Nothing Special   »   [go: up one dir, main page]

WO2022158449A1 - Vehicle parking device and program used for vehicle parking device - Google Patents

Vehicle parking device and program used for vehicle parking device Download PDF

Info

Publication number
WO2022158449A1
WO2022158449A1 PCT/JP2022/001605 JP2022001605W WO2022158449A1 WO 2022158449 A1 WO2022158449 A1 WO 2022158449A1 JP 2022001605 W JP2022001605 W JP 2022001605W WO 2022158449 A1 WO2022158449 A1 WO 2022158449A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
parking
stop area
virtual
parking frame
Prior art date
Application number
PCT/JP2022/001605
Other languages
French (fr)
Japanese (ja)
Inventor
陽介 服部
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to JP2022576688A priority Critical patent/JP7347697B2/en
Publication of WO2022158449A1 publication Critical patent/WO2022158449A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R99/00Subject matter not provided for in other groups of this subclass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/06Automatic manoeuvring for parking
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/02Small garages, e.g. for one or two cars
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/02Small garages, e.g. for one or two cars
    • E04H6/06Small garages, e.g. for one or two cars with means for shifting or lifting vehicles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/10Garages for many vehicles without mechanical means for shifting or lifting vehicles, e.g. with helically-arranged fixed ramps, with movable ramps
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/08Garages for many vehicles
    • E04H6/12Garages for many vehicles with mechanical means for shifting or lifting vehicles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H6/00Buildings for parking cars, rolling-stock, aircraft, vessels or like vehicles, e.g. garages
    • E04H6/42Devices or arrangements peculiar to garages, not covered elsewhere, e.g. securing devices, safety devices, monitoring and operating schemes; centering devices

