Nothing Special   »   [go: up one dir, main page]

WO2022153792A1 - Approach avoidance system and galvanic vestibular stimulation device - Google Patents

Approach avoidance system and galvanic vestibular stimulation device Download PDF

Info

Publication number
WO2022153792A1
WO2022153792A1 PCT/JP2021/046900 JP2021046900W WO2022153792A1 WO 2022153792 A1 WO2022153792 A1 WO 2022153792A1 JP 2021046900 W JP2021046900 W JP 2021046900W WO 2022153792 A1 WO2022153792 A1 WO 2022153792A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
avoidance system
pair
approach avoidance
approach
Prior art date
Application number
PCT/JP2021/046900
Other languages
French (fr)
Japanese (ja)
Inventor
信行 久保井
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2022153792A1 publication Critical patent/WO2022153792A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/26Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 specially adapted for navigation in a road network
    • G01C21/34Route searching; Route guidance
    • G01C21/36Input/output arrangements for on-board computers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/005Traffic control systems for road vehicles including pedestrian guidance indicator

Definitions

  • This technology relates to an approach avoidance system and a vestibular electrical stimulator. More specifically, the present technology relates to an approach avoidance system capable of avoiding the approach of an object and a specific moving object, and a vestibular electrical stimulator constituting the approach avoidance system.
  • Patent Document 1 it is possible to guide a driver who drives a vehicle that changes direction by a balance motion by utilizing an electrical stimulation to the vestibular sensation. For example, the driver is guided to avoid obstacles.
  • a driver assistance device capable of guiding is disclosed.
  • Patent Document 2 it is possible to induce human body movements by utilizing electrical stimulation to the vestibular sensation. For example, it is possible to present a direction for avoiding danger to a moving object and guide the person to an intended place.
  • a capable body guidance device is disclosed.
  • Patent Document 3 below discloses an animal guidance system capable of guiding an animal or the like that is difficult to communicate by language by stimulating the vestibular sensation.
  • Japanese Unexamined Patent Publication No. 2006-298012 Japanese Unexamined Patent Publication No. 2004-254790 Japanese Unexamined Patent Publication No. 2006-296221
  • the technique disclosed in Patent Document 1 is a collision avoidance technique corresponding to one moving object, and is intended for a person who drives a vehicle such as a bicycle or a motorcycle that changes its direction by a balanced operation. .. Therefore, in the technique disclosed in Patent Document 1, it is difficult to avoid a plurality of moving objects, and the number of target persons is limited. With the technique disclosed in Patent Document 2, it is difficult to acquire information on surrounding moving objects and guide body movements based on the information in real time. In the technique disclosed in Patent Document 3, the moving direction of the animal is visually determined by a human being who is the instructor. Therefore, the technique disclosed in Patent Document 3 cannot be said to be a technique capable of guiding a person to automatically avoid approaching a surrounding moving object.
  • the main purpose of this technology is to provide a technology that can avoid approaching moving objects existing in the surroundings.
  • the present inventor has found that the above-mentioned problems can be solved by an approach avoidance system having a specific configuration, and has completed the present technique.
  • An imaging unit that generates an image of the surrounding environment of the target at time intervals dT, The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V.
  • a moving object analysis unit that calculates the time T required for and to approach a predetermined distance, The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj.
  • a speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement
  • An electrode part for applying vestibular electrical stimulation to the subject Provided is an approach avoidance system including a current control unit that applies a vestibular electrical stimulus to the object in order to induce the object to operate at the speed dV by passing a current of a predetermined current value through the electrode unit. do.
  • the approach avoidance system searches a current value database that holds information on the speed dV of the operation induced when a current of the current value I flows through the electrode portion, and searches for a current value database corresponding to the predetermined speed dV. It may further include a current value acquisition unit for acquiring The current control unit may pass a current having the current value I through the electrode unit.
  • the approach avoidance system may further include a result confirmation unit that confirms the distance Lr between the object and the extracted moving object after the current control unit applies the vestibular electrical stimulus to the object.
  • the result confirmation unit may update the current value database when the distance Lr satisfies a predetermined condition.
  • the imaging unit may include a TOF imagen sensor and / or a millimeter wave image sensor.
  • the imaging unit may further include a visible light image sensor.
  • the approach avoidance system may include a pair of vestibular electrical stimulators. Each of the pair of vestibular electrical stimulators may include the imaging unit, the moving object analysis unit, the velocity calculation unit, the electrode unit, and the current control unit.
  • the approach avoidance system may include a pair of vestibular electrical stimulators and a mobile terminal.
  • the pair of vestibular electrical stimulators and the mobile terminal may be communicably connected.
  • Each of the pair of vestibular electrical stimulators may include the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
  • the mobile terminal may include the speed calculation unit.
  • the approach avoidance system may include a pair of vestibular electrical stimulators and an information processing device.
  • the pair of vestibular electrical stimulators and the information processing device may be communicably connected.
  • Each of the pair of vestibular electrical stimulators may include the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
  • the information processing device may include the speed calculation unit.
  • the approach avoidance system may include a mobile terminal.
  • the mobile terminal may include the imaging unit.
  • the approach avoidance system may include a mobile terminal.
  • the mobile terminal may include the imaging unit, the moving object analysis unit, the speed calculation unit, and the current value acquisition unit.
  • the approach avoidance system may further include an audio output unit that outputs audio.
  • the approach avoidance system may further include an image display unit that displays an image.
  • a position information acquisition unit in which the approach avoidance system acquires the current position information of the target, and A route selection unit that selects a route until the target reaches the destination based on the map information and the position information and acquires information about the route from the map information may be further included.
  • the speed calculation unit may use information about the route when calculating the speed dV.
  • the approach avoidance system acquires a field of view information that can identify the field of view of the target, and a field of view information acquisition unit.
  • a field of view display unit that displays the field of view information and A current value setting unit that sets a current value determined by a third party other than the target that monitors the visibility display unit as the predetermined current value may be included.
  • the approach avoidance system may include a plurality of a pair of vestibular electrical stimulators.
  • the pair of existing vestibular electrical stimulators may be communicatively connected to each other.
  • Each of the plurality of objects may be fitted with the pair of vestibular electrical stimulators.
  • the pair of vestibular electrical stimulators includes a recognition signal generator that generates a recognition signal that causes the other pair of vestibular electrical stimulators to recognize their own vestibular electrical stimulator, and a transmission / reception unit that transmits and receives the recognition signal.
  • the speed calculation unit may calculate the speed dV based on the recognition signal from the other pair of vestibular electrical stimulators received by the transmission / reception unit.
  • the approach avoidance system Based on the recognition signal from the other pair of vestibular electrical stimulators, the behavior history is obtained from the behavior history database that holds the behavior history information of the other target wearing the other pair of vestibular electrical stimulators. Information acquisition department to acquire information and A behavior prediction unit that predicts the behavior of the other target and calculates the prediction speed vector Vp based on the acquired behavior history information may be included.
  • the speed calculation unit may calculate the speed dV using the predicted speed vector Vp of the other object.
  • the target may be a person, and the moving object existing in the surrounding environment may also be a person.
  • the approach avoidance system secures a predetermined distance between the people and causes the person. It may be used to avoid crowding and closeness.
  • a pair of vestibular electrical stimulators Each of the pair of vestibular electrical stimulators An imaging unit that generates an image of the surrounding environment of the target at time intervals dT, The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V.
  • a moving object analysis unit that calculates the time T required for and to approach a predetermined distance, The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj.
  • a speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement
  • An electrode part for applying vestibular electrical stimulation to the subject
  • the pair of vestibular electrical stimuli including a current control unit that supplies a vestibular electrical stimulus to the subject in order to induce the subject to operate at the speed dV by passing a current of a predetermined current value through the electrode portion.
  • Equipment is also provided.
  • the pair of vestibular electrical stimulators may be a pair of ear-hook wearable devices.
  • Each of the pair of vestibular electrical stimulators may include the imaging unit including one or more image sensors and the electrode unit including three electrodes.
  • the approach avoidance system of the present technology performs the operation of the target (for example, a person) of the system so as to secure a predetermined distance from the moving body existing in the surrounding environment and avoid the approach to the moving body. It induces.
  • the vestibular electrical stimulation (Galvanic Vestibular Stimulation, hereinafter also referred to as GVS) is used in the approach avoidance system of the present technology.
  • GVS is a technique for inducing body movement by stimulating the vestibule, which is an organ in the inner ear that receives acceleration, with an electric current.
  • the approach avoidance system can guide the target so as to secure a predetermined distance from the surrounding moving body.
  • moving body means a moving object.
  • the moving body include humans, animals other than humans, and vehicles such as automobiles, motorcycles, and bicycles.
  • the number of moving objects that can be avoided by the approach avoidance system of the present technology is one or more, and in particular, a plurality.
  • the approach avoidance system includes a vestibular electrical stimulator (hereinafter, also referred to as a GVS device).
  • GVS devices are used in pairs.
  • the GVS device is worn near the target ear of the approach avoidance system, and is preferably an ear-hook type wearable device.
  • FIG. 1 is a diagram showing an example of the overall configuration of the approach avoidance system 1.
  • the approach avoidance system 1 shown in FIG. 1 includes a right ear GVS device 100 worn on the right ear of the user U and a left ear GVS device (not shown) worn on the left ear. Includes a pair of left and right GVS devices
  • the user U is an example of a target in the approach avoidance system of the present technology.
  • the target is not limited to humans, and may be, for example, non-human animals to which the GVS technique can be applied.
  • the overall configuration of the GVS device 100 will be described with reference to FIG. 1 .
  • the GVS device 100 shown in FIG. 1 is for the right ear, but since the GVS device for the left ear may have the same configuration, the terms for the right ear, the right ear side, the right side, and the like are omitted in the following description. May be done.
  • the GVS device 100 shown in FIG. 1 is arranged from a main body 110 arranged at the back of the ear, a first wearing part 141 arranged from the temple to the upper part of the ear, and from the back part of the ear to the nape of the neck.
  • a second mounting portion 142 is provided.
  • the GVS device 100 further includes an imaging unit 120 for imaging the surrounding environment of the user U.
  • the imaging unit 120 is composed of one or more imaging sensors per ear, and generates an image of the surrounding environment of the user U, preferably an omnidirectional image of the surrounding environment.
  • the number of image sensors included in the imaging unit 120 is one or more per ear. That is, each of the pair of GVS devices used in this embodiment includes an imaging unit 120 including one or more image sensors.
  • the number of the image sensors is preferably two or more per ear, and more preferably three or more per ear in order to expand the imaging range of the surrounding environment. If the number of image sensors is too large, the manufacturing cost will be high. Therefore, for example, the number of image sensors may be three per ear.
  • the number of the image sensor on the right ear side and the image sensor on the left ear side are preferably the same because they generate images of the surrounding environment without left-right bias.
  • the arrangement of the image sensor in the imaging unit 120 may be appropriately selected by those skilled in the art so that the surrounding environment can be captured, preferably all directions of the surrounding environment.
  • the imaging unit 120 may be composed of three image sensors 121, 122, 123 as shown in FIG.
  • the image sensor 121 is arranged near the right temple of the user U when the GVS device 100 is attached to the right ear, and generates an image of the right front environment of the surrounding environment of the user U.
  • the image sensor 122 is arranged near the upper part of the ear of the user U when the GVS device 100 is attached to the right ear, and generates an image of the right side environment of the surrounding environment of the user U.
  • the image sensor 123 is arranged near the back of the ear of the user U when the GVS device 100 is attached to the right ear, and generates an image of the right rear environment of the surrounding environment of the user U.
