WO2022174671A1 - 应用于机器人边界系统的信号抗干扰方法、设备及介质 - Google Patents
应用于机器人边界系统的信号抗干扰方法、设备及介质 Download PDFInfo
- Publication number
- WO2022174671A1 WO2022174671A1 PCT/CN2021/140337 CN2021140337W WO2022174671A1 WO 2022174671 A1 WO2022174671 A1 WO 2022174671A1 CN 2021140337 W CN2021140337 W CN 2021140337W WO 2022174671 A1 WO2022174671 A1 WO 2022174671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- feedback signal
- predetermined period
- predetermined position
- waveform
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 40
- 230000006698 induction Effects 0.000 claims description 19
- 238000004590 computer program Methods 0.000 claims description 11
- 230000000737 periodic effect Effects 0.000 claims description 9
- 230000005540 biological transmission Effects 0.000 description 3
- 230000003111 delayed effect Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 230000009182 swimming Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J19/00—Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
- B25J19/02—Sensing devices
- B25J19/027—Electromagnetic sensing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
Definitions
- the invention relates to the field of intelligent control, in particular to a signal anti-interference method, equipment and medium applied to a robot boundary system.
- Low repetition rate and high coverage rate are the goals pursued by mobile robots such as traversing robots such as vacuuming, lawn mowing and swimming pool cleaning.
- traversing robots such as vacuuming, lawn mowing and swimming pool cleaning.
- the lawn mowing robot uses the lawn enclosed by the border as the working area for mowing operations, and the outside of the lawn is defined as the non-working area.
- the work area of the lawn mower is limited by arranging the boundary line. If two adjacent work areas are arranged in the same lawn, or the same lawn mower is used at the same time in different lawn work areas of adjacent families For the robot, it is possible that the signals on the adjacent boundary lines will affect each other and cause signal interference, so that the lawn mower robot cannot accurately determine whether it is inside or outside the boundary line, resulting in the lawn mower robot not working normally.
- the purpose of the present invention is to provide a signal anti-jamming method, device and medium applied to a robot boundary system.
- an embodiment of the present invention provides a signal anti-interference method applied to a robot boundary system.
- the system includes: a signal generator, which connects two ends of the signal generator respectively and forms a boundary line of a closed loop , and a magnetic field induction sensor connected in communication with the signal generator;
- the signal generator is configured to transmit electrical pulse signals along the closed loop formed by the boundary line;
- the method includes:
- the magnetic field induction sensor receives the real-time feedback signal, compares the received real-time feedback signal with the theoretical feedback signal corresponding to the current emitted electrical pulse signal of the signal generator, and judges that the waveform of the real-time feedback signal received at a predetermined position in a predetermined period is consistent with the current theoretical feedback signal. Whether the waveform formed by the feedback signal at the predetermined position of the predetermined period is consistent;
- control signal generator adjusts the transmitted electrical pulse signal so that the waveform of the real-time feedback signal received at the predetermined position of the predetermined period is consistent with the waveform formed by the current theoretical feedback signal at the predetermined position of the predetermined period.
- control signal generator adjusts the transmitted electrical pulse signal, so that the waveform received by the real-time feedback signal at the predetermined position of the predetermined period remains the same as the waveform formed by the current theoretical feedback signal at the predetermined position of the predetermined period Consistent includes:
- the control signal generator adjusts the phase and/or period of the transmitted electrical pulse signal, so that the waveform of the real-time feedback signal received at the predetermined position of the predetermined period is consistent with the waveform formed by the current theoretical feedback signal at the predetermined position of the predetermined period;
- the transmitted electrical pulse signal is adjusted so that the acquired feedback signal is kept within a preset range.
- a periodic signal group is preconfigured, and the periodic signal group includes a plurality of periods of different sizes;
- the control signal generator adjusts the period of transmitting the electrical pulse signal, so that the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is consistent with the waveform formed by the current theoretical feedback signal at the predetermined position of the predetermined period, including:
- the transmitted electrical pulse signal is adjusted so that the acquired feedback signal is kept within a preset range.
- control signal generator adjusts the phase and period of the transmitted electrical pulse signal, so that the waveform received by the real-time feedback signal at a predetermined position of a predetermined period is the same as the current theoretical feedback signal at a predetermined position of the predetermined period.
- the resulting waveforms remain consistent including:
- the transmitted electrical pulse signal is adjusted so that the acquired feedback signal is kept within a preset range.
- control signal generator adjusts the phase and period of the transmitted electrical pulse signal, so that the waveform received by the real-time feedback signal at a predetermined position of a predetermined period is the same as the current theoretical feedback signal at a predetermined position of the predetermined period.
