Nothing Special   »   [go: up one dir, main page]

WO2022153891A1 - Laminate, method for manufacturing same, and power module - Google Patents

Laminate, method for manufacturing same, and power module Download PDF

Info

Publication number
WO2022153891A1
WO2022153891A1 PCT/JP2022/000041 JP2022000041W WO2022153891A1 WO 2022153891 A1 WO2022153891 A1 WO 2022153891A1 JP 2022000041 W JP2022000041 W JP 2022000041W WO 2022153891 A1 WO2022153891 A1 WO 2022153891A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
ceramic plate
alloy
powder
Prior art date
Application number
PCT/JP2022/000041
Other languages
French (fr)
Japanese (ja)
Inventor
優也 弓場
篤士 酒井
賢久 上島
賢太郎 中山
佳孝 谷口
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to JP2022535194A priority Critical patent/JP7186929B1/en
Publication of WO2022153891A1 publication Critical patent/WO2022153891A1/en
Priority to JP2022190059A priority patent/JP7538845B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B18/00Layered products essentially comprising ceramics, e.g. refractory products
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • This disclosure relates to a laminate, a method for manufacturing the laminate, and a power module.
  • a ceramic substrate is used as the insulating substrate mounted on the power module.
  • the ceramic substrate has a ceramic plate and a metal circuit layer provided on the ceramic plate.
  • the ceramic substrate is required to have further improved durability against heat cycles. From the viewpoint of improving the durability of the ceramic substrate against the heat cycle, it is said that it is effective to provide an intermediate layer for reducing the thermal stress caused by the difference in thermal expansion between the ceramic plate and the metal circuit layer.
  • the advantage of the method for manufacturing a ceramic substrate by the cold spray method is that a metal circuit can be formed on the ceramic plate without using a brazing material.
  • the bonding between the ceramic plate and the metal circuit layer may be weaker than that of the ceramic substrate obtained by the conventional manufacturing method. .. It would be useful if a ceramic substrate could be manufactured by the cold spray method, which suppresses a decrease in bondability between the ceramic plate and the metal circuit layer and has excellent durability against heat cycles.
  • An object of the present disclosure is to provide a laminate having excellent durability against a heat cycle and a method for producing the same.
  • the present disclosure is also intended to provide a reliable power module.
  • One aspect of the present disclosure includes a ceramic plate, a stress relaxation layer formed on the ceramic plate, and a metal circuit layer formed on the stress relaxation layer, and the stress relaxation layer contains magnesium.
  • the alloy layer in contact with the ceramic plate having an amount of 7.5% by mass or less and an average thickness of less than 0.2 mm has a lower magnesium content than the alloy layer and contacts the metal circuit layer.
  • a laminate having a metal layer and a metal layer.
  • the stress relaxation layer has an alloy layer and a metal layer, and the alloy layer in contact with the ceramic plate contains magnesium, so that the adhesion between the ceramic plate and the metal circuit is strong.
  • the laminate also has a low magnesium content in the metal layer in contact with the metal circuit layer, and the alloy layer is provided so as to have a thickness less than a predetermined thickness, so that the stress relaxation layer becomes too hard. Since it can be suppressed and the metal layer side of the stress relaxation layer can be appropriately thermally expanded, the durability against the heat cycle is excellent as a whole.
  • the average thickness of the alloy layer may be 0.02 mm or more and less than 0.2 mm.
  • the coefficient of thermal expansion of the stress relaxation layer may be larger than the coefficient of thermal expansion of the ceramic plate and may be larger than the coefficient of thermal expansion of the metal circuit layer.
  • the coefficient of thermal expansion of the stress relaxation layer satisfies the above conditions, the thermal stress from the metal circuit layer having a larger coefficient of thermal expansion than the ceramic plate can be more sufficiently relaxed, and the durability against the heat cycle is further improved. It can be further improved.
  • the metal layer may contain aluminum.
  • the average thickness of the metal layer may be more than 0.1 mm.
  • the ceramic plate may be a silicon nitride plate, an aluminum nitride plate, or an aluminum oxide plate material.
  • One aspect of the present disclosure is a circuit board, a semiconductor element electrically connected on one main surface of the circuit board, and a heat radiating member connected on the other main surface of the circuit board.
  • a power module in which the circuit board is the above-mentioned laminate.
  • the power module is excellent in reliability because the circuit board is the above-mentioned laminated body.
  • One aspect of the present disclosure is a step of forming a first deposited layer in contact with a ceramic plate by spraying a first metal powder containing magnesium together with an inert gas from a nozzle onto the surface of the ceramic plate, and the above.
  • a step of heat-treating the first deposited layer in an inert gas atmosphere to form an alloy layer, and a second metal powder having a magnesium content smaller than that of the first metal powder are combined with the inert gas to form the alloy.
  • the above-mentioned method for producing a laminate can produce a laminate having an alloy layer, a metal layer, and a metal circuit layer on a ceramic plate from the ceramic plate side by spraying metal powder. Then, according to the manufacturing method, it is possible to form an alloy layer and a metal layer so that the magnesium content gradually decreases from the ceramic plate side, and a laminate having excellent durability against a heat cycle is manufactured. be able to.
  • the first metal powder may be a gas atomizing powder containing aluminum-magnesium alloy particles.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated body.
  • FIG. 2 is a schematic cross-sectional view showing an example of the laminated body.
  • FIG. 3 is a schematic view showing an example of a process of forming an alloy layer on a ceramic plate.
  • FIG. 4 is a schematic cross-sectional view showing an example of the power module.
  • the laminate includes a ceramic plate, a stress relaxation layer formed on the ceramic plate, and a metal circuit layer formed on the stress relaxation layer.
  • the stress relaxation layer has an alloy layer in contact with the ceramic plate having a magnesium content of 7.5% by mass or less and an average thickness of less than 0.2 mm, and magnesium more than the alloy layer. It has a metal layer having a small content of and in contact with the metal circuit layer.
  • FIG. 1 is a schematic cross-sectional view showing an example of the laminated body.
  • the laminate 100 shown in FIG. 1 has a ceramic plate 1 and metal circuits 2a and 2b provided on both sides thereof.
  • the metal circuit 2a includes a stress relaxation layer 20a and a metal circuit layer 23a.
  • the metal circuit layer 23a is joined to the ceramic plate 1 via a stress relaxation layer 20a.
  • the stress relaxation layer 20a is composed of an alloy layer 21a in contact with the ceramic plate 1 and a metal layer 22a provided on the alloy layer 21a and in contact with the metal circuit layer 23a.
  • the metal circuit 2b includes a stress relaxation layer 20b and a metal circuit layer 23b.
  • the metal circuit layer 23b is joined to the ceramic plate 1 via a stress relaxation layer 20b.
  • the stress relaxation layer 20b is composed of an alloy layer 21b in contact with the ceramic plate 1 and a metal layer 22b provided on the alloy layer 21b and in contact with the metal circuit layer 23b.
  • the metal circuit layers 23a and 23b shown in FIG. 1 are described as examples of uniform layers, they may have a pattern such as wiring.
  • the metal circuit 2a and the metal circuit 2b are electrically insulated by the ceramic plate 1. As described above, the metal circuit layer and the stress relaxation layer or the metal circuit layer are in direct contact with each other, and the laminate 100 does not have a brazing material layer.
  • the types of ceramic components constituting the ceramic plate 1 may be, for example, carbides, oxides, nitrides, and the like. Specifically, the type of ceramic component may be silicon carbide (SiC), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum nitride (Al N 3 ), or the like.
  • the ceramic plate 1 may be, for example, an aluminum oxide plate, a silicon nitride plate, and an aluminum nitride plate. Since the silicon nitride plate has few oxide layers on the surface, the effect of the present disclosure is more remarkable when the ceramic plate 1 is a silicon nitride plate.
  • the oxide layer improves the adhesive force with other layers. In the laminate according to the present disclosure, the adhesive strength is improved by containing a predetermined amount of magnesium in the alloy layer. As a result, sufficient adhesive strength can be exhibited even when a ceramic plate having a small oxide layer is used.
  • the average thickness of the ceramic plate 1 may be, for example, 0.2 to 1.5 mm or 0.25 to 1.0 mm.
  • the average thickness of the plates and layers in the present specification means the average value of the thickness measured by a micrometer.
  • the average value is the arithmetic mean value obtained by measuring at 10 points.
  • the stress relaxation layers 20a and 20b are layers for relaxing the stress generated due to the difference in thermal expansion during the heat cycle between the ceramic plate 1 and the metal circuit layers 23a and 23b, respectively.
  • the coefficient of thermal expansion of the stress relaxation layers 20a and 20b may be larger than the coefficient of thermal expansion of the ceramic plate 1 and may be larger than the coefficient of thermal expansion of the metal circuit layers 23a and 23b.
  • the stress relaxation layers 20a and 20b are shown in the example of being composed of two layers of alloy layers 21a and 21b and metal layers 22a and 22b, respectively, but may be composed of, for example, three or more layers.
  • the magnesium content in the stress relaxation layers 20a and 20b is set so as to be large on the ceramic plate 1 side and small on the metal circuit layers 23a and 23b.
  • the metal layers 22a and 22b in contact with the metal circuit layers 23a and 23b do not have to contain magnesium. Since the metal layers 22a and 22b do not contain magnesium, they are softer than the alloy layers 21a and 21b, and the stress relaxation performance can be further improved.
  • the alloy layers 21a and 21b contain magnesium. By containing magnesium having an excellent oxygen affinity, the bonding between the alloy layers 21a and 21b and the ceramic plate 1 becomes stronger. This effect is more remarkable when the oxide layer on the surface of the ceramic plate is small.
  • the alloy layers 21a and 21b may be alloys containing magnesium and aluminum.
  • the composition of the alloy layers 21a and 21b can be selected according to the metal composition of the metal layers 22a and 22b.
  • the alloy layers 21a and 21b may be an aluminum-magnesium-based alloy or may be an aluminum-magnesium alloy.
  • the alloy layers 21a and 21b may contain components other than aluminum and magnesium as long as the effects of the present invention are not impaired.
  • the total content of other components is, for example, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.1% by mass or less. , 0.05% by mass or less, or 0.01% by mass or less.
  • other components includes impurities unintentionally contained in addition to the components to be arbitrarily added.
  • Other components include, for example, O, C, Si, Mn, P, S, N, Ca, Cr, Ti, Nb, V, B, Mo, Cu, Ni, Sb, Sn, Ta, Mg, Zn, Examples thereof include Co, Zr, REM (Rare-earth element), and compounds thereof (for example, oxides, nitrides, sulfides, etc.).
  • the upper limit of the magnesium content in the alloy layer 21a is 7.5% by mass or less based on the total amount of the alloy layer 21a, but for example, 7.0% by mass or less, 6.5% by mass or less, or 6 It may be 0.0% by mass or less.
  • the lower limit of the magnesium content in the alloy layer 21a may be, for example, more than 0% by mass, based on the total amount of the alloy layer 21a, for example, 0.001% by mass or more, 0.01% by mass or more, 0.
  • the magnesium content in the alloy layer 21a may be adjusted within the above range, and may be, for example, 0.001 to 7.5% by mass based on the total amount of the alloy layer 21a.
  • the magnesium content in the present specification means a value measured by inductively coupled plasma (ICP) emission spectrometry.
  • ICP inductively coupled plasma
  • the upper limit of the average thickness of the alloy layer 21a is less than 0.2 mm, but may be, for example, 0.1 mm or less. Since the alloy layer 21a contains magnesium, it is a relatively hard layer. Therefore, if the upper limit of the average thickness of the alloy layer 21a is within the above range, the stress relaxation layer 20a is more sufficiently hardened. Suppresses and is more durable against heat cycles.
  • the lower limit of the average thickness of the alloy layer 21a may be, for example, 0.02 mm or more, 0.03 mm or more, 0.04 mm or more, or 0.05 mm or more. When the lower limit of the average thickness of the alloy layer 21a is within the above range, the bond between the stress relaxation layer 20a and the ceramic plate 1 can be made stronger.
  • the average thickness of the alloy layer 21a may be adjusted within the above range, and may be, for example, 0.02 mm or more and less than 0.2 mm, 0.02 mm to 0.1 mm, or 0.03 to 0.1 mm.
  • the magnesium content in the alloy layer 21b may be the same as that described above for the alloy layer 21a.
  • the magnesium content in the alloy layer 21b and the magnesium content in the alloy layer 21a may be the same or different. It may be adjusted according to the type and thickness of the metal of the metal circuit layers 23a and 23b.
  • the average thickness of the alloy layer 21b may be the same as that described above for the alloy layer 21a.
  • the average thickness of the alloy layer 21b and the average thickness of the alloy layer 21a may be the same or different.
  • the average thickness of the alloy layers 21a and 21b can be adjusted according to the composition of the alloy layer, the difference in the coefficient of thermal expansion between the ceramic plate 1 and the metal circuit layers 23a and 23b, and the like.
  • the metal layers 22a and 22b are layers having a lower magnesium content than the alloy layers 21a and 21b, and may not contain magnesium.
  • the metal layers 22a and 22b may include, for example, at least one selected from the group consisting of aluminum and aluminum alloys, may be composed of aluminum or an aluminum alloy, or may be composed of aluminum.
  • the metal layers 22a and 22b preferably do not contain magnesium and are more preferably composed only of aluminum and the metals constituting the metal circuit layers 23a and 23b.
  • the metal may form an alloy with aluminum, and in this case, the alloy may form the metal circuit layers 23a and the metal circuit layers 23a and 22b of the metal layers 22a and 22b. It may be scattered on the surface on the 23b side.
  • the metal layers 22a and 22b may contain components other than aluminum and magnesium as long as the effects of the present invention are not impaired.
  • the total content of other components is, for example, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.1% by mass or less. , 0.05% by mass or less, or 0.01% by mass or less.
  • other components includes impurities unintentionally contained in addition to the components to be arbitrarily added.
  • Other components include, for example, O, C, Si, Mn, P, S, N, Ca, Cr, Ti, Nb, V, B, Mo, Cu, Ni, Sb, Sn, Ta, Mg, Zn, Examples thereof include Co, Zr, REM, and compounds thereof (for example, oxides, nitrides, sulfides, etc.).
  • the average thickness of the metal layer 22a is larger than the average thickness of the alloy layer 21a, and is, for example, 1.0 times or more, 1.5 times or more, or 2 times or more based on the average thickness of the alloy layer 21a. You can do it. Since the average thickness of the metal layer 22a and the average thickness of the alloy layer 21a have the above relationship, the stress relaxation layer 20a is more sufficiently suppressed from becoming too hard, and the durability against the heat cycle is more excellent.
  • the average thickness of the metal layer 22a may be, for example, 20 times or less, 17 times or less, or 15 times or less based on the average thickness of the alloy layer 21a.
  • the thermal resistance of the ceramic substrate can be reduced.
  • the average thickness of the metal layer 22a may be adjusted within the above range, and may be, for example, 1.0 to 20 times based on the average thickness of the alloy layer 21a.
  • the lower limit of the average thickness of the metal layer 22a may be, for example, more than 0.1 mm, 0.15 mm or more, or 0.2 mm or more. When the lower limit of the average thickness of the metal layer 22a is within the above range, the durability against the heat cycle is more excellent.
  • the upper limit of the average thickness of the metal layer 22a may be, for example, 0.4 mm or less, 0.35 mm or less, or 0.3 mm or less. When the upper limit of the average thickness of the metal layer 22a is within the above range, the thermal resistance of the ceramic substrate can be reduced.
  • the average thickness of the metal layer 22b may be the same as that described above for the metal layer 22a.
  • the average thickness of the metal layer 22b and the average thickness of the metal layer 22a may be the same or different.
  • the average thickness of the metal layers 22a and 22b can be adjusted according to the difference in the coefficient of thermal expansion between the ceramic plate 1 and the metal circuit layers 23a and 23b.
  • the metal circuit layers 23a and 23b may contain metals such as gold, platinum, silver, copper, nickel, and chromium, may contain gold, silver, copper, and the like, and may be made of copper.
  • the metal circuit layers 23a and 23b may be, for example, a wiring pattern made of copper, a wiring pattern made of a copper alloy, or the like.
  • the lower limit of the average thickness of the metal circuit layers 23a and 23b may be, for example, 0.3 mm or more, 0.35 mm or more, or 0.4 mm or more.
  • the upper limit of the average thickness of the metal circuit layers 23a and 23b may be, for example, 4 mm or less, 3 mm or less, or 2 mm or less.
  • the laminate 100 of FIG. 1 shows an example in which the end face 21E of the alloy layer 21a, the end face 22E of the metal layer 22a, and the end face 23E of the metal circuit layer 23a are the same surface, but the end face 21E of the alloy layer 21a and the metal
  • the surface composed of the end surface 22E of the layer 22a and the surface composed of the end surface 23E of the metal circuit layer 23a do not necessarily have to be the same surface.
  • the laminate 101 shown in FIG. 2 is an example in which the surface composed of the end surface 21E of the alloy layer 21a and the end surface 22E of the metal layer 22a and the surface composed of the end surface 23E of the metal circuit layer 23a are different surfaces. Indicated.
