Nothing Special   »   [go: up one dir, main page]

WO2022168474A1 - 負極及び負極の製造方法 - Google Patents

負極及び負極の製造方法 Download PDF

Info

Publication number
WO2022168474A1
WO2022168474A1 PCT/JP2021/047263 JP2021047263W WO2022168474A1 WO 2022168474 A1 WO2022168474 A1 WO 2022168474A1 JP 2021047263 W JP2021047263 W JP 2021047263W WO 2022168474 A1 WO2022168474 A1 WO 2022168474A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
active material
electrode active
silicon
compound
Prior art date
Application number
PCT/JP2021/047263
Other languages
English (en)
French (fr)
Inventor
貴一 廣瀬
拓史 松野
祐介 大沢
玲子 酒井
弘行 小出
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN202180092611.1A priority Critical patent/CN116888755A/zh
Priority to US18/273,851 priority patent/US20240105927A1/en
Priority to EP21924859.8A priority patent/EP4290607A1/en
Priority to KR1020237026226A priority patent/KR20230142483A/ko
Publication of WO2022168474A1 publication Critical patent/WO2022168474A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1397Processes of manufacture of electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a negative electrode and a method for manufacturing a negative electrode.
  • lithium-ion secondary batteries are highly expected because they are easy to make smaller and have higher capacity, and they can obtain higher energy density than lead-acid batteries and nickel-cadmium batteries.
  • the lithium-ion secondary battery described above includes a positive electrode, a negative electrode, a separator, and an electrolytic solution, and the negative electrode contains a negative electrode active material involved in charge-discharge reactions.
  • the negative electrode active material expands and contracts during charging and discharging, so cracking occurs mainly near the surface layer of the negative electrode active material.
  • an ionic substance is generated inside the active material, making the negative electrode active material fragile.
  • a new surface is generated thereby increasing the reaction area of the active material.
  • a decomposition reaction of the electrolytic solution occurs on the new surface, and a film, which is a decomposition product of the electrolytic solution, is formed on the new surface, so that the electrolytic solution is consumed.
  • cycle characteristics tend to deteriorate.
  • silicon and amorphous silicon dioxide are simultaneously deposited using a vapor phase method (see Patent Document 1, for example).
  • a carbon material electroconductive material
  • an active material containing silicon and oxygen is produced, and an active material layer with a high oxygen ratio is formed in the vicinity of the current collector ( For example, see Patent Document 3).
  • oxygen is contained in the silicon active material, and the average oxygen content is 40 at % or less, and the oxygen content is increased near the current collector. (See, for example, Patent Document 4).
  • a nanocomposite containing a Si phase, SiO 2 and MyO metal oxide is used to improve the initial charge/discharge efficiency (see Patent Document 5, for example).
  • the molar ratio of oxygen to silicon in the negative electrode active material is set to 0.1 to 1.2, and the difference between the maximum and minimum molar ratios near the interface between the active material and the current collector is 0.4 or less (see Patent Document 7, for example).
  • a metal oxide containing lithium is used (see, for example, Patent Document 8).
  • a hydrophobic layer such as a silane compound is formed on the surface layer of the silicon material (see, for example, Patent Document 9).
  • silicon oxide is used, and conductivity is imparted by forming a graphite film on the surface layer (see, for example, Patent Document 10).
  • broad peaks appear at 1330 cm ⁇ 1 and 1580 cm ⁇ 1 with respect to the shift values obtained from the RAMAN spectrum of the graphite film, and their intensity ratio I 1330 /I 1580 is 1.5 ⁇ I 1330 /I 1580 ⁇ 3.
  • particles having a silicon microcrystalline phase dispersed in silicon dioxide are used in order to increase battery capacity and improve cycle characteristics (see, for example, Patent Document 11).
  • a silicon oxide in which the atomic ratio of silicon and oxygen is controlled to 1:y (0 ⁇ y ⁇ 2) is used (see Patent Document 12, for example).
  • Non-Patent Document 1 Hitachi Maxell began shipments of prismatic secondary batteries for smartphones that adopted nanosilicon composites in June 2010 (see, for example, Non-Patent Document 1). .
  • the silicon oxide proposed by Hohl is a composite of Si 0+ to Si 4+ and has various oxidation states (see Non-Patent Document 2).
  • Kapaklis also proposed a disproportionated structure in which silicon oxide is divided into Si and SiO 2 by applying a thermal load (see Non-Patent Document 3).
  • Miyachi et al. focused on Si and SiO2 that contribute to charging and discharging (see Non-Patent Document 4), and Yamada et al. (See Non-Patent Document 5).
  • the above reaction formula shows that Si and SiO 2 that constitute silicon oxide react with Li and separate into Li silicide, Li silicate, and partly unreacted SiO 2 .
  • the Li silicate produced here is irreversible, and is said to be a stable substance that does not release Li once formed.
  • the capacity per weight calculated from this reaction formula has a value close to the experimental value, and is recognized as a reaction mechanism of silicon oxide.
  • Kim et al. identified Li silicate, an irreversible component associated with charging and discharging of silicon oxide, as Li 4 SiO 4 using 7 Li-MAS-NMR and 29 Si-MAS-NMR (see Non-Patent Document 6). ).
  • lithium-ion secondary batteries which are the main power source for these devices, have been required to have increased battery capacity.
  • the development of a lithium ion secondary battery comprising a negative electrode using a silicon material as a main material is desired.
  • lithium ion secondary batteries using a silicon material are desired to have initial charge/discharge characteristics and cycle characteristics that are close to those of lithium ion secondary batteries using a carbon-based active material. Therefore, the cycle characteristics and the initial charge/discharge characteristics have been improved by using silicon oxides modified by the insertion and partial elimination of Li as the negative electrode active material.
  • Non-Patent Document 8 Li—SiO—C (Non-Patent Document 8) is used as the silicon oxide and 100% of the carbon anode material is replaced with a carbon anode material to make a trial battery, this battery is still superior to the battery using the carbon anode material. , the capacity increase remains in the high 20% range. This means that further improvement in battery capacity is required when considering the improvement of performance of small electronic devices (5G, etc.) and the improvement of mileage of electric vehicles.
  • the present invention has been made in view of the above problems, and aims to provide a negative electrode capable of significantly increasing the capacity while maintaining battery characteristics, and a negative electrode manufacturing method capable of manufacturing such a negative electrode. aim.
  • the present invention provides a negative electrode having a negative electrode current collector with a roughened surface and a negative electrode active material layer provided on the negative electrode current collector,
  • the negative electrode active material layer is negative electrode active material particles having a compound of lithium, silicon, and oxygen; a composite compound filled between the particles and in the surface layer of the negative electrode active material particles, in which at least carbon atoms and oxygen atoms are chemically bonded and which does not form an alloy with the negative electrode active material particles;
  • a negative electrode is provided, wherein the ratio O/Si of the oxygen and the silicon constituting the negative electrode active material particles is in the range of 0.8 to 1.2.
  • the negative electrode of the present invention has a negative electrode active material layer containing negative electrode active material particles containing a compound of lithium, silicon, and oxygen, the battery capacity can be improved.
  • the negative electrode active material layer can be directly supported on the roughened surface of the current collector without using a binder, a conductive agent, or the like, and a region that does not participate in charging and discharging in the electrode is removed.
  • the energy density of the electrode can be greatly improved because it can be reduced and the extra voids can be reduced.
  • the spaces between the particles and the surface layer of the negative electrode active material particles are filled with a composite compound in which at least carbon atoms and oxygen atoms are chemically bonded and which does not form an alloy with the negative electrode active material particles.
  • This composite compound plays a role as a protective layer that protects the interface between the negative electrode active material layer and the electrolyte. Due to the presence of such a composite compound, the negative electrode of the present invention can exhibit excellent cycle characteristics.
  • the ratio O/Si of oxygen to silicon constituting the negative electrode active material particles is in the range of 0.8 or more and 1.2 or less, so that excellent battery characteristics can be maintained. .
  • the negative electrode of the present invention it is possible to significantly increase the capacity while maintaining the battery characteristics.
  • the complex compound may be a ring-opening decomposition product of a complex of an ether solvent and a polyphenylene compound or a polycyclic aromatic compound, or a ring-opening decomposition product of a complex in which the complex forms a complex with lithium. .
  • Such a composite compound can be easily formed in the process depending on the method of Li-doping the negative electrode active material particles.
  • the composite compound preferably contains lithium at least in part.
  • the state of the silicon existing at the boundary between the composite compound and the negative electrode active material particles is preferably in a compound state of Si 1+ to Si 3+ .
  • the negative electrode active material layer preferably has a multi-layer structure consisting of two or more layers, and the layers are preferably filled with the composite compound.
  • Such a negative electrode can realize smooth insertion of Li while suppressing decomposition of the electrolyte, and as a result, can exhibit better battery characteristics.
  • the composite compound can have a plurality of binding states with different binding energies of C1s analyzed by photoelectron spectroscopy.
  • the composite compound may have multiple bonding states with different binding energies.
  • the negative electrode active material particles that have been charged and discharged at least 20 times preferably contain silicon in the Si 0+ state and silicon in the compound state of Si 1+ to Si 3+ .
  • the negative electrode active material layer forms secondary particles that are aggregates of the primary particles after charging and discharging, and the secondary particles are It is preferable to have the form separated in the in-plane direction.
  • the negative electrode active material particles have a peak due to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays before charging and discharging, and the crystallite size corresponding to the crystal plane is 1. 0 nm or less.
  • the negative electrode current collector preferably has a surface with a ten-point average roughness Rz of 1.5 ⁇ m or more and 5.0 ⁇ m or less.
  • a negative electrode containing such a negative electrode current collector can not only stably support the negative electrode active material layer, but also can provide an appropriate density of the negative electrode active material particles in the negative electrode active material layer. As a result, better battery characteristics can be exhibited.
  • a method for manufacturing the negative electrode of the present invention comprising: a step of vapor-growing a negative electrode active material layer containing silicon oxide on the negative electrode current collector; a step of immersing the negative electrode active material layer in a solution containing lithium to modify the silicon oxide by an oxidation-reduction method to form the compound of lithium, silicon, and oxygen, and to form the composite compound;
  • a method for manufacturing a negative electrode comprising:
  • the negative electrode of the present invention when used as the negative electrode of a secondary battery, it is possible to obtain high initial efficiency, high capacity, high input characteristics, and high cycle characteristics.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a negative electrode of the present invention
  • FIG. 1 is a cross-sectional SEM image of an example of the negative electrode of the present invention.
  • 1 is an exploded view showing a configuration example (laminate film type) of a lithium ion secondary battery including the negative electrode of the present invention.
  • FIG. 4 is a surface SEM image of the negative electrode active material layer of Example 2.
  • FIG. 4 is a surface SEM image of the negative electrode active material layer of Example 4.
  • FIG. 4 is a surface SEM image of a negative electrode active material layer of Comparative Example 6.
  • FIG. 3 is part of the XPS spectra of the negative electrode active material layers of Examples 2 and 4.
  • FIG. 1 is part of XPS spectra of negative electrode active material layers of Examples 1 to 3 and Comparative Examples 4 and 5.
  • FIG. 3 is part of the XPS spectra of the negative electrode active material layers of Examples 1 and 2.
  • FIG. 3 is part of the XPS spectra of the negative electrode active material layers of Example 3 and Comparative Example 5.
  • FIG. 3 is part of the XPS spectrum of the negative electrode active material layer of Comparative Example 4.
  • FIG. 4 is a surface SEM image of the negative electrode active material layer of Example 2 after charging and discharging.
  • 3 is part of the XPS spectrum of the negative electrode active material layer of Example 2 after charging and discharging 20 times.
  • Lithium ion secondary batteries using this silicon oxide are desired to have initial charge/discharge characteristics that are close to those of lithium ion secondary batteries using a carbonaceous active material. Also, by using Li-doped SiO, which can improve the initial charge/discharge characteristics, a significant increase in capacity can be expected.
  • the present inventors have made intensive studies to obtain a negative electrode that can improve the initial charge-discharge characteristics and increase the battery capacity while obtaining high cycle characteristics when used as a negative electrode of a secondary battery. After repeating the above, the present invention was achieved.
  • the present invention provides a negative electrode having a negative electrode current collector with a roughened surface and a negative electrode active material layer provided on the negative electrode current collector,
  • the negative electrode active material layer is negative electrode active material particles having a compound of lithium, silicon, and oxygen; a composite compound filled between the particles and in the surface layer of the negative electrode active material particles, in which at least carbon atoms and oxygen atoms are chemically bonded and which does not form an alloy with the negative electrode active material particles;
  • the negative electrode is characterized in that the ratio O/Si of the oxygen and the silicon constituting the negative electrode active material particles is in the range of 0.8 or more and 1.2 or less.
  • the present invention also provides a method for producing the negative electrode of the present invention, comprising: a step of vapor-growing a negative electrode active material layer containing silicon oxide on the negative electrode current collector; a step of immersing the negative electrode active material layer in a solution containing lithium to modify the silicon oxide by an oxidation-reduction method to form the compound of lithium, silicon, and oxygen, and to form the composite compound;
  • a method for producing a negative electrode comprising:
  • FIG. 1 shows a cross-sectional view of an example of the negative electrode of the present invention.
  • the negative electrode 10 includes a negative electrode current collector 11 and a negative electrode active material layer 12 provided on a surface 11 a of the negative electrode current collector 11 .
  • the negative electrode active material containing layer 12 may be provided on both surfaces 11a of the negative electrode current collector 11 as shown in FIG. 1, or may be provided only on one surface 11a.
  • the surface 11a of the negative electrode current collector 11 is a roughened surface. That is, the negative electrode active material layer 12 is provided on the roughened surface 11 a of the negative electrode current collector 11 .
  • the negative electrode current collector 11 and the negative electrode active material layer 12 will be described below.
  • the negative electrode current collector 11 is made of an excellent conductive material and has high mechanical strength.
  • Examples of conductive materials that can be used for the negative electrode current collector 11 include copper (Cu) and nickel (Ni). This conductive material is preferably a material that does not form an intermetallic compound with lithium (Li).
  • the negative electrode current collector 11 preferably contains carbon (C) and sulfur (S) in addition to the main elements. This is because the physical strength of the negative electrode current collector is improved. This is because, in particular, in the case of having an active material layer that expands during charging, if the current collector contains the above element, it has the effect of suppressing deformation of the electrode including the current collector.
  • the contents of the above-mentioned contained elements are not particularly limited, they are preferably 100 ppm by mass or less. This is because a higher deformation suppressing effect can be obtained. Cycle characteristics can be further improved by such a deformation suppression effect.
  • the surface 11a of the negative electrode current collector 11 must be roughened, and desirably, the ten-point average roughness Rz of the surface is 1.5 ⁇ m or more and 5.0 ⁇ m or less.
  • the negative electrode 10 including the negative electrode current collector 11 having the surface 11a with such a desirable average roughness Rz not only can the negative electrode active material layer 12 be supported more stably, but also the negative electrode active material layer 12 The density of the substance particles can be made moderate, and as a result, better battery characteristics can be exhibited.
  • the roughened negative electrode current collector 11 is, for example, a metal foil subjected to electrolytic treatment, embossing treatment, or chemical etching treatment.
  • the negative electrode active material layer 12 of the negative electrode 10 of the present invention has negative electrode active material particles containing a compound of lithium, silicon, and oxygen, that is, silicon compound particles containing lithium and oxygen. is provided. It can be said that the negative electrode 10 has a structure in which negative electrode active material particles are directly supported on the roughened surface 11 a of the negative electrode current collector 11 .
  • the negative electrode 10 of the present invention contains composite negative electrode active material particles containing silicon compound particles, the battery capacity can be improved. Further, the negative electrode 10 of the present invention differs from a general electrode in that the negative electrode active material layer 12 is directly supported on the roughened surface 11a of the negative electrode current collector 11 without using a binder, a conductive aid, or the like. The energy density of the electrode can be greatly improved because the region not involved in charging and discharging in the electrode can be reduced, and the excess voids can be reduced.
  • the negative electrode 10 having the densely supported negative electrode active material layer 12 in this way, it is possible to increase the energy density of the battery, which cannot be achieved with, for example, a powder electrode.
  • negative electrode active material particles having a compound of lithium, silicon, and oxygen can exist adjacent to each other. At least carbon atoms and oxygen atoms are chemically bonded between the particles and in the surface layer of the negative electrode active material particles, and a composite compound (“C, O compound) is filled.
  • This composite compound plays a role as a protective layer that protects the interface between the negative electrode active material layer and the electrolyte. Due to the presence of such a composite compound, the negative electrode of the present invention can exhibit excellent cycle characteristics.
