Nothing Special   »   [go: up one dir, main page]

WO2022158234A1 - 偏光膜、偏光板および画像表示装置 - Google Patents

偏光膜、偏光板および画像表示装置 Download PDF

Info

Publication number
WO2022158234A1
WO2022158234A1 PCT/JP2021/047760 JP2021047760W WO2022158234A1 WO 2022158234 A1 WO2022158234 A1 WO 2022158234A1 JP 2021047760 W JP2021047760 W JP 2021047760W WO 2022158234 A1 WO2022158234 A1 WO 2022158234A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pva
stretching
layer
based resin
Prior art date
Application number
PCT/JP2021/047760
Other languages
English (en)
French (fr)
Inventor
直樹 藤本
理 小島
周作 後藤
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020237024443A priority Critical patent/KR20230130017A/ko
Priority to CN202180091353.5A priority patent/CN116940872A/zh
Publication of WO2022158234A1 publication Critical patent/WO2022158234A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/04Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets uniaxial, e.g. oblique
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/879Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8793Arrangements for polarized light emission

Definitions

  • the present invention relates to a polarizing film, a polarizing plate and an image display device.
  • the present invention has been made to solve the conventional problems described above, and its main purpose is to provide a polarizing film capable of reducing the power consumption of an organic EL display device.
  • a polarizing film is provided that has a higher transmittance at a wavelength of 470 nm than at a wavelength of 600 nm.
  • the polarizing film has a haze of 1% or less.
  • the orthogonal absorbance A470 of the polarizing film at a wavelength of 470 nm is 4.0 or less.
  • the ratio (A 470 /A 600 ) of the orthogonal absorbance A 470 at a wavelength of 470 nm to the orthogonal absorbance A 600 at a wavelength of 600 nm of the polarizing film is 0.10 to 0.80.
  • the polarizing film has a single transmittance of 42.0% to 65.0% and a degree of polarization of 40.0% to 99.998%. In one embodiment, the polarizing film has a thickness of 12 ⁇ m or less.
  • a polarizing plate including the above polarizing film and a protective layer disposed on at least one side of the polarizing film.
  • the polarizing plate further includes a retardation layer, the in-plane retardation of the retardation layer at a wavelength of 550 nm is 100 nm to 190 nm, and the slow axis of the retardation layer and the polarizing film The angle formed with the absorption axis is 40° to 50°.
  • an image display device comprising the polarizing plate is provided.
  • the image display device is an organic electroluminescence display device.
  • the polarizing film according to the embodiment of the present invention has a higher transmittance at a wavelength of 470 nm than at a wavelength of 600 nm, it can transmit light on the short wavelength side more positively than light on the long wavelength side.
  • a polarizing film even when the amount of blue light emission, which consumes a large amount of power, is reduced, it is possible to suppress the decrease in luminance in the short wavelength region, and as a result, the energy saving of the organic EL display device. It is possible to achieve both high brightness and high brightness.
  • FIG. 4 is a schematic diagram showing an example of drying shrinkage treatment using a heating roll.
  • 1 is a schematic cross-sectional view of a polarizer according to one embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view of a polarizer according to one embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view of a polarizer according to one embodiment of the invention
  • FIG. 1 is a schematic cross-sectional view of a polarizer according to one embodiment of the invention
  • refractive index (nx, ny, nz) is the refractive index in the direction in which the in-plane refractive index is maximum (i.e., slow axis direction), and "ny” is the in-plane direction orthogonal to the slow axis (i.e., fast axis direction) and "nz” is the refractive index in the thickness direction.
  • In-plane retardation (Re) “Re( ⁇ )” is an in-plane retardation measured at 23° C. with light having a wavelength of ⁇ nm.
  • Re(550) is the in-plane retardation measured with light having a wavelength of 550 nm at 23°C.
  • Thickness direction retardation (Rth) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of ⁇ nm.
  • Rth(550) is the retardation in the thickness direction measured at 23° C. with light having a wavelength of 550 nm.
  • the polarizing film according to the embodiment of the present invention is composed of a polyvinyl alcohol resin film containing iodine, and has a transmittance (Ts 470 ) at a wavelength of 470 nm that is greater than a transmittance (Ts 600 ) at a wavelength of 600 nm.
  • Ts 470 transmittance
  • Ts 600 transmittance
  • the polarizing film according to the embodiment of the present invention satisfies the relationship "1 ⁇ Ts470 / Ts600 ", and preferably satisfies the relationship " 1.02 ⁇ Ts470 / Ts600 ⁇ 1.30 ".
  • a polarizing film that satisfies such a relationship can more positively transmit light on the short wavelength side than light on the long wavelength side.
  • the transmittance (Ts 470 ) at a wavelength of 470 nm is a value corresponding to the content of the PVA-I 3 -complex having absorption near the wavelength of 470 nm, and generally decreases as the content of the PVA-I 3 -complex increases. do.
  • the transmittance (Ts 600 ) at a wavelength of 600 nm is a value corresponding to the content of the PVA - I 5 -complex having absorption near the wavelength of 600 nm. descend.
  • the polarizing film that satisfies the relationship of “1 ⁇ Ts 470 /Ts 600 ” is characterized in that the content ratio of the PVA-I 3 -complex to the PVA-I 5 -complex is lower than that of the polarizing film that does not satisfy the relationship.
  • Ts 470 and Ts 600 of the polarizing film can be any suitable value depending on the purpose.
  • Ts 470 can be, for example, 40.0% or more, preferably 42.0% or more, more preferably 44.0% or more, and can be, for example, 80.0% or less, preferably 60.0% or less .
  • Ts 600 can be, for example, 40.0% or more, preferably 41.0% or more, more preferably 42.0% or more, and, for example, 70.0% or less, preferably 60.0% or less, More preferably, it can be 50.0% or less.
  • the polarizing film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm.
  • the transmittance of the polarizing film (single transmittance: Ts) is preferably 41.0% or more, more preferably 42.0% or more, and still more preferably 42.5% or more.
  • the transmittance of the polarizing film is, for example, 65.0% or less, preferably 50.0% or less, more preferably 48.0% or less.
  • the polarization degree of the polarizing film is, for example, 40.0% or more, preferably 90.0% or more, more preferably 94.0% or more, still more preferably 96.0% or more, and still more It is preferably 99.0% or more, still more preferably 99.5% or more, and preferably 99.998% or less.
  • the transmittance is typically a Y value measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
  • the degree of polarization is typically determined by the following formula based on the parallel transmittance Tp and the orthogonal transmittance Tc measured using an ultraviolet-visible spectrophotometer and subjected to visibility correction.
  • Degree of polarization (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • the transmittance of a thin polarizing film of 12 ⁇ m or less is typically the polarizing film (surface refractive index: 1.53) and the protective layer (protective film) (refractive index: 1.50 ) is measured using an ultraviolet-visible spectrophotometer.
  • the reflectance at each layer interface may change, resulting in a change in the measured transmittance.
  • the transmittance measurements may be corrected according to the refractive index of the surface of the protective layer that is in contact with the air interface.
  • the transmittance correction value C is expressed by the following formula using the reflectance R 1 (transmission axis reflectance) of polarized light parallel to the transmission axis at the interface between the protective layer and the air layer.
  • C R 1 -R 0
  • R 0 ((1.50 ⁇ 1) 2 /(1.50+1) 2 ) ⁇ (T 1 /100)
  • R 1 ((n 1 ⁇ 1) 2 /(n 1 +1) 2 ) ⁇ (T 1 /100)
  • R 0 is the transmission axis reflectance when a protective layer having a refractive index of 1.50 is used
  • n 1 is the refractive index of the protective layer used
  • T 1 is the transmittance of the polarizing film. is.
  • the correction amount C is approximately 0.2%.
  • the transmittance of the polarizing film having a surface refractive index of 1.53 and the protective layer having a refractive index of 1.53 is used. It is possible to convert to a rate.
  • the amount of change in the correction value C when the transmittance T1 of the polarizing film is changed by 2 % is 0.03% or less, and the transmittance of the polarizing film is equal to the correction value C has a limited effect on the value of Moreover, when the protective layer has absorption other than surface reflection, appropriate correction can be performed according to the amount of absorption.
  • the orthogonal absorbance A 470 of the polarizing film at a wavelength of 470 nm is preferably 4.0 or less, more preferably 3.5 or less, even more preferably 3.0 or less, and even more preferably 2.5 or less. be. Also, the orthogonal absorbance A 470 is, for example, 0.2 or more, preferably 1.0 or more, and more preferably 1.5 or more.
  • the ratio of the orthogonal absorbance A 470 at a wavelength of 470 nm to the orthogonal absorbance A 600 at a wavelength of 600 nm of the polarizing film is, for example, 0.80 or less, preferably 0.70 or less, and more preferably 0. .60 or less.
  • the ratio ( A470 / A600 ) is, for example, 0.10 or more, preferably 0.30 or more, and more preferably 0.35 or more.
  • the orthogonal absorbance A 470 is a value corresponding to the content of the PVA -I 3 -complex aligned in the direction of the absorption axis. It means that the content of the complex is large.
  • the orthogonal absorbance A 600 is a value corresponding to the content of the PVA-I 5 -complex aligned along the absorption axis. It means that the content of 5 - complexes is high. Therefore, a low ratio (A 470 /A 600 ) indicates that the content of PVA-I 3 -complexes aligned along the absorption axis is relatively small and that the content of PVA-I 5 -complexes aligned along the absorption axis is relatively small. It means that the quantity is relatively large.
  • the haze of the polarizing film is preferably 1% or less, more preferably 0.8% or less, and even more preferably 0.6% or less. If the haze is within this range, an organic EL display device with a high contrast ratio can be obtained.
  • the iodine concentration in the polarizing film is preferably 3% by weight or more, more preferably 4% to 10% by weight, and more preferably 4% to 8% by weight.
  • "iodine concentration” means the total amount of iodine contained in the polarizing film. More specifically, iodine exists in the form of I ⁇ , I 2 , I 3 ⁇ , PVA-I 3 -complex , PVA-I 5 -complex , etc. in the polarizing film. , means the concentration of iodine including all these forms.
  • the iodine concentration can be calculated, for example, from the fluorescent X-ray intensity and film (polarizing film) thickness obtained by fluorescent X-ray analysis.
  • the thickness of the polarizing film is typically 25 ⁇ m or less, preferably 12 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, even more preferably 1 ⁇ m to 7 ⁇ m, still more preferably 2 ⁇ m to 5 ⁇ m.
  • the polarizing film described in Section A can be obtained, for example, by a production method including contacting a PVA-based resin film having a water content of 15% by weight or less and having iodine adsorbed and oriented with an aqueous solvent. .
  • a production method including contacting a PVA-based resin film having a water content of 15% by weight or less and having iodine adsorbed and oriented with an aqueous solvent.
  • the polyiodine ions forming the PVA-I 3 -complex are released preferentially over the polyiodine ions forming the PVA-I 5 -complex , resulting in decolorization.
  • a polarizing film that satisfies the relationship "1 ⁇ Ts470 / Ts600 " can be easily obtained.
  • PVA-based resin film A PVA-based resin film having a moisture content of 15% by weight or less and having iodine adsorbed and oriented (also referred to herein as an “unbleached original film”) typically has a “1 ⁇ Ts 470 / Ts 600 ".
  • the unbleached original film preferably exhibits absorption dichroism at any wavelength of 380 nm to 780 nm and is in a state capable of functioning as a polarizing film.
  • the unbleached original film is preferably a PVA-based resin film that has been subjected to various treatments such as stretching, dyeing with iodine, and drying.
  • the transmittance of the unbleached original film is preferably 41.0% or more, more preferably 42.0% or more, and still more preferably 42.5%. That's it.
  • the transmittance of the unbleached original film is preferably 46.0% or less, more preferably 45.0% or less.
  • the degree of polarization of the unbleached original film is preferably 98.0% or more, more preferably 99.0% or more, still more preferably 99.9% or more.
  • the degree of polarization of the unbleached original film is preferably 99.998% or less.
  • the above transmittance and degree of polarization are obtained in the same manner as the transmittance and degree of polarization of the polarizing film.
  • the moisture content of the unbleached original film is typically 15% by weight or less, preferably 12% by weight or less, more preferably 10% by weight or less, and even more preferably 1% to 5% by weight. If the moisture content of the unbleached original film is within this range, it is possible to prevent dissolution and wrinkling upon contact with an aqueous solvent.
  • the thickness of the unbleached original film is typically 25 ⁇ m or less, preferably 12 ⁇ m or less, more preferably 1 ⁇ m to 12 ⁇ m, even more preferably 1 ⁇ m to 7 ⁇ m, still more preferably 2 ⁇ m to 5 ⁇ m.
  • the unbleached original film may be produced using a single-layer PVA-based resin film, or may be produced using a laminate of two or more layers including a PVA-based resin layer (PVA-based resin film).
  • the unbleached base film prepared using a laminate of two or more layers avoids the occurrence of wrinkles and the like even after contact with an aqueous solvent, and has excellent optical properties (typically, single transmittance and degree of polarization) can be preferably maintained.
  • the production of an unbleached original film using a laminate of two or more layers is, for example, a PVA-based resin film containing a halide and a PVA-based resin, which is It can be carried out by a method including subjecting in the state of a laminate with a bar-shaped thermoplastic resin substrate to an auxiliary air stretching treatment, a dyeing treatment, an underwater stretching treatment and a drying shrinkage treatment in this order.
  • a laminate of a thermoplastic resin substrate and a PVA-based resin film includes, for example, a PVA-based resin layer (PVA-based resin film) containing a halide and a PVA-based resin on one side of a long thermoplastic resin substrate. is obtained by forming a laminate.
  • the drying shrinkage treatment for example, the laminate of the long thermoplastic resin substrate and the PVA-based resin film is heated while being transported in the longitudinal direction, thereby shrinking the laminate by 2% or more in the width direction, and the PVA-based resin film. It includes drying until the moisture content of the system resin film becomes 15% by weight or less.
  • the content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • the underwater stretching treatment is preferably carried out in an aqueous boric acid solution.
  • the drying shrinkage treatment is preferably performed using a heating roll, and the temperature of the heating roll is preferably 60°C to 120°C. According to such a production method, it is possible to obtain an unbleached raw film having a high degree of orientation of the PVA-based resin and excellent optical properties.
  • thermoplastic resin substrate and PVA-based resin layer Any appropriate method can be adopted as a method for producing a laminate of a thermoplastic resin substrate and a PVA-based resin layer.
  • a coating liquid containing a halide and a PVA-based resin is applied to the surface of the thermoplastic resin substrate and dried to form a PVA-based resin layer on the thermoplastic resin substrate.
  • the content of the halide in the PVA-based resin layer is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • any appropriate method can be adopted as the method of applying the coating liquid. Examples thereof include roll coating, spin coating, wire bar coating, dip coating, die coating, curtain coating, spray coating, and knife coating (comma coating, etc.).
  • the coating/drying temperature of the coating liquid is preferably 50° C. or higher.
  • the thickness of the PVA-based resin layer is preferably 3 ⁇ m to 40 ⁇ m, more preferably 3 ⁇ m to 20 ⁇ m.
  • the thermoplastic resin substrate Before forming the PVA-based resin layer, the thermoplastic resin substrate may be surface-treated (for example, corona treatment, etc.), or an easy-adhesion layer may be formed on the thermoplastic resin substrate. By performing such treatment, the adhesion between the thermoplastic resin substrate and the PVA-based resin layer can be improved.
  • surface-treated for example, corona treatment, etc.
  • an easy-adhesion layer may be formed on the thermoplastic resin substrate.
  • the thickness of the thermoplastic resin substrate is preferably 20 ⁇ m to 300 ⁇ m, more preferably 50 ⁇ m to 200 ⁇ m. If the thickness is less than 20 ⁇ m, it may be difficult to form the PVA-based resin layer. If it exceeds 300 ⁇ m, for example, in the later-described underwater stretching treatment, it may take a long time for the thermoplastic resin substrate to absorb water, and an excessive load may be required for stretching.
  • the thermoplastic resin substrate preferably has a water absorption of 0.2% or more, more preferably 0.3% or more.
  • Thermoplastic resin substrates can absorb water and be plasticized with the water acting like a plasticizer. As a result, the stretching stress can be greatly reduced, and the film can be stretched at a high draw ratio.
  • the water absorption rate of the thermoplastic resin substrate is preferably 3.0% or less, more preferably 1.0% or less.
  • thermoplastic resin substrate can be adjusted, for example, by introducing a modifying group into the constituent material.
  • the water absorption is a value determined according to JIS K 7209.
  • the glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 120°C or less.
  • Tg The glass transition temperature of the thermoplastic resin substrate.
  • the temperature is preferably 100° C. or lower, more preferably 90° C. or lower.
  • the glass transition temperature of the thermoplastic resin substrate is preferably 60°C or higher.
  • the PVA-based resin layer can be satisfactorily stretched at a suitable temperature (for example, about 60°C).
  • the glass transition temperature of the thermoplastic resin substrate can be adjusted, for example, by heating using a crystallization material that introduces a modifying group into the constituent material.
  • the glass transition temperature (Tg) is a value determined according to JIS K 7121.
  • thermoplastic resin can be adopted as a constituent material of the thermoplastic resin base material.
  • thermoplastic resins include ester resins such as polyethylene terephthalate resins, cycloolefin resins such as norbornene resins, olefin resins such as polypropylene, polyamide resins, polycarbonate resins, and copolymer resins thereof. is mentioned. Among these, norbornene-based resins and amorphous polyethylene terephthalate-based resins are preferred.
  • an amorphous (not crystallized) polyethylene terephthalate resin is preferably used.
  • amorphous (difficult to crystallize) polyethylene terephthalate resin is particularly preferably used.
  • Specific examples of amorphous polyethylene terephthalate resins include copolymers further containing isophthalic acid and/or cyclohexanedicarboxylic acid as dicarboxylic acids, and copolymers further containing cyclohexanedimethanol or diethylene glycol as glycols.
  • the thermoplastic resin base material is composed of a polyethylene terephthalate resin having an isophthalic acid unit.
  • a thermoplastic resin substrate is extremely excellent in stretchability and can suppress crystallization during stretching. This is probably because the introduction of the isophthalic acid unit gives the main chain a large bend.
  • a polyethylene terephthalate-based resin has a terephthalic acid unit and an ethylene glycol unit.
  • the isophthalic acid unit content is preferably 0.1 mol % or more, more preferably 1.0 mol % or more, relative to the total of all repeating units. This is because a thermoplastic resin base material having extremely excellent stretchability can be obtained.
  • the isophthalic acid unit content is preferably 20 mol % or less, more preferably 10 mol % or less, relative to the total of all repeating units.
  • the degree of crystallinity can be favorably increased in the drying shrinkage treatment described later.
  • the thermoplastic resin substrate may be stretched in advance (before forming the PVA-based resin layer). In one embodiment, it is stretched in the transverse direction of the elongated thermoplastic resin substrate.
  • the lateral direction is preferably a direction perpendicular to the stretching direction of the laminate described below.
  • perpendicular also includes the case of being substantially perpendicular.
  • substantially orthogonal includes 90° ⁇ 5.0°, preferably 90° ⁇ 3.0°, more preferably 90° ⁇ 1.0°.
  • the stretching temperature of the thermoplastic resin substrate is preferably Tg-10°C to Tg+50°C with respect to the glass transition temperature (Tg).
  • the draw ratio of the thermoplastic resin substrate is preferably 1.5 to 3.0 times.
  • thermoplastic resin base material Any appropriate method can be adopted as a method for stretching the thermoplastic resin base material.
  • the drawing may be fixed end drawing or free end drawing.
  • the stretching method may be a dry method or a wet method.
  • the stretching of the thermoplastic resin substrate may be performed in one step or in multiple steps. When performing in multiple stages, the above-mentioned draw ratio is the product of the draw ratios in each step.
  • the coating liquid contains a halide and a PVA-based resin, as described above.
  • the coating liquid is typically a solution in which the halide and the PVA-based resin are dissolved in a solvent.
  • solvents include water, dimethylsulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, various glycols, polyhydric alcohols such as trimethylolpropane, and amines such as ethylenediamine and diethylenetriamine. These can be used alone or in combination of two or more. Among these, water is preferred.
  • the concentration of the PVA-based resin in the solution is preferably 3 to 20 parts by weight with respect to 100 parts by weight of the solvent. With such a resin concentration, it is possible to form a uniform coating film in close contact with the thermoplastic resin substrate.
  • the content of the halide in the coating liquid is preferably 5 to 20 parts by weight with respect to 100 parts by weight of the PVA-based resin.
  • Additives may be added to the coating liquid.
  • additives include plasticizers and surfactants.
  • plasticizers include polyhydric alcohols such as ethylene glycol and glycerin.
  • Surfactants include, for example, nonionic surfactants. These can be used for the purpose of further improving the uniformity, dyeability and stretchability of the obtained PVA-based resin layer.
  • any appropriate resin can be adopted as the PVA-based resin.
  • Examples include polyvinyl alcohol and ethylene-vinyl alcohol copolymers.
  • Polyvinyl alcohol is obtained by saponifying polyvinyl acetate.
  • An ethylene-vinyl alcohol copolymer is obtained by saponifying an ethylene-vinyl acetate copolymer.
  • the degree of saponification of the PVA-based resin is usually 85 mol% to 100 mol%, preferably 95.0 mol% to 99.95 mol%, more preferably 99.0 mol% to 99.93 mol%. .
  • the degree of saponification can be determined according to JIS K 6726-1994. By using a PVA-based resin having such a degree of saponification, an unbleached original film having excellent durability can be obtained. If the degree of saponification is too high, gelation may occur.
  • the average degree of polymerization of the PVA-based resin can be appropriately selected according to the purpose.
  • the average degree of polymerization is usually 1,000 to 10,000, preferably 1,200 to 4,500, more preferably 1,500 to 4,300.
  • the average degree of polymerization can be determined according to JIS K 6726-1994.
  • halide any appropriate halide can be adopted as the halide.
  • examples include iodide and sodium chloride.
  • Iodides include, for example, potassium iodide, sodium iodide, and lithium iodide. Among these, potassium iodide is preferred.
  • the amount of the halide in the coating liquid is preferably 5 parts by weight to 20 parts by weight with respect to 100 parts by weight of the PVA resin, and more preferably 10 parts by weight to 15 parts by weight with respect to 100 parts by weight of the PVA resin. Department. If the amount of the halide exceeds 20 parts by weight with respect to 100 parts by weight of the PVA-based resin, the halide may bleed out and the finally obtained unbleached original film may become cloudy.
  • the orientation of the polyvinyl alcohol molecules in the PVA-based resin layer increases. orientation may be disturbed and the orientation may be lowered.