Definitions

  • the present invention relates to a vehicle parking device and a program used for the vehicle parking device.
  • a device that controls a vehicle so that it can be placed on a pallet of a mechanical parking facility For example, in the mechanical parking equipment described in Patent Document 1, a technique is described in which a mark is set in front of the pallet as a target position in the middle of the vehicle. Specifically, a white-lined frame is drawn in advance as a mark in front of the pallet and at a position that does not affect the movement of the pallet. Then, the vehicle is first controlled to move to the position of the white line frame, and then controlled to move to the pallet by a simple control such as going straight.
  • the white line frame is drawn at a position that does not affect the operation of the pallet, so the front side of the white line frame (that is, with respect to the white line frame) The area on the side opposite to the pallet side) becomes narrower. Since the area in front of the white line frame is likely to be used as a moving route of the vehicle when moving the vehicle aiming at the white line frame, when the area becomes narrow, the vehicle is moved to the white line frame. may not be possible.
  • the present disclosure provides a technique for setting the target position of the vehicle in front of the pallet in order to store the vehicle in the pallet of the mechanical parking equipment. The purpose is to ensure a wider range of
  • a vehicle parking system for controlling a vehicle to park the vehicle on a pallet of a mechanical parking facility, comprising: a detection unit that detects a stop area of the vehicle within the pallet; A virtual parking frame through which the vehicle should pass before the vehicle enters the stop area is set at a position moved from the stop area in a direction opposite to a direction in which the vehicle enters the stop area; A setting unit for setting a planned route to the parking frame; a first movement control unit that performs correct arrival control for moving the vehicle along the planned route until it reaches the virtual parking frame; a second movement control unit that moves the vehicle so that the vehicle is contained in the stop area after movement by the first movement control unit; In the planned route, when the vehicle is separated from the stop area, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area, In the vehicle parking device, a positional deviation amount of the virtual parking frame with respect to the stop area along the longitudinal direction of the stop area is shorter than the length of the stop area in the longitudinal
  • a program for use in a vehicle parking system for controlling a vehicle to park the vehicle on a pallet of a mechanical parking facility comprising: a detection unit that detects a stop area of the vehicle within the pallet; A virtual parking frame through which the vehicle should pass before the vehicle enters the stop area is set at a position moved from the stop area in a direction opposite to a direction in which the vehicle enters the stop area; A setting unit for setting a planned route to the parking frame; a first movement control unit that moves the vehicle along the planned route until it reaches the virtual parking frame; a second movement control unit that moves the vehicle so that the vehicle is contained in the stop area after movement by the first movement control unit; In the planned route, when the vehicle is separated from the stop area, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area, The program, wherein a positional deviation amount of the virtual parking frame with respect to the stop area along the longitudinal direction of the stop area is shorter than a length of the stop area in the longitudinal direction.
  • the amount of positional deviation is shorter than the length of the stop area in the longitudinal direction, it is often the case that part of the vehicle has already entered the stop area when the vehicle reaches the virtual parking frame.
  • the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area when the vehicle is separated from the stop area. Therefore, in the control of moving the vehicle along the planned route until it reaches the virtual parking frame, when the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area when or after the vehicle contacts the stop area. It is easier to enter the stopping area than
  • FIG. 1 is a configuration diagram of an in-vehicle system; FIG. It is a flowchart of parking mode management processing.
  • Figure 3 is a perspective view of a pallet; It is a flow chart of special parking processing.
  • It is a flowchart of a virtual parking frame setting process. It is a figure which illustrates the translation distance of the virtual parking frame according to the position of a vehicle. It is a figure which illustrates the translation distance of the virtual parking frame according to the position of a vehicle. It is a figure which shows the example in which a virtual parking frame does not fit in the space which can be driven. It is a figure which shows the example which the virtual parking frame fits in the space which can be driven, but a normal route does not fit within the space which can be driven.
  • FIG. 10 is a diagram illustrating the positional relationship between an attitude determination position and a regular stopping area of the pallet;
  • FIG. 10 is a diagram illustrating the positional relationship between an attitude determination position and a regular stopping area of the pallet;
  • FIG. 10 is a diagram showing an example in which the normal route is switched back four times; 4 is a flowchart of parking control;
  • an automatic parking system 1 is mounted on a vehicle and has a function of automatically parking the vehicle in a parking lot.
  • the automatic parking system 1 has the function of automatically parking the vehicle on the pallet of the mechanical parking equipment.
  • automated is meant without a human operating the vehicle.
  • the automatic parking system 1 has a notification device 10, a surrounding camera 11, a sound wave sensor 12, a millimeter wave sensor 13, a laser sensor 14, and an operation switch 15. Further, the automatic parking system 1 has a throttle actuator 16 , a steering actuator 17 , a brake actuator 18 , a transmission actuator 19 and a parking ECU 20 .
  • the notification device 10 is a device for notifying the occupants inside the vehicle and the user outside the vehicle of information under the control of the parking ECU 20 .
  • a notification method either one or both of the notification by sound and the notification by video may be used.
  • the notification device 10 is provided with a speaker when performing notification by voice. Informing by video, the informing device 10 is provided with a display.
  • the peripheral camera 11 is a device that captures the surroundings of the vehicle and outputs the image of the captured image to the parking ECU 20 .
  • the sound wave sensor 12 is a device that transmits ultrasonic waves around the vehicle and receives reflected waves that are reflected by obstacles around the vehicle.
  • the sound wave sensor 12 generates information indicating the relative position of the obstacle with respect to the vehicle based on the time difference between the timing at which the transmitted ultrasonic wave is transmitted and the timing at which the reflected wave is received, and outputs the information to the parking ECU 20. .
  • the millimeter wave sensor 13 is a device that transmits millimeter waves around the vehicle and receives reflected waves that are the millimeter waves reflected by obstacles around the vehicle. Based on the transmitted millimeter wave and its reflected wave, the millimeter wave sensor 13 generates information indicating the relative position and relative speed of the obstacle with respect to the vehicle by a method such as the FMCW method, and outputs the information to the parking ECU 20. do.
  • FMCW is an abbreviation for Frequency Modulated Continuous Wave.
  • the laser sensor 14 is a device that emits laser light around the vehicle and receives reflected light that is scattered by obstacles around the vehicle.
  • the laser sensor 14 generates information indicating the relative position and relative speed of the obstacle with respect to the vehicle by a method such as the ToF method based on the emitted laser light and its reflected light, and outputs the information to the parking ECU 20.
  • Tof is an abbreviation for Time of Flight. That is, the laser sensor 14 is a sensor used for Lidar. Lidar is an abbreviation for Light detection and ranging.
  • the surrounding camera 11, sound wave sensor 12, millimeter wave sensor 13, and laser sensor 14 are all surrounding sensors for monitoring the surroundings of the vehicle.
  • the operation switch 15 is a device that can be operated by a vehicle occupant or a person in the vicinity of the vehicle, and the operation content is output from the operation switch 15 to the parking ECU 20 . Transmission of operation contents from the operation switch 15 to the parking ECU 20 may be performed by a wired method or a wireless method.
  • the throttle actuator 16 is a device that adjusts the output amount of a driving device (for example, an internal combustion engine, an electric motor) that outputs driving force for running the vehicle, and is controlled by the parking ECU 20 .
  • the throttle actuator 16 is, for example, an electric motor that adjusts the flow rate of air supplied to the internal combustion engine.
  • the steering actuator 17 is an actuator that controls the steering device of the vehicle, such as an electric motor.
  • the brake actuator 18 is an actuator that drives a device that generates braking force for the vehicle, such as an electric motor.
  • the transmission actuator 19 is an actuator, such as an electric motor, that switches the shift position of the vehicle (for example, forward, reverse, neutral) by driving the transmission of the vehicle.
  • the throttle actuator 16, the steering actuator 17, the brake actuator 18, and the transmission actuator 19 are all drive actuators that drive devices for driving the vehicle.
  • the parking ECU 20 is a microcomputer equipped with an arithmetic circuit, volatile memory, non-volatile memory, and the like.
  • An arithmetic circuit executes a program recorded in a non-volatile memory and uses the volatile memory as a work area during execution to realize various processes.
  • the processing to be realized includes obstacle recognition processing 21, parking mode management processing 22, normal parking processing 23, special parking processing 24, and the like. Both volatile and non-volatile memory are non-transitional tangible storage media.
  • the parking ECU 20 corresponds to a vehicle parking device.
  • the parking ECU 20 acquires signals from the notification device 10, peripheral camera 11, sound wave sensor 12, millimeter wave sensor 13, laser sensor 14, and operation switch 15 as necessary. In these processes, the parking ECU 20 controls the throttle actuator 16, the steering actuator 17, and the brake actuator 18 to move the vehicle.
  • the parking ECU 20 may be configured as a circuit having a dedicated circuit configuration for executing the above process.
  • the parking ECU 20 may be configured as a circuit having a PLD in which a circuit configuration for executing the above process is programmed.
  • PLD is an abbreviation for Programmable Logic Device.
  • the automatic parking system 1 operates when the main switch of the vehicle is turned on.
  • the main switch When the main switch is turned on, the electric power necessary for driving the vehicle can be supplied to the vehicle, and when it is turned off, the electric power necessary for driving the vehicle cannot be supplied to the vehicle.
  • the main switch corresponds to the ignition switch in the case of a vehicle having only an internal combustion engine as the driving device described above.
  • the obstacle recognition process 21 is a process of repeatedly detecting relative positions and relative moving speeds of obstacles around the vehicle that hinder vehicle travel.
  • the parking ECU 20 determines the position of the obstacle relative to the vehicle based on the information output from the peripheral camera 11, the sound wave sensor 12, the millimeter wave sensor 13, and the laser sensor 14 to the parking ECU 20 as described above. and relative movement speed. For example, from images around the vehicle repeatedly acquired from the peripheral camera 11, image recognition processing is used to detect the relative position and relative movement speed of the obstacle with respect to the vehicle.
  • the parking mode management process 22 is a process of selecting one of the normal parking mode and the special parking mode as the parking mode of the vehicle according to the situation.
  • FIG. 2 shows a flowchart of the parking mode management process 22. As shown in FIG.
  • the special parking mode is a mode in which the vehicle is parked on the pallet of the mechanical parking equipment.
  • a mechanical parking facility includes a plurality of pallets and a moving mechanism for moving the plurality of pallets.
  • Each of the plurality of pallets is a member on which one vehicle is placed.
  • the vehicle When a vehicle enters the parking facility, the vehicle itself runs (i.e. autonomously) instead of receiving force from the outside of the vehicle. Fits within the arranged pallet.
  • the moving mechanism moves the pallet together with the vehicle into the vehicle storage space when the vehicle is placed on the pallet placed at the entrance.
  • Normal parking mode is a mode in which a vehicle is parked in one of a plurality of parking spaces in a normal parking lot without mechanical parking equipment, i.e., a parking lot provided with one or more fixed parking spaces that do not move. is.
  • a parking lot for example, there is a parking lot in which a plurality of parking spaces are arranged vertically and horizontally on a flat land.
  • a parking space is defined as an area partitioned by partition lines or the like so that only one vehicle can be parked in the parking lot.
  • standing objects 32 and 33 are provided vertically upward while extending in a direction orthogonal to the width direction (that is, in the vertical direction). These standing objects 32 and 33 correspond to guide members.
  • a rectangular stop area 31 is arranged between the uprights 32,33.
  • the guide member Since the guide member becomes an obstacle to the movement of the vehicle, the vehicle must move within the regular stop area 31 of the pallet 30 while avoiding hitting the guide member. Thus, the guide member guides the vehicle to stop within the pallet 30 .
  • the guide member also protects the vehicle from deviating from the pallet 30 when the vehicle is entering the pallet 30 and when the vehicle is stopped within the pallet 30 .
  • the width of the range in which the vehicle is allowed to pass by the guide member when the vehicle enters the pallet 30, that is, the width of the stop area 31 is narrower than the width of a parking space in a normal parking lot. ing. Therefore, in order to automatically put the vehicle in the pallet 30 without relying on human driving operation, it is necessary to control the vehicle with higher positional accuracy than to automatically put the vehicle in the parking space of the normal parking lot. .
  • the parking ECU 20 may start the parking mode management process 22 when the user performs a predetermined parking start operation on the operation switch 15 .
  • the parking ECU 20 may start the parking mode management process 22 when the vehicle stops and the shift position is reversed.
  • the user who operates the operation switch 15 may be inside the vehicle or outside the vehicle.
  • the parking ECU 20 first acquires information necessary for selecting the parking mode in step 110, as shown in FIG. Subsequently, at step 120, it is determined whether there is a mechanical parking facility or a normal parking lot around the vehicle.
  • the parking ECU 20 acquires an image of the surroundings of the vehicle from the surrounding camera 11 at step 110, and then determines whether there is a mechanical parking facility or a normal parking lot around the vehicle at step 120 based on the image. may be determined. In this case, in step 120, the determination is performed by performing image recognition processing on the acquired image.
  • the parking ECU 20 may use a trained neural network that receives an image of the surroundings of the vehicle as an input and outputs a value indicating whether the parking facility is a mechanical parking facility or a normal parking lot.
  • the parking ECU 20 calculates the width of the planned parking space from the image around the vehicle, and if the space is within a predetermined range set in advance based on the width of the vehicle, it is a mechanical parking facility. Otherwise, it may be determined that the parking lot is a normal parking lot.
  • the parking ECU 20 determines that the parking equipment is a mechanical parking equipment if the image around the vehicle contains a special pattern indicating that it is a mechanical parking equipment, and otherwise determines that the parking equipment is a mechanical parking equipment. You may determine with it being a normal parking lot.
  • the dedicated pattern may be, for example, a graphic mark indicating the mechanical parking equipment, a graphic mark indicating the direction of parking, or a two-dimensional bar code indicating the parking scene or the direction of parking, or otherwise. It's okay.
  • the parking ECU 20 may wait in step 110 until an operation indicating that there is a mechanical parking facility around the vehicle or an operation indicating that there is a normal parking lot around the vehicle is performed. In this case, when one of these operations is performed, proceed to step 120, where there is either mechanical parking facilities or a normal parking lot around the vehicle based on the operation performed. determine whether
  • step 120 When the parking ECU 20 determines in step 120 that there are mechanical parking facilities around the vehicle, the parking ECU 20 proceeds to step 130, starts the special parking process 24, and then ends the parking mode management process 22. Thereby, parking ECU20 transfers to special parking mode. In this case, the execution of the special parking process 24 is continued even after the parking mode management process 22 ends.
  • step 120 determines in step 120 that there is a normal parking lot around the vehicle
  • the process proceeds to step 140, and after starting the normal parking process 23, the parking mode management process 22 ends.
  • parking ECU20 transfers to normal parking mode.
  • the normal parking process 23 continues even after the parking mode management process 22 ends.
  • the normal parking process 23 is a process for stopping the vehicle in a parking space of a normal parking lot in the normal parking mode.
  • the parking ECU 20 identifies the parking space to be parked as a rectangular area on the road surface.
  • the parking space to be parked may be specified, for example, by the following method. First, an image of the vehicle periphery acquired from the peripheral camera 11 is subjected to processing for recognizing the positions of the marking lines drawn on the ground for demarcating the parking space. Locate parking spaces. Then, among those parking spaces, vacant parking spaces are specified based on the recognition result of the obstacle recognition processing 21 . Then, among the vacant parking spaces, the one closest to the vehicle is set as the parking space to be parked. Alternatively, the identification of the parking space to be parked may be performed by other methods.
  • the parking ECU 20 calculates the moving route of the vehicle with the target position within the parking space.
  • the moving route calculated here is a normal route.
  • the parking ECU 20 moves the vehicle along the calculated normal route, and stops the vehicle in the parking space.
  • the throttle actuator 16, the steering actuator 17, the brake actuator 18, and the transmission actuator 19 are controlled as necessary.
  • the special parking process 24 is a process for storing the vehicle in the pallet 30 of the mechanical parking equipment and stopping it in the special parking mode.
  • step 205 a rectangular stop area 31 in the pallet 30 is detected based on information acquired from the surrounding sensors. That is, by detecting the relative positions of the uprights 32 and 33 at both ends of the pallet 30 in the width direction with respect to the vehicle, the relative position and relative orientation of the stop area 31 therebetween with respect to the vehicle can be determined. To detect.
  • the standing objects 32 and 33 and the stop area 31 are extracted based on the image around the vehicle acquired from the peripheral camera 11, and the relative position of the stop area 31 is calculated based on the position and shape of the extracted areas. and relative orientation may be specified.
  • the relative positions and relative orientations of the standing objects 32 and 33 and the stop area 31 may be specified based on information obtained from peripheral sensors other than the peripheral camera 11 .
  • the relative position and relative orientation of the stop area 31 may be specified based on the user's operation of the operation switch 15 .
  • the length in the width direction of the stop area 31 detected at this time corresponds to the space between the standing objects 32 and 33 along the width direction. Further, the vertical length of the stop area 31 detected at this time corresponds to the distance along the vertical direction from one vertical end of the standing objects 32 and 33 to the other vertical end. . Therefore, one end in the width direction of the stop region 31 detected is the end of the standing object 32 on the side of the stop region 31 , and the other end is the end of the standing object 33 on the side of the stop region 31 . In addition, the position of the one-side end of the stop region 31 and the position of the one-side ends of the standing structures 32 and 33 in the vertical direction of the stop region 31 match. In addition, the position of the other end of the stop region 31 and the positions of the other ends of the standing objects 32 and 33 in the longitudinal direction of the stop region 31 match.
  • the drivable space is identified. Specifically, the range of the space around the vehicle recognized by the obstacle recognition processing 21 that does not come into contact with obstacles is specified, and this range is specified as a travelable space in which the vehicle can travel.
  • the drivable space includes a space in front of the stop area 31 in the longitudinal direction (that is, the space where the vehicle is located) that does not come into contact with obstacles, and the stop area 31 of the pallet 30 .
  • step 215 virtual parking frame setting processing is executed.
  • the process shown in FIG. 5 is executed. That is, in the virtual parking frame setting process, first, in step 305, the virtual parking frame 34 is set as illustrated in FIG. As the stop area 31, the one specified in step 205 immediately before is used.
  • the virtual parking frame 34 is a virtual frame that indicates a provisional target position before the vehicle enters the stop area 31 .
  • the virtual parking frame 34 is only virtually set in the processing within the parking ECU 20, and is not actually drawn on the road surface. However, when the vehicle is equipped with an in-vehicle display, the virtual parking frame 34 is displayed on the in-vehicle display in a state in which the virtual parking frame 34 is superimposed on the image of the surroundings of the vehicle captured by the peripheral camera 11. may
  • the virtual parking frame 34 is set at a position moved from the normal stop area 31 of the pallet 30 in the direction opposite to the direction of entry into the stop area 31 .
  • the entry direction into the stop area 31 is the direction in which the vehicle can move when entering from the outside of the stop area 31 .
  • the virtual parking frame 34 is set at a position translated from the regular stop area 31 of the pallet 30 forward of the pallet 30 along the road surface.
  • the front side of the pallet 30 refers to the direction along the vertical direction (longitudinal direction) of the pallet 30 from the back side of the pallet 30 toward the entrance side (ie, the space side where the vehicle is located).
  • the parking ECU 20 sets the shape of the virtual parking frame 34 to be the same as the shape of the stop area 31 .
  • the vertical direction (that is, the longitudinal direction) of the stop area 31 and the vertical direction of the virtual parking frame 34 match. That is, in the parking ECU 20 , the direction of the side where the vehicle is present at that point in the vertical direction of the stop area 31 is adopted as the direction opposite to the direction of entry into the stop area 31 .
  • the parking ECU 20 determines the parallel movement distance of the virtual parking frame 34 from the stop area 31 based on the position and attitude of the vehicle with respect to the stop area 31 of the pallet 30, based on a predetermined table (not shown). This parallel movement distance corresponds to the amount of displacement of the virtual parking frame 34 with respect to the stop area 31 along the vertical direction of the stop area 31 .
  • This table is recorded in the non-volatile storage medium of the parking ECU 20.
  • this table is given as an output when the relative lateral position of the vehicle with respect to the stop area 31, the relative vertical position of the vehicle with respect to the stop area 31, and the relative orientation of the vehicle with respect to the stop area 31 are input. It is configured such that the above-mentioned parallel movement distance is determined.
  • the relative lateral position X of the vehicle with respect to the stop area 31 is the deviation amount of the center position of the vehicle from the center position of the stop area 31 in the width direction of the stop area 31 .
  • the relative vertical position Y of the vehicle with respect to the stop area 31 is the deviation amount of the center position of the vehicle from the center position of the stop area 31 in the vertical direction (that is, the longitudinal direction) of the stop area 31 .
  • the relative orientation ⁇ of the vehicle with respect to the stop area 31 is such that the front of the vehicle along the longitudinal direction of the vehicle is It is an angle to form.
  • the combination of the lateral position X, the longitudinal position Y, and the direction ⁇ is such that the vehicle can be accommodated within the stop area 31 when reversing along a virtual route R1 that only turns with a constant turning radius from the current position. It's becoming Further, in the example of FIG. 7, the lateral position X, longitudinal position Y, and orientation ⁇ are set so that the vehicle can be accommodated within the stop area 31 when reversing along a virtual route R2 that only turns with a constant turning radius from the current position. It's a combination.
  • the turning radius of the virtual route R1 is larger than the turning radius of the virtual route R2.
  • the translation distance P1 that is output when the combination of the horizontal position X, the vertical position Y, and the orientation ⁇ in FIG. It is shorter than the translation distance P2 that is output when . That is, the table is set such that the smaller the turning radius, the longer the translation distance.
  • the smaller the turning radius the lower the accuracy of vehicle positioning by travel control. Therefore, the smaller the turning radius, the longer the translation distance, and the lower the positional accuracy required for parking, thereby making it possible to appropriately set the translation distance.
  • the pallet 30 starts from the current position and fits into the pallet 30.
  • Multiple virtual paths may be envisioned. The table is set such that the smaller the representative turning radius in this composite virtual path, the longer the translation distance.
  • the assumed composite virtual path may include not two but three or more partial paths that only retreat with different constant turning radii, or may include partial paths that only retreat straight. You can
  • a representative turning radius is a value based on multiple turning radii in all partial paths that turn with a constant turning radius and retreat.
  • a typical turning radius may be the turning radius at which the vehicle begins to enter the pallet 30 from outside the pallet 30 .
  • the representative turning radius may be the turning radius of the first partial path in which the vehicle turns with a constant turning radius and backs up.
  • the representative turning radius may be the turning radius of the last partial path in which the vehicle turns with a constant turning radius and backs up.
  • the representative turning radius may be the average value of multiple turning radii in all partial paths that turn and retreat with a constant turning radius.
  • the representative turning radius may be a weighted average value of a plurality of turning radii weighted by the traveling distance of each partial route in all partial routes that turn and retreat with a constant turning radius.
  • the parking ECU 20 sets a longer translation distance based on the above-mentioned X, Y, and ⁇ as the turning radius of the virtual path along which the vehicle is located within the stop area 31 from the current position is smaller.
  • This virtual route is, of course, a virtual route determined independently of the positions of obstacles around the vehicle.
  • the table used in step 305 is preset to have the above characteristics. For example, when the automatic parking system 1 is developed, the designer actually measures the positional accuracy of the route during parking control in advance, and determines specific values in the table in view of the measured accuracy. Then, a table having the determined values is recorded in the non-volatile memory of the parking ECU 20 before the parking ECU 20 is shipped (for example, at the time of manufacture). Therefore, the values in the table are determined in advance according to the vehicle's running ability and movement controllability. For example, for a vehicle that can increase the number of times of switching in the normal route and set a large turning radius for the final turning partial route, or perform precise vehicle speed control to improve the positional accuracy, shorten the parallel movement distance. Can be set.
  • the translation distance is limited to a value longer than zero and shorter than the longitudinal length of the vehicle. Since the pallet 30 is made so that the entire vehicle can be accommodated in its stopping area 31, the longitudinal length of the stopping area 31 is equal to or longer than the longitudinal length of the vehicle. Therefore, the translational distance is less than the longitudinal length of stop area 31 . Therefore, in step 305 , the virtual parking frame 34 overlaps the stop area 31 on the rear side and does not overlap the stop area 31 on the remaining front side.
  • the parking ECU 20 determines whether the virtual parking frame 34 set at step 305 is within the travelable space identified at step 210 .
  • the virtual parking frame 34 does not fit within the drivable space means that the vehicle cannot fit in the virtual parking frame 34 .
  • the calculated virtual parking frame 34 may not enter the travelable space 35 and may even include the wall 36 as an obstacle.
  • the parking ECU 20 performs parking control with the virtual parking frame 34 as the target while the virtual parking frame 34 is not within the drivable space, the result is that parking is not possible when the vehicle is actually traveling for parking. , causing inconvenience to the user of the vehicle.
  • the process proceeds to step 315, and causes the notification device 10 to notify that parking is not possible.
  • the special parking process 24 is terminated. This allows the user to know that parking is not possible before actually performing parking control.
  • step 320 a normal route from the current position and attitude of the vehicle to the virtual parking frame 34 is calculated. Specifically, the normal route is calculated such that the vehicle starts traveling from the current position and attitude of the vehicle, finally fits in the virtual parking frame 34, and stays in the drivable space from beginning to end.
  • the normal route calculated in step 320 corresponds to the planned route along which the vehicle is scheduled to travel in parking control, which will be described later.
  • the algorithm for calculating the normal route here is the same as the algorithm for calculating the normal route in the normal parking process 23. That is, if the same conditions are input, the same normal route is calculated in the normal parking process 23 and step 320 . That is, it is as follows.
  • the normal parking process 23 is executed and the normal route is is calculated. Let this be the first normal route.
  • the step 320 is executed. Let this be the second normal route. In this case, the first normal route and the second normal route match.
  • the success flag indicating that the normal route has been calculated is set off. This success flag is set in the volatile memory of the parking ECU 20 and turned on by the parking ECU 20 each time the process shifts from step 310 to step 320 .
  • step 325 it is determined whether or not a normal route that fits in the travelable space could be calculated in step 320. Specifically, it is determined whether the success flag described above is off or on. The fact that a normal route that fits in the drivable space cannot be calculated means that, as shown in FIG. There is no.
  • the parking ECU 20 performs parking control according to a route that does not fit within the drivable space, it will result in the vehicle being unable to park during actual parking, causing inconvenience to the vehicle user. In order to avoid such inconvenience, if the success flag is off, the parking ECU 20 proceeds to step 315, causes the notification device 10 to notify that parking is not possible, and terminates the special parking process 24. This allows the user to know that parking is not possible before actually performing parking control.
  • step 330 If the success flag is ON, that is, if a normal route that fits within the travelable space has been calculated, proceed to step 330 .
  • the process proceeds to step 330 in this way when the virtual parking frame 34 fits within the travelable space 35 and the normal route R4 fits within the travelable space 35, as illustrated in FIG.
  • step 330 it is determined whether or not the fixed attitude position of the normal route is ahead of the stop area 31 on the pallet 30 .
  • the front means the front in the vertical direction of the pallet 30 .
  • the rear end of the vehicle begins to face the stop area 31 and the virtual parking frame 34, and then the vehicle moves straight back. It fits in the virtual parking frame 34 .
  • the rear end of the vehicle facing the stop area 31 and the virtual parking frame 34 means that the vertical direction of the vehicle (that is, the longitudinal direction) coincides with the vertical direction of the stop area 31 and the vertical direction of the virtual parking frame 34 .
  • the position of the rear end of the vehicle at this facing timing is the attitude determination position.
  • the parking ECU 20 Since the normal route is a route at the center position of the vehicle, the parking ECU 20 reads out information on the total length of the vehicle recorded in advance in the non-volatile memory of the parking ECU 20, and based on the normal route, uniquely determines the determined attitude position. can be determined to Note that the state in which the vertical direction of the stop area 31 and the vertical direction of the virtual parking frame 34 match is not limited to a state in which they are strictly matched, but also a deviation to the extent that the vehicle can easily enter the stop area 31 afterward. Including the state where there is
  • the determined attitude position Z may be at the front end of the virtual parking frame 34.
  • the normal route R5 is a route along which the vehicle enters from the front end of the virtual parking frame 34 parallel to the vertical direction of the virtual parking frame 34 .
  • the normal route R6 is a route along which the vehicle enters from the front end of the virtual parking frame 34 obliquely with respect to the vertical direction of the virtual parking frame 34 .
  • the positional relationship between the determined attitude position Z and the virtual parking frame 34 varies depending on the normal route calculation algorithm and the like.
  • the determined attitude position Z matches the front end of the virtual parking frame 34 , the determined attitude position Z is always ahead of the stop area 31 . This is because the virtual parking frame 34 is translated forward with respect to the stop area 31 .
  • the attitude determination position Z is inside the virtual parking frame 34 or coincides with the front end of the virtual parking frame 34, when the vehicle starts to enter from outside the stop area 31 of the pallet 30, the vehicle is still It is oblique to the longitudinal direction of the stop area 31 . That is, when the vehicle starts to enter from outside the stopping area 31 of the pallet 30, the vehicle must turn and back up. Therefore, in this case, the positional accuracy required for travel control for keeping the vehicle within the stop area 31 is increased.
  • the parking ECU 20 determines that the determined attitude position Z is not in front of the stop area 31 , that is, determines that the determined attitude position Z is within the stop area 31 or at the front end of the stop area 31 . If so, go to step 335 .
  • the virtual parking frame 34 is moved forward. That is, the translation distance is increased by a predetermined amount.
  • the predetermined amount may be a predetermined fixed amount (for example, 1 cm or 10 cm), or may be set longer as the length of the detected stopping area 31 in the vertical direction increases. For example, it may be 1/20 or 1/10 of the length of the stop area 31 in the vertical direction.
  • the parking ECU 20 repeats the process of step 335 for moving the virtual parking frame 34 forward until the virtual parking frame 34 and the normal route are set so that the determined attitude position is ahead of the pallet 30. If it is determined in step 310 that the virtual parking frame 34 after being moved forward is not within the travelable space even in this repetition, then in step 315 it is notified that parking is not possible as described above. , the special parking process 24 ends. If it is determined in step 325 that the normal route that fits within the travelable space cannot be calculated based on the virtual parking frame 34 after being moved forward in this repetition, parking is not possible in step 315 as described above. Then, the special parking process 24 is terminated.
  • step 330 If it is determined in step 330 that the determined attitude position is ahead of the stop area 31, the parking ECU 20 proceeds to step 340.
  • the virtual parking frame 34 and the normal route are set so that the determined attitude position Z is positioned forward of the front end of the stop area 31, as shown in FIG. That is, the virtual parking frame 34 and the normal route are set so that the vertical direction of the vehicle and the vertical direction of the stop area 31 are aligned when the vehicle is away from the stop area 31 .
  • the parking ECU 20 determines whether or not the clearance of the normal route in the vertical direction of the pallet 30 is equal to or greater than the reference amount in the travelable space. Specifically, the parking ECU 20 calculates an allowance distance as an amount corresponding to the allowance in the vertical direction of the pallet 30 on the normal route, and calculates whether or not the calculated allowance distance is equal to or greater than the reference amount.
  • the margin distance of the normal route may be the translational distance when the normal route is translated forward of the pallet 30 until the normal route contacts the boundary of the travelable space.
  • the parallel movement distance when the virtual parking frame 34 is translated forward until the normal route contacts the boundary of the drivable space may be used as the clearance distance of the normal route.
  • the parking ECU 20 moves the virtual parking frame 34 slightly forward in parallel and each time calculates a normal route with the virtual parking frame 34 as the target. continue until it touches Then, the total distance by which the virtual parking frame 34 is moved in parallel to calculate the margin distance at or immediately before the normal route contacts the boundary of the travelable space is defined as the margin distance.
  • the normal route calculation algorithm in this case is the same as in step 320 .
  • the parallel movement of the virtual parking frame 34 for calculating the marginal distance is temporary, and the parking ECU 20 changes the position of the virtual parking frame 34 to the position immediately before step 340 after the calculation of the marginal distance is completed. back to That is, the movement of the virtual parking frame 34 in step 340 is not a substantial movement.
  • the reference amount to be compared with the margin distance may be a fixed value (for example, 30 cm, 50 cm), or may be set longer as the vertical length of the detected stop area 31 increases. For example, it may be 1/5 or 1/10 of the length of the stop area 31 in the vertical direction.
  • step 345 If the margin distance is equal to or greater than the reference amount, proceed to step 345. If it is less than the reference amount, the virtual frame setting process ends and the process proceeds to step 220 of the special parking process 24 . In the latter case, the position of the virtual parking frame 34 is fixed at the position immediately before step 340 .
  • step 345 the virtual parking frame 34 is additionally translated forward from the current position.
  • This additional translation distance is defined as a range greater than zero and less than or equal to the margin distance calculated in step 340 .
  • the upper limit of the additional translation distance is set so that the sum of the additional translation distance and the translation distance calculated in step 305 is less than the length of the stop area 31 in the vertical direction. That is, the upper limit of the additional parallel movement distance is set so that the stop area 31 and the virtual parking frame 34 partially overlap each other.
  • the parallel movement distance calculated in step 305 is the range in which the vehicle can be stopped in the stop area 31 without colliding with the obstacles such as the standing objects 32 and 33 with that positional accuracy in view of the positional accuracy of the route of the vehicle during parking control. It is set so that the parallel movement distance is as short as possible. However, if there is room in the drivable space as described above, the translation distance can be increased to ensure higher safety. Step 345 is a process that implements this idea.
  • the parking ECU 20 may calculate the additional parallel movement distance in proportion to the margin distance so that the additional parallel movement distance increases as the margin distance increases.
  • the additional translation distance may be 0.5 times the allowance distance, may be 0.8 times the allowance distance, or may be the same as the allowance distance.
  • the parking ECU 20 may determine an additional parallel movement distance according to the state of the normal route. That is, additional parallel movement of the virtual parking frame 34 based on the number of times the vehicle turns back on the normal route and the time expected to take to move from the current position to the stop area 31 (that is, the expected time to complete parking) You can adjust the distance.
  • the parking ECU 20 performs a process of slightly moving the virtual parking frame 34 forward in parallel and calculating a normal route with the virtual parking frame 34 as the target each time. Continue until exceeded. Then, the additional parallel movement distance just before the route cost exceeds the upper limit value is set as the fixed value.
  • the normal route calculation algorithm in this case is the same as in step 320 . Of course, at this time as well, the upper limit of the additional parallel movement distance is determined so that the state where the stop area 31 and the virtual parking frame 34 partially overlap is maintained.
  • the route cost is a positive value that increases as the number of vehicle turns on the normal route increases, and increases as the estimated time increases. Since it is often the case that the space in which the vehicle can travel is not so large, in many cases, the number of times of turnover and the expected time increase as the distance of parallel movement of the virtual parking frame 34 from the stop area 31 increases.
  • turning back refers to traveling in which forward and reverse are alternated in order to change the direction or position of the vehicle in the width direction, and the left and right of the steering are reversed between continuous forward and reverse. Either the forward movement or the backward movement may come first. Also, the number of times of steering is calculated as the number of times of switching between forward and backward. For example, the normal route R7 as shown in FIG. 15 has four turns. If the route cost exceeds the upper limit when the number of turnovers exceeds three, the parallel movement distance in FIG. 15 is prohibited. If the route cost is less than the upper limit even if the number of turnaround times is four, the parallel movement distance in FIG. 15 is allowed.
  • the estimated time may be set to a value that increases as the sum increases, based on the sum of the distance of the normal route and the straight distance from the center of the virtual parking frame 34 to the center of the stop area 31 .
  • the estimated time may be calculated using the traveling speed as well.
  • the route cost depends on both the number of turnaround times and the estimated time.
  • the route cost may depend only on the former or the latter. may
  • the parking ECU 20 sets the translation distance longer as the space in which the vehicle can travel is wider on the front side of the pallet 30 (that is, on the vehicle side). More specifically, the longer the length of the travelable space in the vertical direction of the stop area 31 on the front side, the longer the translation distance is set. By doing so, it is possible to calculate an appropriate parallel displacement distance according to the size of the space in which the vehicle can travel.
  • the parking ECU 20 uses the notification device 10 to notify the user of the shape of the normal route and the estimated time by video or audio. It may be queried whether to allow additional translation distances.
  • the parking ECU 20 may increase the upper limit of the route cost by a predetermined amount if the response is to permit. Then, in the case of a reply to the effect that it is not permitted, the additional parallel movement distance at the point immediately before the route cost exceeds the current upper limit value may be used as the fixed value. In this way, the parking ECU 20 may notify the user of the shape of the normal route and the estimated time, and ask the user whether to start moving along the normal route.
  • step 350 the parking ECU 20 calculates the normal route to the virtual parking frame 34 moved forward in step 345 using the same algorithm as in step 320 .
  • the normal route cannot be calculated for some reason such as the normal route does not fit in the drivable space, the movement of the virtual parking frame 34 performed in step 345 is canceled, and the virtual parking frame immediately before step 340 is canceled. 34 and the normal route may be determined values.
  • the virtual parking frame setting process ends, and the process proceeds to step 220 of the special parking process 24.
  • the normal route calculated at step 350 also corresponds to the planned route, like the normal route calculated at step 320 .
  • step 405 the parking ECU 20 controls movement along the normal route calculated last in the virtual parking frame setting process in step 215 for a predetermined distance or a predetermined time. conduct. Specifically, by controlling the travel actuator, the vehicle is moved from the current position on the normal route by a predetermined distance or a predetermined time.
  • This normal route is a route for moving the vehicle to the virtual parking frame 34 finally set in the virtual parking frame setting process of step 215 .
  • step 405 based on the latest position of the obstacle recognized by the obstacle recognition processing 21, if the vehicle hits the obstacle when traveling along the normal route, the normal route is corrected so as not to hit the obstacle. You may
  • step 410 it is determined whether or not the vehicle has reached the virtual parking frame 34 based on the information output by the peripheral sensor. For example, it may be determined that the vehicle has reached the virtual parking frame 34 based on the fact that the entire vehicle has entered the virtual parking frame 34 . Alternatively, it may be determined that the vehicle has reached the virtual parking frame 34 based on the fact that only a predetermined percentage of the entire vehicle (eg, 80% or 50% of the entire vehicle) has entered the virtual parking frame 34 . Alternatively, it is determined that the vehicle has reached the virtual parking frame 34 based on the fact that at least part of the vehicle enters the virtual parking frame 34 and the vertical direction of the vehicle matches the vertical direction of the virtual parking frame 34. good too.
  • a predetermined percentage of the entire vehicle eg, 80% or 50% of the entire vehicle
  • step 405. the parking ECU 20 continues moving the vehicle along the normal route in step 405 until it determines in step 410 that the vehicle has reached the virtual parking frame 34 . Then, when it is determined in step 410 that the vehicle has reached the virtual parking frame 34 , the movement control along the normal route ends, and the process proceeds to step 415 in order to perform proper arrival control to the pallet 30 .
  • steps 405 and 410 allows the vehicle to move along the normal route and reach the virtual parking frame 34 .
  • the actual trajectory of the vehicle does not necessarily match the normal route, and may deviate from the normal route. The amount of this deviation increases as the accuracy of vehicle position control decreases.
  • the movement control along the normal route in steps 405 and 410 often ends with part of the vehicle entering the stop area 31, as described above.
  • the proportion of the portion of the vehicle that is within the stop area 31 increases as the parallel movement distance decreases. Therefore, the shorter the parallel movement distance, the higher the positional accuracy required for movement control along the normal route, and the easier the movement control along the normal route becomes.
  • the parking ECU 20 may proceed to step 415 after controlling the travel actuator to stop the vehicle in the virtual parking frame 34.
  • the operation of moving along the normal path and the operation of controlling the arrival on the pallet 30 can be separated in terms of control, so that the hardware or software resources for realizing the control of continuous movement can be saved. can be done.
  • the parking ECU 20 proceeds to step 415 and then step 420 to start correct arrival control while continuing to move the vehicle by controlling the travel actuator. good too.
  • the correct arrival control is started while the vehicle is moving without stopping in the virtual parking frame 34, the behavior of the vehicle for parking becomes smooth, and the parking time can be shortened.
  • the parking ECU 20 When the vehicle continues to move from reaching the virtual parking frame 34 to starting correct arrival control, the parking ECU 20 temporarily decelerates the vehicle when passing through the virtual parking frame 34, and then accelerates the vehicle to start correct arrival control. You may Furthermore, when the virtual parking frame 34 is reached, information indicating that the virtual parking frame 34 has been reached may be displayed on the in-vehicle display of the notification device 10 . The display of the information indicating that the virtual parking frame 34 has been reached may be displayed using characters.
  • the display of information indicating that the vehicle has reached the virtual parking frame 34 changes the display form of the virtual parking frame 34 (for example, it may be a change in display color, a change in frame thickness, or a change to blinking display.
  • the parking ECU 20 erases the display of the virtual parking frame 34 when the vehicle reaches the virtual parking frame 34, so that the virtual parking frame 34 is displayed. It may indicate that the parking frame 34 has been reached.
  • the parking ECU 20 may use the speaker of the notification device 10 to notify that the virtual parking frame 34 has been reached by a sound such as a sound effect when the virtual parking frame 34 is reached.
  • the stop area 31 is detected based on the information acquired from the surrounding sensors. That is, by detecting the relative positions of the uprights 32 and 33 at both ends of the pallet 30 in the width direction with respect to the vehicle, the relative position and relative orientation of the stop area 31 therebetween with respect to the vehicle can be determined. To detect. Since the object to be detected in step 415 has already been detected in step 205 of the special parking process 24, the detection here is re-detection.
  • the detection in step 415 may have higher accuracy and a larger processing load than the detection in step 205. This is because the detection result at step 205 is used for movement to the virtual parking frame 34, while the detection result at step 415 is used for movement control from the virtual parking frame 34 to the stop area 31, ie, correct arrival control. because it is used. It should be noted that the high accuracy referred to here specifically means that the positional accuracy of the object to be detected is high.
  • the parking ECU 20 detects the positions of the standing objects 32 and 33 and the stop area 31 in step 205 by inputting an image of the surroundings of the vehicle into a certain learned neural network (eg, CNN). Then, in step 415, it is assumed that the positions of the standing objects 32 and 33 and the stop area 31 are detected by inputting the image around the vehicle to another trained neural network (for example, CNN).
  • CNN trained neural network
  • the former neural network is the first neural network
  • the latter neural network is the second neural network
  • the second neural network outputs more than the first neural network. 33.
  • the accuracy of the position of the stop area 31 is high. Higher accuracy of the second neural network than the first neural network is achieved, for example, by having more hidden layers in the second neural network than in the first neural network. good too.
  • CNN is an abbreviation for Convolutional Neural Network.
  • the parking ECU 20 detects the images of the standing objects 32 and 33 using the image around the vehicle by template matching, and based on the detected images, the standing objects 32 and 33 and the stop area 31 are detected. position may be detected. Then, in step 415, the positions of the standing objects 32 and 33 and the stop area 31 may be detected by inputting images of the surroundings of the vehicle to a trained neural network. Since the accuracy of position detection using a neural network is often higher than the accuracy of position detection by template matching, in this case, the processing of step 415 achieves higher detection accuracy than the processing of step 205. be.
  • the parking ECU 20 may detect the positions of the standing objects 32 and 33 and the stop area 31 based on the image of the surroundings of the vehicle using only the peripheral camera 11 of the peripheral sensors in step 205 . Then, in step 415, the positions of the standing objects 32 and 33 and the stop area 31 may be detected using the information acquired from the sound wave sensor 12 in addition to the image around the vehicle. As a result, the detection accuracy of the process of step 415 is higher than that of the process of step 205 .
  • the parking ECU 20 may detect the positions of the standing objects 32 and 33 and the stop area 31 in steps 205 and 415 using the same algorithm. Even in that case, since the vehicle is closer to the pallet 30 in the scene of step 415 than in the scene of step 205, the detection accuracy of the positions of the standing objects 32, 33 and the stop area 31 is inevitably higher. .
  • step 420 the parking ECU 20 controls the vehicle to move within the stop area 31 by a predetermined distance or a predetermined time. That is, the vehicle movement control is performed so that the target position of the vehicle is within the stop area 31 . This control is correct arrival control.
  • the vehicle stops in the stop area while preventing the left front wheel, right front wheel, left rear wheel, and right rear wheel of the vehicle from coming into contact with the standing objects 32 and 33 .
  • Movement control of the vehicle is performed so as to be within 31.
  • the information on the positions of the front left wheel, front right wheel, rear left wheel, and rear right wheel of the vehicle is recorded in the non-volatile memory of the parking ECU 20 in advance.
  • the positions of the stop area 31 and the standing objects 32 and 33 are identified using the latest detection results obtained in step 415 .
  • the steering actuator 17 is controlled to move the vehicle forward at a variable steering angle that is slightly shifted from the straight-ahead position, and then to move backward. , come true.
  • the slight steering angle may be, for example, a steering angle that realizes a turning radius five times or more the minimum turning radius, or a steering angle that realizes a turning radius ten times or more the minimum turning radius. good.
  • the vehicle speed may be adjusted by controlling the throttle actuator 16 and the brake actuator 18 as necessary.
  • step 425 it is determined whether or not the entire vehicle is within the stop area 31, based on the information output by the surrounding sensors. If it is determined that it does not fit, the process returns to step 415 . Thereby, the parking ECU 20 repeats detecting the positions of the standing objects 32 and 33 and the stop area 31 in step 415 and moving the vehicle in step 420 until the vehicle is settled in the stop area 31 . Then, when it is determined in step 420 that the vehicle has settled into the stop area 31, the driving actuator is controlled to stop the vehicle, and the parking control ends. At the same time, the special parking process 24 also ends.
  • the parking ECU 20 detects the stop area 31 in step 205, the distance between the car and the pallet 30 is long, so even if it is difficult to accurately recognize the stop area 31, the virtual parking frame 34 closer to the vehicle is set. can do. Therefore, in steps 405 and 410, the vehicle can be moved to the virtual parking frame 34 with a relatively high degree of accuracy by the same control as in the normal parking process 23. Furthermore, the stopping area 31 can be detected again in step 415 after the vehicle approaches the stopping area 31 as a result of the vehicle reaching the virtual parking frame 34 . This enables more accurate and highly accurate position detection of the stop area 31 .
  • control in step 420 corrects the position of the vehicle in the width direction, it is possible to create an algorithm for controlling the travel actuators relatively easily, and the positional accuracy of the vehicle control is high. In this way, by adding a simple algorithm to an automatic parking assist system for ordinary parking lots, it becomes possible to deal with mechanical parking equipment that requires control with high positional accuracy. In addition, it is no longer necessary to communicate with the parking facility side as in Patent Document 1. However, as another example, the parking ECU 20 may communicate with the parking facility side.
  • the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area 31 when the vehicle is away from the stop area 31 of the pallet 30 .
  • the parallel movement distance of the virtual parking frame 34 with respect to the stop area 31 is shorter than the length of the stop area 31 in the vertical direction.
  • the parallel movement distance is shorter than the length of the stop area 31 in the vertical direction, then part of the vehicle is often already inside the stop area 31 when the vehicle reaches the virtual parking frame 34 .
  • the vertical direction of the vehicle and the vertical direction of the pallet 30 match when the vehicle is away from the stop area 31 . Therefore, compared to the case where the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area 31 when or after the vehicle contacts the stop area 31 on the normal path, the vehicle travels along the normal path until it reaches the virtual parking frame 34. In movement control, entry into the stop area 31 is easy.
  • the parking ECU 20 determines that the turning radius of the virtual route in which the vehicle stays within the stop area 31 from the current position is The smaller it is, the longer the translation distance is set.
  • the parking ECU 20 sets the translation distance longer as the space in which the vehicle can travel on the vehicle side of the pallet 30 is wider. By doing so, it is possible to calculate an appropriate parallel displacement distance according to the size of the space in which the vehicle can travel.
  • the parking ECU 20 sets the parallel movement distance so that the route cost of the normal route does not exceed the upper limit. Then, the route cost increases as the number of turns on the normal route increases, or as the time expected for the vehicle to reach the stop area 31 increases.
  • the parking ECU 20 detects the stop area 31 at step 415 with higher positional accuracy than the detection at step 205 . Then, based on the detected result, the vehicle is moved so as to be contained within the stop area 31 .
  • the vehicle stops after reaching the virtual parking frame 34.
  • the region 31 can be re-detected with high positional accuracy. Then, movement control from the virtual parking frame 34 to the stop area 31 can be performed based on this highly accurate detection result.
  • the parking ECU 20 functions as a detection unit by executing step 205, functions as a setting unit by executing step 215, and performs the first movement control by executing steps 405 and 410. functions as a department.
  • the parking ECU 20 also functions as a second movement control section by executing steps 415, 420, and 425. FIG.
  • the shape, position, etc. are It is not limited to a relationship or the like.
  • the external environment information of the vehicle for example, the humidity outside the vehicle
  • the sensor is discarded and the external environment information is received from a server or cloud outside the vehicle.
  • the present disclosure allows the following modifications of the above-described embodiment and modifications within an equivalent range. It should be noted that the following modifications can be independently selected to be applied or not applied to the above embodiment. That is, any combination of the following modified examples, excluding combinations that are clearly inconsistent, can be applied to the above embodiment.
  • controller and techniques described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program. , may be implemented.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium.
  • the parking ECU 20 is mounted on the vehicle, but it is not necessarily mounted on the vehicle. good too.
  • the translation distance is a variable value according to various conditions, but the translation distance may be set as a predetermined fixed value.
  • the normal route calculated by the same algorithm as in the normal parking process 23 is exemplified as an example of the planned route.
  • the planned route calculated in steps 320 and 350 may necessarily be calculated with an algorithm different from that of the normal parking process 23 .
  • the virtual parking frame 34 is set at a position moved from the regular stop area 31 of the pallet 30 in the direction opposite to the direction in which the pallet 30 enters the stop area 31 . Then, as the direction opposite to the direction of entry into the stop area 31, the direction of the side on which the vehicle is present at that time in the longitudinal direction of the stop area 31 is adopted. However, the direction of entry into the stop area 31 does not have to be exactly parallel to the longitudinal direction of the stop area 31, and may deviate from the parallel as long as entry into the vehicle is possible. Also in this case, the positional deviation amount of the virtual parking frame 34 with respect to the stop area 31 along the longitudinal direction of the stop area 31 is set shorter than the length of the stop area 31 in the longitudinal direction. The positional deviation amount in this case is the positional deviation amount of the center position of the virtual parking frame 34 with respect to the center position of the stop area 31 .
  • the parking ECU 20 sets the parking frame 34 at a position translated in the direction opposite to the entry direction from the stop area 31, but this movement is not limited to a strict parallel movement.
  • the peripheral camera 11, the sound wave sensor 12, the millimeter wave sensor 13, and the laser sensor 14 are provided as peripheral sensors, but the configuration of the peripheral sensors is not limited to such combinations.
  • the peripheral camera 11 may be provided as a peripheral sensor, and the sound wave sensor 12, millimeter wave sensor 13, and laser sensor 14 may be eliminated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Traffic Control Systems (AREA)

