Nothing Special   »   [go: up one dir, main page]

WO2022157844A1 - チタン合金板及び自動車用排気系部品 - Google Patents

チタン合金板及び自動車用排気系部品 Download PDF

Info

Publication number
WO2022157844A1
WO2022157844A1 PCT/JP2021/001778 JP2021001778W WO2022157844A1 WO 2022157844 A1 WO2022157844 A1 WO 2022157844A1 JP 2021001778 W JP2021001778 W JP 2021001778W WO 2022157844 A1 WO2022157844 A1 WO 2022157844A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
titanium alloy
crystal grain
grain size
less
Prior art date
Application number
PCT/JP2021/001778
Other languages
English (en)
French (fr)
Inventor
秀徳 岳辺
哲 川上
想祐 西脇
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to PCT/JP2021/001778 priority Critical patent/WO2022157844A1/ja
Priority to JP2022576264A priority patent/JP7541255B2/ja
Priority to CN202180088952.1A priority patent/CN116806277A/zh
Priority to EP21920958.2A priority patent/EP4283000A4/en
Publication of WO2022157844A1 publication Critical patent/WO2022157844A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C14/00Alloys based on titanium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon

Definitions

  • the present disclosure relates to titanium alloy plates and automotive exhaust system parts.
  • Exhaust systems of four-wheeled vehicles and two-wheeled vehicles are equipped with exhaust manifolds and exhaust pipes. Exhaust gas discharged from the engine and collected by the exhaust manifold is discharged to the outside from the exhaust port at the rear of the vehicle body through the exhaust pipe.
  • a catalytic device and a muffler are arranged in the middle of the exhaust pipe to purify the exhaust gas and muffle the exhaust noise.
  • exhaust system the whole from the exhaust manifold to the exhaust pipe and the exhaust port is called “exhaust system”.
  • Parts such as an exhaust manifold, an exhaust pipe, a catalytic device, and a muffler that constitute an exhaust system are referred to as "exhaust system parts”.
  • stainless steel which has excellent corrosion resistance, high strength, and workability, has been used for exhaust system components of automobiles, etc.
  • stainless steel is lighter than stainless steel, and has high strength and corrosion resistance.
  • Excellent titanium material is being used.
  • JIS class 2 industrial pure titanium is used in exhaust systems for motorcycles.
  • titanium alloys with higher heat resistance are being used in place of JIS class 2 industrial pure titanium materials.
  • the exhaust gas temperature in the exhaust pipe may reach about 800° C., and it is required to ensure sufficient high-temperature strength even in this temperature range.
  • Exhaust system parts are also desired to be inhibited from high-temperature oxidation (excellent in high-temperature oxidation resistance).
  • the steel is excellent in strength and oxidation resistance at high temperatures, it is difficult to process it into parts if its workability is low. Therefore, when a titanium plate is used for exhaust system parts, it is also required to have good workability during molding.
  • Patent Document 1 describes a titanium alloy containing 0.15 to 2% by mass of Si, limiting Al to less than 0.30% by mass, and having the balance of titanium and unavoidable impurities and having excellent high-temperature oxidation resistance. It is In addition, in Patent Document 2, Al: 0.30 to 1.50% and Si: 0.10 to 1.0% on a mass basis, which is characterized by containing excellent high-temperature oxidation resistance and corrosion resistance A titanium alloy is described. Further, in Patent Document 3, in mass%, Cu: more than 2.1% to 4.5%, oxygen: 0.04% or less, Fe: 0.06% or less, and the balance Ti and unavoidable impurities A heat-resistant titanium alloy for exhaust device members, which is excellent in cold workability, is described.
  • Patent Document 4 in mass%, Si: 0.1 to 0.6%, Fe: 0.04 to 0.2%, O: 0.02 to 0.15%, Fe and O The total content of is 0.1% or more and 0.3% or less, and the balance is Ti and unavoidable impurities whose single content is less than 0.04%.
  • a titanium alloy material is described.
  • Patent Documents 1 to 4 are intended to ensure high-temperature strength by limiting chemical components, and do not improve polishability.
  • the titanium plate for exhaust system parts is sometimes required to have a glossy surface.
  • the surface of the titanium plate is polished to have a surface texture that provides the required luster.
  • Patent Documents 1 to 4 techniques for improving high-temperature oxidation resistance, corrosion resistance, and cold workability while ensuring heat resistance are known. have not been considered.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a titanium alloy plate and an automotive exhaust system part that are excellent in workability, polishability, oxidation resistance at high temperatures, and high-temperature strength. .
  • a titanium alloy plate contains, in mass%, Cu: 0.7% to 1.5%, Sn: 0.5% to 1.5%, Si: 0.10% to 0.60%, Nb: 0.1% to 1.0%, Zr: 0% to 1.0%, Cr: 0% to 0.5%, Mo: 0% to 0.5%, Al: 0 % to 1.0%, Fe: 0.08% or less, O: 0.07% or less, respectively, with the balance being Ti and impurities, the metal structure having an ⁇ phase and a third
  • the average crystal grain size of the ⁇ phase is 3.0 to 10.0 ⁇ m, and the number ratio of crystal grains having a crystal grain size within the range of ⁇ 2 ⁇ m of the average crystal grain size in the ⁇ phase is 25% or more, the ratio of the number of crystal grains having a crystal grain size in the range of the average crystal grain size ⁇ 4 ⁇ m in the ⁇ phase is 45% or more, and in the cross section, an area of 100 ⁇ m ⁇ 100 ⁇ m is 100 etc.
  • an automobile exhaust system component according to another aspect of the present disclosure includes the titanium alloy plate according to [1] or [2] above.
  • An automotive exhaust system part according to another aspect of the present disclosure is obtained by molding the titanium alloy plate according to [1] or [2] above.
  • Automobile exhaust system parts are obtained by, for example, press-molding a titanium alloy plate, and are used in a high-temperature environment.
  • titanium alloy plates for exhaust system parts are sometimes required to have a glossy surface. Polishing the surface of a titanium alloy plate may increase its luster, so the titanium alloy plate is required to have good polishability.
  • the polishing time required to erase the unevenness will be long. That is, one method of improving the polishability is to use a plate having a flat surface.
  • the polishing state differs for each crystal grain because the hardness differs depending on the crystal orientation. Since it is not easy to control the crystal orientation to be extremely uniform, grains with different polishing states are generally made inconspicuous by refining the grains. However, sufficient polishability cannot be obtained unless the crystal grain size is not only made small but also made uniform. In addition, if the crystal grains are made too fine, the formability deteriorates, so there is a limit to how fine the grains can be.
  • the present inventors conducted studies to reduce the difference in the polished state of crystal grains due to the crystal orientation. As a result, intermetallic compounds with a predetermined number density or more are formed as a second phase in grains and grain boundaries. I found that it will be done.
  • the titanium alloy plate of the present embodiment was completed.
  • the titanium alloy plate of the present embodiment is, in mass%, Cu: 0.7% to 1.5%, Sn: 0.5% to 1.5%, Si: 0.10% to 0.60%, Nb : 0.1% to 1.0%, Zr: 0% to 1.0%, Cr: 0% to 0.5%, Mo: 0% to 0.5%, Al: 0% to 1.0% and having a chemical composition in which Fe: 0.08% or less, O: 0.07% or less, and the balance being Ti and impurities.
  • the titanium alloy plate of the present embodiment has a metal structure composed of an ⁇ phase and a second phase, the average crystal grain size of the ⁇ phase is 3.0 to 10.0 ⁇ m, and the ⁇ phase has a crystal
  • the ratio of the number of crystal grains having a grain size within the range of the average crystal grain size ⁇ 2 ⁇ m is 25% or more, and the number ratio of the crystal grains having the grain size within the range of the average crystal grain size ⁇ 4 ⁇ m in the ⁇ -phase. is 45% or more.
  • the titanium alloy plate of the present embodiment 100 (places) of 10 ⁇ m ⁇ 10 ⁇ m regions obtained by equally dividing a 100 ⁇ m ⁇ 100 ⁇ m region into 100 are used as measurement regions, and the number of the second phases in each measurement region The number of measurement regions in which 5 or more and 15 or less of the second phases are observed in the measurement region is 80 or more when the density is obtained.
  • the titanium alloy plate of the present embodiment preferably has an area ratio of the second phase of 1.0% or more.
  • the automotive exhaust system part of this embodiment includes the titanium alloy plate described above.
  • the Cu content should be 0.7% or more.
  • the Cu content is 0.8% or more.
  • the Cu content is set to 1.5% or less.
  • the Cu content is preferably 1.4% or less, more preferably 1.3% or less, still more preferably 1.2% or less.
  • the Sn content should be 0.5% or more.
  • the Sn content is preferably 0.6% or more, more preferably 0.8% or more, still more preferably 0.9% or more.
  • the Sn content should be 1.5% or less.
  • Sn is an element having a large specific gravity, and even if added in a large amount, it is not so much in terms of the atomic number ratio, so that contribution to solid solution strengthening is small. This is also the reason for restricting the upper limit of the content.
  • the Sn content is preferably 1.4% or less, more preferably 1.3% or less, still more preferably 1.2% or less.
  • the Si content should be 0.10% or more.
  • the Si content is preferably 0.15% or more, more preferably 0.20% or more.
  • the Si content is set to 0.60% or less.
  • the Si content is preferably 0.50% or less, more preferably 0.40% or less, even more preferably 0.35% or less, and even more preferably 0.30% or less.
  • the Nb content should be 0.1% or more.
  • the Nb content is preferably 0.2% or more, more preferably 0.3% or more.
  • the Nb content is set to 1.0% or less.
  • the Nb content is preferably 0.7% or less, more preferably 0.5% or less, still more preferably 0.4% or less.
  • Zr 0-1.0%
  • Zr is an element that facilitates formation of an intermetallic compound between Si and Ti.
  • Zr is also present in the intermetallic compounds that are formed.
  • the Zr content is preferably 0.1% or more.
  • the inclusion of Zr lowers the ⁇ -transformation temperature, and promotes the formation of intermetallic compounds and reduces the solute drag effect relative to the content. Therefore, when it is contained, the Zr content is set to 1.0% or less.
  • the Zr content is preferably 0.8% or less, more preferably 0.6% or less, even more preferably 0.5% or less, still more preferably 0.4% or less. Since Zr is an optional element, the lower limit is 0%.
  • Cr 0% or more and 0.5% or less
  • Mo 0% or more and 0.5% or less
  • Cr and Mo are optional elements, and their content may be 0%. As a result, grain growth is suppressed and high-temperature strength is improved. Therefore, it may be contained as necessary. In order to obtain the above effects, it is preferable to set the Cr content and Mo content to 0.05% or more, respectively. More preferably, each is 0.1% or more.
  • the Cr content and the Mo content are each set to 0.5% or less.
  • the Cr content and Mo content are each preferably 0.4% or less, more preferably 0.3% or less.
  • Al 0-1.0%
  • Al is an optional element, and although it may be 0%, it may be contained in order to ensure high-temperature strength.
  • the Al content is preferably 0.1% or more.
  • the Al content increases, the ⁇ -phase is stabilized and the formation of the ⁇ -phase is suppressed, and the high-temperature strength and oxidation resistance are further improved, but the workability is lowered, which is not preferable. Moreover, the cold rolling property is greatly reduced. Therefore, when Al is contained, the Al content is made 1.0% or less.
  • the Al content is preferably 0.8% or less, more preferably 0.6% or less, still more preferably 0.5% or less.
  • the Fe content should be as low as possible, and should be limited to 0.08% or less.
  • the Fe content is preferably 0.06% or less, more preferably 0.04% or less.
  • O 0.07% or less
  • O is an element that increases room temperature strength but hardly improves high temperature strength. That is, when the O content increases, the high-temperature strength does not improve, and the amount of springback increases, resulting in a decrease in workability. Therefore, the smaller the O content, the better.
  • O oxygen
  • the content is about 0.04%, and considering variations, it may be about 0.07%. Therefore, the O content is limited to 0.07% or less.
  • Ni, V, Mn, Co, Ta, W, C, and N are each 0 to 0.05% and the total is 0.30% or less Ni, V, Mn, Co, Ta, and W are All of them have not a little effect of stabilizing the ⁇ phase. Therefore, in the titanium alloy plate in which the ⁇ phase and ⁇ phase are controlled with Nb, Cr, and Mo, as in the present embodiment, the content of these elements should be small. Moreover, when N and C are excessively contained, the ⁇ -phase is stabilized and the strength at room temperature is increased, resulting in deterioration of workability. Therefore, the smaller the N and C contents, the better.
  • the content of each element should be 0.05% or less, and the total of these elements should be 0.05% or less. It is preferable to set the content to 0.30% or less. The lower limit of each content and the total content is 0% because the smaller the content of these elements, the better.
  • the remainder of the titanium alloy plate of the present embodiment is Ti and impurities other than the above.
  • Other impurities include H and B, for example.
  • H is an element that forms a hydride together with Ti, and the formation of the hydride may embrittle the titanium alloy plate. Therefore, even if it is contained as an impurity, it is preferable to suppress the H content as much as possible.
  • the H content is preferably 0.013% or less.
  • B may form coarse precipitates in the ingot. Therefore, even if it is contained as an impurity, it is preferable to suppress the B content as much as possible.
  • the titanium alloy plate of the present embodiment preferably has a B content of 0.01% or less.
  • the titanium alloy plate of the present embodiment contains an ⁇ phase having an average grain size of 3.0 ⁇ m or more and 10.0 ⁇ m or less and a second phase in the structure.
  • the second phase is a structure other than the ⁇ phase and is mainly an intermetallic compound.
  • the intermetallic compound of this embodiment mainly contains Ti 2 Cu and silicide.
  • the second phase contains the ⁇ phase, but even if the ⁇ phase is contained, it is a very small amount (for example, 0.2% or less), so even if the second phase is considered to be an intermetallic compound good.
  • the ⁇ phase is a structure that occupies most of the metal structure (for example, 95% or more), and the remainder of the metal structure is the second phase.
  • Average crystal grain size of ⁇ phase 3.0 to 10.0 ⁇ m
  • the fact that the average crystal grain size of the ⁇ -phase is small means that the non-recrystallized portion remains. Therefore, when the average crystal grain size of the ⁇ -phase is small, workability is lowered. The non-recrystallized portion causes unevenness in polishing, and is inferior in polishability. Therefore, in order to prevent non-recrystallized portions from occurring, the average crystal grain size of the ⁇ -phase is set to 3.0 ⁇ m or more. On the other hand, if the average crystal grain size of the ⁇ -phase is excessively large, the polishability deteriorates. Therefore, the average crystal grain size of the ⁇ phase should be 10.0 ⁇ m or less.
  • the average crystal grain size of the ⁇ -phase can be obtained by the following method using EBSD.
  • the crystal grains of the ⁇ -phase are uniformly dispersed. Therefore, it may be measured at any position in the width direction, but for example, in the width direction of the 1/2 position of the width of the plate (the position of 1/2 of the width of the plate in the width direction from the end in the width direction)
  • the acceleration voltage is set to 15 kV
  • the magnification is 500 times or more
  • the measurement pitch is set to 0.2 ⁇ m
  • only the ⁇ phase is measured.
  • the field of view for measurement is set so that one field contains 300 or more crystal grains, or a total of 400 or more crystal grains are contained in a plurality of fields.
  • the measurement sample is adjusted so that the average CI value is 0.2 or more.