  • the laminate is stretched in boric acid water at a relatively high temperature in order to stabilize the stretching of the thermoplastic resin substrate.
  • the film is stretched, the tendency of the degree of orientation to decrease is remarkable.
  • the stretching of a single PVA film in boric acid water is generally carried out at 60° C.
  • the stretching of a laminate of A-PET (thermoplastic resin substrate) and a PVA-based resin layer is It is carried out at a high temperature of about 70° C., and in this case, the orientation of PVA at the initial stage of stretching may be lowered before it is increased by stretching in water.
  • the crystallization of the PVA-based resin in the PVA-based resin layer of the laminate after auxiliary stretching can be promoted.
  • the PVA-based resin layer is immersed in a liquid, the disturbance of the orientation of the polyvinyl alcohol molecules and the deterioration of the orientation can be suppressed compared to the case where the PVA-based resin layer does not contain a halide.
  • This makes it possible to improve the optical properties of the unbleached base film obtained through a treatment step in which the laminate is immersed in a liquid, such as dyeing treatment and stretching treatment in water.
  • auxiliary stretching such as two-step stretching
  • the stretching method of the in-air auxiliary stretching may be fixed edge stretching (e.g., a method of stretching using a tenter stretching machine) or free edge stretching (e.g., a method of uniaxially stretching the laminate through rolls having different peripheral speeds).
  • free-end drawing may be positively employed in order to obtain high optical properties.
  • the in-air stretching process includes a heating roll stretching step in which the laminate is stretched by a peripheral speed difference between heating rolls while being conveyed in the longitudinal direction.
  • the air drawing process typically includes a zone drawing process and a hot roll drawing process.
  • the order of the zone stretching process and the heating roll stretching process is not limited, and the zone stretching process may be carried out first, or the heating roll stretching process may be carried out first.
  • the zone drawing step may be omitted. In one embodiment, the zone drawing step and the heated roll drawing step are performed in this order.
  • the laminate is stretched by gripping the ends of the laminate and widening the distance between the tenters in the machine direction in a tenter stretching machine (the widening of the distance between the tenters is the stretching ratio). At this time, the distance between the tenters in the width direction (perpendicular to the machine direction) is set to be arbitrarily close.
  • the draw ratio in the machine direction can be set to be closer to the free end draw.
  • the shrinkage ratio in the width direction is calculated by (1/stretching ratio) 1/2 .
  • Aerial auxiliary stretching may be performed in one step or in multiple steps. When it is carried out in multiple stages, the draw ratio is the product of the draw ratios in each step.
  • the stretching direction in the in-air auxiliary stretching is preferably substantially the same as the stretching direction in the underwater stretching.
  • the draw ratio in the in-air auxiliary drawing is preferably 2.0 to 3.5 times.
  • the maximum draw ratio when the auxiliary drawing in the air and the drawing in water are combined is preferably 5.0 times or more, more preferably 5.5 times or more, and still more preferably 6.0 times the original length of the laminate. That's it.
  • the term "maximum draw ratio" refers to the draw ratio immediately before the laminate breaks, and is 0.2 lower than the draw ratio at which the laminate breaks.
  • the stretching temperature for the in-air auxiliary stretching can be set to any appropriate value depending on the material for forming the thermoplastic resin base material, the stretching method, and the like.
  • the stretching temperature is preferably the glass transition temperature (Tg) of the thermoplastic resin substrate or higher, more preferably the glass transition temperature (Tg) of the thermoplastic resin substrate + 10°C or higher, and particularly preferably Tg + 15°C or higher.
  • the upper limit of the stretching temperature is preferably 170°C.
  • the crystallization index of the PVA-based resin after auxiliary stretching in air is preferably 1.3 to 1.8, more preferably 1.4 to 1.7.
  • an insolubilization treatment is performed after the auxiliary stretching treatment in the air and before the stretching treatment in water or the dyeing treatment.
  • the insolubilization treatment is typically performed by immersing the PVA-based resin layer in an aqueous boric acid solution.
  • the insolubilization treatment imparts water resistance to the PVA-based resin layer, and prevents deterioration of the orientation of the PVA when immersed in water.
  • the concentration of the boric acid aqueous solution is preferably 1 to 4 parts by weight with respect to 100 parts by weight of water.
  • the liquid temperature of the insolubilizing bath is preferably 20°C to 50°C.
  • the dyeing treatment is typically performed by dyeing the PVA-based resin layer with iodine. Specifically, it is carried out by allowing the PVA-based resin layer to adsorb iodine.
  • the adsorption method include a method of immersing the PVA-based resin layer (laminate) in a dyeing solution containing iodine, a method of coating the PVA-based resin layer with the dyeing solution, and a method of applying the dyeing solution to the PVA-based resin layer.
  • a spraying method and the like can be mentioned.
  • a preferred method is to immerse the laminate in a dyeing solution (dyeing bath). This is because iodine can be well adsorbed.
  • the staining solution is preferably an iodine aqueous solution.
  • the amount of iodine compounded is preferably 0.05 to 0.5 parts by weight per 100 parts by weight of water.
  • an iodide to the iodine aqueous solution.
  • iodides include potassium iodide, lithium iodide, sodium iodide, zinc iodide, aluminum iodide, lead iodide, copper iodide, barium iodide, calcium iodide, tin iodide, and titanium iodide. etc.
  • potassium iodide is preferred.
  • the amount of iodide compounded is preferably 0.1 to 10 parts by weight, more preferably 0.3 to 5 parts by weight, per 100 parts by weight of water.
  • the liquid temperature of the dyeing liquid during dyeing is preferably 20° C. to 50° C. in order to suppress the dissolution of the PVA-based resin.
  • the immersion time is preferably 5 seconds to 5 minutes, more preferably 30 seconds to 90 seconds, in order to ensure the transmittance of the PVA-based resin layer.
  • the dyeing conditions can be set so that the single transmittance of the finally obtained unbleached raw film has a desired value.
  • the content ratio of iodine and potassium iodide in the aqueous iodine solution is preferably 1:5 to 1:10.
  • the boric acid contained in the treatment bath is mixed into the dyeing bath.
  • the boric acid concentration in the dyeing bath may change over time, resulting in unstable dyeability.
  • the upper limit of the boric acid concentration in the dyeing bath is preferably 4 parts by weight, more preferably 2 parts by weight with respect to 100 parts by weight of water. adjusted.
  • the lower limit of the boric acid concentration in the dyeing bath is preferably 0.1 parts by weight, more preferably 0.2 parts by weight, and still more preferably 0.5 parts by weight with respect to 100 parts by weight of water. is.
  • the dyeing process is performed using a dyeing bath pre-blended with boric acid. This can reduce the rate of change in boric acid concentration when the boric acid in the treatment bath is mixed into the dyeing bath.
  • the amount of boric acid blended in advance in the dyeing bath (that is, the content of boric acid not derived from the treatment bath) is preferably 0.1 to 2 parts by weight with respect to 100 parts by weight of water. , more preferably 0.5 to 1.5 parts by weight.
  • a crosslinking treatment is applied after the dyeing treatment and before the underwater stretching treatment.
  • the cross-linking treatment is typically performed by immersing the PVA-based resin layer in an aqueous solution of boric acid.
  • the cross-linking treatment imparts water resistance to the PVA-based resin layer, and prevents deterioration of the orientation of the PVA when immersed in high-temperature water in the subsequent underwater stretching.
  • the concentration of the boric acid aqueous solution is preferably 1 to 5 parts by weight with respect to 100 parts by weight of water.
  • the amount of iodide compounded is preferably 1 to 5 parts by weight per 100 parts by weight of water. Specific examples of iodides are as described above.
  • the liquid temperature of the cross-linking bath is preferably 20°C to 50°C.
  • thermoplastic resin substrate and the PVA-based resin layer can be stretched at a temperature lower than the glass transition temperature (typically, about 80° C.), and the PVA-based resin layer undergoes its crystallization. can be stretched at a high magnification while suppressing the As a result, an unbleached original film having excellent optical properties can be produced.
  • any appropriate method can be adopted as the method for stretching the laminate. Specifically, fixed-end stretching or free-end stretching (for example, a method of uniaxially stretching a laminate by passing it between rolls having different peripheral speeds) may be used. Free-end drawing is preferably chosen.
  • the laminate may be stretched in one step or in multiple steps. When the stretching is performed in multiple stages, the draw ratio (maximum draw ratio) of the laminate described below is the product of the draw ratios in each step.
  • the stretching in water is preferably carried out by immersing the laminate in an aqueous boric acid solution (stretching in boric acid water).
  • an aqueous boric acid solution as the stretching bath, the PVA-based resin layer can be imparted with rigidity to withstand tension applied during stretching and water resistance that does not dissolve in water.
  • boric acid can form a tetrahydroxyborate anion in an aqueous solution and crosslink with a PVA-based resin through hydrogen bonding.
  • rigidity and water resistance can be imparted to the PVA-based resin layer, which can be satisfactorily stretched, and an unbleached base film having excellent optical properties can be produced.
  • the boric acid aqueous solution is preferably obtained by dissolving boric acid and/or a borate salt in water as a solvent.
  • the boric acid concentration is preferably 1 part by weight to 10 parts by weight, more preferably 2.5 parts by weight to 6 parts by weight, and particularly preferably 3 parts by weight to 5 parts by weight with respect to 100 parts by weight of water. is.
  • an aqueous solution obtained by dissolving a boron compound such as borax, glyoxal, glutaraldehyde, or the like in a solvent can also be used.
  • an iodide is added to the stretching bath (boric acid aqueous solution).
  • iodide elution of iodine adsorbed on the PVA-based resin layer can be suppressed.
  • Specific examples of iodides are as described above.
  • the concentration of iodide is preferably 0.05 to 15 parts by weight, more preferably 0.5 to 8 parts by weight, per 100 parts by weight of water.
  • the stretching temperature (liquid temperature of the stretching bath) is preferably 40°C to 85°C, more preferably 60°C to 75°C. At such a temperature, the film can be stretched at a high magnification while suppressing dissolution of the PVA-based resin layer.
  • the glass transition temperature (Tg) of the thermoplastic resin substrate is preferably 60° C. or higher in relation to the formation of the PVA-based resin layer. In this case, if the stretching temperature is lower than 40° C., it may not be possible to stretch well even if the plasticization of the thermoplastic resin base material by water is considered.
  • the higher the temperature of the stretching bath the higher the solubility of the PVA-based resin layer, which may make it impossible to obtain excellent optical properties.
  • the immersion time of the laminate in the stretching bath is preferably 15 seconds to 5 minutes.
  • the draw ratio by underwater drawing is preferably 1.5 times or more, more preferably 3.0 times or more.
  • the total draw ratio of the laminate is preferably 5.0 times or more, more preferably 5.5 times or more, relative to the original length of the laminate.
  • dry shrinkage treatment for example, the laminate of the long thermoplastic resin substrate and the PVA-based resin film is heated while being transported in the longitudinal direction, thereby shrinking the laminate by 2% or more in the width direction. and drying until the water content of the PVA-based resin film becomes 15% by weight or less. From the viewpoint of obtaining a stable appearance, it is preferable to dry to a moisture content of 12% by weight or less, more preferably 10% by weight or less, and even more preferably 1% to 5% by weight.
  • the drying shrinkage treatment may be performed by zone heating performed by heating the entire zone, or by heating the transport roll (using a so-called heating roll) (heating roll drying method). Preferably both are used.
  • heating roll heating roll drying method
  • the crystallization of the thermoplastic resin substrate can be efficiently promoted to increase the degree of crystallinity, which is relatively low. Even at the drying temperature, the degree of crystallinity of the thermoplastic resin substrate can be favorably increased.
  • the thermoplastic resin base material has increased rigidity and is in a state capable of withstanding shrinkage of the PVA-based resin layer due to drying, thereby suppressing curling.
  • the layered product can be dried while being maintained in a flat state, so that not only curling but also wrinkling can be suppressed.
  • the laminate can be shrunk in the width direction by drying shrinkage treatment, thereby improving the optical properties. This is because the orientation of PVA and PVA/iodine complex can be effectively enhanced.
  • the shrinkage ratio of the laminate in the width direction due to drying shrinkage treatment is preferably 1% to 10%, more preferably 2% to 8%, and particularly preferably 4% to 6%.
  • FIG. 1 is a schematic diagram showing an example of drying shrinkage treatment.
  • the laminate 200 is dried while being transported by transport rolls R1 to R6 heated to a predetermined temperature and guide rolls G1 to G4.
  • the transport rolls R1 to R6 are arranged so as to alternately and continuously heat the surface of the PVA-based resin layer and the surface of the thermoplastic resin substrate.
  • the transport rolls R1 to R6 may be arranged so as to continuously heat only the plastic resin substrate surface).
  • the drying conditions can be controlled by adjusting the heating temperature of the transport rolls (the temperature of the heating rolls), the number of heating rolls, the contact time with the heating rolls, and so on.
  • the temperature of the heating roll is preferably 60°C to 120°C, more preferably 65°C to 100°C, and particularly preferably 70°C to 80°C.
  • the degree of crystallinity of the thermoplastic resin can be favorably increased, curling can be favorably suppressed, and an optical laminate having extremely excellent durability can be produced.
  • the temperature of the heating roll can be measured with a contact thermometer. In the illustrated example, six transport rolls are provided, but there is no particular limitation as long as the number of transport rolls is plural. Conveying rolls are usually 2 to 40, preferably 4 to 30 in number.
  • the contact time (total contact time) between the laminate and the heating roll is preferably 1 to 300 seconds, more preferably 1 to 20 seconds, still more preferably 1 to 10 seconds.
  • the heating roll may be provided in a heating furnace (for example, an oven), or may be provided in a normal production line (under room temperature environment). Preferably, it is provided in a heating furnace equipped with air blowing means.
  • a heating furnace equipped with air blowing means.
  • the temperature for hot air drying is preferably 20°C to 100°C.
  • the hot air drying time is preferably 1 second to 300 seconds.
  • the wind speed of the hot air is preferably about 10m/s to 30m/s. The wind speed is the wind speed in the heating furnace and can be measured with a mini-vane digital anemometer.
  • a washing treatment is performed after the underwater stretching treatment and before the drying shrinkage treatment.
  • the cleaning treatment is typically performed by immersing the PVA-based resin layer in an aqueous solution of potassium iodide.
  • B-1-2 Preparation of unbleached original film using single-layer PVA-based resin film )
  • a long PVA-based resin film is dyed and stretched (typically, uniaxially stretched using a roll stretcher in an aqueous boric acid solution), and then the moisture content is 15% by weight or less, preferably 12% by weight. % or less, more preferably 10 wt % or less, more preferably 1 wt % to 5 wt %.
  • the dyeing is performed by, for example, immersing the PVA-based resin film in an iodine aqueous solution.
  • the draw ratio of the uniaxial drawing is preferably 3 to 7 times. Stretching may be performed after the dyeing treatment, or may be performed while dyeing.
  • the PVA-based resin film is subjected to swelling treatment, cross-linking treatment, washing treatment, and the like. For example, by immersing the PVA-based resin film in water and washing it with water before dyeing, it is possible not only to wash away stains and anti-blocking agents on the surface of the PVA-based resin film, but also to swell the PVA-based resin film for dyeing. Unevenness and the like can be prevented.
  • Aqueous Solvent As the aqueous solvent, any appropriate solvent can be used as long as iodine can be eluted from the unbleached original film.
  • the aqueous solvent can be, for example, water or a mixture of water and a water-soluble organic solvent.
  • Preferred examples of the water-soluble organic solvent include lower monoalcohols having 1 to 4 carbon atoms such as methanol, ethanol, n-propyl alcohol and isopropyl alcohol, and polyhydric alcohols such as glycerin and ethylene glycol.
  • the method of contact with the aqueous solvent is not particularly limited, and any appropriate method such as immersion, spraying, or coating can be used. Immersion is preferred from the viewpoint of bringing the entire surface of the unbleached original film into contact with the aqueous solvent uniformly.
  • the contact time with the aqueous solvent and the temperature of the aqueous solvent during contact can be appropriately set according to desired Ts 470 , Ts 600 , A 470 , A 600 and the like. Increasing the contact time or increasing the temperature of the aqueous solvent tends to increase the transmittance (especially Ts 470 ) and decrease the orthogonal absorbance (especially A 470 ).
  • the contact time can be, for example, 10 minutes or less, preferably 60 seconds to 9 minutes, more preferably 60 seconds to 4 minutes.
  • the temperature of the aqueous solvent can be preferably 20°C to 70°C, more preferably 30°C to 65°C, even more preferably 40°C to 60°C.
  • the contact between the unbleached original film and the aqueous solvent may be carried out by bringing only one surface of the unbleached original film into contact with the aqueous solvent, or by bringing both surfaces into contact with the aqueous solvent. Therefore, a laminate of [unbleached original film/resin substrate] or a laminate of [unbleached original film/protective layer] produced using a laminate of [PVA-based resin layer/resin substrate] is dissolved in an aqueous solvent. can be used for contact with Alternatively, an unbleached original film prepared using a single-layer PVA-based resin film can be used as it is or in the form of a laminate with a protective layer provided on one side for contact with an aqueous solvent.
  • the polarizing film obtained by contact with an aqueous solvent may be subjected to a drying treatment.
  • the drying temperature can be, for example, 20°C to 100°C, preferably 30°C to 80°C.
  • the moisture content of the dried polarizing film is typically 15% by weight or less, preferably 12% by weight or less, more preferably 10% by weight or less, and still more preferably 1% to 5% by weight. is.
  • a polarizing plate according to an embodiment of the present invention includes a polarizing film and a protective layer disposed on at least one side of the polarizing film, and may further include a retardation layer if necessary.
  • a polarizing plate including a retardation layer may be referred to as a polarizing plate with a retardation layer.
  • the b * value of the polarizing plate is, for example, ⁇ 3 or less, preferably ⁇ 4 or less, more preferably ⁇ 20 to ⁇ 5.
  • a polarizing plate having a b * value within this range has a high transmittance for light in the short wavelength region, and therefore exhibits a bluish hue.
  • FIG. 2 is a schematic cross-sectional view of a polarizing plate according to one embodiment of the present invention.
  • the polarizing plate 100 includes a polarizing film 10, a first protective layer 12 disposed on one side of the polarizing film 10, and a second protective layer 14 disposed on the other side of the polarizing film 10. .
  • FIG. 3 is a schematic cross-sectional view of a polarizing plate including a retardation layer according to another embodiment of the invention.
  • the polarizing plate with a retardation layer 200a includes a polarizing film 10, a first protective layer 12 arranged on one side of the polarizing film 10, and a second protective layer arranged on the other side of the polarizing film 10. 14 and a first retardation layer 20 disposed on the opposite side of the second protective layer 14 to the side on which the polarizing film 10 is disposed.
  • one of the first protective layer 12 and the second protective layer 14 may be omitted.
  • the retardation layer 20 can also function as a protective layer for the polarizing film 10
  • the second protective layer 14 may be omitted.
  • FIG. 4 is a schematic cross-sectional view of a polarizing plate including a retardation layer according to still another embodiment of the invention.
  • the polarizing plate with a retardation layer 200b includes a polarizing film 10, a first protective layer 12 arranged on one side of the polarizing film 10, and a second protective layer arranged on the other side of the polarizing film 10. 14, and a first retardation layer 20, a second retardation layer 30 and a conductive layer or an isotropic substrate with a conductive layer on the side opposite to the side on which the polarizing film 10 of the second protective layer 14 is arranged 40 are provided in this order.
  • the second retardation layer 30 and the conductive layer or the isotropic substrate with a conductive layer 40 are typically optional layers provided as needed, and either or both of them may be omitted.
  • the polarizing plate with a retardation layer is a so-called inner It can be applied to a touch panel type input display device.
  • Re(550) of the first retardation layer 20 is, for example, 100 nm to 190 nm.
  • the angle between the slow axis of the first retardation layer 20 and the absorption axis of the polarizing film 10 is, for example, 40° to 50°.
  • the above embodiments may be combined as appropriate, and the constituent elements in the above embodiments may be modified in a way that is obvious in the art.
  • the configuration in which the isotropic substrate 40 with a conductive layer is provided outside the second retardation layer 30 is replaced with an optically equivalent configuration (for example, a laminate of the second retardation layer and the conductive layer). good too.
  • the polarizing plate or the polarizing plate with a retardation layer according to the embodiment of the present invention may further contain other retardation layers.
  • Other optical properties of the retardation layer for example, refractive index properties, in-plane retardation, Nz coefficient, photoelastic coefficient), thickness, arrangement position, etc. can be appropriately set according to the purpose.
  • the polarizing plate of the present invention may be sheet-shaped or elongated.
  • the term "long shape” means an elongated shape whose length is sufficiently long relative to its width, for example, an elongated shape whose length is 10 times or more, preferably 20 times or more, its width.
  • a long polarizing plate can be wound into a roll.
  • the retardation layer-attached polarizing plate is elongated, the polarizing plate and the retardation layer are also elongated.
  • the polarizing film preferably has an absorption axis in the longitudinal direction.
  • the first retardation layer is preferably an obliquely stretched film having a slow axis in a direction forming an angle of 40° to 50° with respect to the longitudinal direction. If the polarizing film and the first retardation layer have such structures, the retardation layer-attached polarizing plate can be produced by roll-to-roll.
  • an adhesive layer (not shown) is provided on the side of the retardation layer opposite to the polarizing plate, and the polarizing plate with the retardation layer can be attached to the image display cell. Furthermore, it is preferable that a release film is temporarily attached to the surface of the pressure-sensitive adhesive layer until the polarizing plate with the retardation layer is used. Temporarily attaching the release film protects the pressure-sensitive adhesive layer and enables roll formation.
  • the total thickness of the polarizing plate is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, even more preferably 100 ⁇ m or less, even more preferably 90 ⁇ m or less, and even more preferably 85 ⁇ m or less.
  • a lower limit for the total thickness can be, for example, 30 ⁇ m.