  • the ratio O/Si between oxygen and silicon constituting the negative electrode active material particles is in the range of 0.8 to 1.2. If the ratio O/Si is 0.8 or more, the oxygen ratio is higher than that of simple silicon, so the cycle characteristics are good. A ratio O/Si of 1.2 or less is preferable because the resistance of the silicon oxide does not become too high. Above all, it is preferable that x is close to 1 in the composition of SiO x . This is because high cycle characteristics can be obtained. Note that the composition of the silicon compound in the present invention does not necessarily mean 100% purity, and may contain trace amounts of impurity elements.
  • the negative electrode 10 of the present invention it is possible to significantly increase the capacity while maintaining the battery characteristics.
  • the ratio O/Si is less than 0.8, the capacity increases, but the area where Si 0+ reacts with the electrolytic solution increases and the cycle characteristics deteriorate. Also, if the ratio O/Si exceeds 1.2, it becomes a load substance, and in this case also deteriorates the battery characteristics.
  • the ratio O/Si is a molar ratio and should be as close to 1 as possible.
  • the composite compound acting as a protective layer is a ring-opening decomposition product of a composite of an ether solvent and a polyphenylene compound or a polycyclic aromatic compound, or a ring-opening decomposition product of a composite in which the composite forms a complex with lithium.
  • Such a composite compound can be easily formed in the process of Li-doping the negative electrode active material particles using an oxidation-reduction method.
  • the composite compound in which at least carbon atoms and oxygen atoms are chemically bonded which can act as a protective layer, partially contains lithium. That is, the composite compound preferably contains lithium at least in part.
  • the composite compound By compounding a composite oxide containing carbon and oxygen with lithium and containing lithium in a part of it, it behaves like a kind of solid electrolyte, and in particular, the permeation of Li is higher than when it contains only carbon and oxygen. Since it becomes possible to make it easy to occur and the diffusibility of Li can be improved, the battery characteristics can be further improved.
  • Silicon monoxide which is represented by general silicon oxides, is often expressed as a compound of 0 to 4 valences of Si.
  • Si2p spectrum of silicon monoxide is obtained by photoelectron spectroscopy, the peak of Si 0+ appears near the binding energy of 99 eV, and the peak of Si 4+ appears near the binding energy of 103 eV. It shows a spectrum in which the 0-valence state and the Si 4+ state are dominant.
  • the negative electrode active material particles containing silicon are directly supported on the negative electrode current collector 11, the state of the roughened portion of the surface 11a of the negative electrode current collector 11, the temperature of the negative electrode current collector 11 (substrate on which vapor deposition is performed), and the negative electrode
  • the structure of the silicon compound can be changed, and in particular, it is possible to create a surface dominated by Si 1+ to 3+ compound states centered on Si 2+ . can be done.
  • the state of silicon existing at the boundary between the composite compound and the negative electrode active material particles is preferably in a compound state of Si 1+ to Si 3+ .
  • the negative electrode active material layer 12 In order to introduce Li more smoothly, it is preferable to make the negative electrode active material layer 12 have a multi-layer structure consisting of two or more layers at the timing of forming the negative electrode active material layer 12 . However, since it leads to an increase in the reaction area, the battery characteristics are insufficient as it is.
  • a negative electrode active material layer 12 can be proposed.
  • the primary particles of the negative electrode active material particles have a multi-layered structure, and the inter-layer portions are filled in the same way, so that the reactivity with the electrolytic solution can be ensured.
  • the interface between the composite compound and the negative electrode active material particles is desirably formed of a composite compound containing silicon in a monovalent to trivalent compound state. Since general silicon oxides contain a large amount of silicon in the form of a tetravalent compound, it is difficult for Li to intercalate, but by forming a lower valence state, the battery characteristics can be improved.
  • This complex compound can be confirmed, for example, by using a scanning X-ray photoelectron spectrometer PHI Quantera II manufactured by ULVAC-PHI. At this time, the X-ray beam diameter is 100 ⁇ m, and a neutralization gun can be used.
  • a composite compound can have a plurality of binding states with different C1s binding energies analyzed by the photoelectron spectroscopy.
  • the composite compound may have multiple bonding states with different binding energies.
  • a conductive protective layer can be formed by mixing a composite that suppresses the reaction between the carbon portion forming the conductive layer and the electrolyte.
  • the complex compound is a ring-opening decomposition product of a complex of an ether solvent and a polyphenylene compound or a polycyclic aromatic compound, or a ring-opening decomposition product of a complex in which the complex forms a complex with lithium. obtain.
  • These composite compounds can be easily formed in the process of doping the negative electrode active material particles with Li by an oxidation-reduction method, which will be described later.
  • the negative electrode active material particles are repeatedly charged and discharged, for example, after charging and discharging at least 20 times, the particles have silicon in the Si 0+ state and silicon in the compound state of Si 1+ to Si 3+ . desirable.
  • the state of the valence of silicon in the negative electrode active material particles is determined by subjecting the photoelectron spectrum obtained by the photoelectron spectroscopy to a waveform separation process and confirming the presence or absence of a peak attributed to each valence state of silicon in the spectrum. , can be determined.
  • the negative electrode active material particles grow in vapor phase from the roughened portion of the surface 11 a of the negative electrode current collector 11 .
  • these particles are defined as primary particles, it is preferable that secondary particles, which are aggregates of the primary particles, are formed after charging and discharging.
  • Si 0+ constituting the negative electrode active material layer before charging and discharging is desirably non-crystalline (amorphous) as much as possible.
  • the crystallite size of Si(111) is desirably 1.0 nm or less. Therefore, the negative electrode active material particles have a peak due to the Si (111) crystal plane obtained by X-ray diffraction using Cu—K ⁇ rays before charging and discharging, and the crystallite size corresponding to this crystal plane is It is desirable to be 1.0 nm or less. If the battery contains such negative electrode active material particles, the reactivity with the electrolytic solution can be suppressed, and the battery characteristics can be further improved.
  • the degree of enlargement of Li silicate and the degree of crystallization of Si can be confirmed by XRD (X-ray Diffraction).
  • XRD measurement can be performed, for example, under the following conditions.
  • As an X-ray diffractometer, for example, D8 ADVANCE manufactured by Bruker can be used.
  • the X-ray source was Cu K ⁇ rays, using a Ni filter, an output of 40 kV/40 mA, a slit width of 0.3°, a step width of 0.008°, and a counting time of 0.15 seconds per step from 10-40°. Measure up to
  • FIG. 2 is a cross-sectional SEM image of an example of the negative electrode of the present invention.
  • a member with a raised surface shown in the lower region of FIG. 2 is a negative electrode current collector with a roughened surface.
  • the portion that grows fan-shaped around the bump on the roughened surface of the negative electrode current collector is the negative electrode active material particle.
  • the negative electrode active material particles have a compound of lithium, silicon and oxygen.
  • a composite compound in which at least carbon atoms and oxygen atoms are chemically bonded is filled between the particles and in the surface layer of the negative electrode active material particles.
  • the negative electrode active material layer containing the negative electrode active material particles and the composite compound is provided on the negative electrode current collector.
  • the negative electrode active material layer of the negative electrode of the present invention has very few voids and contains densely packed negative electrode active material particles.
  • the method for producing the negative electrode of the present invention comprises: a step of vapor-growing a negative electrode active material layer containing silicon oxide on the negative electrode current collector; a step of immersing the negative electrode active material layer in a solution containing lithium to modify the silicon oxide by an oxidation-reduction method to form the compound of lithium, silicon, and oxygen, and to form the composite compound; characterized by comprising
  • the negative electrode of the present invention can be manufactured by the method of manufacturing the negative electrode of the present invention.
  • the method for producing the negative electrode of the present invention is not limited to the production method of the present invention described here.
  • a layer (negative electrode active material layer) containing silicon compound (silicon oxide) particles containing oxygen is manufactured.
  • a negative electrode active material layer containing silicon oxide is vapor-phase grown on the negative electrode current collector.
  • the silicon oxide is a negative electrode current collector having a roughened surface, for example, a roughened foil (for example, a roughened It can be formed by depositing a silicon oxide gas on a copper foil coated with a copper foil. Specifically, it is as follows.
  • a raw material that generates silicon oxide gas is heated at a temperature of 1100°C or higher under reduced pressure to generate silicon oxide gas.
  • a mixture of metal silicon powder and silicon dioxide powder can be used as the raw material.
  • the mixing molar ratio is preferably in the range of 0.9 ⁇ metallic silicon powder/silicon dioxide powder ⁇ 1.2.
  • Silicon oxide can also be formed by vapor deposition using metallic silicon and introducing oxygen gas into the deposited silicon. becomes a compound separated into a state of and a tetravalent compound state.
  • the silicon oxide gas generated as described above is deposited on the roughened portion of the surface of the negative electrode current collector and becomes primary particles having a columnar structure.
  • the structure of the primary particles can also be changed by changing the roughening structure of the surface of the negative electrode current collector.
  • the solidification heat during deposition and the radiant heat from the heating section promote crystallization of the negative electrode active material layer.
  • silicon oxide is sublimable unlike silicon, so it can be deposited at an early stage, and there is no concern about receiving radiant heat from molten silicon, which is a problem with silicon films. Therefore, it is suitable for forming active materials by vapor deposition. It can be said that there are
  • Vapor deposition can also be performed on both roughened surfaces of the negative electrode current collector. For example, vapor deposition is performed on one roughened surface of the negative electrode current collector, then the negative electrode current collector is turned over, and vapor deposition is performed on the other roughened surface of the negative electrode current collector. can also
  • Li is inserted into the negative electrode active material layer containing silicon oxide produced as described above.
  • negative electrode active material particles containing silicon oxide particles into which lithium is inserted are produced.
  • this modifies the silicon oxide particles and produces a Li compound inside the silicon oxide particles.
  • the insertion of Li is preferably performed by an oxidation-reduction method.
  • lithium can be inserted by first immersing the negative electrode active material layer containing silicon oxide particles in a solution A in which lithium is dissolved in an ether solvent.
  • This solution A may further contain a polycyclic aromatic compound or a linear polyphenylene compound.
  • active lithium can be desorbed from the silicon oxide particles by immersing the silicon active material particles in a solution B containing a polycyclic aromatic compound or a derivative thereof.
  • Solvents for this solution B can be, for example, ether solvents, ketone solvents, ester solvents, alcohol solvents, amine solvents, or mixed solvents thereof.
  • the obtained silicon active material particles may be heat-treated under an inert gas.
  • the heat treatment can stabilize the Li compound. After that, it may be washed with alcohol, alkaline water in which lithium carbonate is dissolved, weak acid, pure water, or the like.
  • Ether solvents used for solution A include diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, or mixed solvents thereof. can be used. Among these, it is particularly preferable to use tetrahydrofuran, dioxane, and 1,2-dimethoxyethane. These solvents are preferably dehydrated and preferably deoxygenated.
  • polycyclic aromatic compound contained in the solution A one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene and derivatives thereof can be used.
  • chain polyphenylene compound one or more of biphenyl, terphenyl, and derivatives thereof can be used.
  • polycyclic aromatic compound contained in solution B one or more of naphthalene, anthracene, phenanthrene, naphthacene, pentacene, pyrene, picene, triphenylene, coronene, chrysene, and derivatives thereof can be used.
  • ether-based solvent for solution B diethyl ether, tert-butyl methyl ether, tetrahydrofuran, dioxane, 1,2-dimethoxyethane, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, tetraethylene glycol dimethyl ether, and the like can be used. .
  • Acetone, acetophenone, etc. can be used as the ketone-based solvent.
  • ester solvent methyl formate, methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, and the like can be used.
  • Methanol, ethanol, propanol, isopropyl alcohol, etc. can be used as alcohol-based solvents.
  • amine-based solvent methylamine, ethylamine, ethylenediamine, etc. can be used.
  • the composite compound in which at least carbon atoms and oxygen atoms are chemically bonded, which is filled between the particles and in the surface layer of the negative electrode active material particles, is, for example, an ether-based solvent and a polyphenylene compound or a polycyclic aromatic compound contained in the solution A.
  • the compound undergoes ring-opening decomposition or the like, or a compound in which the compound forms a complex with lithium (for example, a compound of a polycyclic aromatic compound that forms a complex with Li and an ether solvent) has been developed. It can be formed by performing ring decomposition or the like.
  • the state of the filling film (composite compound) can be controlled.
  • a complex compound generated in this way can also contain multiple types of compounds.
  • the negative electrode of the present invention can be produced as described above.
  • the negative electrode of the present invention can be used as a negative electrode for non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries.
  • the wound electrode body 31 has a separator between the positive electrode and the negative electrode and is wound. There is also a case where a laminate having a separator between the positive electrode and the negative electrode is housed without being wound.
  • a positive electrode lead 32 is attached to the positive electrode and a negative electrode lead 33 is attached to the negative electrode. The outermost periphery of the electrode body is protected by a protective tape.
  • the positive electrode lead 32 and the negative electrode lead 33 are, for example, led out in one direction from the inside of the exterior member 35 toward the outside.
  • the positive electrode lead 32 is made of a conductive material such as aluminum
  • the negative electrode lead 33 is made of a conductive material such as nickel or copper.
  • the exterior member 35 is, for example, a laminate film in which a fusion layer, a metal layer, and a surface protection layer are laminated in this order.
  • the outer peripheral edges of the fusion layer are fused together or adhered to each other with an adhesive or the like.
  • the fused portion is, for example, a film such as polyethylene or polypropylene, and the metal portion is aluminum foil or the like.
  • the protective layer is, for example, nylon or the like.
  • An adhesive film 34 is inserted between the exterior member 35 and each of the positive electrode lead 32 and the negative electrode lead 33 to prevent outside air from entering.
  • This material is, for example, polyethylene, polypropylene or polyolefin resin.
  • the positive electrode has, for example, a positive electrode active material layer on both sides or one side of the positive electrode current collector, like the negative electrode 10 in FIG.
  • the positive electrode current collector is made of a conductive material such as aluminum, for example.
  • the positive electrode active material layer contains one or more of positive electrode materials capable of intercalating and deintercalating lithium ions. may contain
  • a lithium-containing compound is desirable as the positive electrode material.
  • the lithium-containing compound include a composite oxide composed of lithium and a transition metal element, or a phosphate compound having lithium and a transition metal element.
  • these positive electrode materials compounds containing at least one of nickel, iron, manganese and cobalt are preferred.
  • These chemical formulas are represented by Li x M 1 O 2 or Li y M 2 PO 4 , for example.
  • M 1 and M 2 represent at least one transition metal element.
  • the values of x and y vary depending on the state of charge and discharge of the battery, they are generally represented by 0.05 ⁇ x ⁇ 1.10 and 0.05 ⁇ y ⁇ 1.10.
  • Examples of composite oxides containing lithium and a transition metal element include lithium-cobalt composite oxides (Li x CoO 2 ), lithium-nickel composite oxides (Li x NiO 2 ), lithium-nickel-cobalt composite oxides, and the like. .
  • Examples of lithium-nickel-cobalt composite oxides include lithium-nickel-cobalt-aluminum composite oxides (NCA) and lithium-nickel-cobalt-manganese composite oxides (NCM).
  • Phosphate compounds containing lithium and a transition metal element include, for example, lithium iron phosphate compounds (LiFePO 4 ) and lithium iron manganese phosphate compounds (LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1)). are mentioned.
  • LiFePO 4 lithium iron phosphate compounds
  • LiFe 1-u Mn u PO 4 (0 ⁇ u ⁇ 1) lithium iron manganese phosphate compounds
  • polymeric materials include polyvinylidene fluoride, polyimide, polyamideimide, aramid, polyacrylic acid, lithium polyacrylate, sodium polyacrylate, and carboxymethylcellulose.
  • Synthetic rubbers include, for example, styrene-butadiene-based rubber, fluorine-based rubber, and ethylene propylene diene.
  • one or more of carbon materials such as carbon black, acetylene black, graphite, ketjen black, carbon nanotubes, and carbon nanofibers can be used as the positive electrode conductive aid.
  • the negative electrode of the present invention is used as the negative electrode of the secondary battery.
  • the negative electrode constituting the secondary battery preferably has a larger negative electrode charge capacity than the electric capacity (charge capacity as a battery) obtained from the positive electrode active material. Thereby, deposition of lithium metal on the negative electrode can be suppressed.
  • the positive electrode active material layer is provided on part of both surfaces of the positive electrode current collector, and similarly the negative electrode active material layer of the present invention is also provided on part of both surfaces of the negative electrode current collector.
  • the negative electrode active material layer provided on the negative electrode current collector has a region where the facing positive electrode active material layer does not exist. This is for the purpose of stably designing a battery.
  • the negative electrode active material layer and the positive electrode active material layer do not face each other, they are hardly affected by charging and discharging. Therefore, the state of the negative electrode active material layer is maintained as it is immediately after formation, so that the composition of the negative electrode active material can be accurately examined with good reproducibility regardless of the presence or absence of charge/discharge.
  • the separator separates the lithium metal or the positive electrode from the negative electrode, and allows lithium ions to pass through while preventing current short circuit due to contact between the two electrodes.
  • This separator is formed of a porous film made of synthetic resin or ceramic, for example, and may have a laminated structure in which two or more kinds of porous films are laminated.