Abstract

This vehicle parking device comprises: a detection unit (205) that detects a stopping region (31); a setting unit (215) that sets a virtual parking frame (34) and a planned route (R4, R5, R6, R7) to the virtual parking frame; a first movement control unit (405, 410) that performs correct arrival control; and a second movement control unit (415, 420, 425) that causes a vehicle to move so as to be housed in the stopping region. On the planned route, the longitudinal direction of the vehicle and the longitudinal direction of the stopping region match, and the positional deviation amount of the virtual parking frame with respect to the stopping region is shorter than the length in the longitudinal direction of the stopping region. This program used for a vehicle parking device (20) comprises: a detection part that detects a stopping region; a setting part that sets a virtual parking frame and a planned route to the virtual parking frame; a first movement control part that causes a vehicle to move to the virtual parking frame; and a second movement control part that causes the vehicle to move to the stopping region. On the planned route, the longitudinal direction of the vehicle and the longitudinal direction of the stopping region match, and the positional deviation amount of the virtual parking frame with respect to the stopping region is shorter than the length in the longitudinal direction of the stopping region.

Description

車両駐車装置および車両駐車装置に用いるプログラムVEHICLE PARKING DEVICE AND PROGRAM USED FOR VEHICLE PARKING DEVICE 関連出願への相互参照Cross-references to related applications
 本出願は、2021年1月22日に出願された日本特許出願番号2021-009008号に基づくもので、ここにその記載内容が参照により組み入れられる。 This application is based on Japanese Patent Application No. 2021-009008 filed on January 22, 2021, the contents of which are incorporated herein by reference.
 本発明は、車両駐車装置および車両駐車装置に用いるプログラムに関するものである。 The present invention relates to a vehicle parking device and a program used for the vehicle parking device.
 従来、機械式駐車設備のパレットに車両を収めるために車両を制御する装置が知られている。例えば、特許文献1に記載の機械式駐車設備においては、パレットの前方に車両の中途の目標位置となる目印を設定する技術が記載されている。具体的には、パレットの前方かつパレットの動作に影響しない位置に目印としての白線枠が予め描かれている。そして、車両はまずその白線枠の位置に移動するよう制御され、その後単純な直進などの制御でパレットに移動するよう制御される。 Conventionally, there has been known a device that controls a vehicle so that it can be placed on a pallet of a mechanical parking facility. For example, in the mechanical parking equipment described in Patent Document 1, a technique is described in which a mark is set in front of the pallet as a target position in the middle of the vehicle. Specifically, a white-lined frame is drawn in advance as a mark in front of the pallet and at a position that does not affect the movement of the pallet. Then, the vehicle is first controlled to move to the position of the white line frame, and then controlled to move to the pallet by a simple control such as going straight.
特開2020-051116号公報Japanese Patent Application Laid-Open No. 2020-051116
 本願の発明者の検討によれば、特許文献1に記載の技術では、白線枠がパレットの動作に影響しない位置に描かれているために、白線枠の前方側(すなわち、白線枠に対してパレット側とは反対側)の領域が狭くなってしまう。白線枠の前方側の領域は、白線枠を目標として車両を移動させる際に車両の移動経路として利用される可能性が高い領域であるから、その領域が狭くなると白線枠へ車両を移動させることができなくなる可能性がある。
 本開示は上記点に鑑み、機械式駐車設備のパレットに車両を収めるため、パレットの前方に車両の目標位置を設定する技術において、目標位置を基準としてパレットの反対側に、車両が走行できる空間をより広く確保することを目的とする。
According to the study of the inventor of the present application, in the technique described in Patent Document 1, the white line frame is drawn at a position that does not affect the operation of the pallet, so the front side of the white line frame (that is, with respect to the white line frame) The area on the side opposite to the pallet side) becomes narrower. Since the area in front of the white line frame is likely to be used as a moving route of the vehicle when moving the vehicle aiming at the white line frame, when the area becomes narrow, the vehicle is moved to the white line frame. may not be possible.
In view of the above points, the present disclosure provides a technique for setting the target position of the vehicle in front of the pallet in order to store the vehicle in the pallet of the mechanical parking equipment. The purpose is to ensure a wider range of
 上記目的を達成するための本開示の1つの観点によれば、
 機械式駐車設備のパレットに車両を駐車させるよう前記車両を制御する車両駐車装置であって、
 前記パレット内における前記車両の停止領域を検出する検出部と、
 前記車両が前記停止領域に収まる前に前記車両が通るべき仮想駐車枠を、前記停止領域から、前記停止領域への進入方向とは逆の向きに移動させた位置に、設定すると共に、前記仮想駐車枠までの予定経路を設定する設定部と、
 前記予定経路に従って前記仮想駐車枠に到達するまで前記車両を移動させる正着制御を行う第1移動制御部と、
 前記第1移動制御部による移動の後に、前記車両を前記停止領域に収めるよう前記車両を移動させる第2移動制御部と、を備え、
 前記予定経路においては、前記車両が前記停止領域から離れている段階で、前記車両の縦方向と前記停止領域の長手方向が一致し、
 前記停止領域の長手方向に沿った、前記停止領域に対する前記仮想駐車枠の位置ずれ量は、前記停止領域の長手方向の長さよりも短い、車両駐車装置である。
According to one aspect of the present disclosure for achieving the above object,
A vehicle parking system for controlling a vehicle to park the vehicle on a pallet of a mechanical parking facility, comprising:
a detection unit that detects a stop area of the vehicle within the pallet;
A virtual parking frame through which the vehicle should pass before the vehicle enters the stop area is set at a position moved from the stop area in a direction opposite to a direction in which the vehicle enters the stop area; A setting unit for setting a planned route to the parking frame;
a first movement control unit that performs correct arrival control for moving the vehicle along the planned route until it reaches the virtual parking frame;
a second movement control unit that moves the vehicle so that the vehicle is contained in the stop area after movement by the first movement control unit;
In the planned route, when the vehicle is separated from the stop area, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area,
In the vehicle parking device, a positional deviation amount of the virtual parking frame with respect to the stop area along the longitudinal direction of the stop area is shorter than the length of the stop area in the longitudinal direction.
 また、別の観点によれば、
 機械式駐車設備のパレットに車両を駐車させるよう前記車両を制御する車両駐車装置に用いるプログラムであって、
 前記パレット内における前記車両の停止領域を検出する検出部と、
 前記車両が前記停止領域に収まる前に前記車両が通るべき仮想駐車枠を、前記停止領域から、前記停止領域への進入方向とは逆の方向に移動させた位置に、設定すると共に、前記仮想駐車枠までの予定経路を設定する設定部と、
 前記予定経路に従って前記仮想駐車枠に到達するまで前記車両を移動させる第1移動制御部と、
 前記第1移動制御部による移動の後に、前記車両を前記停止領域に収めるよう前記車両を移動させる第2移動制御部と、を備え、
 前記予定経路においては、前記車両が前記停止領域から離れている段階で、前記車両の縦方向と前記停止領域の長手方向が一致し、
 前記停止領域の長手方向に沿った、前記停止領域に対する前記仮想駐車枠の位置ずれ量は、前記停止領域の長手方向の長さよりも短い、プログラムである。
Also, from another point of view,
A program for use in a vehicle parking system for controlling a vehicle to park the vehicle on a pallet of a mechanical parking facility, comprising:
a detection unit that detects a stop area of the vehicle within the pallet;
A virtual parking frame through which the vehicle should pass before the vehicle enters the stop area is set at a position moved from the stop area in a direction opposite to a direction in which the vehicle enters the stop area; A setting unit for setting a planned route to the parking frame;
a first movement control unit that moves the vehicle along the planned route until it reaches the virtual parking frame;
a second movement control unit that moves the vehicle so that the vehicle is contained in the stop area after movement by the first movement control unit;
In the planned route, when the vehicle is separated from the stop area, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area,
The program, wherein a positional deviation amount of the virtual parking frame with respect to the stop area along the longitudinal direction of the stop area is shorter than a length of the stop area in the longitudinal direction.
 これらのように、停止領域の長手方向に沿った、停止領域に対する仮想駐車枠の位置ずれ量が、停止領域の長手方向の長さよりも短いので、仮想駐車枠を基準としてパレットの反対側に、車両が走行できる空間をより広く確保することができる。ひいては、仮想駐車枠へ車両を移動させることができなくなる可能性が低減される。 As described above, since the amount of displacement of the virtual parking frame relative to the stop area along the longitudinal direction of the stop area is shorter than the length of the stop area in the longitudinal direction, on the opposite side of the pallet with respect to the virtual parking frame, A wider space in which the vehicle can travel can be secured. As a result, the possibility that the vehicle cannot be moved to the virtual parking frame is reduced.
 なお、位置ずれ量が停止領域の長手方向の長さよりも短いと、車両が仮想駐車枠に到達したときに車両の一部が既に停止領域の中に入っていることが多い。しかし、仮想駐車枠までの予定経路においては、車両が停止領域から離れている段階で、車両の縦方向と停止領域の長手方向が一致する。したがって、予定経路において、予定経路に従って仮想駐車枠に到達するまで車両を移動させる制御において、車両が停止領域に接触したときまたはそれより後に、車両の縦方向と停止領域の長手方向が一致する場合に比べて、停止領域内への進入が容易である。 It should be noted that if the amount of positional deviation is shorter than the length of the stop area in the longitudinal direction, it is often the case that part of the vehicle has already entered the stop area when the vehicle reaches the virtual parking frame. However, in the planned route to the virtual parking frame, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area when the vehicle is separated from the stop area. Therefore, in the control of moving the vehicle along the planned route until it reaches the virtual parking frame, when the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area when or after the vehicle contacts the stop area. It is easier to enter the stopping area than
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。 It should be noted that the reference numerals in parentheses attached to each component etc. indicate an example of the correspondence relationship between the component etc. and the specific component etc. described in the embodiment described later.
車載システムの構成図である。1 is a configuration diagram of an in-vehicle system; FIG. 駐車モード管理処理のフローチャートである。It is a flowchart of parking mode management processing. パレットの斜視図である。Figure 3 is a perspective view of a pallet; 特別駐車処理のフローチャートである。It is a flow chart of special parking processing. 仮想駐車枠設定処理のフローチャートである。It is a flowchart of a virtual parking frame setting process. 車両の位置に応じた仮想駐車枠の平行移動距離を例示する図である。It is a figure which illustrates the translation distance of the virtual parking frame according to the position of a vehicle. 車両の位置に応じた仮想駐車枠の平行移動距離を例示する図である。It is a figure which illustrates the translation distance of the virtual parking frame according to the position of a vehicle. 仮想駐車枠が走行可能空間内に収まらない例を示す図である。It is a figure which shows the example in which a virtual parking frame does not fit in the space which can be driven. 仮想駐車枠が走行可能空間内に収まるが通常経路が走行可能空間内に収まらない例を示す図である。It is a figure which shows the example which the virtual parking frame fits in the space which can be driven, but a normal route does not fit within the space which can be driven. 仮想駐車枠が走行可能空間内に収まり、かつ通常経路が走行可能空間内に収まる例を示す図である。It is a figure which shows the example which a virtual parking frame fits in a space which can be driven, and a normal route fits within a space which can be driven. 姿勢確定位置と仮想駐車枠との位置関係を例示する図である。It is a figure which illustrates the positional relationship between an attitude|position fixed position and a virtual parking frame. 姿勢確定位置と仮想駐車枠との位置関係を例示する図である。It is a figure which illustrates the positional relationship between an attitude|position fixed position and a virtual parking frame. 姿勢確定位置とパレットの正規の停止領域との位置関係を例示する図である。FIG. 10 is a diagram illustrating the positional relationship between an attitude determination position and a regular stopping area of the pallet; 姿勢確定位置とパレットの正規の停止領域との位置関係を例示する図である。FIG. 10 is a diagram illustrating the positional relationship between an attitude determination position and a regular stopping area of the pallet; 通常経路の切り返し回数が4回の例を示す図である。FIG. 10 is a diagram showing an example in which the normal route is switched back four times; 駐車制御のフローチャートである。4 is a flowchart of parking control;
 以下、一実施形態について説明する。図1に示すように、本実施形態に係る自動駐車システム1は、車両に搭載され、車両を駐車場に自動で駐車させる機能を有している。特に、自動駐車システム1は、車両を自動で機械式駐車設備のパレットに駐車させる機能を有している。「自動で」とは、人による車両の運転操作を受けずに、という意味である。 An embodiment will be described below. As shown in FIG. 1, an automatic parking system 1 according to this embodiment is mounted on a vehicle and has a function of automatically parking the vehicle in a parking lot. In particular, the automatic parking system 1 has the function of automatically parking the vehicle on the pallet of the mechanical parking equipment. By "automatically" is meant without a human operating the vehicle.
 自動駐車システム1は、報知装置10、周辺カメラ11、音波センサ12、ミリ波センサ13、レーザーセンサ14、操作スイッチ15を有している。更に自動駐車システム1は、スロットルアクチュエータ16、ステアリングアクチュエータ17、ブレーキアクチュエータ18、トランスミッションアクチュエータ19、駐車ECU20を有している。 The automatic parking system 1 has a notification device 10, a surrounding camera 11, a sound wave sensor 12, a millimeter wave sensor 13, a laser sensor 14, and an operation switch 15. Further, the automatic parking system 1 has a throttle actuator 16 , a steering actuator 17 , a brake actuator 18 , a transmission actuator 19 and a parking ECU 20 .
 報知装置10は、駐車ECU20の制御に従って、車両の車室内の乗員および車両の外部のユーザに情報を報知するための装置である。報知の方法としては、音声による報知および映像による報知のうちいずれか一方であってもよいし両方であってもよい。音声による報知を行う場合、報知装置10はスピーカーを備える。映像による報知を行う場合、報知装置10はディスプレイを備える。 The notification device 10 is a device for notifying the occupants inside the vehicle and the user outside the vehicle of information under the control of the parking ECU 20 . As a notification method, either one or both of the notification by sound and the notification by video may be used. The notification device 10 is provided with a speaker when performing notification by voice. Informing by video, the informing device 10 is provided with a display.
 周辺カメラ11は、車両の周囲を撮影し、撮影結果の画像を駐車ECU20に出力する装置である。 The peripheral camera 11 is a device that captures the surroundings of the vehicle and outputs the image of the captured image to the parking ECU 20 .
 音波センサ12は、車両の周囲に超音波を送出し、その超音波が車両の周囲にある障害物で反射したものである反射波を受ける装置である。音波センサ12は、送出した超音波の送出タイミングとその反射波の受波タイミングとの時間差等に基づいて、車両に対する障害物の相対位置を示す情報を生成し、その情報を駐車ECU20に出力する。 The sound wave sensor 12 is a device that transmits ultrasonic waves around the vehicle and receives reflected waves that are reflected by obstacles around the vehicle. The sound wave sensor 12 generates information indicating the relative position of the obstacle with respect to the vehicle based on the time difference between the timing at which the transmitted ultrasonic wave is transmitted and the timing at which the reflected wave is received, and outputs the information to the parking ECU 20. .
 ミリ波センサ13は、車両の周囲にミリ波を送出し、そのミリ波が車両の周囲にある障害物で反射したものである反射波を受ける装置である。ミリ波センサ13は、送出したミリ波とその反射波とに基づいて、FMCW方式等の方法で、車両に対する障害物の相対位置および相対速度を示す情報を生成し、その情報を駐車ECU20に出力する。FMCWは、Frequency Modulated Continuous Waveの略である。 The millimeter wave sensor 13 is a device that transmits millimeter waves around the vehicle and receives reflected waves that are the millimeter waves reflected by obstacles around the vehicle. Based on the transmitted millimeter wave and its reflected wave, the millimeter wave sensor 13 generates information indicating the relative position and relative speed of the obstacle with respect to the vehicle by a method such as the FMCW method, and outputs the information to the parking ECU 20. do. FMCW is an abbreviation for Frequency Modulated Continuous Wave.
 レーザーセンサ14は、車両の周囲にレーザー光を送出し、そのレーザー光が車両の周囲にある障害物で散乱したものである反射光を受ける装置である。レーザーセンサ14は、送出したレーザー光とその反射光とに基づいて、ToF方式等の方法で、車両に対する障害物の相対位置および相対速度を示す情報を生成し、その情報を駐車ECU20に出力する。Tofは、Time of Flightの略である。すなわち、レーザーセンサ14は、Lidarに用いられるセンサである。Lidarは、Light detection and rangingの略である。 The laser sensor 14 is a device that emits laser light around the vehicle and receives reflected light that is scattered by obstacles around the vehicle. The laser sensor 14 generates information indicating the relative position and relative speed of the obstacle with respect to the vehicle by a method such as the ToF method based on the emitted laser light and its reflected light, and outputs the information to the parking ECU 20. . Tof is an abbreviation for Time of Flight. That is, the laser sensor 14 is a sensor used for Lidar. Lidar is an abbreviation for Light detection and ranging.
 これら周辺カメラ11、音波センサ12、ミリ波センサ13、レーザーセンサ14は、いすれも、車両の周辺を監視するための周辺センサである。 The surrounding camera 11, sound wave sensor 12, millimeter wave sensor 13, and laser sensor 14 are all surrounding sensors for monitoring the surroundings of the vehicle.
 操作スイッチ15は、車両の乗員または車両の周囲にいる者が操作可能な装置であり、その操作内容は操作スイッチ15から駐車ECU20に出力される。操作スイッチ15から駐車ECU20への操作内容の伝達は、有線方式でも無線方式でもよい。 The operation switch 15 is a device that can be operated by a vehicle occupant or a person in the vicinity of the vehicle, and the operation content is output from the operation switch 15 to the parking ECU 20 . Transmission of operation contents from the operation switch 15 to the parking ECU 20 may be performed by a wired method or a wireless method.
 スロットルアクチュエータ16は、車両の走行用の駆動力を出力する駆動装置(例えば、内燃機関、電動モータ)の出力量を調整する装置であり、駐車ECU20によって制御される。スロットルアクチュエータ16は、例えば、内燃機関に供給する空気の流量を調整する電動モータである。 The throttle actuator 16 is a device that adjusts the output amount of a driving device (for example, an internal combustion engine, an electric motor) that outputs driving force for running the vehicle, and is controlled by the parking ECU 20 . The throttle actuator 16 is, for example, an electric motor that adjusts the flow rate of air supplied to the internal combustion engine.
 ステアリングアクチュエータ17は、車両の操舵装置を制御するアクチュエータであり、例えば、電動モータである。ブレーキアクチュエータ18は、車両の制動力を発生する装置を駆動するアクチュエータであり、例えば電動モータである。トランスミッションアクチュエータ19は、車両のトランスミッションを駆動することで、車両のシフト位置(例えば、前進、後退、ニュートラル)を切り替えるアクチュエータであり、例えば電動モータである。 The steering actuator 17 is an actuator that controls the steering device of the vehicle, such as an electric motor. The brake actuator 18 is an actuator that drives a device that generates braking force for the vehicle, such as an electric motor. The transmission actuator 19 is an actuator, such as an electric motor, that switches the shift position of the vehicle (for example, forward, reverse, neutral) by driving the transmission of the vehicle.
 スロットルアクチュエータ16、ステアリングアクチュエータ17、ブレーキアクチュエータ18、トランスミッションアクチュエータ19は、いずれも、車両の走行のための装置を駆動する走行用アクチュエータである。 The throttle actuator 16, the steering actuator 17, the brake actuator 18, and the transmission actuator 19 are all drive actuators that drive devices for driving the vehicle.
 駐車ECU20は、演算回路、揮発性メモリ、不揮発性メモリ等を備えたマイクロコンピュータである。演算回路が、不揮発性メモリに記録されたプログラムを実行し、その実行の際に揮発性メモリを作業領域として使用することで、種々の処理を実現する。これら実現される処理は、障害物認識処理21、駐車モード管理処理22、通常駐車処理23、特別駐車処理24等である。揮発性メモリも、不揮発性メモリも、非遷移的実体的記憶媒体である。駐車ECU20は、車両駐車装置に対応する。 The parking ECU 20 is a microcomputer equipped with an arithmetic circuit, volatile memory, non-volatile memory, and the like. An arithmetic circuit executes a program recorded in a non-volatile memory and uses the volatile memory as a work area during execution to realize various processes. The processing to be realized includes obstacle recognition processing 21, parking mode management processing 22, normal parking processing 23, special parking processing 24, and the like. Both volatile and non-volatile memory are non-transitional tangible storage media. The parking ECU 20 corresponds to a vehicle parking device.
 これら処理において駐車ECU20は、報知装置10、周辺カメラ11、音波センサ12、ミリ波センサ13、レーザーセンサ14、操作スイッチ15から必要に応じて信号を取得する。またそれら処理において駐車ECU20は、スロットルアクチュエータ16、ステアリングアクチュエータ17、ブレーキアクチュエータ18を制御することで車両を移動させる。 In these processes, the parking ECU 20 acquires signals from the notification device 10, peripheral camera 11, sound wave sensor 12, millimeter wave sensor 13, laser sensor 14, and operation switch 15 as necessary. In these processes, the parking ECU 20 controls the throttle actuator 16, the steering actuator 17, and the brake actuator 18 to move the vehicle.
 なお、駐車ECU20は、上記処理を実行するための専用の回路構成を有した回路として構成されていてもよい。或いは、駐車ECU20は、上記処理を実行するための回路構成がプログラムされたPLDを有した回路として構成されていてもよい。PLDは、Programable Logic Deviceの略である。 The parking ECU 20 may be configured as a circuit having a dedicated circuit configuration for executing the above process. Alternatively, the parking ECU 20 may be configured as a circuit having a PLD in which a circuit configuration for executing the above process is programmed. PLD is an abbreviation for Programmable Logic Device.
 以下、上記のような構成の作動について説明する。自動駐車システム1は、車両のメインスイッチがオンになっている場合に作動する。メインスイッチは、オンになると、車両の走行のために必要な電力が車両に供給可能な状態になり、オフになると、車両の走行のために必要な電力が車両に供給不可能な状態になる。メインスイッチは、上述の駆動装置として内燃機関のみを有している車両の場合は、イグニッションスイッチに相当する。 The operation of the above configuration will be described below. The automatic parking system 1 operates when the main switch of the vehicle is turned on. When the main switch is turned on, the electric power necessary for driving the vehicle can be supplied to the vehicle, and when it is turned off, the electric power necessary for driving the vehicle cannot be supplied to the vehicle. . The main switch corresponds to the ignition switch in the case of a vehicle having only an internal combustion engine as the driving device described above.
 障害物認識処理21は、車両の周囲において車両の走行の障害となる障害物の車両に対する相対位置および相対移動速度を繰り返し検出する処理である。駐車ECU20は、障害物認識処理21において、上述のように周辺カメラ11、音波センサ12、ミリ波センサ13、レーザーセンサ14から駐車ECU20に出力された情報に基づいて、障害物の車両に対する相対位置および相対移動速度を検出する。例えば、周辺カメラ11から繰り返し取得した車両の周囲の画像から、画像認識処理を用いて、障害物の車両に対する相対位置および相対移動速度を検出する。 The obstacle recognition process 21 is a process of repeatedly detecting relative positions and relative moving speeds of obstacles around the vehicle that hinder vehicle travel. In the obstacle recognition process 21, the parking ECU 20 determines the position of the obstacle relative to the vehicle based on the information output from the peripheral camera 11, the sound wave sensor 12, the millimeter wave sensor 13, and the laser sensor 14 to the parking ECU 20 as described above. and relative movement speed. For example, from images around the vehicle repeatedly acquired from the peripheral camera 11, image recognition processing is used to detect the relative position and relative movement speed of the obstacle with respect to the vehicle.
 駐車モード管理処理22は、車両の駐車モードとして通常駐車モードと特別駐車モードのうち一方を状況に応じて選択する処理である。図2に、駐車モード管理処理22のフローチャートを示す。 The parking mode management process 22 is a process of selecting one of the normal parking mode and the special parking mode as the parking mode of the vehicle according to the situation. FIG. 2 shows a flowchart of the parking mode management process 22. As shown in FIG.
 特別駐車モードは、機械式駐車設備のパレットに車両を駐車させるモードである。機械式駐車設備は、複数のパレットと、それら複数のパレットを移動させる移動機構と、を備えている。複数のパレットの各々は、1台の車両が載置されるための部材である。車両が機械式駐車設備に入庫する場合は、車両が車両の外部から力を受けるのではなく車両自体が走行して(すなわち自律的に)移動することで、上記複数のパレットのうち入庫口に配置されたパレット内に収まる。移動機構は、入庫口に配置されたパレットに車両が収まると、当該パレットを車両と共に車両保管空間内に移動させる。 The special parking mode is a mode in which the vehicle is parked on the pallet of the mechanical parking equipment. A mechanical parking facility includes a plurality of pallets and a moving mechanism for moving the plurality of pallets. Each of the plurality of pallets is a member on which one vehicle is placed. When a vehicle enters the parking facility, the vehicle itself runs (i.e. autonomously) instead of receiving force from the outside of the vehicle. Fits within the arranged pallet. The moving mechanism moves the pallet together with the vehicle into the vehicle storage space when the vehicle is placed on the pallet placed at the entrance.
 通常駐車モードは、機械式駐車設備でない通常の駐車場、すなわち、移動しない固定された1つまたは複数の駐車スペースが設けられた駐車場において、複数の駐車スペースのいずれかに車両を駐車させるモードである。通常の駐車場としては、例えば平坦地に複数の駐車スペースが平面的に縦横に並べられた駐車場がある。なお、駐車スペースとは、駐車場内において1台のみの車両を駐車させるために区画線等で区画された領域をいう。 Normal parking mode is a mode in which a vehicle is parked in one of a plurality of parking spaces in a normal parking lot without mechanical parking equipment, i.e., a parking lot provided with one or more fixed parking spaces that do not move. is. As an ordinary parking lot, for example, there is a parking lot in which a plurality of parking spaces are arranged vertically and horizontally on a flat land. A parking space is defined as an area partitioned by partition lines or the like so that only one vehicle can be parked in the parking lot.
 通常の駐車場の駐車スペースに駐車するシーンにおいては、目標の駐車スペースに隣接する駐車スペースに他車両が駐車されていない等、目標の駐車スペースの周囲に障害物が無い場合が多い。また、目標の駐車スペースに隣接する駐車スペースに他車両が駐車されている、目標の駐車スペースの近傍に柱がある等、目標の駐車スペースの周囲に障害物があったとしても、目標の駐車スペースの幅が車両の幅に比べて十分大きく設定されていることが多い。 In the scene of parking in a parking space in a normal parking lot, there are many cases where there are no obstacles around the target parking space, such as other vehicles not being parked in the parking spaces adjacent to the target parking space. In addition, even if there are obstacles around the target parking space, such as another vehicle parked in a parking space adjacent to the target parking space, or a pillar near the target parking space, The width of the space is often set sufficiently larger than the width of the vehicle.
 これに対し、機械式駐車設備においては、図3に示すように、パレット30内の長方形の正規の停止領域31に車両を収めるため、多くの場合、ガイド部材が設けられている。図3の例では、パレット30の幅方向の両端に、当該幅方向に直交する方向(すなわち縦方向)に延びながら鉛直上方に立設された立設物32、33が設けられている。これら立設物32、33はガイド部材に相当する。立設物32、33の間に長方形の停止領域31が配置される。 On the other hand, in mechanical parking equipment, as shown in FIG. In the example of FIG. 3, on both ends of the pallet 30 in the width direction, standing objects 32 and 33 are provided vertically upward while extending in a direction orthogonal to the width direction (that is, in the vertical direction). These standing objects 32 and 33 correspond to guide members. A rectangular stop area 31 is arranged between the uprights 32,33.
 ガイド部材は車両の移動の障害物となるので、車両はガイド部材に当たらないようにしながらパレット30の正規の停止領域31内に移動しなければならない。このように、ガイド部材は、パレット30内に車両を停止させるために車両をガイドする。また、ガイド部材は、車両がパレット30内に進入しているときおよび車両がパレット30内で停止しているときに、車両がパレット30から逸脱しないよう、車両を保護する。多くの場合、車両がパレット30内に進入する際にガイド部材によって車両の通行が許可される範囲の幅、すなわち、停止領域31の幅は、通常の駐車場の駐車スペースの幅よりも狭くなっている。したがって、人の運転操作によらず自動で車両をパレット30内に収めるには、自動で車両を通常の駐車場の駐車スペース内に収めるよりも、より高い位置精度で車両を制御する必要がある。 Since the guide member becomes an obstacle to the movement of the vehicle, the vehicle must move within the regular stop area 31 of the pallet 30 while avoiding hitting the guide member. Thus, the guide member guides the vehicle to stop within the pallet 30 . The guide member also protects the vehicle from deviating from the pallet 30 when the vehicle is entering the pallet 30 and when the vehicle is stopped within the pallet 30 . In many cases, the width of the range in which the vehicle is allowed to pass by the guide member when the vehicle enters the pallet 30, that is, the width of the stop area 31 is narrower than the width of a parking space in a normal parking lot. ing. Therefore, in order to automatically put the vehicle in the pallet 30 without relying on human driving operation, it is necessary to control the vehicle with higher positional accuracy than to automatically put the vehicle in the parking space of the normal parking lot. .
 駐車ECU20は、操作スイッチ15に対してユーザが所定の駐車開始操作を行ったことに基づいて、駐車モード管理処理22を開始してもよい。あるいは、駐車ECU20は、車両が停止し、かつシフト位置がリバースになったことに基づいて、駐車モード管理処理22を開始してもよい。なお、操作スイッチ15を操作するユーザは、車両内にいてもよいし、車両外にいてもよい。 The parking ECU 20 may start the parking mode management process 22 when the user performs a predetermined parking start operation on the operation switch 15 . Alternatively, the parking ECU 20 may start the parking mode management process 22 when the vehicle stops and the shift position is reversed. The user who operates the operation switch 15 may be inside the vehicle or outside the vehicle.
 駐車モード管理処理22において駐車ECU20は、図2に示すように、まずステップ110で、駐車モードの選択に必要な情報を取得する。続いてステップ120では、自車両の周囲に機械式駐車設備があるか通常の駐車場があるかを判定する。 In the parking mode management process 22, the parking ECU 20 first acquires information necessary for selecting the parking mode in step 110, as shown in FIG. Subsequently, at step 120, it is determined whether there is a mechanical parking facility or a normal parking lot around the vehicle.