  • Polarizing Film As the polarizing film, the polarizing film described in Section A is used.
  • the first protective layer and the second protective layer are each formed of any suitable film that can be used as a protective layer for a polarizing film.
  • the material that is the main component of the film include cellulose-based resins such as triacetyl cellulose (TAC), polyester-based, polyvinyl alcohol-based, polycarbonate-based, polyamide-based, polyimide-based, polyethersulfone-based, and polysulfone-based resins. , polystyrene-based, polynorbornene-based, polyolefin-based, (meth)acrylic-based, and acetate-based transparent resins.
  • TAC triacetyl cellulose
  • polyester-based polyvinyl alcohol-based
  • polycarbonate-based polyamide-based
  • polyimide-based polyimide-based
  • polyethersulfone-based polysulfone-based resins.
  • polystyrene-based polynorbornene-based
  • polyolefin-based
  • Thermosetting resins such as (meth)acrylic, urethane, (meth)acrylic urethane, epoxy, and silicone, or ultraviolet curable resins may also be used.
  • a glassy polymer such as a siloxane-based polymer can also be used.
  • polymer films described in JP-A-2001-343529 can also be used. Materials for this film include, for example, a resin composition containing a thermoplastic resin having a substituted or unsubstituted imide group in a side chain and a thermoplastic resin having a substituted or unsubstituted phenyl group and nitrile group in a side chain.
  • the polymer film can be, for example, an extrudate of the resin composition.
  • the thickness of the protective layer is preferably 5 ⁇ m to 200 ⁇ m, more preferably 10 ⁇ m to 100 ⁇ m, still more preferably 10 ⁇ m to 60 ⁇ m.
  • the first retardation layer may have any appropriate optical properties and/or mechanical properties depending on the purpose.
  • the first retardation layer typically has a slow axis.
  • the angle ⁇ between the slow axis of the first retardation layer and the absorption axis of the polarizing film is 40° to 50° as described above, preferably 42° to 48°. , more preferably about 45°. If the angle ⁇ is in such a range, by using a ⁇ / 4 plate as the first retardation layer as described later, very good circular polarization properties (as a result, very good antireflection properties) can be obtained.
  • the first retardation layer preferably exhibits a refractive index characteristic of nx>ny ⁇ nz.
  • the first retardation layer is typically provided to impart antireflection properties to the polarizing plate, and in one embodiment can function as a ⁇ /4 plate.
  • the in-plane retardation Re(550) of the first retardation layer is preferably 100 nm to 190 nm, more preferably 110 nm to 170 nm, still more preferably 130 nm to 160 nm.
  • the Nz coefficient of the first retardation layer is preferably 0.9 to 3, more preferably 0.9 to 2.5, even more preferably 0.9 to 1.5, particularly preferably 0.9 to 1.5. 3.
  • the first retardation layer may exhibit a reverse wavelength dispersion characteristic in which the retardation value increases according to the wavelength of the measurement light, or has a positive wavelength dispersion characteristic in which the retardation value decreases according to the wavelength of the measurement light. It may also show a flat wavelength dispersion characteristic in which the phase difference value hardly changes even with the wavelength of the measurement light.
  • the first retardation layer exhibits reverse dispersion wavelength characteristics.
  • Re(450)/Re(550) of the retardation layer is preferably 0.8 or more and less than 1, more preferably 0.8 or more and 0.95 or less. With such a configuration, very excellent antireflection properties can be achieved.
  • the absolute value of the photoelastic coefficient of the first retardation layer is preferably 2 ⁇ 10 ⁇ 11 m 2 /N or less, more preferably 2.0 ⁇ 10 ⁇ 13 m 2 /N to 1.5 ⁇ 10 ⁇ 11 m 2 /N, more preferably 1.0 ⁇ 10 ⁇ 12 m 2 /N to 1.2 ⁇ 10 ⁇ 11 m 2 /N of resin. If the absolute value of the photoelastic coefficient is within such a range, the phase difference is less likely to change when shrinkage stress occurs during heating. As a result, heat unevenness in the obtained image display device can be satisfactorily prevented.
  • the first retardation layer may be a stretched resin film or a liquid crystal alignment fixed layer.
  • the thickness of the first retardation layer composed of a stretched resin film is preferably 70 ⁇ m or less, more preferably 45 ⁇ m to 60 ⁇ m. If the thickness of the first retardation layer is within such a range, it is possible to satisfactorily control curling during bonding while satisfactorily suppressing curling during heating. Further, as described later, in an embodiment in which the first retardation layer is composed of a polycarbonate-based resin film, the thickness of the first retardation layer is preferably 40 ⁇ m or less, more preferably 10 ⁇ m to 40 ⁇ m. and more preferably 20 ⁇ m to 30 ⁇ m. By forming the first retardation layer from a polycarbonate-based resin film having such a thickness, it is possible to contribute to improvement in bending durability and reflection hue while suppressing the occurrence of curling.
  • resins capable of forming the first retardation layer include polycarbonate-based resins, polyester carbonate-based resins, polyester-based resins, polyvinyl acetal-based resins, polyarylate-based resins, cyclic olefin-based resins, cellulose-based resins, polyvinyl Examples include alcohol-based resins, polyamide-based resins, polyimide-based resins, polyether-based resins, polystyrene-based resins, and acrylic-based resins. These resins may be used alone or in combination (for example, blended, copolymerized).
  • the first retardation layer is composed of a resin film exhibiting reverse wavelength dispersion characteristics
  • a polycarbonate-based resin or a polyester carbonate-based resin hereinafter sometimes simply referred to as a polycarbonate-based resin
  • a polycarbonate-based resin includes a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, an alicyclic diol, an alicyclic dimethanol, di-, tri- or polyethylene glycol, and an alkylene and a structural unit derived from at least one dihydroxy compound selected from the group consisting of glycols or spiroglycols.
  • the polycarbonate-based resin contains a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, a structural unit derived from an alicyclic dimethanol, and/or di-, tri- or polyethylene glycol. More preferably a structural unit derived from a fluorene-based dihydroxy compound, a structural unit derived from an isosorbide-based dihydroxy compound, and a structural unit derived from di-, tri- or polyethylene glycol. .
  • the polycarbonate-based resin may contain structural units derived from other dihydroxy compounds as necessary.
  • the details of the polycarbonate resin that can be preferably used in the present invention are, for example, JP-A-2014-10291, JP-A-2014-26266, JP-A-2015-212816, JP-A-2015-212817. , JP-A-2015-212818, which is incorporated herein by reference.
  • the glass transition temperature of the polycarbonate-based resin is preferably 110°C or higher and 150°C or lower, more preferably 120°C or higher and 140°C or lower. If the glass transition temperature is excessively low, the heat resistance tends to be poor, which may cause dimensional changes after film formation, and may lower the image quality of the resulting organic EL panel. If the glass transition temperature is excessively high, the molding stability during film molding may deteriorate, and the transparency of the film may be impaired. The glass transition temperature is obtained according to JIS K 7121 (1987).
  • the molecular weight of the polycarbonate-based resin can be represented by the reduced viscosity.
  • the reduced viscosity is measured using an Ubbelohde viscometer at a temperature of 20.0°C ⁇ 0.1°C, using methylene chloride as a solvent, precisely adjusting the polycarbonate concentration to 0.6 g/dL.
  • the lower limit of the reduced viscosity is usually preferably 0.30 dL/g, more preferably 0.35 dL/g or more.
  • the upper limit of the reduced viscosity is usually preferably 1.20 dL/g, more preferably 1.00 dL/g, still more preferably 0.80 dL/g.
  • the reduced viscosity is less than the above lower limit, there may be a problem that the mechanical strength of the molded product is reduced. On the other hand, if the reduced viscosity is higher than the upper limit, there may be a problem that the fluidity during molding is lowered, and the productivity and moldability are lowered.
  • a commercially available film may be used as the polycarbonate resin film.
  • Specific examples of commercially available products include “Pure Ace WR-S”, “Pure Ace WR-W” and “Pure Ace WR-M” manufactured by Teijin, and “NRF” manufactured by Nitto Denko. be done.
  • the first retardation layer is obtained, for example, by stretching a film formed from the above polycarbonate-based resin.
  • Any appropriate molding method can be adopted as a method for forming a film from a polycarbonate-based resin. Specific examples include compression molding method, transfer molding method, injection molding method, extrusion molding method, blow molding method, powder molding method, FRP molding method, cast coating method (e.g., casting method), calendar molding method, and heat press. law, etc. Extrusion or cast coating methods are preferred. This is because the smoothness of the resulting film can be enhanced and good optical uniformity can be obtained. Molding conditions can be appropriately set according to the composition and type of the resin used, properties desired for the retardation layer, and the like. As described above, many film products of polycarbonate-based resins are commercially available, and the commercially available films may be subjected to the stretching treatment as they are.
  • the thickness of the resin film can be set to any appropriate value depending on the desired thickness of the first retardation layer, desired optical properties, stretching conditions described later, and the like. It is preferably 50 ⁇ m to 300 ⁇ m.
  • any suitable drawing method and drawing conditions may be employed for the above-mentioned drawing.
  • various drawing methods such as free-end drawing, fixed-end drawing, free-end contraction, and fixed-end contraction can be used singly or simultaneously or sequentially.
  • the stretching direction the stretching can be performed in various directions and dimensions such as the length direction, the width direction, the thickness direction, the oblique direction, and the like.
  • the stretching temperature is preferably Tg-30°C to Tg+60°C, more preferably Tg-10°C to Tg+50°C, relative to the glass transition temperature (Tg) of the resin film.
  • a retardation film having the desired optical properties for example, refractive index properties, in-plane retardation, Nz coefficient
  • the retardation film is produced by uniaxially stretching or fixed-end uniaxially stretching a resin film.
  • fixed-end uniaxial stretching there is a method in which the resin film is stretched in the width direction (horizontal direction) while running in the longitudinal direction.
  • the draw ratio is preferably 1.1 times to 3.5 times.
  • the retardation film can be produced by continuously obliquely stretching a long resin film in the direction of the above angle ⁇ with respect to the longitudinal direction.
  • a long stretched film having an orientation angle of ⁇ with respect to the longitudinal direction of the film (slow axis in the direction of angle ⁇ ) can be obtained.
  • Roll-to-roll is possible, and the manufacturing process can be simplified.
  • the angle ⁇ may be an angle formed by the absorption axis of the polarizing film and the slow axis of the retardation layer in the retardation layer-attached polarizing plate.
  • the angle ⁇ is preferably 40° to 50°, more preferably 42° to 48°, and even more preferably about 45°, as described above.
  • a stretching machine used for diagonal stretching includes, for example, a tenter-type stretching machine capable of applying a feeding force, a pulling force, or a taking-up force at different speeds in the horizontal and/or vertical direction.
  • the tenter-type stretching machine includes a horizontal uniaxial stretching machine, a simultaneous biaxial stretching machine, and the like, but any suitable stretching machine can be used as long as it can continuously obliquely stretch a long resin film.
  • the retardation layer (substantially, a long retardation film) can be obtained.
  • the stretching temperature of the film may vary depending on the desired in-plane retardation value and thickness of the retardation layer, the type of resin used, the thickness of the film used, the stretching ratio, and the like. Specifically, the stretching temperature is preferably Tg-30°C to Tg+30°C, more preferably Tg-15°C to Tg+15°C, most preferably Tg-10°C to Tg+10°C. By stretching at such a temperature, the first retardation layer having suitable properties in the present invention can be obtained. Note that Tg is the glass transition temperature of the constituent material of the film.
  • the thickness direction retardation Rth (550) of the second retardation layer is preferably ⁇ 50 nm to ⁇ 300 nm, more preferably ⁇ 70 nm to ⁇ 250 nm, still more preferably ⁇ 90 nm to ⁇ 200 nm, particularly preferably -100 nm to -180 nm.
  • the second retardation layer preferably consists of a film containing a liquid crystal material fixed in homeotropic alignment.
  • a liquid crystal material (liquid crystal compound) that can be homeotropically aligned may be a liquid crystal monomer or a liquid crystal polymer.
  • Specific examples of the liquid crystal compound and the method for forming the retardation layer include the liquid crystal compound and the method for forming the retardation layer described in [0020] to [0028] of JP-A-2002-333642.
  • the thickness of the second retardation layer is preferably 0.5 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, still more preferably 0.5 ⁇ m to 5 ⁇ m.
  • Conductive layer or isotropic substrate with conductive layer It may be formed by depositing a metal oxide film thereon.
  • metal oxides include indium oxide, tin oxide, zinc oxide, indium-tin composite oxide, tin-antimony composite oxide, zinc-aluminum composite oxide, and indium-zinc composite oxide. Among them, indium-tin composite oxide (ITO) is preferred.
  • the thickness of the conductive layer is preferably 50 nm or less, more preferably 35 nm or less.
  • the lower limit of the thickness of the conductive layer is preferably 10 nm.
  • the conductive layer may be transferred from the base material to the first retardation layer (or the second retardation layer if present), and the conductive layer alone may be used as a constituent layer of the polarizing plate with the retardation layer. It may be laminated on the first retardation layer (or, if present, on the second retardation layer) as a laminate with a substrate (a substrate with a conductive layer).
  • the substrate is optically isotropic, and therefore the conductive layer can be used as an isotropic substrate with a conductive layer in a polarizing plate with a retardation layer.
  • any appropriate isotropic base material can be adopted as the optically isotropic base material (isotropic base material).
  • Materials constituting the isotropic base material include, for example, norbornene-based resins, olefin-based resins, and other resins that do not have a conjugated system as the main skeleton, and acrylic resins that have cyclic structures such as lactone rings and glutarimide rings. Examples include materials that are present in the main chain. By using such a material, it is possible to suppress the development of retardation due to the orientation of molecular chains when forming an isotropic base material.
  • the thickness of the isotropic substrate is preferably 50 ⁇ m or less, more preferably 35 ⁇ m or less.
  • the lower limit of the thickness of the isotropic base material is, for example, 20 ⁇ m.
  • the conductive layer and/or the conductive layer of the isotropic substrate with a conductive layer may be patterned as necessary.
  • the patterning may form conductive portions and insulating portions.
  • electrodes can be formed.
  • the electrodes may function as touch sensor electrodes that sense contact with the touch panel. Any appropriate method can be adopted as a patterning method. Specific examples of the patterning method include wet etching and screen printing.
  • the present invention includes an image display device including the polarizing plate.
  • image display devices include liquid crystal display devices and electroluminescence (EL) display devices (eg, organic EL display devices and inorganic EL display devices).
  • EL electroluminescence
  • organic EL display devices eg, organic EL display devices and inorganic EL display devices.
  • an organic EL display device is preferable because it can save energy by reducing the amount of blue light emitted.
  • Ts, Tp and Tc are Y values measured with a 2-degree field of view (C light source) according to JIS Z8701 and subjected to visibility correction.
  • the refractive index of the protective layer was 1.53, and the refractive index of the surface of the polarizing film opposite to the protective layer was 1.53.
  • the degree of polarization P was determined by the following formula.
  • Degree of polarization P (%) ⁇ (Tp-Tc)/(Tp+Tc) ⁇ 1/2 ⁇ 100
  • the orthogonal absorbance at each wavelength was determined by the following formula.
  • Orthogonal absorbance log10(100/Tc)
  • Ts 470 and Ts 600 were defined as Ts 470 and Ts 600 , respectively.
  • Equivalent measurement can be performed with a spectrophotometer such as "V-7100" manufactured by JASCO Corporation, and equivalent measurement results can be obtained using any spectrophotometer. has been confirmed.
  • Moisture content The unbleached raw film immediately after drying (when the laminate is stretched, the stretched substrate is peeled off) is cut into a size of 100 mm ⁇ 100 mm or more, and the weight before processing is measured with an electronic balance. . After that, it was placed in a heating oven maintained at 120° C.
  • Moisture content [%] (weight before treatment - weight after treatment) / weight before treatment x 100 (4) Haze Measured according to JISK7136 using a product name "Haze Meter (NDH-5000)" manufactured by Nippon Denshoku Industries Co., Ltd. (5) Front reflection hue The polarizing plates with retardation layers obtained in Examples and Comparative Examples were coated with an acrylic pressure-sensitive adhesive having no ultraviolet absorption function to form a reflector (manufactured by Toray Film Co., Ltd., trade name “DMS-X42”).
  • Example 1-1 Preparation of polarizing film and polarizing plate A long roll of PVA-based resin film (manufactured by Kuraray, product name "PE3000") having a thickness of 30 ⁇ m was stretched 2.2 times in the transport direction while being immersed in a water bath at 30°C. While immersed in an aqueous solution of 0.04% by weight of iodine and 0.3% by weight of potassium at 30° C. for dyeing, the film was stretched 3 times with respect to the unstretched film (original length).
  • PVA-based resin film manufactured by Kuraray, product name "PE3000”
  • a PVA-based resin aqueous solution (manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name “GOSEFIMER (registered trademark) Z-200”, resin concentration: 3% by weight) was applied to one side of the obtained unbleached raw film a1, and cyclo An olefin film (Zeonor, manufactured by Nippon Zeon Co., Ltd., thickness: 25 ⁇ m) was laminated to obtain an optical laminate having a structure of [unbleached original film a1/protective layer].
  • a protective layer provided with a hard coat layer may be used.
  • a protective layer for example, a cycloolefin film with a hard coat layer (manufactured by ZEON, product name "G-Film , total thickness of 27 ⁇ m (film thickness of 25 ⁇ m+hard coat layer thickness of 2 ⁇ m), and the like.
  • the above optical layered body was cut into a size of 50 mm ⁇ 45 mm, and attached to a glass plate so that the unbleached original film side surface was exposed through an acrylic pressure-sensitive adhesive layer (thickness: 15 ⁇ m). for 9 minutes. Then, by drying at 50° C. for 5 minutes, a polarizing plate having a structure of [polarizing film A1/protective layer] was obtained.
  • Example 1-2 A polarizing plate having a structure of [polarizing film A2/protective layer] was obtained in the same manner as in Example 1-1, except that instead of immersing in water at 55°C for 9 minutes, it was immersed in water at 65°C for 3 minutes. rice field. Further, a polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that the polarizing plate was used.
  • Example 1-3 A polarizing plate having a structure of [polarizing film A3/protective layer] was obtained in the same manner as in Example 1-1, except that instead of immersing in water at 55°C for 9 minutes, it was immersed in water at 23°C for 31 hours. rice field. Further, a polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that the polarizing plate was used.
  • Example 1 An optical laminate having a structure of [unbleached original film a1/protective layer] prepared in the same manner as in Example 1-1 was used as a polarizing plate. Further, a polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that the polarizing plate was used.
  • Example 2-1 A long amorphous isophthalic copolymerized polyethylene terephthalate film (thickness: 100 ⁇ m) having a Tg of about 75° C. was used as the thermoplastic resin substrate, and one side of the resin substrate was subjected to corona treatment.
  • Polyvinyl alcohol degree of polymerization: 4,200, degree of saponification: 99.2 mol%
  • acetoacetyl-modified PVA manufactured by Nippon Synthetic Chemical Industry Co., Ltd., trade name "GOSEFIMER" were mixed at a ratio of 9:1, and 100 parts by weight of PVA-based resin.
  • aqueous PVA solution (coating solution).
  • the above PVA aqueous solution was applied to the corona-treated surface of the resin base material and dried at 60° C. to form a PVA-based resin layer having a thickness of 13 ⁇ m, thereby producing a laminate.
  • the resulting laminate was uniaxially stretched 2.4 times in the machine direction (longitudinal direction) in an oven at 130° C. (in-air auxiliary stretching treatment).
  • the laminate was immersed in an insolubilizing bath (an aqueous boric acid solution obtained by mixing 4 parts by weight of boric acid with 100 parts by weight of water) at a liquid temperature of 40° C.
  • crosslinking treatment After that, while immersing the laminate in an aqueous solution of boric acid (boric acid concentration: 4% by weight, potassium iodide concentration: 5% by weight) at a liquid temperature of 70° C., the laminate was moved vertically (longitudinally) between rolls with different peripheral speeds. Uniaxial stretching was performed so that the stretching ratio was 5.5 times (underwater stretching treatment). After that, the laminate was immersed in a washing bath (aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water) at a liquid temperature of 20° C. (washing treatment).
  • a washing bath aqueous solution obtained by blending 4 parts by weight of potassium iodide with 100 parts by weight of water
  • drying shrinkage treatment After drying in an oven maintained at about 90° C., it was brought into contact with a heating roll made of SUS whose surface temperature was maintained at about 75° C. (dry shrinkage treatment). The shrinkage rate in the width direction of the laminate due to the drying shrinkage treatment was 2%.
  • an unbleached original film having a moisture content of 4.5% and a thickness of 5.4 ⁇ m was formed on the resin substrate, and a cycloolefin film (manufactured by Nippon Zeon Co., Ltd., Zeonor, thickness: 25 ⁇ m) are bonded together with a UV curable adhesive (thickness: 1.0 ⁇ m), and then the resin substrate is peeled off to obtain an optical laminate having a configuration of [unbleached original film b1/protective layer]. rice field.
  • the above optical layered body was cut into a size of 50 mm ⁇ 45 mm, and attached to a glass plate so that the unbleached original film side surface became an exposed surface through an acrylic pressure-sensitive adhesive layer (thickness 15 ⁇ m). for 9 minutes. Then, by drying at 50° C. for 5 minutes, a polarizing plate having a structure of [polarizing film B1/protective layer] was obtained. Further, a polarizing plate with a retardation layer having a structure of [retardation layer/polarizing film B1/protective layer] was obtained in the same manner as in Example 1-1 except that the polarizing plate was used.
  • Example 2-2 A polarizing plate having a structure of [polarizing film B2/protective layer] was obtained in the same manner as in Example 2-1, except that instead of immersing in water at 50°C for 9 minutes, it was immersed in water at 60°C for 3 minutes. rice field. Further, a polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that the polarizing plate was used.
  • Example 2 An optical laminate having a structure of [unbleached original film b1/protective layer] prepared in the same manner as in Example 2-1 was used as a polarizing plate. Further, a polarizing plate with a retardation layer was obtained in the same manner as in Example 1-1 except that the polarizing plate was used.
  • the polarizing films of the examples satisfy the relationship "1 ⁇ Ts470 / Ts600 ", and can positively transmit light on the short wavelength side more than light on the long wavelength side. .
  • the polarizing film of the present invention can be suitably used in image display devices such as liquid crystal display devices and EL display devices, particularly organic EL display devices.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、有機EL表示装置の消費電力を低減し得る偏光膜を提供する。本発明の実施形態による偏光膜は、ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成され、波長470nmにおける透過率が波長600nmにおける透過率よりも大きい。また、本発明の偏光板は、該偏光膜とその少なくとも片側に配置された保護層とを含む。