  • synthetic resins include polytetrafluoroethylene, polypropylene, and polyethylene.
  • Electrode At least part of the active material layer or the separator is impregnated with a liquid non-aqueous electrolyte (electrolytic solution).
  • electrolytic solution has an electrolytic salt dissolved in a solvent, and may contain other materials such as additives.
  • Non-aqueous solvents include, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethylmethyl carbonate, methylpropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran and the like.
  • ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate it is desirable to use at least one of ethylene carbonate, propylene carbonate, dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate. This is because better characteristics are obtained.
  • the solvent contains at least one of a halogenated chain carbonate or a halogenated cyclic carbonate.
  • a halogenated chain carbonate is a chain carbonate having halogen as a constituent element (at least one hydrogen is substituted with halogen).
  • a halogenated cyclic carbonate is a cyclic carbonate having halogen as a constituent element (that is, at least one hydrogen is substituted with halogen).
  • halogen is not particularly limited, but fluorine is preferred. This is because it forms a better film than other halogens. Moreover, the larger the number of halogens, the better. This is because the coating obtained is more stable and the decomposition reaction of the electrolyte is reduced.
  • halogenated chain carbonates include fluoromethylmethyl carbonate and difluoromethylmethyl carbonate.
  • Halogenated cyclic carbonates include 4-fluoro-1,3-dioxolan-2-one and 4,5-difluoro-1,3-dioxolan-2-one.
  • a solvent additive it preferably contains an unsaturated carbon-bonded cyclic carbonate. This is because a stable film is formed on the surface of the negative electrode during charging and discharging, and the decomposition reaction of the electrolytic solution can be suppressed.
  • unsaturated carbon-bonded cyclic ester carbonates include vinylene carbonate and vinylethylene carbonate.
  • sultone cyclic sulfonate
  • solvent additive examples include propane sultone and propene sultone.
  • the solvent preferably contains an acid anhydride. This is because the chemical stability of the electrolytic solution is improved.
  • Acid anhydrides include, for example, propanedisulfonic anhydride.
  • the electrolyte salt can include, for example, any one or more of light metal salts such as lithium salts.
  • lithium salts include lithium hexafluorophosphate (LiPF 6 ) and lithium tetrafluoroborate (LiBF 4 ).
  • the content of the electrolyte salt is preferably 0.5 mol/kg or more and 2.5 mol/kg or less with respect to the solvent. This is because high ionic conductivity can be obtained.
  • the laminate film type secondary battery described above can be manufactured, for example, by the following procedure.
  • a positive electrode is produced using the positive electrode material described above.
  • a positive electrode active material and, if necessary, a positive electrode binder, a positive electrode conductive aid, and the like are mixed to form a positive electrode mixture, which is then dispersed in an organic solvent to obtain a positive electrode mixture slurry.
  • the mixture slurry is applied to the positive electrode current collector with a coating device such as a die coater having a knife roll or a die head, and dried with hot air to obtain a positive electrode active material layer.
  • the positive electrode active material layer is compression-molded using a roll press machine or the like. At this time, heating may be performed, and compression may be repeated multiple times.
  • a negative electrode is manufactured by forming a negative electrode active material layer on the negative electrode current collector according to the same work procedure as that for manufacturing the negative electrode 10 described above.
  • each active material layer is formed on both sides of the positive electrode and the negative electrode current collector. At this time, the active material coating lengths on both sides of both electrodes may be displaced (see FIG. 1).
  • the positive electrode lead 32 is attached to the positive electrode current collector, and the negative electrode lead 33 is attached to the negative electrode current collector.
  • the positive electrode and the negative electrode are laminated with a separator interposed therebetween, and then wound to produce the wound electrode body 31, and a protective tape is adhered to the outermost periphery thereof.
  • the wound electrode body 31 is molded so as to have a flat shape.
  • the insulating portions of the exterior members are bonded together by a heat-sealing method, and the wound electrode body is formed in a state where only one direction is open.
  • the body 31 is encapsulated. Subsequently, an adhesive film is inserted between the positive electrode lead 32 and the negative electrode lead 33 and the exterior member 35 . Subsequently, a predetermined amount of the electrolyte prepared as described above is introduced from the open portion, and vacuum impregnation is performed. After impregnation, the release portion is adhered by a vacuum heat-sealing method. As described above, the laminate film type secondary battery 30 can be manufactured.
  • the negative electrode utilization rate during charging and discharging is preferably 93% or more and 99% or less. If the negative electrode utilization rate is in the range of 93% or more, the first charge efficiency does not decrease, and the battery capacity can be greatly improved. In addition, if the negative electrode utilization rate is in the range of 99% or less, the safety can be ensured without precipitation of Li.
  • the negative electrode of Comparative Example 1 is composed of artificial graphite: conductive agent (acetylene black): SBR (styrene-butadiene rubber): CMC (carboxymethyl cellulose), 95.7% by mass: 1% by mass: 1.8% by mass: 1 0.5% by mass.
  • conductive agent acetylene black
  • SBR styrene-butadiene rubber
  • CMC carbboxymethyl cellulose
  • the electrode of Comparative Example 2 was prepared by mixing Li—SiO—C: PAA—Na (sodium polyacrylate): Conductive agent (acetylene black) at a ratio of 90% by mass: 8% by mass: 2% by mass. .
  • Li-Si-O was prepared by the following procedure. First, silicon and silicon dioxide were mixed as raw materials, vaporized at 1300° C., deposited on a deposition substrate, and quenched to prepare an SiO mass. This SiO lump was pulverized to a median diameter of 7 ⁇ m, and then doped with Li using an oxidation-reduction method. After doping, a heat treatment was performed to prepare a sample in order to stabilize the Li silicate.
  • Comparative Example 3 when forming a film, water vapor was introduced into the silicon vapor stream to forcibly oxidize it. In Comparative Example 4, an attempt was made to introduce oxygen gas, but sufficient oxygen could not be introduced.
  • Comparative Example 5 Metallic silicon and silicon dioxide were placed in a carbon crucible and heated to 1200° C. in a vacuum atmosphere of 10 ⁇ 2 Pa to extract vapor. As in Comparative Example 3, vapor was directly supported on the roughened copper foil.
  • an electrode having a surface-roughened copper foil and a negative electrode active material layer containing silicon oxide provided on the surface-roughened copper foil was obtained.
  • Examples 1 to 4 In Examples 1 to 4, in the same manner as in Comparative Example 5, a raw material in which metallic silicon and silicon dioxide were mixed was introduced into a furnace and vaporized in an atmosphere of a degree of vacuum of 10 -2 Pa. to obtain a negative electrode active material layer.
  • Examples 1 and 4 films were formed in the same manner as in Comparative Example 5, but in the outermost layer part, the valence state of Si was changed by controlling the film formation rate and heat load. In Examples 1 and 4 and Comparative Example 5, a total of 5 layers of multi-layer film formation were performed.
  • Example 2 a total of 20 layers of multi-layer film formation were performed, and the outermost layer was constructed in the same manner as in Example 1.
  • the film thickness per layer was made thinner than in Example 1 in order to further suppress the heat load.
  • the initial efficiency was slightly lower than in Example 1, as shown below.
  • Example 3 after obtaining a negative electrode active material layer in the same manner as in Comparative Example 5, Li was inserted using the oxidation-reduction method described later.
  • Example 4 The negative electrode active material layers obtained in Examples 1 to 4 were taken out after being sufficiently cooled, and lithium was inserted into the silicon compound particles by an oxidation-reduction method using an ether-based solvent in which the water content was reduced to 50 ppm by mass. Modified.
  • biphenyl was included as a polyphenylene compound in the ether-based solvent used for lithium insertion by the oxidation-reduction method.
  • the product was increased by increasing the redox temperature and doubling the biphenyl concentration.
  • the negative electrode active material layers after lithium insertion obtained in Examples 1 to 4 were observed with a scanning electron microscope (SEM).
  • the negative electrode active material layer after lithium insertion obtained in Examples 1 to 4 was analyzed by X-ray photoelectron spectroscopy (XPS), and the filling containing a composite compound in which carbon atoms and oxygen atoms are chemically bonded The existence of the layer was confirmed, and the valence state of silicon on the surface of the negative electrode active material particles and the ratio O/Si of silicon and oxygen constituting the negative electrode active material particles were investigated.
  • XPS X-ray photoelectron spectroscopy
  • the negative electrode active material layers after lithium insertion obtained in Examples 1 to 4 consisted of negative electrode active material particles containing a compound of lithium, silicon, and oxygen, and particles filled between the particles of the negative electrode active material and on the surface layer. and a filling layer containing a composite compound in which carbon atoms and oxygen atoms are chemically bonded.
  • the silicon present on the surface of the negative electrode active material particles was in a compound state of Si 1+ to Si 3+ .
  • the valence state of silicon present on the surface of the negative electrode active material particles was the same as the silicon state of normal silicon oxide.
  • Comparative Examples 3 and 4 Lithium was inserted into the silicon films formed in Comparative Examples 3 and 4 in the same manner as in Example 1, and a filling layer was filled. Thus, negative electrodes of Comparative Examples 3 and 4 were obtained.
  • Comparative Example 5 For the negative electrode active material layer formed in Comparative Example 5, the concentration of the complex in the solution containing the ether solvent was made extremely low, and the filling layer was formed without intercalating lithium into the silicon oxide particles. Thus, a negative electrode of Comparative Example 5 was obtained.
  • Comparative Example 6 In Comparative Example 6, after obtaining a Li insertion electrode in the same manner as in Example 2, it was washed with ether containing 10% water to remove the surface filling layer. Thus, a negative electrode of Comparative Example 6 was obtained.
  • FIGS. 4 to 6 [analysis] SEM images of the negative electrode active material layers of Examples 2 and 4 and Comparative Example 6 are shown in FIGS. 4 to 6, respectively. From the comparison between the SEM images of Examples 2 and 4 shown in FIGS. 4 and 5 and the SEM images of Comparative Example 6 shown in FIG. It can be seen that a substance not shown in the SEM image of Comparative Example 6 is present. From XPS analysis, it was found that this substance, which is present in Examples 2 and 4 but not in Comparative Example 6, is a complex compound in which carbon and oxygen atoms are chemically bonded.
  • FIG. 7 shows the C1s XPS spectrum of each of the negative electrode active material layers of Examples 2 and 4.
  • a peak near 285.8 eV and a peak near 289.6 eV are observed, indicating that a complex compound having multiple binding states with different C1s binding energies is present.
  • a peak near 285.8 eV was confirmed.
  • FIG. 9 shows the spectra of Examples 1 and 2 shown in FIG.
  • FIG. 10 shows spectra of Example 3 and Comparative Example 5 shown in FIG.
  • FIG. 11 shows the spectrum of Comparative Example 4 shown in FIG.
  • each negative electrode was produced in the same manner as in Example 1, except that the roughness Rz of the surface-roughened copper foil was changed between 0.5 ⁇ m and 7 ⁇ m as shown in Table 2 below. did.
  • Example 12 to 15 and Comparative Examples 7 and 8 In Examples 12 to 15 and Comparative Examples 7 and 8, the film formation rate was adjusted so as to achieve the oxygen ratio O/Si shown in Table 2 below, and hydrogen or oxygen was blown into the steam as necessary. Each negative electrode was produced in the same manner as in Example 1 except that the film was formed.
  • Example 16-18 In Examples 16 to 18, the film formation rate, the running speed of the copper foil, and the Each negative electrode was produced in the same manner as in Example 1, except that the film formation was performed by adjusting the openings in contact with the vapor deposition flow.
  • the negative electrode active material layers after lithium insertion obtained in Examples 5 to 18 consisted of negative electrode active material particles containing a compound of lithium, silicon, and oxygen, and particles filled between the particles of the negative electrode active material and on the surface layer. and a filling layer containing a composite compound in which carbon atoms and oxygen atoms are chemically bonded, and the ratio O/Si of silicon and oxygen constituting the negative electrode active material particles is 0.8 or more and 1.2 or less.
  • ethylene carbonate (EC) and dimethyl carbonate (DMC) are mixed to prepare a non-aqueous solvent, and an electrolyte salt (lithium hexafluorophosphate: LiPF 6 ) is dissolved in the non-aqueous solvent to prepare an electrolyte solution.
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • an electrolyte salt lithium hexafluorophosphate: LiPF 6
  • a coin battery for the initial efficiency test was assembled as follows. First, a Li foil with a thickness of 1 mm was punched into a diameter of 16 mm and attached to an aluminum clad. Next, the previously obtained negative electrode was punched out to have a diameter of 15 mm, and this was opposed to a Li foil attached to an aluminum clad with a separator interposed therebetween. After electrolyte injection, a 2032 coin battery was produced.
  • the initial efficiency was measured under the following conditions. First, the prepared coin battery for the initial efficiency test was charged (initial charge) in the CCCV mode at a charge rate equivalent to 0.03C. CV was 0 V and final current was 0.04 mA. Next, CC discharge (initial discharge) was performed with a discharge rate of 0.03 C and a discharge final voltage of 1.2 V.
  • initial efficiency (initial discharge capacity/initial charge capacity) ⁇ 100.
  • the counter-positive electrode was designed so that the utilization rate of the negative electrode was 95%.
  • the cycle characteristics were investigated as follows. First, two cycles of charge and discharge were performed at 0.2 C in an atmosphere of 25° C. for battery stabilization, and the discharge capacity of the second cycle was measured. Battery cycle characteristics were calculated from the discharge capacity at the 3rd cycle, and the battery test was stopped at 100 cycles. Charging and discharging were performed at 0.7C for charging and 0.5C for discharging. The charge voltage was 4.3V, the discharge final voltage was 2.5V, and the charge final rate was 0.07C.
  • the discharge capacity at the second cycle measured in the cycle characteristics test was taken as the capacity achieved by each negative electrode.
  • FIG. 12 shows an SEM image of the negative electrode active material layer of the negative electrode of Example 2 after charging and discharging (post-discharging state).
  • Example 2 [XPS spectrum after charging and discharging 20 times]
  • the negative electrode of Example 2 was subjected to XPS analysis after being charged and discharged 20 times. A part of the obtained XPS spectrum is shown in FIG.
  • the XPS spectrum of the negative electrode active material layer of the negative electrode of Example 2 after charging and discharging 20 times shows a peak attributed to silicon in a zero valence state near 99 eV and a peak near 101.9 eV.
  • a broad peak attributed to silicon in the compound state of Si 1+ to Si 3+ was included as an apex.
  • Tables 1 and 2 show the rate of increase in discharge capacity per volume (Wh/L) relative to Comparative Example 1 as the rate of increase in capacity.
  • the negative electrode of Comparative Example 2 produced using powdered Li-doped SiO had a lower capacity than the negative electrodes of Examples 1-18.
  • the negative electrode of Comparative Example 2 there is no filling layer containing a composite compound in which carbon atoms and oxygen atoms are chemically bonded between particles and on the surface layer of the negative electrode active material particles, and powder is used instead of vapor deposition. It is thought that the reason for this is that it contains a binder that is not involved in charging and discharging and that there are many extra voids due to the use of the material.
  • the negative electrode of Comparative Example 3 was significantly inferior in cycle characteristics to those of Examples 1-18.
  • the negative electrode of Comparative Example 4 had lower cycle characteristics and lower initial efficiency than those of Examples 1-18. This is probably because in Comparative Examples 3 and 4, sufficient oxygen could not be introduced into the silicon film and the oxygen ratio O/Si was too low.
  • Comparative Example 5 had a lower capacity increase rate per volume. This is probably because in Comparative Example 5, Li was not inserted into the silicon oxide.
  • Comparative Example 6 was inferior in cycle characteristics compared to Examples 1-18. This is probably because in Comparative Example 6, the filling layer containing a composite compound in which carbon atoms and oxygen atoms are chemically bonded was removed.
  • Examples 5 to 11 shown in Table 2 are examples aimed at finding the most suitable point by adjusting the surface roughness Rz of the surface-roughened copper foil as the negative electrode current collector.
  • the negative electrodes of Examples 1 and 7 to 10 in which the roughness Rz of the surface of the surface-roughened copper foil is 1.5 ⁇ m or more and 5.0 ⁇ m or more, have a roughness It can be seen that the negative electrodes of Examples 5 and 6, in which Rz is less than 1.5 ⁇ m, and Example 11, in which the roughness Rz exceeds 5.0 ⁇ m, exhibited better cycle characteristics. This is because the negative electrodes of Examples 1 and 7 to 10 have a surface roughness Rz of 1.5 ⁇ m or more and 5.0 ⁇ m or more of the surface of the roughened copper foil. , the negative electrode active material layer can be sufficiently retained, and peeling of the active material during charging and discharging can be suppressed more sufficiently.
  • Comparative Examples 7 and 8 and Examples 12 to 15 are examples in which the amount of oxygen in the bulk (oxygen ratio O/Si) was adjusted.
  • silicon oxide is produced from silicon and silicon dioxide, it is difficult to increase or decrease the amount of oxygen.
  • silicon oxide (Comparative Example 7) having a ratio O/Si of 0.7 could not control the valence, resulting in a large amount of silicon elements remaining.
  • the negative electrode of Comparative Example 7 had lower cycle characteristics than the negative electrodes of Examples 1 and 12-15 as a result of setting the oxygen ratio O/Si to 0.7. This is probably because in the negative electrode of Comparative Example 7, the oxygen ratio O/Si was set to 0.7, so that the area where the zero-valent Si reacted with the electrolytic solution was too large.
  • the negative electrode of Comparative Example 8 had a lower initial efficiency than the negative electrodes of Examples 1 and 12-15 as a result of setting the oxygen ratio O/Si to 1.3. This is probably because in the negative electrode of Comparative Example 8, the oxygen ratio O/Si was set to 1.3, resulting in an excessive amount of load substances.
  • Examples 16 to 18 are examples of examining the influence of silicon crystallization on battery characteristics.
  • the negative electrodes of Examples 16-18 were able to increase the capacity more than the negative electrode of Comparative Example 1 while maintaining the battery characteristics better than those of Comparative Examples 2-8.
  • Example 1 in which silicon was amorphous, was able to exhibit better battery characteristics than the negative electrodes of Examples 16 to 18, in which silicon was highly crystallized.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本発明は、表面が粗化された負極集電体と、該負極集電体上に設けられた負極活物質層とを有する負極であって、該負極活物質層は、リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子と、該負極活物質粒子の粒子間及び表層に充填されてなる、少なくとも炭素原子と酸素原子が化学結合しており、前記負極活物質粒子と合金化しない複合化合物とを有し、前記負極活物質粒子を構成する前記酸素と前記ケイ素との比O/Siが0.8以上1.2以下の範囲であることを特徴とする負極である。これにより、電池特性を維持しつつ、容量を大幅に増加可能な負極を提供することができる。

