Nothing Special   »   [go: up one dir, main page]

WO2022176449A1 - 繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法 - Google Patents

繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法 Download PDF

Info

Publication number
WO2022176449A1
WO2022176449A1 PCT/JP2022/000874 JP2022000874W WO2022176449A1 WO 2022176449 A1 WO2022176449 A1 WO 2022176449A1 JP 2022000874 W JP2022000874 W JP 2022000874W WO 2022176449 A1 WO2022176449 A1 WO 2022176449A1
Authority
WO
WIPO (PCT)
Prior art keywords
kneading
screw
polybutylene terephthalate
terephthalate resin
mass
Prior art date
Application number
PCT/JP2022/000874
Other languages
English (en)
French (fr)
Inventor
敏之 田尻
勝 武塙
Original Assignee
三菱エンジニアリングプラスチックス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱エンジニアリングプラスチックス株式会社 filed Critical 三菱エンジニアリングプラスチックス株式会社
Priority to US18/262,683 priority Critical patent/US20240076455A1/en
Priority to JP2023500623A priority patent/JPWO2022176449A1/ja
Priority to CN202280015274.0A priority patent/CN116847963A/zh
Publication of WO2022176449A1 publication Critical patent/WO2022176449A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/86Component parts, details or accessories; Auxiliary operations for working at sub- or superatmospheric pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/006PBT, i.e. polybutylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/12Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles
    • B29K2105/122Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of short lengths, e.g. chopped filaments, staple fibres or bristles microfibres or nanofibers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0077Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0089Impact strength or toughness
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • C08G63/181Acids containing aromatic rings
    • C08G63/183Terephthalic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a method for producing a fiber-reinforced polybutylene terephthalate resin composition, and more specifically, a fiber-reinforced polybutylene terephthalate resin composition with higher productivity and higher strength than before by using a high-torque twin-screw extruder. It relates to a method of manufacturing a
  • Polybutylene terephthalate resin is widely used for various electrical and electronic parts, mechanical parts, automobile parts, etc., mainly for injection molding.
  • fiber-reinforced polybutylene terephthalate resin compositions containing reinforcing fibers such as glass fiber and carbon fiber are excellent in mechanical strength, heat resistance, chemical resistance, etc. is used as
  • fiber-reinforced polybutylene terephthalate resin compositions are strongly required to have higher mechanical strength than ever before.
  • a fiber-reinforced polybutylene terephthalate resin composition is usually produced using a twin-screw extruder.
  • twin-screw extruders improvements in plasticizing and kneading capabilities have been desired for many years.
  • an ultra-high torque extruder with an allowable shaft torque density of nearly 18 Nm/ cm3 for example, "TEX ⁇ III” manufactured by Japan Steel Works, Ltd.
  • TEX ⁇ III manufactured by Japan Steel Works, Ltd.
  • Patent Document 1 the productivity of glass fiber reinforced thermoplastic resin composition pellets is increased more than before, and the probability that an aggregate of monofilaments (unfibrillated glass fiber bundles) remains in the manufactured pellets is greatly reduced.
  • an invention is described which uses a single back-feeding screw element with an arc-shaped notched flight.
  • the conditions at that time are as follows: (i) the torque density, which is the value obtained by dividing the torque of the screw in the reverse feed screw element by the cube of the center-to-center distance between the meshing screws, is 11 Nm/cm 3 or more, and (ii) ) The Q/Ns density obtained by dividing the Q/Ns obtained by dividing the discharge amount Q by the screw rotation speed Ns by the cube of the center distance between the screws is defined as 0.013 kg/h/rpm/cm 3 .
  • Patent Document 1 describes the torque density in paragraph [0063]: "When the torque density is 11 (Nm/cm 3 ) or more, the filling rate of the material in the extruder increases, the energy density decreases, There is an effect that the temperature rise is low even if the number of revolutions is higher than before.In addition, the preferable range of torque density is 13 (Nm/cm 3 ) or more and 18 (Nm/cm 3 ) or less.” However, the example does not say what the torque density was, nor does it disclose how to achieve such a torque density.
  • Patent Document 1 "TEX44 ⁇ II (manufactured by Japan Steel Works) screw element cylinder diameter D is 0.047 m" is used as a twin-screw extruder, but the allowable axial torque density of TEX44 ⁇ II is 13 Nm/ cm3 . If it is higher than this, the screw shaft and gearbox will be damaged, so the torque density is usually 80% or less, so the torque density is at most 10.5 Nm/cm 3 . Moreover, at the time of filing of Patent Document 1, a twin-screw extruder with an ultra-high torque density as described above had not yet appeared in the world. Therefore, Patent Document 1 specifically discloses the conditions in a conventional low-torque extruder, and describes and suggests various problems that occur during ultra-high-torque operation, which is the target of the present invention. not, much less provide a solution.
  • the present inventors have found that production in the high torque range uses polybutylene terephthalate resin pellets having an average weight within a specific range as a raw material, and the kneading section has a specific screw configuration.
  • a method for producing a fiber-reinforced polybutylene terephthalate resin composition with a twin-screw extruder Using polybutylene terephthalate resin pellets with an average weight of 16 mg or more and 29 mg or less as the raw material of (A), A first step of kneading (A) and (C) in the first kneading unit, a second step of adding the (B) to the downstream part of the first kneading unit and kneading in the second kneading unit, the second kneading unit a third step of devolatilizing and extruding by depressurizing the vent downstream; The first kneading
  • the adhesion between the polybutylene terephthalate resin and the reinforcing fiber is enhanced and reinforced, while producing a high-torque region with a high discharge rate and a short residence time.
  • the effect of improving the strength by the fibers is extremely high, and since there is no deterioration of the resin, the strength is increased, and it is possible to perform this with high productivity.
  • the obtained polybutylene terephthalate resin composition has a Charpy impact strength of 9 kJ/m 2 or more and a tensile strength of 140 MPa or more, which has not been achieved in the high torque range.
  • the resin composition can be produced with extremely high productivity.
  • FIG. 2 is a conceptual diagram for explaining an example of screw configuration of an extruder used in Examples or Comparative Examples.
  • the method for producing a fiber-reinforced polybutylene terephthalate resin composition of the present invention includes (A) 40 to 90% by mass of polybutylene terephthalate resin, (B) 10 to 60% by mass of reinforcing fibers, and (C) other polymers or additives
  • a method for producing a fiber-reinforced polybutylene terephthalate resin composition consisting of 0 to 35% by mass (the total of each component is 100% by mass) using a twin-screw extruder Using polybutylene terephthalate resin pellets with an average weight of 16 mg or more and 29 mg or less as the raw material of (A), A first step of kneading (A) and (C) in the first kneading unit, a second step of adding the (B) to the downstream part of the first kneading unit and kneading in the second kneading unit, the second kneading unit a
  • the extruder used in the present invention is a vented twin-screw extruder, preferably an intermeshing co-rotating twin-screw extruder, having two co-rotating screws inside the barrel, and It is preferable that a kneading section composed of a plurality of kneading discs is provided in the middle of the screw so as to mesh with each other.
  • the vented twin-screw extruder consists of a raw material supply port, a vent port, a cylinder equipped with a jacket, and a die attached to the tip of the extruder. It has a supply port for supplying a polymer or an additive, a first kneading section, (B) a supply port for side-feeding reinforcing fibers, a second kneading section, and a vent section.
  • a first step of kneading the (A) and (C) in the first kneading unit a second step of adding the (B) to the downstream part of the first kneading unit and kneading it in the second kneading unit, and It is manufactured by a process including a third process of devolatilizing and extruding by reducing the pressure of the vent downstream of the second kneading section.
  • the above (A) and (C) are fed into the extruder from the raw material feed port, heated with a screw, kneaded and melted.
  • a first kneading section composed of a plurality of kneading discs is configured in the middle of the screw.
  • the first kneading section is a kneading section in which polybutylene terephthalate resin pellets, other polymers or additives are added and then kneaded, and means a kneading section before reinforcing fibers are added.
  • the screw configuration is configured by combining two or more of R kneading disc, N kneading disc, L kneading disc, L screw, seal ring, mixing screw, or rotor screw, and the length is 5.0 ⁇ 9.0D (D is the cylinder diameter).
  • the first kneading part is a kneading part in which polybutylene terephthalate resin pellets having an average weight of 16 to 29 mg, other polymers and additives are added and kneaded, and is a kneading part before reinforcing fibers are added.
  • This first kneading section may be integrated into one or may be divided into a plurality of sections. That is, the first kneading section may also be divided, and a feeding screw may be inserted between them. The key is to keep the total kneading section length in the range of 5.0-9.0D.
  • the R kneading disk (hereinafter also referred to as R) is a progressive kneading disk element, and usually has two or more blades, and preferably has a blade twist angle ⁇ of 10 to 75 degrees. By displacing the blades at a predetermined angle in this manner, a pseudo-screw structure is formed, and a strong shearing force is applied while feeding the resin in the feeding direction, thereby forming a kneading zone.
  • the L kneading disk (hereinafter also referred to as L) is a reverse kneading disk element, usually has two or more blades, and the blade twist angle ⁇ is from -10 degrees to -75 degrees. is preferred.
  • the reverse feeding kneading disk element is an element with a pressurization capability that acts to dam up the resin that is being sent and to send the resin that is being sent back. is dammed up and a strong kneading effect is exhibited.
  • the N kneading disc (hereinafter sometimes referred to as N) is an orthogonal kneading disc element, which usually has two or more blades and a twist angle ⁇ of the blades of 75 degrees to 105 degrees. Since the blades are installed with a shift of about 90 degrees, the power to send out the resin is weak, but the kneading power is strong.
  • the L screw is a reverse feed screw
  • the seal ring restricts the flow in the upstream part by the gaps in the seal ring part
  • the mixing screw is a screw element with a notch in the screw crest (flight part)
  • the rotor A screw is a screw element provided with one or more threads on its outer peripheral surface.
  • the R kneading disc, the N kneading disc, and the L kneading disc are preferable, and it is preferable to have a configuration in which a plurality of these are combined.
  • the screw configuration of the first kneading section in the first step is composed of a combination of two or more types of elements as described above, with an element that promotes kneading on the upstream side and an element with pressure-boosting capability on the downstream side. is preferred. Therefore, in the first kneading section, it is preferable to arrange two or more types selected from R, N, and L from the upstream side in the order of R ⁇ N ⁇ L, and a plurality of each R, N, and L are arranged. is also preferred. In particular, a configuration in which R is arranged upstream, then a plurality of Ns, and then Ls is preferred.
  • the screw length of the first kneading part is in the range of 5.0 to 9.0D, where D is the cylinder diameter. Within this range, the melt plasticization of the polybutylene terephthalate resin is sufficient, and decomposition of the resin composition can be suppressed. If the screw length of the first kneading section is shorter than 5.0D, the melt plasticization of the resin is insufficient due to insufficient shearing, and if it exceeds 9.0D, excessive kneading tends to cause local decomposition of the resin composition. and the mechanical properties of the composition are inferior.
  • vent After kneading and melting the polybutylene terephthalate resin in the first step, it is preferable to vent with a vent.