  • the laminated body is more excellent in durability against heat cycle. It can be a thing.
  • the difference between the widths of the metal circuit layers 23a and 23b and the widths of the stress relaxation layers 20a and 20b may be, for example, 1 to 1000 ⁇ m or 10 to 100 ⁇ m.
  • the above-mentioned laminates 100 and 101 can be manufactured by a method of sequentially forming an alloy layer, a stress relaxation layer including a metal layer, and a metal circuit layer on a ceramic plate by using a so-called cold spray method.
  • a stress relaxation layer having an alloy layer and a metal layer and a metal circuit layer are formed on a ceramic plate by a spraying operation such as cold spraying or thermal spraying, irregularities derived from the spraying operation may be formed at the interface of each layer. .. Therefore, the above-mentioned laminated bodies 100 and 101 have characteristics different from those manufactured by sequentially laminating metal thin films and the like formed in layers in advance.
  • a first metal powder containing magnesium is sprayed together with an inert gas from a nozzle onto the surface of the ceramic plate to form a first deposited layer in contact with the ceramic plate.
  • a step of forming a third deposited layer in contact with the metal layer by spraying a third metal powder containing metal particles together with an inert gas from a nozzle onto the surface of the metal layer.
  • the third layer is heat-treated in an inert gas atmosphere to form a metal circuit layer.
  • FIG. 3 is a schematic view showing an example of a process of forming an alloy layer on a ceramic plate.
  • the first deposited layer is formed on the ceramic plate 1 by spraying the metal powder onto the surface of the ceramic plate 1 using the powder spray device 3.
  • the alloy layer 21a is formed by heat-treating the first sedimentary layer. After forming the alloy layer 21a, the alloy layer 21b on the back side thereof may be formed.
  • the powder spray device 3 shown in FIG. 3 is mainly composed of a high-pressure gas cylinder 4, a heater 6, a powder supply device 7, a nozzle 10 of a spray gun having a tapered tapered shape, and a pipe connecting them.
  • a first pressure regulator 5a is provided on the downstream side of the plurality of high-pressure gas cylinders 4, and the pipe branches into two circuits on the downstream side of the first pressure regulator 5a.
  • a second pressure regulator 5b and a heater 6 and a third pressure regulator 5c and a powder supply device 7 are connected to each of the two branched circuits.
  • the pipes from the heater 6 and the powder supply device 7 are connected to the nozzle 10.
  • the high-pressure gas cylinder 4 is filled with an inert gas used as a working gas, for example, at a pressure of 1 MPa or more.
  • the inert gas may be, for example, a single gas of helium or nitrogen, or a mixed gas thereof.
  • the working gas OG supplied from the high-pressure gas cylinder 4 is heated by the heater 6 after being adjusted in pressure by the second pressure regulator 5b on one circuit, and then supplied to the nozzle 10 of the spray gun. ..
  • the working gas OG is also supplied to the powder supply device 7 after the pressure is adjusted by the third pressure regulator 5c on the other circuit. From the powder supply device 7, metal powder for film formation is supplied to the nozzle 10 of the spray gun together with the working gas OG.
  • the gauge pressure of the working gas OG is adjusted to be, for example, 1.5 to 5.0 MPa or 2.0 to 4.0 MPa at the inlet 10a of the nozzle 10.
  • a sedimentary layer a layer that is later heat-treated to become an alloy layer
  • the gauge pressure at the inlet of the nozzle of the working gas OG can be measured at the connection portion between the nozzle and the pipe.
  • the heating temperature by the heater 6 is usually set lower than the melting point or softening point of the metal powder to be formed.
  • the heater 6 can be arbitrarily selected from ordinary heating devices.
  • the working gas supplied to the nozzle 10 of the spray gun is compressed by passing through the tapered portion, and is accelerated by being expanded at once in the divergent portion on the downstream side thereof.
  • the metal powder is heated to a predetermined temperature, accelerated to a predetermined speed, and then ejected from the outlet of the nozzle 10.
  • the metal powder ejected from the nozzle 10 is sprayed onto the surface of the ceramic plate 1.
  • the metal powder is deposited on the surface of the ceramic plate 1 while colliding with each other in a solid phase state to form the first deposition layer.
  • the first sedimentary layer is then heat treated to form an alloy layer 21a.
  • the first metal powder may be, for example, magnesium alloy particles containing magnesium and other metal elements, or aluminum-magnesium alloy particles.
  • the aluminum-magnesium alloy particles may be gas atomizing powder in which magnesium is dissolved in aluminum. Since the composition of the first metal powder (for example, the content of magnesium) is reflected in the composition of the alloy layer formed later (for example, the content of magnesium), the composition of the first metal powder is adjusted. , The composition of the alloy layer can be controlled.
  • the first metal powder may be heated to, for example, 10 to 270 ° C. or 20 to 260 ° C. By setting the heating temperature of the first metal powder within this range, the first body lamination can be efficiently formed.
  • the temperature at which the metal powder is heated means the maximum temperature reached by the metal powder.
  • the temperature of the inert gas at the outlet of the nozzle 10 can also be regarded as the temperature at which the metal powder is heated.
  • the term "heating" is used in the present specification to include adjusting the temperature to a predetermined temperature below room temperature.
  • a first sedimentary layer or the like having a pattern may be formed on the ceramic base material.
  • a metal circuit having a desired pattern can be easily formed without performing an additional process such as etching.
  • the method according to the present embodiment is more advantageous than the conventional molten metal method and brazing method, which require etching for pattern formation, from the viewpoint of simplifying the process and controlling the quality of the obtained product. I can say.
  • the first metal powder may be accelerated to 250 to 1050 m / sec in the nozzle 10.
  • the rate at which the metal powder is accelerated means the maximum speed that the accelerated metal powder can reach. If the speed at which the accelerated metal powder arrives is less than 250 m / sec, it is difficult for the metal powder to be sufficiently plastically deformed at the moment when the metal powder collides with a ceramic base material or the like, so that it is difficult to form a deposited layer. Or, the adhesion of the formed sedimentary layer tends to decrease. If the speed at which the accelerated metal powder reaches exceeds 1050 m / sec, when the metal powder collides with a ceramic base material or the like, the metal powder tends to be crushed and scattered, making it difficult to form a deposited layer. be.
  • the first body laminate formed on the ceramic plate is heat-treated in an inert gas atmosphere.
  • the temperature of the heat treatment may be, for example, 400 to 600 ° C.
  • the reaction between magnesium and the oxide layer on the surface of the ceramic plate can be further promoted, and a strong bond can be formed.
  • the influence of softening of the first sedimentary layer can be reduced.
  • a second deposited layer is formed by spraying the second metal powder onto the surface of the alloy layer by the same method as the above-mentioned formation of the alloy layer, and the metal layer is formed by the subsequent heat treatment.
  • the stress relaxation layer is composed of three or more layers, for example, the layers can be sequentially formed by repeating the same means as the formation of the alloy layer described above.
  • the composition and thickness of the metal layer can be controlled by the composition and the amount of spraying of the second metal powder, respectively.
  • the composition of the alloy or metal constituting each layer can be changed by adjusting the composition of the metal powder sprayed on the surface of each layer.
  • the content of magnesium in the metal powder may be adjusted to be gradually reduced.
  • the metal powder to be finally sprayed to form a layer to be bonded to the metal circuit layer to be formed later preferably does not contain magnesium, and from the viewpoint of improving stress relaxation performance, for example, it is an aluminum powder. Is preferable.
  • a third metal powder containing copper or the like as a main component is sprayed from the nozzle to the surface of the metal layer together with an inert gas to form a third deposited layer, followed by heat treatment to form a metal circuit. Form a layer.
  • the third metal powder may be heated to, for example, 10 to 650 ° C or 20 to 640 ° C.
  • the heating temperature of the third metal powder By setting the heating temperature of the third metal powder within the above range, the third sedimentary layer can be efficiently formed.
  • the heating temperature of the third metal powder By setting the heating temperature of the third metal powder to 650 ° C. or lower, it is possible to prevent softened metal particles such as copper from adhering to the inner wall of the nozzle and clogging the nozzle, and the metal circuit.
  • the formation of layers can be made easier.
  • the heating temperature of the third metal powder to 10 ° C. or higher, the plastic deformation of the metal particles such as copper can be made easier, and the formation of the third sedimentary layer can be made easier.
  • the gauge pressure of the working gas OG may be, for example, 1.5 to 5.0 MPa or 2.0 to 4.0 MPa at the inlet 10a of the nozzle 10.
  • the gauge pressure of the working gas OG may be, for example, 1.5 to 5.0 MPa or 2.0 to 4.0 MPa at the inlet 10a of the nozzle 10.
  • the gauge pressure of the working gas at the inlet of the nozzle is 5.0 MPa or less, the tertiary metal powder sprayed on the metal layer together with the inert gas is crushed, and the efficiency of forming the third deposited layer is reduced. It can be more suppressed.
  • the conditions for forming the third sedimentary layer by spraying the third metal powder may be adjusted in the same manner as for the formation of the alloy layer and the metal layer described above.
  • a third sedimentary layer having a pattern is formed and heated.
  • a metal circuit layer having a pattern may be formed.
  • the third sedimentary layer is heat-treated in an inert gas atmosphere.
  • the temperature may be, for example, 250 to 350 ° C.
  • strain in the alloy layer and the metal layer due to work hardening can be reduced.
  • the first metal powder, the second metal powder, and / or the third metal powder may each be composed of spherical particles.
  • the first metal powder, the second metal powder, and / or the third metal powder may each have a small variation in particle size.
  • the average particle size of the metal powder may be, for example, 10 to 70 ⁇ m or 20 to 60 ⁇ m. By setting the average particle size of the metal powder to 10 ⁇ m or more, it is possible to further prevent the metal powder from clogging the tapered portion of the nozzle. By setting the average particle size of the metal powder to 70 ⁇ m or less, the speed of the metal powder can be sufficiently increased.
  • the average particle size in the present specification is the particle size (D50) when the integrated value from the small particle size reaches 50% of the total in the volume-based particle size distribution curve measured by the laser diffraction / scattering method.
  • D50 is also called a median diameter and is known as the average particle size of the target particles.
  • the above-mentioned laminated body has excellent durability against heat cycles, it can be suitably used as, for example, a member (for example, a circuit board or the like) constituting a power module or the like.
  • a member for example, a circuit board or the like
  • the power module comprises a circuit board, a semiconductor element electrically connected on one main surface of the circuit board, and a heat dissipation member connected on the other main surface of the circuit board.
  • the circuit board is the above-mentioned laminated body.
  • FIG. 4 is a schematic cross-sectional view showing an example of a power module.
  • the power module 300 includes a base plate 70 and a circuit board 102 that is joined to one surface of the base plate 70 via a solder 32.
  • the metal circuit 2b (alloy layer, metal layer and metal circuit layer) of the circuit board 102 is joined to the solder 32.
  • the circuit board 102 may be the above-mentioned laminates 100, 101, or the like.
  • a semiconductor element 60 is attached to the metal circuit 2a of the circuit board 102 via a solder 31.
  • the semiconductor element 60 is connected to a predetermined position in the metal circuit 2a by a metal wire 34 such as an aluminum wire (aluminum wire).
  • a metal wire 34 such as an aluminum wire (aluminum wire).
  • a predetermined portion of the metal circuit 2a is connected to an electrode 33 provided through the housing 36 via a solder 35.
  • a housing 36 is arranged on one surface of the base plate 70 so as to accommodate the circuit board 102.
  • the accommodation space formed by one surface of the base plate 70 and the housing 36 is filled with a resin 30 such as silicone gel.
  • Cooling fins 72 forming a heat radiating member are joined to the other surface of the base plate 70 via grease 74.
  • a screw 73 for fixing the cooling fin 72 to the base plate 70 is attached to the end of the base plate 70.
  • the base plate 70 and the cooling fins 72 may be made of aluminum.
  • the base plate 70 and the cooling fins 72 have high thermal conductivity and thus function well as heat radiating portions.
  • the power module 300 includes metal circuits 2a and 2b of the circuit board 102 and a semiconductor element 60 that is electrically connected to the metal circuit 2a.
  • the semiconductor element 60 is sealed with the resin 30 together with the circuit board 102.
  • Such a power module 300 can maintain the adhesion between the resin 30 and the ceramic plate 1 even if the semiconductor element 60 generates heat.
  • This raw material powder was uniaxially pressure-molded to prepare a molded product. This molded body was placed in an electric furnace equipped with a carbon heater and fired at 1800 ° C. for 12 hours in an atmosphere of nitrogen gas to obtain a flat plate-shaped silicon nitride plate. The obtained silicon nitride plate was used as a ceramic plate.
  • Example 1 ⁇ Formation of alloy layer (layer made of aluminum-magnesium alloy)> Using an aluminum-magnesium alloy powder (manufactured by High Purity Chemical Laboratory Co., Ltd., gas atomized powder, median diameter: 24 ⁇ m), using a powder spraying device having the same configuration as in FIG. 3, length: 56 mm, width: 46 mm, A deposit layer (first deposit layer) of aluminum-magnesium alloy powder having a thickness of 0.1 mm was formed on each of the front and back surfaces of the aluminum nitride plate within a range of 2 mm inside from the end face of the base material.
  • an aluminum-magnesium alloy powder manufactured by High Purity Chemical Laboratory Co., Ltd., gas atomized powder, median diameter: 24 ⁇ m
  • a deposit layer (first deposit layer) of aluminum-magnesium alloy powder having a thickness of 0.1 mm was formed on each of the front and back surfaces of the aluminum nitride plate within a range of 2 mm inside from the end face of the base material.
  • the formation of the first deposited layer was carried out under the conditions that nitrogen was used as the working gas, the temperature of the aluminum-magnesium alloy powder (gas atomized powder) was 260 ° C., and the pressure of the working gas at the nozzle inlet was 3 MPa.
  • the first sedimentary layer was heat-treated by holding it at a temperature of 550 ° C. for 3 hours in a nitrogen atmosphere to form an aluminum-magnesium alloy layer (alloy layer).
  • ⁇ Formation of metal layer (layer made of aluminum)>
  • a powder spraying device having the same configuration as in FIG.
  • a 0.2 mm aluminum powder deposit layer (second deposit layer) is formed on the surfaces of the two alloy layers formed as described above so that the length is 56 mm and the width is 46 mm, similarly to the alloy layer. did.
  • the formation of the second sedimentary layer was carried out under the conditions that nitrogen was used as the working gas, the temperature of the aluminum powder was 260 ° C., and the pressure of the working gas at the nozzle inlet was 3 MPa.
  • the second sedimentary layer was heat-treated by holding it at a temperature of 550 ° C. for 3 hours in a nitrogen atmosphere to form an aluminum layer (metal layer).
  • ⁇ Formation of metal circuit layer (layer made of copper)> Further, a part of the aluminum layer is masked with an iron masking material, and copper powder (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., water atomized powder, median diameter: 17 ⁇ m) is used, and the powder has the same structure as that of FIG.
  • the copper powder deposit layer (third deposit layer) is placed in the range 50 ⁇ m inside from the end face of the aluminum layer so that the length is 55.9 mm, the width is 45.9 mm, and the thickness is 0.4 mm. Formed.
  • the third sedimentary layer was carried out under the conditions that nitrogen was used as the working gas, the temperature of the copper powder was 640 ° C., and the pressure of the working gas at the nozzle inlet was 3 MPa.
  • the end face of the aluminum layer protruded outward with a width of 50 ⁇ m from the end face of the copper layer.
  • the third sedimentary layer was heat-treated by holding it at a temperature of 300 ° C. for 1 hour in a nitrogen atmosphere to form a copper layer (metal circuit layer).
  • Example 2 Lamination in the same manner as in Example 1 except that the type and thickness of the ceramic plate, the magnesium content in the alloy layer, the thickness of the alloy layer, and the thickness of the metal layer were changed as shown in Table 1.
  • the body was prepared.
  • Example 5 A laminate was prepared in the same manner as in Example 1 except that the type and thickness of the ceramic plate and the thickness of the metal layer were changed as shown in Table 2 without providing the alloy layer.
  • heat cycle test> A heat cycle test was conducted on each of the laminates prepared in Examples 1 to 9 and Comparative Examples 1 to 17, and the durability against the heat cycle was evaluated. Specifically, a heat cycle test was conducted in which the laminate was left in an environment of 180 ° C. for 30 minutes and then left in an environment of ⁇ 55 ° C. for 30 minutes as one cycle, and this was carried out for 3000 cycles. From the cross-sectional observation of the laminated body after the test, it was evaluated according to the following criteria. The results are shown in Tables 1 and 2. A: No abnormalities such as peeling were observed even after 3000 cycles. B: Peeling was observed in more than 1500 cycles and less than 3000 cycles. C: Peeling was observed in more than 1000 cycles and less than 1500 cycles. D: Peeling was observed in 1000 cycles or less.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Laminated Bodies (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