Description

負極及び負極の製造方法
 本発明は、負極及び負極の製造方法に関する。
 近年、モバイル端末などに代表される小型の電子機器が広く普及しており、さらなる小型化、軽量化及び長寿命化が強く求められている。このような市場要求に対し、特に小型かつ軽量で高エネルギー密度を得ることが可能な二次電池の開発が進められている。この二次電池は、小型の電子機器に限らず、自動車などに代表される大型の電子機器、家屋などに代表される電力貯蔵システムへの適用も検討されている。
 その中でも、リチウムイオン二次電池は、小型かつ高容量化が行いやすく、また、鉛電池やニッケルカドミウム電池よりも高いエネルギー密度が得られるため、大いに期待されている。
 上記のリチウムイオン二次電池は、正極及び負極、並びにセパレータと共に電解液を備えており、負極は充放電反応に関わる負極活物質を含んでいる。
 この負極活物質としては、炭素系活物質が広く使用されている一方で、最近の市場要求から電池容量のさらなる向上が求められている。電池容量向上のために、負極活物質材としてケイ素を用いることが検討されている。なぜならば、ケイ素の理論容量(4199mAh/g)は黒鉛の理論容量(372mAh/g)よりも10倍以上大きいため、電池容量の大幅な向上を期待できるからである。負極活物質材としてのケイ素材の開発はケイ素単体だけではなく、合金や酸化物に代表される化合物などについても検討されている。また、活物質形状は、炭素系活物質では標準的な塗布型から、集電体に直接堆積する一体型まで検討されている。
 しかしながら、負極活物質としてケイ素を主原料として用いると、充放電時に負極活物質が膨張収縮するため、主に負極活物質表層近傍で割れやすくなる。また、活物質内部にイオン性物質が生成し、負極活物質が割れやすい物質となる。負極活物質表層が割れると、それによって新表面が生じ、活物質の反応面積が増加する。この時、新表面において電解液の分解反応が生じるとともに、新表面に電解液の分解物である被膜が形成されるため電解液が消費される。このためサイクル特性が低下しやすくなる。
 これまでに、電池初期効率やサイクル特性を向上させるために、ケイ素材を主材としたリチウムイオン二次電池用負極材料、電極構成についてさまざまな検討がなされている。
 具体的には、良好なサイクル特性や高い安全性を得る目的で、気相法を用いケイ素及びアモルファス二酸化ケイ素を同時に堆積させている(例えば特許文献1参照)。また、高い電池容量や安全性を得るために、ケイ素酸化物粒子の表層に炭素材(電子伝導材)を設けている(例えば特許文献2参照)。さらに、サイクル特性を改善するとともに高入出力特性を得るために、ケイ素及び酸素を含有する活物質を作製し、かつ、集電体近傍での酸素比率が高い活物質層を形成している(例えば特許文献3参照)。また、サイクル特性を向上させるために、ケイ素活物質中に酸素を含有させ、平均酸素含有量が40at%以下であり、かつ集電体に近い場所で酸素含有量が多くなるように形成している(例えば特許文献4参照)。
 また、初回充放電効率を改善するためにSi相、SiO、MyO金属酸化物を含有するナノ複合体を用いている(例えば特許文献5参照)。また、サイクル特性改善のため、SiO(0.8≦x≦1.5、粒径範囲=1μm~50μm)と炭素材を混合して高温焼成している(例えば特許文献6参照)。また、サイクル特性改善のために、負極活物質中におけるケイ素に対する酸素のモル比を0.1~1.2とし、活物質、集電体界面近傍におけるモル比の最大値、最小値との差が0.4以下となる範囲で活物質の制御を行っている(例えば特許文献7参照)。また、電池負荷特性を向上させるため、リチウムを含有した金属酸化物を用いている(例えば特許文献8参照)。また、サイクル特性を改善させるために、ケイ素材表層にシラン化合物などの疎水層を形成している(例えば特許文献9参照)。また、サイクル特性改善のため、酸化ケイ素を用い、その表層に黒鉛被膜を形成することで導電性を付与している(例えば特許文献10参照)。特許文献10において、黒鉛被膜に関するRAMANスペクトルから得られるシフト値に関して、1330cm-1及び1580cm-1にブロードなピークが現れるとともに、それらの強度比I1330/I1580が1.5<I1330/I1580<3となっている。また、高い電池容量、サイクル特性の改善のため、二酸化ケイ素中に分散されたケイ素微結晶相を有する粒子を用いている(例えば、特許文献11参照)。また、過充電、過放電特性を向上させるために、ケイ素と酸素の原子数比を1:y(0<y<2)に制御したケイ素酸化物を用いている(例えば特許文献12参照)。
 ケイ素酸化物を用いたリチウムイオン二次電池は、日立マクセルが2010年6月にナノシリコン複合体を採用したスマートフォン用の角形の二次電池の出荷を開始した(例えば、非特許文献1参照)。Hohlより提案されたケイ素酸化物はSi0+~Si4+の複合材であり様々な酸化状態を有する(非特許文献2参照)。またKapaklisは、ケイ素酸化物に熱負荷を与える事でSiとSiOにわかれる、不均化構造を提案している(非特許文献3参照)。Miyachiらは不均化構造を有するケイ素酸化物のうち充放電に寄与するSiとSiOに注目しており(非特許文献4参照)、Yamadaらはケイ素酸化物とLiの反応式を次のように提案している(非特許文献5参照)。
 2SiO(Si+SiO) + 6.85Li + 6.85e → 1.4Li3.75Si + 0.4LiSiO + 0.2SiO
 上記反応式は、ケイ素酸化物を構成するSiとSiOがLiと反応し,Liシリサイド及びLiシリケート、並びに一部未反応であるSiOにわかれることを示している。
 ここで生成したLiシリケートは不可逆で、1度形成した後はLiを放出せず安定した物質であるとされている。この反応式から計算される重量当たりの容量は,実験値とも近い値を有しており、ケイ素酸化物の反応メカニズムとして認知されている。Kimらは、ケイ素酸化物の充放電に伴う不可逆成分、LiシリケートをLiSiOとして,Li-MAS-NMRや29Si-MAS-NMRを用いて同定している(非特許文献6参照)。
 この不可逆容量はケイ素酸化物の最も不得意とするところであり、改善が求められている。そこでKimらは予めLiシリケートを形成させるLiプレドープ法を用いて,電池として初回効率を大幅に改善し,実使用に耐えうる負極電極を作製している(非特許文献7参照)。
 また電極にLiドープを行う手法ではなく、粉末に処理を行う方法も提案され、この方法では不可逆容量の改善を実現している(特許文献13参照)。
特開2001-185127号公報 特開2002-042806号公報 特開2006-164954号公報 特開2006-114454号公報 特開2009-070825号公報 特開2008-282819号公報 特開2008-251369号公報 特開2008-177346号公報 特開2007-234255号公報 特開2009-212074号公報 特開2009-205950号公報 特開平06-325765号公報 特開2015-156355号公報
社団法人電池工業会機関紙「でんち」平成22年5月1日号、第10頁 A. Hohl, T. Wieder, P. A. van Aken, T. E. Weirich, G. Denninger, M. Vidal, S. Oswald, C. Deneke, J. Mayer, and H. Fuess : J. Non-Cryst. Solids, 320, (2003), 255. V. Kapaklis, J. Non-Crystalline Solids, 354 (2008) 612 Mariko Miyachi, Hironori Yamamoto, and Hidemasa Kawai, J. Electrochem. Soc. 2007 volume 154, issue 4, A376-A380 M. Yamada, M. Inaba, A. Ueda, K. Matsumoto, T. Iwasaki, T. Ohzuku,  J.Electrochem. Soc., 159, A1630 (2012) Taeahn Kim, Sangjin Park, and Seung M. Oh, J. Electrochem. Soc. volume 154,(2007),  A1112-A1117. Hye Jin Kim, Sunghun Choi, Seung Jong Lee, Myung Won Seo, Jae Goo Lee, Erhan Deniz, Yong Ju Lee, Eun Kyung Kim, and Jang Wook Choi,. Nano Lett. 2016, 16, 282-288. 佐藤 登 監修、「車載用リチウムイオン電池の開発最前線」、シーエムシー出版、2020年11月27日、第96頁~第111頁
 上述したように、近年、モバイル端末などに代表される小型の電子機器は高性能化、多機能化がすすめられており、その主電源であるリチウムイオン二次電池は電池容量の増加が求められている。この問題を解決する1つの手法として、ケイ素材を主材として用いた負極からなるリチウムイオン二次電池の開発が望まれている。また、ケイ素材を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性及びサイクル特性が望まれている。そこで、Liの挿入、一部脱離により改質されたケイ素酸化物を負極活物質として使用することで、サイクル特性、及び初期充放電特性を改善してきた。昨今では、ケイ素酸化物を主とし、予めLiを含有させ、Liシリケートを生成する事で、ケイ素酸化物のデメリットである不可逆容量を低減、実際に、上市しはじめている。このケイ素酸化物にLiを用いた、Li-SiO-C(非特許文献8)を炭素負極材に100%置き換えて電池を試作しても、この電池は、炭素負極材を用いた電池に比べ、20%台後半の容量増加に留まる。これは小型電子機器の高性能化(5G等)、電気自動車の走行距離向上を考慮した際、さらなる電池容量の向上が求められることを意味している。
 本発明は、上記問題点に鑑みてなされたものであって、電池特性を維持しつつ、容量を大幅に増加可能な負極、及びこのような負極を製造できる負極の製造方法を提供することを目的とする。
 上記課題を解決するために、本発明では、表面が粗化された負極集電体と、該負極集電体上に設けられた負極活物質層とを有する負極であって、
 該負極活物質層は、
  リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子と、
  該負極活物質粒子の粒子間及び表層に充填されてなる、少なくとも炭素原子と酸素原子が化学結合しており、前記負極活物質粒子と合金化しない複合化合物と
を有し、
 前記負極活物質粒子を構成する前記酸素と前記ケイ素との比O/Siが0.8以上1.2以下の範囲であることを特徴とする負極を提供する。
 本発明の負極は、リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子を含む負極活物質層を有するため、電池容量を向上できる。また、本発明の負極は、バインダ及び導電助剤などを用いず、集電体の粗化された表面上に負極活物質層を直接担持させることができ、電極における充放電に関与しない領域を低減でき、また余分な空隙を減らすことができることから、電極のエネルギー密度を大幅に改善することができる。
 また、負極活物質粒子の粒子間及び表層には、少なくとも炭素原子と酸素原子が化学結合しており、負極活物質粒子と合金化しない複合化合物が充填されている。この複合化合物は、負極活物質層と電解液との界面を保護する、保護層としての役割を担っている。このような複合化合物の存在により、本発明の負極は、優れたサイクル特性を示すことができる。
 更に、本発明の負極は、負極活物質粒子を構成する酸素とケイ素との比O/Siが0.8以上1.2以下の範囲であることにより、優れた電池特性を維持することができる。
 つまり、本発明の負極によれば、電池特性を維持しつつ、容量を大幅に増加することができる。
 前記複合化合物は、エーテル系溶媒とポリフェニレン化合物若しくは多環芳香族化合物との複合物の開環分解生成物、又は該複合物がリチウムと錯体を形成した複合物の開環分解生成物であり得る。
 このような複合化合物は、負極活物質粒子にLiドープをする手法によっては、その過程で容易に形成することができる。
 前記複合化合物は、少なくともその一部にリチウムを含むものであることが好ましい。
 複合酸化物をリチウムと化合物化し、リチウムを含ませることで、特にLiの拡散性を向上させることが可能となり、電池特性をさらに改善することができる。
 前記負極において、前記複合化合物と前記負極活物質粒子の境界に存在する前記ケイ素の状態は、Si1+~Si3+の化合物状態であることが好ましい。
 このような負極であれば、Liの挿入をよりスムーズに進行させることができる。
 前記負極活物質層は、2層以上からなる多層構造を有しており、層間が前記複合化合物で充填されたものであることが好ましい。
 このような負極は、電解液の分解を抑制しながらLiのスムーズな挿入を実現でき、その結果、より優れた電池特性を示すことができる。
 前記複合化合物は、光電子分光法で解析されるC1sの結合エネルギーがそれぞれ異なる複数の結合状態を有することができる。
 このように、複合化合物は、結合エネルギーがそれぞれ異なる複数の結合状態を有しても良い。
 少なくとも20回充放電後の前記負極活物質粒子は、Si0+の状態のケイ素と、Si1+~Si3+の化合物状態のケイ素とを有するものであることが好ましい。
 このような負極であれば、充放電をよりスムーズに行うことができる。
 前記負極活物質層は、前記負極活物質粒子を1次粒子として規定した場合、充放電後には該1次粒子の集合体である2次粒子を形成するものであり、該2次粒子同士は面内方向において分離した形態を持つことが好ましい。
 このような負極であれば、充放電による電極崩壊をより効果的に防ぎ、安定した負極活物質層を維持できる。
 前記負極活物質粒子は、充放電前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは1.0nm以下であることが好ましい。
 このような負極であれば、電解液との反応性を抑えることができ、電池特性を更に向上できる。
 前記負極集電体は、前記表面の十点平均粗さRzが1.5μm以上5.0μm以下のものであることが好ましい。
 このような負極集電体を含む負極であれば、負極活物質層を安定して担持できるだけでなく、負極活物質層中の負極活物質粒子の密度を適度なものとすることができ、その結果、より優れた電池特性を示すことができる。
 また、本発明では、本発明の負極の製造方法であって、
 前記負極集電体上にケイ素酸化物を含有する負極活物質層を気相成長させる工程と、
 該負極活物質層をリチウムを含む溶液に浸漬することによって、前記ケイ素酸化物を酸化還元法によって改質して前記リチウム、ケイ素、及び酸素の化合物とするとともに、前記複合化合物を形成する工程と
を含むことを特徴とする負極の製造方法を提供する。
 本発明の負極の製造方法であれば、電池特性を維持しつつ、容量を大幅に増加可能な負極を製造することができる。
 以上のように、本発明の負極は、二次電池の負極として用いた際に、初回効率が高く、高容量で、高入力特性、高サイクル特性を得る事ができる。
 また、本発明の負極の製造方法であれば、良いサイクル特性を得つつ、二次電池の負極として用いた際に、高容量で良好な初期充放電特性を有する負極を製造することができる
本発明の負極の構成の一例を示す断面図である。 本発明の負極の一例の断面SEM像である。 本発明の負極を含むリチウムイオン二次電池の構成例(ラミネートフィルム型)を表す分解図である。 実施例2の負極活物質層の表面SEM像である。 実施例4の負極活物質層の表面SEM像である。 比較例6の負極活物質層の表面SEM像である。 実施例2及び4の負極活物質層のXPSスペクトルの一部である。 実施例1~3、並びに比較例4及び5の負極活物質層のXPSスペクトルの一部である。 実施例1及び2の負極活物質層のXPSスペクトルの一部である。 実施例3及び比較例5の負極活物質層のXPSスペクトルの一部である。 比較例4の負極活物質層のXPSスペクトルの一部である。 充放電後の実施例2の負極活物質層の表面SEM像である。 20回充放電後の実施例2の負極活物質層のXPSスペクトルの一部である。
 前述のように、リチウムイオン二次電池の電池容量を増加させる1つの手法として、ケイ素酸化物を主材として用いた負極をリチウムイオン二次電池の負極として用いることが検討されている。このケイ素酸化物を用いたリチウムイオン二次電池は、炭素系活物質を用いたリチウムイオン二次電池と同等に近い初期充放電特性が望まれている。また初期充放電特性を改善可能なLiドープSiOを用いる事で、大幅な容量増加が望めるが、車載用途等で考えた際、さらなる容量の向上が求められる。
 そこで、本発明者らは、二次電池の負極として用いた際に、高いサイクル特性を得つつ、初期充放電特性を向上させ、電池容量を増加させることが可能な負極を得るために鋭意検討を重ね、本発明に至った。
 即ち、本発明は、表面が粗化された負極集電体と、該負極集電体上に設けられた負極活物質層とを有する負極であって、
 該負極活物質層は、
  リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子と、
  該負極活物質粒子の粒子間及び表層に充填されてなる、少なくとも炭素原子と酸素原子が化学結合しており、前記負極活物質粒子と合金化しない複合化合物と
を有し、
 前記負極活物質粒子を構成する前記酸素と前記ケイ素との比O/Siが0.8以上1.2以下の範囲であることを特徴とする負極である。
 また、本発明は、本発明の負極の製造方法であって、
 前記負極集電体上にケイ素酸化物を含有する負極活物質層を気相成長させる工程と、
 該負極活物質層をリチウムを含む溶液に浸漬することによって、前記ケイ素酸化物を酸化還元法によって改質して前記リチウム、ケイ素、及び酸素の化合物とするとともに、前記複合化合物を形成する工程と
を含むことを特徴とする負極の製造方法である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
 <負極>
 まず、図面を参照しながら、本発明の負極の構成について説明する。
 図1は、本発明の負極の一例の断面図を表している。図1に示すように、負極10は、負極集電体11と、この負極集電体11の表面11a上に設けられた負極活物質層12とを有する構成になっている。この負極活物質含有層12は、図1に示すように負極集電体11の両方の表面11aに設けられていても良いし、又は、片方の表面11aだけに設けられていても良い。
 負極集電体11の表面11aは、粗化された表面である。すなわち、負極活物質層12は、負極集電体11の粗化された表面11a上に設けられている。
 以下、負極集電体11及び負極活物質層12をそれぞれ説明する。
 [負極集電体]
 負極集電体11は、優れた導電性材料であり、かつ、機械的な強度に長けた物で構成される。負極集電体11に用いることができる導電性材料として、例えば銅(Cu)やニッケル(Ni)が挙げられる。この導電性材料は、リチウム(Li)と金属間化合物を形成しない材料であることが好ましい。
 負極集電体11は、主元素以外に炭素(C)や硫黄(S)を含んでいることが好ましい。負極集電体の物理的強度が向上するためである。特に、充電時に膨張する活物質層を有する場合、集電体が上記の元素を含んでいれば、集電体を含む電極変形を抑制する効果があるからである。上記の含有元素の含有量は、特に限定されないが、中でも、それぞれ100質量ppm以下であることが好ましい。より高い変形抑制効果が得られるからである。このような変形抑制効果によりサイクル特性をより向上できる。
 また、負極集電体11の表面11aは粗化されている必要があり、望ましくは、表面の十点平均粗さRzは、1.5μm以上5.0μm以下であると良い。このような望ましい平均粗さRzの表面11aを有する負極集電体11を含む負極10であれば、負極活物質層12をより安定して担持できるだけでなく、負極活物質層12中の負極活物質粒子の密度を適度なものとすることができ、その結果、より優れた電池特性を示すことができる。粗化されている負極集電体11は、例えば、電解処理、エンボス処理、又は、化学エッチング処理された金属箔などである。
 [負極活物質層]
 本発明の負極10が有する負極活物質層12は、リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子、すなわちリチウムと酸素とを含むケイ素化合物粒子を有し、負極集電体11上に設けられている。負極10は、負極活物質粒子が負極集電体11の粗化された表面11aに直接担持されている構造を有しているということができる。
 本発明の負極10は、ケイ素化合物粒子を含む複合負極活物質粒子を含むため、電池容量を向上できる。また、本発明の負極10は、一般的な電極と異なり、バインダ及び導電助剤などを用いず、負極集電体11の粗化された表面11a上に負極活物質層12を直接担持させることができ、電極における充放電に関与しない領域を低減でき、また余分な空隙を減らすことができることから、電極のエネルギー密度を大幅に改善することができる。
 このように、密に担持された負極活物質層12を有する負極10を用いることで、例えば粉末電極では成しえる事ができない電池のエネルギー密度増加が可能となる。
 また、形成した負極活物質層12において、リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子は、隣接しあい存在することができる。負極活物質粒子の粒子間及び表層には、少なくとも炭素原子と酸素原子が化学結合しており、負極活物質粒子と合金化しない、すなわち負極活物質粒子とは反応しない複合化合物(「C,O化合物」とも呼ばれる)が充填されている。この複合化合物は、負極活物質層と電解液との界面を保護する、保護層としての役割を担っている。このような複合化合物の存在により、本発明の負極は、優れたサイクル特性を示すことができる。