- the resulting waveforms remain consistent including:
- P1 adjust the period of transmitting the electrical pulse signal, and judge whether the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is consistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period,
- step P2 Perform step P1 N times in a loop. If the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is still inconsistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period after step P1 is performed for the Nth time, execute Step P3;
- P3 cyclically adjust the phase of the transmitted electrical pulse signal, until the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is consistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period;
- the transmitted electrical pulse signal is adjusted so that the acquired feedback signal is kept within a preset range.
- control signal generator adjusts the phase and period of the transmitted electrical pulse signal, so that the waveform received by the real-time feedback signal at a predetermined position of a predetermined period is the same as the current theoretical feedback signal at a predetermined position of the predetermined period.
- the resulting waveforms remain consistent including:
- the switch adjusts the transmit power by adjusting the period or the phase, whichever is the other. Pulse signal,
- the selected period and phase are different;
- the transmitted electrical pulse signal is adjusted so that the acquired feedback signal is kept within a preset range.
- the magnetic field induction sensor is configured to be disposed on the signal generator
- the installation position of the magnetic field induction sensor is clarified.
- the signal generators are configured to be arranged close to the neighborhood boundary system.
- an embodiment of the present invention provides an electronic device, including a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the above-mentioned application to a robot is realized The steps of the signal anti-jamming method of the boundary system.
- an embodiment of the present invention provides a readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, realizes the signal anti-jamming applied to the robot boundary system as described above. steps of the method.
- the signal anti-interference method, system, electronic device and storage medium applied to the robot boundary system of the present invention adjust the transmitted electrical pulse signal according to the feedback signal, so that the real-time feedback signal is received at a predetermined position in a predetermined period.
- the waveform is consistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period, which effectively avoids the lawn mowing robot from being affected by adjacent boundary signals and cannot work normally.
- FIG. 1 is a schematic flowchart of a signal anti-jamming method applied to a robot boundary system provided by an embodiment of the present invention
- FIG. 2 is a schematic structural diagram of a specific example of the present invention.
- 3, 4, and 5 are schematic diagrams of the timing structure of feedback signals according to a specific example of the present invention, respectively.
- the robot of the present invention can be a lawn mowing robot, a sweeping robot, a snow plow, a leaf suction machine, a golf ball pick-up machine, etc.
- Various robots can automatically walk in the work area and perform corresponding work.
- the working area may be a lawn.
- the working area of the lawn mower is limited by arranging the boundary line.
- the adjacent working areas transmit interference signals synchronously.
- the present invention is mainly applied to, when the adjacent working areas transmit interference signals synchronously, by adjusting its own transmitting electrical pulse signal, so that the real-time feedback signal is in a predetermined time.
- the waveform received at the predetermined position of the cycle is consistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined cycle; thus, the robot of the present application is prevented from being interfered by the interference signal synchronously emitted by the adjacent work area.
- the signal anti-jamming method applied to the robot boundary system includes the following steps:
- a magnetic field induction sensor is arranged in the signal generator, the signal generator is used for transmitting electrical pulse signals, and the magnetic field induction sensor is used for receiving a feedback signal and feeding back the feedback result to the signal generator.
- the work area Q1 of the present invention is connected by the signal generator 1, respectively
- the two ends of the generator and the boundary line 2 that forms a closed loop are formed; wherein, a magnetic field induction sensor 3 is set in the signal generator 1, and the robot 4 works in the working area Q1.
- the boundary line 2 The electric pulse signal is emitted to generate a continuous magnetic field signal near the boundary line 2, and the robot 4 senses the magnetic field signal through the sensor on it to keep running within the boundary line.
- the signal generator 1' in the work area Q2 and the signal generator 1 in the work area Q1 transmit the same electrical pulse signal, within a certain period of time, the signal generator The magnetic field signal generated on the boundary line 2' of 1' may interfere with the magnetic field signal generated on the boundary line 1 of the working area Q1.
- A is the theoretical feedback signal that should theoretically be received after the signal generator 1 in the working area Q1 transmits the electrical pulse signal
- B is the working area near work.
- A+B is the real-time feedback signal actually received by the magnetic field induction sensor 3 currently.
- the theoretical feedback signal A and the interference feedback signal B have the same period, opposite pulse directions, and a phase difference of one pulse, and the amplitude of the interference feedback signal B is smaller than that of the theoretical feedback signal A;
- the actual feedback signal formed has the same period, and the amplitude is partially distorted.
- the falling edge at time t1 extends; in the interval t1-t2, the amplitude increases in the opposite direction; the falling edge at time t3 extends, so, confirm The waveform received by the real-time feedback signal at the predetermined position of the predetermined period is inconsistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period.
- step S3 adjusting the transmitting electrical pulse signal includes: adjusting the phase and/or period of the transmitting electrical pulse signal, so that the real-time feedback signal is received at a predetermined position in a predetermined period The waveform is consistent with the waveform formed by the theoretical feedback signal at a predetermined position of a predetermined period.