According to one aspect of the present disclosure, there is provided a laminate comprising a ceramic plate, a stress-relieving layer formed on the ceramic plate, and a metal circuit layer formed on the stress-relieving layer, the stress-relieving layer having: an alloy layer in which the magnesium content is 7.5 mass% or less and which has an average thickness of less than 0.2 mm, the alloy layer being in contact with the ceramic plate; and a metal layer in which the magnesium content is lower than that in the alloy layer, the metal layer being in contact with the metal circuit layer.

Description

積層体、及びその製造方法、並びに、パワーモジュールLaminates, their manufacturing methods, and power modules
 本開示は、積層体、及びその製造方法、並びに、パワーモジュールに関する。 This disclosure relates to a laminate, a method for manufacturing the laminate, and a power module.
 自動車、電鉄、産業用機器、及び発電関係等の分野では、大電流を制御するパワーモジュールが用いられている。パワーモジュールに搭載される絶縁基板には、セラミック基板が利用されている。セラミック基板は、セラミック板と、セラミック板上に設けられる金属回路層とを有する。 Power modules that control large currents are used in fields such as automobiles, electric railways, industrial equipment, and power generation. A ceramic substrate is used as the insulating substrate mounted on the power module. The ceramic substrate has a ceramic plate and a metal circuit layer provided on the ceramic plate.
 近年、電流密度を上げるために金属回路層の厚みを増加させる傾向にある。このため、セラミック板と、金属回路層との熱膨張差に起因する熱応力が大きくなっている。そこで、セラミック基板には、ヒートサイクルに対する耐久性のさらなる向上が求められる。セラミック基板のヒートサイクルに対する耐久性を向上させる観点から、セラミック板と、金属回路層との熱膨張差に起因する熱応力を低減する中間層を設けることが有効であるとされている。 In recent years, there has been a tendency to increase the thickness of the metal circuit layer in order to increase the current density. Therefore, the thermal stress caused by the difference in thermal expansion between the ceramic plate and the metal circuit layer is large. Therefore, the ceramic substrate is required to have further improved durability against heat cycles. From the viewpoint of improving the durability of the ceramic substrate against the heat cycle, it is said that it is effective to provide an intermediate layer for reducing the thermal stress caused by the difference in thermal expansion between the ceramic plate and the metal circuit layer.
 またセラミック基板の生産性及び信頼性を向上させる観点から、エッチング工程等を必須とせずに回路形成が可能であり、加熱に伴う材料の酸化を抑制してセラミック基板を製造する方法が検討されている。その一例として、コールドスプレー法によって金属回路層を形成する方法が検討されている(例えば、特許文献1、2等)。 Further, from the viewpoint of improving the productivity and reliability of the ceramic substrate, it is possible to form a circuit without requiring an etching process or the like, and a method of manufacturing a ceramic substrate by suppressing oxidation of the material due to heating has been studied. There is. As an example, a method of forming a metal circuit layer by a cold spray method has been studied (for example, Patent Documents 1, 2, etc.).
特開2013-018190号公報Japanese Unexamined Patent Publication No. 2013-018190 国際公開第2018/135490号International Publication No. 2018/135490
 コールドスプレー法によるセラミック基板の製造方法の利点として、セラミック板上にろう材を使用せずに、金属回路を形成できることが挙げられる。しかし、一方で、ろう材を使用せずに金属回路層を形成することで、従前の製造方法で得られるセラミック基板と比較すると、セラミック板と金属回路層との接合が弱くなる場合が生じ得る。コールドスプレー法によるセラミック基板の製造方法によって、セラミック板と金属回路層との接合性の低下を抑制し、ヒートサイクルに対する耐久性に優れるセラミック基板の製造ができれば有用である。 The advantage of the method for manufacturing a ceramic substrate by the cold spray method is that a metal circuit can be formed on the ceramic plate without using a brazing material. However, on the other hand, by forming the metal circuit layer without using a brazing material, the bonding between the ceramic plate and the metal circuit layer may be weaker than that of the ceramic substrate obtained by the conventional manufacturing method. .. It would be useful if a ceramic substrate could be manufactured by the cold spray method, which suppresses a decrease in bondability between the ceramic plate and the metal circuit layer and has excellent durability against heat cycles.
 本開示は、ヒートサイクルに対する耐久性に優れる積層体及びその製造方法を提供することを目的とする。本開示はまた、信頼性に優れるパワーモジュールを提供することを目的とする。 An object of the present disclosure is to provide a laminate having excellent durability against a heat cycle and a method for producing the same. The present disclosure is also intended to provide a reliable power module.
 本開示の一側面は、セラミック板と、上記セラミック板上に形成された応力緩和層と、上記応力緩和層上に形成された金属回路層と、を備え、上記応力緩和層は、マグネシウムの含有量が7.5質量%以下であり、平均厚さが0.2mm未満である、上記セラミック板に接触する合金層と、上記合金層よりもマグネシウムの含有量が少なく、上記金属回路層に接触する金属層と、を有する、積層体を提供する。 One aspect of the present disclosure includes a ceramic plate, a stress relaxation layer formed on the ceramic plate, and a metal circuit layer formed on the stress relaxation layer, and the stress relaxation layer contains magnesium. The alloy layer in contact with the ceramic plate having an amount of 7.5% by mass or less and an average thickness of less than 0.2 mm has a lower magnesium content than the alloy layer and contacts the metal circuit layer. Provided is a laminate having a metal layer and a metal layer.
 上記積層体は、応力緩和層が合金層と金属層とを有し、セラミック板と接触する合金層がマグネシウムを含むことによって、セラミック板と金属回路との接着が強固なものとなっている。上記積層体はまた、金属回路層と接触する金属層におけるマグネシウムの含有量が少なく、また合金層が所定の厚み未満となるように設けられていることによって、応力緩和層が硬くなりすぎることを抑制し、応力緩和層の金属層側が適度に熱膨張することが可能となることから、全体として、ヒートサイクルに対する耐久性に優れる。 In the above laminated body, the stress relaxation layer has an alloy layer and a metal layer, and the alloy layer in contact with the ceramic plate contains magnesium, so that the adhesion between the ceramic plate and the metal circuit is strong. The laminate also has a low magnesium content in the metal layer in contact with the metal circuit layer, and the alloy layer is provided so as to have a thickness less than a predetermined thickness, so that the stress relaxation layer becomes too hard. Since it can be suppressed and the metal layer side of the stress relaxation layer can be appropriately thermally expanded, the durability against the heat cycle is excellent as a whole.
 上記合金層の平均厚さが0.02mm以上0.2mm未満であってよい。 The average thickness of the alloy layer may be 0.02 mm or more and less than 0.2 mm.
 上記応力緩和層の熱膨張率が、上記セラミック板の熱膨張率よりも大きく、上記金属回路層の熱膨張率よりも大きくてよい。応力緩和層の熱膨張率が上述の条件を充足する場合、セラミック板よりも熱膨張率が大きな金属回路層からの熱応力を、より十分に緩和することができ、ヒートサイクルに対する耐久性をより一層向上させることができる。 The coefficient of thermal expansion of the stress relaxation layer may be larger than the coefficient of thermal expansion of the ceramic plate and may be larger than the coefficient of thermal expansion of the metal circuit layer. When the coefficient of thermal expansion of the stress relaxation layer satisfies the above conditions, the thermal stress from the metal circuit layer having a larger coefficient of thermal expansion than the ceramic plate can be more sufficiently relaxed, and the durability against the heat cycle is further improved. It can be further improved.
 上記金属層はアルミニウムを含有してよい。 The metal layer may contain aluminum.
 上記金属層の平均厚さが0.1mm超であってよい。 The average thickness of the metal layer may be more than 0.1 mm.
 上記セラミック板は、窒化ケイ素板、窒化アルミニウム板、又は酸化アルミニウム板材であってよい。 The ceramic plate may be a silicon nitride plate, an aluminum nitride plate, or an aluminum oxide plate material.
 本開示の一側面は、回路基板と、上記回路基板の一方の主面上に電気的に接続された半導体素子と、上記回路基板のもう一方の主面上に接続された放熱部材と、を備え、上記回路基板が上述の積層体である、パワーモジュールを提供する。 One aspect of the present disclosure is a circuit board, a semiconductor element electrically connected on one main surface of the circuit board, and a heat radiating member connected on the other main surface of the circuit board. Provided is a power module in which the circuit board is the above-mentioned laminate.
 上記パワーモジュールは、回路基板が上述の積層体であることによって、信頼性に優れる。 The power module is excellent in reliability because the circuit board is the above-mentioned laminated body.
 本開示の一側面は、マグネシウムを含む第一金属粉体を不活性ガスと共にノズルからセラミック板の表面に対して吹き付けることによって、セラミック板に接触する第一の堆積層を形成する工程と、上記第一の堆積層を不活性ガス雰囲気下で加熱処理して合金層を形成する工程と、上記第一金属粉体よりもマグネシウムの含有量が小さい第二金属粉体を不活性ガスと共に上記合金層の表面に対して吹き付けることによって、上記合金層に接触する第二の堆積層を形成する工程と、上記第二の堆積層を不活性ガス雰囲気下で加熱処理して金属層を形成する工程と、金属粒子を含む第三金属粉体を不活性ガスと共にノズルから上記金属層の表面に対して吹き付けることによって、上記金属層に接触する第三の堆積層を形成する工程と、上記第三の堆積層を不活性ガス雰囲気下で加熱処理して金属回路層を形成する工程と、を有する、積層体の製造方法を提供する。 One aspect of the present disclosure is a step of forming a first deposited layer in contact with a ceramic plate by spraying a first metal powder containing magnesium together with an inert gas from a nozzle onto the surface of the ceramic plate, and the above. A step of heat-treating the first deposited layer in an inert gas atmosphere to form an alloy layer, and a second metal powder having a magnesium content smaller than that of the first metal powder are combined with the inert gas to form the alloy. A step of forming a second deposited layer in contact with the alloy layer by spraying on the surface of the layer, and a step of heat-treating the second deposited layer in an inert gas atmosphere to form a metal layer. A step of forming a third deposited layer in contact with the metal layer by spraying a third metal powder containing metal particles from a nozzle together with an inert gas onto the surface of the metal layer, and the third Provided is a method for producing a laminated body, comprising a step of heat-treating the deposited layer of the above in an inert gas atmosphere to form a metal circuit layer.
 上記積層体の製造方法は、金属粉体の吹き付けによって、セラミック板上にセラミック板側から合金層、金属層及び金属回路層を備える積層体を製造することができる。そして、当該製造方法によれば、マグネシウムの含有量がセラミック板側から徐々に少なくなるように合金層及び金属層を形成することが可能であり、ヒートサイクルに対する耐久性に優れる積層体を製造することができる。 The above-mentioned method for producing a laminate can produce a laminate having an alloy layer, a metal layer, and a metal circuit layer on a ceramic plate from the ceramic plate side by spraying metal powder. Then, according to the manufacturing method, it is possible to form an alloy layer and a metal layer so that the magnesium content gradually decreases from the ceramic plate side, and a laminate having excellent durability against a heat cycle is manufactured. be able to.
 上記第一金属粉体が、アルミニウム-マグネシウム合金粒子を含むガスアトマイズ粉であってよい。 The first metal powder may be a gas atomizing powder containing aluminum-magnesium alloy particles.
 本開示によれば、ヒートサイクルに対する耐久性に優れる積層体及びその製造方法を提供できる。本開示によればまた、信頼性に優れるパワーモジュールを提供できる。 According to the present disclosure, it is possible to provide a laminate having excellent durability against heat cycles and a method for producing the same. According to the present disclosure, it is also possible to provide a power module having excellent reliability.
図1は、積層体の一例を示す模式断面図である。FIG. 1 is a schematic cross-sectional view showing an example of a laminated body. 図2は、積層体の一例を示す模式断面図である。FIG. 2 is a schematic cross-sectional view showing an example of the laminated body. 図3は、セラミクス板上に合金層を形成する工程の一例を示す模式図である。FIG. 3 is a schematic view showing an example of a process of forming an alloy layer on a ceramic plate. 図4は、パワーモジュールの一例を示す模式断面図である。FIG. 4 is a schematic cross-sectional view showing an example of the power module.
 以下、場合によって図面を参照して、本開示の一実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。 Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings in some cases. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents. In the description, the same reference numerals are used for the same elements or elements having the same function, and duplicate description may be omitted in some cases. In addition, the positional relationship such as up, down, left, and right shall be based on the positional relationship shown in the drawings unless otherwise specified. Further, the dimensional ratio of each element is not limited to the ratio shown in the figure.
 積層体の一実施形態は、セラミック板と、上記セラミック板上に形成された応力緩和層と、上記応力緩和層上に形成された金属回路層と、を備える。ここで、上記応力緩和層は、マグネシウムの含有量が7.5質量%以下であり、平均厚さが0.2mm未満である、上記セラミック板に接触する合金層と、上記合金層よりもマグネシウムの含有量が少なく、上記金属回路層に接触する金属層と、を有する。 One embodiment of the laminate includes a ceramic plate, a stress relaxation layer formed on the ceramic plate, and a metal circuit layer formed on the stress relaxation layer. Here, the stress relaxation layer has an alloy layer in contact with the ceramic plate having a magnesium content of 7.5% by mass or less and an average thickness of less than 0.2 mm, and magnesium more than the alloy layer. It has a metal layer having a small content of and in contact with the metal circuit layer.
 図1は、積層体の一例を示す模式断面図である。図1に示す積層体100は、セラミック板1と、その両面に設けられた金属回路2a及び2bとを有する。金属回路2aは、応力緩和層20aと、金属回路層23aとからなる。金属回路層23aは、セラミック板1と、応力緩和層20aを介して接合している。応力緩和層20aは、セラミック板1に接触する合金層21aと、合金層21a上に設けられ、金属回路層23aと接触する金属層22aとからなる。金属回路2bは、応力緩和層20bと、金属回路層23bとからなる。金属回路層23bは、セラミック板1と、応力緩和層20bを介して接合している。応力緩和層20bは、セラミック板1に接触する合金層21bと、合金層21b上に設けられ、金属回路層23bと接触する金属層22bとからなる。図1に示す金属回路層23a及び23bはいずれも一様な層の例で記載したが、配線等のパターンを有してもよい。セラミック板1によって、金属回路2aと金属回路2bとは電気的に絶縁されている。上述のとおり、金属回路層と応力緩和層又は金属回路層とが直接接触しており、積層体100は、ろう材層を有しない。 FIG. 1 is a schematic cross-sectional view showing an example of the laminated body. The laminate 100 shown in FIG. 1 has a ceramic plate 1 and metal circuits 2a and 2b provided on both sides thereof. The metal circuit 2a includes a stress relaxation layer 20a and a metal circuit layer 23a. The metal circuit layer 23a is joined to the ceramic plate 1 via a stress relaxation layer 20a. The stress relaxation layer 20a is composed of an alloy layer 21a in contact with the ceramic plate 1 and a metal layer 22a provided on the alloy layer 21a and in contact with the metal circuit layer 23a. The metal circuit 2b includes a stress relaxation layer 20b and a metal circuit layer 23b. The metal circuit layer 23b is joined to the ceramic plate 1 via a stress relaxation layer 20b. The stress relaxation layer 20b is composed of an alloy layer 21b in contact with the ceramic plate 1 and a metal layer 22b provided on the alloy layer 21b and in contact with the metal circuit layer 23b. Although the metal circuit layers 23a and 23b shown in FIG. 1 are described as examples of uniform layers, they may have a pattern such as wiring. The metal circuit 2a and the metal circuit 2b are electrically insulated by the ceramic plate 1. As described above, the metal circuit layer and the stress relaxation layer or the metal circuit layer are in direct contact with each other, and the laminate 100 does not have a brazing material layer.
 セラミック板1を構成するセラミックス成分の種類は、例えば、炭化物、酸化物及び窒化物等であってよい。セラミックス成分の種類は、具体的には、炭化ケイ素(SiC)、酸化アルミニウム(Al)、窒化ケイ素(Si)、及び窒化アルミニウム(AlN)等であってよい。セラミック板1は、例えば、酸化アルミニウム板、窒化ケイ素板、及び窒化アルミニウム板であってよい。窒化ケイ素板は表面の酸化物層が少ないことから、セラミック板1が窒化ケイ素板である場合、本開示の効果が一層顕著である。酸化物層は他層との接着力を向上させる。本開示に係る積層体は、合金層がマグネシウムを所定量含むことで、接着力を向上させている。これによって、酸化物層が少ないセラミックス板を用いた場合にも十分な接着力を発揮し得る。 The types of ceramic components constituting the ceramic plate 1 may be, for example, carbides, oxides, nitrides, and the like. Specifically, the type of ceramic component may be silicon carbide (SiC), aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), aluminum nitride (Al N 3 ), or the like. The ceramic plate 1 may be, for example, an aluminum oxide plate, a silicon nitride plate, and an aluminum nitride plate. Since the silicon nitride plate has few oxide layers on the surface, the effect of the present disclosure is more remarkable when the ceramic plate 1 is a silicon nitride plate. The oxide layer improves the adhesive force with other layers. In the laminate according to the present disclosure, the adhesive strength is improved by containing a predetermined amount of magnesium in the alloy layer. As a result, sufficient adhesive strength can be exhibited even when a ceramic plate having a small oxide layer is used.
 セラミック板1の平均厚さは、例えば、0.2~1.5mm、又は0.25~1.0mmであってよい。 The average thickness of the ceramic plate 1 may be, for example, 0.2 to 1.5 mm or 0.25 to 1.0 mm.
 本明細書における板及び層の平均厚さは、マイクロメーターによって測定される厚さの平均値を意味する。なお、上記平均値は、10箇所の測定行い、得られた値の算術平均値とする。 The average thickness of the plates and layers in the present specification means the average value of the thickness measured by a micrometer. The average value is the arithmetic mean value obtained by measuring at 10 points.