  • a sealing ring is preferably provided downstream of the vent.
  • the reinforcing fibers are side-fed from the supply port to the downstream portion of the first kneading section, and the reinforcing fibers and the melted polybutylene terephthalate resin are kneaded in the second kneading section.
  • the second kneading section means a kneading section in which reinforcing fibers enter, are opened, and are kneaded.
  • the screw configuration of the second kneading section is a configuration in which one or more of R kneading discs, N kneading discs, L kneading discs, L screws, seal rings, and mixing screws are combined.
  • a mixing screw particularly a forward notched mixing screw and a reverse notched mixing screw.
  • the screw length of the second kneading section is preferably in the range of 2.5 to 5.0D.
  • This second kneading section may be integrated into one or may be divided into a plurality of sections. That is, the second kneading section may be divided and a feeding screw may be inserted between them. It is preferable that the total length of the kneading section be in the range of 2.5 to 5.0D in any configuration.
  • the screw shaft torque density is defined as a value obtained by dividing the torque Nm required to drive one screw by the cube of the distance between screw shaft centers, and the unit is Nm/cm 3 . Even if extruders of different sizes are used for extrusion, if the torque density value is the same, the torque applied to the resin per unit volume will be the same.
  • a motor that drives the screw generates torque (Nm), which is transmitted to the screw shaft to carry out the work of conveying and melting the polybutylene terephthalate resin, conveying the reinforcing fibers, and opening the fibers.
  • this torque density represents the intensity of torque applied to the base of the screw shaft. The torque density decreases toward the tip of the screw and becomes almost zero at the tip of the screw.
  • the torque generated by the motor that drives the screw of the extruder is displayed on the control panel in units of % with respect to 100% of allowable screw torque.
  • 100% torque corresponds to a torque density of 17.6 Nm/cm 3 , so the torque density can be calculated from the percentage displayed during operation.
  • VVVF inverter control the value obtained by dividing the current value (A) by the rated current coincides with the torque % in the constant torque region.
  • the screw shaft torque density is 11.5 to 19 Nm/cm 3 , preferably 12.0 Nm/cm 3 or more, more preferably 12.5 Nm/cm 3 or more, and still more preferably 13 Nm/cm 3 or more. , preferably 18 Nm/cm 3 or less, more preferably 17 Nm/cm 3 or less.
  • the screw shaft torque density can be adjusted to such a range by controlling the feed amount of the raw material so as to achieve such a torque range.
  • polybutylene terephthalate resin pellets having an average weight of 16 mg or more and 29 mg or less are used as the raw polybutylene terephthalate resin under the above torque density conditions.
  • the average weight is preferably 18 mg or more, more preferably 19 mg or more, further preferably 20 mg or more, preferably 27 mg or less, more preferably 25 mg or less, further preferably 24 mg or more.
  • the average weight of the polybutylene terephthalate resin pellets is the number average weight of the pellets, specifically the average value (mg/piece) calculated for 100 arbitrary pellets. For example, non-pellet-shaped crushed materials, powders, and powdery materials generated during manufacturing, transportation, handling, etc. are not counted.
  • the resin temperature in the second step is preferably 280-320°C, particularly 290-310°C.
  • the resin temperature can be adjusted by appropriately adjusting the discharge rate to the extruder and screw rotation speed, by adjusting the screw configuration in the first step, or by setting the cylinder set temperature low in the second step.
  • the screw rotation speed of the twin-screw extruder is preferably 300-800 rpm, more preferably 400-700 rpm.
  • the discharge rate of TEX44 ⁇ III is preferably 450 to 650 kg/h, more preferably 480 to 630 kg/h.
  • the preferred range is a discharge amount proportional to the 2.5th power of the cylinder diameter ratio.
  • devolatilization is performed under reduced pressure at the downstream vent section, and the degree of vacuum at that time is preferably -0.097 MPa to -0.07 MPa.
  • degree of vacuum means gauge pressure.
  • the polybutylene terephthalate resin composition is extruded in a strand from an extrusion die at the tip of the extruder (extrusion step), and the strand temperature of the extruded resin composition is 290 to 310 ° C., particularly 295 to 310 ° C. is preferred.
  • the shape of the extrusion die is not particularly limited, and known ones are used. Although the diameter of the die hole depends on the desired size of the pellet, it is usually about 2 to 5 mm, preferably about 3 to 4 mm.
  • the strand is taken up by take-up rollers, contacted with water and cooled.
  • the contact with water may be cooled by being conveyed in water stored in a cooling water tank, or by spraying water on the strand and contacting it with water to cool it, and the strand may be cooled by a mesh belt conveyor.
  • a method of pulling and pouring water there by a water discharge device may be used. The shorter the time from when the strand is extruded from the die to when it is cooled with water or when it enters the water, the better. Usually, it should enter the water within 1 second after being extruded from the die.
  • the cooled strands are sent to a pelletizer by take-up rollers and cut into pellets.
  • the resulting polybutylene terephthalate resin composition (pellets) has extremely high strength.
  • the notched Charpy impact strength is preferably 9 kJ/m 2 or more, more preferably 9.5 kJ/m 2 or more, especially 10 kJ/m 2 or more, particularly 10.5 kJ/m 2 or more.
  • the strength is preferably 140 MPa or higher, more preferably 145 MPa or higher, especially 150 MPa or higher, particularly 155 MPa or higher.
  • the notched Charpy impact strength is measured according to ISO179-1,2, and the tensile strength is measured according to ISO527. Details of these specific measurement methods are as described in Examples.
  • Polybutylene terephthalate resin is a polyester resin having a structure in which terephthalic acid units and 1,4-butanediol units are ester-linked, and in addition to polybutylene terephthalate resin (homopolymer), terephthalic acid units and 1 ,4-butanediol units, polybutylene terephthalate copolymers containing other copolymerization components, and mixtures of homopolymers and such copolymers.
  • the polybutylene terephthalate resin may contain dicarboxylic acid units other than terephthalic acid, and specific examples of other dicarboxylic acids include isophthalic acid, orthophthalic acid, 1,5-naphthalenedicarboxylic acid, and 2,5-naphthalenedicarboxylic acid.
  • Aromatic dicarboxylic acids such as methane, anthracenedicarboxylic acid and 4,4'-diphenyl ether dicarboxylic acid, alicyclic dicarboxylic acids such as 1,4-cyclohexanedicarboxylic acid and 4,4'-dicyclohexyldicarboxylic acid, and adipine acids, sebacic acid, azelaic acid, aliphatic dicarboxylic acids such as dimer acid, and the like.
  • the diol unit may contain other diol units in addition to 1,4-butanediol, and specific examples of other diol units include aliphatic or alicyclic diols having 2 to 20 carbon atoms. , bisphenol derivatives and the like. Specific examples include ethylene glycol, propylene glycol, 1,5-pentanediol, 1,6-hexanediol, neopentyl glycol, decamethylene glycol, cyclohexanedimethanol, 4,4′-dicyclohexylhydroxymethane, 4,4 '-dicyclohexylhydroxypropane, ethylene oxide-added diol of bisphenol A, and the like.
  • trifunctional monomers such as trimellitic acid, trimesic acid, pyromellitic acid, pentaerythritol, and trimethylolpropane for introducing a branched structure, and fatty acids for molecular weight adjustment.
  • trimellitic acid trimesic acid
  • pyromellitic acid pyromellitic acid
  • pentaerythritol trimethylolpropane
  • trimethylolpropane for introducing a branched structure
  • fatty acids for molecular weight adjustment.
  • a small amount of monofunctional compound can also be used together.
  • the polybutylene terephthalate resin is preferably a polybutylene terephthalate homopolymer obtained by polycondensation of terephthalic acid and 1,4-butanediol. , a polybutylene terephthalate copolymer containing one or more dicarboxylic acids other than terephthalic acid and/or one or more diols other than 1,4-butanediol as diol units, and a polybutylene terephthalate resin
  • specific preferred copolymers thereof include polyester ether resins obtained by copolymerizing polyalkylene glycols, particularly polytetramethylene glycol, and dimer acid copolymers.
  • Examples include polybutylene terephthalate resin and isophthalic acid-copolymerized polybutylene terephthalate resin.
  • these copolymers refer to those having a copolymerization amount of 1 mol % or more and less than 50 mol % in all segments of the polybutylene terephthalate resin.
  • the copolymerization amount is preferably 2 mol % or more and less than 50 mol %, more preferably 3 to 40 mol %, particularly preferably 5 to 20 mol %.
  • the polybutylene terephthalate resin preferably has an intrinsic viscosity IV in the range of 0.72 to 0.83 dl/g. With such a low intrinsic viscosity, the resin temperature under high torque density is 290 to 310 ° C., which is easy to control at a temperature where the adhesion strength with the reinforcing fiber is high and the strength reduction due to resin deterioration is unlikely to occur. was found. If the intrinsic viscosity is less than 0.72 dl/g, the adhesiveness to the reinforcing fibers tends to be insufficient, and if it exceeds 0.83 dl/g, heat is likely to be generated, resin deterioration tends to occur, and strength tends to decrease.
  • the intrinsic viscosity is more preferably 0.73 dl/g or more, and more preferably 0.82 dl/g or less.
  • the intrinsic viscosity of the polybutylene terephthalate resin is a value measured in a 1:1 (mass ratio) mixed solvent of tetrachloroethane and phenol with a Ubbelohde viscometer at a Huggins constant of 0.33 and a temperature of 30°C. is.
  • the reinforcing fiber may be an organic reinforcing fiber or an inorganic reinforcing fiber, but is preferably an inorganic reinforcing fiber, preferably a glass fiber, a carbon fiber, an alumina fiber, a boron fiber, a ceramic fiber, or the like. Fibers or carbon fibers are more preferred, and glass fibers are particularly preferred.
  • the type of glass fiber is not particularly limited, and examples include glass fibers such as E glass, C glass, A glass, and S glass. Among these, E-glass fibers are preferred because they do not adversely affect the thermal stability of the polybutylene terephthalate resin.
  • the average fiber diameter of the glass fiber is not particularly limited, it is preferably selected in the range of 1 to 100 ⁇ m, more preferably 2 to 50 ⁇ m, still more preferably 3 to 30 ⁇ m, and particularly preferably 5 to 20 ⁇ m. Glass fibers with an average fiber diameter of less than 1 ⁇ m are not easy to manufacture and may be costly, while glass fibers with an average fiber diameter of more than 100 ⁇ m may have reduced tensile strength.
  • the fiber cross section may be circular or flat.
  • the glass fiber may have a circular cross section or a flattened fiber cross section, but it is preferable that the fiber cross section has a substantially circular cross section with a fiber cross section flattening ratio (major axis/minor axis) of 1 to 1.5. preferable.
  • the oblateness is preferably 1 to 1.4, more preferably 1 to 1.2, and particularly preferably 1 to 1.1.
  • the average fiber length of the raw glass fiber is not particularly limited, it is preferably 1 to 10 mm, more preferably 1.5 to 6 mm, and even more preferably 2 to 5 mm. If the average fiber length of the raw material glass fibers is less than 1 mm, the reinforcing effect may not be sufficiently exhibited, and if it exceeds 10 mm, molding of the resulting resin composition may become difficult.
  • the glass fiber to be used can be surface-treated with a coupling agent such as aminosilane or epoxysilane for the purpose of improving the adhesion to the polybutylene terephthalate resin.
  • a coupling agent such as aminosilane or epoxysilane
  • the coupling agent include chlorosilane compounds such as vinyltrichlorosilane and methylvinyldichlorosilane; alkoxysilane compounds such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, and ⁇ -methacryloxypropyltrimethoxysilane.
  • epoxysilane compounds such as ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane and ⁇ -glycidoxypropyltrimethoxysilane, acrylic compounds, isocyanate compounds, titanate compounds, epoxy compounds, etc. can be mentioned.
  • the raw glass fiber is a chopped strand (chopped glass fiber) obtained by cutting a large number of these fibers into a predetermined length, and at this time, the glass fiber is blended with a sizing agent.
