Nothing Special   »   [go: up one dir, main page]

WO2022170556A1 - Additional user equipment identifier for paging response - Google Patents

Additional user equipment identifier for paging response Download PDF

Info

Publication number
WO2022170556A1
WO2022170556A1 PCT/CN2021/076502 CN2021076502W WO2022170556A1 WO 2022170556 A1 WO2022170556 A1 WO 2022170556A1 CN 2021076502 W CN2021076502 W CN 2021076502W WO 2022170556 A1 WO2022170556 A1 WO 2022170556A1
Authority
WO
WIPO (PCT)
Prior art keywords
temporary identifier
message
paging
identifier
network node
Prior art date
Application number
PCT/CN2021/076502
Other languages
French (fr)
Inventor
Juan Zhang
Miguel Griot
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2021/076502 priority Critical patent/WO2022170556A1/en
Publication of WO2022170556A1 publication Critical patent/WO2022170556A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/005Transmission of information for alerting of incoming communication

Definitions

  • the following relates to wireless communications, including configuring an additional user equipment (UE) identifier for paging response.
  • UE user equipment
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as UE.
  • a wireless communications network may implement paging procedures to periodically notify UEs of data to receive.
  • the UE may transition from an idle or inactive mode to a connected mode, or the UE may pause ongoing communications.
  • the UE may determine to reject the paging procedure by responding to the paging message with a busy indication to release the connection between the UE and the network.
  • Various processes that occur between the UE transmitting the busy indication and release of the UE may be inefficient.
  • a core network node may allocate a first UE identifier (e.g., a first global unique temporary identifier (GUTI) ) to a UE upon initial registration, and may transmit a paging message associated with the first UE identifier to the UE.
  • a first UE identifier e.g., a first global unique temporary identifier (GUTI)
  • GUI global unique temporary identifier
  • the UE may reject the paging message by transmitting a paging response such as a busy indication message, and the core network node may perform a UE identifier reallocation in a procedure to terminate the paging.
  • a paging response such as a busy indication message
  • the core network node may perform a UE identifier reallocation in a procedure to terminate the paging.
  • the UE may transmit a service registration message that may include a request for the first UE identifier and a second, additional UE identifier that is different from the first UE identifier.
  • the core network or some other network entity may allocate the first UE identifier and the additional UE identifier, and may transmit the first UE identifier and the additional UE identifier in a service registration response message to the UE.
  • the UE may transmit a paging response message (e.g., a busy indication message) associated with the additional UE identifier as provided by the core network, for example, in cases where the UE determines to reject the paging procedure.
  • the core network node may receive the paging response message, and upon identifying the additional UE identifier with the paging response, the core network node may skip the UE identifier reallocation procedure.
  • a method for wireless communications at a UE may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to transmit, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, receive, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, receive, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and transmit, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the apparatus may include means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • a non-transitory computer-readable medium storing code for wireless communications at a UE is described.
  • the code may include instructions executable by a processor to transmit, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, receive, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, receive, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and transmit, to the radio access network node, a paging response message associated with the second temporary identifier.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • the assistance information message includes a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  • MUSIM multi-universal subscriber identity module
  • MT-EDT mobile-terminated early data transmission
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the first service registration request message based on a MUSIM capability or a single USIM capability of the UE.
  • the first temporary identifier may be different from the second temporary identifier based on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that may be different from a second TMSI associated with the second temporary identifier.
  • TMSI temporary mobile subscriber identity
  • the paging response message associated with the second temporary identifier includes a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  • NAS service request non-access stratum
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the first paging message on a first USIM of the UE, where receiving the first paging message pauses one or more operations on a second USIM of the UE, transmitting the paging response message associated with the second temporary identifier based on receiving the first paging message, and resuming the one or more operations on the second USIM after transmitting the paging response message.
  • a method for wireless communications at a core network node may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to receive, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, transmit, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, transmit, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and receive, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the apparatus may include means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • a non-transitory computer-readable medium storing code for wireless communications at a core network node is described.
  • the code may include instructions executable by a processor to receive, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, transmit, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, transmit, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and receive, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the paging response message associated with the second temporary identifier may be different from the first temporary identifier associated with a paging procedure initiated by the first paging message and skipping a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for formatting the first temporary identifier with a first TMSI that may be different from a second TMSI associated with the second temporary identifier.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • the assistance information message includes a MUSIM capability indication, a MT-EDT indication, or both.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the first service registration request message based on a MUSIM capability or a single USIM capability of the UE.
  • the paging response message associated with the second temporary identifier includes a service request NAS message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for terminating paging of the UE based on receiving the paging response message from the UE associated with the second temporary identifier.
  • FIG. 1 illustrates an example of a wireless communications system that supports additional user equipment (UE) identifier for paging response in accordance with aspects of the present disclosure.
  • UE user equipment
  • FIG. 2 illustrates an example of a wireless communications system that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIGs. 3 and 4 illustrate example process flows that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIGs. 5 and 6 show block diagrams of devices that support additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIG. 7 shows a block diagram of a communications manager that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIG. 8 shows a diagram of a system including a device that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIGs. 9 and 10 show block diagrams of devices that support additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIG. 11 shows a block diagram of a communications manager that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIG. 12 shows a diagram of a system including a device that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • FIGs. 13 through 18 show flowcharts illustrating methods that support additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • a user equipment may be a multi-universal subscriber identity module (MUSIM) UE such that the UE may be configured with more than one USIM to securely and efficiently access a wireless network.
  • the UE may support communications on one USIM at a time, so the UE may switch between communications using a first USIM and a second USIM. For example, the UE may establish a connection with the network using the first USIM, and the second USIM may be in an idle or inactive mode. In some cases, however, the UE may receive a paging message on the second USIM, which may pause the ongoing communications on the first USIM while the UE switches from the idle mode to a connected mode on the second USIM to receive the paging message.
  • MUSIM multi-universal subscriber identity module
  • the UE may determine to reject the paging on the second USIM in order to resume connected mode operations on the first USIM.
  • the UE may reject the paging by sending a busy indication to the network, and the network may perform one or more processes (e.g., between a radio access network (RAN) node and a core network node) to initiate a connection release for the second USIM at the UE.
  • RAN radio access network
  • Some processes associated with the transmission of the busy indication may have high signaling overhead, and may increase latency for the paused communications on the first USIM.
  • the core network node may allocate a first UE identifier (e.g., a first global unique temporary identifier (GUTI) ) to the UE during an initial registration procedure, and may transmit the paging message with the first UE identifier.
  • a first UE identifier e.g., a first global unique temporary identifier (GUTI)
  • the core network node may perform a UE identifier reallocation procedure to ensure that future communications between the UE and the network are secure.
  • the UE may transmit a service registration message (e.g., a registration request non-access stratum (NAS) message) including assistance information to a core network node.
  • the assistance information may include a request for an allocation of the first UE identifier and a second, additional UE identifier that is different from the first UE identifier.
  • the core network may allocate the first UE identifier and the additional UE identifier for the UE, and may transmit the first UE identifier and the additional UE identifier in a service registration response message (e.g., a registration response NAS message) .
  • a service registration response message e.g., a registration response NAS message
  • the UE may receive a paging message that is associated with the first UE identifier.
  • the UE may transmit a paging response message associated with the additional UE identifier (e.g., such as a busy indication) as provided by the core network, for example, in cases where the UE determines to reject the paging procedure associated with the paging message and the first UE identifier.
  • the core network node may receive the paging response message from the UE, and may identify that the paging response message is associated with the additional UE identifier rather than the first UE identifier associated with the paging message.
  • the core network node may skip various subsequent paging procedures for the UE. For example, the core network node may determine to skip the UE identifier reallocation procedure following receiving the paging response from the UE associated with the additional UE identifier.
  • the described techniques may support improvements in procedures related to the transmission of a busy indication by the UE.
  • the techniques may allow for reduced latency, for example, by transmitting a paging response message including an additional UE identifier the UE may resume operations or may return to an idle mode more quickly (e.g., as compared to techniques where the paging response message included the first UE identifier) .
  • the described techniques may further reduce signaling overhead, and may simplify a busy indication procedure used to reject paging by the UE. Further, the described techniques may extend battery life of the UE by allowing the UE to more efficiently return to an idle or inactive mode after paging.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, process flows, and flowcharts that relate to additional UE identifier for paging response.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers.
  • a carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115.
  • E-UTRA evolved universal mobile telecommunication system terrestrial radio access
  • a carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
  • the communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115.
  • Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
  • a carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100.
  • the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) .
  • Devices of the wireless communications system 100 e.g., the base stations 105, the UEs 115, or both
  • the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths.
  • each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing ( ⁇ f) and a cyclic prefix.
  • a carrier may be divided into one or more BWPs having the same or different numerologies.
  • a UE 115 may be configured with multiple BWPs.
  • a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may support synchronous or asynchronous operation.
  • the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time.
  • the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time.
  • the techniques described herein may be used for either synchronous or asynchronous operations.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band.
  • SHF super high frequency
  • EHF extremely high frequency
  • the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device.
  • mmW millimeter wave
  • the propagation of EHF transmissions may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions.
  • the techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • the base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing.
  • the multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas.
  • Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) .
  • Different spatial layers may be associated with different antenna ports used for channel measurement and reporting.
  • MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
  • SU-MIMO single-user MIMO
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a UE 115 may be a MUSIM UE configured with more than one USIM to securely access wireless network 100.
  • the UE 115 may establish a connection with the network using the first USIM, while the second USIM may be in an idle or inactive mode. In some cases, however, the UE 115 may receive a paging message on the second USIM, which may pause the ongoing communications on the first USIM while the UE 115 switches from the idle mode to a connected mode on the second USIM to receive the paging message.
  • the UE 115 may determine to reject the paging by sending a busy indication or a paging rejection message to the network, and the network may perform one or more processes to release the UE 115.
  • the core network node may allocate a first UE identifier (e.g., a first GUTI) to the UE 115, and may transmit the paging message with the first UE identifier.
  • a first UE identifier e.g., a first GUTI
  • the core network node 130 may perform a UE identifier reallocation procedure to ensure that future communications between the UE and the network are secure. Such reallocation procedures, along with other subsequent paging termination and UE release processes, however, may be inefficient.
  • the UE 115 may transmit a service registration message including assistance information to the core network node 130.
  • the assistance information may include a request for the first UE identifier and a second, additional UE identifier that is different from the first UE identifier.
  • the core network 130 may allocate the first UE identifier and the additional UE identifier, and may transmit the first UE identifier and the additional UE identifier in a service registration response message to the UE 115.
  • the UE 115 may transmit a paging response message associated with the additional UE identifier as provided by the core network, for example, in cases where the UE 115 determines to reject the paging procedure.
  • the core network node 130 may receive the paging response message, and upon identifying the additional UE identifier with the paging response, the core network node 130 may skip various paging termination processes, such as the UE identifier reallocation procedure.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • wireless communications system 200 may include a UE 215 and base stations 205 (e.g., base stations 205-a and 205-b) which may be examples of UE 115 and base stations 105 as described with reference to FIG. 1.
  • a base station 205 may be an example of radio access network (RAN) nodes which include both user plane and control plane functionality.
  • RAN radio access network
  • wireless communications system 200 may include core network node 230 which may be an example of core network 130 as described with reference to FIG. 1. Additionally or alternatively, core networks 230 may be examples of access and mobility management functions (AMFs) , parent inter-access backhaul (IAB) nodes, or other core network controllers.
  • AMFs access and mobility management functions
  • IAB inter-access backhaul
  • UE 215 may be a subscriber of a network, and may communicate with a number of other wireless devices and network nodes of wireless communications system 200.
  • UE 215 may be equipped with one or more universal subscriber identity modules (USIMs) , which may enable secure connection with the wireless communication system 200 and provide information for network access.
  • USIMs universal subscriber identity modules
  • a UE 215 equipped with two or more USIMs may be referred to as a multiple USIM (MUSIM) UE 215.
  • MUSIM UE 215 may be equipped with a first USIM (e.g., USIM A) and a second USIM (e.g., USIM B) .
  • the MUSIM UE 215 may coordinate with the network to pause and continue active communication or an idle mode on at least one of the USIMs for efficient use of network resources.
  • MUSIM UE 215 support communications in coverage zone 210-a (e.g., corresponding to base station 205-a) and coverage zone 210-b (e.g., corresponding to base station 205-b) .
  • MUSIM UE 215 may be connected (e.g., RRC connected) with both base station 205-a and base station 205-b.
  • MUSIM UE 215 may communicate with base station 205-a via communication link 220-a using USIM A and MUSIM UE 215 may communicate with base station 205-b via communication link 220-b using USIM B.
  • communication links 220 may be uplink communication links, downlink communication links, or any combination thereof.
  • Base stations 205 may be connected to the same or different core networks 230. In some cases, for example, in wireless communications system 200, base stations 205 may be connected to separate core networks (e.g., via communication links 225-a and 225-b) .
  • the UE 215 may communicate with one or more base stations or core network nodes using the first USIM (e.g., USIM A) and the second USIM (e.g., USIM B) .
  • a first USIM (e.g., USIM A) of MUSIM UE 215 may be in a connected mode such that MUSIM UE 215 may transmit and receive data to and from base station 205-a via communication link 220-a, and the second USIM (e.g., USIM B) of MUSIM UE 215 may operate in accordance with an idle or inactive mode to conserve power.
  • core network 230-b may receive a paging trigger (e.g., an indication of data to send to the MUSIM UE 215, a periodic paging trigger, or other paging message) such that upon receiving the paging trigger, core network 230-b may send a paging message 235 that is associated with a first UE identifier to MUSIM UE 215. For example, core network 230-b may transmit the paging message 235 to base station 205-b, and base station 205-b may transmit the paging message 235 to MUSIM UE 215.
  • a paging trigger e.g., an indication of data to send to the MUSIM UE 215, a periodic paging trigger, or other paging message
  • MUSIM UE 215 may transmit a paging response message (e.g., to accept or reject the paging) to the base station 205-b and the base station 205-b may transmit the paging response message to the core network 230-b.
  • a paging response message e.g., to accept or reject the paging
  • MUSIM UE 215 may participate in ongoing communications on the first USIM (e.g., USIM A) , and may receive the paging message 235 on a second USIM (e.g., USIM B) .
  • the MUSIM UE 215 may pause communications on the first USIM in order to transition out of idle mode on USIM B to receive the paging message on the second USIM.
  • the MUSIM UE 215 may determine to reject the paging on the second USIM, and may transmit a paging response message to the base station 205-b as a service request non-access stratum (NAS) message including a busy indication (e.g., to reject the paging) .
  • NAS non-access stratum
  • UE 215 may be an example of a single USIM UE 215, and the UE 215 may transition out of the idle or inactive mode to receive the paging message and transmit a paging response message to the base station 205-b.
  • Transmitting the paging response message may trigger one or more procedures following the paging response message. For example, upon receiving the paging response message including the busy indication, the core network 230 may perform temporary identifier reassignment, configuration updates, connection release, among other procedures, to terminate the paging procedure with the UE 215. Some such procedures, however, may take a long time to complete, thus increasing latency. For example, for cases in which the UE 215 is a MUSIM UE 215, engaging in such procedures following the transmission of the busy indication with the paging response message on a second USIM (e.g., USIM B) may interfere with communications associated with another USIM (e.g., USIM A) . For instance, the MUSIM UE 215 may pause communications associated with USIM A in order to complete a busy indication procedure, which may interfere with an activated service for USIM A.
  • a second USIM e.g., USIM B
  • the UE 215 may implement a number of different techniques to increase overall system efficiency and reduce battery consumption and latency associated with a busy indication procedure following the transmission of a paging response. For example, during an initial connection establishment with a base station 205, the UE 215 may transmit a service registration message including assistance information to the base station 205 to indicate a request for the additional UE identifier. A base station 205 may transmit, to the UE, a first UE identifier and the additional UE identifier in a service registration response message. In subsequent communications, the UE 215 may receive the paging message from the base station 205 that is associated with the first UE identifier.
  • the UE 215 may transmit a paging response message associated with the additional UE identifier.
  • the base station 205 may receive the paging response message and, upon identifying that the paging response message is associated with the additional UE identifier, the base station 205 may skip any or all subsequent procedures corresponding to the UE paging response message.
  • FIG. 3 illustrates an example of a process flow 300 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • process flow 300 may implement aspects of wireless communications system 200 as described with reference to FIG. 2.
  • process flow 300 may include a UE 315 and a base station 305 which may be an example of UE 115 or 215 and a base station 105 or 205 as described with reference to FIGs. 1–2.
  • process flow 300 may include core network 330 which may be an example of core network nodes 130 and 230 as described with reference to FIGs. 1–2.
  • process flow 300 shows communications between a UE 315, a base station 305, and a core network 330
  • the processes described may apply to any number or combination of network devices described herein.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be included.
  • UE 315 may be connected to base station 305 and core network
  • UE 315 may operate in an active mode by establishing an RRC connection with the base station 305, and the base station 305 may communicate with the core network 330 (e.g., via an N1 or N2 interface) .