 応力緩和層20a及び20bは、それぞれ、セラミック板1と、金属回路層23a及び23bとの間で、ヒートサイクル時の熱膨張の差に伴って生じる応力を緩和する層である。応力緩和層20a及び20bの熱膨張率は、セラミック板1の熱膨張率よりも大きく、金属回路層23a、23bの熱膨張率よりも大きくてよい。 The stress relaxation layers 20a and 20b are layers for relaxing the stress generated due to the difference in thermal expansion during the heat cycle between the ceramic plate 1 and the metal circuit layers 23a and 23b, respectively. The coefficient of thermal expansion of the stress relaxation layers 20a and 20b may be larger than the coefficient of thermal expansion of the ceramic plate 1 and may be larger than the coefficient of thermal expansion of the metal circuit layers 23a and 23b.
 応力緩和層20a及び20bは、それぞれ、合金層21a及び21b、並びに金属層22a及び22bの2層で構成される例で示したが、例えば、3層以上で構成されてもよい。応力緩和層20a及び20bにおけるマグネシウムの含有量は、セラミック板1側が大きく、金属回路層23a及び23b側で小さくなるように設定される。金属回路層23a及び23bと接触する金属層22a及び22bは、マグネシウムを含まなくてよい。金属層22a及び22bがマグネシウムを含まないことによって、合金層21a及び21bと比較して柔らかく、応力緩和の性能をより向上させることができる。 The stress relaxation layers 20a and 20b are shown in the example of being composed of two layers of alloy layers 21a and 21b and metal layers 22a and 22b, respectively, but may be composed of, for example, three or more layers. The magnesium content in the stress relaxation layers 20a and 20b is set so as to be large on the ceramic plate 1 side and small on the metal circuit layers 23a and 23b. The metal layers 22a and 22b in contact with the metal circuit layers 23a and 23b do not have to contain magnesium. Since the metal layers 22a and 22b do not contain magnesium, they are softer than the alloy layers 21a and 21b, and the stress relaxation performance can be further improved.
 合金層21a及び21bは、マグネシウムを含む。酸素親和性に優れるマグネシウムを含有することによって、合金層21a及び21bとセラミック板1との接合がより強固なものとなっている。当該効果はセラミック板の表面における酸化物層が少ない場合により顕著である。ここで、合金層21a及び21bは、マグネシウムとアルミニウムを含む合金であってよい。合金層21a及び21bの組成は、金属層22a及び22bの金属組成に合わせて選択することができる。合金層21a及び21bは、アルミニウム-マグネシウム系合金であってよく、アルミニウム-マグネシウム合金であってよい。 The alloy layers 21a and 21b contain magnesium. By containing magnesium having an excellent oxygen affinity, the bonding between the alloy layers 21a and 21b and the ceramic plate 1 becomes stronger. This effect is more remarkable when the oxide layer on the surface of the ceramic plate is small. Here, the alloy layers 21a and 21b may be alloys containing magnesium and aluminum. The composition of the alloy layers 21a and 21b can be selected according to the metal composition of the metal layers 22a and 22b. The alloy layers 21a and 21b may be an aluminum-magnesium-based alloy or may be an aluminum-magnesium alloy.
 なお、合金層21a及び21bは、本発明の効果を損なわない範囲で、アルミニウム及びマグネシウム以外の他の成分を含有してよい。他の成分の合計の含有量は、例えば、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、0.1質量%以下、0.05質量%以下、又は0.01質量%以下であってよい。ここで、「他の成分」の用語には、任意添加する成分以外に意図せず含有する不純物も含まれる。他の成分としては、例えば、O、C、Si、Mn、P、S、N、Ca、Cr、Ti、Nb、V、B、Mo、Cu、Ni、Sb、Sn、Ta、Mg、Zn、Co、Zr、REM(Rare-earth element)、及びこれらの化合物(例えば、酸化物、窒化物、及び硫化物等)等が挙げられる。 The alloy layers 21a and 21b may contain components other than aluminum and magnesium as long as the effects of the present invention are not impaired. The total content of other components is, for example, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.1% by mass or less. , 0.05% by mass or less, or 0.01% by mass or less. Here, the term "other components" includes impurities unintentionally contained in addition to the components to be arbitrarily added. Other components include, for example, O, C, Si, Mn, P, S, N, Ca, Cr, Ti, Nb, V, B, Mo, Cu, Ni, Sb, Sn, Ta, Mg, Zn, Examples thereof include Co, Zr, REM (Rare-earth element), and compounds thereof (for example, oxides, nitrides, sulfides, etc.).
 合金層21aにおけるマグネシウムの含有量の上限値は、合金層21aの全量を基準として、7.5質量%以下であるが、例えば、7.0質量%以下、6.5質量%以下、又は6.0質量%以下であってよい。マグネシウムの含有量の上限値が上記範囲内であることで、応力緩和層20aが硬くなりすぎることをより十分に抑制し、全体としてヒートサイクルに対する耐久性により優れる。合金層21aにおけるマグネシウムの含有量の下限値は、合金層21aの全量を基準として、例えば、0質量%超であればよく、例えば、0.001質量%以上、0.01質量%以上、0.05質量%以上、0.1質量%以上、又は0.3質量%以上であってよい。マグネシウムの含有量の下限値が上記範囲内であることで、酸素原子を介した化学結合を生じせしめ、応力緩和層20aとセラミック板1との接合をより強固なものにできる。合金層21aにおけるマグネシウムの含有量は上述の範囲内で調整してよく、合金層21aの全量を基準として、例えば、0.001~7.5質量%であってよい。 The upper limit of the magnesium content in the alloy layer 21a is 7.5% by mass or less based on the total amount of the alloy layer 21a, but for example, 7.0% by mass or less, 6.5% by mass or less, or 6 It may be 0.0% by mass or less. When the upper limit of the magnesium content is within the above range, the stress relaxation layer 20a is more sufficiently suppressed from becoming too hard, and the durability against the heat cycle is more excellent as a whole. The lower limit of the magnesium content in the alloy layer 21a may be, for example, more than 0% by mass, based on the total amount of the alloy layer 21a, for example, 0.001% by mass or more, 0.01% by mass or more, 0. It may be 0.05% by mass or more, 0.1% by mass or more, or 0.3% by mass or more. When the lower limit of the magnesium content is within the above range, a chemical bond is generated via an oxygen atom, and the bond between the stress relaxation layer 20a and the ceramic plate 1 can be further strengthened. The magnesium content in the alloy layer 21a may be adjusted within the above range, and may be, for example, 0.001 to 7.5% by mass based on the total amount of the alloy layer 21a.
 本明細書におけるマグネシウムの含有量は、誘導結合プラズマ(ICP)発光分析法によって測定される値を意味する。 The magnesium content in the present specification means a value measured by inductively coupled plasma (ICP) emission spectrometry.
 合金層21aの平均厚さの上限値は、0.2mm未満であるが、例えば、0.1mm以下であってよい。合金層21aはマグネシウムを含むことから比較的硬い層となっているため、合金層21aの平均厚さの上限値が上記範囲内であると、応力緩和層20aが硬くなりすぎることをより十分に抑制し、ヒートサイクルに対する耐久性により優れる。合金層21aの平均厚さの下限値は、例えば、0.02mm以上、0.03mm以上、0.04mm以上、又は0.05mm以上であってよい。合金層21aの平均厚さの下限値が上記範囲内であると、応力緩和層20aとセラミック板1との接合をより強固なものにできる。合金層21aの平均厚さは上述の範囲内で調整してよく、例えば、0.02mm以上0.2mm未満、0.02mm~0.1mm、又は0.03~0.1mmであってよい。 The upper limit of the average thickness of the alloy layer 21a is less than 0.2 mm, but may be, for example, 0.1 mm or less. Since the alloy layer 21a contains magnesium, it is a relatively hard layer. Therefore, if the upper limit of the average thickness of the alloy layer 21a is within the above range, the stress relaxation layer 20a is more sufficiently hardened. Suppresses and is more durable against heat cycles. The lower limit of the average thickness of the alloy layer 21a may be, for example, 0.02 mm or more, 0.03 mm or more, 0.04 mm or more, or 0.05 mm or more. When the lower limit of the average thickness of the alloy layer 21a is within the above range, the bond between the stress relaxation layer 20a and the ceramic plate 1 can be made stronger. The average thickness of the alloy layer 21a may be adjusted within the above range, and may be, for example, 0.02 mm or more and less than 0.2 mm, 0.02 mm to 0.1 mm, or 0.03 to 0.1 mm.
 合金層21bにおけるマグネシウムの含有量は、合金層21aについて上述したものと同様であってよい。合金層21bにおけるマグネシウムの含有量と、合金層21aにおけるマグネシウムの含有量とは、同一であっても異なってもよい。金属回路層23a及び23bの金属の種類、及び厚さ等に応じて調整してよい。 The magnesium content in the alloy layer 21b may be the same as that described above for the alloy layer 21a. The magnesium content in the alloy layer 21b and the magnesium content in the alloy layer 21a may be the same or different. It may be adjusted according to the type and thickness of the metal of the metal circuit layers 23a and 23b.
 合金層21bの平均厚さは、合金層21aについて上述したものと同様であってよい。合金層21bの平均厚さと、合金層21aの平均厚さとは同一であっても異なってもよい。合金層21a及び21bの平均厚さは、合金層の組成、及びセラミック板1と金属回路層23a、23bとの熱膨張率等の違い等に応じて調整することができる。 The average thickness of the alloy layer 21b may be the same as that described above for the alloy layer 21a. The average thickness of the alloy layer 21b and the average thickness of the alloy layer 21a may be the same or different. The average thickness of the alloy layers 21a and 21b can be adjusted according to the composition of the alloy layer, the difference in the coefficient of thermal expansion between the ceramic plate 1 and the metal circuit layers 23a and 23b, and the like.
 金属層22a及び22bは、合金層21a及び21bよりもマグネシウムの含有量が少ない層であり、マグネシウムを含まないものであってよい。金属層22a及び22bは、例えば、アルミニウム及びアルミニウム合金からなる群より選択される少なくとも一種を含んでよく、アルミニウム又はアルミニウム合金から構成されてもよく、アルミニウムから構成されていてもよい。金属層22a及び22bは、好ましくは、マグネシウムを含まず、より好ましくはアルミニウム及び金属回路層23a及び23bを構成する金属のみからなる。金属層22a及び22bが金属回路層23a及び23bを構成する金属を含む場合、当該金属はアルミニウムと合金を形成していてよく、この場合、当該合金は金属層22a及び22bの金属回路層23a及び23b側の面上に点在してよい。 The metal layers 22a and 22b are layers having a lower magnesium content than the alloy layers 21a and 21b, and may not contain magnesium. The metal layers 22a and 22b may include, for example, at least one selected from the group consisting of aluminum and aluminum alloys, may be composed of aluminum or an aluminum alloy, or may be composed of aluminum. The metal layers 22a and 22b preferably do not contain magnesium and are more preferably composed only of aluminum and the metals constituting the metal circuit layers 23a and 23b. When the metal layers 22a and 22b contain a metal constituting the metal circuit layers 23a and 23b, the metal may form an alloy with aluminum, and in this case, the alloy may form the metal circuit layers 23a and the metal circuit layers 23a and 22b of the metal layers 22a and 22b. It may be scattered on the surface on the 23b side.
 なお、金属層22a及び22bは、本発明の効果を損なわない範囲で、アルミニウム及びマグネシウム以外の他の成分を含有してよい。他の成分の合計の含有量は、例えば、5質量%以下、4質量%以下、3質量%以下、2質量%以下、1質量%以下、0.5質量%以下、0.1質量%以下、0.05質量%以下、又は0.01質量%以下であってよい。ここで、「他の成分」の用語には、任意添加する成分以外に意図せず含有する不純物も含まれる。他の成分としては、例えば、O、C、Si、Mn、P、S、N、Ca、Cr、Ti、Nb、V、B、Mo、Cu、Ni、Sb、Sn、Ta、Mg、Zn、Co、Zr、REM、及びこれらの化合物(例えば、酸化物、窒化物、及び硫化物等)等が挙げられる。 The metal layers 22a and 22b may contain components other than aluminum and magnesium as long as the effects of the present invention are not impaired. The total content of other components is, for example, 5% by mass or less, 4% by mass or less, 3% by mass or less, 2% by mass or less, 1% by mass or less, 0.5% by mass or less, 0.1% by mass or less. , 0.05% by mass or less, or 0.01% by mass or less. Here, the term "other components" includes impurities unintentionally contained in addition to the components to be arbitrarily added. Other components include, for example, O, C, Si, Mn, P, S, N, Ca, Cr, Ti, Nb, V, B, Mo, Cu, Ni, Sb, Sn, Ta, Mg, Zn, Examples thereof include Co, Zr, REM, and compounds thereof (for example, oxides, nitrides, sulfides, etc.).
 金属層22aの平均厚さは、合金層21aの平均厚さよりも大きく、合金層21aの平均厚さを基準として、例えば、1.0倍以上、1.5倍以上、又は2倍以上であってよい。金属層22aの平均厚さと合金層21aの平均厚さが上記関係にあることで、応力緩和層20aの硬くなりすぎることをより十分に抑制し、ヒートサイクルに対する耐久性により優れる。金属層22aの平均厚さは、合金層21aの平均厚さを基準として、例えば、20倍以下、17倍以下、又は15倍以下であってよい。金属層22aの平均厚さと合金層21aの平均厚さが上記関係にあることで、セラミック基板の熱抵抗を下げることができる。金属層22aの平均厚さは上述の範囲内で調整してよく、合金層21aの平均厚さを基準として、例えば、1.0~20倍であってよい。 The average thickness of the metal layer 22a is larger than the average thickness of the alloy layer 21a, and is, for example, 1.0 times or more, 1.5 times or more, or 2 times or more based on the average thickness of the alloy layer 21a. You can do it. Since the average thickness of the metal layer 22a and the average thickness of the alloy layer 21a have the above relationship, the stress relaxation layer 20a is more sufficiently suppressed from becoming too hard, and the durability against the heat cycle is more excellent. The average thickness of the metal layer 22a may be, for example, 20 times or less, 17 times or less, or 15 times or less based on the average thickness of the alloy layer 21a. When the average thickness of the metal layer 22a and the average thickness of the alloy layer 21a have the above relationship, the thermal resistance of the ceramic substrate can be reduced. The average thickness of the metal layer 22a may be adjusted within the above range, and may be, for example, 1.0 to 20 times based on the average thickness of the alloy layer 21a.
 金属層22aの平均厚さの下限値は、例えば、0.1mm超、0.15mm以上、又は0.2mm以上であってよい。金属層22aの平均厚さの下限値が上記範囲内であると、ヒートサイクルに対する耐久性により優れる。金属層22aの平均厚さの上限値は、例えば、0.4mm以下、0.35mm以下、又は0.3mm以下であってよい。金属層22aの平均厚さの上限値が上記範囲内であると、セラミック基板の熱抵抗を下げることができる。 The lower limit of the average thickness of the metal layer 22a may be, for example, more than 0.1 mm, 0.15 mm or more, or 0.2 mm or more. When the lower limit of the average thickness of the metal layer 22a is within the above range, the durability against the heat cycle is more excellent. The upper limit of the average thickness of the metal layer 22a may be, for example, 0.4 mm or less, 0.35 mm or less, or 0.3 mm or less. When the upper limit of the average thickness of the metal layer 22a is within the above range, the thermal resistance of the ceramic substrate can be reduced.
 金属層22bの平均厚さは、金属層22aについて上述したものと同様であってよい。金属層22bの平均厚さと、金属層22aの平均厚さとは同一であっても異なってもよい。金属層22a及び22bの平均厚さは、セラミック板1と金属回路層23a、23bとの熱膨張率等の違い等に応じて調整することができる。 The average thickness of the metal layer 22b may be the same as that described above for the metal layer 22a. The average thickness of the metal layer 22b and the average thickness of the metal layer 22a may be the same or different. The average thickness of the metal layers 22a and 22b can be adjusted according to the difference in the coefficient of thermal expansion between the ceramic plate 1 and the metal circuit layers 23a and 23b.
 金属回路層23a及び23bは、例えば、金、白金、銀、銅、ニッケル、及びクロム等の金属を含んでよく、金、銀、及び銅等を含んでよく、銅からなってもよい。金属回路層23a及び23bは、例えば、銅からなる配線パターン、及び銅合金からなる配線パターン等であってよい。 The metal circuit layers 23a and 23b may contain metals such as gold, platinum, silver, copper, nickel, and chromium, may contain gold, silver, copper, and the like, and may be made of copper. The metal circuit layers 23a and 23b may be, for example, a wiring pattern made of copper, a wiring pattern made of a copper alloy, or the like.
 金属回路層23a及び23bの平均厚さの下限値は、例えば、0.3mm以上、0.35mm以上、又は0.4mm以上であってよい。金属回路層23a及び23bの平均厚さの上限値は、例えば、4mm以下、3mm以下、又は2mm以下であってよい。 The lower limit of the average thickness of the metal circuit layers 23a and 23b may be, for example, 0.3 mm or more, 0.35 mm or more, or 0.4 mm or more. The upper limit of the average thickness of the metal circuit layers 23a and 23b may be, for example, 4 mm or less, 3 mm or less, or 2 mm or less.
 図1の積層体100は、合金層21aの端面21E、金属層22aの端面22E、及び金属回路層23aの端面23Eが同一面となる例で示したが、合金層21aの端面21E、及び金属層22aの端面22Eで構成される面と、金属回路層23aの端面23Eで構成される面とは、必ずしも同一面である必要はない。図2に示す積層体101は、合金層21aの端面21E、及び金属層22aの端面22Eで構成される面と、金属回路層23aの端面23Eで構成される面とが異なる面である例を示した。積層体101のように、金属回路層23a、23bの幅よりも、応力緩和層20a、20bの幅の方が大きくなるように設定されることで、積層体はヒートサイクルに対する耐久性により優れたものとなり得る。金属回路層23a、23bの幅と、応力緩和層20a、20bの幅との差は、例えば、1~1000μm、又は10~100μmであってよい。 The laminate 100 of FIG. 1 shows an example in which the end face 21E of the alloy layer 21a, the end face 22E of the metal layer 22a, and the end face 23E of the metal circuit layer 23a are the same surface, but the end face 21E of the alloy layer 21a and the metal The surface composed of the end surface 22E of the layer 22a and the surface composed of the end surface 23E of the metal circuit layer 23a do not necessarily have to be the same surface. The laminate 101 shown in FIG. 2 is an example in which the surface composed of the end surface 21E of the alloy layer 21a and the end surface 22E of the metal layer 22a and the surface composed of the end surface 23E of the metal circuit layer 23a are different surfaces. Indicated. By setting the widths of the stress relaxation layers 20a and 20b to be larger than the widths of the metal circuit layers 23a and 23b as in the laminated body 101, the laminated body is more excellent in durability against heat cycle. It can be a thing. The difference between the widths of the metal circuit layers 23a and 23b and the widths of the stress relaxation layers 20a and 20b may be, for example, 1 to 1000 μm or 10 to 100 μm.
 上述の積層体100,101は、いわゆるコールドスプレー法を用いて、セラミック板上に、合金層、金属層を含む応力緩和層、金属回路層を順次形成する方法によって製造することができる。セラミック板上に、合金層及び金属層を有する応力緩和層、並びに金属回路層を、コールドスプレー及び溶射等の吹き付け操作によって形成する場合、各層の界面には吹き付け操作に由来する凹凸が形成され得る。したがって、上述の積層体100、101は、予め層状に形成された金属薄膜等を順次ラミネートして製造されたものと異なる特徴を有する。 The above-mentioned laminates 100 and 101 can be manufactured by a method of sequentially forming an alloy layer, a stress relaxation layer including a metal layer, and a metal circuit layer on a ceramic plate by using a so-called cold spray method. When a stress relaxation layer having an alloy layer and a metal layer and a metal circuit layer are formed on a ceramic plate by a spraying operation such as cold spraying or thermal spraying, irregularities derived from the spraying operation may be formed at the interface of each layer. .. Therefore, the above-mentioned laminated bodies 100 and 101 have characteristics different from those manufactured by sequentially laminating metal thin films and the like formed in layers in advance.