  • the glass fiber sizing agent is not particularly limited, and examples thereof include resin emulsions such as vinyl acetate resins, ethylene-vinyl acetate copolymers, acrylic resins, epoxy resins, polyurethane resins, polyester resins, etc., preferably. They are acrylic resin, epoxy resin, and polyurethane resin.
  • the amount of reinforcing fibers is 10 to 60% by mass based on the total 100% by mass of (A) polybutylene terephthalate resin, (B) reinforcing fibers and (C) other polymers or additives.
  • A polybutylene terephthalate resin
  • B reinforcing fibers
  • C other polymers or additives.
  • the strength of the resin composition is high, and the resin composition can be excellent in appearance and fluidity during molding. If the content is less than 10% by mass, the reinforcing effect is not sufficient, and if it exceeds 60% by mass, the appearance and impact resistance are poor, and the fluidity of the resin composition tends to be insufficient.
  • additives include polymers other than polybutylene terephthalate resin and/or various additives.
  • additives include various resin additives such as flame retardants, flame retardant auxiliaries, stabilizers, antioxidants, release agents, ultraviolet absorbers, weather stabilizers, lubricants, dyes and pigments, etc. agents, catalyst deactivators, antistatic agents, foaming agents, plasticizers, crystal nucleating agents, crystallization accelerators, and the like.
  • resins include, for example, polyethylene terephthalate resin, polytrimethylene terephthalate resin; polycarbonate resin; polyolefin resin such as polyethylene resin and polypropylene resin; polyamide resin; polyimide resin; polysulfone resin; polymethacrylate resin, and the like.
  • one type of other resin may be contained, or two or more types may be contained in any combination and ratio.
  • the amount of (C) other polymers or additives is 0 to 35% by mass, preferably 5 to 30% by mass, based on the total 100% by mass of (A) to (C).
  • Polybutylene terephthalate resin is known to be blended with amorphous resin in order to suppress molecular orientation due to crystallization of polybutylene terephthalate resin.
  • a resin composition containing a styrene polymer has a lower viscosity than a polybutylene terephthalate resin alone, making it difficult to defibrate the reinforcing fibers and causing poor dispersion.
  • the adhesiveness is poor and the strength of the resin composition is not obtained.
  • there is a method of reducing the discharge rate and prolonging the kneading time but this reduces the production amount.
  • the styrene polymer has a low viscosity, so the reinforcing fibers cannot be sufficiently defibrated. It is particularly effective because it enables products to be manufactured with high productivity.
  • the styrenic polymer it is preferable to use one having a melt viscosity of 70 to 1000 pa ⁇ s, particularly 70 to 500 pa ⁇ s at 250° C. and 912 sec ⁇ 1 .
  • a melt viscosity ( ⁇ B ) By blending a styrene-based polymer with such a melt viscosity ( ⁇ B ), a fiber-reinforced polybutylene terephthalate resin composition with high productivity, excellent production stability, low molding shrinkage, and high strength can be produced. can do.
  • the polystyrene-based polymer has the effect of lowering the viscosity in the high shear region, and has the effect of facilitating impregnation of the resin into the reinforcing fiber bundles in the second kneading section (fiber spreading section) of the extruder. Therefore, the adhesion strength between the fiber surface and the resin can be strengthened.
  • the melt viscosity can be measured according to ISO 11443 using a capillary rheometer and a slit die rheometer. Specifically, using an orifice with a capillary diameter of 1 mm and a capillary length of 30 mm, a furnace body with an inner diameter of 9.5 mm heated to 250 ° C. was pressed at a piston speed of 75 mm / min. Viscosity can be calculated.
  • styrene polymers include homopolymers of styrene, graft copolymers obtained by polymerizing styrene in the presence of rubber, copolymers of styrene and (meth)acrylonitrile, and styrene and (meth)acrylic acid alkyl esters. copolymers, copolymers of styrene, (meth)acrylonitrile and other copolymerizable monomers, graft copolymers obtained by graft polymerization of styrene and (meth)acrylonitrile in the presence of rubber, etc. are mentioned.
  • polystyrene general-purpose polystyrene, GPPS
  • impact-resistant polystyrene high-impact polystyrene, HIPS
  • acrylonitrile-styrene copolymer AS resin
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • SBS resin Styrene-butadiene-styrene copolymer
  • hydrogenated SBS hydrogenated styrene-butadiene-styrene copolymer
  • hydrogenated SBS hydrogenated styrene-isoprene-styrene copolymer
  • SEPS hydrogenated styrene-maleic anhydride copolymer coalescence
  • SMA resin acrylonitrile-styrene-acrylic rubber copolymer
  • ASA resin acrylonitrile-styrene-acrylic rubber copolymer
  • MFS resin methyl methacrylate-buta
  • AS resin acrylonitrile-styrene copolymer
  • GPPS polystyrene
  • HIPS high-impact polystyrene
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • AS resin polystyrene
  • HIPS high-impact polystyrene
  • ABS resin acrylonitrile-butadiene-styrene copolymer
  • a styrene-based elastomer can also be used as the styrene-based polymer.
  • a styrene-based elastomer a block copolymer composed of a polymer block containing a vinyl aromatic compound as a polymerization component and a polymer block containing a conjugated diene as a polymerization component, and a hydrogenated product thereof are preferable.
  • vinyl aromatic compound constituting the vinyl aromatic hydrocarbon polymer block examples include styrene, ⁇ -methylstyrene, o-methylstyrene, p-methylstyrene, pt-butylstyrene, 1,3-dimethylstyrene, Styrene such as lower alkyl-substituted styrene, vinylnaphthalene, and vinylanthracene, and derivatives thereof. These can be used individually by 1 type, and can also be used in combination of 2 or more types.
  • Conjugated dienes constituting the conjugated diene block include butadiene, isoprene, 1,3-pentadiene, 2,3-dimethyl-1,3-butadiene, and the like.
  • Styrenic polymers may be used singly or in combination of two or more.
  • the amount of the styrenic polymer is preferably 5 to 30% by mass based on 100% by mass of the total of (A) to (C).
  • the polybutylene terephthalate resin composition produced by the method of the present invention can be molded with extremely high strength, it can fully satisfy the required performance of weight reduction, thin wall thickness, and strength. , computers and other OA equipment fields, precision equipment fields, optical equipment fields, automobile fields, and other various industrial fields.
  • the screw configurations used in the examples and comparative examples are the following screws 1 to 4 for the first kneading section and the following screws 1 to 3 for the second kneading section.
  • First kneading section screw 1 RNNNNL length 5.62D Screw 2: RNNNNNNNL length 7.48D Screw 3: RNNNNNNNNNL length 9.36D Screw 4: RNNNL length 4.68D
  • Each of the above kneadings has two flights and a length of 44 mm.
  • Second kneading section screw 1 Four reverse feed mixing screws length 44 mm Total length 176 mm (3.74 D) Screw 2: Reverse feeding mixing screw length 44 mm 6 total length 264 mm (5.62 D) Screw 3: Reverse feed mixing screw length 44 mm 2 pieces Total length 88 mm (1.87 D)
  • FIG. 1 is a conceptual diagram for explaining an example of screw configuration of an extruder used in Examples or Comparative Examples.
  • a hopper was installed at position C1, and polybutylene terephthalate resin pellets shown in Table 2 and below were supplied and transported by an R screw.
  • the first kneading section is located at the cylinder C6 and is composed of any one of the screws 1 to 4 shown in the table below. Kneading in the first kneading section, side-feeding glass fibers from C8 in an amount of 30% by mass, and the second consisting of any of the screws 1 to 3 described in the table below at positions C9 to C11 Knead in the kneading section.
  • the screw rotation speed, discharge rate and torque ( % with respect to 100% torque) are as shown in the table.
  • the table shows the shaft torque density of the screw shaft connection at the base of the extruder and the resin temperature of the strand immediately after extrusion.
  • the shaft torque density applied to the screw shaft was obtained by multiplying the allowable screw torque of 17.6 Nm/cm 3 by the measured torque (%).
  • the obtained pellets were molded into test piece type A (170 mm ⁇ 10 mm, thickness 4 mm) according to ISO294-1.
  • test piece type A (170 mm ⁇ 10 mm, thickness 4 mm) according to ISO294-1.
  • notched Charpy impact strength (unit: KJ/m 2 ) was determined according to ISO179-1 and 2
  • tensile strength (unit: MPa) was determined according to ISO527.
  • the intrinsic viscosity of the polybutylene terephthalate resin in the obtained pellets was measured by the following method.
  • the intrinsic viscosity was measured by the method described above with an Ubbelohde viscometer.
  • the pellets containing glass fibers were once melted in the mixed solvent and then filtered to remove only the glass fibers, and the filtered solution was measured for intrinsic viscosity.
  • Example 1-1 PBT1A is 35% by mass, PBT2A is 35% by mass (arithmetic average intrinsic viscosity IV is 0.775 dl / g), the screw configuration of the first kneading unit is screw 1, and the screw configuration of the second kneading unit is screw 1 Then, pellets were produced at a screw rotation speed of 500 rpm and a discharge rate of 600 kg/h. The extrusion was stable with no broken strands. (Example 1-2) The procedure was carried out in the same manner as in Example 1-1 except that the screw structure of the first kneading section was changed to screw 2.
  • Example 2-1, 2-2, Comparative Examples 2-1, 2-2 Examples 1-1 and 1-2, Comparative Examples 1-1 and 1-2 except that PBT1A was 56% by mass, PBT2A was 14% by mass, and the arithmetic average intrinsic viscosity was 0.82 dl / g. I did the same.
  • the results are shown in Table 4 below.
  • Example 3-1, 3-2, Comparative Examples 3-1, 3-2 Examples 1-1 and 1-2, Comparative Examples 1-1 and 1-2 except that PBT1A was 14% by mass, PBT2A was 56% by mass, and the arithmetic average intrinsic viscosity was 0.73 dl / g. I did the same.
  • the results are shown in Table 5 below.
  • Example 4-1 Examples 4-1, 4-2, Comparative Examples 4-1, 4-2)
  • PBT1A was 70% by mass and the intrinsic viscosity was 0.85 dl/g.
  • Table 6 The results are shown in Table 6 below.
  • Example 5-1, 5-2, Comparative Examples 5-1, 5-2 The same procedures as in Examples 1-1 and 1-2 and Comparative Examples 1-1 and 1-2 were performed except that PBT2A was 70% by mass and the intrinsic viscosity was 0.70 dl/g. The results are shown in Table 7 below.
  • Example 1-3 The procedure was carried out in the same manner as in Example 1-1 except that the screw structure of the second kneading section was changed to screw 2.
  • Example 1-4 The procedure was carried out in the same manner as in Example 1-1, except that the screw structure of the second kneading section was changed to screw 3. At this time, the strand broke once every two minutes, and it was found that there was a slight problem in productivity. It is possible that the screw configuration was weak and the opening property of the glass fibers was insufficient. The results are shown in Table 8 below.
  • Example 6-1, 6-2, Comparative Example 6-1, Comparative Example 6-2 Examples 1-1, 1-2, Comparative Example 1 except that PBT1A was 30% by mass, PBT2A was 30% by mass, the arithmetic average intrinsic viscosity was 0.775 dl / g, and 10% by mass of AS resin was added. -1 and Comparative Example 1-2. The results are shown in Table 9 below.
  • Example 10-1 The procedure was carried out in the same manner as in Example 3-2 except that PBT1A used in Example 3-2 was changed to PBT1B and PBT2A was changed to PBT2B.
  • Comparative Example 10-2 The procedure was carried out in the same manner as in Example 3-2 except that PBT1A used in Example 3-2 was changed to PBT1C and PBT2A to PBT2C. The results are shown in Table 13 below.
  • Example 11-1 The procedure was carried out in the same manner as in Example 6-2 except that PBT1A used in Example 6-2 was changed to PBT1B and PBT2A was changed to PBT2B.
  • Comparative Example 11-2 The procedure was carried out in the same manner as in Example 6-2 except that PBT1A used in Example 6-2 was changed to PBT1C and PBT2A to PBT2C. The results are shown in Table 14 below.
  • a fiber-reinforced polybutylene terephthalate resin composition having excellent mechanical strength can be produced with a high degree of productivity, and molded articles made from it can be made to have the required performance of weight reduction, thin wall thickness, and strength. can be fully satisfied, and it can be used in a wide range of applications such as parts in the fields of automobiles, electrical and electronic equipment, and precision machinery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