  • OIM-analysis TM version 7.3.1
  • the boundary with a crystal orientation difference of 15 ° or more is regarded as a grain boundary, and the circle equivalent diameter is calculated from the area of the crystal grain divided by this boundary.
  • the crystal grain size of each crystal grain is obtained by approximation.
  • crystal grains with a crystal grain size of 1.0 ⁇ m or less and crystal grains incompletely included in the field of view are excluded.
  • a crystal grain whose grain boundary is divided by the boundary of the field of view for measurement is determined to be a crystal grain that is incompletely included in the field of view.
  • the sheet width direction is unknown, it can be determined by measuring the surface. Since the material has a split-TD type texture, (0001) is strongly oriented at an angle of 30 to 40° in the sheet width direction. Therefore, the direction axis where the position where (0001) is strongly oriented in the measurement from the surface is the sheet width direction.
  • Grain size distribution of ⁇ -phase The number ratio of crystal grains with an average crystal grain size of ⁇ 2 ⁇ m is 25% or more, and the number ratio of crystal grains with an average crystal grain size of ⁇ 4 ⁇ m is 45% or more Average crystal Even if the grain size is 10.0 ⁇ m or less, coarse crystal grains may be slightly contained. If the crystal grain size differs, the polished state of the crystal grains will also differ. Therefore, if the crystal grains with a large difference in crystal grain size are included, a sufficient aesthetic appearance cannot be obtained after polishing. Therefore, it is preferable to control the particle size distribution of the ⁇ phase in addition to the average crystal grain size of the ⁇ phase.
  • the crystal grain size is in the range of average crystal grain size ⁇ 2 ⁇ m (average crystal grain size ⁇ 2 ⁇ m to average crystal grain size +2 ⁇ m
  • the ratio of the number of ⁇ -phase crystal grains in the range of ) is 25% or more of the total
  • the average crystal grain size is within the range of ⁇ 4 ⁇ m (range of average crystal grain size ⁇ 4 ⁇ m to average crystal grain size +4 ⁇ m).
  • the grain number ratio is 45% or more of the whole.
  • Such a titanium alloy plate is less likely to contain coarse crystal grains and has improved polishability.
  • the ratio of the number of ⁇ -phase crystal grains in which the crystal grain size of the ⁇ phase is in the range of the average crystal grain size ⁇ 2 ⁇ m and the number ratio of the crystal grains in the range of the average crystal grain size ⁇ 4 ⁇ m There is no limit and it may be 100%, but it may be less than 100%.
  • the particle size distribution of the ⁇ -phase is obtained by the following method.
  • the crystal grains of the ⁇ -phase are uniformly dispersed. Therefore, although it may be measured at any position in the width direction, for example, at the center of the plate thickness of the cross section (L cross section) perpendicular to the plate width direction at the position of 1/2 the plate width length, one side length is 100 ⁇ m or more is a rectangular area, and the particle size distribution measurement area is set such that 100 or more crystal grains are present in the area.
  • the crystal orientation of the ⁇ -phase is analyzed for the measurement area by the electron beam backscatter diffraction (EBSD) method.
  • EBSD electron beam backscatter diffraction
  • OIM-analysis TM (version 7.3.1) was used as the analysis software, and the boundary with a crystal orientation difference of 15° or more was regarded as a grain boundary, and the equivalent circle diameter was approximated from the area of the separated crystal grains.
  • the crystal grain size of each crystal grain obtained, the number ratio of crystal grains whose crystal grain size is within a range of ⁇ 2 ⁇ m from the average crystal grain size obtained by the above method, and the crystal grain size from the average crystal grain size The number ratio of ⁇ -phase crystal grains in the range of ⁇ 4 ⁇ m is obtained. Thereby, the grain size distribution of the crystal grains in the measurement area is obtained.
  • the sheet width direction is unknown, it can be determined by measuring the surface. Since the material has a split-TD type texture, (0001) is strongly oriented at an angle of 30 to 40° in the sheet width direction. Therefore, the direction axis where the position where (0001) is strongly oriented in the measurement from the surface is the sheet width direction.
  • the distribution of the second phase Describe the state.
  • Most of the metal structure of the titanium alloy plate of the present embodiment consists of the ⁇ phase, and the remainder consists of the second phase.
  • the main second phase is various intermetallic compounds.
  • the second phase or alloying elements When using the pinning effect or the solute drag effect to suppress the grain growth of the ⁇ phase, the second phase or alloying elements must be present uniformly. By uniformly containing the second phase, the grain growth of the ⁇ -phase does not become non-uniform under the high-temperature environment during use, and the high-temperature strength is improved.
  • the secondary phase is non-uniformly distributed in the metal structure, the degree of grain growth of the ⁇ -phase varies locally in the high-temperature region, and the high-temperature strength decreases.
  • the non-uniform distribution of the second phase causes the formation of a mixed grain structure even during annealing, and the formation of the mixed grain structure deteriorates the polishability and fatigue properties.
  • the non-uniform distribution of the second phase reduces the polishability. Therefore, the second phase should be uniformly distributed in the metal structure.
  • a predetermined number of second The percentage of area containing phase is used as an index of the uniformity of the distribution of the second phase. Specifically, in a cross section perpendicular to the plate width direction of the titanium alloy plate at the position of 1/2 of the plate width length, the length of each side of the region of 100 ⁇ m (100 ⁇ m ⁇ 100 ⁇ m) is equally divided into 10. Each of the obtained regions (100 regions with a side of 10 ⁇ m) is used as a measurement region for the number density, and the number of second phases is obtained for each measurement region. Then, among the 100 regions, the number of measurement regions where 5 to 15 second phases are observed (existing) within the measurement region (10 ⁇ 10 ⁇ m) is determined.
  • the second phase is considered to be uniformly distributed. 5 or more and 15 or less second phases may be observed in the entire measurement area. That is, the upper limit of the number of measurement regions in which 5 or more and 15 or less second phases are observed is 100.
  • the number density of the second phase if the second phase exists at the boundary of the divided regions, divide by the number of adjacent regions. For example, if it exists across two regions, 0.5 is added to each of the two regions. When the distribution state of the second phase satisfies this condition, the polishability is improved, and the mixed grain structure of the ⁇ phase is less likely to occur during high-temperature heating, thereby improving the fatigue strength.
  • the number of regions in which the second phase is observed, 5 or more and 15 or less, is obtained by the following method. Since the ⁇ phase and the second phase are uniformly dispersed, the measurement position may be any position in the width direction. The central portion of the thickness of the cross section (L cross section) perpendicular to the width direction. 100 measurement areas are determined by dividing this area into 10 equal parts of the length of each side. Each measurement region is observed with a scanning electron microscope (SEM), and the ⁇ phase and the second phase are distinguished from the backscattered electron image.
  • SEM scanning electron microscope
  • the second phase which is an intermetallic compound, is whiter or blacker than the ⁇ -phase, which is the parent phase, and is fine precipitates.
  • the number of second phases in the measurement region is counted to obtain the number. This is performed for 100 measurement regions, and the number of measurement regions in which the number of second phases is 5 or more and 15 or less is counted. If the sheet width direction is unknown, it can be determined by measuring the surface. Since the material has a split-TD type texture, (0001) is strongly oriented at an angle of 30 to 40° in the sheet width direction. Therefore, the direction axis where the position where (0001) is strongly oriented in the measurement from the surface is the sheet width direction.
  • the area ratio of the second phase in the metal structure is preferably 0.01% or more, more preferably 0.05% or more, further preferably 0.1% or more, and 1.0% or more. is more preferable.
  • polishability can be improved.
  • the upper limit of the area ratio of the second phase is preferably 3.0% or less, more preferably 2.0% or less.
  • the area ratio of the second phase is measured in the same area as the measurement of the number density of the second phase. That is, the region with one side of 100 ⁇ m (for example, prepared from the center of the plate thickness of the cross section (L section) perpendicular to the plate width direction at the position 1/2 of the plate width length of the titanium alloy) is scanned with a scanning electron microscope (SEM). and discriminate between the ⁇ phase and the second phase from the backscattered electron image.
  • the second phase which is an intermetallic compound, is whiter or blacker than the ⁇ -phase, which is the parent phase, and is fine precipitates. Then, the area of the second phase in the region is measured to obtain the area ratio (%) of the second phase.
  • the metal structure of the titanium alloy plate of the present embodiment is preferably an equiaxed structure.
  • the needle-like structure regions with the same crystal orientation are densely packed, so the polishability is degraded.
  • the average aspect ratio (major axis length/minor axis length) of the ⁇ phase occupying most of the structure is 3.0 or less.
  • needle-like crystal grains are once formed by heating above 830 ° C. and above the ⁇ transformation point in hot-rolled sheet annealing or intermediate annealing, but recrystallization occurs by subsequent cold rolling and final annealing. , an equiaxed ⁇ phase is formed.
  • the aspect ratio is the ratio of (major axis length/minor axis length) of ⁇ crystal grains on the L cross section of the titanium alloy plate, and the aspect ratio of 10 crystal grains is averaged.
  • the titanium alloy plate of this embodiment preferably has the following properties.
  • Total elongation 25.0% or more
  • the titanium alloy plate of the present embodiment preferably has a total elongation of 25.0% or more in order to ensure sufficient workability when forming parts.
  • the upper limit of the total elongation industrially, about 50.0% is a substantial upper limit.
  • the total elongation is measured by performing a room temperature tensile test.
  • a tensile test at room temperature was performed using an ASTM subsize tensile test piece whose longitudinal direction was parallel to the rolling direction (parallel part width: 6.25 mm, parallel part length: 32 mm, distance between gauge points: 25 mm) is taken, and the strain rate is set to 30%/min.
  • the test temperature should be within the range of 10 to 35°C.
  • the Erichsen test is a test to evaluate the elements of deep drawing and bulging, which are important in forming into shapes other than tubular shapes.
  • the titanium alloy plate of the present embodiment preferably has an Erichsen value of 9.5 mm or more in consideration of the balance with the improvement of polishability.
  • the Erichsen value is measured according to the Erichsen test method specified in JIS Z 2247 (2006).
  • the plate thickness of the measurement sample is in the range of 0.1 to 2.0 mm, and the width is 90 mm or more.
  • the testing machine shall be as described in JIS B 7729 (2005).
  • Jig dimensions use the dimensions for testing with standard specimens. However, a Teflon (registered trademark) sheet with a thickness of 50 ⁇ m is used as the lubricant.
  • Oxidation resistance 5.0 mg/cm 2 or less oxidation weight gain after being held in the air at 800° C for 100 hours. It is desirable for the titanium alloy plate of the form to achieve this even if it is assumed to be used at 800°C. Therefore, as an index of oxidation resistance, it is preferable that the weight gain by oxidation after holding in air at 800° C. for 100 hours is 5.0 mg/cm 2 or less.
  • oxidation weight gain a 20 mm ⁇ 20 mm test piece was taken from the above titanium alloy plate, the surface was wet-polished with emery paper #400, exposed to static air at 800 ° C. for 100 hours, and the weight increased after exposure. is measured, and the value obtained by dividing the increased mass by the surface area of the tensile test piece ((increased mass (mg) / surface area of the test piece (cm 2 )). If scale peeling occurs due to the oxidation test, the peeled scale is also Should be included in the post-exposure mass.
  • High-temperature strength 26 MPa or more at 800°C
  • the material must have high-temperature strength.
  • high-temperature strength in the temperature range in which it is assumed to be used is considered important, and assuming application to exhaust system parts that can handle high exhaust gas temperatures, the titanium alloy plate of this embodiment is , the tensile strength at 800° C. is preferably 26 MPa or more.
  • the high temperature strength (tensile strength) at 800°C is measured by performing a high temperature tensile test.
  • a tensile test piece whose longitudinal direction is parallel to the rolling direction (parallel part width 10 mm, parallel part length and gauge length 35 mm) is taken from the above titanium alloy plate, and the strain rate is set to 7.0. 5%/min.
  • the test atmosphere is air at 800° C., and the test is performed after holding the test piece in the test atmosphere for 10 minutes so that the test piece reaches the test temperature sufficiently.
  • Abrasiveness is evaluated by wet-polishing with #1500 emery paper and polishing with alumina buffing for 60 minutes (minutes), followed by glossiness.
  • a polishing liquid used for alumina buffing is a solution in which 250 g of alumina powder having an average particle size of 3 ⁇ m is added to 1 liter of water.
  • the samples are embedded in an epoxy resin having a diameter of 28 mm, 6 samples are set in a holder of an automatic polishing device, and the pressure is 60N.
  • Glossiness is measured in accordance with JIS Z 8741 (1997), a method for measuring specular glossiness. Glossiness is measured with an incident angle and an acceptance angle of 20°. From the viewpoint of polishability, the glossiness (Gs20) is preferably 920 or more.
  • the titanium alloy plate of this embodiment can be used as a material for automobile exhaust system parts. That is, by forming the titanium alloy plate of the present embodiment into a predetermined shape and welding it, various automotive exhaust system parts can be produced. Exhaust manifolds, exhaust pipes, catalytic devices, mufflers, and the like can be exemplified as automotive exhaust system parts of the present embodiment, and the titanium alloy plate of the present embodiment can be used as a material for these parts. These exhaust system parts can be used not only for four-wheeled vehicles but also for two-wheeled vehicles.
  • the thickness of the titanium alloy plate of the present embodiment is not limited, it is preferably 0.5 to 2.0 mm when used as a material for automobile exhaust system parts. More preferably, it is 0.6 to 1.5 mm.
  • an ingot having a predetermined chemical composition manufactured by electron beam melting or vacuum arc melting is subjected to a blooming process (forging or rolling) for the purpose of destroying the solidified structure.
  • a coil is produced by hot rolling after the temperature in the single-phase range. The coil is annealed as necessary, and after descaling, cold rolling and annealing are repeated as necessary.
  • a metal structure composed of equiaxed grains has an excellent balance between strength and workability.
  • annealing is generally performed below the ⁇ transformation point after hot rolling.
  • the ⁇ phase and the second phase exist, and element distribution occurs between the ⁇ phase and the second phase.
  • the higher the temperature the faster the element distribution occurs.
  • element partitioning occurs, the distribution of the second phase becomes non-uniform.