 積層体の製造方法の一実施形態は、マグネシウムを含む第一金属粉体を不活性ガスと共にノズルからセラミック板の表面に対して吹き付けることによって、セラミック板に接触する第一の堆積層を形成する工程と、上記第一の堆積層を不活性ガス雰囲気下で加熱処理して合金層を形成する工程と、上記第一金属粉体よりもマグネシウムの含有量が小さい第二金属粉体を不活性ガスと共に上記合金層の表面に対して吹き付けることによって、上記合金層に接触する第二の堆積層を形成する工程と、上記第二の堆積層を不活性ガス雰囲気下で加熱処理して金属層を形成する工程と、金属粒子を含む第三金属粉体を不活性ガスと共にノズルから上記金属層の表面に対して吹き付けることによって、上記金属層に接触する第三の堆積層を形成する工程と、上記第三の堆積層を不活性ガス雰囲気下で加熱処理して金属回路層を形成する工程と、を有する。 In one embodiment of the method for producing a laminate, a first metal powder containing magnesium is sprayed together with an inert gas from a nozzle onto the surface of the ceramic plate to form a first deposited layer in contact with the ceramic plate. The step, the step of heat-treating the first deposited layer in an inert gas atmosphere to form an alloy layer, and the step of inactivating the second metal powder having a magnesium content smaller than that of the first metal powder. A step of forming a second deposited layer in contact with the alloy layer by spraying the gas together with the surface of the alloy layer, and a metal layer by heat-treating the second deposited layer in an inert gas atmosphere. And a step of forming a third deposited layer in contact with the metal layer by spraying a third metal powder containing metal particles together with an inert gas from a nozzle onto the surface of the metal layer. The third layer is heat-treated in an inert gas atmosphere to form a metal circuit layer.
 図3は、セラミック板上に合金層を形成する工程の一例を示す模式図である。図3に示す方法では、粉体スプレー装置3を用いて金属粉体をセラミック板1の表面に吹き付けることによって、セラミック板1上に第一の堆積層が成膜される。第一の堆積層が加熱処理されることで合金層21aが形成される。合金層21aを形成した後に、その裏側の合金層21bを形成してもよい。 FIG. 3 is a schematic view showing an example of a process of forming an alloy layer on a ceramic plate. In the method shown in FIG. 3, the first deposited layer is formed on the ceramic plate 1 by spraying the metal powder onto the surface of the ceramic plate 1 using the powder spray device 3. The alloy layer 21a is formed by heat-treating the first sedimentary layer. After forming the alloy layer 21a, the alloy layer 21b on the back side thereof may be formed.
 図3に示す粉体スプレー装置3は、高圧ガスボンベ4、ヒーター6、粉末供給装置7、先細末広形状を有するスプレーガンのノズル10及びこれらを連結する配管から主として構成される。複数の高圧ガスボンベ4の下流側に第一の圧力調整器5aが設けられており、第一の圧力調整器5aの下流側で配管が2回路に分岐する。分岐した2回路の配管のそれぞれに、第二の圧力調整器5b及びヒーター6と、第三の圧力調整器5c及び粉末供給装置7とが、それぞれ接続されている。ヒーター6及び粉末供給装置7からの配管がノズル10に接続されている。 The powder spray device 3 shown in FIG. 3 is mainly composed of a high-pressure gas cylinder 4, a heater 6, a powder supply device 7, a nozzle 10 of a spray gun having a tapered tapered shape, and a pipe connecting them. A first pressure regulator 5a is provided on the downstream side of the plurality of high-pressure gas cylinders 4, and the pipe branches into two circuits on the downstream side of the first pressure regulator 5a. A second pressure regulator 5b and a heater 6 and a third pressure regulator 5c and a powder supply device 7 are connected to each of the two branched circuits. The pipes from the heater 6 and the powder supply device 7 are connected to the nozzle 10.
 粉体スプレー装置3において、高圧ガスボンベ4には、作動ガスとして用いられる不活性ガスが、例えば、1MPa以上の圧力で充填されている。不活性ガスは、例えば、ヘリウム若しくは窒素の単一ガス、又はこれらの混合ガスであってよい。高圧ガスボンベ4から供給された作動ガスOGは、一方の回路上で第二の圧力調整器5bにより圧力が調整された上で、ヒーター6によって加熱され、その後、スプレーガンのノズル10に供給される。作動ガスOGはまた、他方の回路上で第三の圧力調整器5cによって圧力が調整された上で、粉末供給装置7にも供給される。粉末供給装置7から、作動ガスOGとともに成膜用の金属粉体がスプレーガンのノズル10に供給される。 In the powder spray device 3, the high-pressure gas cylinder 4 is filled with an inert gas used as a working gas, for example, at a pressure of 1 MPa or more. The inert gas may be, for example, a single gas of helium or nitrogen, or a mixed gas thereof. The working gas OG supplied from the high-pressure gas cylinder 4 is heated by the heater 6 after being adjusted in pressure by the second pressure regulator 5b on one circuit, and then supplied to the nozzle 10 of the spray gun. .. The working gas OG is also supplied to the powder supply device 7 after the pressure is adjusted by the third pressure regulator 5c on the other circuit. From the powder supply device 7, metal powder for film formation is supplied to the nozzle 10 of the spray gun together with the working gas OG.
 作動ガスOGのゲージ圧力は、ノズル10の入口10aにおいて、例えば、1.5~5.0MPa、又は2.0~4.0MPaとなるように調節される。作動ガスOGのゲージ圧力が上記範囲内にあることで、堆積層(後に加熱処理され合金層となる層)等を効率的に形成することができる。作動ガスOGのノズルの入口におけるゲージ圧力は、ノズルと配管との接続部分で測定することができる。 The gauge pressure of the working gas OG is adjusted to be, for example, 1.5 to 5.0 MPa or 2.0 to 4.0 MPa at the inlet 10a of the nozzle 10. When the gauge pressure of the working gas OG is within the above range, a sedimentary layer (a layer that is later heat-treated to become an alloy layer) or the like can be efficiently formed. The gauge pressure at the inlet of the nozzle of the working gas OG can be measured at the connection portion between the nozzle and the pipe.
 ヒーター6による加熱温度は、通常、成膜される金属粉体の融点又は軟化点よりも低く設定される。ヒーター6は、通常の加熱装置から任意に選択することができる。 The heating temperature by the heater 6 is usually set lower than the melting point or softening point of the metal powder to be formed. The heater 6 can be arbitrarily selected from ordinary heating devices.
 スプレーガンのノズル10に供給された作動ガスは、先細の部分を通ることで圧縮され、その下流側の末広の部分で一気に膨張されることで加速される。金属粉体は所定の温度に加熱されるとともに所定の速度まで加速された後、ノズル10の出口から噴出される。ノズル10から噴出された金属粉体は、セラミック板1の表面に吹き付けられる。これによって金属粉体がセラミック板1の表面に固相状態で衝突しながら堆積して、第一の堆積層を形成する。第一の堆積層がその後、加熱処理されることによって、合金層21aが形成される。第一金属粉の吹き付け量を調整することによって、後に形成される合金層の厚さを制御できる。 The working gas supplied to the nozzle 10 of the spray gun is compressed by passing through the tapered portion, and is accelerated by being expanded at once in the divergent portion on the downstream side thereof. The metal powder is heated to a predetermined temperature, accelerated to a predetermined speed, and then ejected from the outlet of the nozzle 10. The metal powder ejected from the nozzle 10 is sprayed onto the surface of the ceramic plate 1. As a result, the metal powder is deposited on the surface of the ceramic plate 1 while colliding with each other in a solid phase state to form the first deposition layer. The first sedimentary layer is then heat treated to form an alloy layer 21a. By adjusting the amount of the first metal powder sprayed, the thickness of the alloy layer formed later can be controlled.
 第一金属粉体は、例えば、マグネシウムと他の金属元素とを含むマグネシウム合金粒子であってよく、アルミニウム-マグネシウム合金粒子であってよい。アルミニウム-マグネシウム合金粒子は、アルミニウムにマグネシウムを固溶させたガスアトマイズ粉であってよい。第一金属粉体の組成(例えば、マグネシウムの含有量)が、後に形成される合金層の組成(例えば、マグネシウムの含有量)に反映されることから、第一金属粉体の組成の調整によって、合金層の組成を制御できる。 The first metal powder may be, for example, magnesium alloy particles containing magnesium and other metal elements, or aluminum-magnesium alloy particles. The aluminum-magnesium alloy particles may be gas atomizing powder in which magnesium is dissolved in aluminum. Since the composition of the first metal powder (for example, the content of magnesium) is reflected in the composition of the alloy layer formed later (for example, the content of magnesium), the composition of the first metal powder is adjusted. , The composition of the alloy layer can be controlled.
 第一の堆積層の形成において、第一金属粉体は、例えば、10~270℃、又は20~260℃に加熱されてよい。第一金属粉体の加熱温度がこの範囲内とすることで、第一の体積層を効率的に形成することができる。本明細書において、金属粉体が加熱される温度は、金属粉体の最高到達温度を意味する。ノズル10の出口における不活性ガスの温度を、金属粉体が加熱される温度とみなすこともできる。ここで、本明細書において「加熱する」の用語は、室温以下の所定の温度となるように調整することも含む意味で用いられる。 In the formation of the first sedimentary layer, the first metal powder may be heated to, for example, 10 to 270 ° C. or 20 to 260 ° C. By setting the heating temperature of the first metal powder within this range, the first body lamination can be efficiently formed. In the present specification, the temperature at which the metal powder is heated means the maximum temperature reached by the metal powder. The temperature of the inert gas at the outlet of the nozzle 10 can also be regarded as the temperature at which the metal powder is heated. Here, the term "heating" is used in the present specification to include adjusting the temperature to a predetermined temperature below room temperature.
 セラミック板1上に、セラミック板1の表面の一部を覆うマスク材を配置することによって、セラミックス基材上にパターン(回路パターン)を有する第一の堆積層等を形成させてもよい。この方法によれば、合金層等を形成した後に、エッチングのような追加の処理を行うことなく、所望のパターンを有する金属回路を容易に形成することができる。本実施形態に係る方法は、工程を簡略化し、得られる製品の品質管理等の観点から、パターン形成のためにエッチングを必要とする従来の溶湯法及びろう付法等に比べて有利であるといえる。 By arranging a mask material covering a part of the surface of the ceramic plate 1 on the ceramic plate 1, a first sedimentary layer or the like having a pattern (circuit pattern) may be formed on the ceramic base material. According to this method, after forming the alloy layer or the like, a metal circuit having a desired pattern can be easily formed without performing an additional process such as etching. The method according to the present embodiment is more advantageous than the conventional molten metal method and brazing method, which require etching for pattern formation, from the viewpoint of simplifying the process and controlling the quality of the obtained product. I can say.
 第一金属粉体をノズル10内で250~1050m/秒まで加速してよい。本明細書において、金属粉体が加速される速度は、加速された金属粉体が到達する最高速度を意味する。加速された金属粉体が到達する速度が250m/秒未満であると、金属粉体がセラミックス基材等に衝突した瞬間に金属粉体が十分に塑性変形し難いため、堆積層の形成が困難となるか、形成された堆積層の密着性が低下する傾向にある。加速された金属粉体が達する速度が1050m/秒を超えると、金属粉体がセラミックス基材等に衝突した時に、金属粉体が粉砕及び飛散して、堆積層の形成が困難になる傾向にある。 The first metal powder may be accelerated to 250 to 1050 m / sec in the nozzle 10. As used herein, the rate at which the metal powder is accelerated means the maximum speed that the accelerated metal powder can reach. If the speed at which the accelerated metal powder arrives is less than 250 m / sec, it is difficult for the metal powder to be sufficiently plastically deformed at the moment when the metal powder collides with a ceramic base material or the like, so that it is difficult to form a deposited layer. Or, the adhesion of the formed sedimentary layer tends to decrease. If the speed at which the accelerated metal powder reaches exceeds 1050 m / sec, when the metal powder collides with a ceramic base material or the like, the metal powder tends to be crushed and scattered, making it difficult to form a deposited layer. be.
 セラミック板上に形成された第一の体積層は、不活性ガス雰囲気下で加熱処理される。加熱処理の温度は、例えば、400~600℃であってよい。第一の堆積層を400℃以上の温度で加熱することで、マグネシウムとセラミック板の表面における酸化物層との反応をより進行させることができ、強固に接合させることができる。また、第一の堆積層を600℃以下の温度で加熱することで、第一の堆積層が軟化することによる影響を低減できる。 The first body laminate formed on the ceramic plate is heat-treated in an inert gas atmosphere. The temperature of the heat treatment may be, for example, 400 to 600 ° C. By heating the first sedimentary layer at a temperature of 400 ° C. or higher, the reaction between magnesium and the oxide layer on the surface of the ceramic plate can be further promoted, and a strong bond can be formed. Further, by heating the first sedimentary layer at a temperature of 600 ° C. or lower, the influence of softening of the first sedimentary layer can be reduced.
 合金層を形成した後、上述した合金層の形成と同様の方法によって、第二金属粉体を合金層の表面に吹き付けることによって、第二の堆積層を形成、続く加熱処理によって、金属層を形成する。応力緩和層が3以上の層で構成される場合には、例えば、上述の合金層の形成と同様の手段を繰り返すことによって、順次層を形成することができる。金属層の組成及び厚さは、それぞれ第二金属粉体の組成及び吹き付け量によって制御できる。この際、各層を構成する合金又は金属の組成は、各層の表面に吹き付ける金属粉体の組成を調整することによって変更することができる。例えば、金属粉体中のマグネシウムの含有量を徐々に低減するよう調整にしてもよい。後に形成される金属回路層と接着される層を形成するための最終的に吹き付ける金属粉体はマグネシウムを含まないことが好ましく、応力緩和性能を向上させる観点からは、例えば、アルミニウム粉末であることが好ましい。 After forming the alloy layer, a second deposited layer is formed by spraying the second metal powder onto the surface of the alloy layer by the same method as the above-mentioned formation of the alloy layer, and the metal layer is formed by the subsequent heat treatment. Form. When the stress relaxation layer is composed of three or more layers, for example, the layers can be sequentially formed by repeating the same means as the formation of the alloy layer described above. The composition and thickness of the metal layer can be controlled by the composition and the amount of spraying of the second metal powder, respectively. At this time, the composition of the alloy or metal constituting each layer can be changed by adjusting the composition of the metal powder sprayed on the surface of each layer. For example, the content of magnesium in the metal powder may be adjusted to be gradually reduced. The metal powder to be finally sprayed to form a layer to be bonded to the metal circuit layer to be formed later preferably does not contain magnesium, and from the viewpoint of improving stress relaxation performance, for example, it is an aluminum powder. Is preferable.
 金属層を形成した後、銅等を主成分として含む第三金属粉体を不活性ガスと共にノズルから金属層の表面に対して吹き付け第三の堆積層を形成し、続き加熱処理によって、金属回路層を形成する。 After forming the metal layer, a third metal powder containing copper or the like as a main component is sprayed from the nozzle to the surface of the metal layer together with an inert gas to form a third deposited layer, followed by heat treatment to form a metal circuit. Form a layer.
 第三の堆積層の形成において、第三金属粉体は、例えば、10~650℃、又は20~640℃に加熱されてよい。第三金属粉体の加熱温度を上記範囲内とすることで、第三の堆積層を効率的に形成できる。第三金属粉体の加熱温度を650℃以下とすることで、軟化した銅等の金属粒子がノズルの内壁に付着したり、ノズルの詰まりが生じたりすることを抑制することができ、金属回路層の形成をより容易なものとすることができる。第三金属粉体の加熱温度を10℃以上とすることで、銅等の金属粒子の塑性変形をより容易なものとし、第三の堆積層の形成をより容易なものとすることできる。 In the formation of the third sedimentary layer, the third metal powder may be heated to, for example, 10 to 650 ° C or 20 to 640 ° C. By setting the heating temperature of the third metal powder within the above range, the third sedimentary layer can be efficiently formed. By setting the heating temperature of the third metal powder to 650 ° C. or lower, it is possible to prevent softened metal particles such as copper from adhering to the inner wall of the nozzle and clogging the nozzle, and the metal circuit. The formation of layers can be made easier. By setting the heating temperature of the third metal powder to 10 ° C. or higher, the plastic deformation of the metal particles such as copper can be made easier, and the formation of the third sedimentary layer can be made easier.
 第三の堆積層の形成においても、作動ガスOGのゲージ圧力は、ノズル10の入口10aにおいて、例えば、1.5~5.0MPa、又は2.0~4.0MPaであってよい。作動ガスOGのゲージ圧力を上記範囲内とすることで、第三の堆積層を効率的に形成できる。ノズルの入口における作動ガスゲージ圧力を1.5MPa以上とすることで、金属層に対して第三金属粉体が密着し難くなることを抑制し、第三の堆積層の形成をより容易なものとすることができる。ノズルの入口における作動ガスのゲージ圧力を5.0MPa以下とすることで、不活性ガスとともに金属層に吹き付けられた第三金属粉体が破砕して、第三の堆積層の形成の効率が低下することをより抑制できる。 Also in the formation of the third sedimentary layer, the gauge pressure of the working gas OG may be, for example, 1.5 to 5.0 MPa or 2.0 to 4.0 MPa at the inlet 10a of the nozzle 10. By setting the gauge pressure of the working gas OG within the above range, the third sedimentary layer can be efficiently formed. By setting the working gas gauge pressure at the inlet of the nozzle to 1.5 MPa or more, it is possible to prevent the third metal powder from becoming difficult to adhere to the metal layer, and to make it easier to form the third sedimentary layer. can do. By setting the gauge pressure of the working gas at the inlet of the nozzle to 5.0 MPa or less, the tertiary metal powder sprayed on the metal layer together with the inert gas is crushed, and the efficiency of forming the third deposited layer is reduced. It can be more suppressed.
 その他、第三金属粉体の吹き付けによる第三の堆積層の形成条件は、上述の合金層及び金属層の形成と同様に調整してよい。第三の堆積層を形成する際にも合金層及び金属層の形成と同様に、セラミック板1上にマスク材を配置することで、パターンを有する第三の堆積層を形成し、これを加熱処理することで、パターンを有する金属回路層を形成させてもよい。 In addition, the conditions for forming the third sedimentary layer by spraying the third metal powder may be adjusted in the same manner as for the formation of the alloy layer and the metal layer described above. When forming the third sedimentary layer, as in the case of forming the alloy layer and the metal layer, by arranging the mask material on the ceramic plate 1, a third sedimentary layer having a pattern is formed and heated. By processing, a metal circuit layer having a pattern may be formed.