  • the UE 315 may be an example of a single USIM UE 315 or a MUSIM UE 315 as described with reference to FIG. 2.
  • at least one USIM of UE 315 may be associated with an idle or an inactive mode (e.g., due to a low power mode, or based on communications occurring through a different USIM) , while at least one other USIM of the UE 315 may be associated with an active or connected mode.
  • the inactive USIM may remain inactive for a determined inactive time, which may be configured by the network, such that the active USIM may engage in communications.
  • core network 330 may transmit a paging message associated with a first UE identifier (e.g., a first GUTI) to base station 305 (e.g., with an end destination of UE 315) .
  • core network may transmit the paging message to base station 305 in response to a paging trigger (e.g., a paging trigger received from a user plane function (UPF) , autonomously determined at the core network 330, or based on one or more data messages indicated for the UE 315) .
  • a paging trigger e.g., a paging trigger received from a user plane function (UPF)
  • base station 305 may transmit the paging message to UE 315.
  • the UE 315 may pause some functions or active communications at the UE 315.
  • UE 315 may be an example of a MUSIM UE 315 that may be in an active state for a first USIM (e.g., USIM A) , while remaining in an idle mode for a second USIM (e.g., USIM B) .
  • the MUSIM UE 315 may keep USIM A in a connected mode during ongoing communications with the network, while USIM B remains idle.
  • the UE 315 may receive a paging message associated with USIM B, and thus may transition USIM B to a connected mode (thus pausing communications corresponding to USIM A) to receive the paging message on USIM B.
  • UE 315 may be a single USIM UE 315 operating in an idle or inactive mode upon receiving the paging message at 340.
  • the UE 315 may transition into a connected mode (e.g., the UE 315 may “wake up” ) in order to receive the paging message associated with the single USIM.
  • the UE 315 may determine to reject the paging message transmitted by the base station 305, for example, when the UE 315 has already received a paging message or in order to remain in an idle state for a longer duration of time.
  • the UE 315 may transmit, to the base station 305, a service request message (e.g., a paging response message) that is associated with the first UE identifier.
  • a service request message e.g., a paging response message
  • the UE 315 may include a busy indication (e.g., to reject paging) within the service request message.
  • service request messages may include, but are not limited to, service request NAS message, control plane service request NAS message, resume messages, mobile terminated (MT) early data transmissions (EDTs) , or the like.
  • the base station 305 may transmit or relay the service request message including the busy indication to the core network 330.
  • the core network 330 may determine to stop paging the UE 315. For example, the core network 330 may determine to stop paging the UE 315 based on determining that the service request message includes the busy indication and is associated with the first UE identifier. In some cases, determining to stop paging the UE may trigger one or more subsequent procedures to release the UE 315 from an RRC connection. An exemplary procedure is described with reference to steps 360 to 395.
  • the core network 330 may transmit a service accept message to the base station 305 and, at 365, the base station 305 may transmit the service accept message to the UE 315.
  • the core network 330 may reallocate a new UE identifier based on receiving the paging response message with the first UE identifier (e.g., for security purposes) .
  • the core network 330 may transmit, to the base station 305, a UE configuration update (UCU) message including a new UE identifier (e.g., to replace the first UE identifier) .
  • the base station 305 may transmit, to the UE 315, the UCU message including the new UE identifier.
  • the UE 315 may transmit a UCU complete message to base station 305 where, at 385, the base station 305 may transmit or relay the UCU complete message to the core network 330.
  • the core network 330 may initiate a connection release (e.g., N2 release) with the base station 305, and at 395, the base station 305 may initiate a connection release (e.g., RRC release) with the UE 315.
  • a connection release e.g., N2 release
  • the base station 305 may initiate a connection release (e.g., RRC release) with the UE 315.
  • Process flow 300 illustrates one possible procedure following a paging response message.
  • process flow 300 describes the method following the UE 315 transmitting, to a core network, a service request message including a busy indication (e.g., to reject paging) , and a process by which the core network may reallocate a UE identifier and initiate RRC release based on receiving the paging response.
  • a service request message including a busy indication (e.g., to reject paging)
  • a process by which the core network may reallocate a UE identifier and initiate RRC release based on receiving the paging response.
  • the network may implement a number of techniques to reduce excessive signaling or processes. For example, methods described with reference to FIG. 4 support a UE 315 requesting an additional UE identifier during an initial access procedure, and transmitting paging response messages with the additional UE identifier (e.g., different from the first UE identifier and the reallocated UE identifier) .
  • the network may determine to skip any (or all) procedures following the transmission of the paging response message, for example, the network may refrain from reallocating the first UE identifier based on receiving the paging response associated with the additional UE identifier.
  • Such methods may decrease battery consumption and communications latency at the UE 315, and enhance overall system efficiency.
  • FIG. 4 illustrates an example of a process flow 400 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • process flow 400 may implement aspects of wireless communications systems 100 and 200 as described with reference to FIGs. 1 and 2.
  • process flow 400 may include a UE 415 and a base station 405 which may be examples of a UE 115 or 215 and base stations 105 and 205 as described with reference to FIGs. 1 and 2.
  • process flow 400 may include core network 430 which may be an example of core network nodes 130 and 230 as described with reference to FIGs. 1 and 2.
  • process flow 300 shows communications between a UE 315, a base station 305, and a core network 330
  • the processes described may apply to any number or combination of network devices described herein.
  • Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be included.
  • UE 415 may be located in a coverage area served by the core network 430, and the UE 415 may initiate a connection establishment procedure with the core network 430 to establish an initial connection with the network.
  • UE 415 may transmit a service registration request message (e.g., a random-access channel (RACH) message, a service registration request NAS message, an RRC connection establishment message, or other communications establishment initiation messages) to core network 430, requesting a first UE identifier and an additional UE identifier (e.g., a second temporary identifier) .
  • a service registration request message e.g., a random-access channel (RACH) message, a service registration request NAS message, an RRC connection establishment message, or other communications establishment initiation messages
  • RACH random-access channel
  • NAS message e.g., a service registration request NAS message
  • RRC connection establishment message e.g., a second temporary identifier
  • the UE 415 may include a request for the core network 330 to allocate the first temporary identifier (e.g., a first 5G-global unique temporary identifier (GUTI) ) and the second temporary identifier (e.g.,
  • the UE 415 may transmit the service registration request message based on a capability of the UE 415.
  • the capability of the UE 415 may be a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability.
  • the UE 415 may transmit the service registration request message as an assistance information message.
  • the UE 415 may include a MUSIM capability indication, a MT-EDT indication, or both, within the assistance information message.
  • the core network 430 may transmit a service registration response message (e.g., a service registration response NAS message, a RACH message, an RRC connection establishment message) .
  • a service registration response message e.g., a service registration response NAS message, a RACH message, an RRC connection establishment message
  • the core network 430 may receive the service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier for the UE, for example, based on a MUSIM capability or a single USIM capability of the UE 415.
  • the assistance information message may include a MUSIM capability indication, an MT-EDT indication, or both.
  • the core network 430 may allocate a first temporary identifier and an additional temporary identifier for the UE 415. For example, the core network 430 may allocate the first temporary identifier and the second temporary identifier such that the first temporary identifier may differ from the second temporary identifier based on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier being different from a second TMSI associated with the second temporary identifier.
  • TMSI temporary mobile subscriber identity
  • the first temporary identifier and the second temporary identifiers may be examples of GUTIs (e.g., 5G-GUTIs) .
  • the first temporary identifier and second temporary identifier may have the same AMF Set ID and the same AMF Pointer (which in some cases may be common to the core network 430) .
  • the first temporary identifier may have a first TMSI (e.g., 5G-TMSI) while the second temporary identifier may have a second TMSI (e.g., 5G-TMSI) that is different from the first TMSI.
  • the core network may format the first temporary identifier with the first TMSI and the second temporary identifier with the second TMSI such that the first temporary identifier is different from the second temporary identifier.
  • the UE 415 may receive the service registration response message with the first temporary identifier and the second temporary identifier in accordance with the service registration request message transmitted at 420.
  • UE 415 may be connected to base station 405 and core network 430. For instance, UE 415 may establish an RRC connection with the base station 405, and the base station 405 may be connected to core network 430 (e.g., via an N1 or N2 interface) . In such a case, the UE 415 may be an example of a single USIM UE 215 or a MUSIM UE 215 as described with reference to FIG. 2. In some examples, at least one USIM of UE 415 may be associated with an idle or an inactive mode (e.g., due to a low power mode enabled for the UE 415, due to communications occurring through a different activated USIM of the UE 415)
  • the core network 430 may receive a paging trigger which may trigger the core network 430 to transmit a paging message to the UE 415.
  • the core network 430 may receive the paging trigger from a parent device (e.g., a UPF, a parent IAB node, etc. ) .
  • the core network 430 may transmit a paging message associated with the first temporary identifier to the base station 405 where, at 445, the base station 405 may transmit or relay the paging message to the UE 415.
  • the UE 415 may transition out of an idle or inactive mode.
  • the UE 415 may be a single USIM UE 415 where the UE 415 may transition out of the idle or inactive mode to receive the paging message (e.g., the UE 415 may “wake up” or transition to an active or connected mode) .
  • the UE 415 may pause one or more operations on a second USIM of the UE 415 in order to receive a paging message on a first USIM of the UE 415.
  • the UE 415 may pause operations on the second USIM, and may transition out of an idle state of the first USIM in order to receive the paging message on a first USIM of the UE 415.
  • This paging message may interrupt communications and operations on the second USIM of the UE 415.
  • the UE 415 may transmit a paging response message with the second temporary identifier to the base station 405.
  • the UE 415 may transmit the paging response message with the second temporary identifier based on receiving the paging message with the first temporary identifier at 445.
  • the paging response message may include, but is not limited to, a service request NAS message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  • the UE 415 may transmit the paging response message in order to reject future paging by the core network 430.
  • the UE 415 may resume the one or more operations.
  • the UE 415 may resume the one or more operations based on transmitting the paging response message associated with the second temporary identifier.
  • the base station 405 may transmit or relay the paging response message with the second temporary identifier to the core network 430.
  • the core network 430 may determine that the paging response message is associated with the second temporary identifier (e.g., different from the first temporary identifier) associated with the paging procedure initiated by the paging message transmitted at 440.
  • the core network 430 may terminate paging of the UE 415 based on receiving the paging response message.
  • the core network 430 may determine that it is to skip a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier. For example, based on receiving a paging response message with a temporary identifier that is different from a first temporary identifier associated with the initial paging message sent to the UE 415, the core network 430 may skip reallocation of the first temporary identifier (e.g., the core network 430 may use the first identifier for additional paging procedures associated with UE 415) .
  • Allowing a UE 415 to transmit such paging response messages with the second temporary identifier (e.g., different from the first temporary identifier) to skip any (or all) procedures following the transmission of the paging response message may decrease battery consumption at the UE 415, decrease communications latency at the UE 415, reduce signaling overhead, and enhance system efficiency.
  • FIG. 5 shows a block diagram 500 of a device 505 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a UE 115 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of additional UE identifier for paging response as described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting
  • the communications manager 520 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE.
  • the communications manager 520 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the communications manager 520 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier.
  • the communications manager 520 may be configured as or otherwise support a means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the device 505 e.g., a processor controlling or otherwise coupled to the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof
  • the device 505 may support techniques for reduced processing, reduced power consumption, more efficient utilization of communication resources, and reduced signaling overhead.
  • FIG. 6 shows a block diagram 600 of a device 605 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the device 605 may be an example of aspects of a device 505 or a UE 115 as described herein.
  • the device 605 may include a receiver 610, a transmitter 615, and a communications manager 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 605.
  • the receiver 610 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 615 may provide a means for transmitting signals generated by other components of the device 605.
  • the transmitter 615 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) .
  • the transmitter 615 may be co-located with a receiver 610 in a transceiver module.
  • the transmitter 615 may utilize a single antenna or a set of multiple antennas.
  • the device 605, or various components thereof may be an example of means for performing various aspects of additional UE identifier for paging response as described herein.
  • the communications manager 620 may include a registration request transmission component 625, a registration response receiving component 630, a paging message receiving component 635, a paging response transmission component 640, or any combination thereof.
  • the communications manager 620 may be an example of aspects of a communications manager 520 as described herein.
  • the communications manager 620, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both.
  • the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 620 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the registration request transmission component 625 may be configured as or otherwise support a means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE.
  • the registration response receiving component 630 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the paging message receiving component 635 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier.
  • the paging response transmission component 640 may be configured as or otherwise support a means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • FIG. 7 shows a block diagram 700 of a communications manager 720 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein.
  • the communications manager 720, or various components thereof, may be an example of means for performing various aspects of additional UE identifier for paging response as described herein.
  • the communications manager 720 may include a registration request transmission component 725, a registration response receiving component 730, a paging message receiving component 735, a paging response transmission component 740, a resume operations component 745, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 720 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the registration request transmission component 725 may be configured as or otherwise support a means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE.
  • the registration response receiving component 730 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the paging message receiving component 735 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier.
  • the paging response transmission component 740 may be configured as or otherwise support a means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the registration request transmission component 725 may be configured as or otherwise support a means for transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • the assistance information message includes a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  • MUSIM multi-universal subscriber identity module
  • MT-EDT mobile-terminated early data transmission
  • the registration request transmission component 725 may be configured as or otherwise support a means for transmitting the first service registration request message based on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
  • MUSIM multi-universal subscriber identity module
  • the first temporary identifier is different from the second temporary identifier based on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that is different from a second TMSI associated with the second temporary identifier.
  • TMSI temporary mobile subscriber identity
  • the paging response message associated with the second temporary identifier includes a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  • NAS non-access stratum
  • the paging message receiving component 735 may be configured as or otherwise support a means for receiving the first paging message on a first USIM of the UE, where receiving the first paging message pauses one or more operations on a second USIM of the UE.
  • the paging response transmission component 740 may be configured as or otherwise support a means for transmitting the paging response message associated with the second temporary identifier based on receiving the first paging message.
  • the resume operations component 745 may be configured as or otherwise support a means for resuming the one or more operations on the second USIM after transmitting the paging response message.
  • FIG. 8 shows a diagram of a system 800 including a device 805 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein.
  • the device 805 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
  • the I/O controller 810 may manage input and output signals for the device 805.
  • the I/O controller 810 may also manage peripherals not integrated into the device 805.
  • the I/O controller 810 may represent a physical connection or port to an external peripheral.
  • the I/O controller 810 may utilize an operating system such as or another known operating system.
  • the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 810 may be implemented as part of a processor, such as the processor 840.
  • a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
  • the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein.
  • the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825.
  • the transceiver 815 may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
  • the memory 830 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 830 may store computer-readable, computer-executable code 835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein.
  • the code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 840 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 840.
  • the processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting additional UE identifier for paging response) .
  • the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
  • the communications manager 820 may support wireless communications at a UE in accordance with examples as disclosed herein.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE.
  • the communications manager 820 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the communications manager 820 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier.
  • the communications manager 820 may be configured as or otherwise support a means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the device 805 may support techniques for improved communication reliability, reduced latency associated with reduced time between transmitting a busy indication (associated with a paging procedure) and resuming a connected mode or idle mode, improved user experience related to such reduced latency, reduced power consumption, more efficient utilization of communication resources, and longer battery life.
  • the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof.
  • the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof.
  • the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of additional UE identifier for paging response as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
  • FIG. 9 shows a block diagram 900 of a device 905 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the device 905 may be an example of aspects of a base station 105 as described herein.
  • the device 905 may include a receiver 910, a transmitter 915, and a communications manager 920.
  • the device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 910 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 905.
  • the receiver 910 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 915 may provide a means for transmitting signals generated by other components of the device 905.
  • the transmitter 915 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) .
  • the transmitter 915 may be co-located with a receiver 910 in a transceiver module.
  • the transmitter 915 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations thereof or various components thereof may be examples of means for performing various aspects of additional UE identifier for paging response as described herein.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure.
  • a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
  • the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure)
  • the communications manager 920 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both.
  • the communications manager 920 may receive information from the receiver 910, send information to the transmitter 915, or be integrated in combination with the receiver 910, the transmitter 915, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 920 may support wireless communications at a core network node in accordance with examples as disclosed herein.
  • the communications manager 920 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier.
  • the communications manager 920 may be configured as or otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the communications manager 920 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier.