(A)ポリブチレンテレフタレート樹脂40~90質量%、(B)強化繊維10~60質量%、及び(C)その他のポリマーまたは添加剤0~35質量%からなる繊維強化ポリブチレンテレフタレート樹脂組成物を二軸押出機で製造する方法であって、 (A)の原料として平均重量が16~29mgのポリブチレンテレフタレート樹脂ペレットを用い、(A)と(C)を第1混練部で混練する第1工程、第1混練部の下流部に前記(B)を添加し第2混練部で混練する第2工程、第2混練部の下流部でベントを減圧にして脱揮し押出する第3工程、を含み、第1混練部は特定のスクリュー構成からなる、長さが5.0~9.0Dの構成からなり、前記第2混練部は特定のスクリュー構成よりなり、スクリュー軸トルク密度が11.5~19Nm/cmの条件で製造することを特徴とする繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法。

Description

繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法
 本発明は、繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法に関し、詳しくは、高トルクの二軸押出機を用いて、高い生産性で、従来よりも高い強度の繊維強化ポリブチレンテレフタレート樹脂組成物を製造する方法に関する。
 ポリブチレンテレフタレート樹脂は、射出成形用を中心として各種電気電子部品、機械部品および自動車部品などに広く使用されている。特にガラス繊維、炭素繊維等に代表される強化繊維を配合した繊維強化ポリブチレンテレフタレート樹脂組成物は、機械的強度、耐熱性、耐薬品性等に優れ、自動車分野、電気電子機器分野等の部品として利用されている。
 しかし、最近の部品の小型化、薄肉化、軽量化の進行に伴い、繊維強化ポリブチレンテレフタレート樹脂組成物はこれまで以上の高い機械的強度を有することが強く求められている。
 繊維強化ポリブチレンテレフタレート樹脂組成物は、通常、二軸押出機により製造される。二軸押出機は生産能力の向上のため、長年、可塑化能力、混練能力の向上が希求されてきた。そして、最近になり許容軸トルク密度が18Nm/cm近くに達するような超高トルクの押出機(例えば、日本製鋼所社製「TEXαIII」等)が開発され、これまでにない高トルク領域での生産が可能となり、それによりこれまでにない高い吐出量が可能となってきた。
 しかしながら、このような超高トルク押出機を用いると樹脂の滞留時間は短くなり、樹脂温度が上昇し難くなり、ガラス繊維等の強化繊維との密着力が低下し、機械的強度が低下してしまう課題があることが判明した。
 特許文献1には、ガラス繊維強化熱可塑性樹脂組成物ペレットの生産性を従来よりも高めるとともに、製造されたペレット中にモノフィラメントの集合体(未解繊ガラス繊維束)が残存する確率を非常に低くすることを目的として、円弧状の切り欠きが形成されたフライト部を有する一条の逆送りスクリューエレメントを使用する発明が記載されている。そして、その際の条件を、(i)逆送りスクリューエレメントにおけるスクリューのトルクを噛み合うスクリュー間の芯間距離の3乗で除した値であるトルク密度を11Nm/cm以上とし、且つ、(ii)吐出量Qをスクリュー回転数Nsで除したQ/Nsをスクリュー間の芯間距離の3乗で除したQ/Ns密度を0.013kg/h/rpm/cmとすると規定されている。
 しかしながら、特許文献1にはトルク密度については、段落[0063]に「トルク密度が11(Nm/cm)以上になることで、押出機内の材料の充満率が高まり、エネルギー密度が小さくなり、回転数を、従来より高くしても温度上昇が低いという効果がある。また、好ましいトルク密度の範囲は13(Nm/cm)以上18(Nm/cm)以下である。」と記載されているだけで、その実施例にはトルク密度がいくつであったかは一切記載されておらず、どのようにしてこのようなトルク密度を実現するか開示されていない。特許文献1の実施例では二軸押出機として「TEX44αII(日本製鋼所製)スクリューエレメントのシリンダー径Dが0.047m」を使用しているが、TEX44αIIの許容軸トルク密度は13Nm/cmであり、これ以上ではスクリュー軸やギアボックスが損傷するので、通常80%以下のトルク密度で運転されるため、トルク密度は高くてもせいぜい10.5Nm/cmである。
 また、前記したような超高トルク密度の二軸押出機は特許文献1の出願当時には未だ世の中には出現していなかった。そのため特許文献1が具体的に開示しているのは従来の低トルク押出機での条件であって、本発明が対象とする超高トルク運転の際に発現する各種の課題についての記載や示唆はなく、ましてその解決策を提供するものではない。
特開2012-213997公報
 繊維強化ポリブチレンテレフタレート樹脂組成物を、超高トルクの押出機を使用して高トルク密度下で製造する場合には、滞留時間が短くなるので樹脂温度が上がり難く、その為強化繊維との密着性が不十分となり得られた樹脂組成物の強度が上がらないという問題が発現することが見出された。樹脂温度を上げるには吐出量を下げて混練時間を長くすることが考えられるが、生産量が低下するので、超高トルクの押出機を使用する意義がなくなってしまう。
 本発明は、上記したような課題に鑑みてなされたもので、超高トルク押出機を用いて、高い生産性で、従来よりも高い強度の繊維強化ポリブチレンテレフタレート樹脂(ペレット)を製造することを目的とする。
 本発明者は上記課題を解決するため鋭意検討した結果、高トルク領域での生産を、平均重量が特定の範囲にあるポリブチレンテレフタレート樹脂ペレットを原料として用い、混練部を、特定のスクリュー構成と長さのスクリューとする第1混練部と、特定のスクリュー構成の第2混練部とし、スクリュー軸トルク密度を11.5~19Nm/cmの条件で製造することにより、一定以上の樹脂温度を確保し、ポリブチレンテレフタレート樹脂と強化繊維との密着性を高め、強化繊維による強度向上をより強固にし、解繊され分散した強化繊維の繊維長の低下を少なく抑え、また樹脂の劣化がない状態で、これを高い生産性で行うことが可能となり、高い強度の繊維強化ポリブチレンテレフタレート樹脂を製造することができることを見出した。
 具体的には、下記の方法により、上記課題は解決される。
1.(A)ポリブチレンテレフタレート樹脂40~90質量%、(B)強化繊維10~60質量%、及び(C)その他のポリマーまたは添加剤0~35質量%(各成分の合計は100質量%)からなる繊維強化ポリブチレンテレフタレート樹脂組成物を二軸押出機で製造する方法であって、
 (A)の原料として平均重量が16mg以上29mg以下のポリブチレンテレフタレート樹脂ペレットを用い、
 (A)と(C)を第1混練部で混練する第1工程、第1混練部の下流部に前記(B)を添加し第2混練部で混練する第2工程、第2混練部の下流部でベントを減圧にして脱揮し押出する第3工程、を含み、
 第1混練部は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリュー、またはロータスクリューのうちの2種以上を組み合わせた、長さが5.0~9.0D(Dはシリンダー径)の構成からなり、
 前記第2混練部は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリューのうち1種または2種以上を組み合わせた構成よりなり、
 スクリュー軸トルク密度が11.5~19Nm/cmの条件で製造することを特徴とする繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法。
2.前記(C)が、(A)~(C)の合計100質量%基準で、5~30質量%のスチレン系ポリマーを含有する上記1に記載の製造方法。
3.第3工程で押し出された直後の樹脂のストランドの温度が290~310℃である上記1または2に記載の製造方法。
4.(A)ポリブチレンテレフタレート樹脂の固有粘度が0.72~0.83dl/gである上記1~3のいずれかに記載の製造方法。
5.第2混練部の総計の長さが2.5D以上、5.0D以下である上記1~4のいずれかに記載の製造方法。
6.得られる樹脂組成物のISO179-1,2によるノッチ付きシャルピー衝撃強度が、9kJ/m以上である上記1~5のいずれかに記載の製造方法。
7.得られる樹脂組成物のISO527による引張強度が、140MPa以上である上記1~6のいずれかに記載の製造方法。
8.スクリュー軸トルク密度が13~19Nm/cmである上記1~7のいずれかに記載の製造方法。
 本発明の繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法によれば、高トルク領域で高吐出量で滞留時間の短い生産でありながら、ポリブチレンテレフタレート樹脂と強化繊維との密着性を高め、強化繊維による強度向上効果が極めて高くなり、また樹脂の劣化がないのでより高い強度となり、しかもこれを高い生産性で行うことが可能となる。そして、得られたポリブチレンテレフタレート樹脂組成物は、シャルピー衝撃強度で9kJ/m以上、引張強度で140MPa以上というような、今まで高トルク領域下の運転では達成できなかったような高強度の樹脂組成物を極めて高い生産性で製造することができる。
実施例又は比較例で使用した押出機のスクリュー構成の例を説明するための概念図である。
 以下、本発明について実施形態及び例示物等を示して詳細に説明するが、本発明は以下に示す実施形態及び例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。なお、本明細書において、「~」は、その前後に記載される数値を下限値および上限値として含む意味で使用される。
 本発明の繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法は、(A)ポリブチレンテレフタレート樹脂40~90質量%、(B)強化繊維10~60質量%、及び(C)その他のポリマーまたは添加剤0~35質量%(各成分の合計は100質量%)からなる繊維強化ポリブチレンテレフタレート樹脂組成物を二軸押出機で製造する方法であって、
 (A)の原料として平均重量が16mg以上29mg以下のポリブチレンテレフタレート樹脂ペレットを用い、
 (A)と(C)を第1混練部で混練する第1工程、第1混練部の下流部に前記(B)を添加し第2混練部で混練する第2工程、第2混練部の下流部でベントを減圧にして脱揮し押出する第3工程、を含み、
 第1混練部は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリュー、またはロータスクリューのうちの2種以上を組み合わせた、長さが5.0~9.0D(Dはシリンダー径)の構成からなり、
 前記第2混練部は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリューのうち1種または2種以上を組み合わせた構成よりなり、
 スクリュー軸トルク密度が11.5~19Nm/cmの条件で製造することを特徴とする。
 本発明で使用する押出機は、ベント式二軸押出機であり、好ましくは噛合い型同方向回転二軸スクリュー押出機で、バレル内部に同方向に回転する二本のスクリューを有し、そのスクリュー途中には、複数枚のニーディングディスクによって構成される混練部が相互に噛み合う形態で設けられているものが好ましい。