 例えば、駐車ECU20は、ステップ110で周辺カメラ11から車両の周囲の画像を取得し、続いてステップ120で当該画像に基づいて車両の周囲に機械式駐車設備があるか通常の駐車場があるかを判定してもよい。この場合、ステップ120では、取得した画像に対して画像認識処理を行うことで、当該判定を行う。 For example, the parking ECU 20 acquires an image of the surroundings of the vehicle from the surrounding camera 11 at step 110, and then determines whether there is a mechanical parking facility or a normal parking lot around the vehicle at step 120 based on the image. may be determined. In this case, in step 120, the determination is performed by performing image recognition processing on the acquired image.
 この画像認識処理においては、駐車ECU20は、車両周辺の画像を入力とし、機械式駐車設備か通常の駐車場かを示す値を出力とする学習済みのニューラルネットを用いてもよい。あるいはこの画像認識処理において駐車ECU20は、車両周辺の画像から駐車予定空間の幅を算出し、その空間が車両の幅に基づいて予め設定されている所定範囲内であれば機械式駐車設備であると判定し、そうでなければ通常の駐車場であると判定してもよい。あるいはこの画像認識処理において駐車ECU20は、車両周辺の画像中に、機械式駐車設備であることを示す専用の図柄が含まれていれば、機械式駐車設備であると判定し、そうでなければ通常の駐車場であると判定してもよい。専用の図柄としては、例えば機械式駐車設備を示す図形マーク、駐車の向きを示す図形マーク、駐車シーンや駐車の向きなどを示す二次元バーコードのうちいずれかであってもよいし、それ以外でもよい。 In this image recognition process, the parking ECU 20 may use a trained neural network that receives an image of the surroundings of the vehicle as an input and outputs a value indicating whether the parking facility is a mechanical parking facility or a normal parking lot. Alternatively, in this image recognition processing, the parking ECU 20 calculates the width of the planned parking space from the image around the vehicle, and if the space is within a predetermined range set in advance based on the width of the vehicle, it is a mechanical parking facility. Otherwise, it may be determined that the parking lot is a normal parking lot. Alternatively, in this image recognition processing, the parking ECU 20 determines that the parking equipment is a mechanical parking equipment if the image around the vehicle contains a special pattern indicating that it is a mechanical parking equipment, and otherwise determines that the parking equipment is a mechanical parking equipment. You may determine with it being a normal parking lot. The dedicated pattern may be, for example, a graphic mark indicating the mechanical parking equipment, a graphic mark indicating the direction of parking, or a two-dimensional bar code indicating the parking scene or the direction of parking, or otherwise. It's okay.
 あるいは、駐車ECU20は、ステップ110で、車両の周囲に機械式駐車設備があることを示す操作あるいは車両の周囲に通常の駐車場があることを示す操作が行われるまで待機してもよい。この場合、これらの操作のうちの1つが行われたときにステップ120に進み、ステップ120で、行われた操作に基づいて、車両の周囲に機械式駐車設備があるか通常の駐車場があるかを判定する。 Alternatively, the parking ECU 20 may wait in step 110 until an operation indicating that there is a mechanical parking facility around the vehicle or an operation indicating that there is a normal parking lot around the vehicle is performed. In this case, when one of these operations is performed, proceed to step 120, where there is either mechanical parking facilities or a normal parking lot around the vehicle based on the operation performed. determine whether
 駐車ECU20は、ステップ120で自車両の周囲に機械式駐車設備があると判定した場合、ステップ130に進み、特別駐車処理24を起動した後、駐車モード管理処理22を終了する。これにより、駐車ECU20は特別駐車モードに移行する。この場合、駐車モード管理処理22が終了した後も、特別駐車処理24の実行が継続される。 When the parking ECU 20 determines in step 120 that there are mechanical parking facilities around the vehicle, the parking ECU 20 proceeds to step 130, starts the special parking process 24, and then ends the parking mode management process 22. Thereby, parking ECU20 transfers to special parking mode. In this case, the execution of the special parking process 24 is continued even after the parking mode management process 22 ends.
 また駐車ECU20は、ステップ120で自車両の周囲に通常の駐車場があると判定した場合、ステップ140に進み、通常駐車処理23を起動した後、駐車モード管理処理22を終了する。これにより、駐車ECU20は通常駐車モードに移行する。この場合、駐車モード管理処理22が終了した後も、通常駐車処理23の実行が継続される。 Also, when the parking ECU 20 determines in step 120 that there is a normal parking lot around the vehicle, the process proceeds to step 140, and after starting the normal parking process 23, the parking mode management process 22 ends. Thereby, parking ECU20 transfers to normal parking mode. In this case, the normal parking process 23 continues even after the parking mode management process 22 ends.
 ここで、ステップ140で起動される通常駐車処理23について説明する。通常駐車処理23は、通常駐車モードにおいて通常の駐車場の駐車スペースに車両を収めて停止させるための処理である。 Here, the normal parking process 23 started at step 140 will be described. The normal parking process 23 is a process for stopping the vehicle in a parking space of a normal parking lot in the normal parking mode.
 通常駐車処理23において駐車ECU20は、駐車対象の駐車スペースを路面上の矩形の領域として特定する。駐車対象の駐車スペースの特定は、例えば、以下のような方法で行われてもよい。まず、周辺カメラ11から取得した車両周辺の画像に対して、駐車スペースを区画するために地面に描かれた区画線の位置を認識する処理を行い、その結果に基づいて、車両の後方にある駐車スペースの位置を特定する。そして、更に、それら駐車スペースのうち空いている駐車スペースを、障害物認識処理21の認識結果に基づいて特定する。そして、空いている駐車スペースのうち、最も車両に近いものを駐車対象の駐車スペースとする。あるいは、駐車対象の駐車スペースの特定は、他の方法で行われてもよい。 In the normal parking process 23, the parking ECU 20 identifies the parking space to be parked as a rectangular area on the road surface. The parking space to be parked may be specified, for example, by the following method. First, an image of the vehicle periphery acquired from the peripheral camera 11 is subjected to processing for recognizing the positions of the marking lines drawn on the ground for demarcating the parking space. Locate parking spaces. Then, among those parking spaces, vacant parking spaces are specified based on the recognition result of the obstacle recognition processing 21 . Then, among the vacant parking spaces, the one closest to the vehicle is set as the parking space to be parked. Alternatively, the identification of the parking space to be parked may be performed by other methods.
 更に通常駐車処理23において駐車ECU20は、当該駐車スペース内を目標位置とする車両の移動経路を算出する。ここで算出される移動経路は通常経路である。 Furthermore, in the normal parking process 23, the parking ECU 20 calculates the moving route of the vehicle with the target position within the parking space. The moving route calculated here is a normal route.
 更に通常駐車処理23において駐車ECU20は、算出した通常経路に沿って車両を移動させ、当該駐車スペース内に車両が収まった状態で車両を停止させる。このような車両の走行制御においては、スロットルアクチュエータ16、ステアリングアクチュエータ17、ブレーキアクチュエータ18、トランスミッションアクチュエータ19を必要に応じて制御する。 Furthermore, in the normal parking process 23, the parking ECU 20 moves the vehicle along the calculated normal route, and stops the vehicle in the parking space. In such vehicle travel control, the throttle actuator 16, the steering actuator 17, the brake actuator 18, and the transmission actuator 19 are controlled as necessary.
 次に、ステップ130で起動される特別駐車処理24について説明する。特別駐車処理24は、特別駐車モードにおいて機械式駐車設備のパレット30に車両を収めて停止させるための処理である。 Next, the special parking process 24 activated at step 130 will be described. The special parking process 24 is a process for storing the vehicle in the pallet 30 of the mechanical parking equipment and stopping it in the special parking mode.
 特別駐車処理24において駐車ECU20は、図4に示すステップ205、210、215、220の処理を行う。まずステップ205では、周辺センサから取得した情報に基づいて、パレット30内の長方形の停止領域31を検出する。すなわち、パレット30の幅方向の両端にある立設物32、33の車両に対する相対的な位置を検出することにより、それらの間の停止領域31の車両に対する相対的な位置および相対的な向きを検出する。 In the special parking process 24, the parking ECU 20 performs steps 205, 210, 215, and 220 shown in FIG. First, in step 205, a rectangular stop area 31 in the pallet 30 is detected based on information acquired from the surrounding sensors. That is, by detecting the relative positions of the uprights 32 and 33 at both ends of the pallet 30 in the width direction with respect to the vehicle, the relative position and relative orientation of the stop area 31 therebetween with respect to the vehicle can be determined. To detect.
 例えば、周辺カメラ11から取得した車両の周囲の画像に基づいて、立設物32、33、停止領域31を抽出し、抽出した領域の位置および形状に基づいて、停止領域31の相対的な位置および相対的な向きを特定してもよい。あるいは、周辺カメラ11以外の周辺センサから得た情報に基づいて、立設物32、33、停止領域31の相対的な位置および相対的な向きを特定してもよい。あるいは、操作スイッチ15に対するユーザの操作に基づいて、停止領域31の相対的な位置および相対的な向きを特定してもよい。 For example, the standing objects 32 and 33 and the stop area 31 are extracted based on the image around the vehicle acquired from the peripheral camera 11, and the relative position of the stop area 31 is calculated based on the position and shape of the extracted areas. and relative orientation may be specified. Alternatively, the relative positions and relative orientations of the standing objects 32 and 33 and the stop area 31 may be specified based on information obtained from peripheral sensors other than the peripheral camera 11 . Alternatively, the relative position and relative orientation of the stop area 31 may be specified based on the user's operation of the operation switch 15 .
このとき検出される停止領域31の幅方向の長さは、立設物32と立設物33の間の幅方向に沿った間隔に相当する。また、このとき検出される停止領域31の縦方向の長さは、立設物32、33の縦方向の一方側の端部から他方側の端部までの縦方向に沿った距離に相当する。したがって、検出される停止領域31の幅方向の一方の端は立設物32の停止領域31側端であり、他方の端は立設物33の停止領域31側端である。また、停止領域31の縦方向における、停止領域31の一方側の端の位置と、当該立設物32、33の当該一方側の端の位置とは、一致する。また、停止領域31の縦方向における、停止領域31の他方側の端の位置と、当該立設物32、33の当該他方側の端の位置とは、一致する。 The length in the width direction of the stop area 31 detected at this time corresponds to the space between the standing objects 32 and 33 along the width direction. Further, the vertical length of the stop area 31 detected at this time corresponds to the distance along the vertical direction from one vertical end of the standing objects 32 and 33 to the other vertical end. . Therefore, one end in the width direction of the stop region 31 detected is the end of the standing object 32 on the side of the stop region 31 , and the other end is the end of the standing object 33 on the side of the stop region 31 . In addition, the position of the one-side end of the stop region 31 and the position of the one-side ends of the standing structures 32 and 33 in the vertical direction of the stop region 31 match. In addition, the position of the other end of the stop region 31 and the positions of the other ends of the standing objects 32 and 33 in the longitudinal direction of the stop region 31 match.
 続いてステップ210では、走行可能空間を特定する。具体的には、障害物認識処理21によって認識された車両の周囲の障害物に接触することのない空間の範囲を特定し、それを、車両が走行可能な走行可能空間として特定する。走行可能空間は、停止領域31の縦方向前方側(すなわち、車両がいる空間側)のうち障害物に接触することのない空間と、パレット30の停止領域31とを含む。 Then, in step 210, the drivable space is identified. Specifically, the range of the space around the vehicle recognized by the obstacle recognition processing 21 that does not come into contact with obstacles is specified, and this range is specified as a travelable space in which the vehicle can travel. The drivable space includes a space in front of the stop area 31 in the longitudinal direction (that is, the space where the vehicle is located) that does not come into contact with obstacles, and the stop area 31 of the pallet 30 .
 続いてステップ215では、仮想駐車枠設定処理を実行する。仮想駐車枠設定処理では、図5に示す処理を実行する。すなわち、仮想駐車枠設定処理では、まずステップ305で、パレット30の停止領域31に対する車両の位置および姿勢に基づいて、図3に例示するように仮想駐車枠34を設定する。停止領域31としては、直前のステップ205で特定されたものが用いられる。仮想駐車枠34は、停止領域31に車両が収まる前の暫定的な目標位置を示す仮想的な枠である。 Subsequently, in step 215, virtual parking frame setting processing is executed. In the virtual parking frame setting process, the process shown in FIG. 5 is executed. That is, in the virtual parking frame setting process, first, in step 305, the virtual parking frame 34 is set as illustrated in FIG. As the stop area 31, the one specified in step 205 immediately before is used. The virtual parking frame 34 is a virtual frame that indicates a provisional target position before the vehicle enters the stop area 31 .
 仮想駐車枠34は、駐車ECU20内の処理において仮想的に設定されるだけであり、実際に路面に描かれることはない。しかし、車両に車載ディスプレイが搭載されている場合は、その車載ディスプレイにおいて、周辺カメラ11によって撮影された車両の周囲の画像に仮想駐車枠34が重畳された状態で、仮想駐車枠34が表示されてもよい。 The virtual parking frame 34 is only virtually set in the processing within the parking ECU 20, and is not actually drawn on the road surface. However, when the vehicle is equipped with an in-vehicle display, the virtual parking frame 34 is displayed on the in-vehicle display in a state in which the virtual parking frame 34 is superimposed on the image of the surroundings of the vehicle captured by the peripheral camera 11. may
 仮想駐車枠34は、パレット30の正規の停止領域31から、当該停止領域31への進入方向とは逆の向きに移動させた位置に設定される。停止領域31への進入方向とは、車両が停止領域31の外から内に入る際に車両が移動できる方向である。より具体的には、仮想駐車枠34は、パレット30の正規の停止領域31を路面に沿ってパレット30の前方に停止領域31から平行移動した位置に設定される。なお、パレット30の前方とは、パレット30の縦方向(すなわち長手方向)に沿った、パレット30の奥側から入口側(すなわち、車両がある空間側)に向かう向きをいう。駐車ECU20は、仮想駐車枠34の形状を、停止領域31の形状と同じに設定する。停止領域31の縦方向(すなわち長手方向)と仮想駐車枠34の縦方向は一致する。すなわち、駐車ECU20においては、停止領域31への進入方向とは逆の向きとして、停止領域31の縦方向のうち、その時点に車両がある側の向きが、採用される。 The virtual parking frame 34 is set at a position moved from the normal stop area 31 of the pallet 30 in the direction opposite to the direction of entry into the stop area 31 . The entry direction into the stop area 31 is the direction in which the vehicle can move when entering from the outside of the stop area 31 . More specifically, the virtual parking frame 34 is set at a position translated from the regular stop area 31 of the pallet 30 forward of the pallet 30 along the road surface. The front side of the pallet 30 refers to the direction along the vertical direction (longitudinal direction) of the pallet 30 from the back side of the pallet 30 toward the entrance side (ie, the space side where the vehicle is located). The parking ECU 20 sets the shape of the virtual parking frame 34 to be the same as the shape of the stop area 31 . The vertical direction (that is, the longitudinal direction) of the stop area 31 and the vertical direction of the virtual parking frame 34 match. That is, in the parking ECU 20 , the direction of the side where the vehicle is present at that point in the vertical direction of the stop area 31 is adopted as the direction opposite to the direction of entry into the stop area 31 .
 駐車ECU20は、仮想駐車枠34の停止領域31からの平行移動距離を、パレット30の停止領域31に対する車両の位置および姿勢に基づいて、所定の不図示のテーブルに基づいて決定する。この平行移動距離は、停止領域31の縦方向に沿った、停止領域31に対する仮想駐車枠34の位置ずれ量に相当する。 The parking ECU 20 determines the parallel movement distance of the virtual parking frame 34 from the stop area 31 based on the position and attitude of the vehicle with respect to the stop area 31 of the pallet 30, based on a predetermined table (not shown). This parallel movement distance corresponds to the amount of displacement of the virtual parking frame 34 with respect to the stop area 31 along the vertical direction of the stop area 31 .
 このテーブルは、駐車ECU20の不揮発性記憶媒体に記録されている。また、このテーブルは、停止領域31に対する車両の相対的な横位置、停止領域31に対する車両の相対的な縦位置、および停止領域31に対する車両の相対的な向きを入力とした場合に、出力として上述の平行移動距離が定まるように、構成されている。 This table is recorded in the non-volatile storage medium of the parking ECU 20. In addition, this table is given as an output when the relative lateral position of the vehicle with respect to the stop area 31, the relative vertical position of the vehicle with respect to the stop area 31, and the relative orientation of the vehicle with respect to the stop area 31 are input. It is configured such that the above-mentioned parallel movement distance is determined.
 以下、このテーブルの特性について、図6、図7を用いて説明する。図6に示すように、停止領域31に対する車両の相対的な横位置Xは、停止領域31の幅方向における、停止領域31の中心位置に対する車両の中心位置の、ずれ量である。また、停止領域31に対する車両の相対的な縦位置Yは、停止領域31の縦方向(すなわち長手方向)における、停止領域31の中心位置に対する車両の中心位置の、ずれ量である。また、停止領域31に対する車両の相対的な向きθは、停止領域31の縦方向(すなわち長手方向)に沿った停止領域31の前方に対して、車両の縦方向に沿った車両の前方が、成す角である。 The characteristics of this table will be described below using FIGS. 6 and 7. FIG. As shown in FIG. 6 , the relative lateral position X of the vehicle with respect to the stop area 31 is the deviation amount of the center position of the vehicle from the center position of the stop area 31 in the width direction of the stop area 31 . The relative vertical position Y of the vehicle with respect to the stop area 31 is the deviation amount of the center position of the vehicle from the center position of the stop area 31 in the vertical direction (that is, the longitudinal direction) of the stop area 31 . In addition, the relative orientation θ of the vehicle with respect to the stop area 31 is such that the front of the vehicle along the longitudinal direction of the vehicle is It is an angle to form.
 図6の例では、車両が現在位置から一定の旋回半径で旋回するのみの仮想的な経路R1で後退すると停止領域31内に収まるような、横位置X、縦位置Y、向きθの組み合わせになっている。また、図7の例では、車両が現在位置から一定の旋回半径で旋回するのみの仮想的な経路R2で後退すると停止領域31内に収まるような、横位置X、縦位置Y、向きθの組み合わせになっている。 In the example of FIG. 6, the combination of the lateral position X, the longitudinal position Y, and the direction θ is such that the vehicle can be accommodated within the stop area 31 when reversing along a virtual route R1 that only turns with a constant turning radius from the current position. It's becoming Further, in the example of FIG. 7, the lateral position X, longitudinal position Y, and orientation θ are set so that the vehicle can be accommodated within the stop area 31 when reversing along a virtual route R2 that only turns with a constant turning radius from the current position. It's a combination.
 そして、仮想的な経路R1の旋回半径は、仮想的な経路R2の旋回半径よりも大きくなっている。この場合、図6の横位置X、縦位置Y、向きθの組み合わせを入力とした場合に出力となる平行移動距離P1は、図7の横位置X、縦位置Y、向きθの組み合わせを入力とした場合に出力となる平行移動距離P2よりも、短くなる。つまり、旋回半径が小さいほど平行移動距離が長くなるように、テーブルにおいて設定される。 The turning radius of the virtual route R1 is larger than the turning radius of the virtual route R2. In this case, the translation distance P1 that is output when the combination of the horizontal position X, the vertical position Y, and the orientation θ in FIG. It is shorter than the translation distance P2 that is output when . That is, the table is set such that the smaller the turning radius, the longer the translation distance.
 旋回半径が小さいほど走行制御による車両の位置の精度が低下することが多い。したがって、旋回半径が小さいほど平行移動距離を長くして駐車時に求められる位置精度を低くすることで、平行移動距離の適切な設定が可能になる。 In many cases, the smaller the turning radius, the lower the accuracy of vehicle positioning by travel control. Therefore, the smaller the turning radius, the longer the translation distance, and the lower the positional accuracy required for parking, thereby making it possible to appropriately set the translation distance.
 また、横位置X、縦位置Y、向きθの組み合わせによっては、現在位置から一定の旋回半径のみの経路で後退しても停止領域31内に収まらない場合もある。その場合は、或る一定の旋回半径で後退のみする1つの部分経路と、その後に異なる一定の旋回半径で後退のみする1つの部分経路との組み合わせによって、現在位置から出発してパレット30に収まる複合的な仮想経路を想定してもよい。そして、この複合的な仮想経路における代表的な旋回半径が小さいほど平行移動距離が長くなるように、テーブルにおいて設定される。 Also, depending on the combination of the horizontal position X, the vertical position Y, and the orientation θ, there are cases in which the vehicle does not fit within the stop area 31 even if the vehicle moves backward from the current position only with a certain turning radius. In that case, by combining one partial path that only retreats with a certain turning radius and then one partial path that only retreats with a different constant turning radius, the pallet 30 starts from the current position and fits into the pallet 30. Multiple virtual paths may be envisioned. The table is set such that the smaller the representative turning radius in this composite virtual path, the longer the translation distance.
 なお、想定される複合的な仮想経路は、2つではなく、それぞれ異なる一定の旋回半径で後退のみする3つ以上の部分経路を含んでいてもよいし、真っ直ぐ後退のみする部分経路を含んでいてもよい。 Note that the assumed composite virtual path may include not two but three or more partial paths that only retreat with different constant turning radii, or may include partial paths that only retreat straight. You can
 ここで、代表的な旋回半径は、一定の旋回半径で旋回して後退するすべての部分経路における複数の旋回半径に基づく値である。例えば、代表的な旋回半径は、車両がパレット30の外からパレット30の中に入り始める際の旋回半径であってもよい。あるいは、代表的な旋回半径は、車両が一定の旋回半径で旋回して後退する最初の部分経路の旋回半径でもよい。あるいは、代表的な旋回半径は、車両が一定の旋回半径で旋回して後退する最後の部分経路の旋回半径でもよい。 Here, a representative turning radius is a value based on multiple turning radii in all partial paths that turn with a constant turning radius and retreat. For example, a typical turning radius may be the turning radius at which the vehicle begins to enter the pallet 30 from outside the pallet 30 . Alternatively, the representative turning radius may be the turning radius of the first partial path in which the vehicle turns with a constant turning radius and backs up. Alternatively, the representative turning radius may be the turning radius of the last partial path in which the vehicle turns with a constant turning radius and backs up.
 あるいは、代表的な旋回半径は、一定の旋回半径で旋回して後退するすべての部分経路における、複数の旋回半径の平均値であってもよい。あるいは、代表的な旋回半径は、一定の旋回半径で旋回して後退するすべての部分経路における、各部分経路の走行距離を重みとする複数の旋回半径の重み付き平均値であってもよい。 Alternatively, the representative turning radius may be the average value of multiple turning radii in all partial paths that turn and retreat with a constant turning radius. Alternatively, the representative turning radius may be a weighted average value of a plurality of turning radii weighted by the traveling distance of each partial route in all partial routes that turn and retreat with a constant turning radius.
 このように、駐車ECU20は、上述のX、Y、θに基づいて、車両が現在位置から停止領域31に収まる仮想経路における旋回半径が小さいほど、平行移動距離を長く設定する。なお、この仮想経路は、当然ながら、車両の周囲の障害物の位置とは無関係に決まる仮想的な経路である。 In this way, the parking ECU 20 sets a longer translation distance based on the above-mentioned X, Y, and θ as the turning radius of the virtual path along which the vehicle is located within the stop area 31 from the current position is smaller. This virtual route is, of course, a virtual route determined independently of the positions of obstacles around the vehicle.
 このようにステップ305で用いられるテーブルは、上記のような特性を有するよう、予め設定される。例えば、設計者は、予め自動駐車システム1の開発時に、駐車制御時の経路の位置精度を実際に測定し、測定された精度に鑑みて、テーブルの具体的な値を決定する。そして、その決定された値を有するテーブルが、駐車ECU20の出荷前(例えば製造時)に、駐車ECU20の不揮発性メモリに記録される。したがってテーブルの値は、車両の走行能力、移動制御能に応じて予め決められる。例えば、通常経路における切替し回数を多くして最後の旋回する部分経路の旋回半径を大きく設定したり、緻密な車速制御を行い、位置精度を高くしたりできる車両においては、平行移動距離を短く設定できる。 The table used in step 305 is preset to have the above characteristics. For example, when the automatic parking system 1 is developed, the designer actually measures the positional accuracy of the route during parking control in advance, and determines specific values in the table in view of the measured accuracy. Then, a table having the determined values is recorded in the non-volatile memory of the parking ECU 20 before the parking ECU 20 is shipped (for example, at the time of manufacture). Therefore, the values in the table are determined in advance according to the vehicle's running ability and movement controllability. For example, for a vehicle that can increase the number of times of switching in the normal route and set a large turning radius for the final turning partial route, or perform precise vehicle speed control to improve the positional accuracy, shorten the parallel movement distance. Can be set.
 なお、テーブルにおいては、平行移動距離はゼロより長くかつ車両の縦方向の長さよりも短い値に制限されている。パレット30は、その停止領域31に車両の全体が収まるように作られているので、停止領域31の縦方向の長さは、車両の縦方向の長さと同じかそれよりも長い。したがって、平行移動距離は停止領域31の縦方向の長さよりも短い。それ故、ステップ305では、仮想駐車枠34は、その後方側の一部が停止領域31と重なり、残りの前方側部分が停止領域31と重ならない。 In the table, the translation distance is limited to a value longer than zero and shorter than the longitudinal length of the vehicle. Since the pallet 30 is made so that the entire vehicle can be accommodated in its stopping area 31, the longitudinal length of the stopping area 31 is equal to or longer than the longitudinal length of the vehicle. Therefore, the translational distance is less than the longitudinal length of stop area 31 . Therefore, in step 305 , the virtual parking frame 34 overlaps the stop area 31 on the rear side and does not overlap the stop area 31 on the remaining front side.
 ステップ305に続きステップ310では、駐車ECU20は、ステップ305で設定された仮想駐車枠34が、ステップ210で特定した走行可能空間内に収まっているか否かを判定する。 At step 310 following step 305 , the parking ECU 20 determines whether the virtual parking frame 34 set at step 305 is within the travelable space identified at step 210 .
 仮想駐車枠34が走行可能空間内に収まっていないということは、仮想駐車枠34に車両を収めることができないということである。そのような例としては、図8に示すように、算出された仮想駐車枠34が走行可能空間35に入らずに、障害物である壁36まで含んでしまう場合がある。 The fact that the virtual parking frame 34 does not fit within the drivable space means that the vehicle cannot fit in the virtual parking frame 34 . As such an example, as shown in FIG. 8, the calculated virtual parking frame 34 may not enter the travelable space 35 and may even include the wall 36 as an obstacle.
 仮想駐車枠34が走行可能空間内に収まっていないまま、その仮想駐車枠34を目標に駐車ECU20が駐車制御を行ってしまうと、実際の駐車のための走行時に駐車不能という結果になってしまい、車両のユーザに不便をかける。そのような不便を回避するため、駐車ECU20は、仮想駐車枠34が走行可能空間内に収まっていないと判定した場合、ステップ315に進み、駐車不可であることを、報知装置10に報知させ、更に特別駐車処理24を終了する。これにより、駐車が不可であることを、実際に駐車制御を行う前に、ユーザが知ることができる。 If the parking ECU 20 performs parking control with the virtual parking frame 34 as the target while the virtual parking frame 34 is not within the drivable space, the result is that parking is not possible when the vehicle is actually traveling for parking. , causing inconvenience to the user of the vehicle. In order to avoid such inconvenience, when the parking ECU 20 determines that the virtual parking frame 34 is not within the travelable space, the process proceeds to step 315, and causes the notification device 10 to notify that parking is not possible. Furthermore, the special parking process 24 is terminated. This allows the user to know that parking is not possible before actually performing parking control.
 駐車ECU20は、仮想駐車枠34が走行可能空間内に収まっている判定した場合、ステップ320に進む。ステップ320では、車両の現在の位置および姿勢から仮想駐車枠34に収まるまでの通常経路を算出する。具体的には、車両の現在の位置および姿勢から走行し始め、最終的に車両が仮想駐車枠34に収まり、かつ終始走行可能空間内に収まるような経路を、通常経路として算出する。このステップ320で算出される通常経路は、後述する駐車制御において車両の走行が予定される予定経路に対応する。 When the parking ECU 20 determines that the virtual parking frame 34 is within the travelable space, the process proceeds to step 320 . In step 320, a normal route from the current position and attitude of the vehicle to the virtual parking frame 34 is calculated. Specifically, the normal route is calculated such that the vehicle starts traveling from the current position and attitude of the vehicle, finally fits in the virtual parking frame 34, and stays in the drivable space from beginning to end. The normal route calculated in step 320 corresponds to the planned route along which the vehicle is scheduled to travel in parking control, which will be described later.
 ここで通常経路を算出するためのアルゴリズムは、通常駐車処理23における通常経路の算出のためのアルゴリズムと同じである。つまり、同じ条件の入力なら通常駐車処理23とステップ320とでは、同じ通常経路が算出される。すなわち、以下の通りである。通常の駐車場の或る形状の走行可能空間において、或る形状の駐車スペースに対して或る相対的位置および相対的向きに車両があるときに、通常駐車処理23が実行されて、通常経路が算出されたとする。これを第1通常経路とする。また、機械式駐車設備の上と同じ形状の走行可能空間において、上の駐車スペースと同じ形状の停止領域31に対して上と同じ相対位置および上と同じ相対向きに車両があるときに、ステップ320が実行されたとする。これを第2通常経路とする。この場合、第1通常経路と第2通常経路は一致する。 The algorithm for calculating the normal route here is the same as the algorithm for calculating the normal route in the normal parking process 23. That is, if the same conditions are input, the same normal route is calculated in the normal parking process 23 and step 320 . That is, it is as follows. When the vehicle is at a certain relative position and relative orientation with respect to the certain shape of the parking space in the certain shape of the drivable space of the normal parking lot, the normal parking process 23 is executed and the normal route is is calculated. Let this be the first normal route. In addition, in the drivable space having the same shape as the upper parking space, when the vehicle is in the same relative position and the same relative direction as the above with respect to the stop area 31 having the same shape as the upper parking space, the step 320 is executed. Let this be the second normal route. In this case, the first normal route and the second normal route match.
 なお、走行可能空間の形状、停止領域31に対する車両の相対的な位置、および停止領域31に対する車両の相対的な向きによっては、走行可能空間に収まる通常経路が算出できない場合がある。このような場合は、通常経路が算出できたことを示す成功フラグをオフにセットする。この成功フラグは、駐車ECU20の揮発性メモリに設定されると共に、ステップ310からステップ320に処理が移行する度に、駐車ECU20によってオンにセットされる。 Depending on the shape of the drivable space, the relative position of the vehicle with respect to the stop area 31, and the relative orientation of the vehicle with respect to the stop area 31, it may not be possible to calculate a normal route that fits within the drivable space. In such a case, the success flag indicating that the normal route has been calculated is set off. This success flag is set in the volatile memory of the parking ECU 20 and turned on by the parking ECU 20 each time the process shifts from step 310 to step 320 .