- step S3 the following several schemes can be specifically adopted to realize step S3;
- step S3 adjusting the transmitting electrical pulse signal includes: preconfiguring a periodic signal group, and the periodic signal group includes a plurality of periods with different sizes;
- Adjusting the period of transmitting the electrical pulse signal so that the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is consistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period includes:
- step S3 to adjust the transmitting electrical pulse signal includes: N1, rotatingly adjusting the period and phase of the transmitting electrical pulse signal, and judging the waveform received by the real-time feedback signal at a predetermined position of the predetermined period and the theoretical feedback signal Whether the waveforms formed at the predetermined positions of the predetermined period are consistent,
- step S3 adjusting the transmitting electrical pulse signal includes: P1, adjusting the period of the transmitting electrical pulse signal, judging the waveform received by the real-time feedback signal at a predetermined position of the predetermined period and the theoretical feedback signal in the predetermined period Whether the waveform formed at the predetermined position is consistent,
- step P2 Perform step P1 N times in a loop. If the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is still inconsistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period after step P1 is performed for the Nth time, execute Step P3;
- P3 cyclically adjust the phase of the transmitted electrical pulse signal until the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is consistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period.
- the step S3 adjusting the transmitting electrical pulse signal includes: continuously adjusting the transmitting electrical pulse signal by adjusting either the period or the phase;
- the switch adjusts the transmit power by adjusting the period or the phase, whichever is the other. Pulse signal,
- the selected period and phase are different.
- Figure 4 adjusts the transmitted electrical pulse signal on the basis of the example shown in Figure 3.
- the adjustment method is to adjust the period of the transmitted pulse signal.
- the real-time feedback signal received by the magnetic field induction sensor 3 is A+ B.
- the signal of A+B is inconsistent with the waveform of the theoretical feedback signal A at a predetermined position in a predetermined period.
- the waveform of the transmitted pulse signal is adjusted to make the waveform consistent.
- the period is adjusted from T1 to T2, and T2 ⁇ T1.
- T2 may not be less than T1;
- C is the theoretical feedback signal generated by the transmitting electrical pulse signal with a period of T2;
- C+B is the magnetic field induction sensor 3
- the real-time feedback signal actually received at present as shown in the figure: after the feedback signal formed by the transmitting electrical pulse signal whose period is adjusted from T1 to T2 is interfered by the interference feedback signal, the real-time feedback signal C+B is in the predetermined period.
- the waveform received at the predetermined position is consistent with the waveform formed by the theoretical feedback signal C at the predetermined position of the predetermined period.
- Figure 5 adjusts the transmitted electrical pulse signal on the basis of the example shown in Figure 3.
- the adjustment method is to adjust the phase of the transmitted pulse signal.
- the real-time feedback signal received by the magnetic field induction sensor 3 is A+ B.
- the signal of A+B is inconsistent with the waveform of the theoretical feedback signal A at a predetermined position in a predetermined period.
- the phase of the transmitted pulse signal is adjusted to make the waveform consistent.
- Delayed transmission is the theoretical feedback signal generated by the delayed transmission electrical pulse signal; C+B is the real-time feedback signal actually received by the magnetic field induction sensor 3, which is known from the figure: the delayed transmission After the feedback signal formed by the electrical pulse signal is disturbed by the interference feedback signal, the waveform received by the real-time feedback signal C+B at the predetermined position of the predetermined period is consistent with the waveform formed by the theoretical feedback signal C at the predetermined position of the predetermined period. At this time, When the robot works in the working area Q1, it will not be affected by the magnetic field signal in the Q2 area, and can accurately identify the magnetic field signal in the area Q1 to realize the robot positioning.
- an embodiment of the present invention provides a boundary signal anti-jamming system, including: a signal generator 1 , a boundary line 2 that connects both ends of the signal generator 1 respectively and forms a closed loop, and generates a boundary line 2 with the signal
- the signal generator 1 is configured to transmit electrical pulse signals along the closed loop formed by the boundary line 2
- the magnetic field induction sensor 3 is configured to: receive the real-time feedback signal, and the received real-time feedback The signal is compared with the theoretical feedback signal corresponding to the transmitted electrical pulse signal, and it is judged whether the waveform received by the real-time feedback signal at the predetermined position of the predetermined period is consistent with the waveform formed by the theoretical feedback signal at the predetermined position of the predetermined period;
- the magnetic field induction sensor 3 feedback controls the signal generator 1, and the signal generator 1 adjusts the transmitted electrical pulse signal, so that the waveform of the real-time feedback signal received at a predetermined position in a predetermined period is the same as that of the theoretical feedback signal in a predetermined period of the
- the magnetic field induction sensor 3 is also used to implement steps S1 and S2 in the signal anti-interference method applied to the robot boundary system, and the signal generator 1 is also used to implement the signal anti-interference method applied to the robot boundary system. step S3, which is not repeated here.
