバー及び樹脂を含む分散液、並びに樹脂組成物
TW201500368A (zh) * 2013-05-03 2015-01-01 Albemarle Corp 丁二烯dopo衍生物阻燃劑
JP6308021B2 (ja) * 2014-05-22 2018-04-11 横浜ゴム株式会社 タイヤ用ゴム組成物およびスタッドレスタイヤ
JP6730989B2 (ja) * 2014-12-08 2020-07-29 ザ ユニバーシティー オブ クイーンズランド ナノコンポジットエラストマー
WO2016132691A1 (en) * 2015-02-16 2016-08-25 Dow Corning Toray Co., Ltd. Sponge-formable silicone rubber composition and silicone rubber sponge
EP3483186B1 (en) * 2016-07-07 2023-06-07 Nippon Paper Industries Co., Ltd. Modified cellulose nanofiber and rubber composition including the same
JP6742197B2 (ja) * 2016-08-29 2020-08-19 信越化学工業株式会社 ヒプロメロースフタル酸エステルの製造方法
US10301287B2 (en) * 2016-08-31 2019-05-28 Tobira Therapeutics, Inc. Solid forms of cenicriviroc mesylate and processes of making solid forms of cenicriviroc mesylate
JP6950169B2 (ja) * 2016-11-16 2021-10-13 住友ゴム工業株式会社 タイヤ用ゴム組成物及びタイヤ
WO2018147342A1 (ja) * 2017-02-09 2018-08-16 日本製紙株式会社 ゴム組成物およびその製造方法
US11981786B2 (en) * 2018-02-01 2024-05-14 Dow Toray Co., Ltd. Sponge-forming silicone rubber composition and silicone rubber sponge
JP2021001253A (ja) * 2019-06-20 2021-01-07 住友ゴム工業株式会社 ゴム・フィラー複合体の製造方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0412283B2 (ja) 1981-07-09 1992-03-04 Hoechst Ag
JPS6035007A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− ポリオレフインの密度及び分子量を調節するための方法と触媒
JPS6035006A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 反応器ブレンドポリオレフインの製造方法及びその触媒
JPS6035008A (ja) 1983-06-06 1985-02-22 エクソン・リサ−チ・アンド・エンジニアリング・カンパニ− 幅広い分子量分布を有するポリエチレンの製造方法及びその触媒
JPH03163088A (ja) 1989-08-31 1991-07-15 Dow Chem Co:The 第4族金属配位錯体
JPH05155930A (ja) 1991-05-31 1993-06-22 Mitsui Petrochem Ind Ltd オレフィン重合用触媒およびオレフィンの重合方法
US5272236A (en) 1991-10-15 1993-12-21 The Dow Chemical Company Elastic substantially linear olefin polymers
JP2019147877A (ja) 2018-02-27 2019-09-05 横浜ゴム株式会社 タイヤ用ゴム組成物
JP2020063327A (ja) * 2018-10-15 2020-04-23 日信工業株式会社 複合材料の製造方法及び複合材料
JP2021001292A (ja) * 2019-06-24 2021-01-07 住友ゴム工業株式会社 ナノセルロース・界面活性剤複合体

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Mokushitsu Kagaku Jikken Manual", 2000, pages: 92 - 97
See also references of EP4296077A4

Also Published As

Publication number Publication date
EP4296077A4 (en) 2024-05-29
TW202244163A (zh) 2022-11-16
EP4296077A1 (en) 2023-12-27
TWI840757B (zh) 2024-05-01
US20240124690A1 (en) 2024-04-18
KR20230129563A (ko) 2023-09-08
KR102650295B1 (ko) 2024-03-21
JP2024012361A (ja) 2024-01-30
JPWO2022177014A1 (ja) 2022-08-25
JP7374372B2 (ja) 2023-11-06
TW202432699A (zh) 2024-08-16

Similar Documents

Publication Publication Date Title
Liu et al. Bamboo fiber and its reinforced composites: structure and properties
Jonoobi et al. A comparison of modified and unmodified cellulose nanofiber reinforced polylactic acid (PLA) prepared by twin screw extrusion
Shojaeiarani et al. Esterified cellulose nanocrystals as reinforcement in poly (lactic acid) nanocomposites
JP7385625B2 (ja) 複合粒子及び樹脂組成物
Shih et al. Completely biodegradable composites reinforced by the cellulose nanofibers of pineapple leaves modified by eco-friendly methods
JPWO2019230970A1 (ja) 化学修飾されたセルロース微細繊維を含む高耐熱性樹脂複合体
JP2023053377A (ja) セルロース微細繊維強化ポリアミド樹脂成形体
JP6902510B2 (ja) 高靭性ポリアミド−セルロース樹脂組成物
Wu et al. Probing into the nucleation and reinforcing effects of poly (vinyl acetate) grafted cellulose nanocrystals in melt-processed poly (lactic acid) nanocomposites
WO2022177014A1 (ja) セルロースナノファイバーを含む組成物
JP2021187885A (ja) セルロース樹脂組成物及びその製造方法
WO2022177012A1 (ja) セルロースナノファイバーを含む組成物
JP2022169490A (ja) 乾燥体及びその製造方法、並びに樹脂組成物の製造方法
CN116783077A (zh) 包含纤维素纳米纤维的组合物
JP7450132B1 (ja) ゴム改質用マスターバッチ、及び水添共役ジエン系重合体組成物
JP2024144239A (ja) セルロースナノファイバーを含む組成物
JP7547659B2 (ja) ゴム改質用マスターバッチ、及び低分岐共役ジエン系重合体組成物
TWI847851B (zh) 橡膠改質用母料、及分枝共軛二烯系聚合物組合物
JP7581541B2 (ja) ゴム改質用マスターバッチ、及び分岐共役ジエン系重合体組成物
WO2024014546A1 (ja) 樹脂組成物及びその製造方法
JP2024030654A (ja) 天然ゴム改質用マスターバッチ、及びブロック共重合体組成物
JP2024030653A (ja) ゴム改質用マスターバッチ、及びブロック共重合体組成物
JP2024030651A (ja) 天然ゴム改質用マスターバッチ、及び低分岐共役ジエン系重合体組成物
JP2024030657A (ja) 天然ゴム改質用マスターバッチ、及び高分岐共役ジエン系重合体組成物
JP2024161154A (ja) ゴム改質用マスターバッチ、及び低分岐共役ジエン系重合体組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500964

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280009060.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18278133

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237028543

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237028543

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2022756331

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022756331

Country of ref document: EP

Effective date: 20230922