  • the communications manager 920 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the device 905 e.g., a processor controlling or otherwise coupled to the receiver 910, the transmitter 915, the communications manager 920, or a combination thereof
  • the device 905 may support techniques for reduced processing, reduced power consumption, more efficient utilization of communication resources, and reduced signaling overhead.
  • FIG. 10 shows a block diagram 1000 of a device 1005 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the device 1005 may be an example of aspects of a device 905 or a base station 105 as described herein.
  • the device 1005 may include a receiver 1010, a transmitter 1015, and a communications manager 1020.
  • the device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 1010 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 1005.
  • the receiver 1010 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 1015 may provide a means for transmitting signals generated by other components of the device 1005.
  • the transmitter 1015 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) .
  • the transmitter 1015 may be co-located with a receiver 1010 in a transceiver module.
  • the transmitter 1015 may utilize a single antenna or a set of multiple antennas.
  • the device 1005, or various components thereof, may be an example of means for performing various aspects of additional UE identifier for paging response as described herein.
  • the communications manager 1020 may include a registration request receiving component 1025, a registration response transmission component 1030, a paging message transmission component 1035, a paging response message receiving component 1040, or any combination thereof.
  • the communications manager 1020 may be an example of aspects of a communications manager 920 as described herein.
  • the communications manager 1020, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1010, the transmitter 1015, or both.
  • the communications manager 1020 may receive information from the receiver 1010, send information to the transmitter 1015, or be integrated in combination with the receiver 1010, the transmitter 1015, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 1020 may support wireless communications at a core network node in accordance with examples as disclosed herein.
  • the registration request receiving component 1025 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier.
  • the registration response transmission component 1030 may be configured as or otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the paging message transmission component 1035 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier.
  • the paging response message receiving component 1040 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • FIG. 11 shows a block diagram 1100 of a communications manager 1120 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the communications manager 1120 may be an example of aspects of a communications manager 920, a communications manager 1020, or both, as described herein.
  • the communications manager 1120, or various components thereof, may be an example of means for performing various aspects of additional UE identifier for paging response as described herein.
  • the communications manager 1120 may include a registration request receiving component 1125, a registration response transmission component 1130, a paging message transmission component 1135, a paging response message receiving component 1140, an identifier determination component 1145, an identifier reallocation skipping component 1150, an identifier formatting component 1155, a paging termination component 1160, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 1120 may support wireless communications at a core network node in accordance with examples as disclosed herein.
  • the registration request receiving component 1125 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier.
  • the registration response transmission component 1130 may be configured as or otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the paging message transmission component 1135 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier.
  • the paging response message receiving component 1140 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the identifier determination component 1145 may be configured as or otherwise support a means for determining that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message.
  • the identifier reallocation skipping component 1150 may be configured as or otherwise support a means for skipping a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier.
  • the identifier formatting component 1155 may be configured as or otherwise support a means for formatting the first temporary identifier with a first temporary mobile subscriber identity (TMSI) that is different from a second TMSI associated with the second temporary identifier.
  • TMSI temporary mobile subscriber identity
  • the registration request receiving component 1125 may be configured as or otherwise support a means for receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • the assistance information message includes a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  • MUSIM multi-universal subscriber identity module
  • MT-EDT mobile-terminated early data transmission
  • the registration request receiving component 1125 may be configured as or otherwise support a means for receiving the first service registration request message based on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
  • MUSIM multi-universal subscriber identity module
  • the paging response message associated with the second temporary identifier includes a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  • NAS non-access stratum
  • the paging termination component 1160 may be configured as or otherwise support a means for terminating paging of the UE based on receiving the paging response message from the UE associated with the second temporary identifier.
  • FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the device 1205 may be an example of or include the components of a device 905, a device 1005, or a base station 105 as described herein.
  • the device 1205 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1220, a network communications manager 1210, a transceiver 1215, an antenna 1225, a memory 1230, code 1235, a processor 1240, and an inter-station communications manager 1245.
  • These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1250) .
  • the network communications manager 1210 may manage communications with a core network 130 (e.g., via one or more wired backhaul links) .
  • the network communications manager 1210 may manage the transfer of data communications for client devices, such as one or more UEs 115.
  • the device 1205 may include a single antenna 1225. However, in some other cases the device 1205 may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 1215 may communicate bi-directionally, via the one or more antennas 1225, wired, or wireless links as described herein.
  • the transceiver 1215 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 1215 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1225 for transmission, and to demodulate packets received from the one or more antennas 1225.
  • the transceiver 1215 may be an example of a transmitter 915, a transmitter 1015, a receiver 910, a receiver 1010, or any combination thereof or component thereof, as described herein.
  • the memory 1230 may include RAM and ROM.
  • the memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed by the processor 1240, cause the device 1205 to perform various functions described herein.
  • the code 1235 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory.
  • the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • the processor 1240 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 1240 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 1240.
  • the processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting additional UE identifier for paging response) .
  • the device 1205 or a component of the device 1205 may include a processor 1240 and memory 1230 coupled to the processor 1240, the processor 1240 and memory 1230 configured to perform various functions described herein.
  • the inter-station communications manager 1245 may manage communications with other base stations 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between base stations 105.
  • the communications manager 1220 may support wireless communications at a core network node in accordance with examples as disclosed herein.
  • the communications manager 1220 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier.
  • the communications manager 1220 may be configured as or otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the communications manager 1220 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier.
  • the communications manager 1220 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the device 1205 may support techniques for improved communication reliability, reduced latency associated with reduced time between transmitting a busy indication (associated with a paging procedure) and resuming a connected mode or idle mode, improved user experience related to such reduced latency, reduced power consumption, more efficient utilization of communication resources, and longer battery life.
  • the communications manager 1220 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1215, the one or more antennas 1225, or any combination thereof.
  • the communications manager 1220 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1220 may be supported by or performed by the processor 1240, the memory 1230, the code 1235, or any combination thereof.
  • the code 1235 may include instructions executable by the processor 1240 to cause the device 1205 to perform various aspects of additional UE identifier for paging response as described herein, or the processor 1240 and the memory 1230 may be otherwise configured to perform or support such operations.
  • FIG. 13 shows a flowchart illustrating a method 1300 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the operations of the method 1300 may be implemented by a UE or its components as described herein.
  • the operations of the method 1300 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE.
  • the operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
  • the method may include receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a registration response receiving component 730 as described with reference to FIG. 7.
  • the method may include receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier.
  • the operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
  • the method may include transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the operations of 1320 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1320 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
  • FIG. 14 shows a flowchart illustrating a method 1400 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the operations of the method 1400 may be implemented by a UE or its components as described herein.
  • the operations of the method 1400 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE.
  • the operations of 1405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1405 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
  • the method may include transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • the operations of 1410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1410 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
  • the method may include receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the operations of 1415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1415 may be performed by a registration response receiving component 730 as described with reference to FIG. 7.
  • the method may include receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier.
  • the operations of 1420 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1420 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
  • the method may include transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the operations of 1425 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1425 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
  • FIG. 15 shows a flowchart illustrating a method 1500 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the operations of the method 1500 may be implemented by a UE or its components as described herein.
  • the operations of the method 1500 may be performed by a UE 115 as described with reference to FIGs. 1 through 8.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE.
  • the operations of 1505 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1505 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
  • the method may include receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the operations of 1510 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1510 may be performed by a registration response receiving component 730 as described with reference to FIG. 7.
  • the method may include receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier.
  • the operations of 1515 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1515 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
  • the method may include receiving the first paging message on a first USIM of the UE, where receiving the first paging message pauses one or more operations on a second USIM of the UE.
  • the operations of 1520 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1520 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
  • the method may include transmitting the paging response message associated with the second temporary identifier based on receiving the first paging message.
  • the operations of 1525 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1525 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
  • the method may include transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • the operations of 1530 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1530 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
  • the method may include resuming the one or more operations on the second USIM after transmitting the paging response message.
  • the operations of 1535 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1535 may be performed by a resume operations component 745 as described with reference to FIG. 7.
  • FIG. 16 shows a flowchart illustrating a method 1600 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the operations of the method 1600 may be implemented by a base station or its components as described herein.
  • the operations of the method 1600 may be performed by a base station 105 as described with reference to FIGs. 1 through 4 and 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier.
  • the operations of 1605 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1605 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
  • the method may include transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the operations of 1610 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1610 may be performed by a registration response transmission component 1130 as described with reference to FIG. 11.
  • the method may include transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier.
  • the operations of 1615 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1615 may be performed by a paging message transmission component 1135 as described with reference to FIG. 11.
  • the method may include receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the operations of 1620 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1620 may be performed by a paging response message receiving component 1140 as described with reference to FIG. 11.
  • FIG. 17 shows a flowchart illustrating a method 1700 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the operations of the method 1700 may be implemented by a base station or its components as described herein.
  • the operations of the method 1700 may be performed by a base station 105 as described with reference to FIGs. 1 through 4 and 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier.
  • the operations of 1705 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1705 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
  • the method may include transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the operations of 1710 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1710 may be performed by a registration response transmission component 1130 as described with reference to FIG. 11.
  • the method may include transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier.
  • the operations of 1715 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1715 may be performed by a paging message transmission component 1135 as described with reference to FIG. 11.
  • the method may include receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the operations of 1720 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1720 may be performed by a paging response message receiving component 1140 as described with reference to FIG. 11.
  • the method may include determining that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message.
  • the operations of 1725 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1725 may be performed by an identifier determination component 1145 as described with reference to FIG. 11.
  • the method may include skipping a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier.
  • the operations of 1730 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1730 may be performed by an identifier reallocation skipping component 1150 as described with reference to FIG. 11.
  • FIG. 18 shows a flowchart illustrating a method 1800 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
  • the operations of the method 1800 may be implemented by a base station or its components as described herein.
  • the operations of the method 1800 may be performed by a base station 105 as described with reference to FIGs. 1 through 4 and 9 through 12.
  • a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
  • the method may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier.
  • the operations of 1805 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1805 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
  • the method may include receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • the operations of 1810 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1810 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
  • the method may include transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message.
  • the operations of 1815 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1815 may be performed by a registration response transmission component 1130 as described with reference to FIG. 11.
  • the method may include transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier.
  • the operations of 1820 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1820 may be performed by a paging message transmission component 1135 as described with reference to FIG. 11.
  • the method may include receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • the operations of 1825 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1825 may be performed by a paging response message receiving component 1140 as described with reference to FIG. 11.
  • a method for wireless communications at a UE comprising: transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE; receiving, from the core network node, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message; receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier; and transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  • Aspect 2 The method of aspect 1, further comprising: transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • Aspect 3 The method of aspect 2, wherein the assistance information message comprises a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  • MUSIM multi-universal subscriber identity module
  • MT-EDT mobile-terminated early data transmission
  • Aspect 4 The method of any of aspects 1 through 3, further comprising: transmitting the first service registration request message based at least in part on a MUSIM capability or a single USIM capability of the UE.
  • Aspect 5 The method of any of aspects 1 through 4, wherein the first temporary identifier is different from the second temporary identifier based at least in part on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that is different from a second TMSI associated with the second temporary identifier.
  • TMSI temporary mobile subscriber identity
  • Aspect 6 The method of any of aspects 1 through 5, wherein the paging response message associated with the second temporary identifier comprises a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  • NAS non-access stratum
  • Aspect 7 The method of any of aspects 1 through 6, further comprising: receiving the first paging message on a first USIM of the UE, wherein receiving the first paging message pauses one or more operations on a second USIM of the UE; transmitting the paging response message associated with the second temporary identifier based at least in part on receiving the first paging message; and resuming the one or more operations on the second USIM after transmitting the paging response message.
  • a method for wireless communications at a core network node comprising: receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier; transmitting, to the UE, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message; transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier; and receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  • Aspect 9 The method of aspect 8, further comprising: determining that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message; and skipping a temporary identifier reallocation procedure of the first temporary identifier based at least in part on receiving the paging response message associated with the second temporary identifier.
  • Aspect 10 The method of any of aspects 8 through 9, further comprising: formatting the first temporary identifier with a first TMSI that is different from a second TMSI associated with the second temporary identifier.
  • Aspect 11 The method of any of aspects 8 through 10, further comprising: receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  • Aspect 12 The method of aspect 11, wherein the assistance information message comprises a MUSIM capability indication, a MT-EDT indication, or both.
  • Aspect 13 The method of any of aspects 8 through 12, further comprising: receiving the first service registration request message based at least in part on a MUSIM capability or a single USIM capability of the UE.
  • Aspect 14 The method of any of aspects 8 through 13, wherein the paging response message associated with the second temporary identifier comprises a service request NAS message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  • Aspect 15 The method of any of aspects 8 through 14, further comprising: terminating paging of the UE based at least in part on receiving the paging response message from the UE associated with the second temporary identifier.
  • Aspect 16 An apparatus for wireless communications at a UE, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 7.
  • Aspect 17 An apparatus for wireless communications at a UE, comprising at least one means for performing a method of any of aspects 1 through 7.
  • Aspect 18 A non-transitory computer-readable medium storing code for wireless communications at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 7.
  • Aspect 19 An apparatus for wireless communications at a core network node, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 8 through 15.
  • Aspect 20 An apparatus for wireless communications at a core network node, comprising at least one means for performing a method of any of aspects 8 through 15.
  • a non-transitory computer-readable medium storing code for wireless communications at a core network node, the code comprising instructions executable by a processor to perform a method of any of aspects 8 through 15.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. During an initial access procedure with a wireless network, a user equipment (UE) may transmit a first service registration request message requesting an allocation of a first temporary identifier and a second, additional temporary identifier. The UE may receive a service registration response message that includes the first temporary identifier and the second temporary identifier. The UE may receive a first paging message from the network associated with the first temporary identifier, and in some cases, the UE may determine to reject the paging by sending a paging response message associated with the second temporary identifier. Upon receiving the paging response message with the second temporary identifier, the network may skip reallocation of the first UE identifier, and may terminate subsequent paging associated with the first paging message.