  • the GVS device for the left ear (not shown) also generates images of the left anterior environment, the left lateral environment, and the left posterior environment.
  • Such left and right GVS devices can generate omnidirectional images of the user U's surrounding environment.
  • the image sensor constituting the imaging unit 120 preferably includes an image sensor capable of measuring the distance between the user U and a moving object existing in the surrounding environment, and is preferably a TOF (Time of Flight) image sensor and / or millimeter. It is more preferable to include a wave image sensor.
  • the TOF image sensor is a TOF type distance image sensor, and can measure the distance to an object by using the time difference between irradiating the object with light and detecting the reflected light by the sensor.
  • the millimeter wave image sensor is a sensor that images the power intensity of the millimeter wave by recording the magnitude of the detected millimeter wave energy as the shading of the image, emits the millimeter wave to the object, and measures the return time. Therefore, the distance to the object can be measured.
  • millimeter wave image sensors can be used in environments where there are obstacles between the object and the image sensor, and in bad weather such as rain, snow, and fog. It is suitable for image generation in an environment with reduced visibility. Therefore, by using the millimeter wave image sensor, it is possible to improve the measurement accuracy of the distance in these environments.
  • the image sensor preferably further includes a visible light image sensor.
  • a visible light image sensor By imaging the surrounding environment with a visible light image sensor, more detailed information about the surrounding environment can be acquired, so that the detection accuracy of moving objects existing in the surrounding environment can be improved.
  • these image sensors may be part or all of the same type of image sensor, or all of them may be of different types of image sensors. ..
  • the GVS device 100 further includes an electrode unit 130 for giving GVS to the user U.
  • the electrode portion 130 preferably has three electrodes 131, 132, 133. These three electrodes, respectively, when the GVS device 100 is attached to the right ear, are located near the temple on the right side of the user U, near the skin on the mastoid process behind the right ear, and on the right neck muscle (for example, the mastoid process on the right side). It can be placed in three places (about 6 cm below).
  • the GVS device for the left ear also has three similar electrodes, and these three electrodes are also arranged at three locations. That is, each of the pair of GVS devices used in the present technique can include an electrode portion 130 including the above three electrodes 131, 132, 133, whereby the vestibule of the user U can be stimulated by an electric current.
  • the overall configuration of the GVS device is not limited to that shown in FIG.
  • FIG. 2 is a diagram showing an example of the overall configuration of the GVS device 101.
  • the GVS device 101 may further include an audio output unit 150 that outputs audio.
  • the audio output unit 150 may be, for example, an earphone.
  • FIG. 3 is a diagram showing another example of the overall configuration of the GVS device 102.
  • the GVS device 102 may further include a video display unit 160 for displaying video.
  • the image display unit 160 may include, for example, a function of AR (Augmented Reality) goggles, VR (Virtual Reality) goggles, or a head-mounted display.
  • FIG. 4 is a diagram showing an example of the hardware configuration of the main body 110.
  • the main body 110 includes a processor 11, a memory 12, a storage 13, a wireless communication interface 14, and a power supply 15.
  • the processor 11 is, for example, a CPU (Central Processing Unit) or the like, and controls the operation of the GVS device 100.
  • the memory 12 is, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), or the like, and stores an instruction for causing the GVS device 100 to execute an operation when executed by the processor 11.
  • the storage 13 is, for example, an SSD (Solid State Drive) or the like, and stores information and programs related to the operation and use of the GVS device 100.
  • the wireless communication interface 14 is an interface for wirelessly communicating with another device according to a predetermined wireless communication standard such as Bluetooth (registered trademark) and wireless LAN.
  • the power source 15 is, for example, a storage battery, and supplies electric power to each component of the GVS device 100. Although each piece of hardware is shown as a single piece in FIG. 4, it is merely an example, and any piece of hardware can be one or more.
  • FIG. 5 is a diagram showing an example of the functional configuration of the GVS device 100.
  • the GVS device 100 includes a moving object analysis unit 111, a speed calculation unit 112, a current value acquisition unit 113, a current control unit 114, a result confirmation unit 115, a transmission / reception unit 116, an imaging unit 120, and an electrode unit. It may include 130.
  • the moving object analysis unit 111, the speed calculation unit 112, the current value acquisition unit 113, the current control unit 114, and the result confirmation unit 115 are mainly realized by the processor 11 executing a program stored in the memory 12.
  • the transmission / reception unit 116 is mainly realized by the processor 11 executing a program stored in the memory 12 and controlling the wireless communication interface 14.
  • the imaging unit 120 is realized by the processor 11 executing a program stored in the memory 12 and controlling the image sensors 121, 122, 123.
  • the electrode unit 130 is mainly realized by the processor 11 executing a program stored in the memory 12 and controlling the electrodes 131, 132, 133.
  • FIG. 6 is a flowchart showing an example of processing executed by the GVS device 100.
  • the imaging unit 120 generates an image of the surrounding environment of the user U at a time interval dT (step S11).
  • the imaging unit 120 preferably generates an omnidirectional image of the user U's surrounding environment at a time interval dT.
  • the TOF image sensor and / or the millimeter wave image sensor and the visible light image sensor generate an omnidirectional image of the user U's surrounding environment at a time interval dT.
  • the moving body analysis unit 111 extracts information about the moving body from the information of the surrounding environment recorded in the above image (step S12). When there are a plurality of moving objects recorded in the image, the moving object analysis unit 111 can extract information about the plurality of moving objects.
  • FIG. 7 is a schematic diagram for explaining an example of the image generated by the imaging unit 120.
  • the upper right PIC1 and the lower right PIC2 in FIG. 7 are schematic views of images generated by the imaging unit 120.
  • PIC1 and PIC2 are generated at a time interval dT, and more specifically, PIC2 is generated after dT of the time when PIC1 was generated.
  • M1 to M4 recorded in PIC1 and PIC2 schematically show moving objects existing in the surrounding environment of the user U captured by the imaging unit 120.
  • the moving object analysis unit 111 can compare PIC1 and PIC2 and extract an object whose position recorded in the image has changed during the time interval dT as a moving object.
  • the moving body analysis unit 111 calculates the distance L between the user U and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the user U, and uses the distance L and the relative velocity vector V to use the user.
  • the time T required for U and the moving object to approach each other to a predetermined distance is calculated (step S13).
  • the moving object analysis unit 111 can calculate the distance L, the relative velocity vector V, and the time T for each of the plurality of moving objects.
  • the time T is, in other words, the time until the user U and the moving object come into contact with each other or collide with each other.
  • the predetermined distance may be stored in the memory 12 in advance, or may be updated at any time, for example.
  • FIG. 8 is a schematic diagram showing a distance L, a relative velocity vector V, and a time T.
  • the upper left PIC3 and the lower left PIC4 in FIG. 8 are schematic views of images including moving objects M1 to M4 generated by the imaging unit 120 at a time interval dT.
  • U in PIC3 and PIC4 schematically indicates the position of the user.
  • L in PIC3 and PIC4 indicates the distance L between the user U and the moving body M4.
  • the PIC5 on the right side of FIG. 8 includes an arrow schematically showing the relative velocity vectors V of the moving objects M1 to M4.
  • the arrow on the moving body M1 in the PIC 5 indicates the relative velocity vector V1 of the moving body M1 calculated by the moving body analysis unit 111.
  • the arrow on the moving body M2 in the PIC 5 indicates the relative velocity vector V2 of the moving body M2 calculated by the moving body analysis unit 111.
  • T1 in PIC5 means the time required for the user U and the moving body M1 to approach each other to a predetermined distance.
  • T2 in PIC5 means the time required for the user U and the moving body M2 to approach each other to a predetermined distance.
  • the moving body analysis unit 111 does not have to calculate the time T of the moving bodies M3 and M4. That is, the moving object analysis unit 111 does not have to calculate the time T for the user U and the moving object whose relative velocity vector V does not face the user U. In this case, for example, after calculating the relative velocity vector V with respect to the user U, the moving object analysis unit 111 selects a moving object in which the relative velocity vector V does not face the direction of the user U from among the moving objects existing in the surroundings. Can be determined.
  • the moving body analysis unit 111 can calculate the time T required for the user U and the moving body excluding the non-approaching moving body to approach each other to a predetermined distance. That is, the moving body analysis unit 111 can execute the process of not calculating the time T of the non-approaching moving body.
  • step S14 will be described.
  • the velocity calculation unit 112 extracts a moving body whose time T is within the determination time Tj (step S14).
  • the determination time Tj may be, for example, a time during which the user U and the moving object are predicted to approach each other under a predetermined situation. Specifically, the user U and the moving object collide with each other and come into contact with each other under a predetermined situation. Or it may be the time expected to approach a predetermined distance. As a result, the speed calculation unit 112 collides with, contacts, or a predetermined distance with the user U from among the moving bodies for which the time T is calculated in step S13. It is possible to extract moving objects that are expected to approach.
  • the determination time Tj may be 2 seconds, which is the time until the collision.
  • the determination time Tj may be stored in the memory 12 in advance, or may be updated at any time, for example.
  • Step S15 will be described with reference to FIG.
  • the speed calculation unit 112 represents a speed dV indicating the magnitude and direction of the motion to be taken by the user U so that the distance Lj between the user U and the extracted moving object becomes a predetermined distance after the determination time Tj. Is calculated (step S15).
  • the predetermined distance in step S15 may be a distance at which the user U and the extracted moving object do not approach each other after the determination time Tj, and more specifically, the user U after the determination time Tj. It can be a distance at which the extracted moving body does not collide with, touch with, or approach a predetermined distance.
  • the velocity calculation unit 113 makes the user U approach the extracted moving object after the determination time Tj (more specifically, the user U collides with the extracted moving object after the determination time Tj, and comes into contact with the extracted moving object. It is possible to calculate the magnitude and direction of the movement that can avoid (or approaching a predetermined distance).
  • the value of the predetermined distance may be stored in the memory 12 in advance, or may be updated at any time, for example.
  • the speed dV represents the magnitude and direction of the action that the user U should take so that the distance Lj between the user U and the extracted moving object becomes a predetermined distance after the determination time Tj.
  • the velocity dV represents the magnitude and direction of the operation that can prevent the user U from approaching the extracted moving body after the determination time Tj. More specifically, the velocity dV represents the magnitude and direction of movement that can prevent the user U from colliding with, touching, or approaching a predetermined distance with the extracted moving object after the determination time Tj.
  • the velocity dV is calculated so that the distance between the user U and all the extracted moving objects is a predetermined distance. This makes it possible to induce an operation by GVS that can avoid approaching all the extracted moving objects.
  • the velocity calculation unit 112 calculates the velocity dV by using, for example, the distance L between the user U and the moving object existing in the surrounding environment, the relative velocity vector V of the moving object with respect to the user U, and the determination time Tj. Can be done.
  • FIG. 9 is a schematic diagram for explaining an example of the processing executed by the speed calculation unit 112.
  • the left side of FIG. 9 schematically shows that the time T1 required for the user U and the moving body M1 to approach each other to a predetermined distance calculated in step S13 is within 1 second. Further, the left side of FIG. 9 schematically shows that the time T2 required for the user U and the moving body M2 to approach each other to a predetermined distance, which is similarly calculated in step S13, is more than 2 seconds.
  • the speed calculation unit 112 determines in step S14 that the time T1 is within the determination time Tj (that is, within 2 seconds) from the two moving objects M1 and M2. Extract M1.
  • the right side of FIG. 9 shows an example in which the direction of the velocity dV is set in the direction perpendicular to the relative velocity vector V1 of the moving body M1.