Description

偏光膜、偏光板および画像表示装置
 本発明は、偏光膜、偏光板および画像表示装置に関する。
 近年、液晶表示装置およびエレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)に代表される画像表示装置が急速に普及している。有機EL表示装置では、λ/4板を含む円偏光板を有機ELセルの視認側に配置することにより、外光反射や背景の映り込み等の問題を防ぐことが知られている(例えば、特許文献1および2)。
 その一方で、有機EL表示装置は発光のための消費電力が大きいことから、省エネルギー化が求められている。
特開2002-311239号公報 特開2002-372622号公報
 本発明は上記従来の課題を解決するためになされたものであり、その主たる目的は、有機EL表示装置の消費電力を低減し得る偏光膜を提供することにある。
 本発明の1つの局面によれば、ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成され、
 波長470nmにおける透過率が波長600nmにおける透過率よりも大きい、偏光膜が提供される。
 1つの実施形態において、上記偏光膜のヘイズが1%以下である。
 1つの実施形態において、上記偏光膜の波長470nmにおける直交吸光度A470が4.0以下である。
 1つの実施形態において、上記偏光膜の波長600nmにおける直交吸光度A600に対する波長470nmにおける直交吸光度A470の比(A470/A600)が0.10~0.80である。
 1つの実施形態において、上記偏光膜の単体透過率が42.0%~65.0%であり、偏光度が40.0%~99.998%である。
 1つの実施形態において、上記偏光膜の厚みが12μm以下である。
 本発明の別の局面によれば、上記偏光膜と該偏光膜の少なくとも片側に配置された保護層とを含む、偏光板が提供される。
 1つの実施形態において、上記偏光板は、位相差層をさらに含み、該位相差層の波長550nmにおける面内位相差が100nm~190nmであり、該位相差層の遅相軸と上記偏光膜の吸収軸とのなす角度が40°~50°である。
 本発明の別の局面によれば、上記偏光板を備える、画像表示装置が提供される。
 1つの実施形態において、上記画像表示装置が、有機エレクトロルミネセンス表示装置である。
 本発明の実施形態による偏光膜は、波長470nmにおける透過率が波長600nmにおける透過率よりも大きいことから、短波長側の光を長波長側の光よりも積極的に透過させることができる。このような偏光膜を用いることにより、消費電力が大きい青色発光の量を減らした場合であっても、短波長領域の輝度の低下を抑制することができ、結果として、有機EL表示装置の省エネルギー化と高輝度化との両立が可能となる。
加熱ロールを用いた乾燥収縮処理の一例を示す概略図である。 本発明の1つの実施形態による偏光板の概略断面図である。 本発明の1つの実施形態による偏光板の概略断面図である。 本発明の1つの実施形態による偏光板の概略断面図である。
 以下、本発明の実施形態について説明するが、本発明はこれらの実施形態には限定されない。
(用語および記号の定義)
 本明細書における用語および記号の定義は下記の通りである。
(1)屈折率(nx、ny、nz)
 「nx」は面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、「ny」は面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率であり、「nz」は厚み方向の屈折率である。
(2)面内位相差(Re)
 「Re(λ)」は、23℃における波長λnmの光で測定した面内位相差である。例えば、「Re(550)」は、23℃における波長550nmの光で測定した面内位相差である。Re(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Re(λ)=(nx-ny)×dによって求められる。
(3)厚み方向の位相差(Rth)
 「Rth(λ)」は、23℃における波長λnmの光で測定した厚み方向の位相差である。例えば、「Rth(550)」は、23℃における波長550nmの光で測定した厚み方向の位相差である。Rth(λ)は、層(フィルム)の厚みをd(nm)としたとき、式:Rth(λ)=(nx-nz)×dによって求められる。
(4)Nz係数
 Nz係数は、Nz=Rth/Reによって求められる。
(5)角度
 本明細書において角度に言及するときは、当該角度は基準方向に対して時計回りおよび反時計回りの両方を包含する。したがって、例えば「45°」は±45°を意味する。
A.偏光膜
 本発明の実施形態による偏光膜は、ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成され、波長470nmにおける透過率(Ts470)が波長600nmにおける透過率(Ts600)よりも大きい。換言すれば、本発明の実施形態による偏光膜は、「1<Ts470/Ts600」の関係を満たし、好ましくは「1.02≦Ts470/Ts600≦1.30」の関係を満たす。このような関係を満たす偏光膜は、短波長側の光を長波長側の光よりも積極的に透過させることができる。
 上記波長470nmにおける透過率(Ts470)は、波長470nm付近に吸収を有するPVA-I 錯体の含有量に対応する値であり、通常、PVA-I 錯体の含有量が増大すると低下する。一方、波長600nmにおける透過率(Ts600)は、波長600nm付近に吸収を有するPVA-I 錯体の含有量に対応する値であり、通常、PVA-I 錯体の含有量が増大すると低下する。よって、「1<Ts470/Ts600」の関係を満たす偏光膜は、当該関係を満たさない偏光膜に比べて、PVA-I 錯体に対するPVA-I 錯体の含有比が低いという特徴を有する。
 偏光膜のTs470およびTs600は、目的に応じて任意の適切な値であり得る。Ts470は、例えば40.0%以上、好ましくは42.0%以上、より好ましくは44.0%以上であり得、また、例えば80.0%以下、好ましくは60.0%以下であり得る。また、Ts600は、例えば40.0%以上、好ましくは41.0%以上、より好ましくは42.0%以上であり得、また、例えば70.0%以下、好ましくは60.0%以下、より好ましくは50.0%以下であり得る。
 偏光膜は、好ましくは、波長380nm~780nmのいずれかの波長で吸収二色性を示す。偏光膜の透過率(単体透過率:Ts)は、好ましくは41.0%以上であり、より好ましくは42.0%以上であり、さらに好ましくは42.5%以上である。一方、偏光膜の透過率は、例えば65.0%以下であり、好ましくは50.0%以下であり、より好ましくは48.0%以下である。また、偏光膜の偏光度は、例えば40.0%以上、好ましくは90.0%以上であり、より好ましくは94.0%以上であり、さらに好ましくは96.0%以上であり、さらにより好ましくは99.0%以上であり、さらにより好ましくは99.5%以上であり、好ましくは99.998%以下である。上記透過率は、代表的には、紫外可視分光光度計を用いて測定し、視感度補正を行ったY値である。上記偏光度は、代表的には、紫外可視分光光度計を用いて測定して視感度補正を行った平行透過率Tpおよび直交透過率Tcに基づいて、下記式により求められる。
   偏光度(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 1つの実施形態においては、12μm以下の薄型の偏光膜の透過率は、代表的には、偏光膜(表面の屈折率:1.53)と保護層(保護フィルム)(屈折率:1.50)との積層体を測定対象として、紫外可視分光光度計を用いて測定される。偏光膜の表面の屈折率および/または保護層の空気界面に接する表面の屈折率に応じて、各層の界面での反射率が変化し、その結果、透過率の測定値が変化する場合がある。したがって、例えば、屈折率が1.50ではない保護層を用いる場合、保護層の空気界面に接する表面の屈折率に応じて透過率の測定値を補正してもよい。具体的には、透過率の補正値Cは、保護層と空気層との界面における透過軸に平行な偏光の反射率R(透過軸反射率)を用いて、以下の式で表わされる。
C=R-R
=((1.50-1)/(1.50+1))×(T/100)
=((n-1)/(n+1))×(T/100)
ここで、Rは、屈折率が1.50である保護層を用いた場合の透過軸反射率であり、nは使用する保護層の屈折率であり、Tは偏光膜の透過率である。例えば、表面屈折率が1.53である基材(シクロオレフィン系フィルム、ハードコート層付きフィルムなど)を保護層として用いる場合、補正量Cは約0.2%となる。この場合、測定により得られた透過率に0.2%を加算することで、表面の屈折率が1.53である偏光膜を屈折率が1.53である保護層を用いた場合の透過率に換算することが可能である。なお、上記式に基づく計算によれば、偏光膜の透過率Tを2%変化させたときの補正値Cの変化量は0.03%以下であり、偏光膜の透過率が補正値Cの値に与える影響は限定的である。また、保護層が表面反射以外の吸収を有する場合は、吸収量に応じて適切な補正を行うことができる。
 偏光膜の波長470nmにおける直交吸光度A470は、好ましくは4.0以下であり、より好ましくは3.5以下であり、さらに好ましくは3.0以下であり、さらにより好ましくは2.5以下である。また、直交吸光度A470は、例えば0.2以上であり、好ましくは1.0以上であり、より好ましくは1.5以上である。なお、波長λnmにおける直交吸光度Aλは、上記直交透過率Tcに基づいて、下記式により求められる。
   直交吸光度=log10(100/Tc)
 偏光膜の波長600nmにおける直交吸光度A600に対する波長470nmにおける直交吸光度A470の比(A470/A600)は、例えば0.80以下であり、好ましくは0.70以下であり、より好ましくは0.60以下である。比(A470/A600)は、例えば0.10以上であり、好ましくは0.30以上であり、より好ましくは0.35以上である。
 直交吸光度A470は、吸収軸方向に配列したPVA-I 錯体の含有量に対応する値であり、通常、直交吸光度A470が高いことは、吸収軸方向に配列したPVA-I 錯体の含有量が多いことを意味する。一方、直交吸光度A600は、吸収軸方向に配列したPVA-I 錯体の含有量に対応する値であり、通常、直交吸光度A600が高いことは、吸収軸方向に配列したPVA-I 錯体の含有量が多いことを意味する。よって、比(A470/A600)が低いことは、吸収軸方向に配列したPVA-I 錯体の含有量が相対的に少なく、吸収軸方向に配列したPVA-I 錯体の含有量が相対的に多いことを意味する。
 偏光膜のヘイズは、好ましくは1%以下であり、より好ましくは0.8%以下であり、さらに好ましくは0.6%以下である。ヘイズが当該範囲内であれば、高いコントラスト比を有する有機EL表示装置が得られ得る。
 偏光膜中のヨウ素濃度は、好ましくは3重量%以上であり、より好ましくは4重量%~10重量%であり、より好ましくは4重量%~8重量%である。なお、本明細書において「ヨウ素濃度」とは、偏光膜中に含まれるすべてのヨウ素の量を意味する。より具体的には、偏光膜中においてヨウ素はI、I、I 、PVA-I 錯体、PVA-I 錯体等の形態で存在するところ、本明細書におけるヨウ素濃度は、これらの形態をすべて包含したヨウ素の濃度を意味する。ヨウ素濃度は、例えば、蛍光X線分析による蛍光X線強度とフィルム(偏光膜)厚みとから算出され得る。
 偏光膜の厚みは、代表的には25μm以下であり、好ましくは12μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは1μm~7μm、さらにより好ましくは2μm~5μmである。
B.偏光膜の製造方法
 A項に記載の偏光膜は、例えば、水分率が15重量%以下であり、ヨウ素が吸着配向したPVA系樹脂フィルムを水性溶媒と接触させることを含む製造方法によって得られ得る。このようなPVA系樹脂フィルムを水性溶媒と接触させることにより、PVA-I 錯体を形成するポリヨウ素イオンがPVA-I 錯体を形成するポリヨウ素イオンよりも優先的に抜け出して脱色が生じ、その結果として、「1<Ts470/Ts600」の関係を満たす偏光膜が簡便に得られ得る。1つの実施形態において、水性溶媒と接触前のPVA系樹脂フィルムの波長λnmにおける透過率に対する接触後の透過率の上昇比(ΔTsλ=Tsλ(接触後)/Tsλ(接触前))がΔTs415>ΔTs470>ΔTs600の関係を満たす。
B-1.PVA系樹脂フィルム
 水分率が15重量%以下であり、ヨウ素が吸着配向したPVA系樹脂フィルム(本明細書において「未脱色原膜」とも称する)は、代表的には、「1≧Ts470/Ts600」の関係を満たす。また、未脱色原膜は、波長380nm~780nmのいずれかの波長で吸収二色性を示し、偏光膜として機能し得る状態であることが好ましい。具体的には、未脱色原膜は、延伸処理、ヨウ素による染色処理、乾燥処理等の各種処理が施されたPVA系樹脂フィルムであることが好ましい。
 1つの実施形態において、未脱色原膜の透過率(単体透過率:Ts)は、好ましくは41.0%以上であり、より好ましくは42.0%以上であり、さらに好ましくは42.5%以上である。一方、未脱色原膜の透過率は、好ましくは46.0%以下であり、より好ましくは45.0%以下である。未脱色原膜の偏光度は、好ましくは98.0%以上であり、より好ましくは99.0%以上、さらに好ましくは99.9%以上である。一方、未脱色原膜の偏光度は、好ましくは99.998%以下である。上記透過率および偏光度は、偏光膜の透過率および偏光度と同様にして求められる。
 未脱色原膜の水分率は、代表的には15重量%以下、好ましくは12重量%以下、より好ましくは10重量%以下、さらに好ましくは1重量%~5重量%である。未脱色原膜の水分率が当該範囲内であれば、水性溶媒との接触の際に、溶解およびシワの発生を防止することができる。
 未脱色原膜の厚みは、代表的には25μm以下であり、好ましくは12μm以下であり、より好ましくは1μm~12μmであり、さらに好ましくは1μm~7μm、さらにより好ましくは2μm~5μmである。
 未脱色原膜は、単層のPVA系樹脂膜を用いて作製されてもよく、PVA系樹脂層(PVA系樹脂膜)を含む二層以上の積層体を用いて作製されてもよい。二層以上の積層体を用いて作製された未脱色原膜は、水性溶媒との接触後においても、シワ等の発生を回避しつつ、優れた光学特性(代表的には、単体透過率および偏光度)を好適に維持し得る。
B-1-1.二層以上の積層体を用いた未脱色原膜の作製
 二層以上の積層体を用いた未脱色原膜の作製は、例えば、ハロゲン化物とPVA系樹脂とを含むPVA系樹脂膜を、長尺状の熱可塑性樹脂基材との積層体の状態で、空中補助延伸処理、染色処理、水中延伸処理および乾燥収縮処理にこの順に供することを含む方法によって行われ得る。熱可塑性樹脂基材とPVA系樹脂膜との積層体は、例えば、長尺状の熱可塑性樹脂基材の片側に、ハロゲン化物とPVA系樹脂とを含むPVA系樹脂層(PVA系樹脂膜)を形成して積層体とすることによって得られる。乾燥収縮処理は、例えば、該長尺状の熱可塑性樹脂基材とPVA系樹脂膜との積層体を長手方向に搬送しながら加熱することにより、幅方向に2%以上収縮させるとともに、該PVA系樹脂膜の水分率が15重量%以下となるまで乾燥させることを含む。PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。水中延伸処理は、好ましくはホウ酸水溶液中で行われる。乾燥収縮処理は、加熱ロールを用いて処理することが好ましく、加熱ロールの温度は、好ましくは、60℃~120℃である。このような製造方法によれば、PVA系樹脂の配向度が高く、優れた光学特性を有する未脱色原膜を得ることができる。
B-1-1-1.積層体の作製
 熱可塑性樹脂基材とPVA系樹脂層との積層体を作製する方法としては、任意の適切な方法が採用され得る。好ましくは、熱可塑性樹脂基材の表面に、ハロゲン化物とPVA系樹脂とを含む塗布液を塗布し、乾燥することにより、熱可塑性樹脂基材上にPVA系樹脂層を形成する。上記のとおり、PVA系樹脂層におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
 塗布液の塗布方法としては、任意の適切な方法を採用することができる。例えば、ロールコート法、スピンコート法、ワイヤーバーコート法、ディップコート法、ダイコート法、カーテンコート法、スプレーコート法、ナイフコート法(コンマコート法等)等が挙げられる。上記塗布液の塗布・乾燥温度は、好ましくは50℃以上である。
 PVA系樹脂層の厚みは、好ましくは、3μm~40μm、さらに好ましくは3μm~20μmである。
 PVA系樹脂層を形成する前に、熱可塑性樹脂基材に表面処理(例えば、コロナ処理等)を施してもよいし、熱可塑性樹脂基材上に易接着層を形成してもよい。このような処理を行うことにより、熱可塑性樹脂基材とPVA系樹脂層との密着性を向上させることができる。
 熱可塑性樹脂基材の厚みは、好ましくは20μm~300μm、より好ましくは50μm~200μmである。20μm未満であると、PVA系樹脂層の形成が困難になるおそれがある。300μmを超えると、例えば、後述の水中延伸処理において、熱可塑性樹脂基材が水を吸収するのに長時間を要するとともに、延伸に過大な負荷を要するおそれがある。
 熱可塑性樹脂基材は、好ましくは、その吸水率が0.2%以上であり、さらに好ましくは0.3%以上である。熱可塑性樹脂基材は、水を吸収し、水が可塑剤的な働きをして可塑化し得る。その結果、延伸応力を大幅に低下させることができ、高倍率に延伸することができる。一方、熱可塑性樹脂基材の吸水率は、好ましくは3.0%以下、さらに好ましくは1.0%以下である。このような熱可塑性樹脂基材を用いることにより、製造時に熱可塑性樹脂基材の寸法安定性が著しく低下して、得られる未脱色原膜の外観が悪化するなどの不具合を防止することができる。また、水中延伸時に基材が破断したり、熱可塑性樹脂基材からPVA系樹脂層が剥離したりするのを防止することができる。なお、熱可塑性樹脂基材の吸水率は、例えば、構成材料に変性基を導入することにより調整することができる。吸水率は、JIS K 7209に準じて求められる値である。
 熱可塑性樹脂基材のガラス転移温度(Tg)は、好ましくは120℃以下である。このような熱可塑性樹脂基材を用いることにより、PVA系樹脂層の結晶化を抑制しながら、積層体の延伸性を十分に確保することができる。さらに、水による熱可塑性樹脂基材の可塑化と、水中延伸を良好に行うことを考慮すると、100℃以下、さらには90℃以下であることがより好ましい。一方、熱可塑性樹脂基材のガラス転移温度は、好ましくは60℃以上である。このような熱可塑性樹脂基材を用いることにより、上記PVA系樹脂を含む塗布液を塗布・乾燥する際に、熱可塑性樹脂基材が変形(例えば、凹凸やタルミ、シワ等の発生)するなどの不具合を防止して、良好に積層体を作製することができる。また、PVA系樹脂層の延伸を、好適な温度(例えば、60℃程度)にて良好に行うことができる。なお、熱可塑性樹脂基材のガラス転移温度は、例えば、構成材料に変性基を導入する、結晶化材料を用いて加熱することにより調整することができる。ガラス転移温度(Tg)は、JIS K 7121に準じて求められる値である。
 熱可塑性樹脂基材の構成材料としては、任意の適切な熱可塑性樹脂が採用され得る。熱可塑性樹脂としては、例えば、ポリエチレンテレフタレート系樹脂等のエステル系樹脂、ノルボルネン系樹脂等のシクロオレフィン系樹脂、ポリプロピレン等のオレフィン系樹脂、ポリアミド系樹脂、ポリカーボネート系樹脂、これらの共重合体樹脂等が挙げられる。これらの中でも、好ましくは、ノルボルネン系樹脂、非晶質のポリエチレンテレフタレート系樹脂である。
 1つの実施形態においては、非晶質の(結晶化していない)ポリエチレンテレフタレート系樹脂が好ましく用いられる。中でも、非晶性の(結晶化しにくい)ポリエチレンテレフタレート系樹脂が特に好ましく用いられる。非晶性のポリエチレンテレフタレート系樹脂の具体例としては、ジカルボン酸としてイソフタル酸および/またはシクロヘキサンジカルボン酸をさらに含む共重合体や、グリコールとしてシクロヘキサンジメタノールやジエチレングリコールをさらに含む共重合体が挙げられる。