Description

ADDITIONAL USER EQUIPMENT IDENTIFIER FOR PAGING RESPONSE
FIELD OF TECHNOLOGY
The following relates to wireless communications, including configuring an additional user equipment (UE) identifier for paging response.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal FDMA (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as UE.
A wireless communications network may implement paging procedures to periodically notify UEs of data to receive. To receive a paging message, the UE may transition from an idle or inactive mode to a connected mode, or the UE may pause ongoing communications. In some cases, the UE may determine to reject the paging procedure by responding to the paging message with a busy indication to release the connection between the UE and the network. Various processes that occur between the UE transmitting the busy indication and release of the UE, however, may be inefficient.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that support configuring an additional user equipment (UE) identifier for paging responses. Generally, the described techniques provide for increased efficiency and reduced  latency associated with a busy indication procedure, among other paging or signaling processes between a UE and a network entity. In some wireless communications networks, a core network node may allocate a first UE identifier (e.g., a first global unique temporary identifier (GUTI) ) to a UE upon initial registration, and may transmit a paging message associated with the first UE identifier to the UE. In some cases, the UE may reject the paging message by transmitting a paging response such as a busy indication message, and the core network node may perform a UE identifier reallocation in a procedure to terminate the paging. Such reallocation procedures, along with other subsequent paging termination and UE release processes, however, may be inefficient.
In some cases, during an initial registration procedure, the UE may transmit a service registration message that may include a request for the first UE identifier and a second, additional UE identifier that is different from the first UE identifier. The core network or some other network entity may allocate the first UE identifier and the additional UE identifier, and may transmit the first UE identifier and the additional UE identifier in a service registration response message to the UE. When the UE receives the paging message that is associated with the first UE identifier, the UE may transmit a paging response message (e.g., a busy indication message) associated with the additional UE identifier as provided by the core network, for example, in cases where the UE determines to reject the paging procedure. The core network node may receive the paging response message, and upon identifying the additional UE identifier with the paging response, the core network node may skip the UE identifier reallocation procedure.
A method for wireless communications at a UE is described. The method may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
An apparatus for wireless communications at a UE is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to transmit, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, receive, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, receive, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and transmit, to the radio access network node, a paging response message associated with the second temporary identifier.
Another apparatus for wireless communications at a UE is described. The apparatus may include means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
A non-transitory computer-readable medium storing code for wireless communications at a UE is described. The code may include instructions executable by a processor to transmit, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE, receive, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, receive, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier, and transmit, to the radio access network node, a paging response message associated with the second temporary identifier.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the assistance information message includes a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting the first service registration request message based on a MUSIM capability or a single USIM capability of the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first temporary identifier may be different from the second temporary identifier based on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that may be different from a second TMSI associated with the second temporary identifier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the paging response message associated with the second temporary identifier includes a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving the first paging message on a first USIM of the UE, where receiving the first paging message pauses one or more operations on a second USIM of the UE, transmitting the paging response message associated with the second temporary identifier based on receiving the first paging message, and resuming the one or more operations on the second USIM after transmitting the paging response message.
A method for wireless communications at a core network node is described. The method may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
An apparatus for wireless communications at a core network node is described. The apparatus may include a processor, memory coupled with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to receive, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, transmit, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, transmit, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and receive, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
Another apparatus for wireless communications at a core network node is described. The apparatus may include means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
A non-transitory computer-readable medium storing code for wireless communications at a core network node is described. The code may include instructions executable by a processor to receive, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier, transmit, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message, transmit, to a radio access network node, a first paging message for the UE associated with the first temporary identifier, and receive, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the paging response message associated with the second temporary identifier may be different from the first temporary identifier associated with a paging procedure initiated by the first paging message and skipping a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for formatting the first temporary identifier with a first TMSI that may be different from a second TMSI associated with the second temporary identifier.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the assistance information message includes a MUSIM capability indication, a MT-EDT indication, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for  receiving the first service registration request message based on a MUSIM capability or a single USIM capability of the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the paging response message associated with the second temporary identifier includes a service request NAS message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for terminating paging of the UE based on receiving the paging response message from the UE associated with the second temporary identifier.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports additional user equipment (UE) identifier for paging response in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIGs. 3 and 4 illustrate example process flows that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIGs. 5 and 6 show block diagrams of devices that support additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIG. 7 shows a block diagram of a communications manager that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIG. 8 shows a diagram of a system including a device that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIGs. 9 and 10 show block diagrams of devices that support additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIG. 11 shows a block diagram of a communications manager that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIG. 12 shows a diagram of a system including a device that supports additional UE identifier for paging response in accordance with aspects of the present disclosure.
FIGs. 13 through 18 show flowcharts illustrating methods that support additional UE identifier for paging response in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
In some wireless communications systems, a user equipment (UE) may be a multi-universal subscriber identity module (MUSIM) UE such that the UE may be configured with more than one USIM to securely and efficiently access a wireless network. In some examples, the UE may support communications on one USIM at a time, so the UE may switch between communications using a first USIM and a second USIM. For example, the UE may establish a connection with the network using the first USIM, and the second USIM may be in an idle or inactive mode. In some cases, however, the UE may receive a paging message on the second USIM, which may pause the ongoing communications on the first USIM while the UE switches from the idle mode to a connected mode on the second USIM to receive the paging message.
In some cases, the UE may determine to reject the paging on the second USIM in order to resume connected mode operations on the first USIM. The UE may reject the paging by sending a busy indication to the network, and the network may perform one or more processes (e.g., between a radio access network (RAN) node and a core network node) to initiate a connection release for the second USIM at the UE. Some processes associated with the transmission of the busy indication, however, may have high signaling overhead, and may increase latency for the paused communications on the first USIM.
In some cases, the core network node may allocate a first UE identifier (e.g., a first global unique temporary identifier (GUTI) ) to the UE during an initial registration procedure, and may transmit the paging message with the first UE identifier. In some examples where the UE rejects the paging using the busy indication, the core network node  may perform a UE identifier reallocation procedure to ensure that future communications between the UE and the network are secure.
In some other cases, during an initial registration procedure, the UE may transmit a service registration message (e.g., a registration request non-access stratum (NAS) message) including assistance information to a core network node. The assistance information may include a request for an allocation of the first UE identifier and a second, additional UE identifier that is different from the first UE identifier. Upon receiving the service registration message, the core network may allocate the first UE identifier and the additional UE identifier for the UE, and may transmit the first UE identifier and the additional UE identifier in a service registration response message (e.g., a registration response NAS message) .
Upon registration with the network, and after receiving the first UE identifier and the additional UE identifier, the UE may receive a paging message that is associated with the first UE identifier. In some examples, the UE may transmit a paging response message associated with the additional UE identifier (e.g., such as a busy indication) as provided by the core network, for example, in cases where the UE determines to reject the paging procedure associated with the paging message and the first UE identifier. The core network node may receive the paging response message from the UE, and may identify that the paging response message is associated with the additional UE identifier rather than the first UE identifier associated with the paging message. Upon identifying the additional UE identifier with the paging response, the core network node may skip various subsequent paging procedures for the UE. For example, the core network node may determine to skip the UE identifier reallocation procedure following receiving the paging response from the UE associated with the additional UE identifier.
Particular aspects of the subject matter described herein may be implemented to realize one or more advantages. The described techniques may support improvements in procedures related to the transmission of a busy indication by the UE. In some examples, the techniques may allow for reduced latency, for example, by transmitting a paging response message including an additional UE identifier the UE may resume operations or may return to an idle mode more quickly (e.g., as compared to techniques where the paging response message included the first UE identifier) . The described techniques may further reduce  signaling overhead, and may simplify a busy indication procedure used to reject paging by the UE. Further, the described techniques may extend battery life of the UE by allowing the UE to more efficiently return to an idle or inactive mode after paging.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, process flows, and flowcharts that relate to additional UE identifier for paging response.
FIG. 1 illustrates an example of a wireless communications system 100 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base  stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical  layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
In some examples (e.g., in a carrier aggregation configuration) , a carrier may also have acquisition signaling or control signaling that coordinates operations for other carriers. A carrier may be associated with a frequency channel (e.g., an evolved universal mobile telecommunication system terrestrial radio access (E-UTRA) absolute radio frequency channel number (EARFCN) ) and may be positioned according to a channel raster for discovery by the UEs 115. A carrier may be operated in a standalone mode where initial acquisition and connection may be conducted by the UEs 115 via the carrier, or the carrier may be operated in a non-standalone mode where a connection is anchored using a different carrier (e.g., of the same or a different radio access technology) .
The communication links 125 shown in the wireless communications system 100 may include uplink transmissions from a UE 115 to a base station 105, or downlink transmissions from a base station 105 to a UE 115. Carriers may carry downlink or uplink communications (e.g., in an FDD mode) or may be configured to carry downlink and uplink communications (e.g., in a TDD mode) .
A carrier may be associated with a particular bandwidth of the radio frequency spectrum, and in some examples the carrier bandwidth may be referred to as a “system bandwidth” of the carrier or the wireless communications system 100. For example, the carrier bandwidth may be one of a number of determined bandwidths for carriers of a particular radio access technology (e.g., 1.4, 3, 5, 10, 15, 20, 40, or 80 megahertz (MHz) ) . Devices of the wireless communications system 100 (e.g., the base stations 105, the UEs 115,  or both) may have hardware configurations that support communications over a particular carrier bandwidth or may be configurable to support communications over one of a set of carrier bandwidths. In some examples, the wireless communications system 100 may include base stations 105 or UEs 115 that support simultaneous communications via carriers associated with multiple carrier bandwidths. In some examples, each served UE 115 may be configured for operating over portions (e.g., a sub-band, a BWP) or all of a carrier bandwidth.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
One or more numerologies for a carrier may be supported, where a numerology may include a subcarrier spacing (Δf) and a cyclic prefix. A carrier may be divided into one or more BWPs having the same or different numerologies. In some examples, a UE 115 may be configured with multiple BWPs. In some examples, a single BWP for a carrier may be active at a given time and communications for the UE 115 may be restricted to one or more active BWPs.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio  frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a  control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell generally covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples,  different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may support synchronous or asynchronous operation. For synchronous operation, the base stations 105 may have similar frame timings, and transmissions from different base stations 105 may be approximately aligned in time. For asynchronous operation, the base stations 105 may have different frame timings, and transmissions from different base stations 105 may, in some examples, not be aligned in time. The techniques described herein may be used for either synchronous or asynchronous operations.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception  simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may also operate in a super high frequency (SHF) region using frequency bands from 3 GHz to 30 GHz, also known as the centimeter band, or in an extremely high frequency (EHF) region of the spectrum (e.g., from 30 GHz to 300 GHz) , also known as the millimeter band. In some examples, the wireless communications system 100 may support millimeter wave (mmW) communications between the UEs 115 and the base stations 105, and EHF antennas of the respective devices may be smaller and more closely spaced than UHF antennas. In some examples, this may facilitate use of antenna arrays within a device. The propagation of EHF transmissions, however, may be subject to even greater atmospheric attenuation and shorter range than SHF or UHF transmissions. The techniques disclosed herein may be employed across transmissions that use one or more different frequency regions, and designated use of bands across these frequency regions may differ by country or regulating body.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include  downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
The base stations 105 or the UEs 115 may use MIMO communications to exploit multipath signal propagation and increase the spectral efficiency by transmitting or receiving multiple signals via different spatial layers. Such techniques may be referred to as spatial multiplexing. The multiple signals may, for example, be transmitted by the transmitting device via different antennas or different combinations of antennas. Likewise, the multiple signals may be received by the receiving device via different antennas or different combinations of antennas. Each of the multiple signals may be referred to as a separate spatial stream and may carry bits associated with the same data stream (e.g., the same codeword) or different data streams (e.g., different codewords) . Different spatial layers may be associated with different antenna ports used for channel measurement and reporting. MIMO techniques include single-user MIMO (SU-MIMO) , where multiple spatial layers are transmitted to the same receiving device, and multiple-user MIMO (MU-MIMO) , where multiple spatial layers are transmitted to multiple devices.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer  an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station 105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a  combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the  bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
In some wireless communications systems, a UE 115 may be a MUSIM UE configured with more than one USIM to securely access wireless network 100. In some examples, the UE 115 may establish a connection with the network using the first USIM, while the second USIM may be in an idle or inactive mode. In some cases, however, the UE 115 may receive a paging message on the second USIM, which may pause the ongoing communications on the first USIM while the UE 115 switches from the idle mode to a connected mode on the second USIM to receive the paging message. In some cases, the UE 115 may determine to reject the paging by sending a busy indication or a paging rejection message to the network, and the network may perform one or more processes to release the UE 115. In some cases, the core network node may allocate a first UE identifier (e.g., a first GUTI) to the UE 115, and may transmit the paging message with the first UE identifier. In  some cases where the UE rejects the paging using the busy indication, the core network node 130 may perform a UE identifier reallocation procedure to ensure that future communications between the UE and the network are secure. Such reallocation procedures, along with other subsequent paging termination and UE release processes, however, may be inefficient.
In some cases, during an initial registration procedure, the UE 115 may transmit a service registration message including assistance information to the core network node 130. The assistance information may include a request for the first UE identifier and a second, additional UE identifier that is different from the first UE identifier. The core network 130 may allocate the first UE identifier and the additional UE identifier, and may transmit the first UE identifier and the additional UE identifier in a service registration response message to the UE 115.
When the UE 115 receives a paging message that is associated with the first UE identifier, the UE 115 may transmit a paging response message associated with the additional UE identifier as provided by the core network, for example, in cases where the UE 115 determines to reject the paging procedure. The core network node 130 may receive the paging response message, and upon identifying the additional UE identifier with the paging response, the core network node 130 may skip various paging termination processes, such as the UE identifier reallocation procedure.
FIG. 2 illustrates an example of a wireless communications system 200 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. For example, wireless communications system 200 may include a UE 215 and base stations 205 (e.g., base stations 205-a and 205-b) which may be examples of UE 115 and base stations 105 as described with reference to FIG. 1. In some examples, a base station 205 may be an example of radio access network (RAN) nodes which include both user plane and control plane functionality. In addition, wireless communications system 200 may include core network node 230 which may be an example of core network 130 as described with reference to FIG. 1. Additionally or alternatively, core networks 230 may be examples of access and mobility management functions (AMFs) , parent inter-access backhaul (IAB) nodes, or other core network controllers.
In some cases, UE 215 may be a subscriber of a network, and may communicate with a number of other wireless devices and network nodes of wireless communications system 200. In some examples, UE 215 may be equipped with one or more universal subscriber identity modules (USIMs) , which may enable secure connection with the wireless communication system 200 and provide information for network access. A UE 215 equipped with two or more USIMs may be referred to as a multiple USIM (MUSIM) UE 215. For example, MUSIM UE 215 may be equipped with a first USIM (e.g., USIM A) and a second USIM (e.g., USIM B) . In some examples, the MUSIM UE 215 may coordinate with the network to pause and continue active communication or an idle mode on at least one of the USIMs for efficient use of network resources.
In wireless communications system 200, MUSIM UE 215 support communications in coverage zone 210-a (e.g., corresponding to base station 205-a) and coverage zone 210-b (e.g., corresponding to base station 205-b) . As such, MUSIM UE 215 may be connected (e.g., RRC connected) with both base station 205-a and base station 205-b. In some examples, MUSIM UE 215 may communicate with base station 205-a via communication link 220-a using USIM A and MUSIM UE 215 may communicate with base station 205-b via communication link 220-b using USIM B. In such examples, communication links 220 may be uplink communication links, downlink communication links, or any combination thereof.
Base stations 205 may be connected to the same or different core networks 230. In some cases, for example, in wireless communications system 200, base stations 205 may be connected to separate core networks (e.g., via communication links 225-a and 225-b) .
In some cases, the UE 215 may communicate with one or more base stations or core network nodes using the first USIM (e.g., USIM A) and the second USIM (e.g., USIM B) . For example, in some cases, a first USIM (e.g., USIM A) of MUSIM UE 215 may be in a connected mode such that MUSIM UE 215 may transmit and receive data to and from base station 205-a via communication link 220-a, and the second USIM (e.g., USIM B) of MUSIM UE 215 may operate in accordance with an idle or inactive mode to conserve power.
In some examples, core network 230-b may receive a paging trigger (e.g., an indication of data to send to the MUSIM UE 215, a periodic paging trigger, or other paging message) such that upon receiving the paging trigger, core network 230-b may send a paging  message 235 that is associated with a first UE identifier to MUSIM UE 215. For example, core network 230-b may transmit the paging message 235 to base station 205-b, and base station 205-b may transmit the paging message 235 to MUSIM UE 215. Upon receiving the paging message, MUSIM UE 215 may transmit a paging response message (e.g., to accept or reject the paging) to the base station 205-b and the base station 205-b may transmit the paging response message to the core network 230-b.
In some examples, MUSIM UE 215 may participate in ongoing communications on the first USIM (e.g., USIM A) , and may receive the paging message 235 on a second USIM (e.g., USIM B) . The MUSIM UE 215 may pause communications on the first USIM in order to transition out of idle mode on USIM B to receive the paging message on the second USIM. In some such cases, the MUSIM UE 215 may determine to reject the paging on the second USIM, and may transmit a paging response message to the base station 205-b as a service request non-access stratum (NAS) message including a busy indication (e.g., to reject the paging) . In another example, UE 215 may be an example of a single USIM UE 215, and the UE 215 may transition out of the idle or inactive mode to receive the paging message and transmit a paging response message to the base station 205-b.
Transmitting the paging response message may trigger one or more procedures following the paging response message. For example, upon receiving the paging response message including the busy indication, the core network 230 may perform temporary identifier reassignment, configuration updates, connection release, among other procedures, to terminate the paging procedure with the UE 215. Some such procedures, however, may take a long time to complete, thus increasing latency. For example, for cases in which the UE 215 is a MUSIM UE 215, engaging in such procedures following the transmission of the busy indication with the paging response message on a second USIM (e.g., USIM B) may interfere with communications associated with another USIM (e.g., USIM A) . For instance, the MUSIM UE 215 may pause communications associated with USIM A in order to complete a busy indication procedure, which may interfere with an activated service for USIM A.
In some examples, the UE 215 may implement a number of different techniques to increase overall system efficiency and reduce battery consumption and latency associated with a busy indication procedure following the transmission of a paging response. For example, during an initial connection establishment with a base station 205, the UE 215 may  transmit a service registration message including assistance information to the base station 205 to indicate a request for the additional UE identifier. A base station 205 may transmit, to the UE, a first UE identifier and the additional UE identifier in a service registration response message. In subsequent communications, the UE 215 may receive the paging message from the base station 205 that is associated with the first UE identifier. In some cases, the UE 215 may transmit a paging response message associated with the additional UE identifier. The base station 205 may receive the paging response message and, upon identifying that the paging response message is associated with the additional UE identifier, the base station 205 may skip any or all subsequent procedures corresponding to the UE paging response message.
FIG. 3 illustrates an example of a process flow 300 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. In some examples, process flow 300 may implement aspects of wireless communications system 200 as described with reference to FIG. 2. For example, process flow 300 may include a UE 315 and a base station 305 which may be an example of  UE  115 or 215 and a  base station  105 or 205 as described with reference to FIGs. 1–2. Additionally, process flow 300 may include core network 330 which may be an example of  core network nodes  130 and 230 as described with reference to FIGs. 1–2. While process flow 300 shows communications between a UE 315, a base station 305, and a core network 330, the processes described may apply to any number or combination of network devices described herein. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be included.
In some cases, UE 315 may be connected to base station 305 and core network