  • the GVS device 100 may include a current value acquisition unit 113, although it is not essential.
  • the current value acquisition unit 113 searches a current value database that holds information on the speed dV of the operation induced when a current of the current value I flows through the electrode unit 130, and searches for a current value database corresponding to a predetermined speed dV. Acquire I (step S16).
  • the current value database may be provided in the GVS device 100, or may be located outside the GVS device 100 such as a cloud database.
  • the initial construction of the current value database can be performed, for example, by using the correspondence between the current value I obtained by the experimental method and the velocity dV. That is, the experiment of applying a current of the current value I to the electrode portion of the GVS device with a specific target equipped with the GVS device as a subject and recording the information of the speed dV of the operation induced at that time is repeated.
  • the correspondence between the current value I and the velocity dV thus obtained can be used for constructing the current value database.
  • the information held in the constructed current value database may be updated at any time.
  • the speed dV of the operation induced by the current value I may differ depending on the target.
  • the current value database unique to the user U can be preferably used as the current value database.
  • the unique current value database of the user U can be constructed by associating the current value I with the velocity dV based on the result of the user U using the approach avoidance system of the present embodiment.
  • the user U's unique current value database may further hold the attribute information of the user U.
  • the attribute information may include, for example, one or more selected from the group consisting of nationality, gender, age, height, and weight.
  • a current value database group in which a plurality of current value databases holding the attribute information of the user U are aggregated may be constructed.
  • the current value database group is preferably a cloud database. Even if the current value acquisition unit 113 searches for a predetermined current value database selected by referring to the attribute information from the current value database group and acquires the current value I corresponding to the predetermined speed dV. good. For example, the user U has little track record of using the approach avoidance system of the present embodiment, and it may be difficult to construct a unique current value database that reflects individual differences.
  • the current value acquisition unit 113 selects the current value database of another user whose attribute information is close to that of the user U from the current value database group, and searches the current value database of the other user. Therefore, the current value I corresponding to the predetermined speed dV may be acquired.
  • the current value database of other users with similar attribute information, it is possible to reduce the difference in the effect of GVS due to individual differences. As a result, since the operation of the user U can be guided by GVS with high accuracy, the accuracy of avoiding approach with a moving object in the approach avoidance system of the present embodiment can be improved.
  • FIG. 10 is a schematic diagram showing an example of information on the current value I and the velocity dV held in the current value database.
  • the unit of the current value I is mA.
  • the current value acquisition unit 113 can acquire the current value I corresponding to a predetermined speed dV.
  • step S17 will be described.
  • the current control unit 114 passes a current having a current value I through the electrode unit 130, and gives the user U a GVS to induce the user U to operate at the speed dV (step S17).
  • the current control unit 114 causes a current having a predetermined current value to flow through the electrode unit 130.
  • the current control unit 114 can select, for example, an electrode through which a current having a current value I is passed from among the three electrodes 131, 132, and 133 constituting the electrode unit 130.
  • FIG. 11 is a schematic view showing three electrodes 131, 132, 133 arranged near the right ear of the user U and the directions (X, Y, and Z directions) of the user U.
  • the electrode 131 is arranged near the temple on the right side
  • the electrode 132 is arranged near the skin on the mastoid process on the right side
  • the electrode 133 is arranged near the neck muscle portion on the right side.
  • Similar three electrodes are also arranged near the left ear of the user U (not shown).
  • the X direction indicates the front-back direction of the user U
  • the Y direction indicates the left-right direction of the user U
  • the Z direction indicates the up-down direction of the user U.
  • the current control unit 114 passes a current through electrodes arranged near the skin on the left and right mastoid processes.
  • the current control unit 114 passes a current through an electrode arranged near the skin on the mastoid process and an electrode arranged near the temple. ..
  • the current control unit 114 passes a current through an electrode arranged near the skin on the mastoid process on the right side and an electrode arranged near the temple on the right side.
  • the current control unit 114 when inducing to the left, passes a current through an electrode arranged near the skin on the mastoid process on the left side and an electrode arranged near the temple on the left side. Further, in the case of GVS that induces the user U to move in the vertical direction Z, the current control unit 114 includes electrodes arranged near the skin on the left and right mastoid processes and electrodes arranged on the left and right mastoid muscles. Apply current to.
  • the current control unit 114 When a current of a predetermined current value (current value I) is passed through the electrode unit 130, the current control unit 114 gradually increases the current value, and after a lapse of a predetermined time, the predetermined current value (current value I). It is preferable to adjust so as to be. This makes it possible to prevent the user U from feeling the stimulus when the current is applied.
  • the approach avoidance system of the present embodiment can induce the user U to perform an operation that can avoid approaching a moving object existing in the surroundings by executing the above step S17 and giving the user U a GVS. As a result, the user U can avoid approaching the moving objects existing in the surroundings.
  • the moving body is not limited to one, and may be two or more.
  • the GVS device 100 may include a result confirmation unit 115, although it is not essential.
  • the result confirmation unit 115 confirms the distance Lr between the user U and the extracted moving object after the current control unit 114 gives the GVS to the user U (step S18).
  • the result confirmation unit 115 ends the process.
  • the result confirmation unit 115 updates the current value database (step S19), and ends the process.
  • the predetermined condition in step S18 can be, for example, a condition that can confirm that the user U has been able to avoid colliding with, contacting, or approaching a predetermined distance with a moving object as a result of an actual operation.
  • the predetermined condition may be, for example, that the Lr matches the Lj.
  • the predetermined condition may be, for example, that the difference between the distance Lr and the distance Lj is within the predetermined value, and thereby it can be confirmed that the error between the distance Lr and the distance Lj is within the predetermined value. ..
  • the predetermined condition may be, for example, that the distance Lr is a predetermined value, and thereby it can be confirmed that the actual distance is a predetermined value and the predetermined distance is actually secured.
  • the predetermined condition may be, for example, that the distance Lr is not zero, which can confirm that no collision or contact actually occurred.
  • step S19 the result confirmation unit 115 updates the current value database when the distance Lr satisfies a predetermined condition.
  • the result confirmation unit 115 updates the current value database, for example, when it is confirmed that the user U can avoid colliding with, touching, or approaching a predetermined distance as a result of the actual operation. can do.
  • the result of using the approach avoidance system of the present embodiment by the user U can be reflected in the current value database, so that the user U's unique current value database can be constructed.
  • Such a user-specific current value database can contribute to improving the approach avoidance accuracy in the approach avoidance system.
  • the approach avoidance system according to the second embodiment of the present technology includes a pair of GVS devices and a mobile terminal.
  • the pair of GVS devices and the mobile terminal can be communicably connected.
  • the approach avoidance system of the present embodiment is mainly different from the first embodiment in that the mobile terminal includes an imaging unit and the GVS device includes other functional units.
  • the approach avoidance system of the present embodiment will be mainly described as being different from the first embodiment.
  • those to which the same description as that of the first embodiment is applied are designated by the same reference numerals as those of the first embodiment.
  • FIG. 12 is a diagram showing an example of the overall configuration of the approach avoidance system 1A of the second embodiment.
  • the approach avoidance system 1A shown in FIG. 12 includes a pair of left and right GVS devices including a right ear GVS device 100A and a left ear GVS device (not shown), and a mobile terminal 200A.
  • the GVS device 100A shown in FIG. 12 does not include an imaging unit, and specifically does not include an imaging sensor. Instead, the mobile terminal 200A is configured to include an imaging unit, specifically including an imaging sensor (not shown). The functions of the imaging unit included in the mobile terminal 200A are as described in the first embodiment. The image sensor constituting the imaging unit is also as described in the first embodiment.
  • the mobile terminal 200A is a portable computer device having a communication function.
  • the mobile terminal 200A can be, for example, a mobile phone, a smartphone, a tablet terminal, or the like.
  • the hardware configuration of the mobile terminal 200A may be the same as that of a general computer device having a communication function.
  • the mobile terminal 200A can include a processor, a memory, a wireless communication interface, an input device, and an output device.
  • the function of the mobile terminal 200A is basically realized by the processor executing a predetermined control program stored in the memory.
  • FIG. 13 is a diagram showing an example of the functional configuration of the approach avoidance system 1A according to the second embodiment.
  • the GVS device 100A does not include an imaging unit.
  • the functional unit included in the GVS device 100A is the same as the functional unit of the GVS device 100 described with reference to FIG. 5 in the first embodiment, except for the imaging unit.
  • the mobile terminal 200A includes an imaging unit 201 and a wireless communication unit 205.
  • the function of the imaging unit 120 is as described in the first embodiment.
  • the wireless communication unit 205 is realized by, for example, a wireless communication interface included in the mobile terminal 200. Wireless communication is performed between the wireless communication unit 205 of the mobile terminal 200A and the transmission / reception unit 116 of the GVS device 100A.
  • the operation of the mobile terminal 200A and the GVS device 100A that is, the process executed by the approach avoidance system 1A of the present embodiment will be described.
  • the flow of processing executed by the approach avoidance system 1A may be generally the same as the flow of processing executed by the approach avoidance system 1 of the first embodiment described above with reference to FIG.
  • the approach of the first embodiment is that the mobile terminal 200A executes the process of step S11 shown in FIG. 6 and the GVS device 100A executes the process of another step. This is the main difference from the avoidance system 1.
  • the transmission and reception of necessary information between the mobile terminal 200A and the GVS device 100A is performed by wireless communication.
  • the approach avoidance system according to the third embodiment of the present technology includes a pair of GVS devices and a mobile terminal.
  • the pair of GVS devices and the mobile terminal can be communicably connected.
  • the mobile terminal includes an imaging unit, a moving object analysis unit, a speed calculation unit, and a current value acquisition unit
  • the GVS device includes other functional units.
  • the main difference is.
  • the approach avoidance system of the present embodiment will be mainly described in that it differs from the first or second embodiment.
  • those to which the same description as that of the first or second embodiment is applied are designated by the same reference numerals as those of the first or second embodiment.
  • FIG. 14 is a diagram showing an example of the overall configuration of the approach avoidance system 1B of the third embodiment.
  • FIG. 15 is a diagram showing an example of the functional configuration of the approach avoidance system 1B of the third embodiment.
  • the approach avoidance system 1B includes a pair of left and right GVS devices including a right ear GVS device 100B and a left ear GVS device (not shown), a mobile terminal 200B, and a mobile terminal 200B.
  • the current value database 500 can be, for example, a cloud database.
  • the mobile terminal 200B is a portable computer terminal having a communication function, and may be, for example, a mobile phone, a smartphone, a tablet terminal, or the like.
  • the hardware configuration of the mobile terminal 200B may be the same as that of the mobile terminal 200A described in the second embodiment.
  • the function of the mobile terminal 200B is basically realized by the processor executing a predetermined control program stored in the memory.
  • the mobile terminal 200B may include an imaging unit 201, a moving object analysis unit 202, a speed calculation unit 203, a current value acquisition unit 204, and a wireless communication unit 205 as functional units.
  • the GVS device 100B may include a current control unit 114, a result confirmation unit 115, a transmission / reception unit 116, and an electrode unit 130 as functional units.
  • the flow of processing executed by the approach avoidance system 1B may be generally the same as the flow of processing executed by the approach avoidance system 1 of the first embodiment described above with reference to FIG. ..
  • the GVS device 100B executes the processes of steps S17 to S19 shown in FIG. 6, and the mobile terminal 200B executes the processes of other steps, that is, the first embodiment. This is the main difference from the approach avoidance system 1.