- the magnetic field induction sensor 3 is arranged on the signal generator 1 .
- the signal generators 1 are systematically arranged close to the neighborhood boundary.
- an electronic device including a memory and a processor, wherein the memory stores a computer program, and when the processor executes the computer program, the application to a robot described in any of the foregoing embodiments is implemented. The steps of the signal anti-jamming method of the boundary system.
- a readable storage medium on which a computer program is stored, and when the computer program is executed by the processor, the signal anti-jamming applied to the robot boundary system described in any of the above embodiments is implemented steps of the method.
- the signal anti-interference method, device and medium applied to the robot boundary system of the present invention adjusts the transmitted electrical pulse signal according to the feedback signal, so that the real-time feedback signal receives the waveform at the predetermined position of the predetermined period and the theoretical feedback signal
- the waveforms formed at the predetermined positions of the predetermined period are consistent, which effectively avoids the lawn mowing robot from being affected by adjacent boundary signals and causing it to fail to work normally.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Numerical Control (AREA)
- Manipulator (AREA)
Abstract
一种应用于机器人边界系统的信号抗干扰方法,包括:磁场感应传感器接收实时反馈信号,将接收的实时反馈信号与当前发射电脉冲信号对应产生的理论反馈信号进行比对,判断实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形是否一致;若否,控制信号发生器调整发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致。该方法根据反馈信号调整发射电脉冲信号,有效避免割草机器人受到相邻边界信号的影响而导致的不能正常工作。还提供一种应用于机器人边界系统的信号抗干扰设备及介质。
Description
本发明涉及智能控制领域,尤其涉及一种应用于机器人边界系统的信号抗干扰方法、设备及介质。
低重复率、高覆盖率是遍历式机器人如吸尘、割草及泳池清洗等移动机器人追求的目标。以移动机器人为智能割草机器人为例,割草机器人以边界围住的草坪为工作区域以进行割草作业,草坪之外定义为非工作区域。
机器人在工作过程中,通过布置边界线来限制割草机的工作区域,若在同一块草坪内布置相邻的两片工作区域,或者相邻的家庭不同的草坪工作区域同时使用同一款割草机器人,则有可能相邻的边界线上的信号会互相影响造成信号干扰,使得割草机器人不能准确的判断出是在边界线内还是边界线外,导致割草机器人不能正常工作。
发明内容
为解决上述技术问题,本发明的目的在于提供一种应用于机器人边界系统的信号抗干扰方法、设备及介质。
为了实现上述发明目的之一,本发明一实施方式提供一种应用于机器人边界系统的信号抗干扰方法,所述系统包括:信号发生器,分别连接信号发生器两端并形成闭合回路的边界线,以及与所述信号发生器通信连接的磁场感应传感器;
所述信号发生器被配置为沿边界线形成的闭合回路发射电脉冲信号;
所述方法包括:
磁场感应传感器接收实时反馈信号,将接收的实时反馈信号与信号发生器当前发射电脉冲信号对应产生的理论反馈信号进行比对,判断实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置 形成的波形是否一致;
若否,控制信号发生器调整发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致。
通过上述方法,有效避免相邻边界信号的影响而导致的波形变化。
作为本发明一实施方式的进一步改进,控制信号发生器调整发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:
控制信号发生器调整发射电脉冲信号的相位和/或周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致;
通过一种较佳实时方式,调整发射电脉冲信号,使得获取的反馈信号保持在预设范围内。
作为本发明一实施方式的进一步改进,预配置周期信号组,所述周期信号组包括大小不同的多个周期;
控制信号发生器调整发射电脉冲信号的周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:
M1、自所述周期信号组随机选择任一周期,并采用当前选定的周期调整发射电脉冲信号,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,