  • the distribution of alloying elements in titanium alloys is homogenized to some extent in the blooming process, which occurs during solidification ((during ingot production). , When the process is completed, it may be less than the ⁇ transformation point.In addition, even if it is not less than the ⁇ transformation point, the cooling rate is very slow, and distribution occurs during cooling.In order to increase the cooling rate, for example, Even if it is water-cooled after blooming, the difference in cooling rate between the inside and the surface layer is large, and elements are always distributed to some extent in the inside where the cooling rate is low.
  • At least one of the annealing and intermediate annealing of the hot-rolled sheet which has conventionally been performed below the ⁇ transformation point, is performed above the ⁇ transformation point, thereby reducing the element distribution up to that point and increasing the annealing temperature by 700°C.
  • a titanium alloy sheet with a reduced distribution of elements is obtained by cooling at an average cooling rate of 5°C/sec or more. Unlike the blooming process, it is possible to suppress the distribution of elements in both the surface layer and the inside by heating the thin hot-rolled sheet to a temperature higher than the ⁇ transformation point.
  • the alloying elements can be more uniformly distributed by performing annealing at the ⁇ transformation point or higher in both the annealing and the intermediate annealing of the hot-rolled sheet.
  • the ⁇ transformation point is over 830°C in most cases.
  • the titanium alloy plate of this embodiment can be manufactured by a manufacturing method including the following steps.
  • a final annealing step in which the titanium alloy plate after the cold rolling step is subjected to final annealing at a soaking temperature of 550° C.
  • the annealing temperature is set to over 830° C. and the ⁇ transformation point or higher.
  • Hot rolling process an ingot made of a titanium alloy having the chemical components described above is hot rolled to obtain a hot rolled sheet.
  • Hot rolling conditions are not particularly limited, and known conditions may be used.
  • a hot-rolled sheet may be produced by inter-rolling.
  • ⁇ Hot-rolled sheet annealing process> When hot-rolled sheet annealing is performed on a hot-rolled sheet obtained by hot rolling, the annealing temperature is set to above 830°C and the ⁇ transformation point or higher, the annealing time is set to 1 to 5 minutes, and the annealing temperature is set to 700°C. is preferably 5° C./second or more.
  • the annealing temperature is set to higher than 830°C, the ⁇ transformation point or higher, and the annealing time to 1 minute or longer, the distribution of elements is suppressed, the alloy elements are distributed more uniformly, and the distribution of the second phase is made uniform. can be done.
  • the annealing temperature is preferably 1000° C. or less from the viewpoint of yield reduction due to oxidation. Also, if the average cooling rate from the annealing temperature to 700° C. is slow, element distribution occurs during cooling. Therefore, the average cooling rate from the annealing temperature to 700°C is set to 5°C/second or more. Even if the average cooling rate is increased, the degree of element partitioning does not greatly affect the distribution of the second phase.
  • the annealing temperature is higher than 830 ° C. and the ⁇ transformation point or higher
  • the annealing time is 1 to 5 minutes
  • the average cooling rate from the annealing temperature to 700 ° C. is 5 ° C./second or more.
  • the hot-rolled sheet annealing step may not be performed, or may be performed under conditions other than those described above.
  • the hot-rolled sheet after the hot-rolling process or the hot-rolled sheet after the hot-rolled sheet annealing process is cold-rolled.
  • the rolling reduction in cold rolling in the case of multiple passes, the cumulative rolling reduction
  • the rolling reduction in cold rolling should be 90% or less in order to prevent cracks.
  • the reduction ratio of cold rolling before intermediate annealing is the intermediate cold rolling ratio
  • the reduction ratio of cold rolling after intermediate rolling is the final cold rolling ratio
  • the final cold rolling ratio is 60% or more. do.
  • the cold rolling conditions be such that the rolling reduction is 10% or less from the first pass to the second pass, and 15% or less thereafter.
  • the cold rolling is interrupted before the final reduction, and intermediate annealing is performed.
  • the annealing temperature is higher than 830°C and the ⁇ transformation point or higher
  • the annealing time is 1 to 5 minutes
  • the average cooling rate from the annealing temperature to 700°C is 5°C/second or higher.
  • the reason for this condition is the same as the reason explained in the hot-rolled sheet annealing. Even when the hot-rolled sheet is annealed, the intermediate annealing may be performed.
  • the annealing temperature of the hot-rolled sheet annealing or the final intermediate annealing is suppressed and the alloying elements are distributed more uniformly. so that the distribution of the second phase can be made uniform.
  • the annealing temperature of at least the intermediate annealing is set to a temperature equal to or higher than the ⁇ transformation point
  • the sheet is heated to a temperature equal to or higher than the ⁇ transformation point while the thickness of the sheet is reduced. can be suppressed.
  • the titanium alloy plate is subjected to final annealing in a temperature range of 550°C or higher and lower than 670°C for recrystallization. If the annealing temperature is less than 550° C., a large amount of intermetallic compounds are generated, so that recrystallization does not proceed sufficiently, resulting in unrecrystallized regions and lowering the polishability. Also, if the annealing temperature is 670° C. or higher, there is a possibility that the ⁇ -phase grains grow to form coarse crystal grains. Therefore, the final annealing should be less than 670°C.
  • the annealing time for the final annealing is 1 minute to 24 hours.
  • An automobile exhaust system component of the present embodiment includes the titanium alloy plate described above. (Consists of the above titanium alloy plate in some cases).
  • the automotive exhaust system part of the present embodiment is obtained by forming the titanium alloy plate of the present embodiment, for example, by press forming. Since the chemical composition does not change due to molding, the chemical composition of the automotive exhaust system component is the same as that of the titanium alloy plate of the present embodiment.
  • twinning deformation occurs due to the forming, so that the crystal grain size is fine in the portion that has been deformed by the forming. Twin deformations can be identified by OIM analysis.
  • a titanium alloy having the chemical composition shown in Table 1 was made into an ingot by vacuum arc button melting.
  • the produced ingot was hot-rolled at 1000° C. to obtain a hot-rolled sheet with a thickness of 10 mm. After that, hot rolling was performed at 860° C. to obtain a hot-rolled sheet with a thickness of 4.0 mm.
  • Table 1 the contents of Ni, V, Mn, Co, Ta, W, C, and N are omitted, and the total contents of these elements are shown in the "others" column. Each content of these elements was 0.05% or less. Moreover, among the impurities, the H content was 0.013% or less.
  • the descaling step or hot-rolled sheet annealing is performed as necessary at the temperature and time shown in Table 2, followed by the descaling step. Cold rolling was performed. Furthermore, final annealing was performed. In this way, no. 1 to No. 48 titanium alloy plates were produced.
  • the obtained titanium alloy plate was subjected to a polishing treatment. Polishing was performed by wet polishing with #1500 emery paper, followed by alumina buffing for 60 minutes.
  • the polishing liquid used for alumina buffing was a solution in which 250 g of alumina powder having an average particle size of 3 ⁇ m was added to 1 liter of water.
  • the samples were embedded in an epoxy resin having a diameter of 28 mm, 6 samples were set in a holder of an automatic polishing device, and the pressure was 60N.
  • the average crystal grain size of the ⁇ phase was measured using EBSD at the center of the plate thickness of the cross section (L cross section) perpendicular to the plate width direction at the position of 1/2 the plate width length at an acceleration voltage of 15 kV. , and the measurement pitch was set to 0.2 ⁇ m at a magnification of 500 times, and the measurement was performed only for the ⁇ phase.
  • the field of view for measurement was set so that one field of view contained 300 or more crystal grains, or the total of multiple fields contained 400 or more crystal grains, and the average CI value of the measurement sample was 0.2 or more.
  • the boundary with a crystal orientation difference of 15 ° or more is regarded as a grain boundary, and the circle equivalent diameter is calculated from the area of the crystal grain divided by this boundary.
  • the crystal grain size of each crystal grain was determined by approximation. When calculating the crystal grain size, crystal grains with a crystal grain size of 1.0 ⁇ m or less and crystal grains incompletely included in the field of view were excluded.
  • the grain size distribution of the ⁇ phase is measured in the measurement region (rectangular region with a side length of 100 ⁇ m or more: in the plate width direction at the position of 1/2 the plate width length) set when measuring the average grain size.
  • a perpendicular cross section (L cross section) was used as the measurement area for the particle size distribution.
  • the crystal orientation of the ⁇ -phase was analyzed for the measurement area by the electron beam backscatter diffraction (EBSD) method.
  • EBSD electron beam backscatter diffraction
  • OIM-analysis TM version 7.3.1
  • the crystal grain size of the crystal grains was determined.
  • the number ratio of ⁇ -phase crystal grains having a crystal grain size within the range of the average crystal grain size ⁇ 2 ⁇ m, and the average was determined.
  • the distribution state of the second phase is, in the center of the plate thickness of the cross section (L cross section) perpendicular to the plate width direction at the position of 1/2 the plate width length, the area of 100 ⁇ m on one side is 10 ⁇ 10
  • Each of the equally divided regions is used as a measurement region (100 regions with a side of 10 ⁇ m are used as the measurement region), and the number of second phases per unit area is obtained for each measurement region.
  • the number of measurement areas where two phases were observed was determined.
  • the measurement area was observed with a scanning electron microscope (SEM), and the ⁇ phase and the second phase were distinguished from the backscattered electron image.
  • the second phase which is an intermetallic compound, is whiter or blacker than the ⁇ -phase, which is the parent phase, and is fine precipitates.
  • the area ratio of the second phase was measured in the same area as the number density of the second phase.
  • the above-mentioned area with one side of 100 ⁇ m (the central part of the plate thickness of the cross section (L cross section) perpendicular to the plate width direction at the position of 1/2 the plate width length) is observed with a scanning electron microscope (SEM), and from the backscattered electron image
  • SEM scanning electron microscope
  • the ⁇ -phase and the second phase were discriminated.
  • the area of the second phase in the region was measured to obtain the area ratio (%) of the second phase.
  • the total elongation was measured by performing a room temperature tensile test.
  • a tensile test at room temperature was performed using an ASTM subsize tensile test piece whose longitudinal direction was parallel to the rolling direction (parallel part width: 6.25 mm, parallel part length: 32 mm, distance between gauge points: 25 mm) was taken, and the strain rate was set to 30%/min.
  • the test temperature was in the range of 10-35°C.
  • the Erichsen value was measured according to the Erichsen test method specified in JIS Z 2247 (2006).
  • the plate width of the measurement sample was 90 mm or more.
  • the testing machine was as described in JIS B 7729 (2005).
  • a Teflon (registered trademark) sheet with a thickness of 50 ⁇ m was used as the lubricant.
  • the dimensions of the jig used were the dimensions of the test using a standard test piece.
  • a 20 mm x 20 mm test piece was taken from a titanium alloy plate, the surface was wet-polished with #400 emery paper, exposed to static air at 800°C for 100 hours, and the weight increase after exposure was measured. and the value obtained by dividing the increased mass by the surface area of the tensile test piece ((increased mass (mg)/surface area of test piece (cm 2 )).
  • the peeled scale was also exposed. It was judged that the oxidation resistance at high temperature was excellent if the oxidation weight gain was 5.0 mg/cm 2 or less.
  • the high temperature strength (tensile strength) at 800 ° C. is obtained by taking a tensile test piece (parallel part width: 10 mm, parallel part length and gauge length: 35 mm) whose longitudinal direction is parallel to the rolling direction from the above titanium alloy plate. It was sampled and measured by performing a tensile test at a strain rate of 7.5%/min. The test atmosphere was air at 800° C., and the test was performed after holding the test piece in the test atmosphere for 10 minutes so that the test temperature could sufficiently reach the test temperature. High temperature strength (tensile strength) of 26 MPa or more at 800° C. was judged to be excellent in high temperature strength.
  • Glossiness was measured according to the method for measuring specular glossiness of JIS Z 8741 (1997). The glossiness was measured with an incident angle and a light receiving angle of 20°. When the glossiness Gs20 was 920 or more, it was judged that the polishability was excellent. Each evaluation result is shown in Table 3.
  • the Zr content was excessive, the average crystal grain size of the ⁇ phase was small, and a large amount of non-recrystallized structure remained.
  • the total elongation was lowered, the Erichsen value was lowered, the workability was lowered, and the polishability was also low.
  • the Cr content was excessive, and a ⁇ phase was formed during high-temperature heating, resulting in low oxidation resistance.
  • the Mo content was excessive, the average crystal grain size of the ⁇ phase was small, and a large amount of non-recrystallized structure remained. Therefore, the Erichsen value was low as well as the total elongation, and the workability was low.
  • the abrasiveness was low. Furthermore, the ⁇ -phase was formed during high-temperature heating, resulting in low oxidation resistance. No. In No. 26, the annealing temperature in the hot-rolled sheet annealing was lower than the ⁇ transformation point, and no intermediate annealing was performed, so the distribution of the second phase deteriorated. As a result of observation, coarse crystal grains were included. As a result, the abrasiveness was low. No. In No. 29, both the annealing temperature and the intermediate annealing temperature of the hot-rolled sheet annealing were lower than the ⁇ transformation point, so the distribution state of the second phase deteriorated. As a result of observation, coarse crystal grains were included.
  • the abrasiveness was low.
  • No. 30 the cooling rate after hot-rolled sheet annealing was low, and no intermediate annealing was performed, so the distribution of the crystal grain size of the ⁇ -phase was widened.
  • coarse crystal grains were included.
  • the abrasiveness was low.
  • No. 34 the final annealing temperature was low, the average crystal grain size of the ⁇ phase was small, and a large amount of non-recrystallized structure remained. Therefore, the Erichsen value decreased along with the total elongation, resulting in poor workability. Also, the abrasiveness was low. No. In No. 30, the cooling rate after hot-rolled sheet annealing was low, and no intermediate annealing was performed, so the distribution of the crystal grain size of the ⁇ -phase was widened. As a result of observation, coarse crystal grains were included. As a result, the abrasiveness was low.
  • No. 34 the final annealing temperature was low,
  • titanium alloy plates and automotive exhaust system parts that are excellent in workability, polishability, and oxidation resistance at high temperatures.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Exhaust Silencers (AREA)