 第三の堆積層は、不活性ガス雰囲気下で加熱処理される。この加熱処理のため温度は、例えば、250~350℃であってもよい。第三の堆積層を250℃以上の温度で加熱することで、加工硬化による合金層及び金属層における歪みを低減することができる。第三の堆積層を350℃以下の比較的低温で加熱することで、金属層と、第三の堆積層との反応による金属間化合物の生成、及び、金属成分の拡散を抑制することができる。 The third sedimentary layer is heat-treated in an inert gas atmosphere. For this heat treatment, the temperature may be, for example, 250 to 350 ° C. By heating the third sedimentary layer at a temperature of 250 ° C. or higher, strain in the alloy layer and the metal layer due to work hardening can be reduced. By heating the third sedimentary layer at a relatively low temperature of 350 ° C. or lower, it is possible to suppress the formation of intermetallic compounds and the diffusion of metal components by the reaction between the metal layer and the third sedimentary layer. ..
 合金層、金属層及び金属回路層における気孔の形成を抑えるために、第一金属粉体、第二金属粉体、及び/又は第三金属粉体は、それぞれ球形粒子で構成されていてよい。第一金属粉体、第二金属粉体、及び/又は第三金属粉体は、それぞれ粒径のバラツキが小さくてよい。金属粉体の平均粒径は、例えば、10~70μm、又は20~60μmであってもよい。金属粉体の平均粒径を10μm以上とすることで、金属粉体がノズルの先細の部分に詰まることをより抑制できる。金属粉体の平均粒径を70μm以下とすることで、金属粉体の速度を十分に上げることができる。 In order to suppress the formation of pores in the alloy layer, the metal layer and the metal circuit layer, the first metal powder, the second metal powder, and / or the third metal powder may each be composed of spherical particles. The first metal powder, the second metal powder, and / or the third metal powder may each have a small variation in particle size. The average particle size of the metal powder may be, for example, 10 to 70 μm or 20 to 60 μm. By setting the average particle size of the metal powder to 10 μm or more, it is possible to further prevent the metal powder from clogging the tapered portion of the nozzle. By setting the average particle size of the metal powder to 70 μm or less, the speed of the metal powder can be sufficiently increased.
 本明細書における平均粒径は、レーザー回折・散乱法によって測定される体積基準の粒子径の分布曲線において、小粒径からの積算値が全体の50%に達した時の粒子径(D50)をいう。なお、D50は、メジアン径とも呼ばれ、対象となる粒子の平均粒径として知られる。 The average particle size in the present specification is the particle size (D50) when the integrated value from the small particle size reaches 50% of the total in the volume-based particle size distribution curve measured by the laser diffraction / scattering method. To say. D50 is also called a median diameter and is known as the average particle size of the target particles.
 上述の積層体はヒートサイクルに対する耐久性に優れることから、例えば、パワーモジュール等を構成する部材(例えば、回路基板等)として好適に使用できる。パワーモジュールの一実施形態は、回路基板と、上記回路基板の一方の主面上に電気的に接続された半導体素子と、上記回路基板のもう一方の主面上に接続された放熱部材と、を備える。上記回路基板が、上述の積層体である。 Since the above-mentioned laminated body has excellent durability against heat cycles, it can be suitably used as, for example, a member (for example, a circuit board or the like) constituting a power module or the like. One embodiment of the power module comprises a circuit board, a semiconductor element electrically connected on one main surface of the circuit board, and a heat dissipation member connected on the other main surface of the circuit board. To be equipped. The circuit board is the above-mentioned laminated body.
 図4は、パワーモジュールの一例を示す模式断面図である。パワーモジュール300は、ベース板70と、ハンダ32を介してベース板70の一方面と接合される回路基板102とを備える。回路基板102の金属回路2b(合金層、金属層及び金属回路層)がハンダ32と接合している。回路基板102は、上述の積層体100、101等であってよい。 FIG. 4 is a schematic cross-sectional view showing an example of a power module. The power module 300 includes a base plate 70 and a circuit board 102 that is joined to one surface of the base plate 70 via a solder 32. The metal circuit 2b (alloy layer, metal layer and metal circuit layer) of the circuit board 102 is joined to the solder 32. The circuit board 102 may be the above-mentioned laminates 100, 101, or the like.
 回路基板102の金属回路2aには、ハンダ31を介して半導体素子60が取り付けられている。半導体素子60は、アルミワイヤ(アルミ線)等の金属ワイヤ34で金属回路2aの所定箇所に接続されている。筐体36の外部と金属回路2aとを電気的に接続するため、金属回路2aの所定部分は、ハンダ35を介して筐体36を貫通して設けられる電極33に接続されている。 A semiconductor element 60 is attached to the metal circuit 2a of the circuit board 102 via a solder 31. The semiconductor element 60 is connected to a predetermined position in the metal circuit 2a by a metal wire 34 such as an aluminum wire (aluminum wire). In order to electrically connect the outside of the housing 36 to the metal circuit 2a, a predetermined portion of the metal circuit 2a is connected to an electrode 33 provided through the housing 36 via a solder 35.
 ベース板70の一方面には、回路基板102を収容するように筐体36が配置されている。ベース板70の一方面と筐体36とで形成される収容空間にはシリコーンゲル等の樹脂30が充填されている。 A housing 36 is arranged on one surface of the base plate 70 so as to accommodate the circuit board 102. The accommodation space formed by one surface of the base plate 70 and the housing 36 is filled with a resin 30 such as silicone gel.
 ベース板70の他方面には、グリース74を介して放熱部材をなす冷却フィン72が接合されている。ベース板70の端部には冷却フィン72をベース板70に固定するネジ73が取り付けられている。ベース板70及び冷却フィン72はアルミニウムで構成されていてもよい。ベース板70及び冷却フィン72は、高い熱伝導率を有することによって放熱部として良好に機能する。 Cooling fins 72 forming a heat radiating member are joined to the other surface of the base plate 70 via grease 74. A screw 73 for fixing the cooling fin 72 to the base plate 70 is attached to the end of the base plate 70. The base plate 70 and the cooling fins 72 may be made of aluminum. The base plate 70 and the cooling fins 72 have high thermal conductivity and thus function well as heat radiating portions.
 パワーモジュール300は、回路基板102の金属回路2a,2bと、金属回路2aと電気的に接続される半導体素子60とを備える。半導体素子60は回路基板102とともに樹脂30によって封止されている。このようなパワーモジュール300は、半導体素子60が発熱しても、樹脂30とセラミック板1との密着性を維持することができる。 The power module 300 includes metal circuits 2a and 2b of the circuit board 102 and a semiconductor element 60 that is electrically connected to the metal circuit 2a. The semiconductor element 60 is sealed with the resin 30 together with the circuit board 102. Such a power module 300 can maintain the adhesion between the resin 30 and the ceramic plate 1 even if the semiconductor element 60 generates heat.
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。 Although some embodiments have been described above, the present disclosure is not limited to the above embodiments. In addition, the contents of the description of the above-described embodiments can be applied to each other.
 以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。 Hereinafter, the contents of the present disclosure will be described in more detail with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the following examples.
<窒化アルミニウム板(AlN)の準備>
 市販の窒化アルミニウム板(株式会社MARUWA社製)をセラミック板として用いた。
<Preparation of aluminum nitride plate (AlN)>
A commercially available aluminum nitride plate (manufactured by MARUWA Co., Ltd.) was used as the ceramic plate.
<窒化ケイ素板(Si板)の作製>
 窒化ケイ素粉末と、焼結助剤として、酸化マグネシウム粉末、及び酸化イットリウム粉末を準備した。これらを、Si:Y:MgO=94.0:3.0:3.0(質量比)で配合して原料粉末を得た。この原料粉末を、一軸加圧成形し、成形体を作製した。この成形体を、カーボンヒータを備える電気炉中に配置し、窒素ガスの雰囲気下、1800℃で12時間焼成して、平板形状の窒化ケイ素板を得た。得られた窒化ケイ素板をセラミック板として用いた。
<Manufacturing of silicon nitride plate (Si 3 N 4 plate)>
Silicon nitride powder, magnesium oxide powder, and yttrium oxide powder were prepared as sintering aids. These were blended in a ratio of Si 3 N 4 : Y 2 O 3 : MgO = 94.0: 3.0: 3.0 (mass ratio) to obtain a raw material powder. This raw material powder was uniaxially pressure-molded to prepare a molded product. This molded body was placed in an electric furnace equipped with a carbon heater and fired at 1800 ° C. for 12 hours in an atmosphere of nitrogen gas to obtain a flat plate-shaped silicon nitride plate. The obtained silicon nitride plate was used as a ceramic plate.
<酸化アルミニウム板(Al)の準備>
 市販の酸化アルミニウム板(株式会社MARUWA社製)をセラミック板として用いた。
<Preparation of aluminum oxide plate (Al 2 O 3 )>
A commercially available aluminum oxide plate (manufactured by MARUWA Co., Ltd.) was used as the ceramic plate.
(実施例1)
<合金層(アルミニウム-マグネシウム合金からなる層)の形成>
 アルミニウム-マグネシウム合金粉体(株式会社高純度化学研究所社製、ガスアトマイズ粉、メジアン径:24μm)を用い、図3と同様の構成を有する粉体スプレー装置によって、縦:56mm、横:46mm、厚み:0.1mmのアルミニウム-マグネシウム合金粉体の堆積層(第一の堆積層)を、窒化アルミニウム板の表裏それぞれにおいて基材端面から2mm内側の範囲に形成した。第一の堆積層の形成は、作動ガスとして窒素を用い、アルミニウム-マグネシウム合金粉体(ガスアトマイズ粉)の温度を260℃、ノズル入口における作動ガスの圧力を3MPaとする条件で行った。第一の堆積層を、窒素雰囲気下において550℃の温度で3時間保持することで加熱処理してアルミニウム-マグネシウム合金層(合金層)を形成した。
(Example 1)
<Formation of alloy layer (layer made of aluminum-magnesium alloy)>
Using an aluminum-magnesium alloy powder (manufactured by High Purity Chemical Laboratory Co., Ltd., gas atomized powder, median diameter: 24 μm), using a powder spraying device having the same configuration as in FIG. 3, length: 56 mm, width: 46 mm, A deposit layer (first deposit layer) of aluminum-magnesium alloy powder having a thickness of 0.1 mm was formed on each of the front and back surfaces of the aluminum nitride plate within a range of 2 mm inside from the end face of the base material. The formation of the first deposited layer was carried out under the conditions that nitrogen was used as the working gas, the temperature of the aluminum-magnesium alloy powder (gas atomized powder) was 260 ° C., and the pressure of the working gas at the nozzle inlet was 3 MPa. The first sedimentary layer was heat-treated by holding it at a temperature of 550 ° C. for 3 hours in a nitrogen atmosphere to form an aluminum-magnesium alloy layer (alloy layer).
<金属層層(アルミニウムからなる層)の形成>
 次に、アルミニウム粉体(高純度化学研究所社製、ガスアトマイズ粉、メジアン径:24μm)を用い、図3と同様の構成を有する粉体スプレー装置によって、縦:56mm、横:46mm、厚み:0.2mmのアルミニウム粉体の堆積層(第二の堆積層)を、上述のとおり形成した2つの合金層の表面それぞれにおいて、合金層と同じく、縦:56mm、横:46mmとなるように形成した。第二の堆積層の形成は、作動ガスとして窒素を用い、アルミニウム粉体の温度を260℃、ノズル入口における作動ガスの圧力を3MPaとする条件で行った。第二の堆積層を、窒素雰囲気下において550℃の温度で3時間保持することで加熱処理してアルミニウム層(金属層)を形成した。
<Formation of metal layer (layer made of aluminum)>
Next, using an aluminum powder (manufactured by High Purity Chemical Laboratory Co., Ltd., gas atomized powder, median diameter: 24 μm), a powder spraying device having the same configuration as in FIG. A 0.2 mm aluminum powder deposit layer (second deposit layer) is formed on the surfaces of the two alloy layers formed as described above so that the length is 56 mm and the width is 46 mm, similarly to the alloy layer. did. The formation of the second sedimentary layer was carried out under the conditions that nitrogen was used as the working gas, the temperature of the aluminum powder was 260 ° C., and the pressure of the working gas at the nozzle inlet was 3 MPa. The second sedimentary layer was heat-treated by holding it at a temperature of 550 ° C. for 3 hours in a nitrogen atmosphere to form an aluminum layer (metal layer).
<金属回路層(銅からなる層)の形成>
 さらに、アルミニウム層の一部を鉄製のマスク材でマスキングし、銅粉体(福田金属箔粉工業社製、水アトマイズ粉、メジアン径:17μm)を用い、図3と同様の構成を有する粉体スプレー装置によって、アルミニウム層の端面から50μm内側の範囲に銅粉体の堆積層(第三の堆積層)を縦:55.9mm、横:45.9mm、厚さ:0.4mmとなるように形成した。第三の堆積層は、作動ガスとして窒素を用い、銅粉体の温度を640℃、ノズル入口における作動ガスの圧力を3MPaとする条件で行った。アルミニウム層の端面は、銅層の端面よりも50μmの幅で外側にはみ出していた。第三の堆積層を、窒素雰囲気下において300℃の温度で1時間保持することで加熱処理して銅層(金属回路層)を形成した。
<Formation of metal circuit layer (layer made of copper)>
Further, a part of the aluminum layer is masked with an iron masking material, and copper powder (manufactured by Fukuda Metal Foil Powder Industry Co., Ltd., water atomized powder, median diameter: 17 μm) is used, and the powder has the same structure as that of FIG. By the spraying device, the copper powder deposit layer (third deposit layer) is placed in the range 50 μm inside from the end face of the aluminum layer so that the length is 55.9 mm, the width is 45.9 mm, and the thickness is 0.4 mm. Formed. The third sedimentary layer was carried out under the conditions that nitrogen was used as the working gas, the temperature of the copper powder was 640 ° C., and the pressure of the working gas at the nozzle inlet was 3 MPa. The end face of the aluminum layer protruded outward with a width of 50 μm from the end face of the copper layer. The third sedimentary layer was heat-treated by holding it at a temperature of 300 ° C. for 1 hour in a nitrogen atmosphere to form a copper layer (metal circuit layer).
 以上の手順で、窒化ケイ素板の両面上に、アルミニウム-マグネシウム合金層、アルミニウム層及び銅層からなる金属回路が形成された積層体を得た。 By the above procedure, a laminate in which a metal circuit composed of an aluminum-magnesium alloy layer, an aluminum layer and a copper layer was formed on both sides of a silicon nitride plate was obtained.
(実施例2~9)
 セラミック板の種類及び厚さ、合金層におけるマグネシウムの含有量及び合金層の厚さ、並びに、金属層の厚さを表1に示すとおり変更したこと以外は、実施例1と同様にして、積層体を調製した。
(Examples 2 to 9)
Lamination in the same manner as in Example 1 except that the type and thickness of the ceramic plate, the magnesium content in the alloy layer, the thickness of the alloy layer, and the thickness of the metal layer were changed as shown in Table 1. The body was prepared.
(比較例1~3)
 金属層を設けず、セラミック板の種類及び厚み、並びに、合金層におけるマグネシウムの含有量を表2に示すとおり変更したこと以外は、実施例1と同様にして積層体を調製した。
(Comparative Examples 1 to 3)
A laminate was prepared in the same manner as in Example 1 except that the type and thickness of the ceramic plate and the magnesium content in the alloy layer were changed as shown in Table 2 without providing the metal layer.
(比較例4~5)
 合金層を設けず、セラミック板の種類及び厚み、並びに、金属層の厚みを表2に示すとおり変更したこと以外は、実施例1と同様にして積層体を調製した。
(Comparative Examples 4 to 5)
A laminate was prepared in the same manner as in Example 1 except that the type and thickness of the ceramic plate and the thickness of the metal layer were changed as shown in Table 2 without providing the alloy layer.
(比較例7~14)
 セラミック板の種類及び厚さ、合金層におけるマグネシウムの含有量及び合金層の厚さ、並びに、金属層の厚さを表1に示すとおり変更したこと以外は、実施例2と同様にして、積層体を調製した。
(Comparative Examples 7-14)
Lamination in the same manner as in Example 2 except that the type and thickness of the ceramic plate, the magnesium content in the alloy layer, the thickness of the alloy layer, and the thickness of the metal layer were changed as shown in Table 1. The body was prepared.
<ヒートサイクルに対する耐久性の評価:ヒートサイクル試験>
 実施例1~9及び比較例1~17で調製した積層体それぞれについて、ヒートサイクル試験を行い、ヒートサイクルに対する耐久性を評価した。具体的には、積層体を「180℃の環境に30分間放置した後に、-55℃の環境に30分間放置すること」を1サイクルとして、これを3000サイクル実施するヒートサイクル試験を行った。試験後の積層体に対する断面観察から、以下の基準で評価した。結果を表1及び表2に示す。
A:3000サイクルでもはく離等の異常が観測されなかった。
B:1500サイクル超3000サイクル未満ではく離が観測された。
C:1000サイクル超1500サイクル以下ではく離が観測された。
D:1000サイクル以下ではく離が観測された。
<Evaluation of durability against heat cycle: heat cycle test>
A heat cycle test was conducted on each of the laminates prepared in Examples 1 to 9 and Comparative Examples 1 to 17, and the durability against the heat cycle was evaluated. Specifically, a heat cycle test was conducted in which the laminate was left in an environment of 180 ° C. for 30 minutes and then left in an environment of −55 ° C. for 30 minutes as one cycle, and this was carried out for 3000 cycles. From the cross-sectional observation of the laminated body after the test, it was evaluated according to the following criteria. The results are shown in Tables 1 and 2.
A: No abnormalities such as peeling were observed even after 3000 cycles.
B: Peeling was observed in more than 1500 cycles and less than 3000 cycles.
C: Peeling was observed in more than 1000 cycles and less than 1500 cycles.
D: Peeling was observed in 1000 cycles or less.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本開示によれば、ヒートサイクルに対する耐久性に優れる積層体を提供できる。本開示によればまた、信頼性に優れるパワーモジュールを提供できる。 According to the present disclosure, it is possible to provide a laminate having excellent durability against heat cycles. According to the present disclosure, it is also possible to provide a power module having excellent reliability.
 1…セラミック板、2a,2b…金属回路、3…粉体スプレー装置、4…高圧ガスボンベ、5a…第一の圧力調整器、5b…第二の圧力調整器、5c…第三の圧力調整器、6…ヒーター、7…粉末供給装置、10…ノズル、10a…入口、20a,20b…応力緩和層、21a,21b…合金層、22a,22b…金属層、23a,23b…金属回路層、30…樹脂、31,32,35…ハンダ、33…電極、34…金属ワイヤ、36…筐体、60…半導体素子、70…ベース板、72…冷却フィン、73…ネジ、74…グリース、100,101…積層体、102…回路基板、300…パワーモジュール。 1 ... Ceramic plate, 2a, 2b ... Metal circuit, 3 ... Powder spray device, 4 ... High pressure gas cylinder, 5a ... First pressure regulator, 5b ... Second pressure regulator, 5c ... Third pressure regulator , 6 ... heater, 7 ... powder supply device, 10 ... nozzle, 10a ... inlet, 20a, 20b ... stress relaxation layer, 21a, 21b ... alloy layer, 22a, 22b ... metal layer, 23a, 23b ... metal circuit layer, 30 ... Resin, 31, 32, 35 ... Solder, 33 ... Electrode, 34 ... Metal wire, 36 ... Housing, 60 ... Semiconductor element, 70 ... Base plate, 72 ... Cooling fin, 73 ... Screw, 74 ... Grease, 100, 101 ... Laminate, 102 ... Circuit board, 300 ... Power module.