若是,保持发射电脉冲信号以当前周期持续发射;
若否,循环执行M1;
通过一种较佳实时方式,调整发射电脉冲信号,使得获取的反馈信号保持在预设范围内。
作为本发明一实施方式的进一步改进,控制信号发生器调整发射电脉冲信 号的相位和周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:
N1、轮换调整发射电脉冲信号的周期和相位,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,
若是,保持发射电脉冲信号以当前周期或以当前相位持续发射;
若否,循环执行N1;
通过一种较佳实时方式,调整发射电脉冲信号,使得获取的反馈信号保持在预设范围内。
作为本发明一实施方式的进一步改进,控制信号发生器调整发射电脉冲信号的相位和周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:
P1、调整发射电脉冲信号的周期,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,
若一致,保持发射电脉冲信号以当前周期持续发射;
若不一致,则执行步骤P2;
P2、循环执行步骤P1为N次,若第N次执行步骤P1后,实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形仍不一致,则执行步骤P3;
P3、循环调整发射电脉冲信号的相位,直至实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形一致;
通过一种较佳实时方式,调整发射电脉冲信号,使得获取的反馈信号保持在预设范围内。
作为本发明一实施方式的进一步改进,控制信号发生器调整发射电脉冲信号的相位和周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:
持续以调整周期或相位其中之一的方式调整发射电脉冲信号;
若在预定时间内,实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形仍不一致,则转换以调整周期或相位其中另一的方式调整发射电脉冲信号,
其中,在每一预定周期内,选定的周期、相位均不相同;
通过一种较佳实时方式,调整发射电脉冲信号,使得获取的反馈信号保持在预设范围内。
作为本发明一实施方式的进一步改进,配置所述磁场感应传感器设置于所述信号发生器上;
通过该实施方式,明确磁场感应传感器的安装位置。
作为本发明一实施方式的进一步改进,配置所述信号发生器靠近邻域边界系统排布。
为了实现上述发明目的之一,本发明一实施方式提供一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现如上所述应用于机器人边界系统的信号抗干扰方法的步骤。
为了实现上述发明目的之一,本发明一实施方式提供一种可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述应用于机器人边界系统的信号抗干扰方法的步骤。
与现有技术相比,本发明的应用于机器人边界系统的信号抗干扰方法、系统,电子设备及存储介质,根据反馈信号调整发射电脉冲信号,使得实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形保持一致,有效避免割草机器人受到相邻边界信号的影响而导致的不能正常工作。
图1是本发明一实施方式提供的应用于机器人边界系统的信号抗干扰方法的流程示意图;
图2是本发明一具体示例的结构示意图;
图3、4、5分别是本发明一具体示例的反馈信号的时序结构示意图。
以下将结合附图所示的各实施方式对本发明进行详细描述。但这些实施方式并不限制本发明,本领域的普通技术人员根据这些实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。
本发明的机器人可以是割草机器人,扫地机器人、扫雪机、吸叶机,高尔夫球场拾球机等,各种机器人可以自动行走于工作区域并进行相对应的工作,本发明具体示例中,以机器人为割草机器人为例做具体说明,相应的,所述工作区域可为草坪。
机器人在工作过程中,通过布置边界线来限制割草机的工作区域,相应的,机器人所处的工作区域外可能会存在与其相邻的工作区域,且在本申请的机器人在本申请所设定的工作区域工作过程中,相邻工作区域同步发射干扰信号,本发明主要应用于,在相邻工作区域同步发射干扰信号时,通过调整自身的发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形保持一致;进而避免本申请的机器人受相邻工作区域同步发射干扰信号的干扰。
如图1所示,本发明第一实施提供的应用于机器人边界系统的信号抗干扰方法,所述方法包括以下步骤:
S1、接收实时反馈信号,将接收的实时反馈信号与当前发射电脉冲信号对应产生的理论反馈信号进行比对,
S2、判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致;
S3、若否,调整发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形保持一致;
若是,保持发射电脉冲信号不变。
本发明具体实施方式中,在信号发生器内设置磁场感应传感器,所述信号发生器用于发射电脉冲信号,所述磁场感应传感器用于接收反馈信号,并将反馈结果反馈给信号发生器。
结合图2所示,相邻的两个工作区域,左侧为本发明的工作区域Q1,右侧为相邻的其他工作区域Q2;本发明的工作区域Q1由信号发生器1,分别连接信号发生器两端并形成闭合回路的边界线2圈合形成;其中,所述信号发生器1中设置磁场感应传感器3,机器人4在工作区域Q1内工作,信号发生器1启动后,沿边界线2发射电脉冲信号,从而在边界线2附近产生持续的磁场信号,机器人4通过其上的传感器感应磁场信号以保持在边界线内运行。然而,由于相邻工作区域Q2的存在,如果工作区域Q2内的信号发生器1’与工作区域Q1内的信号发生器1发射相同的电脉冲信号,在某一时段内,,则信号发生器1’在其边界线2’上产生的磁场信号可能会对工作区域Q1的边界线1上产生的磁场信号进行干扰。
本发明具体实施方式中,通过判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,间接判断两个区域内的磁场信号是否相互干扰,并根据判断结果进行调整。