 好ましい実施形態においては、熱可塑性樹脂基材は、イソフタル酸ユニットを有するポリエチレンテレフタレート系樹脂で構成される。このような熱可塑性樹脂基材は延伸性に極めて優れるとともに、延伸時の結晶化が抑制され得るからである。これは、イソフタル酸ユニットを導入することで、主鎖に大きな屈曲を与えることによるものと考えられる。ポリエチレンテレフタレート系樹脂は、テレフタル酸ユニットおよびエチレングリコールユニットを有する。イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは0.1モル%以上、さらに好ましくは1.0モル%以上である。延伸性に極めて優れた熱可塑性樹脂基材が得られるからである。一方、イソフタル酸ユニットの含有割合は、全繰り返し単位の合計に対して、好ましくは20モル%以下、より好ましくは10モル%以下である。このような含有割合に設定することで、後述の乾燥収縮処理において結晶化度を良好に増加させることができる。
 熱可塑性樹脂基材は、予め(PVA系樹脂層を形成する前)、延伸されていてもよい。1つの実施形態においては、長尺状の熱可塑性樹脂基材の横方向に延伸されている。横方向は、好ましくは、後述の積層体の延伸方向に直交する方向である。なお、本明細書において、「直交」とは、実質的に直交する場合も包含する。ここで、「実質的に直交」とは、90°±5.0°である場合を包含し、好ましくは90°±3.0°、さらに好ましくは90°±1.0°である。
 熱可塑性樹脂基材の延伸温度は、ガラス転移温度(Tg)に対し、好ましくはTg-10℃~Tg+50℃である。熱可塑性樹脂基材の延伸倍率は、好ましくは1.5倍~3.0倍である。
 熱可塑性樹脂基材の延伸方法としては、任意の適切な方法が採用され得る。具体的には、固定端延伸でもよいし、自由端延伸でもよい。延伸方式は、乾式でもよいし、湿式でもよい。熱可塑性樹脂基材の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、上述の延伸倍率は、各段階の延伸倍率の積である。
 塗布液は、上記のとおり、ハロゲン化物とPVA系樹脂とを含む。上記塗布液は、代表的には、上記ハロゲン化物および上記PVA系樹脂を溶媒に溶解させた溶液である。溶媒としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、各種グリコール類、トリメチロールプロパン等の多価アルコール類、エチレンジアミン、ジエチレントリアミン等のアミン類が挙げられる。これらは単独で、または、二種以上組み合わせて用いることができる。これらの中でも、好ましくは、水である。溶液のPVA系樹脂濃度は、溶媒100重量部に対して、好ましくは3重量部~20重量部である。このような樹脂濃度であれば、熱可塑性樹脂基材に密着した均一な塗布膜を形成することができる。塗布液におけるハロゲン化物の含有量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部である。
 塗布液に、添加剤を配合してもよい。添加剤としては、例えば、可塑剤、界面活性剤等が挙げられる。可塑剤としては、例えば、エチレングリコールやグリセリン等の多価アルコールが挙げられる。界面活性剤としては、例えば、非イオン界面活性剤が挙げられる。これらは、得られるPVA系樹脂層の均一性や染色性、延伸性をより一層向上させる目的で使用され得る。
 上記PVA系樹脂としては、任意の適切な樹脂が採用され得る。例えば、ポリビニルアルコールおよびエチレン-ビニルアルコール共重合体が挙げられる。ポリビニルアルコールは、ポリ酢酸ビニルをケン化することにより得られる。エチレン-ビニルアルコール共重合体は、エチレン-酢酸ビニル共重合体をケン化することにより得られる。PVA系樹脂のケン化度は、通常85モル%~100モル%であり、好ましくは95.0モル%~99.95モル%、さらに好ましくは99.0モル%~99.93モル%である。ケン化度は、JIS K 6726-1994に準じて求めることができる。このようなケン化度のPVA系樹脂を用いることによって、耐久性に優れた未脱色原膜が得られ得る。ケン化度が高すぎる場合には、ゲル化してしまうおそれがある。
 PVA系樹脂の平均重合度は、目的に応じて適切に選択し得る。平均重合度は、通常1000~10000であり、好ましくは1200~4500、さらに好ましくは1500~4300である。なお、平均重合度は、JIS K 6726-1994に準じて求めることができる。
 上記ハロゲン化物としては、任意の適切なハロゲン化物が採用され得る。例えば、ヨウ化物および塩化ナトリウムが挙げられる。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化ナトリウム、およびヨウ化リチウムが挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。
 塗布液におけるハロゲン化物の量は、好ましくは、PVA系樹脂100重量部に対して5重量部~20重量部であり、より好ましくは、PVA系樹脂100重量部に対して10重量部~15重量部である。PVA系樹脂100重量部に対するハロゲン化物の量が20重量部を超えると、ハロゲン化物がブリードアウトし、最終的に得られる未脱色原膜が白濁する場合がある。
 一般に、PVA系樹脂層が延伸されることによって、PVA系樹脂層中のポリビニルアルコール分子の配向性が高くなるが、延伸後のPVA系樹脂層を、水を含む液体に浸漬すると、ポリビニルアルコール分子の配向が乱れ、配向性が低下する場合がある。特に、熱可塑性樹脂基材とPVA系樹脂層との積層体をホウ酸水中延伸する場合において、熱可塑性樹脂基材の延伸を安定させるために比較的高い温度で上記積層体をホウ酸水中で延伸する場合、上記配向度低下の傾向が顕著である。例えば、PVAフィルム単体のホウ酸水中での延伸が60℃で行われることが一般的であるのに対し、A-PET(熱可塑性樹脂基材)とPVA系樹脂層との積層体の延伸は70℃前後の温度という高い温度で行われ、この場合、延伸初期のPVAの配向性が水中延伸により上がる前の段階で低下し得る。これに対して、ハロゲン化物を含むPVA系樹脂層と熱可塑性樹脂基材との積層体を作製し、積層体をホウ酸水中で延伸する前に空気中で高温延伸(補助延伸)することにより、補助延伸後の積層体のPVA系樹脂層中のPVA系樹脂の結晶化が促進され得る。その結果、PVA系樹脂層を液体に浸漬した場合において、PVA系樹脂層がハロゲン化物を含まない場合に比べて、ポリビニルアルコール分子の配向の乱れ、および配向性の低下が抑制され得る。これにより、染色処理および水中延伸処理など、積層体を液体に浸漬して行う処理工程を経て得られる未脱色原膜の光学特性を向上し得る。
B-1-1-2.空中補助延伸処理
 特に、高い光学特性を得るためには、乾式延伸(補助延伸)とホウ酸水中延伸を組み合わせる、2段延伸の方法が選択される。2段延伸のように、補助延伸を導入することにより、熱可塑性樹脂基材の結晶化を抑制しながら延伸することができ、後のホウ酸水中延伸において熱可塑性樹脂基材の過度の結晶化により延伸性が低下するという問題を解決し、積層体をより高倍率に延伸することができる。さらには、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合、熱可塑性樹脂基材のガラス転移温度の影響を抑制するために、通常の金属ドラム上にPVA系樹脂を塗布する場合と比べて塗布温度を低くする必要があり、その結果、PVA系樹脂の結晶化が相対的に低くなり、十分な光学特性が得られない、という問題が生じ得る。これに対して、補助延伸を導入することにより、熱可塑性樹脂基材上にPVA系樹脂を塗布する場合でも、PVA系樹脂の結晶性を高めることが可能となり、高い光学特性を達成することが可能となる。また、同時にPVA系樹脂の配向性を事前に高めることで、後の染色処理や延伸処理で水に浸漬された時に、PVA系樹脂の配向性の低下や溶解などの問題を防止することができ、高い光学特性を達成することが可能になる。
 空中補助延伸の延伸方法は、固定端延伸(たとえば、テンター延伸機を用いて延伸する方法)でもよいし、自由端延伸(たとえば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよいが、高い光学特性を得るためには、自由端延伸が積極的に採用され得る。1つの実施形態においては、空中延伸処理は、上記積層体をその長手方向に搬送しながら、加熱ロール間の周速差により延伸する加熱ロール延伸工程を含む。空中延伸処理は、代表的には、ゾーン延伸工程と加熱ロール延伸工程とを含む。なお、ゾーン延伸工程と加熱ロール延伸工程の順序は限定されず、ゾーン延伸工程が先に行われてもよく、加熱ロール延伸工程が先に行われてもよい。ゾーン延伸工程は省略されてもよい。1つの実施形態においては、ゾーン延伸工程および加熱ロール延伸工程がこの順に行われる。また、別の実施形態では、テンター延伸機において、積層体端部を把持し、テンター間の距離を流れ方向に広げることで延伸される(テンター間の距離の広がりが延伸倍率となる)。この時、幅方向(流れ方向に対して、垂直方向)のテンターの距離は、任意に近づくように設定される。好ましくは、流れ方向の延伸倍率に対して、自由端延伸により近くなるように設定され得る。自由端延伸の場合、幅方向の収縮率=(1/延伸倍率)1/2で計算される。
 空中補助延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、延伸倍率は、各段階の延伸倍率の積である。空中補助延伸における延伸方向は、好ましくは、水中延伸の延伸方向と略同一である。
 空中補助延伸における延伸倍率は、好ましくは2.0倍~3.5倍である。空中補助延伸と水中延伸とを組み合わせた場合の最大延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上、より好ましくは5.5倍以上、さらに好ましくは6.0倍以上である。本明細書において「最大延伸倍率」とは、積層体が破断する直前の延伸倍率をいい、別途、積層体が破断する延伸倍率を確認し、その値よりも0.2低い値をいう。
 空中補助延伸の延伸温度は、熱可塑性樹脂基材の形成材料、延伸方式等に応じて、任意の適切な値に設定することができる。延伸温度は、好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)以上であり、さらに好ましくは熱可塑性樹脂基材のガラス転移温度(Tg)+10℃以上、特に好ましくはTg+15℃以上である。一方、延伸温度の上限は、好ましくは170℃である。このような温度で延伸することで、PVA系樹脂の結晶化が急速に進むのを抑制して、当該結晶化による不具合(例えば、延伸によるPVA系樹脂層の配向を妨げる)を抑制することができる。空中補助延伸後のPVA系樹脂の結晶化指数は、好ましくは1.3~1.8であり、より好ましくは1.4~1.7である。PVA系樹脂の結晶化指数は、フーリエ変換赤外分光光度計を用い、ATR法により測定することができる。具体的には、偏光を測定光として測定を実施し、得られたスペクトルの1141cm-1および1440cm-1の強度を用いて、下記式に従って結晶化指数を算出する。
   結晶化指数=(I/I
ただし、
 :測定光を入射して測定したときの1141cm-1の強度
 :測定光を入射して測定したときの1440cm-1の強度
である。
B-1-1-3.不溶化処理
 必要に応じて、空中補助延伸処理の後、水中延伸処理や染色処理の前に、不溶化処理を施す。上記不溶化処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬することにより行う。不溶化処理を施すことにより、PVA系樹脂層に耐水性を付与し、水に浸漬した時のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~4重量部である。不溶化浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。
B-1-1-4.染色処理
 上記染色処理は、代表的には、PVA系樹脂層をヨウ素で染色することにより行う。具体的には、PVA系樹脂層にヨウ素を吸着させることにより行う。当該吸着方法としては、例えば、ヨウ素を含む染色液にPVA系樹脂層(積層体)を浸漬させる方法、PVA系樹脂層に当該染色液を塗工する方法、当該染色液をPVA系樹脂層に噴霧する方法等が挙げられる。好ましくは、染色液(染色浴)に積層体を浸漬させる方法である。ヨウ素が良好に吸着し得るからである。
 上記染色液は、好ましくは、ヨウ素水溶液である。ヨウ素の配合量は、水100重量部に対して、好ましくは0.05重量部~0.5重量部である。ヨウ素の水に対する溶解度を高めるため、ヨウ素水溶液にヨウ化物を配合することが好ましい。ヨウ化物としては、例えば、ヨウ化カリウム、ヨウ化リチウム、ヨウ化ナトリウム、ヨウ化亜鉛、ヨウ化アルミニウム、ヨウ化鉛、ヨウ化銅、ヨウ化バリウム、ヨウ化カルシウム、ヨウ化錫、ヨウ化チタン等が挙げられる。これらの中でも、好ましくは、ヨウ化カリウムである。ヨウ化物の配合量は、水100重量部に対して、好ましくは0.1重量部~10重量部、より好ましくは0.3重量部~5重量部である。染色液の染色時の液温は、PVA系樹脂の溶解を抑制するため、好ましくは20℃~50℃である。染色液にPVA系樹脂層を浸漬させる場合、浸漬時間は、PVA系樹脂層の透過率を確保するため、好ましくは5秒~5分であり、より好ましくは30秒~90秒である。
 染色条件(濃度、液温、浸漬時間)は、最終的に得られる未脱色原膜の単体透過率が所望の値となるように設定することができる。このような染色条件としては、好ましくは、染色液としてヨウ素水溶液を用い、ヨウ素水溶液におけるヨウ素およびヨウ化カリウムの含有量の比を、1:5~1:20とする。ヨウ素水溶液におけるヨウ素およびヨウ化カリウムの含有量の比は、好ましくは1:5~1:10である。これにより、後述のような光学特性を有する未脱色原膜が得られ得る。
 ホウ酸を含有する処理浴に積層体を浸漬する処理(代表的には、不溶化処理)の後に連続して染色処理を行う場合、当該処理浴に含まれるホウ酸が染色浴に混入することにより染色浴のホウ酸濃度が経時的に変化し、その結果、染色性が不安定になる場合がある。上記のような染色性の不安定化を抑制するために、染色浴のホウ酸濃度の上限は、水100重量部に対して、好ましくは4重量部、より好ましくは2重量部となるように調整される。一方で、染色浴のホウ酸濃度の下限は、水100重量部に対して、好ましくは0.1重量部であり、より好ましくは0.2重量部であり、さらに好ましくは0.5重量部である。1つの実施形態においては、予めホウ酸が配合された染色浴を用いて染色処理を行う。これにより、上記処理浴のホウ酸が染色浴に混入した場合のホウ酸濃度の変化の割合を低減し得る。予め染色浴に配合されるホウ酸の配合量(すなわち、上記処理浴に由来しないホウ酸の含有量)は、水100重量部に対して、好ましくは0.1重量部~2重量部であり、より好ましくは0.5重量部~1.5重量部である。
B-1-1-5.架橋処理
 必要に応じて、染色処理の後、水中延伸処理の前に、架橋処理を施す。上記架橋処理は、代表的には、ホウ酸水溶液にPVA系樹脂層を浸漬させることにより行う。架橋処理を施すことにより、PVA系樹脂層に耐水性を付与し、後の水中延伸で、高温の水中へ浸漬した際のPVAの配向低下を防止することができる。当該ホウ酸水溶液の濃度は、水100重量部に対して、好ましくは1重量部~5重量部である。また、上記染色処理後に架橋処理を行う場合、さらに、ヨウ化物を配合することが好ましい。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の配合量は、水100重量部に対して、好ましくは1重量部~5重量部である。ヨウ化物の具体例は、上述のとおりである。架橋浴(ホウ酸水溶液)の液温は、好ましくは20℃~50℃である。
B-1-1-6.水中延伸処理
 水中延伸処理は、積層体を延伸浴に浸漬させて行う。水中延伸処理によれば、上記熱可塑性樹脂基材やPVA系樹脂層のガラス転移温度(代表的には、80℃程度)よりも低い温度で延伸し得、PVA系樹脂層を、その結晶化を抑えながら、高倍率に延伸することができる。その結果、優れた光学特性を有する未脱色原膜を製造することができる。
 積層体の延伸方法は、任意の適切な方法を採用することができる。具体的には、固定端延伸でもよいし、自由端延伸(例えば、周速の異なるロール間に積層体を通して一軸延伸する方法)でもよい。好ましくは、自由端延伸が選択される。積層体の延伸は、一段階で行ってもよいし、多段階で行ってもよい。多段階で行う場合、後述の積層体の延伸倍率(最大延伸倍率)は、各段階の延伸倍率の積である。
 水中延伸は、好ましくは、ホウ酸水溶液中に積層体を浸漬させて行う(ホウ酸水中延伸)。延伸浴としてホウ酸水溶液を用いることで、PVA系樹脂層に、延伸時にかかる張力に耐える剛性と、水に溶解しない耐水性とを付与することができる。具体的には、ホウ酸は、水溶液中でテトラヒドロキシホウ酸アニオンを生成してPVA系樹脂と水素結合により架橋し得る。その結果、PVA系樹脂層に剛性と耐水性とを付与して、良好に延伸することができ、優れた光学特性を有する未脱色原膜を製造することができる。
 上記ホウ酸水溶液は、好ましくは、溶媒である水にホウ酸および/またはホウ酸塩を溶解させることにより得られる。ホウ酸濃度は、水100重量部に対して、好ましくは1重量部~10重量部であり、より好ましくは2.5重量部~6重量部であり、特に好ましくは3重量部~5重量部である。ホウ酸濃度を1重量部以上とすることにより、PVA系樹脂層の溶解を効果的に抑制することができ、より高特性の未脱色原膜を製造することができる。なお、ホウ酸またはホウ酸塩以外に、ホウ砂等のホウ素化合物、グリオキザール、グルタルアルデヒド等を溶媒に溶解して得られた水溶液も用いることができる。
 好ましくは、上記延伸浴(ホウ酸水溶液)にヨウ化物を配合する。ヨウ化物を配合することにより、PVA系樹脂層に吸着させたヨウ素の溶出を抑制することができる。ヨウ化物の具体例は、上述のとおりである。ヨウ化物の濃度は、水100重量部に対して、好ましくは0.05重量部~15重量部、より好ましくは0.5重量部~8重量部である。
 延伸温度(延伸浴の液温)は、好ましくは40℃~85℃、より好ましくは60℃~75℃である。このような温度であれば、PVA系樹脂層の溶解を抑制しながら高倍率に延伸することができる。具体的には、上述のように、熱可塑性樹脂基材のガラス転移温度(Tg)は、PVA系樹脂層の形成との関係で、好ましくは60℃以上である。この場合、延伸温度が40℃を下回ると、水による熱可塑性樹脂基材の可塑化を考慮しても、良好に延伸できないおそれがある。一方、延伸浴の温度が高温になるほど、PVA系樹脂層の溶解性が高くなって、優れた光学特性が得られないおそれがある。積層体の延伸浴への浸漬時間は、好ましくは15秒~5分である。
 水中延伸による延伸倍率は、好ましくは1.5倍以上、より好ましくは3.0倍以上である。積層体の総延伸倍率は、積層体の元長に対して、好ましくは5.0倍以上であり、さらに好ましくは5.5倍以上である。このような高い延伸倍率を達成することにより、光学特性に極めて優れた未脱色原膜を製造することができる。このような高い延伸倍率は、水中延伸方式(ホウ酸水中延伸)を採用することにより、達成し得る。
B-1-1-7.乾燥収縮処理
 上記乾燥収縮処理は、例えば、該長尺状の熱可塑性樹脂基材とPVA系樹脂膜との積層体を長手方向に搬送しながら加熱することにより、幅方向に2%以上収縮させるとともに、該PVA系樹脂膜の水分率が15重量%以下となるまで乾燥させることを含む。安定した外観を得る観点から、水分率が12重量%以下、より好ましくは10重量%以下、さらに好ましくは1重量%~5重量%となるまで乾燥させることが好ましい。