 ベント式二軸押出機は、原料供給口、ベント口、ジャケットを備えたシリンダー、押出機先端に取り付けられたダイ部から構成され、(A)原料ポリブチレンテレフタレート樹脂のペレット及び(C)その他のポリマーまたは添加剤を供給する供給口、第1混練部、(B)強化繊維をサイドフィードする供給口、次いで第2混練部、ベント部を有する。そして、前記(A)、(C)を第1混練部で混練する第1工程、第1混練部の下流部に前記(B)を添加し第2混練部で混練する第2工程、及び、第2混練部の下流部でベントを減圧にして脱揮し押出する第3工程を含む工程により製造される。
 第1工程では、前記(A)、(C)を原料供給口から押出機内に供給してスクリューで加熱、混練して溶融化させる。スクリュー途中には、複数枚のニーディングディスクによって構成される第1混練部が構成される。第1混練部は、ポリブチレンテレフタレート樹脂ペレット、その他のポリマーまたは添加剤を入れた後に混練する混練部であり、強化繊維が入る前までの混練部を意味する。そのスクリュー構成は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリュー、またはロータスクリューのうちの2種以上を組み合わせて構成され、長さは5.0~9.0D(Dはシリンダー径)とする。第1混練部は、平均重量が16~29mgであるポリブチレンテレフタレート樹脂ペレット、その他ポリマーや添加剤を入れた後に混練する混練部であり、強化繊維が入る前までの混練部である。
 この第1混練部は、1つにまとめられていてもよいし、複数に分割されていてもよい。即ち、第1混練部も分割し、その間に送りのスクリューを入れてもよい。重要なのは合計の混練部長さを5.0~9.0Dの範囲にすることである。
 Rニーディングディスク(以下、Rと称することもある。)は順送りニーディングディスクエレメントであり、通常羽根が2枚以上で、その羽根ねじれ角度θは10度から75度であることが好ましい。このように羽根を所定角度ずらして設置していくことにより擬似スクリュー構造を形成し樹脂を送り方向に送り出しつつ強いせん断力を加え、混練を行うゾーンとなる。
 Lニーディングディスク(以下、Lと称することもある。)は逆送りニーディングディスクエレメントであり、通常羽根が2枚以上で、かつ羽のねじれ角度θが-10度から-75度であることが好ましい。逆送りニーディングディスクエレメントは、送られてくる樹脂を堰止めたり、送られてくる樹脂を送り戻す方向に働く昇圧能力のあるエレメントであり、混練を促進するエレメントの下流側に設けることにより樹脂を堰きとめ、強力な混練効果を発揮させるものである。
 Nニーディングディスク(以下、Nと称することもある。)は、直交ニーディングディスクエレメントであり、通常羽根が2枚以上で、かつ羽根のねじれ角度θが75度から105度である。羽根が略90度ずらして設置されているため樹脂を送り出す力は弱いが混練力は強い。
 Lスクリューは逆送りスクリューであり、シールリングはシールリング部の各隙間によって上流部の流れを制限するものであり、ミキシングスクリューはスクリューの山(フライト部)を切り欠いたスクリューエレメントであり、ロータスクリューは1条または複数の条が外周面上に設けられたスクリューエレメントである。
 これらに中では、Rニーディングディスク、Nニーディングディスク、Lニーディングディスクが好ましく、これらを複数組み合わせた構成とすることが好ましい。
 第1工程の第1混練部のスクリュー構成は、前記した2種以上のエレメントの組合せで構成されるが、混練を促進するエレメントを上流側に、昇圧能力のあるエレメントを下流側に配置されることが好ましい。したがって、第1混練部では、上流側からR、N及びLから選ばれる2種以上を、R→N→Lの順で配置するのが好ましく、各R、N及びLは複数個配置することも好ましい。特に上流にR、次いで複数個のN、そのあとにLを配置する構成が好ましい。
 第1混練部のスクリュー長さは、シリンダー径をDとすると、5.0~9.0Dの範囲にする。このような範囲にあることで、ポリブチレンテレフタレート樹脂の溶融可塑化は十分となり、樹脂組成物の分解の発生も抑止することができる。第1混練部のスクリュー長さが5.0Dより短いと、剪断不足により樹脂の溶融可塑化が不十分となり、9.0Dを超えると過剰混練により局部的な樹脂組成物の分解が進行する傾向にあり、組成物の機械物性が劣ることになる。
 第1工程でポリブチレンテレフタレート樹脂の混練溶融後はベントによりベントすることが好ましい。ベントの下流にはシールリングを設けることが好ましい。
 第2工程では、上記した第1工程後に、強化繊維を第1混練部の下流部に供給口からサイドフィードし、強化繊維と溶融化したポリブチレンテレフタレート樹脂とを第2混練部で混練する。第2混練部は、強化繊維が入り、それを開繊し混練する混練部を意味する。第2混練部のスクリュー構成は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリューのうち1種または2種以上を組み合わせた構成とする。これらが構成されてない状態で混練すると強化繊維の解繊と分散が不十分となりやすい。上記の中でも、ミキシングスクリュー、特に順送り切欠き型ミキシングスクリュー、逆送り切欠き型ミキシングスクリューを少なくとも有する構成とすることが好ましい。
 第2混練部のスクリュー長さは、2.5~5.0Dの範囲にすることが好ましい。この第2混練部は、1つに纏められていてもよいし、複数に分割されていてもよい。即ち、第2混練部を分割しその間に送りのスクリューを入れてもよい。いずれの構成でも合計の混練部長さを2.5~5.0Dの範囲にすることが好ましい。第2混練部のスクリュー長さをこのようにすることで強化繊維の解繊と分散が良好となり、樹脂組成物の強度が向上しやすい。
 運転は、高トルクの二軸押出機を使用し、スクリュー軸トルク密度が11.5~19Nm/cmの条件で行う。
 スクリュー軸トルク密度とは、スクリュー1本当りを駆動するのに必要なトルクNmをスクリュー軸芯間距離の3乗で除した値として定義し、単位はNm/cmとなる。大きさの異なる押出機を用いた押出であっても、このトルク密度の値が同じであれば、単位体積当たりに樹脂に掛かるトルクは同じとなる。スクリューを駆動するモーターがトルク(Nm)を発生し、スクリュー軸に伝わり、ポリブチレンテレフタレート樹脂の搬送、溶融、強化繊維の搬送、開繊の仕事をする。本発明において、このトルク密度はスクリュー軸の根本に掛かるトルクの強さを表す。トルク密度は、スクリューの先端に進むにつれその値は減少し、スクリューの先端ではほぼ0となる。
 押出機のスクリューを駆動するモーターが発生するトルクは、制御盤にスクリュー許容トルク100%に対する%単位で表示される。例えば、TEX44αIIIの場合、トルク100%はトルク密度17.6Nm/cmに相当するので、運転時の表示%からトルク密度を算出することができる。また、一般のVVVFインバータ制御では定トルク領域では電流値(A)を定格電流で割った値がトルク%に一致する。
 スクリュー軸トルク密度が11.5~19Nm/cmであるが、好ましくは12.0Nm/cm以上、より好ましくは12.5Nm/cm以上であり、さらに好ましくは13Nm/cm以上であり、好ましくは18Nm/cm以下、より好ましくは17Nm/cm以下である。このような範囲とすることにより、高強度の繊維強化ポリブチレンテレフタレート樹脂組成物を高吐出量で安定的に生産することが可能となる。
 スクリュー軸トルク密度をこのような範囲とするには、そのようなトルク範囲になるように原料のフィード量を制御することにより調整することができる。
 そして、本発明では、上記トルク密度条件下において、原料ポリブチレンテレフタレート樹脂として、平均重量が16mg以上29mg以下のポリブチレンテレフタレート樹脂ペレットを用いる。平均重量がこのようなペレットを押出機に供給することにより、樹脂温度を容易に適切な範囲に制御することが可能となる。小さすぎると樹脂温度は必要以上に上がり易く、大きいと樹脂温度が上がり難い。
 平均重量は、好ましくは18mg以上、より好ましくは19mg以上、さらには20mg以上が好ましく、好ましくは27mg以下、より好ましくは25mg以下、さらには24mg以上が好ましい。
 ポリブチレンテレフタレート樹脂ペレットの平均重量は、ペレットの個数平均重量であり、具体的には任意のペレット100個について算出される平均値(mg/個)である。例えば製造時や運送時、ハンドリング時等に発生するような、ペレット形状ではない破砕物や粉体、粉状のものはカウントされない。
 第2工程での樹脂温度は280~320℃、特には290~310℃となるようにするのが好ましい。樹脂温度の調整は、押出機への吐出量とスクリュー回転数を適宜調節したり、第1工程のスクリュー構成を調整する方法や第2工程のシリンダー設定温度を低く設定する方法が採られる。
 二軸押出機のスクリュー回転数は300~800rpmが好ましく、400~700rpmがより好ましい。また吐出量はTEX44αIIIでは450~650kg/hが好ましく、480~630kg/hがより好ましい。サイズの異なる押出機ではシリンダー径比の2.5乗に比例した吐出量が好ましい範囲となる。
 第2工程の後、第3工程では下流のベント部で減圧脱揮するが、その際の真空度は-0.097MPa~-0.07MPaとすることが好ましい。ここで、真空度はゲージ圧を意味する。
 次いで、ポリブチレンテレフタレート樹脂組成物は押出機先端の押出ダイからストランド状に押し出す(押出工程)が、押し出された樹脂組成物のストランド温度が290~310℃、特には295~310℃となるようにするのが好ましい。
 押出ダイの形状は特に制限はなく、公知のものが使用される。ダイ穴の直径は所望するペレットの寸法にもよるが、通常2~5mm、好ましくは3~4mm程度である。
 ストランドは、引き取りローラーによって引き取られ、水と接触され、冷却される。
 水との接触は、冷却水槽に溜められた水中を搬送されるようにして冷却されてもよいし、ストランドに水をかけて水と接触させて冷却してもよく、メッシュベルトコンベアでストランドを引き、そこに放水装置にて水を掛ける方法でもよい。ストランドがダイから押し出されてから水冷却、あるいは水に入るまでの時間は短い方がよい。通常は、ダイから押し出されてから1秒以内に水中に入るのがよい。
 冷却されたストランドは、引き取りローラーによりペレタイザーに送られ、カッティングされて、ペレットとされる。
 本発明の方法によれば、今まで高トルク領域下の運転では達成できなかったような高強度のポリブチレンテレフタレート樹脂組成物を、極めて高い生産性で製造することができる。得られたポリブチレンテレフタレート樹脂組成物(ペレット)は、極めて高強度のものとなる。具体的には、好ましくはノッチ付きシャルピー衝撃強度で9kJ/m以上、より好ましくは9.5kJ/m以上、中でも10kJ/m以上、特には10.5kJ/m以上、また、引張強度は好ましくは140MPa以上、より好ましくは145MPa以上、中でも150MPa以上、特には155MPa以上が可能となる。
 ここで、ノッチ付きシャルピー衝撃強度はISO179-1,2に準拠して測定され、引張強度は、ISO527に準拠して測定される。これらの具体的な測定法の詳細は、実施例に記載する通りである。
 次に、本発明で使用する原料成分について、説明する。
 (A)ポリブチレンテレフタレート樹脂は、テレフタル酸単位及び1,4-ブタンジオール単位がエステル結合した構造を有するポリエステル樹脂であって、ポリブチレンテレフタレート樹脂(ホモポリマー)の他に、テレフタル酸単位及び1,4-ブタンジオール単位以外の、他の共重合成分を含むポリブチレンテレフタレート共重合体や、ホモポリマーと当該共重合体との混合物を含む。