330. For example, UE 315 may operate in an active mode by establishing an RRC connection with the base station 305, and the base station 305 may communicate with the core network 330 (e.g., via an N1 or N2 interface) . In such cases, the UE 315 may be an example of a single USIM UE 315 or a MUSIM UE 315 as described with reference to FIG. 2. In some examples, at least one USIM of UE 315 may be associated with an idle or an inactive mode (e.g., due to a low power mode, or based on communications occurring through a different USIM) , while at least one other USIM of the UE 315 may be associated with an active or connected mode. For example, the inactive USIM may remain inactive for a determined  inactive time, which may be configured by the network, such that the active USIM may engage in communications.
At 335, core network 330 may transmit a paging message associated with a first UE identifier (e.g., a first GUTI) to base station 305 (e.g., with an end destination of UE 315) . In some cases, core network may transmit the paging message to base station 305 in response to a paging trigger (e.g., a paging trigger received from a user plane function (UPF) , autonomously determined at the core network 330, or based on one or more data messages indicated for the UE 315) .
At 340, base station 305 may transmit the paging message to UE 315. Upon receiving the paging message, the UE 315 may pause some functions or active communications at the UE 315. For instance, UE 315 may be an example of a MUSIM UE 315 that may be in an active state for a first USIM (e.g., USIM A) , while remaining in an idle mode for a second USIM (e.g., USIM B) . The MUSIM UE 315 may keep USIM A in a connected mode during ongoing communications with the network, while USIM B remains idle. In some examples, the UE 315 may receive a paging message associated with USIM B, and thus may transition USIM B to a connected mode (thus pausing communications corresponding to USIM A) to receive the paging message on USIM B. In another example, UE 315 may be a single USIM UE 315 operating in an idle or inactive mode upon receiving the paging message at 340. In such examples, the UE 315 may transition into a connected mode (e.g., the UE 315 may “wake up” ) in order to receive the paging message associated with the single USIM. In some cases, the UE 315 may determine to reject the paging message transmitted by the base station 305, for example, when the UE 315 has already received a paging message or in order to remain in an idle state for a longer duration of time.
At 345, the UE 315 may transmit, to the base station 305, a service request message (e.g., a paging response message) that is associated with the first UE identifier. In some examples, the UE 315 may include a busy indication (e.g., to reject paging) within the service request message. Such service request messages may include, but are not limited to, service request NAS message, control plane service request NAS message, resume messages, mobile terminated (MT) early data transmissions (EDTs) , or the like. At 350, the base station 305 may transmit or relay the service request message including the busy indication to the core network 330.
At 355, upon receiving the service request message, and identifying that the service request message is associated with the first UE identifier, the core network 330 may determine to stop paging the UE 315. For example, the core network 330 may determine to stop paging the UE 315 based on determining that the service request message includes the busy indication and is associated with the first UE identifier. In some cases, determining to stop paging the UE may trigger one or more subsequent procedures to release the UE 315 from an RRC connection. An exemplary procedure is described with reference to steps 360 to 395.
At 360, the core network 330 may transmit a service accept message to the base station 305 and, at 365, the base station 305 may transmit the service accept message to the UE 315.
At 370, the core network 330 may reallocate a new UE identifier based on receiving the paging response message with the first UE identifier (e.g., for security purposes) . The core network 330 may transmit, to the base station 305, a UE configuration update (UCU) message including a new UE identifier (e.g., to replace the first UE identifier) . At 375, the base station 305 may transmit, to the UE 315, the UCU message including the new UE identifier.
At 380, upon receiving the UCU message, the UE 315 may transmit a UCU complete message to base station 305 where, at 385, the base station 305 may transmit or relay the UCU complete message to the core network 330.
At 390, the core network 330 may initiate a connection release (e.g., N2 release) with the base station 305, and at 395, the base station 305 may initiate a connection release (e.g., RRC release) with the UE 315.
In some cases, however steps described herein (e.g., steps 365 to 395) related to completion of the busy indication procedure may take a significant time to complete. As such, it may be desired to skip some (or all) of the procedure following receiving the paging response message including the paging response message (e.g., such as the service request NAS message transmitted at 345 as described herein) . Process flow 300 illustrates one possible procedure following a paging response message. Specifically, process flow 300 describes the method following the UE 315 transmitting, to a core network, a service request message including a busy indication (e.g., to reject paging) , and a process by which the core  network may reallocate a UE identifier and initiate RRC release based on receiving the paging response.
In some examples, to reduce latency and signaling overhead associated with the completion of the busy indication procedure described with reference to process flow 300, the network may implement a number of techniques to reduce excessive signaling or processes. For example, methods described with reference to FIG. 4 support a UE 315 requesting an additional UE identifier during an initial access procedure, and transmitting paging response messages with the additional UE identifier (e.g., different from the first UE identifier and the reallocated UE identifier) . Based on using the additional UE identifier, the network may determine to skip any (or all) procedures following the transmission of the paging response message, for example, the network may refrain from reallocating the first UE identifier based on receiving the paging response associated with the additional UE identifier. Such methods may decrease battery consumption and communications latency at the UE 315, and enhance overall system efficiency.
FIG. 4 illustrates an example of a process flow 400 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. In some examples, process flow 400 may implement aspects of  wireless communications systems  100 and 200 as described with reference to FIGs. 1 and 2. For example, process flow 400 may include a UE 415 and a base station 405 which may be examples of a  UE  115 or 215 and  base stations  105 and 205 as described with reference to FIGs. 1 and 2. Additionally, process flow 400 may include core network 430 which may be an example of  core network nodes  130 and 230 as described with reference to FIGs. 1 and 2. While process flow 300 shows communications between a UE 315, a base station 305, and a core network 330, the processes described may apply to any number or combination of network devices described herein. Alternative examples of the following may be implemented, where some steps are performed in a different order than described or are not performed at all. In some cases, steps may include additional features not mentioned below, or further steps may be included.
In some cases, UE 415 may be located in a coverage area served by the core network 430, and the UE 415 may initiate a connection establishment procedure with the core network 430 to establish an initial connection with the network.
At 420, UE 415 may transmit a service registration request message (e.g., a random-access channel (RACH) message, a service registration request NAS message, an RRC connection establishment message, or other communications establishment initiation messages) to core network 430, requesting a first UE identifier and an additional UE identifier (e.g., a second temporary identifier) . Within the service registration request message, the UE 415 may include a request for the core network 330 to allocate the first temporary identifier (e.g., a first 5G-global unique temporary identifier (GUTI) ) and the second temporary identifier (e.g., a second 5G-GUTI) for the UE 415 to use in following communications.
In some cases, the UE 415 may transmit the service registration request message based on a capability of the UE 415. For example, the capability of the UE 415 may be a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability. In some examples, the UE 415 may transmit the service registration request message as an assistance information message. In such examples, the UE 415 may include a MUSIM capability indication, a MT-EDT indication, or both, within the assistance information message.
At 425, upon receiving the service registration request message, the core network 430 may transmit a service registration response message (e.g., a service registration response NAS message, a RACH message, an RRC connection establishment message) . In some examples, the core network 430 may receive the service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier for the UE, for example, based on a MUSIM capability or a single USIM capability of the UE 415. In such examples, the assistance information message may include a MUSIM capability indication, an MT-EDT indication, or both.
Based on receiving the service registration request message, the core network 430 may allocate a first temporary identifier and an additional temporary identifier for the UE 415. For example, the core network 430 may allocate the first temporary identifier and the second temporary identifier such that the first temporary identifier may differ from the second temporary identifier based on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier being different from a second TMSI associated with the second temporary identifier.
In some examples, the first temporary identifier and the second temporary identifiers may be examples of GUTIs (e.g., 5G-GUTIs) . The first temporary identifier and second temporary identifier may have the same AMF Set ID and the same AMF Pointer (which in some cases may be common to the core network 430) . In some examples, however, the first temporary identifier may have a first TMSI (e.g., 5G-TMSI) while the second temporary identifier may have a second TMSI (e.g., 5G-TMSI) that is different from the first TMSI. In such cases, the core network may format the first temporary identifier with the first TMSI and the second temporary identifier with the second TMSI such that the first temporary identifier is different from the second temporary identifier. The UE 415 may receive the service registration response message with the first temporary identifier and the second temporary identifier in accordance with the service registration request message transmitted at 420.
Upon service establishment, UE 415 may be connected to base station 405 and core network 430. For instance, UE 415 may establish an RRC connection with the base station 405, and the base station 405 may be connected to core network 430 (e.g., via an N1 or N2 interface) . In such a case, the UE 415 may be an example of a single USIM UE 215 or a MUSIM UE 215 as described with reference to FIG. 2. In some examples, at least one USIM of UE 415 may be associated with an idle or an inactive mode (e.g., due to a low power mode enabled for the UE 415, due to communications occurring through a different activated USIM of the UE 415) 
At 435, the core network 430 may receive a paging trigger which may trigger the core network 430 to transmit a paging message to the UE 415. The core network 430 may receive the paging trigger from a parent device (e.g., a UPF, a parent IAB node, etc. ) .
At 440, the core network 430 may transmit a paging message associated with the first temporary identifier to the base station 405 where, at 445, the base station 405 may transmit or relay the paging message to the UE 415. To receive the paging message, the UE 415 may transition out of an idle or inactive mode. For instance, the UE 415 may be a single USIM UE 415 where the UE 415 may transition out of the idle or inactive mode to receive the paging message (e.g., the UE 415 may “wake up” or transition to an active or connected mode) .
Additionally or alternatively, at 450, in examples where the UE 415 is a MUSIM UE 415, the UE 415 and may pause one or more operations on a second USIM of the UE 415 in order to receive a paging message on a first USIM of the UE 415. For example, the UE 415 may pause operations on the second USIM, and may transition out of an idle state of the first USIM in order to receive the paging message on a first USIM of the UE 415. This paging message may interrupt communications and operations on the second USIM of the UE 415.
At 455, the UE 415 may transmit a paging response message with the second temporary identifier to the base station 405. The UE 415 may transmit the paging response message with the second temporary identifier based on receiving the paging message with the first temporary identifier at 445. The paging response message may include, but is not limited to, a service request NAS message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof. In some examples, the UE 415 may transmit the paging response message in order to reject future paging by the core network 430.
At 460, if the UE 415 paused one or more operations on the second USIM of the UE 415, the UE 415 may resume the one or more operations. The UE 415 may resume the one or more operations based on transmitting the paging response message associated with the second temporary identifier.
At 465, the base station 405 may transmit or relay the paging response message with the second temporary identifier to the core network 430. Upon receiving the paging response message, the core network 430 may determine that the paging response message is associated with the second temporary identifier (e.g., different from the first temporary identifier) associated with the paging procedure initiated by the paging message transmitted at 440. At 470, the core network 430 may terminate paging of the UE 415 based on receiving the paging response message.
At 475, the core network 430 may determine that it is to skip a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier. For example, based on receiving a paging response message with a temporary identifier that is different from a first temporary identifier associated with the initial paging message sent to the UE 415, the  core network 430 may skip reallocation of the first temporary identifier (e.g., the core network 430 may use the first identifier for additional paging procedures associated with UE 415) .
Allowing a UE 415 to transmit such paging response messages with the second temporary identifier (e.g., different from the first temporary identifier) to skip any (or all) procedures following the transmission of the paging response message may decrease battery consumption at the UE 415, decrease communications latency at the UE 415, reduce signaling overhead, and enhance system efficiency.
FIG. 5 shows a block diagram 500 of a device 505 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a UE 115 as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communications manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 505. The receiver 510 may utilize a single antenna or a set of multiple antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. For example, the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a set of multiple antennas.
The communications manager 520, the receiver 510, the transmitter 515, or various combinations thereof or various components thereof may be examples of means for performing various aspects of additional UE identifier for paging response as described herein. For example, the communications manager 520, the receiver 510, the transmitter 515,  or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally or alternatively, in some examples, the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 520, the receiver 510, the transmitter 515, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 520 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both. For example, the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 520 may support wireless communications at a UE in accordance with examples as disclosed herein. For example, the communications manager 520 may be configured as or otherwise support a means for transmitting, to a core network  node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE. The communications manager 520 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The communications manager 520 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier. The communications manager 520 may be configured as or otherwise support a means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
By including or configuring the communications manager 520 in accordance with examples as described herein, the device 505 (e.g., a processor controlling or otherwise coupled to the receiver 510, the transmitter 515, the communications manager 520, or a combination thereof) may support techniques for reduced processing, reduced power consumption, more efficient utilization of communication resources, and reduced signaling overhead.
FIG. 6 shows a block diagram 600 of a device 605 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The device 605 may be an example of aspects of a device 505 or a UE 115 as described herein. The device 605 may include a receiver 610, a transmitter 615, and a communications manager 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 605. The receiver 610 may utilize a single antenna or a set of multiple antennas.
The transmitter 615 may provide a means for transmitting signals generated by other components of the device 605. For example, the transmitter 615 may transmit  information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . In some examples, the transmitter 615 may be co-located with a receiver 610 in a transceiver module. The transmitter 615 may utilize a single antenna or a set of multiple antennas.
The device 605, or various components thereof, may be an example of means for performing various aspects of additional UE identifier for paging response as described herein. For example, the communications manager 620 may include a registration request transmission component 625, a registration response receiving component 630, a paging message receiving component 635, a paging response transmission component 640, or any combination thereof. The communications manager 620 may be an example of aspects of a communications manager 520 as described herein. In some examples, the communications manager 620, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 610, the transmitter 615, or both. For example, the communications manager 620 may receive information from the receiver 610, send information to the transmitter 615, or be integrated in combination with the receiver 610, the transmitter 615, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 620 may support wireless communications at a UE in accordance with examples as disclosed herein. The registration request transmission component 625 may be configured as or otherwise support a means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE. The registration response receiving component 630 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The paging message receiving component 635 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier. The paging response transmission component 640 may be configured as or otherwise support a means for transmitting, to the  radio access network node, a paging response message associated with the second temporary identifier.
FIG. 7 shows a block diagram 700 of a communications manager 720 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The communications manager 720 may be an example of aspects of a communications manager 520, a communications manager 620, or both, as described herein. The communications manager 720, or various components thereof, may be an example of means for performing various aspects of additional UE identifier for paging response as described herein. For example, the communications manager 720 may include a registration request transmission component 725, a registration response receiving component 730, a paging message receiving component 735, a paging response transmission component 740, a resume operations component 745, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 720 may support wireless communications at a UE in accordance with examples as disclosed herein. The registration request transmission component 725 may be configured as or otherwise support a means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE. The registration response receiving component 730 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The paging message receiving component 735 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier. The paging response transmission component 740 may be configured as or otherwise support a means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
In some examples, the registration request transmission component 725 may be configured as or otherwise support a means for transmitting, to the core network node, the  first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
In some examples, the assistance information message includes a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
In some examples, the registration request transmission component 725 may be configured as or otherwise support a means for transmitting the first service registration request message based on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
In some examples, the first temporary identifier is different from the second temporary identifier based on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that is different from a second TMSI associated with the second temporary identifier.
In some examples, the paging response message associated with the second temporary identifier includes a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
In some examples, the paging message receiving component 735 may be configured as or otherwise support a means for receiving the first paging message on a first USIM of the UE, where receiving the first paging message pauses one or more operations on a second USIM of the UE. In some examples, the paging response transmission component 740 may be configured as or otherwise support a means for transmitting the paging response message associated with the second temporary identifier based on receiving the first paging message. In some examples, the resume operations component 745 may be configured as or otherwise support a means for resuming the one or more operations on the second USIM after transmitting the paging response message.
FIG. 8 shows a diagram of a system 800 including a device 805 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The device 805 may be an example of or include the components of a device 505, a device 605, or a UE 115 as described herein. The device 805 may communicate wirelessly  with one or more base stations 105, UEs 115, or any combination thereof. The device 805 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 820, an input/output (I/O) controller 810, a transceiver 815, an antenna 825, a memory 830, code 835, and a processor 840. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 845) .
The I/O controller 810 may manage input and output signals for the device 805. The I/O controller 810 may also manage peripherals not integrated into the device 805. In some cases, the I/O controller 810 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 810 may utilize an operating system such as 
Figure PCTCN2021076502-appb-000001
or another known operating system. Additionally or alternatively, the I/O controller 810 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 810 may be implemented as part of a processor, such as the processor 840. In some cases, a user may interact with the device 805 via the I/O controller 810 or via hardware components controlled by the I/O controller 810.
In some cases, the device 805 may include a single antenna 825. However, in some other cases, the device 805 may have more than one antenna 825, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 815 may communicate bi-directionally, via the one or more antennas 825, wired, or wireless links as described herein. For example, the transceiver 815 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 815 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 825 for transmission, and to demodulate packets received from the one or more antennas 825. The transceiver 815, or the transceiver 815 and one or more antennas 825, may be an example of a transmitter 515, a transmitter 615, a receiver 510, a receiver 610, or any combination thereof or component thereof, as described herein.
The memory 830 may include random access memory (RAM) and read-only memory (ROM) . The memory 830 may store computer-readable, computer-executable code  835 including instructions that, when executed by the processor 840, cause the device 805 to perform various functions described herein. The code 835 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 835 may not be directly executable by the processor 840 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 830 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 840 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 840 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 840. The processor 840 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 830) to cause the device 805 to perform various functions (e.g., functions or tasks supporting additional UE identifier for paging response) . For example, the device 805 or a component of the device 805 may include a processor 840 and memory 830 coupled to the processor 840, the processor 840 and memory 830 configured to perform various functions described herein.
The communications manager 820 may support wireless communications at a UE in accordance with examples as disclosed herein. For example, the communications manager 820 may be configured as or otherwise support a means for transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE. The communications manager 820 may be configured as or otherwise support a means for receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The communications manager 820 may be configured as or otherwise support a means for receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier. The communications manager 820 may be configured as or  otherwise support a means for transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
By including or configuring the communications manager 820 in accordance with examples as described herein, the device 805 may support techniques for improved communication reliability, reduced latency associated with reduced time between transmitting a busy indication (associated with a paging procedure) and resuming a connected mode or idle mode, improved user experience related to such reduced latency, reduced power consumption, more efficient utilization of communication resources, and longer battery life.
In some examples, the communications manager 820 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 815, the one or more antennas 825, or any combination thereof. Although the communications manager 820 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 820 may be supported by or performed by the processor 840, the memory 830, the code 835, or any combination thereof. For example, the code 835 may include instructions executable by the processor 840 to cause the device 805 to perform various aspects of additional UE identifier for paging response as described herein, or the processor 840 and the memory 830 may be otherwise configured to perform or support such operations.
FIG. 9 shows a block diagram 900 of a device 905 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The device 905 may be an example of aspects of a base station 105 as described herein. The device 905 may include a receiver 910, a transmitter 915, and a communications manager 920. The device 905 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 910 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 905. The receiver 910 may utilize a single antenna or a set of multiple antennas.
The transmitter 915 may provide a means for transmitting signals generated by other components of the device 905. For example, the transmitter 915 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . In some examples, the transmitter 915 may be co-located with a receiver 910 in a transceiver module. The transmitter 915 may utilize a single antenna or a set of multiple antennas.
The communications manager 920, the receiver 910, the transmitter 915, or various combinations thereof or various components thereof may be examples of means for performing various aspects of additional UE identifier for paging response as described herein. For example, the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may support a method for performing one or more of the functions described herein.
In some examples, the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in hardware (e.g., in communications management circuitry) . The hardware may include a processor, a DSP, an ASIC, an FPGA or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof configured as or otherwise supporting a means for performing the functions described in the present disclosure. In some examples, a processor and memory coupled with the processor may be configured to perform one or more of the functions described herein (e.g., by executing, by the processor, instructions stored in the memory) .