 続いてステップ325では、ステップ320で、走行可能空間に収まる通常経路を算出できたか否かを判定する。具体的には、上述の成功フラグがオフかオンかを判定する。走行可能空間に収まる通常経路を算出できないということは、図9に示すように、仮想駐車枠34に車両を収めることができる経路R3は、例えば壁36を突き抜けてしまい、走行可能空間35に収まらないということである。 Subsequently, in step 325, it is determined whether or not a normal route that fits in the travelable space could be calculated in step 320. Specifically, it is determined whether the success flag described above is off or on. The fact that a normal route that fits in the drivable space cannot be calculated means that, as shown in FIG. There is no.
 走行可能空間内に収まらない経路に従って駐車ECU20が駐車制御を行ってしまうと、実際の駐車のための走行時に駐車不能という結果になってしまい、車両のユーザに不便をかける。そのような不便を回避するため、駐車ECU20は、成功フラグがオフの場合、ステップ315に進み、駐車不可であることを、報知装置10に報知させ、更に特別駐車処理24を終了する。これにより、駐車が不可であることを、実際に駐車制御を行う前に、ユーザが知ることができる。 If the parking ECU 20 performs parking control according to a route that does not fit within the drivable space, it will result in the vehicle being unable to park during actual parking, causing inconvenience to the vehicle user. In order to avoid such inconvenience, if the success flag is off, the parking ECU 20 proceeds to step 315, causes the notification device 10 to notify that parking is not possible, and terminates the special parking process 24. This allows the user to know that parking is not possible before actually performing parking control.
 成功フラグがオンであった場合、すなわち、走行可能空間に収まる通常経路を算出できた場合は、ステップ330に進む。このように処理がステップ330に進むのは、図10に例示するように、仮想駐車枠34が走行可能空間35に収まり、かつ、通常経路R4が走行可能空間35内に収まる場合である。 If the success flag is ON, that is, if a normal route that fits within the travelable space has been calculated, proceed to step 330 . The process proceeds to step 330 in this way when the virtual parking frame 34 fits within the travelable space 35 and the normal route R4 fits within the travelable space 35, as illustrated in FIG.
 ステップ330では、通常経路のうち姿勢確定位置がパレット30における停止領域31よりも前方にあるか否かを判定する。前方とは、パレット30の縦方向における前方をいう。 At step 330 , it is determined whether or not the fixed attitude position of the normal route is ahead of the stop area 31 on the pallet 30 . The front means the front in the vertical direction of the pallet 30 .
 ここで、姿勢確定位置について説明する。駐車ECU20によって通常駐車処理23およびステップ320で算出される通常経路において、あるタイミングで、車両の後端が停止領域31および仮想駐車枠34に対して正対し始め、その後、車両は真っ直ぐ後退して仮想駐車枠34に収まる。車両の後端が停止領域31および仮想駐車枠34に対して正対するとは、車両の縦方向(すなわち長手方向)と停止領域31の縦方向と仮想駐車枠34の縦方向が一致することをいう。この正対のタイミングにおける車両の後端の位置が、姿勢確定位置である。通常経路は、車両の中心位置の経路であるので、駐車ECU20は、あらかじめ駐車ECU20の不揮発性メモリに記録された車両の全長の情報を読み出すことにより、通常経路に基づいて、姿勢確定位置を一意に決めることができる。なお、停止領域31の縦方向と仮想駐車枠34の縦方向とが一致している状態は、厳密に一致している状態のみならず、その後車両が停止領域31に容易に進入できる程度のずれがある状態も含む。 Here, I will explain the posture determination position. In the normal route calculated by the parking ECU 20 in the normal parking process 23 and step 320, at a certain timing, the rear end of the vehicle begins to face the stop area 31 and the virtual parking frame 34, and then the vehicle moves straight back. It fits in the virtual parking frame 34 . The rear end of the vehicle facing the stop area 31 and the virtual parking frame 34 means that the vertical direction of the vehicle (that is, the longitudinal direction) coincides with the vertical direction of the stop area 31 and the vertical direction of the virtual parking frame 34 . Say. The position of the rear end of the vehicle at this facing timing is the attitude determination position. Since the normal route is a route at the center position of the vehicle, the parking ECU 20 reads out information on the total length of the vehicle recorded in advance in the non-volatile memory of the parking ECU 20, and based on the normal route, uniquely determines the determined attitude position. can be determined to Note that the state in which the vertical direction of the stop area 31 and the vertical direction of the virtual parking frame 34 match is not limited to a state in which they are strictly matched, but also a deviation to the extent that the vehicle can easily enter the stop area 31 afterward. Including the state where there is
 図11に示すように、姿勢確定位置Zは、仮想駐車枠34の前端にあってもよい。この場合は、通常経路R5は、車両が仮想駐車枠34の前端から仮想駐車枠34の縦方向に対して平行に入る経路となっている。あるいは、図12に示すように、姿勢確定位置Zは、仮想駐車枠34の縦方向の前端と後端の間(すなわち、前端よりも後端側かつ後端よりも前端側)にあってもよい。この場合は、通常経路R6は、車両が仮想駐車枠34の前端から仮想駐車枠34の縦方向に対して斜めに入る経路となっている。姿勢確定位置Zと仮想駐車枠34との位置関係は、通常経路の算出アルゴリズム等によって異なる。 As shown in FIG. 11, the determined attitude position Z may be at the front end of the virtual parking frame 34. In this case, the normal route R5 is a route along which the vehicle enters from the front end of the virtual parking frame 34 parallel to the vertical direction of the virtual parking frame 34 . Alternatively, as shown in FIG. 12, even if the determined attitude position Z is between the front end and the rear end of the virtual parking frame 34 in the vertical direction (that is, the rear end side of the front end and the front end side of the rear end). good. In this case, the normal route R6 is a route along which the vehicle enters from the front end of the virtual parking frame 34 obliquely with respect to the vertical direction of the virtual parking frame 34 . The positional relationship between the determined attitude position Z and the virtual parking frame 34 varies depending on the normal route calculation algorithm and the like.
 図11のように、姿勢確定位置Zが仮想駐車枠34の前端と一致する場合は、姿勢確定位置Zが必ず停止領域31よりも前方にある。仮想駐車枠34が停止領域31に対して前方に平行移動されているからである。 As shown in FIG. 11 , when the determined attitude position Z matches the front end of the virtual parking frame 34 , the determined attitude position Z is always ahead of the stop area 31 . This is because the virtual parking frame 34 is translated forward with respect to the stop area 31 .
 しかし、図12のように、姿勢確定位置Zが仮想駐車枠34の前端と後端の間にある例では、図13のように姿勢確定位置Zが仮想駐車枠34よりも前方にある場合も考えられ、図14のように姿勢確定位置Zが仮想駐車枠34内にある場合も考えられる。 However, in the example shown in FIG. 12 where the fixed posture position Z is between the front end and the rear end of the virtual parking frame 34, even if the fixed posture position Z is in front of the virtual parking frame 34 as shown in FIG. It is also conceivable that the determined posture position Z is within the virtual parking frame 34 as shown in FIG.
 姿勢確定位置Zが仮想駐車枠34よりも前方にあるような経路では、車両がパレット30の停止領域31の外から中に入り始める前に車両が真っ直ぐ後退し始める。したがってこの場合、停止領域31内に車両を収めるための走行制御が容易である。 On a route where the determined attitude position Z is ahead of the virtual parking frame 34, the vehicle starts to move straight back before the vehicle starts to enter the stop area 31 of the pallet 30 from outside. Therefore, in this case, travel control for keeping the vehicle within the stop area 31 is easy.
 一方、姿勢確定位置Zが仮想駐車枠34の内部にあったり仮想駐車枠34の前端と一致したりする場合、車両がパレット30の停止領域31の外から中に入り始めるときは、車両は依然として停止領域31の縦方向に対して斜めになっている。すなわち、車両がパレット30の停止領域31の外から中に入り始めるときは、車両は旋回しながら後退する必要がある。したがってこの場合、停止領域31内に車両を収めるための走行制御に求められる位置精度が高くなってしまう。 On the other hand, if the attitude determination position Z is inside the virtual parking frame 34 or coincides with the front end of the virtual parking frame 34, when the vehicle starts to enter from outside the stop area 31 of the pallet 30, the vehicle is still It is oblique to the longitudinal direction of the stop area 31 . That is, when the vehicle starts to enter from outside the stopping area 31 of the pallet 30, the vehicle must turn and back up. Therefore, in this case, the positional accuracy required for travel control for keeping the vehicle within the stop area 31 is increased.
 これに対処するため、駐車ECU20は、姿勢確定位置Zが停止領域31よりも前方にないと判定した場合、すなわち、姿勢確定位置Zが停止領域31内または停止領域31の前端にあると判定した場合、ステップ335に進む。 In order to deal with this, the parking ECU 20 determines that the determined attitude position Z is not in front of the stop area 31 , that is, determines that the determined attitude position Z is within the stop area 31 or at the front end of the stop area 31 . If so, go to step 335 .
 ステップ335では、仮想駐車枠34を前方に移動させる。すなわち、平行移動距離を所定量だけ増加させる。所定量は、予め定められた固定量(例えば1cm、10cm)でもよいし、検出した停止領域31の縦方向の長さが長くなるほど長く設定されていてもよい。例えば、停止領域31の縦方向の長さの1/20でもよいし、1/10でもよい。ステップ335に続いては、ステップ310に戻る。 At step 335, the virtual parking frame 34 is moved forward. That is, the translation distance is increased by a predetermined amount. The predetermined amount may be a predetermined fixed amount (for example, 1 cm or 10 cm), or may be set longer as the length of the detected stopping area 31 in the vertical direction increases. For example, it may be 1/20 or 1/10 of the length of the stop area 31 in the vertical direction. Following step 335 , return to step 310 .
 このように、駐車ECU20は、姿勢確定位置がパレット30よりも前方にあるように仮想駐車枠34および通常経路が設定されるまで、仮想駐車枠34を前方に移動させるステップ335の処理を繰り返す。そして、その繰り返しにおいても、前方に移動させた後の仮想駐車枠34が走行可能空間内に収まっていないとステップ310で判定した場合は、ステップ315で上述の通り駐車不可であることを報知し、特別駐車処理24を終了する。また、その繰り返しにおいて、前方に移動させた後の仮想駐車枠34に基づいて走行可能空間内に収まる通常経路を算出できないとステップ325で判定した場合は、ステップ315で上述の通り駐車不可であることを報知し、特別駐車処理24を終了する。 In this way, the parking ECU 20 repeats the process of step 335 for moving the virtual parking frame 34 forward until the virtual parking frame 34 and the normal route are set so that the determined attitude position is ahead of the pallet 30. If it is determined in step 310 that the virtual parking frame 34 after being moved forward is not within the travelable space even in this repetition, then in step 315 it is notified that parking is not possible as described above. , the special parking process 24 ends. If it is determined in step 325 that the normal route that fits within the travelable space cannot be calculated based on the virtual parking frame 34 after being moved forward in this repetition, parking is not possible in step 315 as described above. Then, the special parking process 24 is terminated.
 ステップ330で姿勢確定位置が停止領域31よりも前方にあると判定した場合、駐車ECU20は、ステップ340に進む。 If it is determined in step 330 that the determined attitude position is ahead of the stop area 31, the parking ECU 20 proceeds to step 340.
 このようなステップ330、335の処理により、図13に示すように、姿勢確定位置Zが停止領域31の前端よりも前側に位置するよう、仮想駐車枠34および通常経路が設定される。すなわち、車両が停止領域31から離れている段階で、車両の縦方向と前記停止領域31の縦方向が一致するよう、仮想駐車枠34および通常経路が設定される。 Through the processing of steps 330 and 335, the virtual parking frame 34 and the normal route are set so that the determined attitude position Z is positioned forward of the front end of the stop area 31, as shown in FIG. That is, the virtual parking frame 34 and the normal route are set so that the vertical direction of the vehicle and the vertical direction of the stop area 31 are aligned when the vehicle is away from the stop area 31 .
 駐車ECU20は、ステップ340では、走行可能空間のうち、パレット30の縦方向に通常経路の余裕が基準量以上あるか否かを判定する。具体的には、駐車ECU20は、通常経路のパレット30の縦方向の余裕に相当する量として余裕距離を算出し、算出した余裕距離が基準量以上であるか否かを算出する。例えば、通常経路が走行可能空間の境界に接触するまで通常経路をパレット30の前方に平行移動したときの平行移動距離を、通常経路の余裕距離としてもよい。 In step 340, the parking ECU 20 determines whether or not the clearance of the normal route in the vertical direction of the pallet 30 is equal to or greater than the reference amount in the travelable space. Specifically, the parking ECU 20 calculates an allowance distance as an amount corresponding to the allowance in the vertical direction of the pallet 30 on the normal route, and calculates whether or not the calculated allowance distance is equal to or greater than the reference amount. For example, the margin distance of the normal route may be the translational distance when the normal route is translated forward of the pallet 30 until the normal route contacts the boundary of the travelable space.
 あるいは、通常経路が走行可能空間の境界に接触するまで仮想駐車枠34を前方に平行移動したときの平行移動距離を、通常経路の余裕距離としてもよい。この場合、駐車ECU20は、仮想駐車枠34を少しだけ前方に平行移動させ、その度にその仮想駐車枠34を目標とする通常経路を算出する、という処理を、通常経路が走行可能空間の境界に接触するまで続ける。そして、通常経路が走行可能空間の境界に接触した時点またはその直前の時点における、仮想駐車枠34を余裕距離算出のために平行移動させた総距離を、余裕距離とする。この場合の通常経路の算出アルゴリズムは、ステップ320と同様である。 Alternatively, the parallel movement distance when the virtual parking frame 34 is translated forward until the normal route contacts the boundary of the drivable space may be used as the clearance distance of the normal route. In this case, the parking ECU 20 moves the virtual parking frame 34 slightly forward in parallel and each time calculates a normal route with the virtual parking frame 34 as the target. continue until it touches Then, the total distance by which the virtual parking frame 34 is moved in parallel to calculate the margin distance at or immediately before the normal route contacts the boundary of the travelable space is defined as the margin distance. The normal route calculation algorithm in this case is the same as in step 320 .
 なお、余裕距離算出のための仮想駐車枠34の平行移動は、一時的なものであって、駐車ECU20は、余裕距離の算出が終われば、仮想駐車枠34の位置をステップ340の直前における位置に戻す。すなわち、ステップ340における仮想駐車枠34の移動は、実質的な移動ではない。 Note that the parallel movement of the virtual parking frame 34 for calculating the marginal distance is temporary, and the parking ECU 20 changes the position of the virtual parking frame 34 to the position immediately before step 340 after the calculation of the marginal distance is completed. back to That is, the movement of the virtual parking frame 34 in step 340 is not a substantial movement.
 ここで、余裕距離と比較される基準量は、固定値(例えば30cm、50cm)でもよいし、検出した停止領域31の縦方向の長さが長くなるほど長く設定されていてもよい。例えば、停止領域31の縦方向の長さの1/5でもよいし、1/10でもよい。 Here, the reference amount to be compared with the margin distance may be a fixed value (for example, 30 cm, 50 cm), or may be set longer as the vertical length of the detected stop area 31 increases. For example, it may be 1/5 or 1/10 of the length of the stop area 31 in the vertical direction.
 余裕距離が基準量以上である場合、ステップ345に進む。基準量未満である場合、仮想枠設定処理を終えて特別駐車処理24のステップ220に進む。後者の場合は、仮想駐車枠34の位置が、ステップ340の直前の位置に確定する。 If the margin distance is equal to or greater than the reference amount, proceed to step 345. If it is less than the reference amount, the virtual frame setting process ends and the process proceeds to step 220 of the special parking process 24 . In the latter case, the position of the virtual parking frame 34 is fixed at the position immediately before step 340 .
 ステップ345では、仮想駐車枠34を現在の位置から追加的に前方に平行移動させる。この追加の平行移動距離は、ゼロより長く、ステップ340で算出された余裕距離以下の範囲で定められる。ただし、追加の平行移動距離とステップ305で算出した平行移動距離の和が、停止領域31の縦方向の長さ未満になるよう、追加の平行移動距離の上限が定められる。すなわち、停止領域31と仮想駐車枠34とが一部重なる状態は維持するよう、追加の平行移動距離の上限が定められる。 In step 345, the virtual parking frame 34 is additionally translated forward from the current position. This additional translation distance is defined as a range greater than zero and less than or equal to the margin distance calculated in step 340 . However, the upper limit of the additional translation distance is set so that the sum of the additional translation distance and the translation distance calculated in step 305 is less than the length of the stop area 31 in the vertical direction. That is, the upper limit of the additional parallel movement distance is set so that the stop area 31 and the virtual parking frame 34 partially overlap each other.
 ステップ305で算出した平行移動距離は、駐車制御時の車両の経路の位置精度に鑑みて、その位置精度でなら立設物32、33等の障害物に当たらずに停止領域31に停止できる範囲で、できるだけ平行移動距離を短くするよう、設定されている。しかし、上述のように走行可能空間に余裕があるなら、より高い安全性を確保するために平行移動距離を増やすことができる。ステップ345は、この考え方を実現する処理である。 The parallel movement distance calculated in step 305 is the range in which the vehicle can be stopped in the stop area 31 without colliding with the obstacles such as the standing objects 32 and 33 with that positional accuracy in view of the positional accuracy of the route of the vehicle during parking control. It is set so that the parallel movement distance is as short as possible. However, if there is room in the drivable space as described above, the translation distance can be increased to ensure higher safety. Step 345 is a process that implements this idea.
 ここで、追加の平行移動距離の算出方法について説明する。例えば、駐車ECU20は、余裕距離が長くなるほど追加の平行移動距離が増大するよう、より具体的には余裕距離に比例して、追加の平行移動距離を算出してもよい。例えば、追加の平行移動距離は余裕距離の0.5倍であってもよいし、0.8倍であってもよいし、余裕距離と同じであってもよい。 Here, we will explain how to calculate the additional translation distance. For example, the parking ECU 20 may calculate the additional parallel movement distance in proportion to the margin distance so that the additional parallel movement distance increases as the margin distance increases. For example, the additional translation distance may be 0.5 times the allowance distance, may be 0.8 times the allowance distance, or may be the same as the allowance distance.
 あるいは例えば、駐車ECU20は、通常経路の状態に応じて追加の平行移動距離を決めてもよい。すなわち、通常経路における車両の切り返し回数および現在位置から停止領域31までの移動にかかると予想される時間(すなわち、駐車完了までにかかる予想時間)に基づいて、仮想駐車枠34の追加の平行移動距離を調整してもよい。 Alternatively, for example, the parking ECU 20 may determine an additional parallel movement distance according to the state of the normal route. That is, additional parallel movement of the virtual parking frame 34 based on the number of times the vehicle turns back on the normal route and the time expected to take to move from the current position to the stop area 31 (that is, the expected time to complete parking) You can adjust the distance.
 この場合、駐車ECU20は、仮想駐車枠34を少しだけ前方に平行移動させ、その度にその仮想駐車枠34を目標とする通常経路を算出する、という処理を、経路コストが所定の上限値を超えるまで続ける。そして、経路コストが上限値を超える直前の時点における、追加の平行移動距離を、確定値とする。この場合の通常経路の算出アルゴリズムは、ステップ320と同様である。もちろんこのときも、停止領域31と仮想駐車枠34とが一部重なる状態は維持するよう、追加の平行移動距離の上限が定められる。 In this case, the parking ECU 20 performs a process of slightly moving the virtual parking frame 34 forward in parallel and calculating a normal route with the virtual parking frame 34 as the target each time. Continue until exceeded. Then, the additional parallel movement distance just before the route cost exceeds the upper limit value is set as the fixed value. The normal route calculation algorithm in this case is the same as in step 320 . Of course, at this time as well, the upper limit of the additional parallel movement distance is determined so that the state where the stop area 31 and the virtual parking frame 34 partially overlap is maintained.
 ここで、経路コストは、通常経路における車両の切り返し回数が多くなるほど大きくなり、上記予想時間が長くなるほど大きくなる正の値である。走行可能空間はあまり広く取れない場合が多いので、多くの場合、仮想駐車枠34の停止領域31からの平行移動距離が増大するほど、上記切り返し回数も上記予想時間も長くなる。 Here, the route cost is a positive value that increases as the number of vehicle turns on the normal route increases, and increases as the estimated time increases. Since it is often the case that the space in which the vehicle can travel is not so large, in many cases, the number of times of turnover and the expected time increase as the distance of parallel movement of the virtual parking frame 34 from the stop area 31 increases.
 なお、切り返しとは、車両が向きまたは幅方向の位置を変えるために、前進と後退を交互に行うと共に、連続する前進と後退で操舵の左右を逆にするような走行をいう。なお、前進と後退はどちらが先でもよい。また、切り返し回数は、前進と後退の切り替わりの回数として算出される。例えば、図15に示すような通常経路R7は、切り返し回数が4回である。切り返し回数が3回を超えた場合に経路コストが上限値を超える場合は、この図15における平行移動距離は禁止される。切り返し回数が4回でも経路コストが上限値未満である場合は、この図15における平行移動距離は許容される。 It should be noted that turning back refers to traveling in which forward and reverse are alternated in order to change the direction or position of the vehicle in the width direction, and the left and right of the steering are reversed between continuous forward and reverse. Either the forward movement or the backward movement may come first. Also, the number of times of steering is calculated as the number of times of switching between forward and backward. For example, the normal route R7 as shown in FIG. 15 has four turns. If the route cost exceeds the upper limit when the number of turnovers exceeds three, the parallel movement distance in FIG. 15 is prohibited. If the route cost is less than the upper limit even if the number of turnaround times is four, the parallel movement distance in FIG. 15 is allowed.
 また、上記予想時間は、通常経路の距離と仮想駐車枠34の中央から停止領域31の中央までの直線距離の総和に基づいて、当該総和が大きくなるほど大きい値としてもよい。あるいは、通常駐車処理23およびステップ320で算出される通常経路が、通常経路中の各地点の走行速度も含んでいる場合は、当該走行速度も用いて上記予想時間が算出されてもよい。 Also, the estimated time may be set to a value that increases as the sum increases, based on the sum of the distance of the normal route and the straight distance from the center of the virtual parking frame 34 to the center of the stop area 31 . Alternatively, if the normal route calculated in the normal parking process 23 and step 320 includes the traveling speed at each point on the normal route, the estimated time may be calculated using the traveling speed as well.
 なお、この例では、経路コストは、上記切り返し回数および上記予想時間の両方に依存しているが、上記切り返し回数および上記予想時間のうち前者のみに依存してもよいし、後者のみに依存してもよい。 In this example, the route cost depends on both the number of turnaround times and the estimated time. However, the route cost may depend only on the former or the latter. may
 このステップ340、345の処理により、駐車ECU20は、パレット30の前方側(すなわち車両側)において車両が走行可能な空間が広いほど、平行移動距離が長く設定される。より具体的には、当該前方側において、停止領域31の縦方向における走行可能空間の長さが長いほど、平行移動距離が長く設定される。このようにすることで、車両が走行可能な空間のサイズに応じて、適切な平行移動距離を算出することができる。 By the processing of steps 340 and 345, the parking ECU 20 sets the translation distance longer as the space in which the vehicle can travel is wider on the front side of the pallet 30 (that is, on the vehicle side). More specifically, the longer the length of the travelable space in the vertical direction of the stop area 31 on the front side, the longer the translation distance is set. By doing so, it is possible to calculate an appropriate parallel displacement distance according to the size of the space in which the vehicle can travel.
 なお、駐車ECU20は、この経路コストが上限値を超えた場合に、報知装置10を用いて、映像または音声で、通常経路の形状、および、上記予想時間をユーザに報知し、さらに、ユーザに追加の平行移動距離を許可するか否かを問い合わせてもよい。その場合、駐車ECU20は、ユーザが操作スイッチ15を用いて問い合わせに回答した際、許可する旨の回答の場合、経路コストの上限値を所定量だけ増大させてもよい。そして、許可しない旨の回答の場合、経路コストが現在の上限値を超える直前の時点における、追加の平行移動距離を、確定値としてもよい。このように、駐車ECU20は、通常経路の形状および上記予想時間をユーザに通知し、ユーザに通常経路に沿った移動の開始判断を問い合わせてもよい。 When the route cost exceeds the upper limit, the parking ECU 20 uses the notification device 10 to notify the user of the shape of the normal route and the estimated time by video or audio. It may be queried whether to allow additional translation distances. In this case, when the user responds to the inquiry using the operation switch 15, the parking ECU 20 may increase the upper limit of the route cost by a predetermined amount if the response is to permit. Then, in the case of a reply to the effect that it is not permitted, the additional parallel movement distance at the point immediately before the route cost exceeds the current upper limit value may be used as the fixed value. In this way, the parking ECU 20 may notify the user of the shape of the normal route and the estimated time, and ask the user whether to start moving along the normal route.
 駐車ECU20は、ステップ345に続いてステップ350では、ステップ345にて前方に移動した仮想駐車枠34までの通常経路を、ステップ320と同じアルゴリズムで算出する。なおこのとき、走行可能空間に通常経路が収まらない等、何らかの理由によって通常経路が算出できない場合は、ステップ345で行われた仮想駐車枠34の移動をキャンセルし、ステップ340の直前における仮想駐車枠34および通常経路を確定値としてもよい。ステップ350の後は、仮想駐車枠設定処理が終了し、特別駐車処理24のステップ220に進む。このステップ350で算出される通常経路も、ステップ320で算出される通常経路と同様、予定経路に対応する。 Following step 345 , in step 350 , the parking ECU 20 calculates the normal route to the virtual parking frame 34 moved forward in step 345 using the same algorithm as in step 320 . At this time, if the normal route cannot be calculated for some reason such as the normal route does not fit in the drivable space, the movement of the virtual parking frame 34 performed in step 345 is canceled, and the virtual parking frame immediately before step 340 is canceled. 34 and the normal route may be determined values. After step 350, the virtual parking frame setting process ends, and the process proceeds to step 220 of the special parking process 24. FIG. The normal route calculated at step 350 also corresponds to the planned route, like the normal route calculated at step 320 .
 特別駐車処理24のステップ220では、駐車制御を行う。すなわち、ユーザの運転操作なしで実際に車両を移動させて最終的に停止領域31内に車両を停止させる。この駐車制御において駐車ECU20は、図16に示すように、まずステップ405で、ステップ215の仮想駐車枠設定処理で最後に算出された通常経路に沿った移動制御を所定距離分または所定時間分だけ行う。具体的には、走行用アクチュエータを制御することで、通常経路のうち現在位置から所定距離分または所定時間分だけ車両を移動させる。この通常経路は、ステップ215の仮想駐車枠設定処理で最終的に設定された仮想駐車枠34に車両を移動させる経路である。なお、このステップ405の処理において、障害物認識処理21によって認識された最新の障害物の位置に基づいて、通常経路を走行すると車両が障害物に当たってしまう場合は、当たらないように通常経路を修正してもよい。 At step 220 of the special parking process 24, parking control is performed. That is, the vehicle is actually moved and finally stopped within the stop area 31 without the user's driving operation. In this parking control, as shown in FIG. 16, first, in step 405, the parking ECU 20 controls movement along the normal route calculated last in the virtual parking frame setting process in step 215 for a predetermined distance or a predetermined time. conduct. Specifically, by controlling the travel actuator, the vehicle is moved from the current position on the normal route by a predetermined distance or a predetermined time. This normal route is a route for moving the vehicle to the virtual parking frame 34 finally set in the virtual parking frame setting process of step 215 . In the process of step 405, based on the latest position of the obstacle recognized by the obstacle recognition processing 21, if the vehicle hits the obstacle when traveling along the normal route, the normal route is corrected so as not to hit the obstacle. You may
 続いてステップ410では、周辺センサが出力した情報に基づいて、車両が仮想駐車枠34に到達したか否かを判定する。例えば、車両の全体が仮想駐車枠34内に入ったことに基づいて車両が仮想駐車枠34に到達したと判定してもよい。あるいは、車両全体の所定割合(例えば車両全体の80%、50%)のみが仮想駐車枠34内に入ったことに基づいて車両が仮想駐車枠34に到達したと判定してもよい。あるいは、車両の少なくとも一部が仮想駐車枠34内に入り、かつ車両の縦方向が仮想駐車枠34の縦方向と一致したことに基づいて、車両が仮想駐車枠34に到達したと判定してもよい。 Subsequently, in step 410, it is determined whether or not the vehicle has reached the virtual parking frame 34 based on the information output by the peripheral sensor. For example, it may be determined that the vehicle has reached the virtual parking frame 34 based on the fact that the entire vehicle has entered the virtual parking frame 34 . Alternatively, it may be determined that the vehicle has reached the virtual parking frame 34 based on the fact that only a predetermined percentage of the entire vehicle (eg, 80% or 50% of the entire vehicle) has entered the virtual parking frame 34 . Alternatively, it is determined that the vehicle has reached the virtual parking frame 34 based on the fact that at least part of the vehicle enters the virtual parking frame 34 and the vertical direction of the vehicle matches the vertical direction of the virtual parking frame 34. good too.
 車両が仮想駐車枠34に到達していないと判定した場合、ステップ405に戻る。これにより、駐車ECU20は、車両が仮想駐車枠34に到達したとステップ410で判定するまで、ステップ405で車両を通常経路に従って移動させ続ける。そして、ステップ410で車両が仮想駐車枠34に到達したと判定した場合、通常経路に沿った移動制御を終了し、パレット30への正着制御を行うためにステップ415に進む。 If it is determined that the vehicle has not reached the virtual parking frame 34, the process returns to step 405. As a result, the parking ECU 20 continues moving the vehicle along the normal route in step 405 until it determines in step 410 that the vehicle has reached the virtual parking frame 34 . Then, when it is determined in step 410 that the vehicle has reached the virtual parking frame 34 , the movement control along the normal route ends, and the process proceeds to step 415 in order to perform proper arrival control to the pallet 30 .
 このようなステップ405、410の処理により、車両は、通常経路に沿って移動し、仮想駐車枠34に到達することができる。ただし、車両の実際の移動軌跡は、必ずしも通常経路と一致するわけでなく、通常経路に対してずれる場合がある。このずれの量は、車両の位置制御の精度が低いほど多くなる。 The processing of steps 405 and 410 allows the vehicle to move along the normal route and reach the virtual parking frame 34 . However, the actual trajectory of the vehicle does not necessarily match the normal route, and may deviate from the normal route. The amount of this deviation increases as the accuracy of vehicle position control decreases.