 ポリブチレンテレフタレート樹脂は、テレフタル酸以外のジカルボン酸単位を含んでいてもよく、他のジカルボン酸の具体例としては、イソフタル酸、オルトフタル酸、1,5-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、ビフェニル-2,2’-ジカルボン酸、ビフェニル-3,3’-ジカルボン酸、ビフェニル-4,4’-ジカルボン酸、ビス(4,4’-カルボキシフェニル)メタン、アントラセンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸等の芳香族ジカルボン酸類、1,4-シクロへキサンジカルボン酸、4,4’-ジシクロヘキシルジカルボン酸等の脂環族ジカルボン酸類、および、アジピン酸、セバシン酸、アゼライン酸、ダイマー酸等の脂肪族ジカルボン酸類等が挙げられる。
 ジオール単位としては、1,4-ブタンジオールの外に他のジオール単位を含んでいてもよく、他のジオール単位の具体例としては、炭素原子数2~20の脂肪族又は脂環族ジオール類、ビスフェノール誘導体類等が挙げられる。具体例としては、エチレングリコール、プロピレングリコール、1,5-ペンタンジオール、1,6-へキサンジオール、ネオペンチルグリコール、デカメチレングリコール、シクロヘキサンジメタノール、4,4’-ジシクロヘキシルヒドロキシメタン、4,4’-ジシクロヘキシルヒドロキシプロパン、ビスフェノールAのエチレンオキシド付加ジオール等が挙げられる。また、上記のような二官能性モノマー以外に、分岐構造を導入するためトリメリット酸、トリメシン酸、ピロメリット酸、ペンタエリスリトール、トリメチロールプロパン等の三官能性モノマーや分子量調節のため脂肪酸等の単官能性化合物を少量併用することもできる。
 ポリブチレンテレフタレート樹脂は、テレフタル酸と1,4-ブタンジオールとを重縮合させたポリブチレンテレフタレート単独重合体が好ましいが、また、ポリブチレンテレフタレート樹脂の結晶性を損なわない範囲で、カルボン酸単位として、前記のテレフタル酸以外のジカルボン酸1種以上及び/又はジオール単位として、前記1,4-ブタンジオール以外のジオール1種以上を含むポリブチレンテレフタレート共重合体であってもよく、ポリブチレンテレフタレート樹脂が、共重合により変性したポリブチレンテレフタレート樹脂である場合、その具体的な好ましい共重合体としては、ポリアルキレングリコール類、特にはポリテトラメチレングリコールを共重合したポリエステルエーテル樹脂や、ダイマー酸共重合ポリブチレンテレフタレート樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が挙げられる。
 なお、これらの共重合体は、共重合量が、ポリブチレンテレフタレート樹脂全セグメント中の1モル%以上、50モル%未満のものをいう。中でも、共重合量が好ましくは2モル%以上50モル%未満、より好ましくは3~40モル%、特に好ましくは5~20モル%である。このような共重合割合とすることにより、流動性、靱性が向上しやすい傾向にあり、好ましい。
 ポリブチレンテレフタレート樹脂は、固有粘度IVが0.72~0.83dl/gの範囲にあるものが好ましい。このような低めの固有粘度であることで、高トルク密度下での樹脂温度が290~310℃という、強化繊維との密着強度が高く且つ樹脂劣化による強度低下が起きにくい温度に制御しやすいことが見いだされた。固有粘度が0.72dl/g未満では強化繊維との密着性が不十分となりやすく、0.83dl/gを超えると発熱しやすく樹脂劣化を生じて強度が低下しやすい。固有粘度は0.73dl/g以上がより好ましく、0.82dl/g以下がより好ましい。
 なお、本発明において、ポリブチレンテレフタレート樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、ウベローデ粘度計でハギンズ定数0.33、温度30℃で測定する値である。なお、ガラス繊維はろ過により取り除いた上で測定するのが好ましい。
 (B)強化繊維は、有機強化繊維であっても、無機強化繊維であってもよいが、無機強化繊維が好ましく、ガラス繊維、炭素繊維、アルミナ繊維、ボロン繊維、セラミック繊維等が好ましく、ガラス繊維または炭素繊維がより好ましく、ガラス繊維が特に好ましい。
 ガラス繊維の種類は、特に制限はなく、例えばEガラス、Cガラス、Aガラス、Sガラス等のガラス繊維を挙げることができる。これらの中で、Eガラスの繊維がポリブチレンテレフタレート樹脂の熱安定性に悪影響を及ぼさない点で好ましい。
 ガラス繊維の平均繊維径は特に制限されないが、1~100μmの範囲で選ぶことが好ましく、より好ましくは2~50μm、更に好ましくは3~30μm、特に好ましくは5~20μmである。平均繊維径が1μm未満のガラス繊維は、製造が容易でなく、コスト高になる恐れがあり、一方100μmを超えると、ガラス繊維の引張強度が低下する恐れがある。なお、繊維断面は円形であっても扁平状であっても構わない。
 ガラス繊維は、繊維断面が真円形であっても扁平であってもよいが、繊維断面の扁平率(長径/短径)が1~1.5の断面がほぼ円形のガラス繊維であることが好ましい。この扁平率は1~1.4が好ましく、1~1.2がより好ましく、1~1.1が特に好ましい。
 原料ガラス繊維の平均繊維長は、特に限定されないが、例えば1~10mmであることが好ましく、1.5~6mmであることがより好ましく、2~5mmであることがさらに好ましい。原料ガラス繊維の平均繊維長が1mm未満であると、補強効果が十分に発現しない恐れがあり、10mmを超えると、得られる樹脂組成物の成形が困難になる恐れがある。
 使用するガラス繊維は、ポリブチレンテレフタレート樹脂との密着性を向上させる目的で、アミノシラン、エポキシシラン等のカップリング剤などにより表面処理を行うことができる。
 カップリング剤としては、例えば、ビニルトリクロロシラン、メチルビニルジクロロシラン等のクロロシラン系化合物、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン等のアルコキシシラン系化合物、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン等のエポキシシラン系化合物や、アクリル系化合物、イソシアネート系化合物、チタネート系化合物、エポキシ系化合物などを挙げることができる。
 また、原料ガラス繊維は、通常はこれらの繊維を多数本集束したものを、所定の長さに切断したチョップドストランド(チョップドガラス繊維)として用いることが好ましく、このときガラス繊維には収束剤を配合することが好ましい。
 ガラス繊維の集束剤としては特に制限はなく、例えば、酢酸ビニル樹脂、エチレン-酢酸ビニル共重合体、アクリル樹脂、エポキシ樹脂、ポリウレタン樹脂、ポリエステル樹脂などの樹脂エマルジョン等を挙げることができ、好ましくはアクリル樹脂、エポキシ樹脂、ポリウレタン樹脂である。
 強化繊維の量は、(A)ポリブチレンテレフタレート樹脂、(B)強化繊維及び(C)その他のポリマーまたは添加剤の合計100質量%基準で、10~60質量%である。このような範囲にあることで、樹脂組成物の強度が高く、外観や成形時の流動性に優れる樹脂組成物とすることができる。含有量が10質量%未満の場合は補強効果が十分でなく、60質量%を超える場合は、外観や耐衝撃性が劣り、樹脂組成物の流動性が不十分になりやすい。
 (C)その他のポリマーまたは添加剤としては、ポリブチレンテレフタレート樹脂以外のその他のポリマー及び/又は各種の添加剤である。
 添加剤としては、各種の樹脂添加剤が挙げられ、例えば、難燃剤、難燃助剤、安定剤、酸化防止剤、離型剤、紫外線吸収剤、耐候安定剤、滑剤、染顔料等の着色剤、触媒失活剤、帯電防止剤、発泡剤、可塑剤、結晶核剤、結晶化促進剤等が挙げられる。
 他の樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂;ポリカーボネート樹脂;ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂;ポリメタクリレート樹脂等が挙げられる。
 なお、他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 (C)その他のポリマーまたは添加剤の量は、(A)~(C)の合計100質量%基準で、0~35質量%であり、好ましくは5~30質量%である。
 ポリブチレンテレフタレート樹脂にはポリブチレンテレフタレート樹脂の結晶化による分子配向を抑えるため、非晶性樹脂を配合することが知られており、非晶性樹脂としてポリカーボネート樹脂やスチレン系ポリマーを配合することがよく行われる。しかし、特にスチレン系ポリマーを配合した樹脂組成物はポリブチレンテレフタレート樹脂単独の場合より粘度が低く、強化繊維の解繊が難しく分散不良が起きやすい、また樹脂温度が上昇し難いので強化繊維との密着性が悪く樹脂組成物の強度が出ないという問題がある。
 この問題を解決するには、吐出量を下げて混練時間を長くする方法があるが、これでは生産量が下がってしまう。また、樹脂温度を上げる方法では、スチレン系ポリマーの粘度が低いので強化繊維の解繊が十分できないが、本発明の方法によれば、これらの問題を解決して、強度の高い繊維強化樹脂組成物を生産性よく製造することができるので、特に有効である。
 スチレン系ポリマーとしては、250℃、912sec-1に於ける溶融粘度が70~1000pa・s、特には70~500pa・sのものを使用することが好ましい。このような溶融粘度(η)のスチレン系ポリマーを、配合することにより、高い生産性と優れた生産安定性で、成形収縮率が小さく、強度の高い繊維強化ポリブチレンテレフタレート樹脂組成物を製造することができる。ポリスチレン系ポリマーは高剪断領域の粘度を下げる効果があり、押出機の第2混錬部(繊維開繊部)で強化繊維束の中に樹脂を含侵し易くする効果がある。このために繊維表面と樹脂の密着強度を強めることができる。
 なお、溶融粘度はISO 11443に準拠し、キャピラリーレオメーター及びスリットダイレオメーターを用いることで測定できる。具体的には、キャピラリー径1mm、キャピラリー長30mmのオリフィスを用い、250℃に加熱した内径9.5mmの炉体に対し、ピストンスピード75mm/minの速度でピストンを押し込んだ際の応力から、溶融粘度が算出可能である。
 スチレン系ポリマーとしては、例えば、スチレンの単独重合体、ゴムの存在下スチレンを重合してなるグラフト共重合体、スチレンと(メタ)アクリロニトリルとの共重合体、スチレンと(メタ)アクリル酸アルキルエステルとの共重合体、スチレンと(メタ)アクリロニトリルと他の共重合可能な単量体との共重合体、ゴムの存在下スチレンと(メタ)アクリロニトリルとをグラフト重合してなるグラフト共重合体等が挙げられる。具体的には、ポリスチレン(一般用ポリスチレン、GPPS)、耐衝撃性ポリスチレン(ハイインパクトポリスチレン、HIPS)、アクリロニトリル-スチレン共重合体(AS樹脂)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、スチレン・ブタジエン・スチレン共重合体(SBS樹脂)、水添スチレン-ブタジエン-スチレン共重合体(水添SBS)、水添スチレン-イソプレン-スチレン共重合体(SEPS)、スチレン-無水マレイン酸共重合体(SMA樹脂)、アクリロニトリル-スチレン-アクリルゴム共重合体(ASA樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合体(MBS樹脂)、メチルメタクリレート-アクリロニトリル-ブタジエン-スチレン共重合体(MABS樹脂)、アクリロニトリル-アクリルゴム-スチレン共重合体(AAS樹脂)、アクリロニトリル-エチレンプロピレン系ゴム-スチレン共重合体(AES樹脂)及びスチレン-IPN型ゴム共重合体等の樹脂、又は、これらの混合物が挙げられる。