Additionally or alternatively, in some examples, the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 920, the receiver 910, the transmitter 915, or various combinations or components thereof may be performed by a general-purpose processor, a DSP, a CPU, an ASIC, an FPGA, or any combination of these or other programmable logic devices (e.g., configured as or otherwise supporting a means for performing the functions described in the present disclosure) .
In some examples, the communications manager 920 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 910, the transmitter 915, or both. For example, the communications manager 920 may receive information from the receiver 910, send information to the transmitter 915, or be integrated in combination with the receiver 910, the transmitter 915, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 920 may support wireless communications at a core network node in accordance with examples as disclosed herein. For example, the communications manager 920 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier. The communications manager 920 may be configured as or otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The communications manager 920 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier. The communications manager 920 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
By including or configuring the communications manager 920 in accordance with examples as described herein, the device 905 (e.g., a processor controlling or otherwise coupled to the receiver 910, the transmitter 915, the communications manager 920, or a combination thereof) may support techniques for reduced processing, reduced power consumption, more efficient utilization of communication resources, and reduced signaling overhead.
FIG. 10 shows a block diagram 1000 of a device 1005 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The device 1005 may be an example of aspects of a device 905 or a base station 105 as described herein. The device 1005 may include a receiver 1010, a transmitter 1015, and a  communications manager 1020. The device 1005 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 1010 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . Information may be passed on to other components of the device 1005. The receiver 1010 may utilize a single antenna or a set of multiple antennas.
The transmitter 1015 may provide a means for transmitting signals generated by other components of the device 1005. For example, the transmitter 1015 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to additional UE identifier for paging response) . In some examples, the transmitter 1015 may be co-located with a receiver 1010 in a transceiver module. The transmitter 1015 may utilize a single antenna or a set of multiple antennas.
The device 1005, or various components thereof, may be an example of means for performing various aspects of additional UE identifier for paging response as described herein. For example, the communications manager 1020 may include a registration request receiving component 1025, a registration response transmission component 1030, a paging message transmission component 1035, a paging response message receiving component 1040, or any combination thereof. The communications manager 1020 may be an example of aspects of a communications manager 920 as described herein. In some examples, the communications manager 1020, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 1010, the transmitter 1015, or both. For example, the communications manager 1020 may receive information from the receiver 1010, send information to the transmitter 1015, or be integrated in combination with the receiver 1010, the transmitter 1015, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 1020 may support wireless communications at a core network node in accordance with examples as disclosed herein. The registration request  receiving component 1025 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier. The registration response transmission component 1030 may be configured as or otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The paging message transmission component 1035 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier. The paging response message receiving component 1040 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
FIG. 11 shows a block diagram 1100 of a communications manager 1120 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The communications manager 1120 may be an example of aspects of a communications manager 920, a communications manager 1020, or both, as described herein. The communications manager 1120, or various components thereof, may be an example of means for performing various aspects of additional UE identifier for paging response as described herein. For example, the communications manager 1120 may include a registration request receiving component 1125, a registration response transmission component 1130, a paging message transmission component 1135, a paging response message receiving component 1140, an identifier determination component 1145, an identifier reallocation skipping component 1150, an identifier formatting component 1155, a paging termination component 1160, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 1120 may support wireless communications at a core network node in accordance with examples as disclosed herein. The registration request receiving component 1125 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier. The registration response transmission component 1130 may be configured as or  otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The paging message transmission component 1135 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier. The paging response message receiving component 1140 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
In some examples, the identifier determination component 1145 may be configured as or otherwise support a means for determining that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message. In some examples, the identifier reallocation skipping component 1150 may be configured as or otherwise support a means for skipping a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier.
In some examples, the identifier formatting component 1155 may be configured as or otherwise support a means for formatting the first temporary identifier with a first temporary mobile subscriber identity (TMSI) that is different from a second TMSI associated with the second temporary identifier.
In some examples, the registration request receiving component 1125 may be configured as or otherwise support a means for receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
In some examples, the assistance information message includes a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
In some examples, the registration request receiving component 1125 may be configured as or otherwise support a means for receiving the first service registration request  message based on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
In some examples, the paging response message associated with the second temporary identifier includes a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
In some examples, the paging termination component 1160 may be configured as or otherwise support a means for terminating paging of the UE based on receiving the paging response message from the UE associated with the second temporary identifier.
FIG. 12 shows a diagram of a system 1200 including a device 1205 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The device 1205 may be an example of or include the components of a device 905, a device 1005, or a base station 105 as described herein. The device 1205 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof. The device 1205 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, such as a communications manager 1220, a network communications manager 1210, a transceiver 1215, an antenna 1225, a memory 1230, code 1235, a processor 1240, and an inter-station communications manager 1245. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 1250) .
The network communications manager 1210 may manage communications with a core network 130 (e.g., via one or more wired backhaul links) . For example, the network communications manager 1210 may manage the transfer of data communications for client devices, such as one or more UEs 115.
In some cases, the device 1205 may include a single antenna 1225. However, in some other cases the device 1205 may have more than one antenna 1225, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 1215 may communicate bi-directionally, via the one or more antennas 1225, wired, or wireless links as described herein. For example, the transceiver 1215 may represent a wireless transceiver and may communicate bi-directionally with another wireless  transceiver. The transceiver 1215 may also include a modem to modulate the packets, to provide the modulated packets to one or more antennas 1225 for transmission, and to demodulate packets received from the one or more antennas 1225. The transceiver 1215, or the transceiver 1215 and one or more antennas 1225, may be an example of a transmitter 915, a transmitter 1015, a receiver 910, a receiver 1010, or any combination thereof or component thereof, as described herein.
The memory 1230 may include RAM and ROM. The memory 1230 may store computer-readable, computer-executable code 1235 including instructions that, when executed by the processor 1240, cause the device 1205 to perform various functions described herein. The code 1235 may be stored in a non-transitory computer-readable medium such as system memory or another type of memory. In some cases, the code 1235 may not be directly executable by the processor 1240 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 1230 may contain, among other things, a BIOS which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 1240 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 1240 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 1240. The processor 1240 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 1230) to cause the device 1205 to perform various functions (e.g., functions or tasks supporting additional UE identifier for paging response) . For example, the device 1205 or a component of the device 1205 may include a processor 1240 and memory 1230 coupled to the processor 1240, the processor 1240 and memory 1230 configured to perform various functions described herein.
The inter-station communications manager 1245 may manage communications with other base stations 105, and may include a controller or scheduler for controlling communications with UEs 115 in cooperation with other base stations 105. For example, the inter-station communications manager 1245 may coordinate scheduling for transmissions to UEs 115 for various interference mitigation techniques such as beamforming or joint  transmission. In some examples, the inter-station communications manager 1245 may provide an X2 interface within an LTE/LTE-A wireless communications network technology to provide communication between base stations 105.
The communications manager 1220 may support wireless communications at a core network node in accordance with examples as disclosed herein. For example, the communications manager 1220 may be configured as or otherwise support a means for receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier. The communications manager 1220 may be configured as or otherwise support a means for transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The communications manager 1220 may be configured as or otherwise support a means for transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier. The communications manager 1220 may be configured as or otherwise support a means for receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
By including or configuring the communications manager 1220 in accordance with examples as described herein, the device 1205 may support techniques for improved communication reliability, reduced latency associated with reduced time between transmitting a busy indication (associated with a paging procedure) and resuming a connected mode or idle mode, improved user experience related to such reduced latency, reduced power consumption, more efficient utilization of communication resources, and longer battery life.
In some examples, the communications manager 1220 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 1215, the one or more antennas 1225, or any combination thereof. Although the communications manager 1220 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 1220 may be supported by or performed by the processor 1240, the memory 1230, the code 1235, or any combination thereof. For example, the code 1235 may include instructions executable by the processor 1240 to cause the device 1205 to perform various  aspects of additional UE identifier for paging response as described herein, or the processor 1240 and the memory 1230 may be otherwise configured to perform or support such operations.
FIG. 13 shows a flowchart illustrating a method 1300 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The operations of the method 1300 may be implemented by a UE or its components as described herein. For example, the operations of the method 1300 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1305, the method may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE. The operations of 1305 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1305 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
At 1310, the method may include receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The operations of 1310 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1310 may be performed by a registration response receiving component 730 as described with reference to FIG. 7.
At 1315, the method may include receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier. The operations of 1315 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1315 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
At 1320, the method may include transmitting, to the radio access network node, a paging response message associated with the second temporary identifier. The operations of 1320 may be performed in accordance with examples as disclosed herein. In some examples,  aspects of the operations of 1320 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
FIG. 14 shows a flowchart illustrating a method 1400 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The operations of the method 1400 may be implemented by a UE or its components as described herein. For example, the operations of the method 1400 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1405, the method may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE. The operations of 1405 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1405 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
At 1410, the method may include transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier. The operations of 1410 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1410 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
At 1415, the method may include receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The operations of 1415 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1415 may be performed by a registration response receiving component 730 as described with reference to FIG. 7.
At 1420, the method may include receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier. The operations of 1420 may be performed in accordance with examples as  disclosed herein. In some examples, aspects of the operations of 1420 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
At 1425, the method may include transmitting, to the radio access network node, a paging response message associated with the second temporary identifier. The operations of 1425 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1425 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
FIG. 15 shows a flowchart illustrating a method 1500 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The operations of the method 1500 may be implemented by a UE or its components as described herein. For example, the operations of the method 1500 may be performed by a UE 115 as described with reference to FIGs. 1 through 8. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, the UE may perform aspects of the described functions using special-purpose hardware.
At 1505, the method may include transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE. The operations of 1505 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1505 may be performed by a registration request transmission component 725 as described with reference to FIG. 7.
At 1510, the method may include receiving, from the core network node, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The operations of 1510 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1510 may be performed by a registration response receiving component 730 as described with reference to FIG. 7.
At 1515, the method may include receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier. The operations of 1515 may be performed in accordance with examples as  disclosed herein. In some examples, aspects of the operations of 1515 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
At 1520, the method may include receiving the first paging message on a first USIM of the UE, where receiving the first paging message pauses one or more operations on a second USIM of the UE. The operations of 1520 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1520 may be performed by a paging message receiving component 735 as described with reference to FIG. 7.
At 1525, the method may include transmitting the paging response message associated with the second temporary identifier based on receiving the first paging message. The operations of 1525 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1525 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
At 1530, the method may include transmitting, to the radio access network node, a paging response message associated with the second temporary identifier. The operations of 1530 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1530 may be performed by a paging response transmission component 740 as described with reference to FIG. 7.
At 1535, the method may include resuming the one or more operations on the second USIM after transmitting the paging response message. The operations of 1535 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1535 may be performed by a resume operations component 745 as described with reference to FIG. 7.
FIG. 16 shows a flowchart illustrating a method 1600 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The operations of the method 1600 may be implemented by a base station or its components as described herein. For example, the operations of the method 1600 may be performed by a base station 105 as described with reference to FIGs. 1 through 4 and 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
At 1605, the method may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier. The operations of 1605 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1605 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
At 1610, the method may include transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The operations of 1610 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1610 may be performed by a registration response transmission component 1130 as described with reference to FIG. 11.
At 1615, the method may include transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier. The operations of 1615 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1615 may be performed by a paging message transmission component 1135 as described with reference to FIG. 11.
At 1620, the method may include receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE. The operations of 1620 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1620 may be performed by a paging response message receiving component 1140 as described with reference to FIG. 11.
FIG. 17 shows a flowchart illustrating a method 1700 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The operations of the method 1700 may be implemented by a base station or its components as described herein. For example, the operations of the method 1700 may be performed by a base station 105 as described with reference to FIGs. 1 through 4 and 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
At 1705, the method may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier. The operations of 1705 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1705 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
At 1710, the method may include transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The operations of 1710 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1710 may be performed by a registration response transmission component 1130 as described with reference to FIG. 11.
At 1715, the method may include transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier. The operations of 1715 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1715 may be performed by a paging message transmission component 1135 as described with reference to FIG. 11.
At 1720, the method may include receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE. The operations of 1720 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1720 may be performed by a paging response message receiving component 1140 as described with reference to FIG. 11.
At 1725, the method may include determining that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message. The operations of 1725 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1725 may be performed by an identifier determination component 1145 as described with reference to FIG. 11.
At 1730, the method may include skipping a temporary identifier reallocation procedure of the first temporary identifier based on receiving the paging response message associated with the second temporary identifier. The operations of 1730 may be performed in  accordance with examples as disclosed herein. In some examples, aspects of the operations of 1730 may be performed by an identifier reallocation skipping component 1150 as described with reference to FIG. 11.
FIG. 18 shows a flowchart illustrating a method 1800 that supports additional UE identifier for paging response in accordance with aspects of the present disclosure. The operations of the method 1800 may be implemented by a base station or its components as described herein. For example, the operations of the method 1800 may be performed by a base station 105 as described with reference to FIGs. 1 through 4 and 9 through 12. In some examples, a base station may execute a set of instructions to control the functional elements of the base station to perform the described functions. Additionally or alternatively, the base station may perform aspects of the described functions using special-purpose hardware.
At 1805, the method may include receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier. The operations of 1805 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1805 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
At 1810, the method may include receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier. The operations of 1810 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1810 may be performed by a registration request receiving component 1125 as described with reference to FIG. 11.
At 1815, the method may include transmitting, to the UE, a service registration response message including the first temporary identifier and the second temporary identifier in accordance with the first service registration request message. The operations of 1815 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1815 may be performed by a registration response transmission component 1130 as described with reference to FIG. 11.
At 1820, the method may include transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier. The operations  of 1820 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1820 may be performed by a paging message transmission component 1135 as described with reference to FIG. 11.
At 1825, the method may include receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE. The operations of 1825 may be performed in accordance with examples as disclosed herein. In some examples, aspects of the operations of 1825 may be performed by a paging response message receiving component 1140 as described with reference to FIG. 11.
SUMMARY OF ASPECTS
The following provides an overview of aspects of the present disclosure:
Aspect 1: A method for wireless communications at a UE, comprising: transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE; receiving, from the core network node, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message; receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier; and transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
Aspect 2: The method of aspect 1, further comprising: transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
Aspect 3: The method of aspect 2, wherein the assistance information message comprises a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
Aspect 4: The method of any of aspects 1 through 3, further comprising: transmitting the first service registration request message based at least in part on a MUSIM capability or a single USIM capability of the UE.
Aspect 5: The method of any of aspects 1 through 4, wherein the first temporary identifier is different from the second temporary identifier based at least in part on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that is different from a second TMSI associated with the second temporary identifier.
Aspect 6: The method of any of aspects 1 through 5, wherein the paging response message associated with the second temporary identifier comprises a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
Aspect 7: The method of any of aspects 1 through 6, further comprising: receiving the first paging message on a first USIM of the UE, wherein receiving the first paging message pauses one or more operations on a second USIM of the UE; transmitting the paging response message associated with the second temporary identifier based at least in part on receiving the first paging message; and resuming the one or more operations on the second USIM after transmitting the paging response message.
Aspect 8: A method for wireless communications at a core network node, comprising: receiving, from a UE during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier; transmitting, to the UE, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message; transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier; and receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
Aspect 9: The method of aspect 8, further comprising: determining that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message; and skipping a temporary identifier reallocation procedure of the first temporary identifier based at least in part on receiving the paging response message associated with the second temporary identifier.
Aspect 10: The method of any of aspects 8 through 9, further comprising: formatting the first temporary identifier with a first TMSI that is different from a second TMSI associated with the second temporary identifier.
Aspect 11: The method of any of aspects 8 through 10, further comprising: receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
Aspect 12: The method of aspect 11, wherein the assistance information message comprises a MUSIM capability indication, a MT-EDT indication, or both.
Aspect 13: The method of any of aspects 8 through 12, further comprising: receiving the first service registration request message based at least in part on a MUSIM capability or a single USIM capability of the UE.
Aspect 14: The method of any of aspects 8 through 13, wherein the paging response message associated with the second temporary identifier comprises a service request NAS message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
Aspect 15: The method of any of aspects 8 through 14, further comprising: terminating paging of the UE based at least in part on receiving the paging response message from the UE associated with the second temporary identifier.
Aspect 16: An apparatus for wireless communications at a UE, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 1 through 7.
Aspect 17: An apparatus for wireless communications at a UE, comprising at least one means for performing a method of any of aspects 1 through 7.
Aspect 18: A non-transitory computer-readable medium storing code for wireless communications at a UE, the code comprising instructions executable by a processor to perform a method of any of aspects 1 through 7.
Aspect 19: An apparatus for wireless communications at a core network node, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform a method of any of aspects 8 through 15.
Aspect 20: An apparatus for wireless communications at a core network node, comprising at least one means for performing a method of any of aspects 8 through 15.
Aspect 21: A non-transitory computer-readable medium storing code for wireless communications at a core network node, the code comprising instructions executable by a processor to perform a method of any of aspects 8 through 15.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to  perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc  where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the  disclosure is not limited to the examples and designs described herein but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (30)