  • the current value database searched by the current value acquisition unit 204 of the mobile terminal 200B in step S16 shown in FIG. 6 is the current value database shown in FIGS. 14 and 15. It is 500 (cloud database).
  • the approach avoidance system according to the fourth embodiment of the present technology includes a pair of GVS devices and a mobile terminal.
  • the pair of GVS devices and the mobile terminal can be communicably connected.
  • the approach avoidance system of the present embodiment is mainly different from the first embodiment in that the mobile terminal includes a speed calculation unit and the GVS device includes other functional units.
  • the mobile terminal used in the present embodiment is a portable computer terminal having a communication function, and may be, for example, a mobile phone, a smartphone, a tablet terminal, or the like.
  • the hardware configuration of the mobile terminal may be the same as the mobile terminal 200A described in the second embodiment.
  • the function of the mobile terminal is basically realized by the processor executing a predetermined control program stored in the memory.
  • the mobile terminal used in this embodiment includes a speed calculation unit and a wireless communication unit as functional units.
  • Each of the pair of GVS devices used in the present embodiment may include an imaging unit, a moving object analysis unit, a current value acquisition unit, a current control unit, a result confirmation unit, a transmission / reception unit, and an electrode unit as functional units.
  • the flow of processing executed by the approach avoidance system 1 of the present embodiment is generally the same as the flow of processing executed by the approach avoidance system 1 of the first embodiment described above with reference to FIG. sell.
  • the first embodiment is that the speed calculation unit of the mobile terminal executes the processes of steps S14 and S15 shown in FIG. 6, and the GVS device executes the processes of the other steps. This is the main difference from the processing executed by the approach avoidance system 1 of the form.
  • the approach avoidance system according to the fifth embodiment of the present technology includes a pair of GVS devices and an information processing device.
  • the pair of GVS devices and the information processing device can be communicably connected to each other.
  • the information processing device executes the process executed by the mobile terminal in the approach avoidance system of the fourth embodiment. That is, the approach avoidance system of the present embodiment can be the same as that of the fourth embodiment except that the mobile terminal used in the fourth embodiment is replaced with an information processing device.
  • the information processing device is a computer device having a communication function, and may be, for example, a server device.
  • the server device may be one or more physical servers, or may be one or more virtual servers built on one or more physical servers.
  • the plurality of physical servers may be geographically located at the same location, or may be geographically distributed.
  • the hardware configuration of the information processing device can be the same as that of a general computer device having a communication function.
  • the information processing device may include a processor, a memory, a communication interface, an input device, and an output device.
  • the function of the information processing device is basically realized by the processor executing a predetermined control program stored in the memory.
  • the information processing device used in the present embodiment includes the same functional unit as the mobile terminal described in the fourth embodiment, and specifically includes a speed calculation unit and a wireless communication unit.
  • Each of the pair of GVS devices used in the present embodiment has an imaging unit, a moving object analysis unit, a current value acquisition unit, a current control unit, and a result confirmation unit as functional units, similarly to the GVS equipment of the fourth embodiment.
  • Transmission / reception unit, and electrode unit may be included.
  • the speed calculation unit of the information processing device executes the processes of steps S14 and S15 shown in FIG. 6, and the GVS device executes the processes of the other steps.
  • the approach avoidance system according to the sixth embodiment of the present technology includes a pair of GVS devices.
  • the approach avoidance system of the present embodiment is different from the first embodiment in that it uses position information and map information.
  • the approach avoidance system of the present embodiment will be mainly described as being different from the first embodiment.
  • those to which the same description as that of the first embodiment is applied are designated by the same reference numerals as those of the first embodiment.
  • FIG. 16 is a diagram showing an example of the overall configuration of the approach avoidance system 1C according to the sixth embodiment.
  • FIG. 17 is a diagram showing an example of the functional configuration of the approach avoidance system 1C of the sixth embodiment.
  • the approach avoidance system 1C holds a pair of left and right GVS devices including a right ear GVS device 100C and a left ear GVS device (not shown), and map information.
  • the map information database 600 to be used is included.
  • the map information database 600 can be, for example, a cloud database.
  • the hardware configuration of the main body 110C of the GVS device 100C shown in FIG. 16 includes a position information acquisition device in addition to the hardware components of the main body 110 of the first embodiment described with reference to FIG. include.
  • the position information acquisition device is composed of, for example, a GPS (Global Positioning System) receiver or the like, and acquires the current position information of the GVS device 100C, that is, the current position information of the user U.
  • GPS Global Positioning System
  • the functional unit of the GVS device 100C shown in FIG. 17 includes a position information acquisition unit 117 and a route selection unit 118, which is different from the GVS device 100 used in the first embodiment described with reference to FIG. It is a point.
  • the position information acquisition unit 117 is mainly realized by a processor, a memory, and a position information acquisition device.
  • the route selection unit 118 is mainly realized by a processor and a memory.
  • FIG. 18 is a flowchart showing an example of processing executed by the GVS device 100C.
  • the flowchart shown in FIG. 18 is different from the flow of the first embodiment described above with reference to FIG. 6 in that it includes steps S15C and S21 to S23.
  • the other steps, that is, steps S11 to S14 and S16 to S19, are as described in the first embodiment.
  • the position information acquisition unit 117 acquires the current position information of the user U (step S21).
  • the route selection unit 118 selects a route until the user U reaches the destination based on the map information stored in the map information database 600 and the position information acquired in step S21 ().
  • Information about the destination may be preset.
  • the GVS device 100C may include an input device that receives input of information from the user U, and the information about the destination received by the input device may be stored in the memory 12.
  • the route selection unit 118 acquires information related to the above route (hereinafter, also referred to as route information) from the map information (step S23).
  • the route information may include, for example, information about obstacles existing on the route.
  • steps S21 to S23 may be performed in parallel with the processes of steps S11 to S14 shown in FIG. 18, for example.
  • the speed calculation unit 112 can use the information related to the route when calculating the speed dV (step S15C).
  • the method for calculating the speed dV is as described in step S15 in the first embodiment.
  • the approach avoidance system 1C of the present embodiment can calculate the speed dV in consideration of the route information. Therefore, the approach avoidance system 1C can guide the operation of the user U so as to follow the route selected in step S22, that is, can automatically guide the user U to the destination. Further, when the route information includes information about an obstacle existing in the route, the approach avoidance system 1C can guide the user U so that the user U can reach the destination while avoiding the approach to the obstacle. ..
  • the approach avoidance system according to the seventh embodiment of the present technology includes a pair of GVS devices.
  • the approach avoidance system of the present embodiment further includes an operation terminal device used by a third party other than the user, and the third party can remotely control the GVS device. It's different. More specifically, the third party can remotely control the GVS device worn by the user while monitoring the user's visual field information by using the approach avoidance system of the present embodiment.
  • the approach avoidance system of the present embodiment will be mainly described as being different from the first embodiment.
  • those to which the same description as that of the first embodiment is applied are designated by the same reference numerals as those of the first embodiment.
  • FIG. 19 is a diagram showing an example of the overall configuration of the approach avoidance system 1D according to the seventh embodiment.
  • FIG. 20 is a diagram showing an example of the functional configuration of the approach avoidance system 1D according to the seventh embodiment.
  • the approach avoidance system 1D includes a pair of left and right GVS devices including a right ear GVS device 100 and a left ear GVS device (not shown), and a device other than the user U.
  • the pair of GVS devices and the operation terminal device 300 can be communicably connected to each other.
  • the operation terminal device 300 may be a device capable of remotely controlling a pair of GVS devices.
  • the operation terminal device 300 is a computer device having a communication function.
  • the operation terminal device 300 is, for example, a smartphone, a mobile phone, a tablet terminal, a laptop personal computer, a desktop personal computer, or the like.
  • the hardware configuration of the operation terminal device 300 may be the same as that of a general computer device having a communication function.
  • the operation terminal device 300 can include a processor, a memory, a communication interface, an input device, and an output device.
  • the function of the operation terminal device 300 is basically realized by the processor executing a predetermined control program stored in the memory.
  • the operation terminal device 300 includes a field of view information acquisition unit 301, a field of view display unit 302, and a current value setting unit 303 as functional units.
  • FIG. 21 is a flowchart showing an example of processing executed by the GVS device 100 and the operation terminal device 300.
  • the flowchart shown in FIG. 21 is different from the flow of the first embodiment described above with reference to FIG. 6 in that it includes steps S31 to S34.
  • the other steps, that is, steps S11 to S19, are as described in the first embodiment.
  • the field of view information acquisition unit 301 acquires the field of view information that can specify the field of view of the user U (step S31).
  • the field of view information may be, for example, image information capable of confirming a range that the user U can see with his / her eyes.
  • the field of view information may be image information capable of confirming a moving object existing in a range that the user U can see with his / her eyes.
  • the field of view information may be, for example, information acquired by the imaging unit 120 of the GVS device 100, or information acquired by a wearable device other than the GVS device 100 mounted on the user U.
  • the field of view display unit 302 displays the field of view information of the user U acquired in step S31 (step S32).
  • the field of view display unit 302 may display the field of view information on an output device (for example, a display) of the operation terminal device 300, for example.
  • the third party can monitor the field of view display unit 302, whereby the field of view of the user U can be captured over time.
  • the current value I acquired by the current value acquisition unit 113 from the current value database in step S16 may be referred to by the third party (step S33).
  • the current value acquisition unit 113 is not an essential functional unit.
  • the current value that can be referred to in step S33 may be a predetermined current value that can be applied to the electrode unit 130 instead of the current value I.
  • the current value setting unit 303 can set the current value determined by the third party who monitors the field of view display unit 302 as the current value I (or as a predetermined current value) (step S34).
  • the current control unit 114 causes the current of the current value set by the current value setting unit 303 to flow to the electrode unit 130.
  • a person eg, a child, a visually impaired person, or a dementia patient who is considered to have a relatively high risk of colliding with or coming into contact with surrounding moving objects while walking is a user of the approach avoidance system 1D. It may be.
  • a third party monitors the visibility information of the user by using the approach avoidance system 1D of the present embodiment and determines that the user may collide with a moving object, a predetermined value is determined. It is possible to set a current value to guide the user to avoid approaching a moving object. As a result, a third party can support safe walking while watching over the user from a remote location.
  • the target of the approach avoidance system 1D of the present embodiment is not limited to the above-mentioned human beings, and may be, for example, another human being or an animal other than a human being.
  • the GVS device worn by the user may include a microphone that acquires sounds such as the user's voice and ambient environmental sounds.
  • the user may wear a pressure sensor on his finger.
  • the operation terminal device operated by a third party other than the user may be provided with a microphone for acquiring sound and a speaker for outputting sound, and the third party may wear a pressure sensor on his / her finger.
  • the GVS device, the pressure sensor, and the operation terminal device are configured to be able to communicate with each other wirelessly (for example, Bluetooth®).
  • a third party can control the user's operation while feeling the user's surrounding environment in real time while being remote. Therefore, this modification can also be applied to entertainment applications such as remote travel or dating.
  • the approach avoidance system according to the eighth embodiment of the present technology includes a plurality of a pair of GVS devices.
  • a plurality of pairs of GVS devices can be connected to each other so as to be able to communicate with each other.
  • the approach avoidance system of the present embodiment will be mainly described in that it differs from the first embodiment.
  • FIG. 22 is a diagram showing an example of the overall configuration of the approach avoidance system 10 of the eighth embodiment.
  • FIG. 23 is a diagram showing an example of the functional configuration of the approach avoidance system 10 of the eighth embodiment.