 なお、ステップ405、410における通常経路に沿った移動制御においては、上述の通り、多くの場合、車両の一部が停止領域31内に入った状態で終了する。そして、車両のうち停止領域31内にある部分の割合は、平行移動距離が短いほど多い。したがって、平行移動距離が短いほど、通常経路に沿った移動制御に求められる位置精度が高くなり、ひいては、通常経路に沿った移動制御の容易性が低下する。 It should be noted that the movement control along the normal route in steps 405 and 410 often ends with part of the vehicle entering the stop area 31, as described above. The proportion of the portion of the vehicle that is within the stop area 31 increases as the parallel movement distance decreases. Therefore, the shorter the parallel movement distance, the higher the positional accuracy required for movement control along the normal route, and the easier the movement control along the normal route becomes.
 また、駐車ECU20は、車両が仮想駐車枠34に到達したと判定した場合に、走行用アクチュエータを制御して仮想駐車枠34において車両を停止させた後でステップ415に進んでもよい。この場合、通常経路での移動の動作とパレット30への正着制御による動作とを制御的に分離できるので、連続的に移動させる制御を実現させるためのハードウェア資源ないしソフトウェア資源を節約することができる。 Further, when the parking ECU 20 determines that the vehicle has reached the virtual parking frame 34, it may proceed to step 415 after controlling the travel actuator to stop the vehicle in the virtual parking frame 34. In this case, the operation of moving along the normal path and the operation of controlling the arrival on the pallet 30 can be separated in terms of control, so that the hardware or software resources for realizing the control of continuous movement can be saved. can be done.
 あるいは、駐車ECU20は、車両が仮想駐車枠34に到達したと判定した場合に、走行用アクチュエータを制御して車両を移動させ続けながらステップ415および続くステップ420に進んで正着制御を開始してもよい。この場合、車両を仮想駐車枠34で停止させず移動させたまま正着制御が開始されるので、駐車のための車両の挙動がスムースになり、駐車時間が短縮できる。 Alternatively, when it is determined that the vehicle has reached the virtual parking frame 34, the parking ECU 20 proceeds to step 415 and then step 420 to start correct arrival control while continuing to move the vehicle by controlling the travel actuator. good too. In this case, since the correct arrival control is started while the vehicle is moving without stopping in the virtual parking frame 34, the behavior of the vehicle for parking becomes smooth, and the parking time can be shortened.
 仮想駐車枠34への到達から正着制御の開始まで車両を移動させ続ける場合、駐車ECU20は、仮想駐車枠34の通過時に、車両を一時的に減速させ、その後加速させて正着制御を開始してもよい。さらに、仮想駐車枠34への到達時に、報知装置10の車載ディスプレイにて仮想駐車枠34に到達したことを示す情報を表示してもよい。仮想駐車枠34に到達したことを示す情報の表示は、文字による表示であってもよい。通常経路に沿った移動制御時から車載ディスプレイに仮想駐車枠34が表示されていた場合、仮想駐車枠34に車両が到達したことを示す情報の表示は、仮想駐車枠34の表示形態の変更(例えば表示色の変更、枠の太さの変更、点滅表示への変更)であってもよい。通常経路に沿った移動制御時から車載ディスプレイに仮想駐車枠34が表示されていた場合、駐車ECU20は、仮想駐車枠34に車両が到達した時に仮想駐車枠34の表示を消去することで、仮想駐車枠34に到達したことを示してもよい。さらに、駐車ECU20は、仮想駐車枠34への到達時に、報知装置10のスピーカーを用いて、効果音などの音声により、仮想駐車枠34に到達したことを報知してもよい。 When the vehicle continues to move from reaching the virtual parking frame 34 to starting correct arrival control, the parking ECU 20 temporarily decelerates the vehicle when passing through the virtual parking frame 34, and then accelerates the vehicle to start correct arrival control. You may Furthermore, when the virtual parking frame 34 is reached, information indicating that the virtual parking frame 34 has been reached may be displayed on the in-vehicle display of the notification device 10 . The display of the information indicating that the virtual parking frame 34 has been reached may be displayed using characters. When the virtual parking frame 34 is displayed on the in-vehicle display from the time of movement control along the normal route, the display of information indicating that the vehicle has reached the virtual parking frame 34 changes the display form of the virtual parking frame 34 ( For example, it may be a change in display color, a change in frame thickness, or a change to blinking display. If the virtual parking frame 34 has been displayed on the in-vehicle display from the time of movement control along the normal route, the parking ECU 20 erases the display of the virtual parking frame 34 when the vehicle reaches the virtual parking frame 34, so that the virtual parking frame 34 is displayed. It may indicate that the parking frame 34 has been reached. Furthermore, the parking ECU 20 may use the speaker of the notification device 10 to notify that the virtual parking frame 34 has been reached by a sound such as a sound effect when the virtual parking frame 34 is reached.
 ステップ415では、周辺センサから取得した情報に基づいて、停止領域31を検出する。すなわち、パレット30の幅方向の両端にある立設物32、33の車両に対する相対的な位置を検出することにより、それらの間の停止領域31の車両に対する相対的な位置および相対的な向きを検出する。ステップ415で検出する対象は、特別駐車処理24のステップ205で既に検出しているので、ここでの検出は再検出ということになる。 At step 415, the stop area 31 is detected based on the information acquired from the surrounding sensors. That is, by detecting the relative positions of the uprights 32 and 33 at both ends of the pallet 30 in the width direction with respect to the vehicle, the relative position and relative orientation of the stop area 31 therebetween with respect to the vehicle can be determined. To detect. Since the object to be detected in step 415 has already been detected in step 205 of the special parking process 24, the detection here is re-detection.
 ただし、ステップ415での検出は、ステップ205での検出に比べて、高精度かつ処理負荷が大きいものになっていてもよい。これは、ステップ205での検出結果は仮想駐車枠34までの移動のために用いられるのに対し、ステップ415での検出結果は仮想駐車枠34から停止領域31までの移動制御すなわち正着制御に用いられるからである。なお、ここでいう高精度は、具体的には、検出する対象の位置精度が高いことである。 However, the detection in step 415 may have higher accuracy and a larger processing load than the detection in step 205. This is because the detection result at step 205 is used for movement to the virtual parking frame 34, while the detection result at step 415 is used for movement control from the virtual parking frame 34 to the stop area 31, ie, correct arrival control. because it is used. It should be noted that the high accuracy referred to here specifically means that the positional accuracy of the object to be detected is high.
 例えば、駐車ECU20は、ステップ205では車両の周囲の画像を或る学習済みのニューラルネット(例えばCNN)に入力することで立設物32、33、停止領域31の位置を検出したとする。そして、ステップ415では車両の周囲の画像を別の学習済みのニューラルネット(例えばCNN)に入力することで立設物32、33、停止領域31の位置を検出したとする。この場合、前者のニューラルネットを第1のニューラルネットとし、後者のニューラルネットを第2のニューラルネットとすると、第2のニューラルネットの方が第1のニューラルネットよりも出力する立設物32、33、停止領域31の位置の精度が高い。第1のニューラルネットに比べて第2のニューラルネットの精度が高いことは、例えば、第1のニューラルネットに比べて第2のニューラルネットの方が隠れ層の数が多いことにより、実現されてもよい。なお、CNNは、Convolutional Neural Networkの略である。 For example, assume that the parking ECU 20 detects the positions of the standing objects 32 and 33 and the stop area 31 in step 205 by inputting an image of the surroundings of the vehicle into a certain learned neural network (eg, CNN). Then, in step 415, it is assumed that the positions of the standing objects 32 and 33 and the stop area 31 are detected by inputting the image around the vehicle to another trained neural network (for example, CNN). In this case, assuming that the former neural network is the first neural network and the latter neural network is the second neural network, the second neural network outputs more than the first neural network. 33. The accuracy of the position of the stop area 31 is high. Higher accuracy of the second neural network than the first neural network is achieved, for example, by having more hidden layers in the second neural network than in the first neural network. good too. Note that CNN is an abbreviation for Convolutional Neural Network.
 また例えば、駐車ECU20は、ステップ205では車両の周囲の画像を用いて立設物32、33の画像をテンプレートマッチングによって検出し、検出した画像に基づいて、立設物32、33、停止領域31の位置を検出してもよい。そして、ステップ415では車両の周囲の画像を学習済みのニューラルネットに入力することで立設物32、33、停止領域31の位置を検出してもよい。テンプレートマッチングによる位置検出の精度よりもニューラルネットを用いた位置検出の精度が高いことが多いので、その場合は、これにより、ステップ415の処理のステップ205の処理に対する検出精度の高さが実現される。 Further, for example, in step 205, the parking ECU 20 detects the images of the standing objects 32 and 33 using the image around the vehicle by template matching, and based on the detected images, the standing objects 32 and 33 and the stop area 31 are detected. position may be detected. Then, in step 415, the positions of the standing objects 32 and 33 and the stop area 31 may be detected by inputting images of the surroundings of the vehicle to a trained neural network. Since the accuracy of position detection using a neural network is often higher than the accuracy of position detection by template matching, in this case, the processing of step 415 achieves higher detection accuracy than the processing of step 205. be.
 また例えば、駐車ECU20は、ステップ205では周辺センサのうち周辺カメラ11のみを使用して車両の周囲の画像に基づいて、立設物32、33、停止領域31の位置を検出してもよい。そして、ステップ415では車両の周囲の画像に加えて、音波センサ12から取得した情報を用いて、立設物32、33、停止領域31の位置を検出してもよい。これにより、ステップ415の処理のステップ205の処理に対する検出精度の高さが実現される。 Also, for example, the parking ECU 20 may detect the positions of the standing objects 32 and 33 and the stop area 31 based on the image of the surroundings of the vehicle using only the peripheral camera 11 of the peripheral sensors in step 205 . Then, in step 415, the positions of the standing objects 32 and 33 and the stop area 31 may be detected using the information acquired from the sound wave sensor 12 in addition to the image around the vehicle. As a result, the detection accuracy of the process of step 415 is higher than that of the process of step 205 .
 また例えば、駐車ECU20は、ステップ205とステップ415で同じアルゴリズムで立設物32、33、停止領域31の位置を検出してもよい。その場合であっても、ステップ205の場面よりもステップ415の場面の方が、車両がパレット30に近いので、必然的に立設物32、33、停止領域31の位置の検出精度は高くなる。 Also, for example, the parking ECU 20 may detect the positions of the standing objects 32 and 33 and the stop area 31 in steps 205 and 415 using the same algorithm. Even in that case, since the vehicle is closer to the pallet 30 in the scene of step 415 than in the scene of step 205, the detection accuracy of the positions of the standing objects 32, 33 and the stop area 31 is inevitably higher. .
 続いて駐車ECU20は、ステップ420で、車両を停止領域31内に収めるために車両を移動させる制御を、所定距離分または所定時間分だけ行う。すなわち、車両の目標位置を、停止領域31内とする車両移動制御を行う。この制御が、正着制御である。 Subsequently, in step 420, the parking ECU 20 controls the vehicle to move within the stop area 31 by a predetermined distance or a predetermined time. That is, the vehicle movement control is performed so that the target position of the vehicle is within the stop area 31 . This control is correct arrival control.
 具体的には、走行用アクチュエータを制御することで、車両の左前輪、右前輪、左後輪、右後輪の各タイヤが立設物32、33に接触しないようにしながら、車両が停止領域31内に収まるように、車両の移動制御を行う。このとき、車両の左前輪、右前輪、左後輪、右後輪の位置の情報は、あらかじめ駐車ECU20の不揮発性メモリに記録されているものが用いられる。またこのとき、停止領域31、立設物32、33の位置は、ステップ415で得た最新の検出結果を用いて特定する。 Specifically, by controlling the traveling actuators, the vehicle stops in the stop area while preventing the left front wheel, right front wheel, left rear wheel, and right rear wheel of the vehicle from coming into contact with the standing objects 32 and 33 . Movement control of the vehicle is performed so as to be within 31. At this time, the information on the positions of the front left wheel, front right wheel, rear left wheel, and rear right wheel of the vehicle is recorded in the non-volatile memory of the parking ECU 20 in advance. At this time, the positions of the stop area 31 and the standing objects 32 and 33 are identified using the latest detection results obtained in step 415 .
 この際、車両の幅方向の位置をずらす必要が発生した場合は、ステアリングアクチュエータ17を制御して直進位置から僅かにずらした可変の操舵角で、車両を前進させた後に後方に移動させることで、実現する。僅かな操舵角とは、例えば、最小旋回半径の5倍以上の旋回半径が実現する操舵角であってもよいし、最小旋回半径の10倍以上の回転半径が実現する操舵角であってもよい。またこの際、必要に応じて、スロットルアクチュエータ16およびブレーキアクチュエータ18を制御して、車速の調整を行ってもよい。 At this time, if it becomes necessary to shift the position of the vehicle in the width direction, the steering actuator 17 is controlled to move the vehicle forward at a variable steering angle that is slightly shifted from the straight-ahead position, and then to move backward. , come true. The slight steering angle may be, for example, a steering angle that realizes a turning radius five times or more the minimum turning radius, or a steering angle that realizes a turning radius ten times or more the minimum turning radius. good. At this time, the vehicle speed may be adjusted by controlling the throttle actuator 16 and the brake actuator 18 as necessary.
 続いてステップ425では、周辺センサが出力した情報に基づいて、車両の全体が停止領域31内に収まったか否かを判定する。収まっていないと判定した場合、ステップ415に戻る。これにより、駐車ECU20は、車両が停止領域31に収まるまで、ステップ415で立設物32、33および停止領域31の位置を検出してステップ420で車両を移動させることを繰り返す。そして、ステップ420で車両が停止領域31に収まったと判定した場合、走行用アクチュエータを制御して車両を停止させると共に、駐車制御を終了する。それと共に特別駐車処理24も終了する。 Subsequently, at step 425, it is determined whether or not the entire vehicle is within the stop area 31, based on the information output by the surrounding sensors. If it is determined that it does not fit, the process returns to step 415 . Thereby, the parking ECU 20 repeats detecting the positions of the standing objects 32 and 33 and the stop area 31 in step 415 and moving the vehicle in step 420 until the vehicle is settled in the stop area 31 . Then, when it is determined in step 420 that the vehicle has settled into the stop area 31, the driving actuator is controlled to stop the vehicle, and the parking control ends. At the same time, the special parking process 24 also ends.
 以上のように、駐車ECU20がステップ205で停止領域31を検出する段階では車とパレット30との距離が遠いため、停止領域31の正確な認識が困難でも、車両により近い仮想駐車枠34を設定することができる。したがって、ステップ405、410で、その仮想駐車枠34に通常駐車処理23と同様の制御で比較的高い正確性で車両を移動させることができる。そして更に、車両が仮想駐車枠34に到達した結果車両が停止領域31に近づいた後で、ステップ415で停止領域31を再検出することができる。これにより、停止領域31のより正確かつ高精度の位置検出が可能となる。 As described above, when the parking ECU 20 detects the stop area 31 in step 205, the distance between the car and the pallet 30 is long, so even if it is difficult to accurately recognize the stop area 31, the virtual parking frame 34 closer to the vehicle is set. can do. Therefore, in steps 405 and 410, the vehicle can be moved to the virtual parking frame 34 with a relatively high degree of accuracy by the same control as in the normal parking process 23. Furthermore, the stopping area 31 can be detected again in step 415 after the vehicle approaches the stopping area 31 as a result of the vehicle reaching the virtual parking frame 34 . This enables more accurate and highly accurate position detection of the stop area 31 .
 また、ステップ420の制御は、車両の幅方向の位置の修正なので、走行用アクチュエータを制御するためのアルゴリズムが比較的簡易に作成可能であり、かつ、車両制御の位置精度も高い。このように、通常の駐車場用の自動駐車支援システムに、簡便なアルゴリズムを追加することで、高い位置精度の制御が求められる機械式駐車設備に対応可能となる。また、特許文献1のように駐車場設備側と通信する必要はなくなる。ただし、他の例として、駐車ECU20が駐車場設備側と通信するようになっていてもよい。 In addition, since the control in step 420 corrects the position of the vehicle in the width direction, it is possible to create an algorithm for controlling the travel actuators relatively easily, and the positional accuracy of the vehicle control is high. In this way, by adding a simple algorithm to an automatic parking assist system for ordinary parking lots, it becomes possible to deal with mechanical parking equipment that requires control with high positional accuracy. In addition, it is no longer necessary to communicate with the parking facility side as in Patent Document 1. However, as another example, the parking ECU 20 may communicate with the parking facility side.
 以上説明した通り、通常経路においては、車両がパレット30の停止領域31から離れている段階で、車両の縦方向と停止領域31の縦方向が一致する。また、仮想駐車枠34の停止領域31に対する平行移動距離は、停止領域31の縦方向の長さよりも短い。 As described above, on the normal route, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area 31 when the vehicle is away from the stop area 31 of the pallet 30 . Also, the parallel movement distance of the virtual parking frame 34 with respect to the stop area 31 is shorter than the length of the stop area 31 in the vertical direction.
 したがって、仮想駐車枠34を基準としてパレット30の反対側に、車両が走行できる空間をより広く確保することができる。ひいては、仮想駐車枠34へ車両を移動させることができなくなる可能性が低減される。 Therefore, on the opposite side of the pallet 30 with respect to the virtual parking frame 34, a wider space in which the vehicle can travel can be secured. As a result, the possibility that the vehicle cannot be moved to the virtual parking frame 34 is reduced.
 なお、平行移動距離が停止領域31の縦方向の長さよりも短いと、車両が仮想駐車枠34に到達したときに車両の一部が既に停止領域31の中に入っていることが多い。しかし、仮想駐車枠34までの通常経路においては、車両が停止領域31から離れている段階で、車両の縦方向とパレット30の縦方向が一致する。よって、通常経路において車両が停止領域31に接触したときまたはそれより後に車両の縦方向と停止領域31の縦方向が一致する場合に比べて、通常経路に従って仮想駐車枠34に到達するまでの車両移動制御において、停止領域31内への進入が容易である。 If the parallel movement distance is shorter than the length of the stop area 31 in the vertical direction, then part of the vehicle is often already inside the stop area 31 when the vehicle reaches the virtual parking frame 34 . However, on the normal route to the virtual parking frame 34 , the vertical direction of the vehicle and the vertical direction of the pallet 30 match when the vehicle is away from the stop area 31 . Therefore, compared to the case where the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area 31 when or after the vehicle contacts the stop area 31 on the normal path, the vehicle travels along the normal path until it reaches the virtual parking frame 34. In movement control, entry into the stop area 31 is easy.
 また、本実施形態によれば、以下のような効果を得ることができる。 Also, according to this embodiment, the following effects can be obtained.
 (1)駐車ECU20は、停止領域31に対する車両の相対的な位置および停止領域31に対する車両の相対的な向きに基づいて、車両が現在位置から停止領域31に収まる仮想的な経路における旋回半径が小さいほど、平行移動距離を長く設定する。 (1) Based on the relative position of the vehicle with respect to the stop area 31 and the relative direction of the vehicle with respect to the stop area 31, the parking ECU 20 determines that the turning radius of the virtual route in which the vehicle stays within the stop area 31 from the current position is The smaller it is, the longer the translation distance is set.
 平行移動距離が短いほど、仮想駐車枠34を基準としてパレット30の反対側に確保できる車両走行可能な空間を広くすることができる反面、車両を停止領域31に入れる際に車両に求められる位置の精度が高くなる。そこで、発明者は、上記仮想的な経路の旋回半径が大きいほど、走行制御による車両の位置の精度が高くなることに着目し、停止領域31に収まる仮想的な経路R1、R2における旋回半径が小さいほど、平行移動距離を長く設定することを着想した。これにより、停止領域31に対する車両の相対的な位置および停止領域31に対する車両の相対的な向きに応じて、適切な平行移動距離を設定することができる。 The shorter the parallel movement distance, the wider the space in which the vehicle can travel that can be secured on the opposite side of the pallet 30 with respect to the virtual parking frame 34. higher accuracy. Therefore, the inventor paid attention to the fact that the greater the turning radius of the virtual route, the higher the accuracy of the position of the vehicle by running control. It was conceived that the smaller the size, the longer the translation distance should be set. Accordingly, an appropriate translation distance can be set according to the relative position of the vehicle with respect to the stop area 31 and the relative orientation of the vehicle with respect to the stop area 31 .
 (2)駐車ECU20は、ステップ330、335の処理のように、パレット30の車両側において車両が走行可能な空間が広いほど、平行移動距離を長く設定する。このようにすることで、車両が走行可能な空間のサイズに応じて、適切な平行移動距離を算出することができる。 (2) As in the processing of steps 330 and 335, the parking ECU 20 sets the translation distance longer as the space in which the vehicle can travel on the vehicle side of the pallet 30 is wider. By doing so, it is possible to calculate an appropriate parallel displacement distance according to the size of the space in which the vehicle can travel.
 (3)駐車ECU20は、通常経路の経路コストが上限値を超えないよう、平行移動距離を設定する。そして、経路コストは、通常経路における切り返し回数が増加すると増加し、あるいは、車両の停止領域31までの移動にかかると予想される時間が増加すると増加する。 (3) The parking ECU 20 sets the parallel movement distance so that the route cost of the normal route does not exceed the upper limit. Then, the route cost increases as the number of turns on the normal route increases, or as the time expected for the vehicle to reach the stop area 31 increases.
 このように、車両の経路が過度に複雑になったり駐車のための時間が過度に長くなったりする可能性を低減することができる。これにより、駐車のための車両の移動に対してユーザが違和感を覚える可能性を低減することができる。 In this way, it is possible to reduce the possibility that the route of the vehicle becomes excessively complicated or that the parking time becomes excessively long. As a result, it is possible to reduce the possibility that the user will feel uncomfortable with the movement of the vehicle for parking.
 (4)駐車ECU20は、ステップ205における検出よりも高い位置精度で、ステップ415にて停止領域31を検出する。そして、検出した結果に基づいて、車両を停止領域31に収めるよう車両を移動させる。 (4) The parking ECU 20 detects the stop area 31 at step 415 with higher positional accuracy than the detection at step 205 . Then, based on the detected result, the vehicle is moved so as to be contained within the stop area 31 .
 このようにすることで、駐車ECU20が停止領域31を検出するタイミングでは車とパレット30との距離が遠いため、停止領域31の正確な認識が困難でも、仮想駐車枠34に到達した後で停止領域31を高い位置精度で再検出することができる。そして、仮想駐車枠34から停止領域31への移動制御をこの高精度な検出結果に基づいて行うことができる。 By doing so, even if it is difficult to accurately recognize the stop area 31 because the distance between the car and the pallet 30 is long at the timing when the parking ECU 20 detects the stop area 31, the vehicle stops after reaching the virtual parking frame 34. The region 31 can be re-detected with high positional accuracy. Then, movement control from the virtual parking frame 34 to the stop area 31 can be performed based on this highly accurate detection result.
 なお、本実施形態において、駐車ECU20は、ステップ205を実行することで検出部として機能し、ステップ215を実行することで設定部として機能し、ステップ405、410を実行することで第1移動制御部として機能する。また駐車ECU20は、ステップ415、420、425を実行することで第2移動制御部として機能する。 In this embodiment, the parking ECU 20 functions as a detection unit by executing step 205, functions as a setting unit by executing step 215, and performs the first movement control by executing steps 405 and 410. functions as a department. The parking ECU 20 also functions as a second movement control section by executing steps 415, 420, and 425. FIG.
 (他の実施形態)
 なお、本開示は上記した実施形態に限定されるものではなく、適宜変更が可能である。また、上記実施形態において、実施形態を構成する要素は、特に必須であると明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではない。また、上記実施形態において、実施形態の構成要素の個数、数値、量、範囲等の数値が言及されている場合、特に必須であると明示した場合および原理的に明らかに特定の数に限定される場合等を除き、その特定の数に限定されるものではない。特に、ある量について複数個の値が例示されている場合、特に別記した場合および原理的に明らかに不可能な場合を除き、それら複数個の値の間の値を採用することも可能である。また、上記実施形態において、構成要素等の形状、位置関係等に言及するときは、特に明示した場合および原理的に特定の形状、位置関係等に限定される場合等を除き、その形状、位置関係等に限定されるものではない。また、上記実施形態において、センサから車両の外部環境情報(例えば車外の湿度)を取得することが記載されている場合、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報を受信することも可能である。あるいは、そのセンサを廃し、車両の外部のサーバまたはクラウドからその外部環境情報に関連する関連情報を取得し、取得した関連情報からその外部環境情報を推定することも可能である。また、本開示は、上記実施形態に対する以下のような変形例および均等範囲の変形例も許容される。なお、以下の変形例は、それぞれ独立に、上記実施形態に適用および不適用を選択できる。すなわち、以下の変形例のうち明らかに矛盾する組み合わせを除く任意の組み合わせを、上記実施形態に適用することができる。
(Other embodiments)
Note that the present disclosure is not limited to the above-described embodiments, and can be modified as appropriate. In addition, in the above-described embodiments, the elements constituting the embodiments are not necessarily essential unless explicitly stated as essential or clearly considered essential in principle. In addition, in the above embodiments, when numerical values such as the number, numerical value, amount, range, etc. of the constituent elements of the embodiment are mentioned, when it is explicitly stated that they are essential, and when they are clearly limited to a specific number in principle It is not limited to that particular number, except when In particular, where more than one value is exemplified for a quantity, it is also possible to adopt a value between these values unless otherwise stated or clearly impossible in principle. . In addition, in the above-described embodiments, when referring to the shape, positional relationship, etc., of components, etc., the shape, position, etc. are It is not limited to a relationship or the like. In addition, in the above embodiment, if it is described that the external environment information of the vehicle (for example, the humidity outside the vehicle) is obtained from a sensor, the sensor is discarded and the external environment information is received from a server or cloud outside the vehicle. It is also possible to Alternatively, it is also possible to eliminate the sensor, acquire related information related to the external environment information from a server or cloud outside the vehicle, and estimate the external environment information from the acquired related information. In addition, the present disclosure allows the following modifications of the above-described embodiment and modifications within an equivalent range. It should be noted that the following modifications can be independently selected to be applied or not applied to the above embodiment. That is, any combination of the following modified examples, excluding combinations that are clearly inconsistent, can be applied to the above embodiment.
 また、本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウェア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウェア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 Also, the controller and techniques described in the present disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program. , may be implemented. Alternatively, the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible storage medium.
 また、上記実施形態においては、駐車ECU20は、車両に搭載されているが、必ずしも車両に搭載されている必要はない、例えば、駐車ECU20は、車両と通信可能な車外のサーバとして実現されていてもよい。 In the above embodiment, the parking ECU 20 is mounted on the vehicle, but it is not necessarily mounted on the vehicle. good too.
 また、上記実施形態では、平行移動距離が種々の条件に応じた可変値となっているが、平行移動距離は予め定められた固定値として設定されてもよい。 Also, in the above embodiment, the translation distance is a variable value according to various conditions, but the translation distance may be set as a predetermined fixed value.
 また、上記実施形態では、ステップ320、350にて、予定経路の一例として、通常駐車処理23と同様のアルゴリズムで算出される通常経路が例示されている。しかし、ステップ320、350で算出される予定経路は、必ずしも通常駐車処理23とは異なるアルゴリズムで算出されてもよい。 Also, in the above embodiment, in steps 320 and 350, the normal route calculated by the same algorithm as in the normal parking process 23 is exemplified as an example of the planned route. However, the planned route calculated in steps 320 and 350 may necessarily be calculated with an algorithm different from that of the normal parking process 23 .
 また、上記実施形態において、仮想駐車枠34が、パレット30の正規の停止領域31から、当該停止領域31への進入方向とは逆の向きに移動させた位置に設定される。そして、停止領域31への進入方向とは逆の向きとして、停止領域31の長手方向のうち、その時点に車両がある側の向きが、採用される。しかし、停止領域31への進入方向は、停止領域31の長手方向に正確に平行である必要はなく、車両への進入が可能な範囲で、平行からずれていてもよい。この場合も、停止領域31の長手方向に沿った、停止領域31に対する仮想駐車枠34の位置ずれ量は、停止領域31の長手方向の長さよりも短く設定される。この場合の位置ずれ量は、停止領域31の中心位置に対する仮想駐車枠34の中心位置の位置ずれ量である。 Also, in the above embodiment, the virtual parking frame 34 is set at a position moved from the regular stop area 31 of the pallet 30 in the direction opposite to the direction in which the pallet 30 enters the stop area 31 . Then, as the direction opposite to the direction of entry into the stop area 31, the direction of the side on which the vehicle is present at that time in the longitudinal direction of the stop area 31 is adopted. However, the direction of entry into the stop area 31 does not have to be exactly parallel to the longitudinal direction of the stop area 31, and may deviate from the parallel as long as entry into the vehicle is possible. Also in this case, the positional deviation amount of the virtual parking frame 34 with respect to the stop area 31 along the longitudinal direction of the stop area 31 is set shorter than the length of the stop area 31 in the longitudinal direction. The positional deviation amount in this case is the positional deviation amount of the center position of the virtual parking frame 34 with respect to the center position of the stop area 31 .
 また、上記実施形態において、駐車ECU20は、停止領域31から進入方向の逆向きに平行移動した位置に駐車枠34を設定しているが、この移動は厳密な平行移動に限られない。 Also, in the above embodiment, the parking ECU 20 sets the parking frame 34 at a position translated in the direction opposite to the entry direction from the stop area 31, but this movement is not limited to a strict parallel movement.
 また、上記実施形態では、周辺センサとして周辺カメラ11、音波センサ12、ミリ波センサ13、レーザーセンサ14が設けられているが、周辺センサの構成はこのような組み合わせに限られない。例えば、周辺センサとして周辺カメラ11が設けられ、音波センサ12、ミリ波センサ13、レーザーセンサ14が廃されてもよい。 Also, in the above embodiment, the peripheral camera 11, the sound wave sensor 12, the millimeter wave sensor 13, and the laser sensor 14 are provided as peripheral sensors, but the configuration of the peripheral sensors is not limited to such combinations. For example, the peripheral camera 11 may be provided as a peripheral sensor, and the sound wave sensor 12, millimeter wave sensor 13, and laser sensor 14 may be eliminated.