为了便于理解,接续图2所示,以下描述具体示例供参考,如下示例中,A为工作区域Q1的信号发生器1发射电脉冲信号后理论上应该接收到的理论反馈信号,B为临近工作区域Q2的信号发生器1’发射电脉冲信号后形成的干扰反馈信号,A+B为磁场感应传感器3当前实际接收到的实时反馈信号。
如图3所示示例:理论反馈信号A与干扰反馈信号B的周期相同,脉冲方向相反,相位相差一个脉冲,且干扰反馈信号B的幅值小于理论反馈信号A的幅值;经过信号叠加,形成的实际反馈信号较理论反馈信号,其周期不变,幅值部分畸变,具体的,t1时刻下降沿延伸;t1-t2区间,反方向幅值增大;t3时刻下降沿延伸,如此,确认实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形不一致。
本发明可实现方式中,有多种方式可以实现步骤S3;步骤S3调整发射电脉冲信号包括:调整发射电脉冲信号的相位和/或周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形保持一致。
本发明具体实施方式中,可具体采用下述几种方案实现步骤S3;
具体的,本发明第一较佳实施方式中,步骤S3调整发射电脉冲信号包括:预配置周期信号组,所述周期信号组包括大小不同的多个周期;
调整发射电脉冲信号的周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形保持一致包括:
M1、自所述周期信号组随机选择任一周期,并采用当前选定的周期调整发射电脉冲信号,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,
若是,保持发射电脉冲信号以当前周期持续发射;
若否,循环执行M1。
本发明第二较佳实施方式中,步骤S3调整发射电脉冲信号包括:N1、轮换调整发射电脉冲信号的周期和相位,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,
若是,保持发射电脉冲信号以当前周期或以当前相位持续发射;
若否,循环执行N1。
本发明第三较佳实施方式中,步骤S3调整发射电脉冲信号包括:P1、调整发射电脉冲信号的周期,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,
若一致,保持发射电脉冲信号以当前周期持续发射;
若不一致,则执行步骤P2;
P2、循环执行步骤P1为N次,若第N次执行步骤P1后,实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成 的波形仍不一致,则执行步骤P3;
P3、循环调整发射电脉冲信号的相位,直至实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形一致。
本发明第四较佳实施方式中,步骤S3调整发射电脉冲信号包括:持续以调整周期或相位其中之一的方式调整发射电脉冲信号;
若在预定时间内,实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形仍不一致,则转换以调整周期或相位其中另一的方式调整发射电脉冲信号,
其中,在每一预定周期内,选定的周期、相位均不相同。
为了便于理解,描述两个示例供参考。
结合图4所示,图4在图3所示示例基础上调整发射电脉冲信号,其调整方式为调整发射脉冲信号的周期,未调整之前,磁场感应传感器3接收到的实时反馈信号为A+B,与其对应的,A+B的信号与理论反馈信号A在预定周期的预定位置处的波形不一致,此时通过调整发射脉冲信号的周期使所述波形一致,具体的,将发射脉冲信号的周期从T1调整为T2,T2<T1,在本发明其他实时方式中,T2也可以不小于T1;C为周期为T2的发射电脉冲信号所产生的理论反馈信号;C+B为磁场感应传感器3当前实际接收到的实时反馈信号,从图中显示所知:周期从T1调整为T2的发射电脉冲信号所形成的反馈信号受到干扰反馈信号干扰后,实时反馈信号C+B在预定周期的预定位置处接收的波形与理论反馈信号C在预定周期的预定位置形成的波形一致,此时,机器人在工作区域Q1工作时,不会受Q2区域磁场信号的影响,可对区域Q1内的磁场信号进行精确识别,实现机器人定位。
结合图5所示,图5在图3所示示例基础上调整发射电脉冲信号,其调整方式为调整发射脉冲信号的相位,未调整之前,磁场感应传感器3接收到的实时反馈信号为A+B,与其对应的,A+B的信号与理论反馈信号A在预定周期的预定位置处的波形不一致,此时通过调整发射脉冲信号的相位使所述波形一致, 具体的,将发射脉冲信号的延时发射;C为延时后的发射电脉冲信号所产生的理论反馈信号;C+B为磁场感应传感器3当前实际接收到的实时反馈信号,从图中显示所知:延时后的发射电脉冲信号所形成的反馈信号受到干扰反馈信号干扰后,实时反馈信号C+B在预定周期的预定位置处接收的波形与理论反馈信号C在预定周期的预定位置形成的波形一致,此时,机器人在工作区域Q1工作时,不会受Q2区域磁场信号的影响,可对区域Q1内的磁场信号进行精确识别,实现机器人定位。
结合图2所示,本发明一实施方式提供一种边界信号抗干扰系统,包括:信号发生器1,分别连接信号发生器1两端并形成闭合回路的边界线2,以及与所述信号发生器通信连接的磁场感应传感器3;所述信号发生器1被配置为沿边界线2形成的闭合回路发射电脉冲信号;所述磁场感应传感器3被配置为:接收实时反馈信号,将接收的实时反馈信号与发射电脉冲信号对应产生的理论反馈信号进行比对,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致;若否,所述磁场感应传感器3反馈控制所述信号发生器1,所述信号发生器1调整发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形保持一致。
另外,所述磁场感应传感器3还用于实现应用于机器人边界系统的信号抗干扰方法中的步骤S1、S2,所述信号发生器1还用于实现应用于机器人边界系统的信号抗干扰方法中的步骤S3,在此不做赘述。
较佳的,所述磁场感应传感器3设置于所述信号发生器1上。
较佳的,所述信号发生器1靠近邻域边界系统排布设置。本发明一实施方式中,还提供一种电子设备,包括存储器和处理器,所述存储器存储有计算机程序,所述处理器执行所述计算机程序时实现上述任一实施方式所述的应用于机器人边界系统的信号抗干扰方法的步骤。
本发明一实施方式中,还提供一种可读存储介质,其上存储有计算机程序, 所述计算机程序被处理器执行时实现上述任一实施方式所述的应用于机器人边界系统的信号抗干扰方法的步骤。