  • the user Ua is equipped with the GVS device 100a
  • the user Ub is equipped with the GVS device 100b. That is, the approach avoidance system 10 of the present embodiment targets a plurality of users, and each of the plurality of users wears a GVS device.
  • the GVS device 100a and the GVS device 100b shown in FIG. 22 are a pair of left and right GVS devices composed of one for the right ear and one for the left ear, respectively. That is, the approach avoidance system 10 shown in FIG. 22 includes two pairs of GVS devices.
  • the number of pairs of GVS devices used in this embodiment is not limited to two, and may be two or more.
  • the GVS device 100a includes a recognition signal generation unit 119a
  • the GVS device 100b includes a recognition signal generation unit 119b.
  • These recognition signal generation units 119a and 119b are different from the GVS device 100 used in the first embodiment.
  • the functional units other than the recognition signal generation units 119a and 119b are as described in the first embodiment.
  • the recognition signal generation unit 119a of the GVS device 100a generates a recognition signal for causing another GVS device 100b to recognize its own GVS device 100a.
  • the recognition signal generation unit 119b of the GVS device 100b generates a recognition signal for causing another GVS device 100a to recognize its own GVS device 100b.
  • each of the pair of GVS devices 100a and 100b includes a recognition signal generation unit that generates a recognition signal that causes another GVS device to recognize its own GVS device.
  • the recognition signal can include, for example, information about its own GVS device, and specifically can include information about the magnitude and direction of the user's movements guided by its own GVS device.
  • the GVS devices 100a and 100b include transmission / reception units 116a and 116b for transmitting and receiving the recognition signal, respectively.
  • the recognition signal may be, for example, an RF signal, and in this case, the transmission / reception units 116a and 116b may be RF transmission / reception units.
  • the GVS devices 100a and 100b used in the present embodiment can use the recognition signals to avoid approaching each other.
  • the speed calculation unit 112a of the GVS device 100a can calculate the speed dV based on the recognition signal from the other GVS device 100b received by the transmission / reception unit 116a.
  • the speed calculation unit 112b of the GVS device 100b can calculate the speed dV based on the recognition signal from the other GVS device 100a received by the transmission / reception unit 116b.
  • the method of calculating the speed dV is as described in step S15 in the first embodiment.
  • the recognition signal includes information on the magnitude and direction of the user's movement as described above
  • the speed dV is calculated using the recognition signal from another GVS device to avoid approaching another user. A possible speed dV can be obtained.
  • the approach avoidance system according to the ninth embodiment of the present technology includes a plurality of a pair of GVS devices.
  • a plurality of pairs of GVS devices can be connected to each other so as to be able to communicate with each other.
  • the approach avoidance system of the present embodiment further includes an action history database, and the use of the action history database is the main difference from the eighth embodiment.
  • the approach avoidance system of the present embodiment will be mainly described as being different from the eighth embodiment.
  • those to which the same description as that of the eighth embodiment is applied are designated by the same reference numerals as those of the eighth embodiment.
  • FIG. 24 is a diagram showing an example of the overall configuration of the approach avoidance system 10A of the ninth embodiment.
  • the approach avoidance system 10A of the present embodiment includes the action history management device 700.
  • the action history management device 700 is a computer device having a communication function, and may be, for example, a cloud server.
  • the action history management device 700 may be communicably connected to one or more pairs of GVS devices.
  • the hardware configuration of the behavior history management device 700 may be the same as that of a general computer device having a communication function.
  • the action history management device 700 may include, for example, a processor, a memory, a communication interface, an input device, and an output device.
  • the function of the action history management device 700 is basically realized by the processor executing a predetermined control program stored in the memory.
  • the action history management device 700 includes an action history database.
  • the action history database holds the action history information for each user.
  • the behavior history information may be, for example, information related to the past behavior of the user wearing the GVS device, specifically, time information, GPS information, map information, acceleration information, imaging information of the surrounding environment, and the like. Can be included.
  • the GVS devices 100a and 100b used in the present embodiment include functional parts of the GVS devices 100a and 100b in the eighth embodiment described with reference to FIG. 23, respectively. Further, each of the GVS devices 100a and 100b used in the present embodiment includes an information acquisition unit as a functional unit.
  • the information acquisition unit acquires the behavior history of the other user from the behavior history database that holds the behavior history of the other user wearing the other GVS device based on the recognition signal from the other GVS device. I can do it.
  • the information acquisition unit of the GVS device 100a can obtain the action history of another user Ub wearing the other GVS device 100b based on the recognition signal from the other GVS device 100b from the action history database.
  • the action history of the user Ub can be acquired.
  • the action history management device 700 may include an action prediction unit as a functional unit.
  • the behavior prediction unit can predict the user's behavior and calculate the prediction speed vector Vp based on the behavior history information.
  • the behavior prediction unit can be realized by machine learning such as deep learning.
  • Each information acquisition unit of the GVS devices 100a and 100b can acquire the predicted speed vector Vp from the action prediction unit of the action history management device 700.
  • the GVS device 100a can acquire the predicted speed vector Vp of another user Ub who wears the other GVS device 100b.
  • the speed calculation unit 112a of the GVS device 100a can calculate the speed dV by using the predicted speed vector Vp of the other user Ub. In this way, by calculating the speed dV using the predicted speed vector Vp of the other user, it is possible to avoid approaching the other user more accurately.
  • the tenth embodiment of the present technology is an approach avoidance system of the present technology, which is used to avoid crowding and close contact of people.
  • the target is a human being
  • the moving object existing in the surrounding environment is also a human being.
  • the approach avoidance system for avoiding crowding and closeness of people can be used, for example, for a service to prevent crowding and close contact when a child is exercising or playing.
  • a service to prevent crowding and close contact when a child is exercising or playing.
  • an example of the service will be described.
  • the user of the service enters the necessary information on the website for applying for the service, or goes to the place where the service is provided and fills in the necessary items on the paper, regarding the service provider and the use of the service.
  • the devices and services provided to users are operated by, for example, GVS devices, regular maintenance of approach avoidance systems, current value databases of GVS devices, behavior history databases of other users, and third parties (especially parents of children). It can be a control tool and video or game content that can be viewed by AR goggles, VR goggles, or a head-mounted display.
  • the above services can prevent crowding and closeness in places where children tend to be dense, such as parks, school playgrounds, and amusement parks.
  • the basic configuration of the approach avoidance system of this technology can be applied to, for example, a technique for suppressing motion sickness.
  • a motion sickness suppression system will be described as a modification of the present technology.
  • the vehicle sickness suppression system is a technology for automobiles that is fully automated and has a full-screen display of the vehicle window, and aims to suppress vehicle sickness of a person occupying the vehicle.
  • the imaging unit described in the above embodiment is configured as an infrared and visible light imaging unit. Then, this system uses the GVS device described in the above embodiment not for avoiding approaching a moving object but for suppressing sickness in a vehicle caused by a difference between an actual acceleration and an acceleration in an image.
  • FIG. 26 is a schematic diagram for explaining an example of the motion sickness suppression system 20 of this modified example.
  • the motion sickness suppression system 20 includes a pair of left and right GVS devices including a GVS device 103 for the right ear and a GVS device for the left ear (not shown).
  • the user U who wears the pair of GVS devices is also the passenger of the automobile 800 shown in FIG. The entire surface of the window of the automobile 800 is displayed.
  • the automobile 800 includes a visible light image sensor unit, an infrared image sensor unit, a complexion determination unit, a vehicle body acceleration sensor unit, a display image processing unit, and a motion analysis unit.
  • the visible light image sensor unit identifies the face of the passenger (user U) by visible light imaging.
  • the infrared image sensor unit determines the fluctuation of the amount of hemoglobin in the blood of the passenger by near-infrared imaging, and calculates the pulse change.
  • a plurality of the visible light image sensor unit and the infrared image sensor unit may be mounted inside the automobile 800, respectively, whereby the states of the plurality of passengers can be individually determined.
  • the complexion determination unit determines the complexion of the passenger using the information obtained from the visible light image sensor unit and the infrared image sensor unit.
  • the complexion determination unit determines that the passenger is in a stressed state, which is a sign of sickness, when the complexion exceeds a predetermined threshold value.
  • the vehicle body acceleration sensor unit extracts the acceleration of the automobile 800.
  • the display image processing unit extracts the acceleration in the image displayed on the display of the vehicle window.
  • the motion analysis unit calculates the difference between the acceleration of the automobile 800 and the acceleration in the image.
  • the GVS device 103 determines the current value applied to the electrodes in the device so as to make up for the difference.
  • a database in which acceleration and current value are associated may be created, and the current value applied to the electrodes of the GVS device 103 may be determined using the database. good.
  • the present technology can also have the following configurations.
  • An imaging unit that generates an image of the surrounding environment of the target at time intervals dT, The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V.
  • a moving object analysis unit that calculates the time T required for and to approach a predetermined distance, The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj.
  • a speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement
  • An electrode part for applying vestibular electrical stimulation to the subject An approach avoidance system including a current control unit that applies a vestibular electrical stimulus to the object in order to induce the object to operate at the speed dV by passing a current of a predetermined current value through the electrode unit.
  • a current control unit that applies a vestibular electrical stimulus to the object in order to induce the object to operate at the speed dV by passing a current of a predetermined current value through the electrode unit.
  • the current control unit further includes a result confirmation unit that confirms the distance Lr between the object and the extracted moving object after the vestibular electrical stimulation is applied to the object.
  • the imaging unit further includes a visible light image sensor.
  • the approach avoidance system includes a pair of vestibular electrical stimulators.
  • Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the speed calculation unit, the electrode unit, and the current control unit, in any one of [1] to [5].
  • the approach avoidance system includes a pair of vestibular electrical stimulators and a mobile terminal. The pair of vestibular electrical stimulators and the mobile terminal are communicably connected to each other.
  • Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
  • the approach avoidance system according to any one of [1] to [6], wherein the mobile terminal includes the speed calculation unit.
  • the approach avoidance system includes a pair of vestibular electrical stimulators and an information processing device.
  • the pair of vestibular electrical stimulators and the information processing device are communicably connected to each other.
  • Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
  • the approach avoidance system according to any one of [1] to [7], wherein the information processing device includes the speed calculation unit.
  • the approach avoidance system includes a mobile terminal.
  • the approach avoidance system includes a mobile terminal.
  • the approach avoidance system according to any one of [1] to [10], further including an audio output unit that outputs audio.
  • a position information acquisition unit that acquires the current position information of the target, and A route selection unit that selects a route until the target reaches the destination based on the map information and the position information and acquires information about the route from the map information is further included.
  • the approach avoidance system according to any one of [1] to [12], wherein the speed calculation unit uses information about the route when calculating the speed dV.
  • a field of view information acquisition unit that acquires field of view information that can identify the field of view of the target, and A field of view display unit that displays the field of view information and Any one of [1] to [13], including a current value setting unit that sets a current value determined by a third party other than the target that monitors the visibility display unit as the predetermined current value.
  • the approach avoidance system described in one. [15]
  • the approach avoidance system includes a plurality of a pair of vestibular electrical stimulators.
  • the pair of existing vestibular electrical stimulators are connected to each other so as to be able to communicate with each other.
  • Each of the plurality of objects is fitted with the pair of vestibular electrical stimulators.
  • the pair of vestibular electrical stimulators includes a recognition signal generator that generates a recognition signal that causes the other pair of vestibular electrical stimulators to recognize their own vestibular electrical stimulator, and a transmission / reception unit that transmits and receives the recognition signal.
  • the speed dV is calculated based on the recognition signal from the other pair of vestibular electrical stimulators received by the transmission / reception unit, according to any one of [1] to [14].