Claims (8)

  1.  機械式駐車設備のパレット(30)に車両を駐車させるよう前記車両を制御する車両駐車装置であって、
     前記パレット内における前記車両の停止領域(31)を検出する検出部(205)と、
     前記車両が前記停止領域に収まる前に前記車両が通るべき仮想駐車枠(34)を、前記停止領域から、前記停止領域への進入方向とは逆の向きに移動させた位置に、設定すると共に、前記仮想駐車枠までの予定経路(R4、R5、R6、R7)を設定する設定部(215)と、
     前記予定経路に従って前記仮想駐車枠に到達するまで前記車両を移動させる正着制御を行う第1移動制御部(405、410)と、
     前記第1移動制御部による移動の後に、前記車両を前記停止領域に収めるよう前記車両を移動させる第2移動制御部(415、420、425)と、を備え、
     前記予定経路においては、前記車両が前記停止領域から離れている段階で、前記車両の縦方向と前記停止領域の長手方向が一致し、
     前記停止領域の長手方向に沿った、前記停止領域に対する前記仮想駐車枠の位置ずれ量は、前記停止領域の長手方向の長さよりも短い、車両駐車装置。
    A vehicle parking device for controlling a vehicle to park the vehicle on a pallet (30) of a mechanical parking facility, comprising:
    a detection unit (205) for detecting a stop area (31) of the vehicle within the pallet;
    setting a virtual parking frame (34) through which the vehicle should pass before the vehicle enters the stop area, at a position moved from the stop area in a direction opposite to an entry direction into the stop area; , a setting unit (215) for setting a scheduled route (R4, R5, R6, R7) to the virtual parking frame;
    a first movement control unit (405, 410) that performs correct arrival control for moving the vehicle along the planned route until it reaches the virtual parking frame;
    a second movement control unit (415, 420, 425) for moving the vehicle so as to fit the vehicle in the stop area after movement by the first movement control unit;
    In the planned route, when the vehicle is separated from the stop area, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area,
    A vehicle parking device, wherein a positional deviation amount of the virtual parking frame with respect to the stop area along the longitudinal direction of the stop area is shorter than a length of the stop area in the longitudinal direction.
  2.  前記設定部は、前記停止領域に対する前記車両の相対的な位置および前記停止領域に対する前記車両の相対的な向きに基づいて、前記車両が現在位置から前記停止領域に収まる仮想的な経路(R1、R2)における旋回半径が小さいほど、前記位置ずれ量を長く設定する、請求項1に記載の車両駐車装置。 The setting unit selects a virtual route (R1, R1, 2. The vehicle parking device according to claim 1, wherein the smaller the turning radius in R2), the longer the positional deviation amount is set.
  3.  前記設定部は、前記パレットの前記車両側において前記車両が走行可能な空間が広いほど、前記位置ずれ量を長く設定する、請求項1または2に記載の車両駐車装置。 The vehicle parking apparatus according to claim 1 or 2, wherein the setting unit sets the amount of positional deviation longer as the space in which the vehicle can travel on the vehicle side of the pallet is wider.
  4.  前記設定部は、前記予定経路の経路コストが上限値を超えないよう、前記位置ずれ量を設定し、
     前記経路コストは、前記予定経路における切り返し回数が増加すると増加し、あるいは、前記車両の前記停止領域までの移動にかかると予想される時間が増加すると増加する、請求項3に記載の車両駐車装置。
    The setting unit sets the positional deviation amount so that the route cost of the planned route does not exceed an upper limit,
    4. The vehicle parking apparatus according to claim 3, wherein said route cost increases as the number of turns on said scheduled route increases, or as the time expected for movement of said vehicle to said stop area increases. .
  5.  前記第2移動制御部は、前記検出部よりも高い位置精度で前記停止領域を検出し、検出した結果に基づいて、前記車両を前記停止領域に収めるよう前記車両を移動させる、請求項1ないし4のいずれか1つに記載の車両駐車装置。 The second movement control unit detects the stop area with higher positional accuracy than the detection unit, and moves the vehicle based on the detection result so as to fit the vehicle in the stop area. 5. Vehicle parking device according to any one of 4.
  6.  前記第1移動制御部は、前記車両が前記仮想駐車枠に到達した後で前記車両を停止させ、
     前記第2移動制御部は、前記第1移動制御部が前記車両を停止させた後に、前記車両を前記停止領域に収めるよう前記車両を移動させる、請求項1ないし5のいずれか1つに記載の車両駐車装置。
    The first movement control unit stops the vehicle after the vehicle reaches the virtual parking frame,
    6. The vehicle according to any one of claims 1 to 5, wherein said second movement control unit moves said vehicle so as to keep said vehicle within said stop area after said first movement control unit stops said vehicle. vehicle parking device.
  7.  前記第2移動制御部は、前記第1移動制御部により前記車両が前記仮想駐車枠に到達したとき、前記車両を移動させ続けながら前記正着制御を開始する、請求項1ないし5のいずれか1つに記載の車両駐車装置。 6. The second movement control unit according to any one of claims 1 to 5, wherein when the vehicle reaches the virtual parking frame by the first movement control unit, the second movement control unit starts the correct arrival control while continuing to move the vehicle. 1. A vehicle parking system according to claim 1.
  8.  機械式駐車設備のパレット(30)に車両を駐車させるよう前記車両を制御する車両駐車装置(20)に用いるプログラムであって、
     前記パレット内における前記車両の停止領域(31)を検出する検出部(205)と、
     前記車両が前記停止領域に収まる前に前記車両が通るべき仮想駐車枠(34)を、前記停止領域から、前記停止領域への進入方向とは逆の方向に移動させた位置に、設定すると共に、前記仮想駐車枠までの予定経路(R4、R5、R6、R7)を設定する設定部(215)と、
     前記予定経路に従って前記仮想駐車枠に到達するまで前記車両を移動させる第1移動制御部(405、410)と、
     前記第1移動制御部による移動の後に、前記車両を前記停止領域に収めるよう前記車両を移動させる第2移動制御部(415、420、425)と、を備え、
     前記予定経路においては、前記車両が前記停止領域から離れている段階で、前記車両の縦方向と前記停止領域の長手方向が一致し、
     前記停止領域の長手方向に沿った、前記停止領域に対する前記仮想駐車枠の位置ずれ量は、前記停止領域の長手方向の長さよりも短い、プログラム。
    A program for use in a vehicle parking system (20) for controlling a vehicle to park the vehicle on a pallet (30) of a mechanical parking facility, comprising:
    a detection unit (205) for detecting a stop area (31) of the vehicle within the pallet;
    setting a virtual parking frame (34) through which the vehicle should pass before the vehicle enters the stop area, at a position moved from the stop area in a direction opposite to an entry direction into the stop area; , a setting unit (215) for setting a scheduled route (R4, R5, R6, R7) to the virtual parking frame;
    a first movement control unit (405, 410) for moving the vehicle along the planned route until it reaches the virtual parking frame;
    a second movement control unit (415, 420, 425) for moving the vehicle so as to fit the vehicle in the stop area after movement by the first movement control unit;
    In the planned route, when the vehicle is separated from the stop area, the longitudinal direction of the vehicle coincides with the longitudinal direction of the stop area,
    A program, wherein a positional deviation amount of the virtual parking frame with respect to the stop area along the longitudinal direction of the stop area is shorter than a length of the stop area in the longitudinal direction.
PCT/JP2022/001605 2021-01-22 2022-01-18 Vehicle parking device and program used for vehicle parking device WO2022158449A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022576688A JP7347697B2 (en) 2021-01-22 2022-01-18 Vehicle parking device and program used for vehicle parking device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009008 2021-01-22
JP2021009008 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022158449A1 true WO2022158449A1 (en) 2022-07-28