  1. A method for wireless communications at a user equipment (UE) , comprising:
    transmitting, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE;
    receiving, from the core network node, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message;
    receiving, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier; and
    transmitting, to the radio access network node, a paging response message associated with the second temporary identifier.
  2. The method of claim 1, further comprising:
    transmitting, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  3. The method of claim 2, wherein the assistance information message comprises a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  4. The method of claim 1, further comprising:
    transmitting the first service registration request message based at least in part on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
  5. The method of claim 1, wherein the first temporary identifier is different from the second temporary identifier based at least in part on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that is different from a second TMSI associated with the second temporary identifier.
  6. The method of claim 1, wherein the paging response message associated with the second temporary identifier comprises a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  7. The method of claim 1, further comprising:
    receiving the first paging message on a first USIM of the UE, wherein receiving the first paging message pauses one or more operations on a second USIM of the UE;
    transmitting the paging response message associated with the second temporary identifier based at least in part on receiving the first paging message; and
    resuming the one or more operations on the second USIM after transmitting the paging response message.
  8. A method for wireless communications at a core network node, comprising:
    receiving, from a user equipment (UE) during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier;
    transmitting, to the UE, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message;
    transmitting, to a radio access network node, a first paging message for the UE associated with the first temporary identifier; and
    receiving, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  9. The method of claim 8, further comprising:
    determining that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message; and
    skipping a temporary identifier reallocation procedure of the first temporary identifier based at least in part on receiving the paging response message associated with the second temporary identifier.
  10. The method of claim 8, further comprising:
    formatting the first temporary identifier with a first temporary mobile subscriber identity (TMSI) that is different from a second TMSI associated with the second temporary identifier.
  11. The method of claim 8, further comprising:
    receiving, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  12. The method of claim 11, wherein the assistance information message comprises a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  13. The method of claim 8, further comprising:
    receiving the first service registration request message based at least in part on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
  14. The method of claim 8, wherein the paging response message associated with the second temporary identifier comprises a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  15. The method of claim 8, further comprising:
    terminating paging of the UE based at least in part on receiving the paging response message from the UE associated with the second temporary identifier.
  16. An apparatus for wireless communications at a user equipment (UE) , comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    transmit, to a core network node during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier for the UE and a second temporary identifier for the UE;
    receive, from the core network node, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message;
    receive, from a radio access network node, a first paging message from the core network node associated with the first temporary identifier; and
    transmit, to the radio access network node, a paging response message associated with the second temporary identifier.
  17. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the core network node, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  18. The apparatus of claim 17, wherein the assistance information message comprises a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  19. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit the first service registration request message based at least in part on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
  20. The apparatus of claim 16, wherein the first temporary identifier is different from the second temporary identifier based at least in part on a first temporary mobile subscriber identity (TMSI) associated with the first temporary identifier that is different from a second TMSI associated with the second temporary identifier.
  21. The apparatus of claim 16, wherein the paging response message associated with the second temporary identifier comprises a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  22. The apparatus of claim 16, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the first paging message on a first USIM of the UE, wherein receiving the first paging message pauses one or more operations on a second USIM of the UE;
    transmit the paging response message associated with the second temporary identifier based at least in part on receiving the first paging message; and
    resume the one or more operations on the second USIM after transmitting the paging response message.
  23. An apparatus for wireless communications at a core network node, comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    receive, from a user equipment (UE) during an initial network registration procedure, a first service registration request message requesting an allocation of a first temporary identifier and a second temporary identifier;
    transmit, to the UE, a service registration response message comprising the first temporary identifier and the second temporary identifier in accordance with the first service registration request message;
    transmit, to a radio access network node, a first paging message for the UE associated with the first temporary identifier; and
    receive, from the radio access network node, a paging response message associated with the second temporary identifier from the UE.
  24. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the paging response message associated with the second temporary identifier is different from the first temporary identifier associated with a paging procedure initiated by the first paging message; and
    skip a temporary identifier reallocation procedure of the first temporary identifier based at least in part on receiving the paging response message associated with the second temporary identifier.
  25. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    format the first temporary identifier with a first temporary mobile subscriber identity (TMSI) that is different from a second TMSI associated with the second temporary identifier.
  26. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the UE, the first service registration request message as an assistance information message requesting the allocation of the first temporary identifier and the second temporary identifier.
  27. The apparatus of claim 26, wherein the assistance information message comprises a multi-universal subscriber identity module (MUSIM) capability indication, a mobile-terminated early data transmission (MT-EDT) indication, or both.
  28. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive the first service registration request message based at least in part on a multi-universal subscriber identity module (MUSIM) capability or a single USIM capability of the UE.
  29. The apparatus of claim 23, wherein the paging response message associated with the second temporary identifier comprises a service request non-access stratum (NAS) message, a control plane service request NAS message, a busy indication, a resume message, or any combination thereof.
  30. The apparatus of claim 23, wherein the instructions are further executable by the processor to cause the apparatus to:
    terminate paging of the UE based at least in part on receiving the paging response message from the UE associated with the second temporary identifier.
PCT/CN2021/076502 2021-02-10 2021-02-10 Additional user equipment identifier for paging response WO2022170556A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076502 WO2022170556A1 (en) 2021-02-10 2021-02-10 Additional user equipment identifier for paging response