 更に、本発明の負極10は、負極活物質粒子を構成する酸素とケイ素との比O/Siが0.8以上1.2以下の範囲である。比O/Siが0.8以上であれば、ケイ素単体よりも酸素比が高められたものであるため、サイクル特性が良好となる。比O/Siが1.2以下であれば、ケイ素酸化物の抵抗が高くなり過ぎないため好ましい。中でも、SiOの組成はxが1に近い方が好ましい。なぜならば、高いサイクル特性が得られるからである。なお、本発明におけるケイ素化合物の組成は必ずしも純度100%を意味しているわけではなく、微量の不純物元素を含んでいてもよい。
 つまり、本発明の負極10によれば、電池特性を維持しつつ、容量を大幅に増加することができる。
 一方、比O/Siが0.8未満であると、容量は大きくなるが、Si0+が電解液と反応する面積が増加し、サイクル特性が悪化する。また、比O/Siが1.2を超えると、負荷物質となり、この場合も電池特性を悪化させる。比O/Siは、モル比であり、可能な限り1に近いことが望ましい。
 保護層として働く複合化合物は、エーテル系溶媒とポリフェニレン化合物若しくは多環芳香族化合物との複合物の開環分解生成物、又は該複合物がリチウムと錯体を形成した複合物の開環分解生成物とすることができる。
 このような複合化合物は、負極活物質粒子に酸化還元法を用いてLiドープをする過程で容易に形成することができる。
 特に、保護層として働くことができる、少なくとも炭素原子と酸素原子が化学結合している複合化合物は、その一部にリチウムを含むことが好ましい。すなわち、複合化合物は、少なくともその一部にリチウムを含むものであることが好ましい。炭素及び酸素を含む複合酸化物をリチウムと化合物化し、その一部にリチウムを含ませることで、一種の固体電解質と似た挙動を示し、特に炭素及び酸素のみを含む場合よりもLiの透過を起こり易くし、Liの拡散性を向上させる事が可能となるため、電池特性を更に改善することができる。
 また、一般的なケイ素酸化物に代表される、一酸化ケイ素は、Siの0~4価の複合物で表現されることが多い。例えば光電子分光法で一酸化ケイ素のSi2pスペクトルを取得した際、Si0+のピークが99eVの結合エネルギー付近に現れ、Si4+のピークが103eVの結合エネルギー付近に現れ、特にこれらのピークに帰属される価数0の状態とSi4+の状態とが支配的であるようなスペクトルを示す。一方、負極集電体11にケイ素を含む負極活物質粒子を直接担持させる場合、負極集電体11の表面11aの粗化部の状態、負極集電体11(蒸着させる基盤)の温度、負極集電体11の走行速度、ガス噴出などを制御することで、ケイ素化合物の構造を変化させることができ、特にSi2+を中心とし、Si1+3+の化合物状態が支配的な表面を作り出すことができる。
 一方、Si4+の状態のケイ素は、二酸化ケイ素として存在するため、Liが反応し辛い。
 そこで、負極活物質粒子のLiの挿入初期に関与する部分、すなわち表層部をよりLiが入りやすい低価数複合酸化物状態にすることで、挿入がスムーズに進む負極活物質粒子とすることができる。そのため、負極において、複合化合物と負極活物質粒子の境界に存在するケイ素の状態は、Si1+~Si3+の化合物状態であることが好ましい。
 よりLiをスムーズに導入するには、負極活物質層12を形成するタイミングで、負極活物質層12を2層以上からなる多層構造にすると良い。ただし、反応面積の増加に繋がるため、そのままでは電池特性が不十分となる。
 そこで、これらの層間の一部に、電解液との反応を抑制する保護層として働く上記複合化合物を充填することで、電解液の分解を抑制し、Liが導入しやすく、電池特性を維持する負極活物質層12を提案できる。
 また、負極活物質粒子の1次粒子は、多層構造を有しており、その層間部にも同様に充填されていることで、電解液との反応性を確保することができる。
 特に、複合化合物と負極活物質粒子との界面、すなわちケイ素酸化物の界面は、1~3価の化合物状態のケイ素を含む複合化合物で形成されていることが望ましい。一般的なケイ素酸化物は、4価の化合物状態のケイ素を多く含む事から、Liが挿入し辛いが、より低価数な状態を形成することで、電池特性を改善することができる。
 この複合化合物は、例えば、アルバックファイ社製、走査型X線光電子分光分析装置 PHI Quantera IIを使用することで確認できる。この時、X線のビーム径は直径100μm、中和銃を使用することができる。
 複合化合物は、上記光電子分光法で解析されるC1sの結合エネルギーがそれぞれ異なる複数の結合状態を有することができる。
 このように、複合化合物は、結合エネルギーがそれぞれ異なる複数の結合状態を有しても良い。この場合、導電層を形成する炭素部と電解液との反応を抑制する複合物が混合することで導電性を有する保護層の形成が可能となる。
 例えば、複合化合物は、エーテル系溶媒とポリフェニレン化合物若しくは多環芳香族化合物との複合物の開環分解生成物、又は該複合物がリチウムと錯体を形成した複合物の開環分解生成物であり得る。
 これらの複合化合物は、後述する、負極活物質粒子に酸化還元法によりLiドープをする過程で容易に形成することができる。
 また、負極活物質粒子は、充放電を繰り返すことで、例えば少なくとも20回の充放電後、Si0+の状態のケイ素と、Si1+~Si3+の化合物状態のケイ素とを有するものであることが望ましい。
 Si0+の状態のケイ素が主体になると、電解液との反応が促進される。そこで、Si1~3+の価数状態(化合物状態)にあるケイ素酸化物と複合化し、Si0+の状態のケイ素が直接電解液と触れない構造を用いることで充放電がスムーズに行われる。
 負極活物質粒子におけるケイ素の価数の状態は、上記光電子分光法によって得られる光電子スペクトルを波形分離処理に供し、該スペクトルにおけるケイ素の各価数状態に帰属されるピークの有無を確認することによって、判断することができる。
 負極活物質粒子は、負極集電体11の表面11aの粗化部を起因とし、気相成長する。
 これを1次粒子と規定した場合、充放電後には該1次粒子の集合体である2次粒子を形成するものであることが良い。
 これは負極集電体11の表面11aの粗化状態を変更させることで制御でき、例えば、粗化間隔が広いと、2次粒子群が小さくなる。一方、粗化間隔が狭く、1次粒子があまり密に埋まると充放電で2次粒子が生成しにくくなる。
 この2次粒子同士は、面内方向において、分離した形態を持つことが望ましい。その状態のまま充放電を行うことで、安定した負極活物質層12を維持する事ができる。
 充放電前の負極活物質層を構成する、Si0+は、可能な限り非結晶(非晶質)が望ましい。具体的には、Si(111)の結晶子サイズは、1.0nm以下が望ましい。そのため、負極活物質粒子は、充放電前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、この結晶面に対応する結晶子サイズが1.0nm以下であることが望ましい。このような負極活物質粒子を含むものであれば、電解液との反応性を抑えることができ、電池特性を更に向上できる。
 Liシリケートの肥大化程度、及びSiの結晶化程度(例えば、Si(111)結晶面に対応する結晶子サイズ)は、XRD(X-ray Diffraction:X線回折法)で確認することができる。XRDの測定は、例えば、以下の条件により行うことができる。
・XRD:Bruker社 D8 ADVANCE
 X線回折装置としては、例えばBruker社製のD8 ADVANCEを使用できる。
 X線源はCu Kα線、Niフィルターを使用して、出力40kV/40mA、スリット幅0.3°、ステップ幅0.008°、1ステップあたり0.15秒の計数時間にて10-40°まで測定する。
 次に、図2を参照しながら、本発明の負極の具体例をより詳細に説明する。
 図2は、本発明の負極の一例の断面SEM像である。図2の下側の領域に示す、表面に隆起のある部材が、表面が粗化された負極集電体である。
 負極集電体の粗化された表面の隆起を中心として扇形に成長した部分が、負極活物質粒子である。先に説明したように、負極活物質粒子は、リチウム、ケイ素、及び酸素の化合物を有する。図2のSEM像では明確な視認は困難であるが、負極活物質粒子の粒子間及び表層には、少なくとも炭素原子と酸素原子が化学結合している複合化合物が充填されている。このように、図2に断面を示す負極は、負極集電体上に、上記負極活物質粒子と、上記複合化合物とを有する負極活物質層が設けられている。
 図2のSEM像から明らかなように、本発明の負極の負極活物質層は、空隙が非常に少なく、密に詰まった負極活物質粒子を含んでいる。
 [負極の製造方法]
 本発明の負極の製造方法は、
 前記負極集電体上にケイ素酸化物を含有する負極活物質層を気相成長させる工程と、
 該負極活物質層をリチウムを含む溶液に浸漬することによって、前記ケイ素酸化物を酸化還元法によって改質して前記リチウム、ケイ素、及び酸素の化合物とするとともに、前記複合化合物を形成する工程と
を含むことを特徴とする。
 本発明の負極の製造方法であれば、本発明の負極を製造することができる。ただし、本発明の負極を製造する方法は、ここで説明する本発明の製造方法に限定されるものではない。
 以下、本発明の負極の製造方法の一例を具体的に説明するが、本発明の負極の製造方法は以下に説明する例に限定されない。
 まず、酸素が含まれるケイ素化合物(ケイ素酸化物)粒子を含む層(負極活物質層)を製作する。ここでは、負極集電体上に、ケイ素酸化物を含有する負極活物質層を気相成長させる。
 このケイ素酸化物は、表面が粗化された負極集電体、例えば表面の十点平均粗さRzが1.5μm以上5.0μm以下(例えば2.5μm)の粗化箔(例えば、粗化された銅箔)に、酸化ケイ素ガスを堆積させることで形成できる。具体的には、以下のとおりである。
 まず、酸化ケイ素ガスを発生する原料を減圧下で1100℃以上の温度で加熱し、酸化ケイ素ガスを発生させる。この時、原料としては、金属ケイ素粉末と二酸化ケイ素粉末との混合物を用いることができる。金属ケイ素粉末の表面酸素及び反応炉中の微量酸素の存在を考慮すると、混合モル比が、0.9<金属珪素粉末/二酸化珪素粉末<1.2の範囲であることが望ましい。
 また、金属ケイ素を用いて蒸着を行い、堆積させたケイ素に酸素ガスを導入することでも、酸化ケイ素を形成することができるが、この場合、価数制御はできず、結果、ケイ素が0価の状態と4価の化合物状態とに分離した複合物になる。
 同様に、二酸化ケイ素ガスに還元ガス(水素)を導入する事も可能だが、音速に近い蒸気に対して、十分な水素を導入する事は難しい。
 結果、本発明の負極の製造方法では、原料として金属ケイ素と二酸化ケイ素粉とを用いることが好ましい。
 上記のようにして発生した酸化ケイ素ガスは、負極集電体の表面の粗化部に堆積され、柱状構造を有する1次粒子になる。
 この時、負極集電体の表面の粗化構造を変化させる事で1次粒子の構造も変化することができる。
 堆積する際の凝固熱、また加熱部の輻射熱は、負極活物質層の結晶化を促進する。
 そこで、負極集電体を走行させ、熱負荷を低減しながら、Siの結晶化が起こらないように気相成長することが好ましい。
 特に、酸化ケイ素は、ケイ素と異なり昇華性であり、早期堆積が可能であると共に、ケイ素膜で課題となる溶融ケイ素からの輻射熱を受ける心配がないことから、蒸着による活物質の形成に向いていると言える。
 蒸着は、負極集電体の粗化された両方の表面に対して行うこともできる。例えば、負極集電体の粗化された片方の表面に対して蒸着を行い、次いで、負極集電体を裏返し、負極集電体の粗化されたもう一方の表面に対して蒸着を行うこともできる。
 次に、上記のように作製したケイ素酸化物を含有する負極活物質層に、Liを挿入する。これにより、リチウムが挿入されたケイ素酸化物粒子を含む負極活物質粒子を作製する。すなわち、これにより、ケイ素酸化物粒子が改質され、ケイ素酸化物粒子内部にLi化合物が生成する。Liの挿入は、酸化還元法により行うことが好ましい。
 酸化還元法による改質では、例えば、まず、エーテル溶媒にリチウムを溶解した溶液Aにケイ素酸化物粒子を含む負極活物質層を浸漬することで、リチウムを挿入できる。この溶液Aに更に多環芳香族化合物又は直鎖ポリフェニレン化合物を含ませても良い。リチウムの挿入後、多環芳香族化合物やその誘導体を含む溶液Bにケイ素活物質粒子を浸漬することで、ケイ素酸化物粒子から活性なリチウムを脱離できる。この溶液Bの溶媒は例えば、エーテル系溶媒、ケトン系溶媒、エステル系溶媒、アルコール系溶媒、アミン系溶媒、又はこれらの混合溶媒を使用できる。または溶液Aに浸漬させた後、得られたケイ素活物質粒子を不活性ガス下で熱処理しても良い。熱処理することでLi化合物を安定化することができる。その後、アルコール、炭酸リチウムを溶解したアルカリ水、弱酸、又は純水などで洗浄する方法などで洗浄しても良い。
 溶液Aに用いるエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、テトラエチレングリコールジメチルエーテル、又はこれらの混合溶媒等を用いることができる。この中でも特にテトラヒドロフラン、ジオキサン、1,2-ジメトキシエタンを用いることが好ましい。これらの溶媒は、脱水されていることが好ましく、脱酸素されていることが好ましい。
 また、溶液Aに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができ、直鎖ポリフェニレン化合物としては、ビフェニル、ターフェニル、及びこれらの誘導体のうち1種類以上を用いることができる。
 溶液Bに含まれる多環芳香族化合物としては、ナフタレン、アントラセン、フェナントレン、ナフタセン、ペンタセン、ピレン、ピセン、トリフェニレン、コロネン、クリセン及びこれらの誘導体のうち1種類以上を用いることができる。
 また、溶液Bのエーテル系溶媒としては、ジエチルエーテル、tert-ブチルメチルエーテル、テトラヒドロフラン、ジオキサン、1,2-ジメトキシエタン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、及びテトラエチレングリコールジメチルエーテル等を用いることができる。
 ケトン系溶媒としては、アセトン、アセトフェノン等を用いることができる。
 エステル系溶媒としては、ギ酸メチル、酢酸メチル、酢酸エチル、酢酸プロピル、及び酢酸イソプロピル等を用いることができる。
 アルコール系溶媒としては、メタノール、エタノール、プロパノール、及びイソプロピルアルコール等を用いることができる。
 アミン系溶媒としては、メチルアミン、エチルアミン、及びエチレンジアミン等を用いることができる。
 負極活物質粒子の粒子間及び表層に充填される、少なくとも炭素原子と酸素原子が化学結合している複合化合物は、例えば、溶液Aに含まれるエーテル系溶媒とポリフェニレン化合物若しくは多環芳香族化合物の複合物が開環分解などを行うこと、又は該複合物がリチウムと錯体を形成した複合物(例えば、Liと錯体を形成した多環芳香族化合物と、エーテル系溶媒との複合物)が開環分解などを行うことで形成することができる。
 このとき、溶媒の温度、溶媒に含ませるポリフェニレン化合物又は多環芳香族の種類及び濃度、並びにLiと錯体形成した多環芳香族の濃度などを調整することで、充填被膜(複合化合物)の状態を制御することが可能となる。
 このようにして生じる複合化合物は、複数種類の化合物を含むこともできる。
 以上のようにして、本発明の負極を作製することができる。
 <リチウムイオン二次電池>
 本発明の負極は、非水電解質二次電池、例えばリチウムイオン二次電池の負極において使用することができる。
 次に、本発明の負極を用いることができる非水電解質二次電池の具体例として、ラミネートフィルム型のリチウムイオン二次電池の例について説明する。
 [ラミネートフィルム型二次電池の構成]
 図3に示すラミネートフィルム型のリチウムイオン二次電池30は、主にシート状の外装部材35の内部に巻回電極体31が収納されたものである。この巻回電極体31は正極、負極間にセパレータを有し、巻回されたものである。また、巻回はせずに、正極、負極間にセパレータを有した積層体を収納した場合も存在する。どちらの電極体においても、正極に正極リード32が取り付けられ、負極に負極リード33が取り付けられている。電極体の最外周部は保護テープにより保護されている。
 正極リード32及び負極リード33は、例えば、外装部材35の内部から外部に向かって一方向で導出されている。正極リード32は、例えば、アルミニウムなどの導電性材料により形成され、負極リード33は、例えば、ニッケル、銅などの導電性材料により形成される。
 外装部材35は、例えば、融着層、金属層、表面保護層がこの順に積層されたラミネートフィルムであり、このラミネートフィルムは融着層が電極体31と対向するように、2枚のフィルムの融着層における外周縁部同士が融着、又は、接着剤などで張り合わされている。融着部は、例えばポリエチレンやポリプロピレンなどのフィルムであり、金属部はアルミ箔などである。保護層は例えば、ナイロンなどである。
 外装部材35と正極リード32及び負極リード33のそれぞれとの間には、外気侵入防止のため密着フィルム34が挿入されている。この材料は、例えば、ポリエチレン、ポリプロピレン、ポリオレフィン樹脂である。
 以下、各部材をそれぞれ説明する。
 [正極]
 正極は、例えば、図1の負極10と同様に、正極集電体の両面又は片面に正極活物質層を有している。
 正極集電体は、例えば、アルミニウムなどの導電性材により形成されている。
 正極活物質層は、リチウムイオンの吸蔵放出可能な正極材のいずれか1種又は2種以上を含んでおり、設計に応じて正極結着剤、正極導電助剤、分散剤などの他の材料を含んでいてもよい。
 正極材料としては、リチウム含有化合物が望ましい。このリチウム含有化合物は、例えばリチウムと遷移金属元素からなる複合酸化物、又はリチウムと遷移金属元素を有するリン酸化合物があげられる。これらの正極材の中でもニッケル、鉄、マンガン、コバルトの少なくとも1種以上を有する化合物が好ましい。これらの化学式として、例えば、LiあるいはLiPOで表される。式中、M、Mは少なくとも1種以上の遷移金属元素を示す。x、yの値は電池充放電状態によって異なる値を示すが、一般的に0.05≦x≦1.10、0.05≦y≦1.10で示される。
 リチウムと遷移金属元素とを有する複合酸化物としては、例えば、リチウムコバルト複合酸化物(LiCoO)、リチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルト複合酸化物などが挙げられる。リチウムニッケルコバルト複合酸化物としては、例えばリチウムニッケルコバルトアルミニウム複合酸化物(NCA)やリチウムニッケルコバルトマンガン複合酸化物(NCM)などが挙げられる。
 リチウムと遷移金属元素とを有するリン酸化合物としては、例えば、リチウム鉄リン酸化合物(LiFePO)あるいはリチウム鉄マンガンリン酸化合物(LiFe1-uMnPO(0<u<1))などが挙げられる。これらの正極材を用いれば、高い電池容量を得ることができるとともに、優れたサイクル特性も得ることができる。
 正極結着剤としては、例えば、高分子材料、合成ゴムなどのいずれか1種類以上を用いることができる。高分子材料は、例えば、ポリフッ化ビニリデン、ポリイミド、ポリアミドイミド、アラミド、ポリアクリル酸、ポリアクリル酸リチウム、ポリアクリル酸ナトリウム、カルボキシメチルセルロースなどである。合成ゴムは、例えば、スチレンブタジエン系ゴム、フッ素系ゴム、エチレンプロピレンジエンなどである。
 正極導電助剤としては、例えば、カーボンブラック、アセチレンブラック、黒鉛、ケチェンブラック、カーボンナノチューブ、カーボンナノファイバーなどの炭素材料のいずれか1種以上を用いることができる。
 [負極]
 二次電池の負極としては、本発明の負極を用いる。この二次電池を構成する負極は、正極活物質剤から得られる電気容量(電池としての充電容量)に対して、負極充電容量が大きくなることが好ましい。これにより、負極上でのリチウム金属の析出を抑制することができる。
 この例では、正極活物質層は、正極集電体の両面の一部に設けられており、同様に本発明の負極活物質層も負極集電体の両面の一部に設けられている。この場合、例えば、負極集電体上に設けられた負極活物質層は対向する正極活物質層が存在しない領域が設けられていることが好ましい。これは、安定した電池設計を行うためである。
 上記の負極活物質層と正極活物質層とが対向しない領域では、充放電の影響をほとんど受けることが無い。そのため、負極活物質層の状態が形成直後のまま維持され、これによって負極活物質の組成などを、充放電の有無に依存せずに再現性良く正確に調べることができる。
 [セパレータ]
 セパレータはリチウムメタル又は正極と負極を隔離し、両極接触に伴う電流短絡を防止しつつ、リチウムイオンを通過させるものである。このセパレータは、例えば合成樹脂、あるいはセラミックからなる多孔質膜により形成されており、2種以上の多孔質膜が積層された積層構造を有してもよい。合成樹脂として例えば、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレンなどが挙げられる。
 [電解液]
 活物質層の少なくとも一部、又は、セパレータには、液状の非水電解質(電解液)が含浸されている。この電解液は、溶媒中に電解質塩が溶解されており、添加剤など他の材料を含んでいても良い。
 溶媒は、例えば、非水溶媒を用いることができる。非水溶媒としては、例えば、炭酸エチレン、炭酸プロピレン、炭酸ブチレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチル、炭酸メチルプロピル、1,2-ジメトキシエタン又はテトラヒドロフランなどが挙げられる。この中でも、炭酸エチレン、炭酸プロピレン、炭酸ジメチル、炭酸ジエチル、炭酸エチルメチルのうちの少なくとも1種以上を用いることが望ましい。これは、より良い特性が得られるからである。また、この場合、炭酸エチレン、炭酸プロピレンなどの高粘度溶媒と、炭酸ジメチル、炭酸エチルメチル、炭酸ジエチルなどの低粘度溶媒を組み合わせることにより、より優位な特性を得ることができる。電解質塩の解離性やイオン移動度が向上するためである。
 特に溶媒として、ハロゲン化鎖状炭酸エステル、又は、ハロゲン化環状炭酸エステルのうち少なくとも1種を含んでいることが望ましい。これにより、充放電時、特に充電時において、負極活物質表面に安定な被膜が形成される。ここで、ハロゲン化鎖状炭酸エステルとは、ハロゲンを構成元素として有する(少なくとも1つの水素がハロゲンにより置換された)鎖状炭酸エステルである。また、ハロゲン化環状炭酸エステルとは、ハロゲンを構成元素として有する(すなわち、少なくとも1つの水素がハロゲンにより置換された)環状炭酸エステルである。