Claims (9)

  1.  セラミック板と、
     前記セラミック板上に形成された応力緩和層と、
     前記応力緩和層上に形成された金属回路層と、を備え、
     前記応力緩和層は、
      マグネシウムの含有量が7.5質量%以下であり、平均厚さが0.2mm未満である、前記セラミック板に接触する合金層と、
      前記合金層よりもマグネシウムの含有量が少なく、前記金属回路層に接触する金属層と、を有する、積層体。
    With a ceramic plate
    The stress relaxation layer formed on the ceramic plate and
    A metal circuit layer formed on the stress relaxation layer is provided.
    The stress relaxation layer is
    An alloy layer in contact with the ceramic plate having a magnesium content of 7.5% by mass or less and an average thickness of less than 0.2 mm.
    A laminate having a metal layer having a magnesium content lower than that of the alloy layer and in contact with the metal circuit layer.
  2.  前記合金層の平均厚さが0.02mm以上0.2mm未満である、請求項1に記載の積層体。 The laminate according to claim 1, wherein the average thickness of the alloy layer is 0.02 mm or more and less than 0.2 mm.
  3.  前記応力緩和層の熱膨張率が、前記セラミック板の熱膨張率よりも大きく、前記金属回路層の熱膨張率よりも大きい、請求項1又は2に記載の積層体。 The laminate according to claim 1 or 2, wherein the coefficient of thermal expansion of the stress relaxation layer is larger than the coefficient of thermal expansion of the ceramic plate and larger than the coefficient of thermal expansion of the metal circuit layer.
  4.  前記金属層はアルミニウムを含有する、請求項1~3のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the metal layer contains aluminum.
  5.  前記金属層の平均厚さが0.1mm超である、請求項1~4のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 4, wherein the metal layer has an average thickness of more than 0.1 mm.
  6.  前記セラミック板は、窒化ケイ素板、窒化アルミニウム板、又は酸化アルミニウム板である、請求項1~5のいずれか一項に記載の積層体。 The laminate according to any one of claims 1 to 5, wherein the ceramic plate is a silicon nitride plate, an aluminum nitride plate, or an aluminum oxide plate.
  7.  回路基板と、
     前記回路基板の一方の主面上に電気的に接続された半導体素子と、
     前記回路基板のもう一方の主面上に接続された放熱部材と、を備え、
     前記回路基板が請求項1~6のいずれか一項に記載の積層体である、パワーモジュール。
    With the circuit board
    A semiconductor element electrically connected on one main surface of the circuit board,
    A heat radiating member connected to the other main surface of the circuit board.
    A power module in which the circuit board is the laminate according to any one of claims 1 to 6.
  8.  マグネシウムを含む第一金属粉体を不活性ガスと共にノズルからセラミック板の表面に対して吹き付けることによって、セラミック板に接触する第一の堆積層を形成する工程と、
     前記第一の堆積層を不活性ガス雰囲気下で加熱処理して合金層を形成する工程と、
     前記第一金属粉体よりもマグネシウムの含有量が小さい第二金属粉体を不活性ガスと共に前記合金層の表面に対して吹き付けることによって、前記合金層に接触する第二の堆積層を形成する工程と、
     前記第二の堆積層を不活性ガス雰囲気下で加熱処理して金属層を形成する工程と、
     金属粒子を含む第三金属粉体を不活性ガスと共にノズルから前記金属層の表面に対して吹き付けることによって、前記金属層に接触する第三の堆積層を形成する工程と、
     前記第三の堆積層を不活性ガス雰囲気下で加熱処理して金属回路層を形成する工程と、を有する、積層体の製造方法。
    The process of forming the first deposited layer in contact with the ceramic plate by spraying the first metal powder containing magnesium together with the inert gas from the nozzle onto the surface of the ceramic plate.
    A step of heat-treating the first sedimentary layer in an atmosphere of an inert gas to form an alloy layer, and
    A second deposited layer in contact with the alloy layer is formed by spraying the second metal powder having a magnesium content lower than that of the first metal powder on the surface of the alloy layer together with the inert gas. Process and
    A step of heat-treating the second sedimentary layer in an atmosphere of an inert gas to form a metal layer, and
    A step of forming a third deposited layer in contact with the metal layer by spraying a third metal powder containing metal particles from a nozzle together with an inert gas onto the surface of the metal layer.
    A method for producing a laminate, comprising a step of heat-treating the third sedimentary layer in an atmosphere of an inert gas to form a metal circuit layer.
  9.  前記第一金属粉体が、アルミニウム-マグネシウム合金粒子を含むガスアトマイズ粉である、請求項8に記載の積層体の製造方法。 The method for producing a laminate according to claim 8, wherein the first metal powder is a gas atomized powder containing aluminum-magnesium alloy particles.
PCT/JP2022/000041 2021-01-12 2022-01-04 Laminate, method for manufacturing same, and power module WO2022153891A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022535194A JP7186929B1 (en) 2021-01-12 2022-01-04 LAMINATED BODY, MANUFACTURING METHOD THEREOF, AND POWER MODULE
JP2022190059A JP7538845B2 (en) 2021-01-12 2022-11-29 LAMINATE AND POWER MODULE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-003040 2021-01-12
JP2021003040 2021-01-12