综上所述,本发明的应用于机器人边界系统的信号抗干扰方法、设备及介质,根据反馈信号调整发射电脉冲信号,使得实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形保持一致,有效避免割草机器人受到相邻边界信号的影响而导致的不能正常工作。
在本申请所提供的几个实施方式中,应该理解到,所系统和方法,均可以通过其它的方式实现。
以上实施方式仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的精神和范围。
Claims (10)
- 一种应用于机器人边界系统的信号抗干扰方法,其特征在于,所述系统包括:信号发生器,分别连接信号发生器两端并形成闭合回路的边界线,以及与所述信号发生器通信连接的磁场感应传感器;所述信号发生器被配置为沿边界线形成的闭合回路发射电脉冲信号;所述方法包括:磁场感应传感器接收实时反馈信号,将接收的实时反馈信号与信号发生器当前发射电脉冲信号对应产生的理论反馈信号进行比对,判断实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形是否一致;若否,控制信号发生器调整发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致。
- 根据权利要求1所述的应用于机器人边界系统的信号抗干扰方法,其特征在于,控制信号发生器调整发射电脉冲信号,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:控制信号发生器调整发射电脉冲信号的相位和/或周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致。
- 根据权利要求2所述的应用于机器人边界系统的信号抗干扰方法,其特征在于,所述方法还包括:预配置周期信号组,所述周期信号组包括大小不同的多个周期;控制信号发生器调整发射电脉冲信号的周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:M1、自所述周期信号组随机选择任一周期,并采用当前选定的周期调整发射电脉冲信号,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,若是,保持发射电脉冲信号以当前周期持续发射;若否,循环执行M1。
- 根据权利要求2所述的应用于机器人边界系统的信号抗干扰方法,其特征在于,控制信号发生器调整发射电脉冲信号的相位和周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:N1、轮换调整发射电脉冲信号的周期和相位,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,若是,保持发射电脉冲信号以当前周期或以当前相位持续发射;若否,循环执行N1。
- 根据权利要求2所述的应用于机器人边界系统的信号抗干扰方法,其特征在于,控制信号发生器调整发射电脉冲信号的相位和周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:P1、调整发射电脉冲信号的周期,判断实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形是否一致,若一致,保持发射电脉冲信号以当前周期持续发射;若不一致,则执行步骤P2;P2、循环执行步骤P1为N次,若第N次执行步骤P1后,实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形仍不一致,则执行步骤P3;P3、循环调整发射电脉冲信号的相位,直至实时反馈信号在预定周期的预 定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形一致。
- 根据权利要求2所述的应用于机器人边界系统的信号抗干扰方法,其特征在于,控制信号发生器调整发射电脉冲信号的相位和周期,以使得实时反馈信号在预定周期的预定位置处接收的波形与当前理论反馈信号在预定周期的预定位置形成的波形保持一致包括:持续以调整周期或相位其中之一的方式调整发射电脉冲信号;若在预定时间内,实时反馈信号在预定周期的预定位置处接收的波形与理论反馈信号在预定周期的预定位置形成的波形仍不一致,则转换以调整周期或相位其中另一的方式调整发射电脉冲信号,其中,在每一预定周期内,选定的周期、相位均不相同。
- 根据权利要求1所述的应用于机器人边界系统的信号抗干扰方法,其特征在于,配置所述磁场感应传感器设置于所述信号发生器上。
- 根据权利要求7所述的应用于机器人边界系统的信号抗干扰方法,其特征在于,配置所述信号发生器靠近邻域边界系统排布。
- 一种电子设备,包括存储器和处理器,所述存储器存储有可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现权利要求1-8任意一项所述应用于机器人边界系统的信号抗干扰方法中的步骤。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1-8任意一项所述应用于机器人边界系统的信号抗干扰方法中的步骤。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110198420.5A CN114952936A (zh) | 2021-02-22 | 2021-02-22 | 应用于机器人边界系统的信号抗干扰方法、设备及介质 |
CN202110198420.5 | 2021-02-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022174671A1 true WO2022174671A1 (zh) | 2022-08-25 |
Family
ID=82932208
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/140337 WO2022174671A1 (zh) | 2021-02-22 | 2021-12-22 | 应用于机器人边界系统的信号抗干扰方法、设备及介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114952936A (zh) |