 ハロゲンの種類は特に限定されないが、フッ素が好ましい。これは、他のハロゲンよりも良質な被膜を形成するからである。また、ハロゲン数は多いほど望ましい。これは、得られる被膜がより安定的であり、電解液の分解反応が低減されるからである。
 ハロゲン化鎖状炭酸エステルは、例えば、炭酸フルオロメチルメチル、炭酸ジフルオロメチルメチルなどが挙げられる。ハロゲン化環状炭酸エステルとしては、4-フルオロ-1,3-ジオキソラン-2-オン、4,5-ジフルオロ-1,3-ジオキソラン-2-オンなどが挙げられる。
 溶媒添加物として、不飽和炭素結合環状炭酸エステルを含んでいることが好ましい。充放電時に負極表面に安定な被膜が形成され、電解液の分解反応が抑制できるからである。不飽和炭素結合環状炭酸エステルとして、例えば炭酸ビニレン又は炭酸ビニルエチレンなどが挙げられる。
 また溶媒添加物として、スルトン(環状スルホン酸エステル)を含んでいることが好ましい。電池の化学的安定性が向上するからである。スルトンとしては、例えばプロパンスルトン、プロペンスルトンが挙げられる。
 さらに、溶媒は、酸無水物を含んでいることが好ましい。電解液の化学的安定性が向上するからである。酸無水物としては、例えば、プロパンジスルホン酸無水物が挙げられる。
 電解質塩は、例えば、リチウム塩などの軽金属塩のいずれか1種類以上含むことができる。リチウム塩として、例えば、六フッ化リン酸リチウム(LiPF)、四フッ化ホウ酸リチウム(LiBF)などが挙げられる。
 電解質塩の含有量は、溶媒に対して0.5mol/kg以上2.5mol/kg以下であることが好ましい。高いイオン伝導性が得られるからである。
 [ラミネートフィルム型二次電池の製造方法]
 以上に説明したラミネートフィルム型二次電池は、例えば、以下の手順で製造することができる。
 最初に、上記した正極材を用い正極電極を作製する。まず、正極活物質と、必要に応じて正極結着剤、正極導電助剤などを混合し正極合剤としたのち、有機溶剤に分散させ正極合剤スラリーとする。続いて、ナイフロール又はダイヘッドを有するダイコーターなどのコーティング装置で正極集電体に合剤スラリーを塗布し、熱風乾燥させて正極活物質層を得る。最後に、ロールプレス機などで正極活物質層を圧縮成型する。この時、加熱しても良く、また圧縮を複数回繰り返してもよい。
 次に、上記した負極10の作製と同様の作業手順に従い、負極集電体に負極活物質層を形成し負極を作製する。
 正極及び負極を作製する際に、正極及び負極集電体の両面にそれぞれの活物質層を形成する。この時、どちらの電極においても両面部の活物質塗布長がずれていてもよい(図1を参照)。
 続いて、電解液を調整する。続いて、超音波溶接などにより、正極集電体に正極リード32を取り付けると共に、負極集電体に負極リード33を取り付ける。続いて、正極と負極とをセパレータを介して積層し、次いで巻回させて巻回電極体31を作製し、その最外周部に保護テープを接着させる。次に、扁平な形状となるように巻回電極体31を成型する。続いて、折りたたんだフィルム状の外装部材35の間に巻回電極体31を挟み込んだ後、熱融着法により外装部材の絶縁部同士を接着させ、一方向のみ解放状態にて、巻回電極体31を封入する。続いて、正極リード32、及び負極リード33と外装部材35との間に密着フィルムを挿入する。続いて、解放部から上記調整した電解液を所定量投入し、真空含浸を行う。含浸後、解放部を真空熱融着法により接着させる。以上のようにして、ラミネートフィルム型二次電池30を製造することができる。
 上記作製したラミネートフィルム型二次電池30等の非水電解質二次電池において、充放電時の負極利用率が93%以上99%以下であることが好ましい。負極利用率を93%以上の範囲とすれば、初回充電効率が低下せず、電池容量の向上を大きくできる。また、負極利用率を99%以下の範囲とすれば、Liが析出してしまうことがなく安全性を確保できる。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
 (比較例1)
 グラファイト負極を使用した際の容量を基準とするため、グラファイト負極の試作を行った。
 比較例1の負極は、人造黒鉛:導電助剤(アセチレンブラック):SBR(スチレン-ブタジエンゴム):CMC(カルボキシメチルセルロース)を、95.7質量%:1質量%:1.8質量%:1.5質量%の比率で混ぜて形成した。
 (比較例2)
 粉末のLiドープSiOに炭素被覆を行ったもの(「Li-SiO-C」と表記する)を用いて電極を作製した。
 比較例2の電極は、Li-SiO-C:PAA-Na(ポリアクリル酸ナトリウム):導電助剤(アセチレンブラック)を90質量%:8質量%:2質量%の比率で混合して作製した。
 Li-Si-Oは、以下の手順で調製した。まず、原料としてケイ素と二酸化ケイ素を混ぜ、1300℃で蒸気化後、堆積用基板に堆積させ、急冷することでSiO塊を作製した。このSiO塊を粉砕し、メディアン径7μmとした後に、酸化還元法を用いてLiドープした。ドープ後、Liシリケートを安定化させるため、熱処理しサンプルを作製した。
 (比較例3~5、並びに実施例1~4)
 比較例3~5、並びに実施例1~4では、以下の手順で負極を作製した。これらの例では、負極集電体として、表面の十点平均粗さ(粗度)Rzが2.5μmである表面粗化銅箔を用いた。
 [負極活物質層の作製]
 (比較例3及び4)
 比較例3及び4では、カーボン坩堝に砂利状の金属ケイ素を入れ、真空下で、電子銃を用いケイ素を溶融気化させた。走行可能な装置を使用し、ロール上に表面粗化銅箔(負極集電体となる)を置いて、ロールを走行させながら、表面粗化銅箔上にケイ素膜を形成した。
 比較例3では、成膜する際、ケイ素蒸気流に水蒸気を導入し、強制的に酸化させることを試みた。比較例4では、酸素ガスの導入も試みたが、酸素が十分に入ることは無かった。
 (比較例5)
 炭素坩堝に金属ケイ素と二酸化珪素を入れ、10-2Paの真空度の雰囲気中で、1200℃加熱で蒸気を取り出した。蒸気は比較例3同様に粗化銅箔に直接担持した。
 このようにして、粗化銅箔と、この粗化銅箔上に設けられたケイ素酸化物を含む負極活物質層とを有する電極を得た。
 (実施例1~4)
 実施例1~4では、比較例5と同様に、金属ケイ素と二酸化ケイ素を混合した原料を炉に導入し、10-2Paの真空度の雰囲気中で気化させたものを負極集電体上に堆積させて、負極活物質層を得た。
 実施例1及び4は、比較例5と同様に成膜したが、最表層部は、成膜レート、熱負荷を制御することでSiの価数状態の変更を行った。なお、実施例1及び4、並びに比較例5では、それぞれ、合計5層の多層成膜を行った。
 実施例2は、合計20層の多層成膜を行い、最表層部は実施例1同様に施工した。実施例2では、より熱負荷を抑制するため、実施例1より1層当たりの膜厚を薄くした。これらの結果、実施例2では、層間部が少し多くなったことから、以下に示すように、実施例1に比べて初回効率がやや低下した。
 実施例3は、比較例5と同様に負極活物質層を得た後に、後述する酸化還元法を用いてLiを挿入した。
 [リチウム挿入及び充填層形成]
 (実施例1~4)
 実施例1~4で得られた負極活物質層を、十分に冷却した後取り出し、50質量ppmまで水分を低減させたエーテル系溶媒を使用し、酸化還元法によりケイ素化合物粒子にリチウムを挿入し改質した。実施例1~3では、酸化還元法によるリチウム挿入の際に用いたエーテル系溶媒に、ポリフェニレン化合物としてビフェニルを含ませた。実施例4では、酸化還元時の温度を高くし、ビフェニルの濃度を倍にすることで、生成物を増加させた。
 実施例1~4で得られたリチウム挿入後の負極活物質層を、走査型電子顕微鏡(SEM)で観察した。また、実施例1~4で得られたリチウム挿入後の負極活物質層を、X線光電子分光法(XPS)で分析して、炭素原子と酸素原子が化学結合している複合化合物を含む充填層の存在を確認すると共に、負極活物質粒子の表面のケイ素の価数状態及び負極活物質粒子を構成するケイ素と酸素の比O/Siを調べた。
 その結果、実施例1~4で得られたリチウム挿入後の負極活物質層は、リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子と、負極活物質の粒子間及び表層に充填されてなる、炭素原子と酸素原子が化学結合している複合化合物を含む充填層とを有しており、負極活物質粒子を構成するケイ素と酸素の比O/Siが1であることが分かった。
 また、実施例1、2及び4の負極において、負極活物質粒子の表面、すなわち複合化合物と負極活物質粒子の境界に存在するケイ素は、Si1+~Si3+の化合物状態であった。実施例3の負極では、負極活物質粒子の表面に存在するケイ素の価数状態が通常の酸化ケイ素のケイ素の状態と同様であった。
 また、XPS分析の結果、実施例1~4の負極において、炭素原子と酸素原子が化学結合している複合化合物が、その一部にリチウムを含んでいることを確認した。
 (比較例3及び4)
 比較例3及び4で形成したケイ素膜に対しても、実施例1と同じように、リチウムを挿入すると共に、充填層を充填した。これにより、比較例3及び4の負極を得た。
 (比較例5)
 比較例5で形成した負極活物質層に対しては、エーテル溶媒を含む溶液中の錯体濃度を極めて低くして、ケイ素酸化物粒子にリチウムを挿入せずに、充填層を形成した。これにより、比較例5の負極を得た。
 (比較例6)
 比較例6は、実施例2と同様にLi挿入電極を得た後に、水を10%含んだエーテルで洗浄し、表面の充填層を除去した。これにより、比較例6の負極を得た。
 比較例3~6の負極に対し、実施例1と同様に、SEM観察及びXPS分析を行った。これらの結果を、以下の表1にまとめて示す。
 [解析]
 実施例2及び4、並びに比較例6のそれぞれの負極活物質層のSEM像を、図4~図6にそれぞれ示す。図4及び図5に示す実施例2及び4のSEM像と図6に示す比較例6のSEM像との比較から、実施例2及び4のSEM像には、粒子の粒子間及び表層に、比較例6のSEM像には写っていない物質が存在していることが分かる。XPS分析から、実施例2及び4にはあるが比較例6にはないこの物質は、炭素原子と酸素原子が化学結合している複合化合物であることが分かった。
 また、実施例2及び実施例4の各負極活物質層のC1sのXPSスペクトルを、図7に示す。実施例4のスペクトル(破線)では、285.8eV付近のピーク及び289.6eV付近のピークが観察され、C1sの結合エネルギーがそれぞれ異なる複数の結合状態を有する複合化合物が存在していることが分かる。285.8eV付近のピーク及び289.6eV付近のピークの正確な帰属は不明であるが、一般に、285.8eV付近のピークはC-O結合に帰属されると考えられており、289.6eV付近のピークはO-C=O結合に帰属されと考えられている。実施例2のスペクトル(実線)でも、285.8eV付近のピークが確認された。
 また、図8に、実施例1~3、並びに比較例4及び5の各負極活物質層のSi2pのXPSスペクトルを示す。図9は、図8に示した実施例1及び2のスペクトルを示している。図10は、図8に示した実施例3及び比較例5のスペクトルを示している。図11は、図8に示した比較例4のスペクトルを示している。
 図11から明らかなように、比較例4のスペクトルは、4価の化合物状態のケイ素に帰属される103eV付近のピークと、0価の状態のケイ素に帰属される99eV付近のピークとに大きく分かれていた。
 一方、図8及び図9に示すように、実施例1及び2のスペクトルでは、4価の化合物状態のケイ素に帰属されるピーク及び0価の状態のケイ素に帰属されるピークが観察されず、代わりに、実施例1及び2のスペクトルでは、101.6eV~101.8eVを頂点とした、1価から3価の化合物状態のケイ素(Si1+~Si3+)に帰属されるブロードなピークが現れた。実施例4の負極活物質も、実施例1及び2のスペクトルと同様のスペクトルを示した。この結果から、先に述べたように、負極活物質粒子の表面、すなわち複合化合物と負極活物質粒子の境界に存在するケイ素は、Si1+~Si3+の化合物状態であったと判断した。
 また、図8及び図10に示すように、実施例3のスペクトルでは、99eV付近の0価の状態のケイ素に帰属されるピークがほとんど観察されなかった。
 (実施例5~11)
 実施例5~11では、下記表2に示すように表面粗化銅箔の粗度Rzを0.5μm~7μmの間で変更させたこと以外は実施例1と同様にして、各負極を作製した。
 (実施例12~15、並びに比較例7及び8)
 実施例12~15、並びに比較例7及び8では、下記表2に示す酸素比率O/Siを達成するように、成膜レートを調整し、必要に応じて蒸気に水素又は酸素を吹き込んで成膜を行ったこと以外は実施例1と同様にして、各負極を作製した。
 (実施例16~18)
 実施例16~18では、負極活物質粒子に含まれるSi(111)結晶面に起因する結晶子サイズが以下の表2に示す値になるように、成膜レート、銅箔の走行速度、及び蒸着流が接する開口部を調整して成膜を行ったこと以外は実施例1と同様にして、各負極を作製した。
 実施例5~18、並びに比較例7及び8の負極に対し、実施例1と同様に、SEM観察及びXPS分析を行った。これらの結果を、以下の表2にまとめて示す。
 その結果、実施例5~18で得られたリチウム挿入後の負極活物質層は、リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子と、負極活物質の粒子間及び表層に充填されてなる、炭素原子と酸素原子が化学結合している複合化合物を含む充填層とを有しており、負極活物質粒子を構成するケイ素と酸素の比O/Siが0.8以上1.2以下であることが分かった。
 また、XPS分析の結果、実施例5~18の負極において、炭素原子と酸素原子が化学結合している複合化合物が、その一部にリチウムを含んでいることを確認した。
 [試験用のコイン電池の組み立て]
 次に、エチレンカーボネート(EC)及びジメチルカーボネート(DMC)を混合して非水溶媒を調製した後、この非水溶媒に電解質塩(六フッ化リン酸リチウム:LiPF)を溶解させて電解液(非水電解質)を調製した。この場合には、溶媒の組成を体積比でEC:DMC=30:70とし、電解質塩の含有量を溶媒に対して1mol/kgとした。添加剤として、フルオロエチレンカーボネート(FEC)を2.0質量%添加した。
 次に、以下のようにして初回効率試験用のコイン電池を組み立てた。
 最初に、厚さ1mmのLi箔を直径16mmに打ち抜き、アルミクラッドに張り付けた。
 次に、先に得られた負極を直径15mmに打ち抜き、これを、セパレータを介して、アルミクラッドに貼り付けたLi箔と向い合せ、電解液注液後、2032コイン電池を作製した。
 [初回効率の測定]
 初回効率は以下の条件で測定した。
 まず、作製した初回効率試験用のコイン電池に対し、充電レートを0.03C相当とし、CCCVモードで充電(初回充電)を行った。CVは0Vで終止電流は0.04mAとした。次に、放電レートを同様に0.03Cとし、放電終止電圧を1.2Vとして、CC放電(初回放電)を行った。
 初期充放電特性を調べる場合には、初回効率(以下では初期効率と呼ぶ場合もある)を算出した。初回効率は、初回効率(%)=(初回放電容量/初回充電容量)×100で表される式から算出した。
 [リチウム二次電池の製造及び電池評価]
 得られた初期データから、負極の利用率が95%となるように対正極を設計した。利用率は、対極Liで得られた正負極の容量から、下記式に基づいて算出した。
 利用率=(正極容量-負極ロス)/(負極容量-負極ロス)×100
 この設計に基づいて実施例及び比較例の各々のリチウム二次電池を製造した。実施例及び比較例の各々のリチウム二次電池について、電池評価を行った。
 サイクル特性については、以下のようにして調べた。最初に、電池安定化のため25℃の雰囲気下、0.2Cで2サイクル充放電を行い、2サイクル目の放電容量を測定した。電池サイクル特性は3サイクル目の放電容量から計算し,100サイクル数で電池試験を止めた。充電0.7C、放電0.5Cで充放電を行った。充電電圧は4.3V、放電終止電圧は2.5V、充電終止レートは0.07Cとした。
 サイクル特性試験で測定した2サイクル目の放電容量を、各負極によって達成される容量とした。
 実施例及び比較例の各負極のサイクル特性(100サイクルまでの容量維持率)、初回効率、及び比較例1を基準とした容量増加率を以下の表1及び表2にまとめて示す。
 [充放電後の負極活物質層表面のSEM観察]
 充放電後の実施例2の負極の負極活物質層を、走査型電子顕微鏡(SEM)を用いて観察した。図12に、充放電後(放電後の状態)の実施例2の負極の負極活物質層のSEM像を示す。
 図12に示すように、放電後の状態の実施例2の負極の負極活物質層では、小さな粒子、すなわち1次粒子が集合して、2次粒子を形成している。また、2次粒子同士が面内方向において分離している。2次粒子の間に見えている部分は、負極集電体の表面の一部である。
 充放電後の実施例1、3~18の負極の負極活物質層をSEMで観察したところ、図12と同様のSEM像が得られた。
 [20回充放電後のXPSスペクトル]
 実施例2の負極を、20回充放電した後、XPS分析に供した。得られたXPSスペクトルの一部を、図13に示す。
 図13に示すように、20回充放電した後の実施例2の負極の負極活物質層のXPSスペクトルは、99eV付近の0価の状態のケイ素に帰属されるピークと、101.9eV付近を頂点とした、Si1+~Si3+の化合物状態のケイ素に帰属されるブロードなピークとを含んでいた。
 [負極活物質粒子のXRD分析]
 各負極の負極活物質層に含まれる負極活物質粒子をXRDで分析した。負極活物質粒子に含まれるSi(111)結晶面に対応する結晶子サイズを、Si(111)結晶面に起因するピークから、Scherrerの式に基づいて算出した。結果を以下の表1及び表2にまとめて示す。なお、実施例1~15、及び比較例2~8の負極活物質粒子は、Siが非晶質であった。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 [結果]
 上記表1及び表2では、比較例1に対する体積当たりの放電容量(Wh/L)の増加率を、容量増加率として示している。
 表1及び表2から明らかなように、実施例1~18の負極は、電池特性(サイクル特性及び初回効率)を維持しつつ、比較例1のグラファイト負極よりも、容量を大幅に増加できたことが分かる。
 一方、粉末のLiドープSiOを用いて作製した比較例2の負極は、実施例1~18の負極よりも容量が低かった。これは、比較例2の負極では、負極活物質粒子の粒子間及び表層に、炭素原子と酸素原子が化学結合している複合化合物を含んだ充填層がないこと、及び、蒸着ではなく粉末を用いたために、充放電に関与しない結着剤を含んでおり、更には余分な空隙が多かったことに原因があると考えられる。
 また、比較例3の負極は、実施例1~18に比べてサイクル特性が著しく劣っていた。そして、比較例4の負極は、実施例1~18に比べてサイクル特性が低く、初回効率も低かった。これは、比較例3及び4では、ケイ素膜に酸素を十分に導入できず、酸素比率O/Siが低過ぎたからことに原因があると考えられる。
 比較例5は、実施例1~18に比べて、体積当たりの容量増加率が低かった。これは、比較例5では、ケイ素酸化物にLi挿入を行わなかったことに原因があると考えられる。
 比較例6は、実施例1~18に比べてサイクル特性が劣っていた。これは、比較例6では、炭素原子と酸素原子が化学結合している複合化合物を含んだ充填層を除去したことに原因があると考えられる。
 表2に示した実施例5~11は、負極集電体としての粗化銅箔の表面の粗度Rzを調整することで、最も適したポイントを模索することを目的とした例である。
 実施例1、及び実施例5~11の結果から、粗化銅箔の表面の粗度Rzが1.5μm以上5.0μm以上である実施例1及び実施例7~10の負極は、粗度Rzが1.5μm未満である実施例5及び6の負極、並びに粗度Rzが5.0μmを超えた実施例11よりも優れたサイクル特性を示すことができたことが分かる。これは、実施例1及び実施例7~10の負極は、粗化銅箔の表面の粗度Rzが1.5μm以上5.0μm以上であることにより、集電体の表面の粗化部により、負極活物質層を十分に保持でき、充放電での活物質の剥離をより十分に抑えることができた結果であると考えられる。
 比較例7及び8、並びに実施例12~15は、バルク内の酸素量(酸素比率O/Si)を調整した例である。
 酸化ケイ素は、ケイ素と二酸化珪素から生成することから、酸素量の増減は難しい。実際に、比O/Siが0.7である酸化ケイ素(比較例7)は価数が制御できず、かなりケイ素の要素を残した結果となった。
 低酸素量は、蒸気に水素を導入し、積極的に還元するだけでなく、成膜レートを大幅に低減させる必要がある。
 比較例7の負極は、酸素比率O/Siを0.7にした結果、実施例1、12~15の負極よりもサイクル特性が低くなった。これは、比較例7の負極では、酸素比率O/Siを0.7にしたため、0価のSiが電解液と反応する面積が大きくなり過ぎたことに原因があると考えられる。
 一方、酸素量を増やす場合、こちらも成膜レートを落とし、蒸気流に直接酸素を吹き込んで成形したが、酸素量が多くなると、酸化ケイ素膜の調製が困難となった。
 比較例8の負極は、酸素比率O/Siを1.3にした結果、実施例1、12~15の負極よりも初回効率が低くなった。これは、比較例8の負極では、酸素比率O/Siを1.3にしたため、負荷物質が多くなり過ぎたことに原因があると考えられる。
 実施例16~18は、ケイ素の結晶化による電池特性への影響を検討した例である。
 実施例16~18の負極は、比較例2~8よりも電池特性を維持しながら、比較例1の負極よりも容量を増加させることができた。
 一方で、ケイ素が非晶質であった実施例1は、ケイ素の結晶化が進んだ実施例16~18の負極よりも優れた電池特性を示すことができた。
 ちなみに、実施例16~18においては、当初、成膜後、真空下で熱処理を行ったが、銅箔が劣化、また合金化が激しい事から熱処理は断念した。その代わりに、先の述べたように、成膜レート、銅箔の走行速度、及び蒸着流が接する開口部を調整して、結晶性の制御を行った。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (11)