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/076502 WO2022170556A1 (en) 2021-02-10 2021-02-10 Additional user equipment identifier for paging response

Publications (1)

Publication Number Publication Date
WO2022170556A1 true WO2022170556A1 (en) 2022-08-18

Family

ID=82837442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/076502 WO2022170556A1 (en) 2021-02-10 2021-02-10 Additional user equipment identifier for paging response

Country Status (1)

Country Link
WO (1) WO2022170556A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106993329A (en) * 2016-01-21 2017-07-28 中兴通讯股份有限公司 The method of paging, apparatus and system
WO2020226079A1 (en) * 2019-05-03 2020-11-12 Nec Corporation Core network node, ue, access network node and controlling method
WO2021015502A1 (en) * 2019-07-19 2021-01-28 Samsung Electronics Co., Ltd. Method and apparatus for managing mt-service information

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106993329A (en) * 2016-01-21 2017-07-28 中兴通讯股份有限公司 The method of paging, apparatus and system
WO2020226079A1 (en) * 2019-05-03 2020-11-12 Nec Corporation Core network node, ue, access network node and controlling method
WO2021015502A1 (en) * 2019-07-19 2021-01-28 Samsung Electronics Co., Ltd. Method and apparatus for managing mt-service information

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Evaluation and Conclusion for Key issue #1: Handling of Mobile Terminated service with Multi-USIM device", 3GPP DRAFT; S2-2005014, vol. SA WG2, 13 August 2020 (2020-08-13), Elbonia, pages 1 - 2, XP051919909 *

Similar Documents

Publication Publication Date Title
US12069613B2 (en) Transmit beam selection schemes for multiple transmission reception points
US11671956B2 (en) Beam measurement on sidelink
WO2022094903A1 (en) Relay selection based on early measurement in l2 relay
US20240032119A1 (en) Implicit beam indication
EP4091402A1 (en) Transmission mode cycle alignment
US11570809B2 (en) Compact downlink control information for a two-step random access channel procedure
US20240031891A1 (en) Forward handover procedures for l2 relay mobility
US20230171699A1 (en) Wake-up signal design for multiple multicast sessions
US20220225305A1 (en) Techniques for signaling a panel switching capability of a user equipment
WO2022147642A1 (en) Backward handover procedures for l2 relay mobility
WO2021046836A1 (en) Internode measurement configuration signaling
WO2022170556A1 (en) Additional user equipment identifier for paging response
WO2022170573A1 (en) A rapid signaling release solution after paging response
US11778549B2 (en) Bandwidth part control for network power saving
US11553425B2 (en) Wakeup signal for new radio multicast communications
US12015579B2 (en) Techniques for enhancing user equipment performance for multiple subscriber identification module operation
US20240098694A1 (en) Paging occasion update using a registration request
WO2023060536A1 (en) Signaling and procedure of energy harvesting indication and energy harvesting mode
WO2022036586A1 (en) Adaptive discontinuous reception cycle configuration for active flows
WO2021223135A1 (en) Sharing bar cell information in dual new radio user equipment
WO2022011678A1 (en) On-demand system information downlink control channel repetition
WO2021222540A1 (en) Wakeup signal selected cell indication
EP4183178A1 (en) Pathloss reference signal update for multiple beams

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21925219

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21925219

Country of ref document: EP

Kind code of ref document: A1