Abstract

このチタン合金板は、所定の化学組成を有し、金属組織がα相と第二相とからなり、前記α相の平均結晶粒径が3.0~10.0μmであり、前記α相のうち、結晶粒径が平均結晶粒径±2μmの範囲にある結晶粒の個数割合が25%以上であり、前記α相のうち、結晶粒径が平均結晶粒径±4μmの範囲にある結晶粒の個数割合が45%以上であり、断面において、100μm×100μmの領域を100等分した100の10μm×10μmの領域を測定領域とし、前記測定領域毎に前記第二相の個数密度を求めた場合に、前記測定領域内に前記第二相が5個以上15個以下観察される測定領域の数が80以上である。

Description

チタン合金板及び自動車用排気系部品
 本開示は、チタン合金板及び自動車用排気系部品に関する。
 四輪自動車や二輪自動車(以下、自動車等という)の排気装置には、エキゾーストマニホールド及びエキゾーストパイプが備えられている。エンジンから排出され、エキゾーストマニホールドによって集約された排ガスは、エキゾーストパイプを介して車体後方の排気口から外部に排出される。エキゾーストパイプの途中には、触媒装置やマフラー(消音器)が配置されており、排ガスの浄化及び排気音の消音がなされる。本明細書では、エキゾーストマニホールドからエキゾーストパイプ、排気口までの全体を通して、「排気装置」と称する。また、排気装置を構成するエキゾーストマニホールド、エキゾーストパイプ、触媒装置、マフラーなどの部品を「排気系部品」と称する。
 従来、自動車等の排気装置の構成部材には、耐食性、高強度や加工性等に優れたステンレス鋼が使用されていたが、近年では、ステンレス鋼よりも軽量であり、高強度で耐食性にも優れるチタン材が使用されつつある。例えば、二輪自動車の排気装置には、JIS2種の工業用純チタン材が使われている。さらに、最近では、JIS2種の工業用純チタン材に代わって、より耐熱性が高いチタン合金が使用されつつある。
 特に最近は、排ガス温度が上昇する傾向にある。そのため、エキゾーストパイプにおける排ガス温度は、800℃程度に達する場合があり、この温度域においても十分な高温強度の確保が求められる。また、排気系部品では、高温酸化が抑制される(高温での耐酸化性に優れる)ことも望まれる。
 また、高温での強度や耐酸化性に優れていても、加工性が低いと部品への加工が困難になる。そのため、排気系部品にチタン板を適用する場合には、成形する際の加工性が良好なことも求められる。
 特許文献1には、Siを0.15~2質量%含むとともに、Alを0.30質量%未満に規制し、残部がチタンおよび不可避的不純物からなる耐高温酸化性に優れたチタン合金が記載されている。
 また、特許文献2には、質量基準でAl:0.30~1.50%と、Si:0.10~1.0%を含有することを特徴とする耐高温酸化性および耐食性に優れたチタン合金が記載されている。
 また、特許文献3には、質量%で、Cu:2.1%超~4.5%、酸素:0.04%以下、Fe:0.06%以下を含有し、残部Tiおよび不可避的不純物からなる、冷間加工性に優れる排気装置部材用耐熱チタン合金が記載されている。
 また、特許文献4には、質量%で、Si:0.1~0.6%、Fe:0.04~0.2%、O:0.02~0.15%であり、FeとOの含有量の合計が、0.1%以上、0.3%以下、残部Tiおよび、単独の含有量が0.04%未満の不可避的不純物からなる、耐酸化性に優れた排気系部品用チタン合金材が記載されている。
 しかしながら、特許文献1~特許文献4に記載されたチタン合金は、化学成分を限定することで、高温強度を確保しようとするものであり、研磨性を向上するものではなかった。
 排気系部品用のチタン板には、表面の光沢性が求められることがある。この場合、チタン板は、その表面を研磨することにより、要求される光沢をもたらす表面性状に仕上げられる。特許文献1~4に記載されたように、耐熱性を確保しつつ耐高温酸化性や耐食性や冷間加工性を向上させる技術は知られているが、更に、製品加工後に行う研磨性を向上させることは検討されていない。
日本国特開2007-270199号公報 日本国特開2005-290548号公報 日本国特開2009-030140号公報 日本国特開2013-142183号公報
 本開示は上記事情に鑑みてなされたものであり、加工性、研磨性、高温での耐酸化性、及び高温強度に優れたチタン合金板及び自動車用排気系部品を提供することを課題とする。
[1]本開示の一態様に係るチタン合金板は、質量%で、Cu:0.7%~1.5%、Sn:0.5%~1.5%、Si:0.10%~0.60%、Nb:0.1%~1.0%、Zr:0%~1.0%、Cr:0%~0.5%、Mo:0%~0.5%、Al:0%~1.0%を含有し、Fe:0.08%以下、O:0.07%以下にそれぞれ制限し、残部がTi及び不純物である化学組成を有し、金属組織がα相と第二相とからなり、前記α相の平均結晶粒径が3.0~10.0μmであり、前記α相のうち、結晶粒径が平均結晶粒径±2μmの範囲にある結晶粒の個数割合が25%以上であり、前記α相のうち、結晶粒径が平均結晶粒径±4μmの範囲にある結晶粒の個数割合が45%以上であり、断面において、100μm×100μmの領域を100等分した100の10μm×10μmの領域を測定領域とし、前記測定領域毎に前記第二相の個数密度を求めた場合に、前記測定領域内に前記第二相が5個以上15個以下観察される測定領域の数が80以上である。
[2]上記[1]に記載のチタン合金板は、前記第二相の面積率が1.0%以上であってもよい。
[3]本開示の別の態様に係る自動車用排気系部品は、上記[1]または[2]に記載のチタン合金板を備える。
[4]本開示の別の態様に係る自動車用排気系部品は、上記[1]または[2]に記載のチタン合金板を成形して得られる。
 本開示の上記態様によれば、加工性、研磨性及び高温での耐酸化性に優れたチタン合金板及び自動車用排気系部品を提供できる。
 自動車用排気系部品は、チタン合金板を例えばプレス成形することによって得られ、また、自動車用排気系部品は高温環境下で使用される。また、排気系部品用のチタン合金板には、表面の光沢性が求められることがある。チタン合金板は表面を研磨することによって光沢性が高められる場合があることから、チタン合金板には研磨性が良好であることが求められる。
 チタン合金板の研磨性の向上には、(1)研磨前の表面状態が平坦であること、及び(2)研磨時に結晶粒を起点とするムシレの発生が低減されること、が必要とされる。
 上記(1)については、例えば、チタン合金板の表面に、焼付きによって生じた凹凸などが存在すると、凹凸を消すために必要な研磨時間が長くなってしまう。すなわち、表面が平坦な板にすることが研磨性向上の1つの方法である。
 上記(2)については、研磨後の外観を損なう原因として、結晶方位によって硬度が異なるために結晶粒ごとの研磨状態が異なることが挙げられる。結晶方位を極端に同じに制御することは容易ではないため、一般的には細粒化することで研磨状態が異なる結晶粒を目立たないようにしている。しかし、結晶粒径を小さくするだけでなく、結晶粒度を均一にしなければ十分な研磨性は得られない。また、結晶粒を細粒化しすぎると、成形性が劣化するので、細粒化には限度がある。
 このように、成形性が最低限度確保される範囲に結晶粒径を制御しつつ、結晶粒度分布を小さくすることは、実製造における不均一性を考慮すると容易ではない。そこで本発明者は、結晶方位による結晶粒の研磨状態の差を小さくするための検討を行った。その結果、粒内や粒界に第二相として所定の個数密度以上の金属間化合物を形成することで、金属間化合物が結晶粒を拘束し、研磨時の変形を抑制し、より均一な研磨がなされるようになることを見出した。
 また、排気系部品は使用時に高温になるため、排気系部品として必要な高温強度を確保するように、合金元素を添加する必要がある。本発明者らは、800℃での高温強度を確保するための化学組成について検討を行った。
 以上の観点から鋭意検討したところ、本実施形態のチタン合金板を完成させるに至った。
 以下、本開示の一実施形態に係るチタン合金板(本実施形態のチタン合金板)及び本開示の一実施形態に係る自動車用排気系部品(本実施形態の自動車用排気系部品)について説明する。
 本実施形態のチタン合金板は、質量%で、Cu:0.7%~1.5%、Sn:0.5%~1.5%、Si:0.10%~0.60%、Nb:0.1%~1.0%、Zr:0%~1.0%、Cr:0%~0.5%、Mo:0%~0.5%、Al:0%~1.0%を含有し、Fe:0.08%以下、O:0.07%以下にそれぞれ制限し、残部がTi及び不純物である化学組成を有する。また、本実施形態のチタン合金板は、金属組織がα相と第二相とからなり、前記α相の平均結晶粒径が3.0~10.0μmであり、前記α相のうち、結晶粒径が平均結晶粒径±2μmの範囲にある結晶粒の個数割合が25%以上であり、前記α相のうち、結晶粒径が平均結晶粒径±4μmの範囲にある結晶粒の個数割合が45%以上である。また、本実施形態のチタン合金板は、断面において、100μm×100μmの領域を100等分した100(箇所)の10μm×10μmの領域を測定領域とし、前記測定領域毎に前記第二相の個数密度を求めた場合に、前記測定領域内に前記第二相が5個以上15個以下観察される測定領域の数が80以上である。
 また、本実施形態のチタン合金板は、第二相の面積率が1.0%以上であることが好ましい。
 次に、本実施形態の自動車用排気系部品は、上記のチタン合金板を備える。
 まず、本実施形態のチタン合金板の化学組成について説明する。化学組成を構成する各元素の含有量の単位である「%」は、「質量%」を意味する。また、「~」を挟んで示される範囲は、その両端の値を下限及び上限として含む。
Cu:0.7~1.5%
 十分な高温強度を確保するためにはCu含有量を0.7%以上とする必要がある。好ましくは、Cu含有量は0.8%以上である。
 一方、Cu含有量が1.5%を超えると、加工性が低下する。また、鋳塊製造時にCuが偏析する可能性が高くなる。そのため、Cu含有量を1.5%以下とする。Cu含有量は、好ましくは1.4%以下、より好ましくは1.3%以下、更に好ましくは1.2%以下である。
Sn:0.5~1.5%
 十分な高温強度を確保するためには、Sn含有量を0.5%以上とする必要がある。Sn含有量は、好ましくは0.6%以上、よりの好ましくは0.8%以上、更に好ましくは0.9%以上である。
 一方、Snは金属間化合物を形成しがたいため、比較的多量に含有させることもできるが、Sn含有量が過剰になると加工性が低下するとともに、α相中のCu及びSiの固溶限度が低下する。そのため、Sn含有量は1.5%以下にする必要がある。また、Snは、比重が大きな元素であり、多量に加えても原子数比率で比較するとさほど多くないことから、固溶強化への寄与が小さい。このことも、含有量の上限を制限する理由である。Sn含有量は、好ましくは1.4%以下、より好ましくは1.3%以下、更に好ましくは1.2%以下である。
Si:0.10~0.60%
 耐酸化性及び高温強度を確保するためには、Si含有量を0.10%以上とする必要がある。Si含有量は、好ましくは0.15%以上、より好ましくは0.20%以上である。
 一方、Si含有量が0.60%を超えるとシリサイドが形成され、粒成長が著しく阻害される上、加工性が低下する。よって、Si含有量を0.60%以下とする。Si含有量は、好ましくは0.50%以下、より好ましくは0.40%以下、更に好ましくは0.35%以下、より一層好ましくは0.30%以下である。
Nb:0.1~1.0%
 耐酸化性を確保するためには、Nb含有量を0.1%以上とする必要がある。Nb含有量は、好ましくは0.2%以上、より好ましくは0.3%以上である。
 一方、Nbを多く含有するほど耐酸化性は向上するが、原料コストが上昇することに加えて、耐酸化性の向上効果が頭打ちになる。そのため、Nb含有量を1.0%以下とする。Nb含有量は、好ましくは0.7%以下、より好ましくは0.5%以下、更に好ましくは0.4%以下である。
 Zr:0~1.0%
 Zrは、SiとTiとの金属間化合物を形成させやすくする元素である。形成される金属間化合物の中にはZrも存在する。Zrを含有させることでピン止め効果を得やすくなるとともに、ソリュートドラッグ効果で粒成長を抑制することができる。そのため、必要に応じてZrを含有させてもよい。上記効果を得る場合、Zr含有量を0.1%以上とすることが好ましい。