  1.  表面が粗化された負極集電体と、該負極集電体上に設けられた負極活物質層とを有する負極であって、
     該負極活物質層は、
      リチウム、ケイ素、及び酸素の化合物を有する負極活物質粒子と、
      該負極活物質粒子の粒子間及び表層に充填されてなる、少なくとも炭素原子と酸素原子が化学結合しており、前記負極活物質粒子と合金化しない複合化合物と
    を有し、
     前記負極活物質粒子を構成する前記酸素と前記ケイ素との比O/Siが0.8以上1.2以下の範囲であることを特徴とする負極。
  2.  前記複合化合物は、エーテル系溶媒とポリフェニレン化合物若しくは多環芳香族化合物との複合物の開環分解生成物、又は該複合物がリチウムと錯体を形成した複合物の開環分解生成物であることを特徴とする請求項1に記載の負極。
  3.  前記複合化合物は、少なくともその一部にリチウムを含むものであることを特徴とする請求項1又は請求項2に記載の負極。
  4.  前記負極において、前記複合化合物と前記負極活物質粒子の境界に存在する前記ケイ素の状態は、Si1+~Si3+の化合物状態であることを特徴とする請求項1から請求項3のいずれか1項に記載の負極。
  5.  前記負極活物質層は、2層以上からなる多層構造を有しており、層間が前記複合化合物で充填されたものであることを特徴とする請求項1から請求項4のいずれか1項に記載の負極。
  6.  前記複合化合物は、光電子分光法で解析されるC1sの結合エネルギーがそれぞれ異なる複数の結合状態を有することを特徴とする請求項1から請求項5のいずれか1項に記載の負極。
  7.  少なくとも20回充放電後の前記負極活物質粒子は、Si0+の状態のケイ素と、Si1+~Si3+の化合物状態のケイ素とを有するものであることを特徴とする請求項1から請求項6のいずれか1項に記載の負極。
  8.  前記負極活物質層は、前記負極活物質粒子を1次粒子として規定した場合、充放電後には該1次粒子の集合体である2次粒子を形成するものであり、該2次粒子同士は面内方向において分離した形態を持つことを特徴とする請求項1から請求項7のいずれか1項に負極。
  9.  前記負極活物質粒子は、充放電前において、Cu-Kα線を用いたX線回折により得られるSi(111)結晶面に起因するピークを有し、該結晶面に対応する結晶子サイズは1.0nm以下であることを特徴とする請求項1から請求項8のいずれか1項に記載の負極。
  10.  前記負極集電体は、前記表面の十点平均粗さRzが1.5μm以上5.0μm以下のものであることを特徴とする請求項1から請求項9のいずれか1項に記載の負極。
  11.  請求項1から請求項11のいずれか1項に記載の負極の製造方法であって、
     前記負極集電体上にケイ素酸化物を含有する負極活物質層を気相成長させる工程と、
     該負極活物質層をリチウムを含む溶液に浸漬することによって、前記ケイ素酸化物を酸化還元法によって改質して前記リチウム、ケイ素、及び酸素の化合物とするとともに、前記複合化合物を形成する工程と
    を含むことを特徴とする負極の製造方法。
PCT/JP2021/047263 2021-02-04 2021-12-21 負極及び負極の製造方法 WO2022168474A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180092611.1A CN116888755A (zh) 2021-02-04 2021-12-21 负极及负极的制造方法
US18/273,851 US20240105927A1 (en) 2021-02-04 2021-12-21 Negative electrode and negative electrode manufacturing method
EP21924859.8A EP4290607A1 (en) 2021-02-04 2021-12-21 Negative electrode and method for producing negative electrode
KR1020237026226A KR20230142483A (ko) 2021-02-04 2021-12-21 음극 및 음극의 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-016947 2021-02-04
JP2021016947A JP7490590B2 (ja) 2021-02-04 2021-02-04 負極及び負極の製造方法