  • Approach avoidance system [16] The approach avoidance system Based on the recognition signal from the other pair of vestibular electrical stimulators, the behavior history is obtained from the behavior history database that holds the behavior history information of the other target wearing the other pair of vestibular electrical stimulators.
  • a behavior prediction unit that predicts the behavior of the other target and calculates a prediction speed vector Vp based on the acquired behavior history information is included.
  • the target is a human, and the moving body existing in the surrounding environment is also a human.
  • a pair of vestibular electrical stimulators Each of the pair of vestibular electrical stimulators An imaging unit that generates an image of the surrounding environment of the target at time intervals dT, The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V.
  • a moving object analysis unit that calculates the time T required for and to approach a predetermined distance, The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj.
  • a speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement,
  • An electrode part for applying vestibular electrical stimulation to the subject
  • the pair of vestibular electrical stimuli including a current control unit that supplies a vestibular electrical stimulus to the subject in order to induce the subject to operate at the speed dV by passing a current of a predetermined current value through the electrode portion.
  • the pair of vestibular electrical stimulators is a pair of ear-hook type wearable devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Traffic Control Systems (AREA)
  • Navigation (AREA)
  • User Interface Of Digital Computer (AREA)

Abstract

The present invention provides a technique enabling avoiding approaching surrounding moving objects. Provided is an approach avoidance system including an imaging unit that generates an image of a surrounding environment of a subject at a time interval dT, a moving object analyzing unit that calculates a distance L between the subject and a moving object present in the surrounding environment and a relative velocity vector V of the moving object relative to the subject, and calculates, using the distance L and the relative velocity vector V, a time T required for the subject and the moving object to approach each other to a predetermined distance, a velocity calculation unit that extracts a moving object for which the time T is within a determination time Tj and calculates a velocity dV representing a magnitude and a direction of a movement the subject should make in order for a distance Lj between the subject and the extracted moving object after the determination time Tj to become a predetermined distance, an electrode unit for providing galvanic vestibular stimulation to the subject, and a current control unit that applies a current of a predetermined current value to the electrode unit to provide the galvanic vestibular stimulation to the subject to guide the subject to make the movement at the velocity dV.

Description

接近回避システム及び前庭電気刺激装置Approach avoidance system and vestibular electrical stimulator
 本技術は、接近回避システム及び前庭電気刺激装置に関する。より詳細には、本技術は、対象と特定の動体との接近を回避することが可能な接近回避システム、及び当該接近回避システムを構成する前庭電気刺激装置に関する。 This technology relates to an approach avoidance system and a vestibular electrical stimulator. More specifically, the present technology relates to an approach avoidance system capable of avoiding the approach of an object and a specific moving object, and a vestibular electrical stimulator constituting the approach avoidance system.
 近年、拡張現実(AR)の技術を利用したスマートフォン用のコンテンツが種々提供されている。当該コンテンツとしては、例えば、歩行中に視聴することで没入感のある映像を楽しめるスマートフォン専用ミュージックビデオ、及び、歩行しながら操作することで現実世界との融合を楽しめるスマートフォン専用ゲームなどが挙げられる。このようなコンテンツの普及に伴って、歩行中にスマートフォンを操作するユーザが増加してきている。中には、スマートフォンの画面に没頭するあまり、周囲の物体と衝突又は接触する事故に遭遇するユーザが存在する。そのため、歩行中のスマートフォンの使用は、その危険性を多くの人が認識しており、社会問題となっている。 In recent years, various contents for smartphones using augmented reality (AR) technology have been provided. Examples of the content include a music video for smartphones, which allows users to enjoy immersive images by watching while walking, and a game for smartphones, which allows users to enjoy fusion with the real world by operating while walking. With the spread of such contents, the number of users who operate smartphones while walking is increasing. There are some users who are so absorbed in the screen of the smartphone that they encounter an accident in which they collide with or come into contact with a surrounding object. Therefore, many people are aware of the danger of using smartphones while walking, which has become a social problem.
 また、近年、新型コロナウイルス感染症(COVID-19)の感染拡大が社会問題となっている。感染拡大防止対策として、密集及び密接の回避が強く推奨されており、周囲の人との間に物理的な距離を確保して行動することが求められている。 In recent years, the spread of the new coronavirus infection (COVID-19) has become a social problem. As a measure to prevent the spread of infection, it is strongly recommended to avoid crowding and close contact, and it is required to keep a physical distance from the surrounding people and act accordingly.
 これら2つの社会問題への対策として、周囲の動体との接近を自動的に回避するように人を誘導することが可能な技術が有用であると考えられる。従来、人の動作を誘導可能な技術はいくつか提案されている。例えば、下記特許文献1~3に開示されている技術が挙げられる。下記特許文献1には、前庭感覚への電気刺激を利用して、バランス動作により方向を変化させる乗物を運転する運転者を誘導することができ、例えば、障害物を回避するように運転者を誘導することができる運転者支援装置が開示されている。下記特許文献2には、前庭感覚への電気刺激を利用して人間の身体動作を誘導することができ、例えば、移動物体に対する危険を回避する方向を提示し、意図する場所へ誘導することができる身体誘導装置が開示されている。下記特許文献3には、前庭感覚への刺激により、言語による意思疎通の困難な動物などを誘導することができる動物誘導システムが開示されている。 As a countermeasure against these two social problems, it is considered useful to have a technique that can guide people to automatically avoid approaching surrounding moving objects. Conventionally, some techniques capable of inducing human movement have been proposed. For example, the techniques disclosed in the following Patent Documents 1 to 3 can be mentioned. In Patent Document 1 below, it is possible to guide a driver who drives a vehicle that changes direction by a balance motion by utilizing an electrical stimulation to the vestibular sensation. For example, the driver is guided to avoid obstacles. A driver assistance device capable of guiding is disclosed. In Patent Document 2 below, it is possible to induce human body movements by utilizing electrical stimulation to the vestibular sensation. For example, it is possible to present a direction for avoiding danger to a moving object and guide the person to an intended place. A capable body guidance device is disclosed. Patent Document 3 below discloses an animal guidance system capable of guiding an animal or the like that is difficult to communicate by language by stimulating the vestibular sensation.
特開2006-298012号公報Japanese Unexamined Patent Publication No. 2006-298012 特開2004-254790号公報Japanese Unexamined Patent Publication No. 2004-254790 特開2006-296221号公報Japanese Unexamined Patent Publication No. 2006-296221
 しかしながら、上記特許文献1に開示された技術は、1つの動体に対応した衝突回避技術であり、且つ、自転車及び自動二輪車のようなバランス動作により方向を変化させる乗り物を運転する人を対象としている。このため、上記特許文献1に開示された技術は、複数の動体を回避することが困難である上、対象となる人が限定的である。上記特許文献2に開示された技術は、周囲の動体に関する情報の取得及び当該情報に基づく身体動作の誘導を、リアルタイムで行うことが困難である。上記特許文献3に開示された技術においては、動物の移動方向は、指示者である人間によって目視で決定される。このため、上記特許文献3に開示された技術は、周囲の動体との接近を自動的に回避するように人を誘導することが可能な技術とはいえない。 However, the technique disclosed in Patent Document 1 is a collision avoidance technique corresponding to one moving object, and is intended for a person who drives a vehicle such as a bicycle or a motorcycle that changes its direction by a balanced operation. .. Therefore, in the technique disclosed in Patent Document 1, it is difficult to avoid a plurality of moving objects, and the number of target persons is limited. With the technique disclosed in Patent Document 2, it is difficult to acquire information on surrounding moving objects and guide body movements based on the information in real time. In the technique disclosed in Patent Document 3, the moving direction of the animal is visually determined by a human being who is the instructor. Therefore, the technique disclosed in Patent Document 3 cannot be said to be a technique capable of guiding a person to automatically avoid approaching a surrounding moving object.
 そこで、本技術は、周囲に存在する動体との接近を回避することが可能な技術を提供することを主目的とする。 Therefore, the main purpose of this technology is to provide a technology that can avoid approaching moving objects existing in the surroundings.
 本発明者は、特定の構成を有する接近回避システムによって上記課題を解決できることを見出し、本技術を完成させるに至った。 The present inventor has found that the above-mentioned problems can be solved by an approach avoidance system having a specific configuration, and has completed the present technique.
 すなわち、本技術は、
 対象の周囲環境の画像を時間間隔dTで生成するイメージング部と、
 前記対象と前記周囲環境に存在する動体との間の距離L、及び、前記対象に対する前記動体の相対速度ベクトルVを算出し、前記距離L及び前記相対速度ベクトルVを用いて前記対象と前記動体とが所定の距離まで接近するのに要する時間Tを算出する動体解析部と、
 前記時間Tが判定時間Tj以内である前記動体を抽出し、前記判定時間Tj後において前記対象と前記抽出された動体との間の距離Ljが所定の距離となるように、前記対象が取るべき動作の大きさ及び方向を表す速度dVを算出する速度算出部と、
 前庭電気刺激を前記対象に与えるための電極部と、
 前記電極部に所定の電流値の電流を流して、前記対象が前記速度dVで動作することを誘導すべく前記前庭電気刺激を前記対象に与える電流制御部と、を含む、接近回避システムを提供する。
 前記接近回避システムが、前記電極部に電流値Iの電流が流れたときに誘導される動作の速度dVの情報を保持する電流値データベースを検索して、所定の速度dVに対応する電流値Iを取得する電流値取得部をさらに含んでもよく、
 前記電流制御部が前記電極部に前記電流値Iの電流を流してもよい。
 前記接近回避システムが、前記電流制御部が前記前庭電気刺激を前記対象に与えた後の前記対象と前記抽出された動体との間の距離Lrを確認する結果確認部をさらに含んでもよく、
 前記結果確認部は、前記距離Lrが所定の条件を満たす場合に前記電流値データベースを更新してもよい。
 前記イメージング部が、TOFイメージンセンサ及び/又はミリ波イメージセンサを含んでもよい。
 前記イメージング部が、可視光イメージセンサをさらに含んでもよい。
 前記接近回避システムが、一対の前庭電気刺激装置を含んでもよく、
 前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記速度算出部、前記電極部、及び前記電流制御部を含んでもよい。
 前記接近回避システムが、一対の前庭電気刺激装置と、モバイル端末と、を含んでもよく、
 前記一対の前庭電気刺激装置と、前記モバイル端末と、が通信可能に接続されてよく、
 前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記電極部、及び前記電流制御部を含んでもよく、
 前記モバイル端末が、前記速度算出部を含んでもよい。
 前記接近回避システムが、一対の前庭電気刺激装置と、情報処理装置と、を含んでもよく、
 前記一対の前庭電気刺激装置と、前記情報処理装置と、が通信可能に接続されてよく、
 前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記電極部、及び前記電流制御部を含んでもよく、
 前記情報処理装置が、前記速度算出部を含んでもよい。
 前記接近回避システムが、モバイル端末を含んでもよく、
 前記モバイル端末が、前記イメージング部を含んでもよい。
 前記接近回避システムが、モバイル端末を含んでもよく、
 前記モバイル端末が、前記イメージング部、前記動体解析部、前記速度算出部、及び前記電流値取得部を含んでもよい。
 前記接近回避システムが、音声を出力する音声出力部をさらに含んでもよい。
 前記接近回避システムが、映像を表示する映像表示部をさらに含んでもよい。
 前記接近回避システムが、前記対象の現在の位置情報を取得する位置情報取得部と、
 地図情報と前記位置情報とに基づいて前記対象が目的地に到達するまでの経路を選定し、前記地図情報から前記経路に関する情報を取得する経路選定部と、をさらに含んでもよく、
 前記速度算出部が、前記速度dVを算出する際に前記経路に関する情報を用いてもよい。
 前記接近回避システムが、前記対象の視界を特定可能な視界情報を取得する視界情報取得部と、
 前記視界情報を表示する視界表示部と、
 前記視界表示部をモニタする前記対象以外の第三者によって決定される電流値を、前記所定の電流値として設定する電流値設定部と、を含んでもよい。
 前記接近回避システムが、一対の前庭電気刺激装置を複数含んでもよく、
 前記複数存在する一対の前庭電気刺激装置同士が、通信可能に接続されてよく、
 複数の前記対象のそれぞれが、前記一対の前庭電気刺激装置を装着してよく、
 前記一対の前庭電気刺激装置が、他の一対の前庭電気刺激装置に自身の前庭電気刺激装置を認識させる認識信号を生成する認識信号生成部と、前記認識信号を送受信する送受信部と、を含んでよく、
 前記速度算出部が、前記送受信部が受信した前記他の一対の前庭電気刺激装置からの前記認識信号に基づいて前記速度dVを算出してもよい。
 前記接近回避システムが、
 前記他の一対の前庭電気刺激装置からの前記認識信号に基づいて、前記他の一対の前庭電気刺激装置を装着している他の対象の行動履歴情報を保持する行動履歴データベースから、前記行動履歴情報を取得する情報取得部と、
 取得された前記行動履歴情報に基づいて、前記他の対象の行動を予測して予測速度ベクトルVpを算出する行動予測部と、を含んでもよく、
 前記速度算出部が、前記他の対象の前記予測速度ベクトルVpを用いて前記速度dVを算出してもよい。
 前記接近回避システムにおいて、前記対象が人であってもよく、前記周囲環境に存在する動体も人であってもよく
 前記接近回避システムが、人同士の間に所定の距離を確保して人の密集及び密接を回避するために用いられるものであってもよい。
That is, this technology
An imaging unit that generates an image of the surrounding environment of the target at time intervals dT,
The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V. A moving object analysis unit that calculates the time T required for and to approach a predetermined distance,
The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj. A speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement,
An electrode part for applying vestibular electrical stimulation to the subject,
Provided is an approach avoidance system including a current control unit that applies a vestibular electrical stimulus to the object in order to induce the object to operate at the speed dV by passing a current of a predetermined current value through the electrode unit. do.