Family

ID=82549453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001605 WO2022158449A1 (en) 2021-01-22 2022-01-18 Vehicle parking device and program used for vehicle parking device

Country Status (2)

Country Link
JP (1) JP7347697B2 (en)
WO (1) WO2022158449A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106615A (en) * 2002-09-17 2004-04-08 Calsonic Kansei Corp Parking support system
JP2008007090A (en) * 2006-05-29 2008-01-17 Aisin Aw Co Ltd Parking assist method and parking assist apparatus
JP2014237977A (en) * 2013-06-10 2014-12-18 Ihi運搬機械株式会社 Transport device for ev vehicle
JP2017031682A (en) * 2015-08-03 2017-02-09 日精株式会社 Mechanical parking device
JP2018199925A (en) * 2017-05-26 2018-12-20 Ihi運搬機械株式会社 Mechanical parking system
JP2020051116A (en) * 2018-09-27 2020-04-02 新明和工業株式会社 Automatic parking support system for mechanical parking facility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004106615A (en) * 2002-09-17 2004-04-08 Calsonic Kansei Corp Parking support system
JP2008007090A (en) * 2006-05-29 2008-01-17 Aisin Aw Co Ltd Parking assist method and parking assist apparatus
JP2014237977A (en) * 2013-06-10 2014-12-18 Ihi運搬機械株式会社 Transport device for ev vehicle
JP2017031682A (en) * 2015-08-03 2017-02-09 日精株式会社 Mechanical parking device
JP2018199925A (en) * 2017-05-26 2018-12-20 Ihi運搬機械株式会社 Mechanical parking system
JP2020051116A (en) * 2018-09-27 2020-04-02 新明和工業株式会社 Automatic parking support system for mechanical parking facility

Also Published As

Publication number Publication date
JPWO2022158449A1 (en) 2022-07-28
JP7347697B2 (en) 2023-09-20

Similar Documents

Publication Publication Date Title
US11970163B2 (en) Lane change assist device
US20220363249A1 (en) Lane change assist device
JP6395274B2 (en) Parking assistance device
JP6607826B2 (en) Travel control device
JP6969401B2 (en) Steering support device
EP1864881A1 (en) Vehicle steering system
KR20200019725A (en) Parking Assistance Method and Parking Control Device
CN109421800B (en) Steering assist device
JP7212556B2 (en) vehicle controller
CN110447057B (en) Vehicle control device
JP6654118B2 (en) Self-driving vehicle
US11299176B2 (en) Vehicle control device
JP6589063B2 (en) Delivery support device
KR101903969B1 (en) Controlling apparatus for auto parking of double parked vehicle and method thereof
CN112977420B (en) Parking assistance system
US20140297121A1 (en) Smart parking assist system and control method thereof
CN112721913A (en) Parking assist apparatus
CN115335885B (en) Vehicle control device, vehicle entry support device, and vehicle
JP4248335B2 (en) Vehicle travel support device
WO2022158449A1 (en) Vehicle parking device and program used for vehicle parking device
JP2021172265A (en) Travel support method and travel support device of vehicle
JP7176651B2 (en) Parking assistance method and parking assistance device
JP7026255B2 (en) Vehicle control device
JP7377004B2 (en) Vehicle control device
JP7532043B2 (en) Parking Assistance Device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742571

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576688

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22742571

Country of ref document: EP

Kind code of ref document: A1