WO (1) | WO2022174671A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024078482A1 (zh) * | 2022-10-13 | 2024-04-18 | 浙江白马科技有限公司 | 信号控制电路及方法、发生装置、停靠站、自主作业系统和存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005090377A (ja) * | 2003-09-18 | 2005-04-07 | Kubota Corp | 空冷エンジン |
EP1886549A1 (en) * | 2006-08-07 | 2008-02-13 | Fabrizio Bernini | Apparatus for controlling the displacement of a self-propelling ground-based automatic vehicle |
CN105467982A (zh) * | 2014-08-22 | 2016-04-06 | 扬州维邦园林机械有限公司 | 使自动行走设备在限定区域工作的系统和方法 |
CN111179568A (zh) * | 2019-12-25 | 2020-05-19 | 中电海康集团有限公司 | 一种基于边界电磁信号的割草机器人通讯方法和系统 |
CN111600632A (zh) * | 2020-04-09 | 2020-08-28 | 中电海康集团有限公司 | 一种割草机器人边界同频电磁信号的抗干扰方法 |
-
2021
- 2021-02-22 CN CN202110198420.5A patent/CN114952936A/zh active Pending
- 2021-12-22 WO PCT/CN2021/140337 patent/WO2022174671A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005090377A (ja) * | 2003-09-18 | 2005-04-07 | Kubota Corp | 空冷エンジン |
EP1886549A1 (en) * | 2006-08-07 | 2008-02-13 | Fabrizio Bernini | Apparatus for controlling the displacement of a self-propelling ground-based automatic vehicle |
CN105467982A (zh) * | 2014-08-22 | 2016-04-06 | 扬州维邦园林机械有限公司 | 使自动行走设备在限定区域工作的系统和方法 |
CN111179568A (zh) * | 2019-12-25 | 2020-05-19 | 中电海康集团有限公司 | 一种基于边界电磁信号的割草机器人通讯方法和系统 |
CN111600632A (zh) * | 2020-04-09 | 2020-08-28 | 中电海康集团有限公司 | 一种割草机器人边界同频电磁信号的抗干扰方法 |
Also Published As
Publication number | Publication date |
---|---|
CN114952936A (zh) | 2022-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3392729B1 (en) | Auto-movement robot system | |
WO2016184398A1 (zh) | 边界线的脉冲信号识别系统、方法及智能割草系统 | |
WO2022174671A1 (zh) | 应用于机器人边界系统的信号抗干扰方法、设备及介质 | |
WO2017101882A1 (zh) | 自移动机器人系统 | |
WO2017181995A1 (zh) | 自动工作系统及其控制方法 | |
CN105467983B (zh) | 自动行走设备导引系统和方法 | |
CA2256442C (en) | Electronic animal control system transmitter with variable phase control | |
CN105467982B (zh) | 使自动行走设备在限定区域工作的系统和方法 | |
CN111179568B (zh) | 一种基于边界电磁信号的割草机器人通讯方法和系统 | |
CN106909143A (zh) | 自移动机器人系统 | |
US10595459B2 (en) | Adaptive control of a mower | |
KR20140129089A (ko) | 프로그래밍가능 게이트 제어기 시스템 및 방법 | |
CN108119992A (zh) | 一种空调定向送风方法 | |
JP2007509529A (ja) | 電力線通信システム内の動的ヌルを補正する方法 | |
CN107898387A (zh) | 回充控制方法、系统、可读存储介质及智能设备 | |
CN105570176B (zh) | 风扇控制方法和系统 | |
WO2022134336A1 (zh) | 移动机器人控制方法、装置、设备及存储介质 | |
CN112230636A (zh) | 一种割草机系统边界信号的自适应方法及割草机系统 | |
CN112230637A (zh) | 一种割草机系统自适应供电电流方向的方法及割草机系统 | |
CN216099032U (zh) | 巡线传感器以及机器人 | |
WO2020148138A1 (en) | Robotic tool | |
CN111164534B (zh) | 自适应边界线发射机 | |
CN108075808B (zh) | 电力载波频率控制方法及装置 | |
CN106487017B (zh) | 基于分布式正阻尼有源导纳的apf并机系统稳定性控制方法 | |
US11509373B2 (en) | System and method for configuring a multi-mode antenna based on network performance indicators for a wireless network |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21926384 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21926384 Country of ref document: EP Kind code of ref document: A1 |