The approach avoidance system searches a current value database that holds information on the speed dV of the operation induced when a current of the current value I flows through the electrode portion, and searches for a current value database corresponding to the predetermined speed dV. It may further include a current value acquisition unit for acquiring
The current control unit may pass a current having the current value I through the electrode unit.
The approach avoidance system may further include a result confirmation unit that confirms the distance Lr between the object and the extracted moving object after the current control unit applies the vestibular electrical stimulus to the object.
The result confirmation unit may update the current value database when the distance Lr satisfies a predetermined condition.
The imaging unit may include a TOF imagen sensor and / or a millimeter wave image sensor.
The imaging unit may further include a visible light image sensor.
The approach avoidance system may include a pair of vestibular electrical stimulators.
Each of the pair of vestibular electrical stimulators may include the imaging unit, the moving object analysis unit, the velocity calculation unit, the electrode unit, and the current control unit.
The approach avoidance system may include a pair of vestibular electrical stimulators and a mobile terminal.
The pair of vestibular electrical stimulators and the mobile terminal may be communicably connected.
Each of the pair of vestibular electrical stimulators may include the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
The mobile terminal may include the speed calculation unit.
The approach avoidance system may include a pair of vestibular electrical stimulators and an information processing device.
The pair of vestibular electrical stimulators and the information processing device may be communicably connected.
Each of the pair of vestibular electrical stimulators may include the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
The information processing device may include the speed calculation unit.
The approach avoidance system may include a mobile terminal.
The mobile terminal may include the imaging unit.
The approach avoidance system may include a mobile terminal.
The mobile terminal may include the imaging unit, the moving object analysis unit, the speed calculation unit, and the current value acquisition unit.
The approach avoidance system may further include an audio output unit that outputs audio.
The approach avoidance system may further include an image display unit that displays an image.
A position information acquisition unit in which the approach avoidance system acquires the current position information of the target, and
A route selection unit that selects a route until the target reaches the destination based on the map information and the position information and acquires information about the route from the map information may be further included.
The speed calculation unit may use information about the route when calculating the speed dV.
The approach avoidance system acquires a field of view information that can identify the field of view of the target, and a field of view information acquisition unit.
A field of view display unit that displays the field of view information and
A current value setting unit that sets a current value determined by a third party other than the target that monitors the visibility display unit as the predetermined current value may be included.
The approach avoidance system may include a plurality of a pair of vestibular electrical stimulators.
The pair of existing vestibular electrical stimulators may be communicatively connected to each other.
Each of the plurality of objects may be fitted with the pair of vestibular electrical stimulators.
The pair of vestibular electrical stimulators includes a recognition signal generator that generates a recognition signal that causes the other pair of vestibular electrical stimulators to recognize their own vestibular electrical stimulator, and a transmission / reception unit that transmits and receives the recognition signal. Well,
The speed calculation unit may calculate the speed dV based on the recognition signal from the other pair of vestibular electrical stimulators received by the transmission / reception unit.
The approach avoidance system
Based on the recognition signal from the other pair of vestibular electrical stimulators, the behavior history is obtained from the behavior history database that holds the behavior history information of the other target wearing the other pair of vestibular electrical stimulators. Information acquisition department to acquire information and
A behavior prediction unit that predicts the behavior of the other target and calculates the prediction speed vector Vp based on the acquired behavior history information may be included.
The speed calculation unit may calculate the speed dV using the predicted speed vector Vp of the other object.
In the approach avoidance system, the target may be a person, and the moving object existing in the surrounding environment may also be a person. The approach avoidance system secures a predetermined distance between the people and causes the person. It may be used to avoid crowding and closeness.
 また、本技術は、
 一対の前庭電気刺激装置であって、
 前記一対の前庭電気刺激装置のそれぞれが、
 対象の周囲環境の画像を時間間隔dTで生成するイメージング部と、
 前記対象と前記周囲環境に存在する動体との間の距離L、及び、前記対象に対する前記動体の相対速度ベクトルVを算出し、前記距離L及び前記相対速度ベクトルVを用いて前記対象と前記動体とが所定の距離まで接近するのに要する時間Tを算出する動体解析部と、
 前記時間Tが判定時間Tj以内である前記動体を抽出し、前記判定時間Tj後において前記対象と前記抽出された動体との間の距離Ljが所定の距離となるように、前記対象が取るべき動作の大きさ及び方向を表す速度dVを算出する速度算出部と、
 前庭電気刺激を前記対象に与えるための電極部と、
 前記電極部に所定の電流値の電流を流して、前記対象が前記速度dVで動作することを誘導すべく前庭電気刺激を前記対象に与える電流制御部と、を含む、前記一対の前庭電気刺激装置も提供する。
 前記一対の前庭電気刺激装置が、一対の耳掛け型のウェアラブル装置であってもよく、
 前記一対の前庭電気刺激装置のそれぞれが、1つ以上のイメージセンサを含む前記イメージング部と、3つの電極を含む前記電極部と、を含んでもよい。
In addition, this technology
A pair of vestibular electrical stimulators
Each of the pair of vestibular electrical stimulators
An imaging unit that generates an image of the surrounding environment of the target at time intervals dT,
The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V. A moving object analysis unit that calculates the time T required for and to approach a predetermined distance,
The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj. A speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement,
An electrode part for applying vestibular electrical stimulation to the subject,
The pair of vestibular electrical stimuli, including a current control unit that supplies a vestibular electrical stimulus to the subject in order to induce the subject to operate at the speed dV by passing a current of a predetermined current value through the electrode portion. Equipment is also provided.
The pair of vestibular electrical stimulators may be a pair of ear-hook wearable devices.
Each of the pair of vestibular electrical stimulators may include the imaging unit including one or more image sensors and the electrode unit including three electrodes.
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 Note that the effects described in this specification are merely examples and are not limited, and other effects may be obtained. That is, the techniques according to the present disclosure may exhibit other effects apparent to those skilled in the art from the description herein, in addition to or in place of the above effects.
接近回避システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of an approach avoidance system. GVS装置の全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of a GVS apparatus. GVS装置の全体構成の他の一例を示す図である。It is a figure which shows another example of the whole structure of a GVS apparatus. 本体部のハードウェア構成の一例を示す図である。It is a figure which shows an example of the hardware composition of the main body part. GVS装置の機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of a GVS apparatus. GVS装置が実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which a GVS apparatus executes. イメージング部により生成された画像の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the image generated by the imaging unit. 距離L、相対速度ベクトルV、及び時間Tを示す模式図である。It is a schematic diagram which shows the distance L, the relative velocity vector V, and the time T. 速度算出部が実行する処理の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of a process executed by a speed calculation unit. 電流値データベースが保持する電流値I及び速度dVの情報の一例を示す模式図である。It is a schematic diagram which shows an example of the information of the current value I and the velocity dV held by the current value database. ユーザの右耳付近に配置された3つの電極と、ユーザの方向を示す模式図である。It is a schematic diagram which shows three electrodes arranged near the right ear of a user, and the direction of a user. 第2の実施形態の接近回避システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the approach avoidance system of 2nd Embodiment. 第2の実施形態に係る接近回避システムの機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the approach avoidance system which concerns on 2nd Embodiment. 第3の実施形態の接近回避システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the approach avoidance system of 3rd Embodiment. 第3の実施形態の接近回避システムの機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the approach avoidance system of 3rd Embodiment. 第6の実施形態の接近回避システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the approach avoidance system of 6th Embodiment. 第6の実施形態の接近回避システムの機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the approach avoidance system of 6th Embodiment. GVS装置が実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which a GVS apparatus executes. 第7の実施形態の接近回避システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the approach avoidance system of 7th Embodiment. 第7の実施形態の接近回避システムの機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the approach avoidance system of 7th Embodiment. GVS装置及び操作端末装置が実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process executed by a GVS apparatus and an operation terminal apparatus. 第8の実施形態の接近回避システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the approach avoidance system of 8th Embodiment. 第8の実施形態の接近回避システムの機能構成の一例を示す図である。It is a figure which shows an example of the functional structure of the approach avoidance system of 8th Embodiment. 第9の実施形態の接近回避システムの全体構成の一例を示す図である。It is a figure which shows an example of the whole structure of the approach avoidance system of 9th Embodiment. 車酔いの原因について説明するための図である。It is a figure for demonstrating the cause of motion sickness. 変形例の車酔い抑制システムの一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the motion sickness suppression system of a modification.
 以下、本技術を実施するための好適な形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態を示したものであり、本技術の範囲がこれらの実施形態のみに限定されることはない。本技術の説明は以下の順序で行う。 Hereinafter, a suitable mode for carrying out this technique will be described with reference to the drawings. The embodiments described below show typical embodiments of the present technology, and the scope of the present technology is not limited to these embodiments. The present technique will be described in the following order.