Publications (1)

Publication Number Publication Date
WO2022168474A1 true WO2022168474A1 (ja) 2022-08-11

Family

ID=82742223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047263 WO2022168474A1 (ja) 2021-02-04 2021-12-21 負極及び負極の製造方法

Country Status (7)

Country Link
US (1) US20240105927A1 (ja)
EP (1) EP4290607A1 (ja)
JP (1) JP7490590B2 (ja)
KR (1) KR20230142483A (ja)
CN (1) CN116888755A (ja)
TW (1) TW202243307A (ja)
WO (1) WO2022168474A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154556A1 (ja) * 2023-01-18 2024-07-25 信越化学工業株式会社 負極及び負極の製造方法

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (ja) 1992-07-29 1994-11-25 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2002313319A (ja) * 2001-04-09 2002-10-25 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2005183264A (ja) * 2003-12-22 2005-07-07 Nec Corp 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2010103006A (ja) * 2008-10-24 2010-05-06 Sony Corp 負極集電体、負極および二次電池
JP2015156355A (ja) 2013-08-21 2015-08-27 信越化学工業株式会社 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP2017152375A (ja) * 2016-02-23 2017-08-31 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法
JP2018006190A (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
CN111056555A (zh) * 2019-12-27 2020-04-24 江西壹金新能源科技有限公司 一种锂化的硅基复合材料及其制备方法和应用

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06325765A (ja) 1992-07-29 1994-11-25 Seiko Instr Inc 非水電解質二次電池及びその製造方法
JP2001185127A (ja) 1999-12-24 2001-07-06 Fdk Corp リチウム2次電池
JP2002042806A (ja) 2000-07-19 2002-02-08 Japan Storage Battery Co Ltd 非水電解質二次電池
JP2002313319A (ja) * 2001-04-09 2002-10-25 Sanyo Electric Co Ltd リチウム二次電池用電極及びリチウム二次電池
JP2005183264A (ja) * 2003-12-22 2005-07-07 Nec Corp 二次電池用負極材料及びその製造方法並びにそれを用いた二次電池
JP2006114454A (ja) 2004-10-18 2006-04-27 Sony Corp 電池
JP2006164954A (ja) 2004-11-11 2006-06-22 Matsushita Electric Ind Co Ltd リチウムイオン二次電池用負極、その製造方法、およびそれを用いたリチウムイオン二次電池
JP2007234255A (ja) 2006-02-27 2007-09-13 Sanyo Electric Co Ltd リチウム二次電池用負極及びその製造方法並びにリチウム二次電池
JP2008177346A (ja) 2007-01-18 2008-07-31 Sanyo Electric Co Ltd エネルギー貯蔵デバイス
JP2008251369A (ja) 2007-03-30 2008-10-16 Matsushita Electric Ind Co Ltd リチウム二次電池用負極およびそれを備えたリチウム二次電池、ならびにリチウム二次電池用負極の製造方法
JP2009070825A (ja) 2007-09-17 2009-04-02 Samsung Sdi Co Ltd リチウム2次電池用負極活物質とその製造方法、リチウム2次電池用負極及びリチウム2次電池
JP2009212074A (ja) 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極材及びその製造方法並びにリチウムイオン二次電池及び電気化学キャパシタ
JP2009205950A (ja) 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd 非水電解質二次電池用負極活物質、及びそれを用いた非水電解質二次電池
JP2008282819A (ja) 2008-07-10 2008-11-20 Toshiba Corp 非水電解質二次電池用負極活物質の製造方法およびこれによって得られる非水電解質電池用負極活物質
JP2010103006A (ja) * 2008-10-24 2010-05-06 Sony Corp 負極集電体、負極および二次電池
JP2015156355A (ja) 2013-08-21 2015-08-27 信越化学工業株式会社 負極活物質、負極活物質材料、負極電極、リチウムイオン二次電池、負極電極の製造方法、負極活物質の製造方法、並びに、リチウムイオン二次電池の製造方法
JP2017152375A (ja) * 2016-02-23 2017-08-31 信越化学工業株式会社 負極活物質、混合負極活物質材料、非水電解質二次電池用負極、リチウムイオン二次電池用負極、リチウムイオン二次電池、負極活物質の製造方法、負極の製造方法、及びリチウムイオン二次電池の製造方法
JP2018006190A (ja) * 2016-07-04 2018-01-11 信越化学工業株式会社 負極活物質、負極、リチウムイオン二次電池、リチウムイオン二次電池の使用方法、負極活物質の製造方法及びリチウムイオン二次電池の製造方法
CN111056555A (zh) * 2019-12-27 2020-04-24 江西壹金新能源科技有限公司 一种锂化的硅基复合材料及其制备方法和应用

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
"Denchi (battery", BATTERY ASSOCIATION OF JAPAN, 1 May 2010 (2010-05-01), pages 10
"The Latest Development Trends on Lithium-ion Batteries for xEV", 27 November 2020, CMC PUBLISHING, pages: 96 - 111
A. HOHL, T. WIEDER, P. A. VAN AKEN, T. E. WEIRICH, G. DENNINGER, M. VIDAL, S. OSWALD, C. DENEKE, J. MAYER, AND H. FUESS, SOLIDS, vol. 320, 2003, pages 255
HYE JIN KIMSUNGHUN CHOISEUNG JONG LEEMYUNG WON SEOJAE GOO LEEERHAN DENIZYONG JU LEEEUN KYUNG KIMJANG WOOK CHOI, NANO LETT., vol. 16, 2016, pages 282 - 288
M. YAMADA, M. INABA, A. UEDA, K. MATSUMOTO, T. IWASAKI, T. OHZUKU, SOC., vol. 159, 2012, pages A1630
MARIKO MIYACHIHIRONORI YAMAMOTOHIDEMASA KAWAI, J. ELECTROCHEM. SOC., vol. 154, 2007, pages A1112 - A1117
V. KAPAKLIS, J. NON-CRYSTALLINE SOLIDS, vol. 354, 2008, pages 612

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024154556A1 (ja) * 2023-01-18 2024-07-25 信越化学工業株式会社 負極及び負極の製造方法

Also Published As

Publication number Publication date
US20240105927A1 (en) 2024-03-28
EP4290607A1 (en) 2023-12-13
JP7490590B2 (ja) 2024-05-27
CN116888755A (zh) 2023-10-13
KR20230142483A (ko) 2023-10-11
TW202243307A (zh) 2022-11-01
JP2022119664A (ja) 2022-08-17

Similar Documents

Publication Publication Date Title
US10283756B2 (en) Negative electrode active material, method for producing a negative electrode active material, and lithium ion secondary battery
WO2023021861A1 (ja) 負極及び負極の製造方法
JP7368577B2 (ja) 負極及びその製造方法
JP7410259B2 (ja) 非水電解質二次電池
WO2022168474A1 (ja) 負極及び負極の製造方法
WO2018051710A1 (ja) 負極活物質、混合負極活物質材料、及び負極活物質の製造方法
WO2022239676A1 (ja) 負極活物質及びその製造方法
JP7175254B2 (ja) 非水電解質二次電池負極用添加剤、及び、非水電解質二次電池用水系負極スラリー組成物
WO2023017689A1 (ja) 負極
JP7325458B2 (ja) 非水電解質二次電池用負極活物質及び非水電解質二次電池用負極活物質の製造方法
WO2023135970A1 (ja) 負極活物質及び負極
WO2024154556A1 (ja) 負極及び負極の製造方法
US20240375968A1 (en) Negative electrode and method for manufacturing the same
WO2023008094A1 (ja) 負極及びその製造方法
TW202437576A (zh) 負極及負極的製造方法
KR20230145351A (ko) 비수전해질 이차전지용 음극활물질 및 그의 제조방법그리고 비수전해질 이차전지
JP2023151923A (ja) 負極活物質及び負極活物質の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21924859

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18273851

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202180092611.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021924859

Country of ref document: EP

Effective date: 20230904