 一方、Zrの含有によってβ変態点が低下するとともに、金属間化合物の形成促進やソリュートドラッグ効果が含有量の割に小さくなる。そのため、含有させる場合、Zr含有量を1.0%以下とする。Zr含有量は、好ましくは、0.8%以下、より好ましくは、0.6%以下、更に好ましくは0.5%以下、一層好ましくは0.4%以下である。
 Zrは任意選択元素であるため下限は0%である。
Cr:0%以上0.5%以下
Mo:0%以上0.5%以下
 Cr及びMoは任意選択元素であり、その含有量は0%でもよいが、CrやMoを含有させることでソリュートドラッグ効果によって粒成長が抑制されるとともに、高温強度が向上する。そのため、必要に応じて含有させてもよい。上記効果を得るためには、Cr含有量、Mo含有量をそれぞれ、0.05%以上にすることが好ましい。より好ましくは、それぞれ0.1%以上である。
 一方、CrやMoの含有量が多くなると、高温でβ相が多くなりすぎることによって、耐酸化性が低下する。また、Mo含有量が過剰になると加工性が低下する。そのため、含有させる場合、Cr含有量、Mo含有量は、それぞれ0.5%以下とする。Cr含有量、Mo含有量は、それぞれ好ましくは、0.4%以下、より好ましくは、0.3%以下である。
Al:0~1.0%
 Alは任意選択元素であり、0%でもよいが、高温強度を確保するために含有させてもよい。上記効果を得る場合、Al含有量を0.1%以上とすることが好ましい。
 一方、Al含有量が多くなると、α相が安定化されてβ相の形成が抑制され、高温強度と耐酸化性とはさらに向上するが、加工性が低下するので好ましくない。また、冷延性も大きく低下する。そのため、Alを含有させる場合、Al含有量を1.0%以下とする。Al含有量は、好ましくは、0.8%以下、より好ましくは、0.6%以下、更に好ましくは0.5%以下である。
Fe:0.08%以下
 Fe含有量が多すぎると、低温域からβ相が生じやすくなる。そのため、β相に添加元素が濃化することでα相の固溶元素量が低下する上、β相率の増加によって高温強度が低下する。また、β相率が多くなることで耐酸化性が劣化する場合もある。また、Cr及びMoを含有させる場合に、Cr及びMoの適正な含有量の範囲が狭くなることで、Cr及びMoの化学成分の制御が難しくなる。そのため、Fe含有量は少ないほどよく、0.08%以下に制限する必要がある。Fe含有量は、好ましくは、0.06%以下、より好ましくは、0.04%以下である。
O:0.07%以下
 Oは室温強度を増加させるが、高温強度はほとんど向上させない元素である。すなわち、O含有量が多くなると、高温強度は向上せずに、スプリングバック量が大きくなって加工性が低下するだけである。そのため、O含有量は少ないほど好ましい。しかしながら、工業的に酸素(O)を低減させることは難しく、極端に低減すると原料コストが上昇する。そのため、0.04%程度は含有され、ばらつきを考慮すると0.07%程度になることもある。そのため、O含有量を0.07%以下に制限する。
Ni、V、Mn、Co、Ta、W、C、Nの1種または2種以上を各々0~0.05%かつ合計で0.30%以下
 Ni、V、Mn、Co、Ta、Wはいずれもβ相を安定化する効果を少なからず有する。そのため、本実施形態のように、Nb、Cr、Moでα相およびβ相を制御するチタン合金板においては、これらの元素の含有量は少ないほうがよい。また、N及びCが過剰に含有されると、α相が安定化するとともに、室温での強度が高まるために、加工性が劣化する。そのため、N及びCの含有量も少ないほうがよい。従って、これらの元素を意図的に含有させる場合、または不純物として含まれる場合のいずれの場合であったとしも、各元素の含有量をそれぞれ0.05%以下とするととともに、これらの元素の合計含有量を0.30%以下にすることが好ましい。
 これらの元素は少ない方がよいので、各含有量及び合計含有量の下限は0%である。
 本実施形態のチタン合金板の残部は、Ti及び上記以外の他の不純物である。
 その他の不純物として例えばH、Bが例示される。Hは、Tiと共に水素化物を形成する元素であり、水素化物が形成されると、チタン合金板が脆化することがある。そのため、不純物として含有される場合でも、H含有量は極力抑制することが好ましい。本実施形態のチタン合金板では、H含有量を0.013%以下とすることが好ましい。Bは、鋳塊内で粗大な析出物となる懸念がある。そのため、不純物として含有される場合でも、B含有量は極力抑制することが好ましい。本実施形態のチタン合金板では、B含有量を0.01%以下とすることが好ましい。
 次に、本実施形態のチタン合金板の組織について説明する。
 本実施形態のチタン合金板は、組織中に、平均結晶粒径が3.0μm以上10.0μm以下のα相と、第二相とが含有される。第二相はα相以外の組織であり、主に金属間化合物である。本実施形態の金属間化合物は主にTiCu、シリサイドを含む。第二相にβ相が含まれる可能性もあるが、β相が含まれたとしてもごく微量(例えば0.2%以下)であるので、第二相が金属間化合物であるとみなしてもよい。α相は金属組織の大部分(例えば95%以上)を占める組織であり、金属組織の残部が第二相となる。
α相の平均結晶粒径:3.0~10.0μm
 本実施形態のチタン合金板において、α相の平均結晶粒径が小さいことは、未再結晶部が残存していることを意味する。そのため、α相の平均結晶粒径が小さい場合、加工性が低下する。未再結晶部は研磨むらの原因にもなるため研磨性が劣る。そのため、未再結晶部が生じないようにするためにも、α相の平均結晶粒径は3.0μm以上とする。
 一方、α相の平均結晶粒径が過大になると研磨性が劣化する。そのため、α相の平均結晶粒径は10.0μm以下とする必要がある。
 α相の平均結晶粒径は、EBSDを用いて、以下の方法で求めることができる。
 α相の結晶粒は均一に分散する。よって任意の幅方向位置で測定してもよいが、例えば、板幅長さ1/2位置(板幅方向端部から板幅方向に板幅の1/2の位置)の、板幅方向に垂直な断面(L断面)の板厚中央部にて、加速電圧15kVとし、倍率500倍以上で測定ピッチを0.2μmとし、測定α相のみを対象として測定を行う。測定視野は1視野で結晶粒が300個以上含まれる大きさ、もしくは複数の視野の合計で結晶粒が400個以上含まれるように設定する。測定試料は平均のCI値が0.2以上となるよう調整する。測定解析ソフトにはOIM-analysisTM(version 7.3.1)を用いて、結晶方位差15°以上の境界を粒界とみなして、この境界で区分される結晶粒の面積から円相当直径近似して各結晶粒の結晶粒径を求める。結晶粒径の算出に際し、結晶粒径が1.0μm以下の結晶粒及び視野内に不完全に含まれている結晶粒は除外する。結晶粒の粒界が測定視野の境界により分断された結晶粒を視野内に不完全に含まれている結晶粒と判断する。
 板幅方向が不明の場合は、表面で測定を行うことで判別できる。素材はSplit-TD型の集合組織を有しているため、(0001)が板幅方向に30~40°傾いて強く配向している。したがって、表面からの測定において(0001)が強く配向している位置が存在する方向軸が板幅方向となる。
α相の結晶粒度分布:結晶粒径が平均結晶粒径±2μmの結晶粒の個数割合が25%以上、結晶粒径が平均結晶粒径±4μmの結晶粒の個数割合が45%以上
 平均結晶粒径が10.0μm以下であっても、粗大な結晶粒が僅かながら含まれる可能性がある。結晶粒径が異なると結晶粒の研磨状態が異なるので、結晶粒径の差が大きい結晶粒が含まれると、研磨後において十分な美観が得られない。そこで、α相の平均結晶粒径の他に、α相の粒度分布を制御することが好ましい。
 本実施形態のチタン合金板では、α相のうち(α相を構成する結晶粒のうち)、結晶粒径が平均結晶粒径±2μmの範囲(平均結晶粒径-2μm~平均結晶粒径+2μmの範囲)にあるα相の結晶粒の個数割合が、全体の25%以上であり、平均結晶粒径±4μmの範囲(平均結晶粒径-4μm~平均結晶粒径+4μmの範囲)にある結晶粒の個数割合が、全体の45%以上である。このようなチタン合金板は、粗大な結晶粒が含まれる可能性が低くなり、研磨性が向上する。
 α相の結晶粒径が平均結晶粒径±2μmの範囲にあるα相の結晶粒の個数割合及び、平均結晶粒径±4μmの範囲にある結晶粒の個数割合のそれぞれの上限の割合は特に制限はなく100%でもよいが、100%未満としてもよい。
 α相の粒度分布は、以下の方法で求める。
 α相の結晶粒は均一に分散する。よって任意の幅方向位置で測定してもよいが、例えば、板幅長さ1/2位置の板幅方向に垂直な断面(L断面)の板厚中央部にて、一辺長さが100μm以上の矩形の領域であって、当該領域内に100個以上の結晶粒が存在するように粒度分布の測定領域を設定する。測定領域を電子線後方散乱回折(EBSD)法によってα相の結晶方位を解析する。解析ソフトにはOIM-analysisTM(version 7.3.1)を用いて、結晶方位差15°以上の境界を粒界とみなして、区分される結晶粒の面積から円相当直径近似して各結晶粒の結晶粒径を求める。
 次いで、得られた各結晶粒の結晶粒径と、結晶粒径が前記方法で求めた平均結晶粒径から±2μmの範囲にある結晶粒の個数割合と、結晶粒径が平均結晶粒径から±4μmの範囲にあるα相の結晶粒の個数割合を求める。
 これにより、測定領域内における結晶粒の粒度分布を求める。
 板幅方向が不明の場合は、表面で測定を行うことで判別できる。素材はSplit-TD型の集合組織を有しているため、(0001)が板幅方向に30~40°傾いて強く配向している。したがって、表面からの測定において(0001)が強く配向している位置が存在する方向軸が板幅方向となる。
第二相の個数密度の分布:100の測定領域のうち、測定領域内に第二相が5個以上15個以下観察される測定領域の数が80以上である
 次に、第二相の分布状態について説明する。
 本実施形態のチタン合金板は、金属組織の大部分がα相からなり、残部が第二相からなる。第二相の主なものは、各種の金属間化合物である。α相の粒成長を抑制するためにピン止め効果やソリュートドラッグ効果を利用する場合、均一に第二相もしくは合金元素が存在している必要がある。第二相が均一に含有されることによって、使用中の高温環境下でのα相の粒成長が不均一にならず高温強度が向上する。ただし、金属組織中に第二相が不均一に分布すると、高温域でのα相の粒成長の程度が局所的に異なり、高温強度が低下する。また、不均一な第二相分布は焼鈍時にも混粒組織を形成させる原因となり、混粒組織が形成されると研磨性や疲労特性が劣化する。また、混粒組織とならなくとも、不均一な第二相分布によって研磨性が低下する。そのため、第二相が金属組織中に均一に分布している必要がある。
 本実施形態のチタン合金板では、第二相の分布の均一性の指標として、チタン合金板の断面の複数の測定領域において第二相の個数を測定して得られる、所定の個数の第二相を含む領域の割合を用いる。
 具体的には、板幅長さ1/2位置のチタン合金板の板幅方向に垂直な断面において、一辺が100μm(100μm×100μm)の領域の各辺の長さをそれぞれ10等分して得られる各々の領域(一辺が10μmの領域が100個)を個数密度の測定領域とし、測定領域毎に、第二相の個数を求める。そして、100の領域のうち、その測定領域(10×10μm)内に5個以上15個以下第二相が観察される(存在する)測定領域の数を求める。測定領域内に5個以上15個以下の第二相が観察される測定領域内が、80以上であれば、第二相が均一に分布しているとみなす。全測定領域において、5個以上15個以下の第二相が観察されてもよい。つまり、測定領域内に5個以上15個以下の第二相が観察される測定領域の数の上限は100である。第二相の個数密度の算出に際し、第二相が分割した領域の境界に存在する場合、隣接する領域の数で除する。例えば、2つの領域にまたがって存在する場合には、当該領域2つのそれぞれに0.5個として加算する。
 第二相の分布状態がこの条件を満たす場合に、研磨性が向上し、また、高温加熱時にα相の混粒組織が生じにくくなり、疲労強度が向上する。
 5個以上15個以下の第二相が観察される領域の数は、以下の方法で求める。
 α相及び第二相は、均一に分散するので、測定位置は任意の幅方向位置でよいが、例えば、一辺が100μmの領域の位置は、チタン合金の板幅長さ1/2位置の板幅方向に垂直な断面(L断面)の板厚中央部とする。この領域を、各辺の長さを10等分して、100個の測定領域を決定する。各測定領域を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相と第二相とを判別する。金属間化合物である第二相は、母相であるα相に比べて白色もしくは黒色であるとともに微細な析出物であるため、この特徴から第二相と識別できる。そして、測定領域内の第二相の個数を計数して、個数を求める。これを100の測定領域に対して実施し、第二相の個数が5個以上15個以下の測定領域の数を計数する。