 乾燥収縮処理は、ゾーン全体を加熱して行うゾーン加熱により行っても良いし、搬送ロールを加熱する(いわゆる加熱ロールを用いる)ことにより行う(加熱ロール乾燥方式)こともできる。好ましくは、その両方を用いる。加熱ロールを用いて乾燥させることにより、効率的に積層体の加熱カールを抑制して、外観に優れた未脱色原膜を製造することができる。具体的には、加熱ロールに積層体を沿わせた状態で乾燥することにより、上記熱可塑性樹脂基材の結晶化を効率的に促進させて結晶化度を増加させることができ、比較的低い乾燥温度であっても、熱可塑性樹脂基材の結晶化度を良好に増加させることができる。その結果、熱可塑性樹脂基材は、その剛性が増加して、乾燥によるPVA系樹脂層の収縮に耐え得る状態となり、カールが抑制される。また、加熱ロールを用いることにより、積層体を平らな状態に維持しながら乾燥できるので、カールだけでなくシワの発生も抑制することができる。この時、積層体は、乾燥収縮処理により幅方向に収縮させることにより、光学特性を向上させることができる。PVAおよびPVA/ヨウ素錯体の配向性を効果的に高めることができるからである。乾燥収縮処理による積層体の幅方向の収縮率は、好ましくは1%~10%であり、より好ましくは2%~8%であり、特に好ましくは4%~6%である。加熱ロールを用いることにより、積層体を搬送しながら連続的に幅方向に収縮させることができ、高い生産性を実現することができる。
 図1は、乾燥収縮処理の一例を示す概略図である。乾燥収縮処理では、所定の温度に加熱された搬送ロールR1~R6と、ガイドロールG1~G4とにより、積層体200を搬送しながら乾燥させる。図示例では、PVA系樹脂層の面と熱可塑性樹脂基材の面を交互に連続加熱するように搬送ロールR1~R6が配置されているが、例えば、積層体200の一方の面(たとえば熱可塑性樹脂基材面)のみを連続的に加熱するように搬送ロールR1~R6を配置してもよい。
 搬送ロールの加熱温度(加熱ロールの温度)、加熱ロールの数、加熱ロールとの接触時間等を調整することにより、乾燥条件を制御することができる。加熱ロールの温度は、好ましくは60℃~120℃であり、さらに好ましくは65℃~100℃であり、特に好ましくは70℃~80℃である。熱可塑性樹脂の結晶化度を良好に増加させて、カールを良好に抑制することができるとともに、耐久性に極めて優れた光学積層体を製造することができる。なお、加熱ロールの温度は、接触式温度計により測定することができる。図示例では、6個の搬送ロールが設けられているが、搬送ロールは複数個であれば特に制限はない。搬送ロールは、通常2個~40個、好ましくは4個~30個設けられる。積層体と加熱ロールとの接触時間(総接触時間)は、好ましくは1秒~300秒であり、より好ましくは1~20秒であり、さらに好ましくは1~10秒である。
 加熱ロールは、加熱炉(例えば、オーブン)内に設けてもよいし、通常の製造ライン(室温環境下)に設けてもよい。好ましくは、送風手段を備える加熱炉内に設けられる。加熱ロールによる乾燥と熱風乾燥とを併用することにより、加熱ロール間での急峻な温度変化を抑制することができ、幅方向の収縮を容易に制御することができる。熱風乾燥の温度は、好ましくは20℃~100℃である。また、熱風乾燥時間は、好ましくは1秒~300秒である。熱風の風速は、好ましくは10m/s~30m/s程度である。なお、当該風速は加熱炉内における風速であり、ミニベーン型デジタル風速計により測定することができる。
B-1-1-8.その他の処理
 好ましくは、水中延伸処理の後、乾燥収縮処理の前に、洗浄処理を施す。上記洗浄処理は、代表的には、ヨウ化カリウム水溶液にPVA系樹脂層を浸漬させることにより行う。
B-1-2.単層のPVA系樹脂膜を用いた未脱色原膜の作製
 単層のPVA系樹脂膜を用いた未脱色原膜の作製は、自己支持性を有する(すなわち、基材による支持を必要としない)長尺状のPVA系樹脂膜を染色および延伸(代表的には、ホウ酸水溶液中でのロール延伸機を用いた一軸延伸)し、次いで、水分率が15重量%以下、好ましくは12重量%以下、より好ましくは10重量%以下、さらに好ましくは1重量%~5重量%となるまで乾燥させることによって行われ得る。上記染色は、例えば、PVA系樹脂膜をヨウ素水溶液に浸漬することにより行われる。上記一軸延伸の延伸倍率は、好ましくは3~7倍である。延伸は、染色処理後に行ってもよいし、染色しながら行ってもよい。また、延伸してから染色してもよい。必要に応じて、PVA系樹脂膜に、膨潤処理、架橋処理、洗浄処理等が施される。例えば、染色の前にPVA系樹脂膜を水に浸漬して水洗することで、PVA系樹脂膜表面の汚れやブロッキング防止剤を洗浄することができるだけでなく、PVA系樹脂膜を膨潤させて染色ムラ等を防止することができる。
B-2.水性溶媒
 水性溶媒としては、未脱色原膜からヨウ素を溶出させ得る限りにおいて、任意の適切な溶媒が用いられ得る。水性溶媒は、例えば、水または水と水溶性有機溶媒との混合物であり得る。水溶性有機溶媒としては、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール等の炭素数が1個~4個の低級モノアルコールおよびグリセリン、エチレングリコール等の多価アルコールが好ましく例示できる。
B-3.接触方法
 水性溶媒との接触方法としては、特に制限されず、浸漬、噴霧、塗布等の任意の適切な方法が用いられ得る。未脱色原膜表面の全面を水性溶媒と均一に接触させる観点からは、浸漬が好ましい。
 水性溶媒との接触時間および接触時の水性溶媒の温度は、所望のTs470、Ts600、A470、A600等に応じて適切に設定され得る。接触時間が長くすることまたは水性溶媒の温度を高くすることにより、透過率(特に、Ts470)が大きく、また、直交吸光度(特に、A470)が小さくなる傾向にある。接触時間は、例えば10分以下、好ましくは60秒~9分、より好ましくは60秒~4分であり得る。水性溶媒の温度は、好ましくは20℃~70℃、より好ましくは30℃~65℃、さらに好ましくは40℃~60℃であり得る。
 未脱色原膜と水性溶媒との接触は、未脱色原膜の片面のみが水性溶媒と接触することによって行われてもよく、両面が水性溶媒と接触することによって行われてもよい。よって、[PVA系樹脂層/樹脂基材]の積層体を用いて作製された[未脱色原膜/樹脂基材]の積層体または[未脱色原膜/保護層]の積層体を水性溶媒との接触に用いることができる。あるいは、単層のPVA系樹脂膜を用いて作製された未脱色原膜をそのまま、または、片側に保護層を設けた積層体の状態で水性溶媒との接触に用いることができる。
B-4.その他の処理
 必要に応じて、水性溶媒との接触によって得られた偏光膜を乾燥処理に供してもよい。乾燥温度は、例えば20℃~100℃、好ましくは30℃~80℃であり得る。乾燥後の偏光膜の水分率は、代表的には15重量%以下であり、好ましくは12重量%以下であり、より好ましくは10重量%以下であり、さらに好ましくは1重量%~5重量%である。
C.偏光板
 本発明の実施形態による偏光板は、偏光膜と該偏光膜の少なくとも片側に配置された保護層とを含み、必要に応じて、位相差層をさらに含み得る。なお、本明細書において、位相差層を含む偏光板を位相差層付偏光板と称する場合がある。
 偏光板のb値は、例えば-3以下、好ましくは-4以下、より好ましくは-20~-5である。b値が当該範囲内である偏光板は、短波長領域の光の透過率が高く、よって、青みがかった色相を呈する。
C-1.偏光板の全体構成
 図2は、本発明の1つの実施形態による偏光板の概略断面図である。偏光板100は、偏光膜10と、偏光膜10の一方の側に配置された第1の保護層12と、偏光膜10のもう一方の側に配置された第2の保護層14とを含む。
 図3は、本発明の別の実施形態による位相差層を含む偏光板の概略断面図である。位相差層付偏光板200aは、偏光膜10と、偏光膜10の一方の側に配置された第1の保護層12と、偏光膜10のもう一方の側に配置された第2の保護層14と、第2の保護層14の偏光膜10が配置された側と反対側に配置された第1の位相差層20とを含む。目的に応じて、第1の保護層12および第2の保護層14の一方は省略されてもよい。例えば、位相差層20が偏光膜10の保護層としても機能し得る場合には、第2の保護層14は省略されてもよい。
 図4は、本発明のさらに別の実施形態による位相差層を含む偏光板の概略断面図である。位相差層付偏光板200bは、偏光膜10と、偏光膜10の一方の側に配置された第1の保護層12と、偏光膜10のもう一方の側に配置された第2の保護層14とを含み、第2の保護層14の偏光膜10が配置された側と反対側に、第1の位相差層20、第2の位相差層30および導電層または導電層付等方性基材40がこの順に設けられている。第2の位相差層30は、代表的には、屈折率特性がnz>nx=nyの関係を示す。第2の位相差層30ならびに導電層または導電層付等方性基材40は、代表的には、必要に応じて設けられる任意の層であり、いずれか一方または両方が省略されてもよい。なお、導電層または導電層付等方性基材が設けられる場合、位相差層付偏光板は、画像表示セル(例えば、有機ELセル)と偏光板との間にタッチセンサが組み込まれた、いわゆるインナータッチパネル型入力表示装置に適用され得る。
 第1の位相差層20のRe(550)は、例えば100nm~190nmである。また、第1の位相差層20の遅相軸と偏光膜10の吸収軸とのなす角度は、例えば40°~50°である。
 上記の実施形態は適宜組み合わせてもよく、上記の実施形態における構成要素に当業界で自明の改変を加えてもよい。例えば、第2の位相差層30の外側に導電層付等方性基材40を設ける構成を、光学的に等価な構成(例えば、第2の位相差層と導電層との積層体)に置き換えてもよい。
 本発明の実施形態による偏光板または位相差層付偏光板は、その他の位相差層をさらに含んでいてもよい。その他の位相差層の光学的特性(例えば、屈折率特性、面内位相差、Nz係数、光弾性係数)、厚み、配置位置等は、目的に応じて適切に設定され得る。
 本発明の偏光板は、枚葉状であってもよく長尺状であってもよい。本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。長尺状の偏光板は、ロール状に巻回可能である。位相差層付偏光板が長尺状である場合、偏光板および位相差層も長尺状である。この場合、偏光膜は、好ましくは長尺方向に吸収軸を有する。第1の位相差層は、好ましくは、長尺方向に対して40°~50°の角度をなす方向に遅相軸を有する斜め延伸フィルムである。偏光膜および第1の位相差層がこのような構成であれば、位相差層付偏光板をロールトゥロールにより作製することができる。
 実用的には、位相差層の偏光板と反対側には粘着剤層(図示せず)が設けられ、位相差層付偏光板は画像表示セルに貼り付け可能とされている。さらに、粘着剤層の表面には、位相差層付偏光板が使用に供されるまで、剥離フィルムが仮着されていることが好ましい。剥離フィルムを仮着することにより、粘着剤層を保護するとともに、ロール形成が可能となる。
 偏光板の総厚みは、好ましくは150μm以下であり、より好ましくは120μm以下であり、さらに好ましくは100μm以下であり、さらにより好ましくは90μm以下であり、さらにより好ましくは85μm以下である。総厚みの下限は、例えば30μmであり得る。
C-2.偏光膜
 偏光膜としては、A項に記載の偏光膜が用いられる。
C-3.保護層
 第1の保護層および第2の保護層はそれぞれ、偏光膜の保護層として使用できる任意の適切なフィルムで形成される。当該フィルムの主成分となる材料の具体例としては、トリアセチルセルロース(TAC)等のセルロース系樹脂や、ポリエステル系、ポリビニルアルコール系、ポリカーボネート系、ポリアミド系、ポリイミド系、ポリエーテルスルホン系、ポリスルホン系、ポリスチレン系、ポリノルボルネン系、ポリオレフィン系、(メタ)アクリル系、アセテート系等の透明樹脂等が挙げられる。また、(メタ)アクリル系、ウレタン系、(メタ)アクリルウレタン系、エポキシ系、シリコーン系等の熱硬化型樹脂または紫外線硬化型樹脂等も挙げられる。この他にも、例えば、シロキサン系ポリマー等のガラス質系ポリマーも挙げられる。また、特開2001-343529号公報(WO01/37007)に記載のポリマーフィルムも使用できる。このフィルムの材料としては、例えば、側鎖に置換または非置換のイミド基を有する熱可塑性樹脂と、側鎖に置換または非置換のフェニル基ならびにニトリル基を有する熱可塑性樹脂を含有する樹脂組成物が使用でき、例えば、イソブテンとN-メチルマレイミドからなる交互共重合体と、アクリロニトリル・スチレン共重合体とを有する樹脂組成物が挙げられる。当該ポリマーフィルムは、例えば、上記樹脂組成物の押出成形物であり得る。
 保護層の厚みは、好ましくは5μm~200μm、より好ましくは10μm~100μm、さらに好ましくは10μm~60μmである。
C-4.第1の位相差層
 第1の位相差層は、目的に応じて任意の適切な光学的特性および/または機械的特性を有し得る。第1の位相差層は、代表的には遅相軸を有する。1つの実施形態においては、第1の位相差層の遅相軸と偏光膜の吸収軸とのなす角度θは、上記のとおり40°~50°であり、好ましくは42°~48°であり、さらに好ましくは約45°である。角度θがこのような範囲であれば、後述するように第1の位相差層をλ/4板とすることにより、非常に優れた円偏光特性(結果として、非常に優れた反射防止特性)を有する位相差層付偏光板が得られ得る。
 第1の位相差層は、好ましくは屈折率特性がnx>ny≧nzの関係を示す。第1の位相差層は、代表的には偏光板に反射防止特性を付与するために設けられ、1つの実施形態においてはλ/4板として機能し得る。この場合、第1の位相差層の面内位相差Re(550)は、好ましくは100nm~190nm、より好ましくは110nm~170nm、さらに好ましくは130nm~160nmである。なお、ここで「ny=nz」はnyとnzが完全に等しい場合だけではなく、実質的に等しい場合を包含する。したがって、本発明の効果を損なわない範囲で、ny<nzとなる場合があり得る。
 第1の位相差層のNz係数は、好ましくは0.9~3、より好ましくは0.9~2.5、さらに好ましくは0.9~1.5、特に好ましくは0.9~1.3である。このような関係を満たすことにより、得られる位相差層付偏光板を画像表示装置に用いた場合に、非常に優れた反射色相を達成し得る。
 第1の位相差層は、位相差値が測定光の波長に応じて大きくなる逆分散波長特性を示してもよく、位相差値が測定光の波長に応じて小さくなる正の波長分散特性を示してもよく、位相差値が測定光の波長によってもほとんど変化しないフラットな波長分散特性を示してもよい。1つの実施形態においては、第1の位相差層は、逆分散波長特性を示す。この場合、位相差層のRe(450)/Re(550)は、好ましくは0.8以上1未満であり、より好ましくは0.8以上0.95以下である。このような構成であれば、非常に優れた反射防止特性を実現することができる。
 第1の位相差層は、光弾性係数の絶対値が好ましくは2×10-11/N以下、より好ましくは2.0×10-13/N~1.5×10-11/N、さらに好ましくは1.0×10-12/N~1.2×10-11/Nの樹脂を含む。光弾性係数の絶対値がこのような範囲であれば、加熱時の収縮応力が発生した場合に位相差変化が生じにくい。その結果、得られる画像表示装置の熱ムラが良好に防止され得る。
 第1の位相差層は、樹脂フィルムの延伸フィルムまたは液晶配向固化層であり得る。樹脂フィルムの延伸フィルムで構成される第1の位相差層の厚みは、好ましくは70μm以下であり、より好ましくは45μm~60μmである。第1の位相差層の厚みがこのような範囲であれば、加熱時のカールを良好に抑制しつつ、貼り合わせ時のカールを良好に調整することができる。また、後述するように第1の位相差層がポリカーボネート系樹脂フィルムで構成される実施形態においては、第1の位相差層の厚みは、好ましくは40μm以下であり、より好ましくは10μm~40μmであり、さらに好ましくは20μm~30μmである。第1の位相差層が、このような厚みを有するポリカーボネート系樹脂フィルムで構成されることにより、カールの発生を抑制しつつ、折り曲げ耐久性および反射色相の向上にも寄与し得る。
 第1の位相差層を形成し得る樹脂の代表例としては、ポリカーボネート系樹脂、ポリエステルカーボネート系樹脂、ポリエステル系樹脂、ポリビニルアセタール系樹脂、ポリアリレート系樹脂、環状オレフィン系樹脂、セルロース系樹脂、ポリビニルアルコール系樹脂、ポリアミド系樹脂、ポリイミド系樹脂、ポリエーテル系樹脂、ポリスチレン系樹脂、アクリル系樹脂が挙げられる。これらの樹脂は、単独で用いてもよく組み合わせて(例えば、ブレンド、共重合)用いてもよい。第1の位相差層が逆分散波長特性を示す樹脂フィルムで構成される場合、ポリカーボネート系樹脂またはポリエステルカーボネート系樹脂(以下、単にポリカーボネート系樹脂と称する場合がある)が好適に用いられ得る。
 上記ポリカーボネート系樹脂としては、本発明の効果が得られる限りにおいて、任意の適切なポリカーボネート系樹脂を用いることができる。例えば、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジオール、脂環式ジメタノール、ジ、トリまたはポリエチレングリコール、ならびに、アルキレングリコールまたはスピログリコールからなる群から選択される少なくとも1つのジヒドロキシ化合物に由来する構造単位と、を含む。好ましくは、ポリカーボネート系樹脂は、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、脂環式ジメタノールに由来する構造単位ならびに/あるいはジ、トリまたはポリエチレングリコールに由来する構造単位と、を含み;さらに好ましくは、フルオレン系ジヒドロキシ化合物に由来する構造単位と、イソソルビド系ジヒドロキシ化合物に由来する構造単位と、ジ、トリまたはポリエチレングリコールに由来する構造単位と、を含む。ポリカーボネート系樹脂は、必要に応じてその他のジヒドロキシ化合物に由来する構造単位を含んでいてもよい。なお、本発明に好適に用いられ得るポリカーボネート系樹脂の詳細は、例えば、特開2014-10291号公報、特開2014-26266号公報、特開2015-212816号公報、特開2015-212817号公報、特開2015-212818号公報に記載されており、当該記載は本明細書に参考として援用される。
 前記ポリカーボネート系樹脂のガラス転移温度は、110℃以上150℃以下であることが好ましく、より好ましくは120℃以上140℃以下である。ガラス転移温度が過度に低いと耐熱性が悪くなる傾向にあり、フィルム成形後に寸法変化を起こす可能性があり、又、得られる有機ELパネルの画像品質を下げる場合がある。ガラス転移温度が過度に高いと、フィルム成形時の成形安定性が悪くなる場合があり、又フィルムの透明性を損なう場合がある。なお、ガラス転移温度は、JIS K 7121(1987)に準じて求められる。
 前記ポリカーボネート系樹脂の分子量は、還元粘度で表すことができる。還元粘度は、溶媒として塩化メチレンを用い、ポリカーボネート濃度を0.6g/dLに精密に調製し、温度20.0℃±0.1℃でウベローデ粘度管を用いて測定される。還元粘度の下限は、通常0.30dL/gが好ましく、より好ましは0.35dL/g以上である。還元粘度の上限は、通常1.20dL/gが好ましく、より好ましくは1.00dL/g、更に好ましくは0.80dL/gである。還元粘度が前記下限値より小さいと成形品の機械的強度が小さくなるという問題が生じる場合がある。一方、還元粘度が前記上限値より大きいと、成形する際の流動性が低下し、生産性や成形性が低下するという問題が生じる場合がある。
 ポリカーボネート系樹脂フィルムとして市販のフィルムを用いてもよい。市販品の具体例としては、帝人社製の商品名「ピュアエースWR-S」、「ピュアエースWR-W」、「ピュアエースWR-M」、日東電工社製の商品名「NRF」が挙げられる。
 第1の位相差層は、例えば、上記ポリカーボネート系樹脂から形成されたフィルムを延伸することにより得られる。ポリカーボネート系樹脂からフィルムを形成する方法としては、任意の適切な成形加工法が採用され得る。具体例としては、圧縮成形法、トランスファー成形法、射出成形法、押出成形法、ブロー成形法、粉末成形法、FRP成形法、キャスト塗工法(例えば、流延法)、カレンダー成形法、熱プレス法等が挙げられる。押出成形法またはキャスト塗工法が好ましい。得られるフィルムの平滑性を高め、良好な光学的均一性を得ることができるからである。成形条件は、使用される樹脂の組成や種類、位相差層に所望される特性等に応じて適宜設定され得る。なお、上記のとおり、ポリカーボネート系樹脂は、多くのフィルム製品が市販されているので、当該市販フィルムをそのまま延伸処理に供してもよい。