Publications (1)

Publication Number Publication Date
WO2022153891A1 true WO2022153891A1 (en) 2022-07-21

Family

ID=82447341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000041 WO2022153891A1 (en) 2021-01-12 2022-01-04 Laminate, method for manufacturing same, and power module

Country Status (2)

Country Link
JP (2) JP7186929B1 (en)
WO (1) WO2022153891A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281468A (en) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk Silicon carbide complex, its production and radiator article uisng the same
JP2013074199A (en) * 2011-09-28 2013-04-22 Nhk Spring Co Ltd Heat radiation structure, power module, manufacturing method of heat radiation structure, and manufacturing method of power module
WO2017082368A1 (en) * 2015-11-11 2017-05-18 日本発條株式会社 Laminate and laminate manufacturing method
WO2018135490A1 (en) * 2017-01-17 2018-07-26 デンカ株式会社 Method for producing ceramic circuit board
WO2018135499A1 (en) * 2017-01-17 2018-07-26 国立大学法人信州大学 Method for manufacturing ceramic circuit board
JP2019067801A (en) * 2017-09-28 2019-04-25 デンカ株式会社 Power module with heat dissipation component

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000281468A (en) * 1998-11-12 2000-10-10 Denki Kagaku Kogyo Kk Silicon carbide complex, its production and radiator article uisng the same
JP2013074199A (en) * 2011-09-28 2013-04-22 Nhk Spring Co Ltd Heat radiation structure, power module, manufacturing method of heat radiation structure, and manufacturing method of power module
WO2017082368A1 (en) * 2015-11-11 2017-05-18 日本発條株式会社 Laminate and laminate manufacturing method
WO2018135490A1 (en) * 2017-01-17 2018-07-26 デンカ株式会社 Method for producing ceramic circuit board
WO2018135499A1 (en) * 2017-01-17 2018-07-26 国立大学法人信州大学 Method for manufacturing ceramic circuit board
JP2019067801A (en) * 2017-09-28 2019-04-25 デンカ株式会社 Power module with heat dissipation component

Also Published As

Publication number Publication date
JPWO2022153891A1 (en) 2022-07-21
JP2023026431A (en) 2023-02-24
JP7538845B2 (en) 2024-08-22
JP7186929B1 (en) 2022-12-09

Similar Documents

Publication Publication Date Title
CN108290380B (en) Laminate and method for producing laminate
JP6948350B2 (en) Manufacturing method of ceramic circuit board
JP6991516B2 (en) Manufacturing method of ceramic circuit board
WO2013047330A1 (en) Joint
JP7440944B2 (en) Composite materials and heat dissipation components
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
JP3937952B2 (en) Heat dissipation circuit board and method for manufacturing the same
WO2022153891A1 (en) Laminate, method for manufacturing same, and power module
JP2006278558A (en) Insulated heat transmission structure and substrate for use of power module
JP6378247B2 (en) LAMINATE, POWER MODULE, AND METHOD FOR PRODUCING LAMINATE
US11973002B2 (en) Composite substrate and method for manufacturing same, and circuit substrate and method for manufacturing same
JP5940589B2 (en) Laminated body and power module

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022535194

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22739301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22739301

Country of ref document: EP

Kind code of ref document: A1