 これらの中でも、アクリロニトリル-スチレン共重合体(AS樹脂)、ポリスチレン(GPPS)、耐衝撃性ポリスチレン(HIPS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましく、特にアクリロニトリル-スチレン共重合体(AS樹脂)、ポリスチレン(GPPS)、耐衝撃性ポリスチレン(HIPS)、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)が好ましい。
 スチレン系ポリマーとしては、スチレン系エラストマーも使用できる。
 スチレン系エラストマーとしては、ビニル芳香族化合物を重合成分とした重合体ブロックと、共役ジエンを重合成分とした重合体ブロックとからなるブロック共重合体及びその水素添加物が好ましい。
 ビニル芳香族炭化水素の重合体ブロックを構成するビニル芳香族化合物としては、スチレン、α-メチルスチレン、o-メチルスチレン、p-メチルスチレン、p-t-ブチルスチレン、1,3-ジメチルスチレン、低級アルキル置換スチレン、ビニルナフタレン、ビニルアントラセン等のスチレンまたはその誘導体などが挙げられる。これらは1種単独で使用することもできるし、2種以上を組み合せて使用することもできる。
 共役ジエンブロックを構成する共役ジエンとしては、ブタジエン、イソプレン、1,3-ペンタジエン、2,3-ジメチル-1,3-ブタジエン等が挙げられる。
 スチレン系ポリマーは、1種を単独で用いてもよく2種以上を混合して用いてもよい。
 スチレン系ポリマーの量は、(A)~(C)の合計100質量%基準で、5~30質量%であることが好ましい。
 本発明の方法で製造されたポリブチレンテレフタレート樹脂組成物は極めて高い強度の成形品が可能なので、軽量化、薄肉化、強度の要求性能を十分に満足することが出来、例えば電気・電子機器分野、コンピュータ等のOA機器分野、精密機器分野、光学機器分野、自動車分野、その他の各種工業分野等における成形品あるいは部品等に幅広く利用することができる。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
 実施例及び比較例で使用した原料ポリブチレンテレフタレート樹脂ペレット、強化繊維、その他の樹脂は、以下の表1に記載の通りである。
Figure JPOXMLDOC01-appb-T000001
[押出機]
 押出機は、ベント式噛み合い型同方向回転二軸スクリュー押出機(日本製鋼所社製「TEXαIII」、シリンダー径D=47mm)を使用した。
 実施例および比較例で使用したスクリュー構成は、第1混練部が以下のスクリュー1~4、第2混練部は以下のスクリュー1~3である。
 第1混練部
スクリュー1:RNNNNL     長さ5.62D
スクリュー2:RNNNNNNL   長さ7.48D
スクリュー3:RNNNNNNNNL 長さ9.36D
スクリュー4:RNNNL      長さ4.68D
 以上の各ニーディングは2条フライトで、長さ44mmである。
 第2混練部
スクリュー1:逆送りミキシングスクリュー長さ44mm 4個
 長さ総計 176mm(3.74D)
スクリュー2:逆送りミキシングスクリュー長さ44mm 6個
 長さ総計 264mm(5.62D)
スクリュー3:逆送りミキシングスクリュー長さ44mm 2個
 長さ総計 88mm(1.87D)
 図1は、実施例又は比較例で使用した押出機のスクリュー構成の例を説明するための概念図である。
 C1の位置にホッパーを設置し、表2以下に記載のポリブチレンテレフタレート樹脂ペレットを供給し、Rスクリューにより搬送した。第1混練部はシリンダーC6の位置にあり、下記表に記載のスクリュー1乃至4のいずれかで構成される。第1混練部で混練し、そこにC8からガラス繊維を30質量%の量でサイドフィードし、C9~C11の位置にある下記表に記載のスクリュー1乃至3のいずれかで構成される第2混練部で混練する。そしてC12の真空ベントで減圧にし、ダイスからストランドを押出し、水槽冷却後にペレタイザーでペレットにカットする。スクリュー回転数、吐出量、トルク(トルク100%に対する%)は表に記載の通りとし、トルク100%は1本に掛かる軸トルク密度が17.6Nm/cmに相当する。押出機根本のスクリュー軸接続部の軸トルク密度、押し出された直後のストランドの樹脂温度を表に記載した。なお、スクリュー軸に掛かった軸トルク密度はスクリュー許容トルク17.6Nm/cmに測定されたトルク(%)の値を乗じて求めた。
 得られたペレットを射出成型機(日本製鋼所社製「J85AD」)を用いて、ISO294-1に従い、試験片タイプA(170mm×10mm、厚み4mm)を成形した。
 得られた試験片を用い、ISO179-1,2に従いノッチ付きシャルピー衝撃強度(単位:KJ/m)を、ISO527に従い引張強度(単位:MPa)を求めた。
 さらに、ポリブチレンテレフタレート樹脂の劣化の程度を評価するために、得られたペレットのポリブチレンテレフタレート樹脂の固有粘度を、以下の方法で測定した。
 フェノール/テトラクロロエタン=1/1の混合溶媒を使用し、ウベローデ粘度計で前記した方法で固有粘度を測定した。なお、ガラス繊維が含まれるペレットについては、混合溶媒で一旦溶融後にろ過し、ガラス繊維のみ取り除き、ろ過された溶液で固有粘度を測定した。
(実施例1-1)
 PBT1Aを35質量%、PBT2Aを35質量%(相加平均の固有粘度IVは0.775dl/g)とし、第1混練部のスクリュー構成はスクリュー1として、第2混練部のスクリュー構成はスクリュー1とし、スクリュー回転数500rpm、吐出量600kg/hとして、ペレットを製造した。押出は安定であり、ストランドが切れることはなかった。
(実施例1-2)
 第1混練部のスクリュー構成をスクリュー2とした以外は実施例1-1と同様にして行った。
(比較例1-1)
 第1混練部のスクリュー構成をスクリュー3とした以外は実施例1-1と同様にして行った。
(比較例1-2)
 第1混練部のスクリュー構成をスクリュー4とした以外は実施例1-1と同様にして行った。
(比較例1-3)
 吐出量を400kg/hとした以外は実施例1-1と同様にして行った。
(比較例1-4)
 吐出量を400kg/hとした以外は実施例1-2と同様にして行った。
(比較例1-5)
 吐出量を400kg/hとした以外は比較例1-1と同様にして行った。
(比較例1-6)
 吐出量を400kg/hとした以外は比較例1-2と同様にして行った。
 以上の結果を以下の表2~3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
(実施例2-1,2-2、比較例2-1,2-2)
 PBT1Aを56質量%、PBT2Aを14質量%とし、相加平均の固有粘度を0.82dl/gとした以外は、実施例1-1、1-2、比較例1-1,1-2と同様にして行った。
 結果を以下の表4に示す。
Figure JPOXMLDOC01-appb-T000004
(実施例3-1、3-2、比較例3-1,3-2)
 PBT1Aを14質量%、PBT2Aを56質量%とし、相加平均の固有粘度を0.73dl/gとした以外は、実施例1-1、1-2、比較例1-1,1-2と同様にして行った。
 結果を以下の表5に示す。
Figure JPOXMLDOC01-appb-T000005
(実施例4-1、4-2、比較例4-1,4-2)
 PBT1Aを70質量%、固有粘度を0.85dl/gとした以外は実施例1-1、1-2、比較例1-1,1-2と同様にして行った。
 結果を以下の表6に示す。
Figure JPOXMLDOC01-appb-T000006
(実施例5-1、5-2、比較例5-1,5-2)
 PBT2Aを70質量%、固有粘度を0.70dl/gとした以外は実施例1-1、1-2、比較例1-1,1-2と同様にして行った。
 結果を以下の表7に示す。
Figure JPOXMLDOC01-appb-T000007
(実施例1-3)
 第2混練部のスクリュー構成をスクリュー2とした以外は実施例1-1と同様にして行った。
(実施例1-4)
 第2混練部のスクリュー構成をスクリュー3とした以外は実施例1-1と同様にして行った。このとき2分に1回ストランドが切れ、生産性に少し問題があることが分かった。スクリュー構成が弱く、ガラス繊維の開繊性が不十分であった可能性がある。
 結果を以下の表8に示す。
Figure JPOXMLDOC01-appb-T000008
(実施例6-1、6-2、比較例6-1、比較例6-2)
 PBT1Aを30質量%、PBT2Aを30質量%とし、相加平均固有粘度を0.775dl/gとし、更にAS樹脂を10質量%添加した以外は実施例1-1、1-2、比較例1-1、比較例1-2と同様にして行った。
 結果を以下の表9に示す。
Figure JPOXMLDOC01-appb-T000009
(比較例7-1)
 実施例1-1で使用したPBT1AをPBT1B、PBT2AをPBT2Bとした以外は実施例1-1と同様にして行った。
(比較例7-2)
 実施例1-1で使用したPBT1AをPBT1C、PBT2AをPBT2Cとした以外は実施例1-1と同様にして行った。
 結果を以下の表10に示す。
Figure JPOXMLDOC01-appb-T000010
(比較例8-1)
 実施例1-2で使用したPBT1AをPBT1B、PBT2AをPBT2Bとした以外は実施例1-2と同様にして行った。
(比較例8-2)
 実施例1-2で使用したPBT1AをPBT1C、PBT2AをPBT2Cとした以外は実施例1-2と同様にして行った。
 結果を以下の表11に示す。
Figure JPOXMLDOC01-appb-T000011
(比較例9-1)
 実施例2-2で使用したPBT1AをPBT1B、PBT2AをPBT2Bとした以外は実施例2-2と同様にして行った。
(比較例9-2)
 実施例2-2で使用したPBT1AをPBT1C、PBT2AをPBT2Cとした以外は実施例2-2と同様にして行った。
 結果を以下の表12に示す。
Figure JPOXMLDOC01-appb-T000012
(比較例10-1)
 実施例3-2で使用したPBT1AをPBT1B、PBT2AをPBT2Bとした以外は実施例3-2と同様にして行った。
(比較例10-2)
 実施例3-2で使用したPBT1AをPBT1C、PBT2AをPBT2Cとした以外は実施例3-2と同様にして行った。
 結果を以下の表13に示す。
Figure JPOXMLDOC01-appb-T000013
(比較例11-1)
 実施例6-2で使用したPBT1AをPBT1B、PBT2AをPBT2Bとした以外は実施例6-2と同様にして行った。
(比較例11-2)
 実施例6-2で使用したPBT1AをPBT1C、PBT2AをPBT2Cとした以外は実施例6-2と同様にして行った。
 結果を以下の表14に示す。
Figure JPOXMLDOC01-appb-T000014
 本発明の製造方法によれば、機械的強度に優れた繊維強化ポリブチレンテレフタレート樹脂組成物を高度の生産性で製造することができ、それからなる成形品は軽量化、薄肉化、強度の要求性能を十分に満足することができ、自動車分野、電気電子機器分野、精密機械分野の部品等、広範囲の用途に利用が可能である。