 板幅方向が不明の場合は、表面で測定を行うことで判別できる。素材はSplit-TD型の集合組織を有しているため、(0001)が板幅方向に30~40°傾いて強く配向している。したがって、表面からの測定において(0001)が強く配向している位置が存在する方向軸が板幅方向となる。
第二相の面積率
 金属組織における第二相の面積率は、0.01%以上が好ましく、0.05%以上がより好ましく、0.1%以上が更に好ましく、1.0%以上であることが一層好ましい。第二相が0.1%以上の面積率で存在すると、研磨性を向上させることができる。特に、第二相の面積率を1.0%以上とすることで、研磨性をより一層向上させることができる。一方、加工性を十分なものとするためには、第二相の面積率の上限を3.0%以下とすることが好ましく、2.0%以下とすることがより好ましい。
 第二相の面積率は、第二相の個数密度の測定と同じ領域で測定を行う。すなわち、上記の一辺が100μmの領域(例えばチタン合金の板幅長さ1/2位置の板幅方向に垂直な断面(L断面)の板厚中央部から作成)を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相と第二相とを判別する。金属間化合物である第二相は、母相であるα相に比べて白色もしくは黒色であるとともに微細な析出物であるため、この特徴から第二相と識別できる。そして、領域内の第二相の面積を測定し、第二相の面積率(%)を求める。
 また、本実施形態のチタン合金板の金属組織は等軸組織であることが好ましい。針状組織ではマクロ的に結晶方位が同じ領域が密集するため、研磨性が劣化する。具体的には、組織の大部分を占めるα相の平均アスペクト比(長軸長さ/短軸長さ)が3.0以下であることが好ましい。後述するように熱延板焼鈍または中間焼鈍において830℃超、かつβ変態点以上に加熱することで一旦針状結晶粒が形成されるが、その後の冷間圧延と最終焼鈍によって再結晶が起こり、等軸のα相が形成される。アスペクト比は、チタン合金板のL断面上においてα結晶粒の(長軸長さ/短軸長さ)の比であるアスペクト比を求め、10個の結晶粒のアスペクト比の平均値とする。
 本実施形態のチタン合金板は、以下の特性を有することが好ましい。
全伸び:25.0%以上
 成形加工後の部品形状にもよるが、少なくともチタン合金板を管形状に成形・溶接できることが必要である。また、その後は管の曲げ加工が必要になる。従って、本実施形態のチタン合金板は、部品成形時の十分な加工性を確保するために、全伸びが25.0%以上であることが好ましい。全伸びの上限を限定する必要はないが、工業的には50.0%程度が実質的な上限となる。
 全伸びは、室温引張試験を行うことにより測定する。室温での引張試験は、上記のチタン合金板から、長手方向が圧延方向に対して平行のASTMサブサイズ引張試験片(平行部幅:6.25mm、平行部長さ:32mm、標点間距離:25mm)を採取し、ひずみ速度を30%/minとして行う。試験温度は10~35℃の範囲内とする。
エリクセン値:9.5mm以上
 エリクセン試験は、管形状以外への成形では重要な深絞り及び張出の要素を評価する試験である。本実施形態のチタン合金板は、研磨性の向上とのバランスを考慮し、エリクセン値が9.5mm以上であることが好ましい。
 エリクセン値は、JIS Z 2247(2006)に規定するエリクセン試験方法に準じて測定する。測定サンプルの板厚は0.1~2.0mmの範囲とし、幅は90mm以上とする。試験機はJIS B 7729(2005)に記載された通りとする。ジグ寸法は標準試験片による試験の寸法を用いる。ただし、潤滑剤には厚さ50μmのテフロン(登録商標)シートを用いる。
耐酸化性:大気中で800℃、100時間保持後の酸化増量が5.0mg/cm以下
 一般に使用される排気系部品における酸化増量は5.0mg/cm以下がほとんどであり、本実施形態のチタン合金板では、800℃での使用を想定した場合であっても、これを達成することが望ましい。そのため、耐酸化性の指標として、大気中で800℃、100時間保持後の酸化増量が5.0mg/cm以下を満たすことが好ましい。
 酸化増量は、上記のチタン合金板から、20mm×20mmの試験片を採取し、表面をエメリー紙#400で湿式研磨し、800℃で100時間、静止大気中に暴露し、暴露後の増加質量を測定し、増加質量を引張試験片の表面積で割った値((増加質量(mg)/試験片の表面積(cm))とする。酸化試験によってスケール剥離が発生する場合は剥離したスケールもばく露後の質量に含める必要がある。
高温強度(引張強度):800℃で26MPa以上
 材料として、高温強度が確保される必要がある。本実施形態においては、使用が想定される温度域での高温強度が重要と考えており、排ガス温度の高温化に対応できる排気系部品への適用を想定し、本実施形態のチタン合金板は、800℃での引張強度が26MPa以上であることが好ましい。
 800℃の高温強度(引張強度)は、高温引張試験を行うことにより測定する。高温引張試験は、上記のチタン合金板から、長手方向が圧延方向に対して平行の引張試験片(平行部幅10mm、平行部長さ及び標点間距離35mm)を採取し、ひずみ速度を7.5%/minとして行う。試験雰囲気は800℃の大気中とし、試験片が十分に試験温度に達するように、試験雰囲気中に10分間保持した後、試験を行う。
研磨性
 研磨性は、エメリー紙#1500で湿式研磨し、アルミナバフ研磨によって60min(分)研磨後の光沢度で評価する。
 アルミナバフ研磨に使用する研磨液は、平均粒径3μmのアルミナ粉を、水1リットル中に250g添加した溶液とする。研磨試験は、直径28mmのエポキシ樹脂に試料を埋め込み、自動研磨装置のホルダーに6個の試料をセットし、加圧力60Nとして研磨する。光沢度の測定は、JIS Z 8741(1997)の鏡面光沢度の測定方法に準拠して行う。
 光沢度は入射角及び受光角を20°として測定する。研磨性の観点からは、光沢度(Gs20)が920以上であることが好ましい。
 本実施形態のチタン合金板は、自動車用排気系部品の素材として用いることができる。すなわち、本実施形態のチタン合金板を所定の形状に成形し、溶接することで、各種の自動車用排気系部品とすることができる。本実施形態の自動車用排気系部品としては、エキゾーストマニホールド、エキゾーストパイプ、触媒装置、マフラーなどの部品を例示でき、これらの素材として、本実施形態のチタン合金板を用いることができる。これらの排気系部品は、四輪自動車に限らず、二輪自動車にも用いることができる。
 本実施形態のチタン合金板の板厚は限定されないが、自動車用排気系部品の素材として用いる場合、0.5~2.0mmであることが好ましい。より好ましくは0.6~1.5mmである。
 次に、本実施形態のチタン合金板の製造方法について説明する。
 従来のチタン合金板の製造工程では、電子ビーム溶解もしくは真空アーク溶解などによって製造された所定の化学組成を有する鋳塊に、凝固組織の破壊を目的とした分塊工程(鍛造もしくは圧延)がβ単相域の温度で行われた後、熱間圧延によってコイルが製造される。このコイルに必要に応じて焼鈍を行い、脱スケール後に冷間圧延と焼鈍が必要に応じて繰り返される。
 一般に、等軸粒で構成された金属組織が強度と加工性とのバランスに優れる。等軸粒で構成する金属組織を得るため、また、冷延性に優れるようにするため、一般に、熱間圧延以降では焼鈍がβ変態点未満で行われる。しかしながら、β変態点未満では、α相と第二相とが存在する状態であり、α相と第二相との間での元素分配が生じる。特に高温であるほど元素分配は短時間で生じる。元素分配が生じると、第二相の分布が不均一となる。
 チタン合金中の合金元素の分布は、凝固時((鋳塊製造時)に生じた分配状態が、分塊工程である程度均質化されていくが、分塊工程はβ単相域加熱されるものの、工程完了時にβ変態点未満になることがある。また、β変態点未満にならなくとも、冷却速度は非常に遅く、冷却中に分配が生じてしまう。冷却速度を高めるために、たとえば、分塊圧延後に水冷したとしても、内部と表層部の冷却速度差は大きく、冷却速度が小さな内部では必ずある程度の元素分配が生じてしまう。
 また、元素分配を解消するために、熱間圧延前に鋳片をβ変態点以上に加熱したとしても、熱延中の温度低下によってβ変態点未満となって熱延中に元素分配が進んでしまう。また、鋳片の内部までβ変態点以上に昇温するためには長時間保持が必要になるため、酸化による表層硬化層の形成が生じることで、冷延性が低下する。
 本実施形態では、従来β変態点未満で行っていた熱延板の焼鈍と中間焼鈍との少なくとも一方をβ変態点以上で行うことで、それまでの元素分配を軽減するとともに、焼鈍温度から700℃までの平均冷却速度が5℃/秒以上となるように冷却を行うことで、元素分配を軽減したチタン合金板を得る。分塊工程とは異なり、板厚が薄くなった熱延板とした後にβ変態点以上に加熱することで表層及び内部の両方で元素分配を抑制することが可能となる。熱延板の焼鈍と中間焼鈍との両方でβ変態点以上の焼鈍を行う方が、より合金元素を均一に分布させることができる。
 本実施形態のチタン合金板の場合、ほとんどの場合、β変態点は830℃超となる。
 すなわち、本実施形態のチタン合金板は、以下の工程を含む製造方法によって製造することができる。
(I)上述した化学成分を有するチタン合金からなるインゴットに熱間圧延を施して熱延板とする熱間圧延工程。
(II)必要に応じて、熱延板に焼鈍(熱延板焼鈍)を行う熱延板焼鈍工程。
(III)熱延板に対して60%以上の圧下率の冷間圧延を行う冷間圧延工程。ただし、必要に応じて、最終圧下より前に中間焼鈍を行ってもよい。
(IV)冷間圧延工程後のチタン合金板に、550℃以上670℃未満の均熱温度で1分~24時間の最終焼鈍を行う、最終焼鈍工程。
 ただし、熱延板焼鈍及び冷間圧延工程の中間焼鈍の少なくとも一方を、実施するとともに、焼鈍温度を830℃超かつβ変態点以上とする。
 以下、製造条件の各工程について説明する。
<熱間圧延工程>
 熱間圧延工程では、上述した化学成分を有するチタン合金からなるインゴットに熱間圧延を施して熱延板とする。
 熱間圧延条件は特に限定されず、公知の条件でよい。
 熱間圧延工程より前の工程は特に制限はない。例えば、電子ビーム溶解もしくは真空アーク溶解などによって製造された所定の化学組成を有するインゴットに、凝固組織の破壊を目的とした分塊工程(鍛造もしくは圧延)がβ単相域で行われ後、熱間圧延によって熱延板を製造すればよい。
<熱延板焼鈍工程>
 熱間圧延によって得られた熱延板に対し、熱延板焼鈍を行う場合、焼鈍温度を830℃超、かつβ変態点以上とし、焼鈍時間を1~5分間とし、焼鈍温度から700℃までの平均冷却速度を5℃/秒以上とすることが好ましい。
 焼鈍温度を830℃超、かつβ変態点以上とし、焼鈍時間を1分間以上とすることで、元素分配を抑制し、合金元素をより均一に分布させ、第二相の分布を均一にすることができる。一方、焼鈍時間が、5分間超であると、酸化による歩留まり低下や長時間化による製造性の低下が生じるため、好ましくない。焼鈍温度の上限は限定する必要はないが、酸化による歩留まり低下の観点で、焼鈍温度は1000℃以下であることが好ましい。
 また、焼鈍温度から700℃までの平均冷却速度が遅いと、冷却中に元素分配が生じてしまう。そのため、焼鈍温度から700℃までの平均冷却速度を5℃/秒以上とする。平均冷却速度を高めても元素分配の程度は第二相の分布に大きな影響は出ないため、上限を規定する必要はないが、300℃/秒以下としてもよい。
 ただし、後述する中間焼鈍が、焼鈍温度を830℃超、かつβ変態点以上とし、焼鈍時間を1~5分間とし、焼鈍温度から700℃までの平均冷却速度を5℃/秒以上とする条件で行われる場合には、熱延板焼鈍工程は、行われなくてもよいし、上述した条件以外で行われてもよい。
<冷間圧延工程>
 冷間圧延工程では、熱間圧延工程後の熱延板または熱延板焼鈍工程後の熱延板に対し、冷間圧延を行う。熱延板に対して冷間圧延を行う場合、最終焼鈍後に微細な等軸粒を得る必要があるため、冷間圧延での圧下率(複数パスの場合には累積圧下率)は60%以上とする。冷間圧延での圧下率は割れを防止するために90%以下とすればよい。後述する中間焼鈍を行う場合、中間焼鈍前の冷間圧延の圧下率を中間冷延率、中間圧延後の冷間圧延の圧下率を最終冷延率とし、最終冷延率を60%以上とする。