 樹脂フィルム(未延伸フィルム)の厚みは、第1の位相差層の所望の厚み、所望の光学特性、後述の延伸条件などに応じて、任意の適切な値に設定され得る。好ましくは50μm~300μmである。
 上記延伸は、任意の適切な延伸方法、延伸条件(例えば、延伸温度、延伸倍率、延伸方向)が採用され得る。具体的には、自由端延伸、固定端延伸、自由端収縮、固定端収縮などの様々な延伸方法を、単独で用いることも、同時もしくは逐次で用いることもできる。延伸方向に関しても、長さ方向、幅方向、厚さ方向、斜め方向等、様々な方向や次元に行なうことができる。延伸の温度は、樹脂フィルムのガラス転移温度(Tg)に対し、Tg-30℃~Tg+60℃であることが好ましく、より好ましくはTg-10℃~Tg+50℃である。
 上記延伸方法、延伸条件を適宜選択することにより、上記所望の光学特性(例えば、屈折率特性、面内位相差、Nz係数)を有する位相差フィルムを得ることができる。
 1つの実施形態においては、位相差フィルムは、樹脂フィルムを一軸延伸もしくは固定端一軸延伸することにより作製される。固定端一軸延伸の具体例としては、樹脂フィルムを長手方向に走行させながら、幅方向(横方向)に延伸する方法が挙げられる。延伸倍率は、好ましくは1.1倍~3.5倍である。
 別の実施形態においては、位相差フィルムは、長尺状の樹脂フィルムを長手方向に対して上記の角度θの方向に連続的に斜め延伸することにより作製され得る。斜め延伸を採用することにより、フィルムの長手方向に対して角度θの配向角(角度θの方向に遅相軸)を有する長尺状の延伸フィルムが得られ、例えば、偏光膜との積層に際してロールトゥロールが可能となり、製造工程を簡略化することができる。なお、角度θは、位相差層付偏光板において偏光膜の吸収軸と位相差層の遅相軸とがなす角度であり得る。角度θは、上記のとおり、好ましくは40°~50°であり、より好ましくは42°~48°であり、さらに好ましくは約45°である。
 斜め延伸に用いる延伸機としては、例えば、横および/または縦方向に、左右異なる速度の送り力もしくは引張り力または引き取り力を付加し得るテンター式延伸機が挙げられる。テンター式延伸機には、横一軸延伸機、同時二軸延伸機等があるが、長尺状の樹脂フィルムを連続的に斜め延伸し得る限り、任意の適切な延伸機が用いられ得る。
 上記延伸機において左右の速度をそれぞれ適切に制御することにより、上記所望の面内位相差を有し、かつ、上記所望の方向に遅相軸を有する位相差層(実質的には、長尺状の位相差フィルム)が得られ得る。
 上記フィルムの延伸温度は、位相差層に所望される面内位相差値および厚み、使用される樹脂の種類、使用されるフィルムの厚み、延伸倍率等に応じて変化し得る。具体的には、延伸温度は、好ましくはTg-30℃~Tg+30℃、さらに好ましくはTg-15℃~Tg+15℃、最も好ましくはTg-10℃~Tg+10℃である。このような温度で延伸することにより、本発明において適切な特性を有する第1の位相差層が得られ得る。なお、Tgは、フィルムの構成材料のガラス転移温度である。
C-5.第2の位相差層
 第2の位相差層は、上記のとおり、屈折率特性がnz>nx=nyの関係を示す、いわゆるポジティブCプレートであり得る。第2の位相差層としてポジティブCプレートを用いることにより、斜め方向の反射を良好に防止することができ、反射防止機能の広視野角化が可能となる。この場合、第2の位相差層の厚み方向の位相差Rth(550)は、好ましくは-50nm~-300nm、より好ましくは-70nm~-250nm、さらに好ましくは-90nm~-200nm、特に好ましくは-100nm~-180nmである。ここで、「nx=ny」は、nxとnyが厳密に等しい場合のみならず、nxとnyが実質的に等しい場合も包含する。すなわち、第2の位相差層の面内位相差Re(550)は10nm未満であり得る。
 nz>nx=nyの屈折率特性を有する第2の位相差層は、任意の適切な材料で形成され得る。第2の位相差層は、好ましくは、ホメオトロピック配向に固定された液晶材料を含むフィルムからなる。ホメオトロピック配向させることができる液晶材料(液晶化合物)は、液晶モノマーであっても液晶ポリマーであってもよい。当該液晶化合物および当該位相差層の形成方法の具体例としては、特開2002-333642号公報の[0020]~[0028]に記載の液晶化合物および当該位相差層の形成方法が挙げられる。この場合、第2の位相差層の厚みは、好ましくは0.5μm~10μmであり、より好ましくは0.5μm~8μmであり、さらに好ましくは0.5μm~5μmである。
C-6.導電層または導電層付等方性基材
 導電層は、任意の適切な成膜方法(例えば、真空蒸着法、スパッタリング法、CVD法、イオンプレーティング法、スプレー法等)により、任意の適切な基材上に、金属酸化物膜を成膜して形成され得る。金属酸化物としては、例えば、酸化インジウム、酸化スズ、酸化亜鉛、インジウム-スズ複合酸化物、スズ-アンチモン複合酸化物、亜鉛-アルミニウム複合酸化物、インジウム-亜鉛複合酸化物が挙げられる。なかでも好ましくは、インジウム-スズ複合酸化物(ITO)である。
 導電層が金属酸化物を含む場合、該導電層の厚みは、好ましくは50nm以下であり、より好ましくは35nm以下である。導電層の厚みの下限は、好ましくは10nmである。
 導電層は、上記基材から第1の位相差層(または、存在する場合には第2の位相差層)に転写されて導電層単独で位相差層付偏光板の構成層とされてもよく、基材との積層体(導電層付基材)として第1の位相差層(または、存在する場合には第2の位相差層)に積層されてもよい。好ましくは、上記基材は光学的に等方性であり、したがって、導電層は導電層付等方性基材として位相差層付偏光板に用いられ得る。
 光学的に等方性の基材(等方性基材)としては、任意の適切な等方性基材を採用し得る。等方性基材を構成する材料としては、例えば、ノルボルネン系樹脂やオレフィン系樹脂などの共役系を有さない樹脂を主骨格としている材料、ラクトン環やグルタルイミド環などの環状構造をアクリル系樹脂の主鎖中に有する材料などが挙げられる。このような材料を用いると、等方性基材を形成した際に、分子鎖の配向に伴う位相差の発現を小さく抑えることができる。等方性基材の厚みは、好ましくは50μm以下であり、より好ましくは35μm以下である。等方性基材の厚みの下限は、例えば20μmである。
 上記導電層および/または上記導電層付等方性基材の導電層は、必要に応じてパターン化され得る。パターン化によって、導通部と絶縁部とが形成され得る。結果として、電極が形成され得る。電極は、タッチパネルへの接触を感知するタッチセンサ電極として機能し得る。パターニング方法としては、任意の適切な方法を採用し得る。パターニング方法の具体例としては、ウエットエッチング法、スクリーン印刷法が挙げられる。
D.画像表示装置
 上記C項に記載の偏光板は、画像表示装置に適用され得る。したがって、本発明は、当該偏光板を備える画像表示装置を包含する。画像表示装置の代表例としては、液晶表示装置、エレクトロルミネセンス(EL)表示装置(例えば、有機EL表示装置、無機EL表示装置)が挙げられる。なかでも、青色発光量の低減による省エネルギー化を実現し得る点で、有機EL表示装置が好ましい。
 以下、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって限定されるものではない。各特性の測定方法は以下の通りである。なお、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 製品名「リニアゲージ MODEL D-10HS」(尾崎製作所社製)を用いて測定した。
(2)単体透過率、偏光度および直交吸光度
 実施例および比較例で得られたPVA系樹脂膜(偏光膜または未脱色原膜)と保護層との積層体について、PVA系樹脂膜側から、紫外可視分光光度計(大塚電子社製「LPF-200」)を用いて測定した単体透過率Ts、平行透過率Tp、直交透過率Tcをそれぞれ、PVA系樹脂膜のTs、TpおよびTcとした。位相差層付偏光板については、位相差層側から同様に単体透過率Tsを測定した。これらのTs、TpおよびTcは、JIS Z8701の2度視野(C光源)により測定して視感度補正を行なったY値である。なお、保護層の屈折率は1.53であり、偏光膜の保護層とは反対側の表面の屈折率は1.53であった。
 得られたTpおよびTcから、下記式により偏光度Pを求めた。
   偏光度P(%)={(Tp-Tc)/(Tp+Tc)}1/2×100
 また、各波長での測定されたTcを用いて、下記式により各波長における直交吸光度を求めた。
   直交吸光度=log10(100/Tc)
 また、波長470nmおよび600nmでの測定されたTsをそれぞれ、Ts470およびTs600とした。
 なお、分光光度計は、日本分光社製「V-7100」などでも同等の測定をすることが可能であり、いずれの分光光度計を用いた場合であっても同等の測定結果が得られることが確認されている。
(3)水分率
 乾燥処理直後の未脱色原膜(積層体で延伸した場合、延伸基材は剥離する)を100mm×100mm以上の大きさに切り出し、電子天秤にて、処理前重量を測定する。その後120℃に保たれた加熱オーブンに2時間投入し、取り出し後の重量(処理後重量)を測定し、下記式により水分率を求めた。
水分率[%]=(処理前重量-処理後重量)/処理前重量×100 
(4)ヘイズ
 日本電色工業社製、製品名「ヘーズメーター(NDH-5000)」を用いて、JISK7136に従って測定した。
(5)正面反射色相
 実施例および比較例で得られた位相差層付偏光板を、紫外線吸収機能の無いアクリル系粘着剤を用いて反射板(東レフィルム社製、商品名「DMS-X42」;反射率86%、偏光板なしでの反射色相a=-0.22、b=0.32)上に貼り合せて測定サンプルを作製した。このとき、位相差層付偏光板の位相差層側が反射板と対向するように貼り合せた。当該測定サンプルに対して、分光測色計(コニカミノルタ製のCM-2600d)を用いてSCE方式でa値およびb値を測定した。
[実施例1-1]
1.偏光膜および偏光板の作製
 厚み30μmのPVA系樹脂フィルム(クラレ製、製品名「PE3000」)の長尺ロールを、30℃水浴中に浸漬させつつ搬送方向に2.2倍に延伸した後、ヨウ素濃度0.04重量%、カリウム濃度0.3重量%の30℃水溶液中に浸漬して染色しながら、全く延伸していないフィルム(元長)を基準として3倍に延伸した。次いで、この延伸フィルムを、ホウ酸濃度3重量%、ヨウ化カリウム濃度3重量%の30℃の水溶液中に浸漬しながら、元長基準で3.3倍までさらに延伸し、続いて、ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%の60℃水溶液中に浸漬しながら、元長基準で6倍までさらに延伸し、最後に60℃に保たれたオーブンで5分の乾燥処理を施すことによって、厚み12μmの偏光膜(未脱色原膜a1)を作製した。得られた未脱色原膜a1の水分率は10.0重量%であり、単体透過率は42.5%であった。
 得られた未脱色原膜a1の片面にPVA系樹脂水溶液(日本合成化学工業社製、商品名「ゴーセファイマー(登録商標)Z-200」、樹脂濃度:3重量%)を塗布し、シクロオレフィン系フィルム(日本ゼオン社製、Zeonor、厚み:25μm)を貼り合わせて、[未脱色原膜a1/保護層]の構成を有する光学積層体を得た。なお、保護層としては、ハードコート層が設けられた保護層を用いてもよく、このような保護層としては、例えばハードコート層付シクロオレフィン系フィルム(ZEON社製、製品名「G-Film」、総厚み27μm(フィルム厚み25μm+ハードコート層厚み2μm))等が例示できる。
 上記光学積層体を50mm×45mmサイズに切断し、アクリル系粘着剤層(厚み15μm)を介して未脱色原膜側表面が露出面となるようにガラス板に貼り合わせた状態で55℃の水中に9分間浸漬した。次いで、50℃で5分乾燥することにより、[偏光膜A1/保護層]の構成を有する偏光板を得た。
2.位相差層を構成する位相差フィルムの作製
2-1.ポリエステルカーボネート系樹脂の重合
 撹拌翼および100℃に制御された還流冷却器を具備した縦型反応器2器からなるバッチ重合装置を用いて重合を行った。ビス[9-(2-フェノキシカルボニルエチル)フルオレン-9-イル]メタン29.60質量部(0.046mol)、イソソルビド(ISB)29.21質量部(0.200mol)、スピログリコール(SPG)42.28質量部(0.139mol)、ジフェニルカーボネート(DPC)63.77質量部(0.298mol)及び触媒として酢酸カルシウム1水和物1.19×10-2質量部(6.78×10-5mol)を仕込んだ。反応器内を減圧窒素置換した後、熱媒で加温を行い、内温が100℃になった時点で撹拌を開始した。昇温開始40分後に内温を220℃に到達させ、この温度を保持するように制御すると同時に減圧を開始し、220℃に到達してから90分で13.3kPaにした。重合反応とともに副生するフェノール蒸気を100℃の還流冷却器に導き、フェノール蒸気中に若干量含まれるモノマー成分を反応器に戻し、凝縮しないフェノール蒸気は45℃の凝縮器に導いて回収した。第1反応器に窒素を導入して一旦大気圧まで復圧させた後、第1反応器内のオリゴマー化された反応液を第2反応器に移した。次いで、第2反応器内の昇温および減圧を開始して、50分で内温240℃、圧力0.2kPaにした。その後、所定の攪拌動力となるまで重合を進行させた。所定動力に到達した時点で反応器に窒素を導入して復圧し、生成したポリエステルカーボネート系樹脂を水中に押し出し、ストランドをカッティングしてペレットを得た。
2-2.位相差フィルムの作製
 得られたポリエステルカーボネート系樹脂(ペレット)を80℃で5時間真空乾燥をした後、単軸押出機(東芝機械社製、シリンダー設定温度:250℃)、Tダイ(幅200mm、設定温度:250℃)、チルロール(設定温度:120~130℃)および巻取機を備えたフィルム製膜装置を用いて、厚み130μmの長尺状の樹脂フィルムを作製した。得られた長尺状の樹脂フィルムを、所定の位相差が得られるように調整しながら延伸し、厚み48μmの位相差フィルムを得た。延伸条件は、幅方向に、延伸温度143℃、延伸倍率2.8倍であった。得られた位相差フィルムのRe(550)は141nmであり、Re(450)/Re(550)は0.86であり、Nz係数は1.12であった。
3.位相差層付偏光板の作製
 上記1.で得られた偏光板の偏光膜表面に、上記2.で得られた位相差フィルムを、アクリル系粘着剤(厚み15μm)を介して貼り合わせた。このとき、偏光膜の吸収軸と位相差フィルムの遅相軸とが45°の角度をなすようにして貼り合わせた。このようにして、[位相差層/偏光膜A1/保護層]の構成を有する位相差層付偏光板を得た。
[実施例1-2]
 55℃の水中に9分間浸漬する代わりに、65℃の水に3分間浸漬したこと以外は実施例1-1と同様にして、[偏光膜A2/保護層]の構成を有する偏光板を得た。また、当該偏光板を用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。
[実施例1-3]
 55℃の水中に9分間浸漬する代わりに、23℃の水に31時間浸漬したこと以外は実施例1-1と同様にして、[偏光膜A3/保護層]の構成を有する偏光板を得た。また、当該偏光板を用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。
[比較例1]
 実施例1-1と同様にして作製した[未脱色原膜a1/保護層]の構成を有する光学積層体を偏光板として用いた。また、当該偏光板を用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。
[実施例2-1]
 熱可塑性樹脂基材として、長尺状で、Tg約75℃である、非晶質のイソフタル共重合ポリエチレンテレフタレートフィルム(厚み:100μm)を用い、樹脂基材の片面に、コロナ処理を施した。
 ポリビニルアルコール(重合度4200、ケン化度99.2モル%)およびアセトアセチル変性PVA(日本合成化学工業社製、商品名「ゴーセファイマー」)を9:1で混合したPVA系樹脂100重量部に、ヨウ化カリウム13重量部を添加したものを水に溶かし、PVA水溶液(塗布液)を調製した。
 樹脂基材のコロナ処理面に、上記PVA水溶液を塗布して60℃で乾燥することにより、厚み13μmのPVA系樹脂層を形成し、積層体を作製した。
 得られた積層体を、130℃のオーブン内で縦方向(長手方向)に2.4倍に一軸延伸した(空中補助延伸処理)。
 次いで、積層体を、液温40℃の不溶化浴(水100重量部に対して、ホウ酸を4重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(不溶化処理)。
 次いで、液温30℃の染色浴(水100重量部に対して、ヨウ素とヨウ化カリウムを1:7の重量比で配合して得られたヨウ素水溶液)に、最終的に得られる未脱色原膜の単体透過率(Ts)が42.3%となるように濃度を調整しながら60秒間浸漬させた(染色処理)。
 次いで、液温40℃の架橋浴(水100重量部に対して、ヨウ化カリウムを3重量部配合し、ホウ酸を5重量部配合して得られたホウ酸水溶液)に30秒間浸漬させた(架橋処理)。
 その後、積層体を、液温70℃のホウ酸水溶液(ホウ酸濃度4重量%、ヨウ化カリウム濃度5重量%)に浸漬させながら、周速の異なるロール間で縦方向(長手方向)に総延伸倍率が5.5倍となるように一軸延伸を行った(水中延伸処理)。
 その後、積層体を液温20℃の洗浄浴(水100重量部に対して、ヨウ化カリウムを4重量部配合して得られた水溶液)に浸漬させた(洗浄処理)。
 その後、約90℃に保たれたオーブン中で乾燥しながら、表面温度が約75℃に保たれたSUS製の加熱ロールに接触させた(乾燥収縮処理)。乾燥収縮処理による積層体の幅方向の収縮率は2%であった。
 このようにして、樹脂基材上に水分率が4.5%であり、厚み5.4μmの未脱色原膜を形成し、未脱色原膜の表面にシクロオレフィン系フィルム(日本ゼオン社製、Zeonor、厚み:25μm)をUV硬化型接着剤(厚み1.0μm)により貼り合わせ、その後、樹脂基材を剥離して[未脱色原膜b1/保護層]の構成を有する光学積層体を得た。
 上記光学積層体を50mm×45mmサイズに切断し、アクリル系粘着剤層(厚み15μm)を介して未脱色原膜側表面が露出面となるようにガラス板に貼り合わせた状態で50℃の水中に9分間浸漬した。次いで、50℃で5分乾燥することにより、[偏光膜B1/保護層]の構成を有する偏光板を得た。また、当該偏光板を用いたこと以外は実施例1-1と同様にして、[位相差層/偏光膜B1/保護層]の構成を有する位相差層付偏光板を得た。
[実施例2-2]
 50℃の水中に9分間浸漬する代わりに、60℃の水に3分間浸漬したこと以外は実施例2-1と同様にして、[偏光膜B2/保護層]の構成を有する偏光板を得た。また、当該偏光板を用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。
[比較例2]
 実施例2-1と同様にして作製した[未脱色原膜b1/保護層]の構成を有する光学積層体を偏光板として用いた。また、当該偏光板を用いたこと以外は実施例1-1と同様にして、位相差層付偏光板を得た。
 上記実施例および比較例で得られた未脱色原膜、偏光膜、位相差層付偏光板について各種特性を評価した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例の偏光膜は、「1<Ts470/Ts600」の関係を満たし、短波長側の光を長波長側の光よりも積極的に透過させることができる。
 本発明の偏光膜は、液晶表示装置およびEL表示装置等の画像表示装置、特に、有機EL表示装置において好適に用いられ得る。
 10   偏光膜
 20   保護層
 30   位相差層
 40   粘着剤層
100   偏光板