Claims (8)

  1.  (A)ポリブチレンテレフタレート樹脂40~90質量%、(B)強化繊維10~60質量%、及び(C)その他のポリマーまたは添加剤0~35質量%(各成分の合計は100質量%)からなる繊維強化ポリブチレンテレフタレート樹脂組成物を二軸押出機で製造する方法であって、
     (A)の原料として平均重量が16mg以上29mg以下のポリブチレンテレフタレート樹脂ペレットを用い、
     (A)と(C)を第1混練部で混練する第1工程、第1混練部の下流部に前記(B)を添加し第2混練部で混練する第2工程、第2混練部の下流部でベントを減圧にして脱揮し押出する第3工程、を含み、
     第1混練部は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリュー、またはロータスクリューのうちの2種以上を組み合わせた、長さが5.0~9.0D(Dはシリンダー径)の構成からなり、
     前記第2混練部は、Rニーディングディスク、Nニーディングディスク、Lニーディングディスク、Lスクリュー、シールリング、ミキシングスクリューのうち1種または2種以上を組み合わせた構成よりなり、
     スクリュー軸トルク密度が11.5~19Nm/cmの条件で製造することを特徴とする繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法。
  2.  前記(C)が、(A)~(C)の合計100質量%基準で、5~30質量%のスチレン系ポリマーを含有する請求項1に記載の製造方法。
  3.  第3工程で押し出された直後の樹脂のストランドの温度が290~310℃である請求項1または2に記載の製造方法。
  4.  (A)ポリブチレンテレフタレート樹脂の固有粘度が0.72~0.83dl/gである請求項1~3のいずれかに記載の製造方法。
  5.  第2混練部の総計の長さが2.5D以上、5.0D以下である請求項1~4のいずれかに記載の製造方法。
  6.  得られる樹脂組成物のISO179-1,2によるノッチ付きシャルピー衝撃強度が、9kJ/m以上である請求項1~5のいずれかに記載の製造方法。
  7.  得られる樹脂組成物のISO527による引張強度が、140MPa以上である請求項1~6のいずれかに記載の製造方法。
  8.  前記スクリュー軸トルク密度が13~19Nm/cmである請求項1~7のいずれかに記載の製造方法。
PCT/JP2022/000874 2021-02-16 2022-01-13 繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法 WO2022176449A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/262,683 US20240076455A1 (en) 2021-02-16 2022-01-13 Method for producing fiber-reinforced polybutylene terephthalate resin composition
JP2023500623A JPWO2022176449A1 (ja) 2021-02-16 2022-01-13
CN202280015274.0A CN116847963A (zh) 2021-02-16 2022-01-13 纤维增强的聚对苯二甲酸丁二醇酯树脂组合物的生产方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021022418 2021-02-16
JP2021-022418 2021-02-16

Publications (1)

Publication Number Publication Date
WO2022176449A1 true WO2022176449A1 (ja) 2022-08-25

Family

ID=82930749

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000874 WO2022176449A1 (ja) 2021-02-16 2022-01-13 繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法

Country Status (5)

Country Link
US (1) US20240076455A1 (ja)
JP (1) JPWO2022176449A1 (ja)
CN (1) CN116847963A (ja)
TW (1) TW202239562A (ja)
WO (1) WO2022176449A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504057A (ja) * 2008-09-29 2012-02-16 スティール エンジニアリング プライベート リミテッド 押出機および押出機の動作方法
JP2012213997A (ja) * 2011-04-01 2012-11-08 Polyplastics Co ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
JP2018048227A (ja) * 2016-09-20 2018-03-29 旭化成株式会社 熱可塑性樹脂組成物の製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012504057A (ja) * 2008-09-29 2012-02-16 スティール エンジニアリング プライベート リミテッド 押出機および押出機の動作方法
JP2012213997A (ja) * 2011-04-01 2012-11-08 Polyplastics Co ガラス繊維強化熱可塑性樹脂組成物ペレットの製造方法
JP2018048227A (ja) * 2016-09-20 2018-03-29 旭化成株式会社 熱可塑性樹脂組成物の製造方法

Also Published As

Publication number Publication date
JPWO2022176449A1 (ja) 2022-08-25
US20240076455A1 (en) 2024-03-07
CN116847963A (zh) 2023-10-03
TW202239562A (zh) 2022-10-16

Similar Documents

Publication Publication Date Title
EP1002633B1 (en) Method of producing composition comprising thermoplastic resin and rubber
JP5369614B2 (ja) 粉体原料用押出機および熱可塑性樹脂組成物の製造方法
EP1864775A1 (en) Method of producing carbon microfiber-containing resin composition
EP3019548B1 (en) Process for the manufacturing of abs-molding compositions
CN116888216B (zh) 具有高介电常数、高耐热性和改善的机械性质的热塑性组合物以及因此的成形制品
JP2018048227A (ja) 熱可塑性樹脂組成物の製造方法
WO2022004058A1 (ja) 難燃性ポリカーボネート樹脂組成物ペレットの製造方法
JP3584890B2 (ja) 熱可塑性樹脂成形品及びその製造方法
EP1419041B1 (en) Mixing and kneading device for polymer compositions
WO2022176449A1 (ja) 繊維強化ポリブチレンテレフタレート樹脂組成物の製造方法
EP3919569B1 (en) Thermoplastic compositions including natural fiber having good mechanical properties and good dielectric properties
WO2008042090A2 (en) Methods for making fiber reinforced polystyrene composites
CN106995600B (zh) 一种高反射低透光聚碳酸酯材料及其制备方法
WO2023203913A1 (ja) ガラス繊維強化ポリエステル系樹脂組成物の製造方法
WO2023203914A1 (ja) ガラス繊維強化ポリエステル系樹脂組成物の製造方法
WO2024232399A1 (ja) 樹脂組成物の製造方法及び樹脂組成物
CN115926419B (zh) 一种低线性膨胀系数阻燃pc/abs合金材料及其制备方法
WO2024232397A1 (ja) 樹脂組成物の製造方法及び樹脂組成物
JP7426451B1 (ja) ガラス繊維強化ポリアミド樹脂組成物の製造方法
CN110303612B (zh) 复合树脂组合物的制造装置和制造方法
JP7426450B1 (ja) ガラス繊維強化ポリアミド樹脂組成物の製造方法
JP2011046758A (ja) 熱可塑性樹脂組成物及びその成形体
JPH03126519A (ja) 直列二段押出機
EP0241590B1 (en) Mixing mechanism for compounding filled plastics
CN109294072B (zh) 聚丙烯组合物和聚丙烯材料及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22755774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023500623

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18262683

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280015274.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22755774

Country of ref document: EP

Kind code of ref document: A1