 また、熱延板焼鈍において、830℃超、かつβ変態点以上で焼鈍を実施した場合、金属組織が針状組織となり、冷延性が低下する。そのため、この場合、冷間圧延の条件は、1パス目から2パス目までの圧下率を10%以下とし、それ以降は15%以下とすることが好ましい。2パス目までは低圧下率で加工することで、割れを生じさせることなく安定して冷間圧延できる。その後は加工発熱により温度が上昇するため圧下率を高めても割れにくくなる。
 熱延板焼鈍を行っていない場合、冷間圧延工程では、最終圧下より前に冷間圧延を中断して、中間焼鈍を行う。中間焼鈍を行う場合、焼鈍温度を830℃超、かつβ変態点以上とし、焼鈍時間を1~5分間とし、焼鈍温度から700℃までの平均冷却速度を5℃/秒以上とすることが好ましい。
 この条件とする理由は、熱延板焼鈍で説明した理由と同じである。
 熱延板焼鈍を行う場合でも、上記の中間焼鈍を行ってもよい。
 上述のように、熱延板焼鈍または最終中間焼鈍の焼鈍温度のいずれか一方を830℃超、かつβ変態点以上の温度とすることで、元素分配を抑制し、合金元素をより均一に分布させ、第二相の分布を均一にすることができる。特に、少なくとも中間焼鈍の焼鈍温度をβ変態点以上の温度とすることにより、板厚がより薄くなった状態でβ変態点以上に加熱されることになり、板の表面及び内部での元素分配を抑制できる。更に、熱延板焼鈍と中間焼鈍の両方で830℃超、かつβ変態点以上の焼鈍を行うことで、元素分配を抑制して合金元素をより均一に分布させることができる。
<最終焼鈍工程>
 冷間圧延工程後のチタン合金板は、再結晶のために550℃以上670℃未満の温度域で最終焼鈍が行われる。焼鈍温度が550℃未満では金属間化合物が多量に生成するため、十分に再結晶が進まず、未再結晶領域が生じてしまい、研磨性が低下する。また、焼鈍温度が670℃以上では、α相が粒成長して粗大な結晶粒が生じるおそれがある。そのため、最終焼鈍は670℃未満とする。
 最終焼鈍の焼鈍時間は1分~24時間とする。焼鈍時間を1分間以上とすることで、再結晶が十分に進む。また、焼鈍時間を24時間以下とすることで、粗大結晶粒の形成が防止される。最終焼鈍後の冷却速度(550℃未満の温度域の冷却速度)については特に制限はない。
 次に、本実施形態の自動車用排気系部品について説明する。
 本実施形態の自動車用排気系部品は、上記のチタン合金板を備える。(場合によっては上記のチタン合金板からなる)。本実施形態の自動車用排気系部品は、本実施形態のチタン合金板を、例えばプレス成形によって、成形することによって得られる。成形によって化学組成は変化しないので、自動車用排気系部品の化学組成は、本実施形態のチタン合金板と同等である。チタン合金板を自動車排気系部品に成形した場合、成形によって双晶変形が生じるため、成形によって変形を受けた部分については、結晶粒径は微細となる。双晶変形は、OIM analysisで同定できる。しかし、加工度が大きくなると母相と双晶変形の結晶方位差が変化するため、解析が困難となる。そのため、α相の結晶粒径の同定には、自動車排気系部品から適度な加工度を持つ部分から測定試料を作製する必要がある。
 表1に示す化学組成を有するチタン合金を、真空アークボタン溶解によりインゴットとした。作製したインゴットを1000℃で熱間圧延し、10mm厚の熱延板とした。その後、860℃での熱間圧延を行うことで4.0mm厚の熱延板を得た。表1では、Ni、V、Mn、Co、Ta、W、C、Nのそれぞれの含有量の記載を省略し、これら元素の含有量の合計を「others」の欄に記載した。これらの元素のそれぞれの含有量はいずれも0.05%以下だった。また、不純物のうち、H含有量はいずれも0.013%以下であった。
 その後、脱スケール工程もしくは、表2に記載の温度と時間で必要に応じて熱延板焼鈍を行った後に脱スケール工程を施し、その後、冷間圧延とともに必要に応じて中間焼鈍を行い、最終冷間圧延を行った。更に、最終焼鈍を行った。このようにして、No.1~No.48のチタン合金板を製造した。
 更に、得られたチタン合金板に対し、研磨処理を行った。研磨処理は、エメリー紙#1500での湿式研磨し、アルミナバフ研磨によって60min研磨した。アルミナバフ研磨に使用する研磨液は、平均粒径3μmのアルミナ粉を、水1リットル中に250g添加した溶液とした。研磨処理は、直径28mmのエポキシ樹脂に試料を埋め込み、自動研磨装置のホルダーに6個の試料をセットし、加圧力60Nとして研磨した。
 研磨後のチタン合金板について、各種の評価を行った。
 α相の平均結晶粒径は、上述したように、EBSDを用いて、板幅長さ1/2位置の板幅方向に垂直な断面(L断面)の板厚中央部にて、加速電圧15kVとし、倍率500倍で測定ピッチを0.2μmとし、α相のみを対象として測定を行った。測定視野は1視野で結晶粒が300個以上含まれる大きさ、もしくは複数の視野の合計で結晶粒が400個以上含まれるように設定し、測定試料は平均のCI値が0.2以上となるよう調整した。測定解析ソフトにはOIM-analysisTM(version 7.3.1)を用いて、結晶方位差15°以上の境界を粒界とみなして、この境界で区分される結晶粒の面積から円相当直径近似して各結晶粒の結晶粒径を求めた。結晶粒径の算出に際し、結晶粒径が1.0μm以下の結晶粒及び視野内に不完全に含まれている結晶粒は除外した。
 α相の粒度分布は、上述したように、平均結晶粒径の測定の際に設定した測定領域(一辺長さが100μm以上の矩形の領域:板幅長さ1/2位置の板幅方向に垂直な断面(L断面)の板厚中央部から作成)を粒度分布の測定領域として用いた。測定領域を電子線後方散乱回折(EBSD)法によってα相の結晶方位を解析した。解析ソフトにはOIM-analysisTM(version 7.3.1)を用いて、結晶方位差15°以上の境界を粒界とみなして、区分される結晶粒の面積から円相当直径近似して各結晶粒の結晶粒径を求めた。次いで、得られた各結晶粒の結晶粒径と前記方法で求めた平均結晶粒径とから、結晶粒径が平均結晶粒径±2μmの範囲にあるα相の結晶粒の個数割合と、平均結晶粒径±4μmの範囲にあるα相の結晶粒の個数割合を求めた。
 第二相の分布状態は、上述したように、板幅長さ1/2位置の板幅方向に垂直な断面(L断面)の板厚中央部において、一辺が100μmの領域を10×10に等分割した各々の領域を測定領域(一辺が10μmの領域100個を測定領域として用いる)とし、測定領域毎に、第二相の単位面積あたりの個数を求め、5個以上15個以下の第二相が観察される測定領域の数を求めた。
 測定領域を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相と第二相とを判別した。金属間化合物である第二相は、母相であるα相に比べて白色もしくは黒色であるとともに微細な析出物であるため、この特徴から第二相と識別できた。
 第二相の面積率は、第二相の個数密度と同じ領域で測定を行った。上記の一辺が100μmの領域(板幅長さ1/2位置の板幅方向に垂直な断面(L断面)の板厚中央部)を走査型電子顕微鏡(SEM)により観察し、反射電子像からα相と第二相とを判別した。そして、領域内の第二相の面積を測定し、第二相の面積率(%)を求めた。
 全伸びは、室温引張試験を行うことにより測定した。室温での引張試験は、上記のチタン合金板から、長手方向が圧延方向に対して平行のASTMサブサイズ引張試験片(平行部幅:6.25mm、平行部長さ:32mm、標点間距離:25mm)を採取し、ひずみ速度を30%/minとして行った。試験温度は10~35℃の範囲内とした。
 エリクセン値は、JIS Z 2247(2006)に規定するエリクセン試験方法に準じて測定した。測定サンプルの板幅は90mm以上とした。試験機はJIS B 7729(2005)に記載された通りとした。潤滑剤には厚さ50μmのテフロン(登録商標)シートを用いた。ジグ寸法は標準試験片による試験の寸法を用いた。
 全伸びが25.0%以上かつ、エリクセン値が9.5mm以上であれば加工性に優れると判断した。
 酸化増量は、チタン合金板から、20mm×20mmの試験片を採取し、表面をエメリー紙#400で湿式研磨し、800℃で100時間、静止大気中に暴露し、暴露後の増加質量を測定し、増加質量を引張試験片の表面積で割った値((増加質量(mg)/試験片の表面積(cm))とした。酸化試験によってスケール剥離が発生した場合は剥離したスケールもばく露後の質量に含めた。酸化増量が5.0mg/cm以下であれば、高温での耐酸化性に優れると判断した。
 800℃の高温強度(引張強度)は、上記のチタン合金板から、長手方向が圧延方向に対して平行の引張試験片(平行部幅:10mm、平行部長さ及び標点間距離:35mm)を採取し、ひずみ速度を7.5%/minとして引張試験を行うことにより測定した。試験雰囲気は800℃の大気中とし、試験片が十分に試験温度に達するように、試験雰囲気中に10分間保持した後、試験を行った。高温強度(引張強度)が800℃で26MPa以上であれば、高温強度に優れると判断した。
 光沢度(Gs20)は、JIS Z 8741(1997)の鏡面光沢度の測定方法に準拠して行った。光沢度の測定は、入射角及び受光角を20°とした。光沢度Gs20が920以上であれば、研磨性に優れると判断した。
 それぞれの評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、No.1~8、11~13、15、17、19、21~25、27、28、31~33、36、38、39、45~48は、本開示の範囲にあるチタン合金板であり、優れた特性を示した。
 また、これらの発明例はいずれも、金属組織形態は等軸組織であった。すなわち、α相の平均アスペクト比(長軸長さ/短軸長さ)が3.0以下であった。
 一方、No.9は、Si含有量が少なく、α相の平均結晶粒径は粗大になった。また、第二相の分布状態も悪化した。これにより、酸化増量が増大し、高温環境下での耐酸化性が低かった。また、高温強度も低かった。更に、α相の平均結晶粒径が大きくなったため、研磨後の光沢度が低く、研磨性が低かった。
 No.10は、Si含有量が過剰であり、エリクセン値が高くなり、加工性が低かった。
 No.14は、Al含有量が過剰であり、エリクセン値が高くなり、加工性が低かった。
 No.16は、Zr含有量が過剰であり、α相の平均結晶粒径が小さくなり、また、未再結晶組織が多く残った。このため、全伸びが低下するとともにエリクセン値が低くなって加工性が低下し、研磨性も低かった。
 No.18は、Cr含有量が過剰であり、高温加熱時にβ相が形成されて耐酸化性が低かった。
 No.20は、Mo含有量が過剰であり、α相の平均結晶粒径が小さくなり、また、未再結晶組織が多く残った。このため、全伸びとともにエリクセン値が低く、加工性が低かった。また、研磨性も低かった。更に、高温加熱時にβ相が形成されて耐酸化性が低かった。
 No.26は、熱延板焼鈍の焼鈍温度がβ変態点未満であり、中間焼鈍も行わなかったため、第二相の分布状態が悪化した。観察の結果、粗大な結晶粒が含まれていた。その結果、研磨性が低かった。
 No.29は、熱延板焼鈍の焼鈍温度と中間焼鈍温度とが、ともにβ変態点未満であったため、第二相の分布状態が悪化した。観察の結果、粗大な結晶粒が含まれていた。その結果、研磨性が低かった。
 No.30は、熱延板焼鈍後の冷却速度が低く、中間焼鈍も行わなかったため、α相の結晶粒径の分布が広がった。観察の結果、粗大な結晶粒が含まれていた。その結果、研磨性が低かった。
 No.34は、最終焼鈍温度が低く、α相の平均結晶粒径が小さくなり、また、未再結晶組織が多く残った。このため、全伸びとともにエリクセン値が低くなって加工性が低かった。また、研磨性も低かった。
 No.35は、最終冷間圧延の圧下率が低く、ひずみの導入が不十分になったため、α相の結晶粒径の分布が広がって粗大な結晶粒が含まれるようになり、研磨性が低かった。
 No.37は、最終焼鈍温度が高く、α粒の平均粒径が粗大になるとともに、α相の結晶粒径の分布が広がった。また、第二相の分布も、均一ではなかった。その結果、研磨性が低かった。
 No.40は、Cu含有量が少なく、高温強度が低かった。
 No.41は、Cu含有量が過剰であり、エリクセン値が低くなって加工性が低かった。
 No.42は、Sn含有量が少なく、高温強度が低かった。
 No.43は、Sn含有量が過剰であり、全伸びとともにエリクセン値が低くなって加工性が低かった。
 No.44は、Nb含有量が少なく、高温での耐酸化性が低かった。
 本開示によれば、加工性、研磨性及び高温での耐酸化性に優れたチタン合金板及び自動車用排気系部品を提供できる。