Claims (10)

  1.  ヨウ素を含むポリビニルアルコール系樹脂フィルムで構成され、
     波長470nmにおける透過率が波長600nmにおける透過率よりも大きい、偏光膜。
  2.  ヘイズが1%以下である、請求項1に記載の偏光膜。
  3.  波長470nmにおける直交吸光度A470が4.0以下である、請求項1または2に記載の偏光膜。
  4.  波長600nmにおける直交吸光度A600に対する波長470nmにおける直交吸光度A470の比(A470/A600)が0.10~0.80である、請求項1から3のいずれかに記載の偏光膜。
  5.  単体透過率が42.0%~65.0%であり、偏光度が40.0%~99.998%である、請求項1から4のいずれかに記載の偏光膜。
  6.  厚みが12μm以下である、請求項1から5のいずれかに記載の偏光膜。
  7.  請求項1から6のいずれかに記載の偏光膜と該偏光膜の少なくとも片側に配置された保護層とを含む、偏光板。
  8.  位相差層をさらに含み、
     該位相差層の波長550nmにおける面内位相差が100nm~190nmであり、
     該位相差層の遅相軸と上記偏光膜の吸収軸とのなす角度が40°~50°である、請求項7に記載の偏光板。
  9.  請求項7または8に記載の偏光板を備える、画像表示装置。
  10.  有機エレクトロルミネセンス表示装置である、請求項9に記載の画像表示装置。
     
PCT/JP2021/047760 2021-01-22 2021-12-23 偏光膜、偏光板および画像表示装置 WO2022158234A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020237024443A KR20230130017A (ko) 2021-01-22 2021-12-23 편광막, 편광판 및 화상 표시 장치
CN202180091353.5A CN116940872A (zh) 2021-01-22 2021-12-23 偏振膜、偏振片及图像显示装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021008757A JP2022112800A (ja) 2021-01-22 2021-01-22 偏光膜、偏光板および画像表示装置
JP2021-008757 2021-01-22

Publications (1)

Publication Number Publication Date
WO2022158234A1 true WO2022158234A1 (ja) 2022-07-28

Family

ID=82548219

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/047760 WO2022158234A1 (ja) 2021-01-22 2021-12-23 偏光膜、偏光板および画像表示装置

Country Status (5)

Country Link
JP (1) JP2022112800A (ja)
KR (1) KR20230130017A (ja)
CN (1) CN116940872A (ja)
TW (1) TW202238185A (ja)
WO (1) WO2022158234A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109090A (ja) * 2011-11-18 2013-06-06 Sumitomo Chemical Co Ltd 偏光膜、円偏光板及びそれらを用いた有機el画像表示装置
JP2015180910A (ja) * 2014-03-05 2015-10-15 富士フイルム株式会社 偏光板、これを含む液晶表示装置、および偏光板の製造方法
WO2017130585A1 (ja) * 2016-01-28 2017-08-03 コニカミノルタ株式会社 偏光板、偏光板の製造方法及び液晶表示装置
JP2020064291A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2020073997A (ja) * 2014-06-25 2020-05-14 住友化学株式会社 光吸収異方性膜、3次元光吸収異方性膜及びその製造方法
JP2021004946A (ja) * 2019-06-25 2021-01-14 日東電工株式会社 偏光板の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002311239A (ja) 2001-04-16 2002-10-23 Nitto Denko Corp 1/4波長板、円偏光板及び表示装置
JP2002372622A (ja) 2001-06-14 2002-12-26 Nitto Denko Corp 複合位相差板、円偏光板及び液晶表示装置、有機el表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013109090A (ja) * 2011-11-18 2013-06-06 Sumitomo Chemical Co Ltd 偏光膜、円偏光板及びそれらを用いた有機el画像表示装置
JP2015180910A (ja) * 2014-03-05 2015-10-15 富士フイルム株式会社 偏光板、これを含む液晶表示装置、および偏光板の製造方法
JP2020073997A (ja) * 2014-06-25 2020-05-14 住友化学株式会社 光吸収異方性膜、3次元光吸収異方性膜及びその製造方法
WO2017130585A1 (ja) * 2016-01-28 2017-08-03 コニカミノルタ株式会社 偏光板、偏光板の製造方法及び液晶表示装置
JP2020064291A (ja) * 2018-10-15 2020-04-23 日東電工株式会社 位相差層付偏光板およびそれを用いた画像表示装置
JP2021004946A (ja) * 2019-06-25 2021-01-14 日東電工株式会社 偏光板の製造方法

Also Published As

Publication number Publication date
TW202238185A (zh) 2022-10-01
JP2022112800A (ja) 2022-08-03
KR20230130017A (ko) 2023-09-11
CN116940872A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
JP7355583B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
KR102534630B1 (ko) 위상차층 부착 편광판 및 이를 이용한 화상 표시 장치
JP2022173190A (ja) 位相差層付き偏光板
JP7355582B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP2023116527A (ja) 偏光子、偏光子の製造方法および該偏光子を含む光学積層体
JP2023053981A (ja) 偏光膜の製造方法
KR102534632B1 (ko) 위상차층 부착 편광판 및 이를 이용한 화상 표시 장치
JP7240364B2 (ja) 偏光板およびその製造方法、ならびに、該偏光板を用いた位相差層付偏光板および画像表示装置
JP7348799B2 (ja) 位相差層付偏光板の製造方法
JP7355584B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
WO2022158234A1 (ja) 偏光膜、偏光板および画像表示装置
KR102526025B1 (ko) 위상차층 부착 편광판 및 이를 이용한 화상 표시 장치
WO2020080184A1 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
WO2020080183A1 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP7355587B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP7355585B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
JP7355586B2 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
WO2023218820A1 (ja) 偏光膜の製造方法
JP7240363B2 (ja) 染色トリアセチルセルロースフィルム、該フィルムを用いた偏光板、偏光板の製造方法、位相差層付偏光板、画像表示装置、および画像表示装置の画像調整方法
WO2023218821A1 (ja) 偏光膜の製造方法
WO2023218822A1 (ja) 偏光膜の製造方法
KR102536728B1 (ko) 위상차층 부착 편광판 및 이를 이용한 화상 표시 장치
WO2020080188A1 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
WO2020080187A1 (ja) 位相差層付偏光板およびそれを用いた画像表示装置
WO2020080185A1 (ja) 位相差層付偏光板およびそれを用いた画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21921335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237024443

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091353.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21921335

Country of ref document: EP

Kind code of ref document: A1