Claims (4)

  1.  質量%で、
    Cu:0.7%~1.5%、
    Sn:0.5%~1.5%、
    Si:0.10%~0.60%、
    Nb:0.1%~1.0%、
    Zr:0%~1.0%、
    Cr:0%~0.5%、
    Mo:0%~0.5%、
    Al:0%~1.0%を含有し、
    Fe:0.08%以下、O:0.07%以下にそれぞれ制限し、
    残部がTi及び不純物である化学組成を有し、
     金属組織がα相と第二相とからなり、
     前記α相の平均結晶粒径が3.0~10.0μmであり、
     前記α相のうち、結晶粒径が平均結晶粒径±2μmの範囲にある結晶粒の個数割合が25%以上であり、
     前記α相のうち、結晶粒径が平均結晶粒径±4μmの範囲にある結晶粒の個数割合が45%以上であり、
     断面において、100μm×100μmの領域を100等分した100の10μm×10μmの領域を測定領域とし、前記測定領域毎に前記第二相の個数密度を求めた場合に、前記測定領域内に前記第二相が5個以上15個以下観察される測定領域の数が80以上である
    ことを特徴とするチタン合金板。
  2.  前記第二相の面積率が1.0%以上であることを特徴とする請求項1に記載のチタン合金板。
  3.  請求項1または請求項2に記載のチタン合金板を備える、自動車用排気系部品。
  4.  請求項1または請求項2に記載のチタン合金板を成形して得られる、自動車用排気系部品。
PCT/JP2021/001778 2021-01-20 2021-01-20 チタン合金板及び自動車用排気系部品 WO2022157844A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/001778 WO2022157844A1 (ja) 2021-01-20 2021-01-20 チタン合金板及び自動車用排気系部品
JP2022576264A JP7541255B2 (ja) 2021-01-20 2021-01-20 チタン合金板及び自動車用排気系部品
CN202180088952.1A CN116806277A (zh) 2021-01-20 2021-01-20 钛合金板和机动车用排气系统部件
EP21920958.2A EP4283000A4 (en) 2021-01-20 2021-01-20 TITANIUM ALLOY PLATE AND EXHAUST SYSTEM COMPONENT FOR MOTOR VEHICLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/001778 WO2022157844A1 (ja) 2021-01-20 2021-01-20 チタン合金板及び自動車用排気系部品

Publications (1)

Publication Number Publication Date
WO2022157844A1 true WO2022157844A1 (ja) 2022-07-28

Family

ID=82549580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001778 WO2022157844A1 (ja) 2021-01-20 2021-01-20 チタン合金板及び自動車用排気系部品

Country Status (4)

Country Link
EP (1) EP4283000A4 (ja)
JP (1) JP7541255B2 (ja)
CN (1) CN116806277A (ja)
WO (1) WO2022157844A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290548A (ja) 2004-03-12 2005-10-20 Kobe Steel Ltd 耐高温酸化性および耐食性に優れたチタン合金
JP2005298970A (ja) * 2004-03-19 2005-10-27 Nippon Steel Corp 冷間加工性に優れる耐熱チタン合金板およびその製造方法
JP2007270199A (ja) 2006-03-30 2007-10-18 Kobe Steel Ltd 耐高温酸化性に優れたチタン合金およびエンジン排気管
JP2009030140A (ja) 2007-07-30 2009-02-12 Nippon Steel Corp 冷間加工性に優れる排気装置部材用耐熱チタン合金およびその製造方法ならびに該合金を用いた排気装置部材
WO2011081077A1 (ja) * 2009-12-28 2011-07-07 新日本製鐵株式会社 耐酸化性に優れた排気系部品用耐熱チタン合金材、耐酸化性に優れた排気系部品用耐熱チタン合金板の製造方法、及び排気装置
JP2013142183A (ja) 2012-01-12 2013-07-22 Nippon Steel & Sumitomo Metal Corp 耐酸化性に優れた排気系部品用チタン合金材および、その製造方法ならびに、その合金材を用いた排気装置
WO2019155553A1 (ja) * 2018-02-07 2019-08-15 日本製鉄株式会社 チタン合金材

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10358698B2 (en) * 2009-12-28 2019-07-23 Nippon Steel Corporation Heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, method of production of heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, and exhaust system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005290548A (ja) 2004-03-12 2005-10-20 Kobe Steel Ltd 耐高温酸化性および耐食性に優れたチタン合金
JP2005298970A (ja) * 2004-03-19 2005-10-27 Nippon Steel Corp 冷間加工性に優れる耐熱チタン合金板およびその製造方法
JP2007270199A (ja) 2006-03-30 2007-10-18 Kobe Steel Ltd 耐高温酸化性に優れたチタン合金およびエンジン排気管
JP2009030140A (ja) 2007-07-30 2009-02-12 Nippon Steel Corp 冷間加工性に優れる排気装置部材用耐熱チタン合金およびその製造方法ならびに該合金を用いた排気装置部材
WO2011081077A1 (ja) * 2009-12-28 2011-07-07 新日本製鐵株式会社 耐酸化性に優れた排気系部品用耐熱チタン合金材、耐酸化性に優れた排気系部品用耐熱チタン合金板の製造方法、及び排気装置
JP2013142183A (ja) 2012-01-12 2013-07-22 Nippon Steel & Sumitomo Metal Corp 耐酸化性に優れた排気系部品用チタン合金材および、その製造方法ならびに、その合金材を用いた排気装置
WO2019155553A1 (ja) * 2018-02-07 2019-08-15 日本製鉄株式会社 チタン合金材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4283000A4

Also Published As

Publication number Publication date
EP4283000A1 (en) 2023-11-29
EP4283000A4 (en) 2024-03-06
JPWO2022157844A1 (ja) 2022-07-28
JP7541255B2 (ja) 2024-08-28
CN116806277A (zh) 2023-09-26

Similar Documents

Publication Publication Date Title
KR101602088B1 (ko) 내열 페라이트계 스테인리스 냉연 강판, 냉연 소재용 페라이트계 스테인리스 열연 강판 및 그들의 제조 방법
EP3778951B1 (en) Hot-stamped article
JP3558628B2 (ja) マグネシウム合金板およびその製造方法
EP2612938B1 (en) Heat exchanger aluminum alloy fin material and method for producing same
JP6385507B2 (ja) Nb含有フェライト系ステンレス鋼板およびその製造方法
JP7448776B2 (ja) チタン合金薄板およびチタン合金薄板の製造方法
JP5625646B2 (ja) 圧延幅方向の剛性に優れたチタン板及びその製造方法
JP4666271B2 (ja) チタン板
JP4498950B2 (ja) 加工性に優れた排気部品用フェライト系ステンレス鋼板およびその製造方法
JP4837188B2 (ja) 耐食性および加工性に優れた配管用アルミニウム合金材
CN116547399A (zh) 奥氏体系不锈钢带的制造方法
JP7180782B2 (ja) チタン合金板及び自動車排気系部品
JP7564664B2 (ja) フェライト系ステンレス鋼板およびその製造方法ならびに排気部品
JP7397278B2 (ja) チタン合金板及び自動車用排気系部品
JP2019173070A (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材および加工品
EP3712282B1 (en) Titanium alloy material
JP7303434B2 (ja) チタン合金板及び自動車用排気系部品
US10358698B2 (en) Heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, method of production of heat resistant titanium alloy material for exhaust system part use excellent in oxidation resistance, and exhaust system
JP7013301B2 (ja) 二次加工性及び耐高温酸化性に優れるAl含有フェライト系ステンレス鋼材
WO2022157844A1 (ja) チタン合金板及び自動車用排気系部品
JP7468470B2 (ja) フェライト系ステンレス鋼板およびその製造方法
JP2023092454A (ja) チタン合金、チタン合金棒、チタン合金板及びエンジンバルブ
US20200157668A1 (en) Aluminum alloy plate and method for producing the same
RU2808020C1 (ru) Холоднокатаная полоса для изготовления коррозионно-стойких компонентов оборудования и способ ее получения
WO2022162816A1 (ja) チタン合金板およびチタン合金コイルならびにチタン合金板の製造方法およびチタン合金コイルの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21920958

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576264

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180088952.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021920958

Country of ref document: EP

Effective date: 20230821