1.本技術の概要
2.第1の実施形態(前庭電気刺激装置を含む例)
3.第2の実施形態(前庭電気刺激装置及びモバイル端末を含む第1の例)
4.第3の実施形態(前庭電気刺激装置及びモバイル端末を含む第2の例)
5.第4の実施形態(前庭電気刺激装置及びモバイル端末を含む第3の例)
6.第5の実施形態(前庭電気刺激装置及び情報処理装置を含む例)
7.第6の実施形態(地図情報を利用する例)
8.第7の実施形態(第三者が遠隔制御する例)
9.第8の実施形態(前庭電気刺激装置同士が相互通信する例)
10.第9の実施形態(行動履歴を利用する例)
11.第10の実施形態(人の密集及び密接を回避するためのシステム)
12.変形例(車酔い抑制システム)
1. 1. Outline of this technology 2. First Embodiment (Example including a vestibular electrical stimulator)
3. 3. Second embodiment (first example including vestibular electrical stimulator and mobile terminal)
4. Third embodiment (second example including vestibular electrical stimulator and mobile terminal)
5. Fourth Embodiment (Third Example Including Vestibular Electrical Stimulator and Mobile Terminal)
6. Fifth Embodiment (Example including vestibular electrical stimulator and information processing device)
7. Sixth embodiment (example of using map information)
8. Seventh embodiment (example of remote control by a third party)
9. Eighth embodiment (example of mutual communication between vestibular electrical stimulators)
10. Ninth embodiment (example of using action history)
11. Tenth embodiment (system for avoiding crowding and closeness of people)
12. Modification example (vehicle sickness suppression system)
1.本技術の概要 1. 1. Outline of this technology
 本技術の接近回避システムは、当該システムの対象(例えば人)が周囲環境に存在する動体との間に所定の距離を確保して、動体との接近を回避できるように、当該対象の動作を誘導するものである。対象の動作を誘導するため、本技術の接近回避システムでは、前庭電気刺激(Galvanic Vestibular Stimulation、以下GVSともいう)が用いられる。GVSとは、内耳にあり加速度を受容する器官である前庭を電流によって刺激することで、身体の動きを誘導する技術である。 The approach avoidance system of the present technology performs the operation of the target (for example, a person) of the system so as to secure a predetermined distance from the moving body existing in the surrounding environment and avoid the approach to the moving body. It induces. In order to induce the movement of the target, the vestibular electrical stimulation (Galvanic Vestibular Stimulation, hereinafter also referred to as GVS) is used in the approach avoidance system of the present technology. GVS is a technique for inducing body movement by stimulating the vestibule, which is an organ in the inner ear that receives acceleration, with an electric current.
 人は、前庭感覚に変化が生じると、体の重心バランスを反射的に制御しようとして、バランスを取り得る方向に脚を踏み出す。そのため、例えば歩行中に前庭が電流によって刺激されると、バランスを補正する動作が誘導され、歩行方向が変化するという現象が起こる。当該現象を利用すると、前庭に印加する電流の方向及び量を制御することで、任意の方向へ歩行を誘導することができる。したがって、GVSの技術を用いることで、上記接近回避システムは、周囲の動体との間に所定の距離を確保できるように対象を誘導することができる。 When a change occurs in the vestibular sensation, a person tries to reflexively control the balance of the center of gravity of the body and steps in the direction in which the balance can be achieved. Therefore, for example, when the vestibule is stimulated by an electric current during walking, the action of correcting the balance is induced and the walking direction changes. By utilizing this phenomenon, walking can be guided in any direction by controlling the direction and amount of the electric current applied to the vestibule. Therefore, by using the GVS technique, the approach avoidance system can guide the target so as to secure a predetermined distance from the surrounding moving body.
 本明細書において「動体」は、動いているものを意味する。当該動体としては、例えば、人、人以外の動物、並びに、自動車、自動二輪車及び自転車などの車両などが挙げられる。本技術の接近回避システムによって接近を回避することができる動体は、1又は複数であり、特には複数である。 In this specification, "moving body" means a moving object. Examples of the moving body include humans, animals other than humans, and vehicles such as automobiles, motorcycles, and bicycles. The number of moving objects that can be avoided by the approach avoidance system of the present technology is one or more, and in particular, a plurality.
 本明細書において「接近」は、近づくことに加えて、接触すること及び衝突することを包含する概念である。 In the present specification, "approach" is a concept that includes contact and collision in addition to approach.
2.第1の実施形態(前庭電気刺激装置を含む例) 2. First Embodiment (Example including a vestibular electrical stimulator)
(1)接近回避システムの構成
 本技術の第1の実施形態に係る接近回避システムは、前庭電気刺激装置(以下、GVS装置ともいう)を含む。本技術において、GVS装置は一対で用いられる。GVS装置は、当該接近回避システムの対象の耳付近に装着されるものであり、好ましくは耳掛け型のウェアラブル装置である。
(1) Configuration of Approach Avoidance System The approach avoidance system according to the first embodiment of the present technology includes a vestibular electrical stimulator (hereinafter, also referred to as a GVS device). In this technique, GVS devices are used in pairs. The GVS device is worn near the target ear of the approach avoidance system, and is preferably an ear-hook type wearable device.
 図1を参照して、第1の実施形態に係る接近回避システム1の全体構成について説明する。図1は、接近回避システム1の全体構成の一例を示す図である。図1に示される接近回避システム1は、ユーザUの右耳に装着される右耳用GVS装置100と、左耳に装着される左耳用GVS装置(図示せず)と、から構成される、左右一対のGVS装置を含む The overall configuration of the approach avoidance system 1 according to the first embodiment will be described with reference to FIG. FIG. 1 is a diagram showing an example of the overall configuration of the approach avoidance system 1. The approach avoidance system 1 shown in FIG. 1 includes a right ear GVS device 100 worn on the right ear of the user U and a left ear GVS device (not shown) worn on the left ear. Includes a pair of left and right GVS devices
 上記ユーザUは、本技術の接近回避システムにおける対象の一例である。当該対象は、人に限定されるものではなく、例えばGVSの技術を適用可能な人以外の動物であってもよい。 The user U is an example of a target in the approach avoidance system of the present technology. The target is not limited to humans, and may be, for example, non-human animals to which the GVS technique can be applied.
(2)前庭電気刺激装置の構成及び動作 (2) Configuration and operation of the vestibular electrical stimulator
(2-1)前庭電気刺激装置の全体構成 (2-1) Overall configuration of vestibular electrical stimulator
 引き続き図1を参照して、GVS装置100の全体構成について説明する。図1に示されるGVS装置100は右耳用であるが、左耳用のGVS装置も同様の構成でありうるため、以下の説明では、右耳用、右耳側及び右側などの語を省略する場合がある。 The overall configuration of the GVS device 100 will be described with reference to FIG. The GVS device 100 shown in FIG. 1 is for the right ear, but since the GVS device for the left ear may have the same configuration, the terms for the right ear, the right ear side, the right side, and the like are omitted in the following description. May be done.
 図1に示されるGVS装置100は、耳の後部に配置される本体部110と、こめかみから耳上部に亘って配置される第1の装着部141と、耳の後部から首筋に亘って配置される第2の装着部142と、を備える。 The GVS device 100 shown in FIG. 1 is arranged from a main body 110 arranged at the back of the ear, a first wearing part 141 arranged from the temple to the upper part of the ear, and from the back part of the ear to the nape of the neck. A second mounting portion 142 is provided.
 GVS装置100は、さらに、ユーザUの周囲環境をイメージングするためのイメージング部120を備える。イメージング部120は、片耳につき1つ以上のイメージングセンサにより構成され、ユーザUの周囲環境の画像を生成し、好ましくは、当該周囲環境の全方位の画像を生成する。 The GVS device 100 further includes an imaging unit 120 for imaging the surrounding environment of the user U. The imaging unit 120 is composed of one or more imaging sensors per ear, and generates an image of the surrounding environment of the user U, preferably an omnidirectional image of the surrounding environment.
 イメージング部120に含まれるイメージセンサの数は片耳につき1つ以上である。すなわち、本実施形態において用いられる一対のGVS装置のそれぞれが、1つ以上のイメージセンサを含むイメージング部120を備える。上記イメージセンサの数は、周囲環境のイメージング範囲を拡大するためには、好ましくは片耳につき2つ以上であり、より好ましくは片耳につき3つ以上である。イメージセンサの数が多過ぎると製造コストが高くなるため、例えば、イメージセンサの数は片耳につき3つでありうる。右耳側のイメージセンサと左耳側のイメージセンサは、周囲環境の画像を左右偏りなく生成するため、好ましくは同数である。 The number of image sensors included in the imaging unit 120 is one or more per ear. That is, each of the pair of GVS devices used in this embodiment includes an imaging unit 120 including one or more image sensors. The number of the image sensors is preferably two or more per ear, and more preferably three or more per ear in order to expand the imaging range of the surrounding environment. If the number of image sensors is too large, the manufacturing cost will be high. Therefore, for example, the number of image sensors may be three per ear. The number of the image sensor on the right ear side and the image sensor on the left ear side are preferably the same because they generate images of the surrounding environment without left-right bias.
 イメージング部120におけるイメージセンサの配置は、周囲環境を捉えられるように、好ましくは周囲環境の全方位を捉えられるように、当業者により適宜選択されてよい。一例として、イメージング部120は、図1に示されるような3つのイメージセンサ121、122、123により構成されうる。イメージセンサ121は、GVS装置100の右耳装着時においてユーザUの右側こめかみ付近に配置され、ユーザUの周囲環境のうち右前方環境の画像を生成する。イメージセンサ122は、GVS装置100の右耳装着時においてユーザUの耳上部付近に配置され、ユーザUの周囲環境のうち右側方環境の画像を生成する。イメージセンサ123は、GVS装置100の右耳装着時においてユーザUの耳裏付近に配置され、ユーザUの周囲環境のうち右後方環境の画像を生成する。左耳用GVS装置(図示せず)も同様に、左前方環境、左側方環境、及び左後方環境の画像を生成する。このような左右のGVS装置によって、ユーザUの周囲環境の全方位の画像が生成されうる。 The arrangement of the image sensor in the imaging unit 120 may be appropriately selected by those skilled in the art so that the surrounding environment can be captured, preferably all directions of the surrounding environment. As an example, the imaging unit 120 may be composed of three image sensors 121, 122, 123 as shown in FIG. The image sensor 121 is arranged near the right temple of the user U when the GVS device 100 is attached to the right ear, and generates an image of the right front environment of the surrounding environment of the user U. The image sensor 122 is arranged near the upper part of the ear of the user U when the GVS device 100 is attached to the right ear, and generates an image of the right side environment of the surrounding environment of the user U. The image sensor 123 is arranged near the back of the ear of the user U when the GVS device 100 is attached to the right ear, and generates an image of the right rear environment of the surrounding environment of the user U. The GVS device for the left ear (not shown) also generates images of the left anterior environment, the left lateral environment, and the left posterior environment. Such left and right GVS devices can generate omnidirectional images of the user U's surrounding environment.
 上記イメージング部120を構成するイメージセンサは、ユーザUと上記周囲環境に存在する動体との間の距離を測定可能なイメージセンサを含むことが好ましく、TOF(Time of Flight)イメージセンサ及び/又はミリ波イメージセンサを含むことがより好ましい。TOFイメージセンサは、TOF方式距離画像センサであり、対象物に光を照射し、その反射光をセンサで検出するまでの時間差を利用して、対象物までの距離を測定することができる。ミリ波イメージセンサは、検出したミリ波エネルギーの大小を画像の濃淡として記録することによりミリ波の電力強度を画像化するセンサであり、対象物にミリ波を発射し、その戻り時間を測定することで、対象物までの距離を測定することができる。ミリ波は可視光と比較して物質の透過率が高いため、ミリ波イメージセンサは、対象物とイメージセンサとの間に障害物が存在する環境下、及び、雨、雪、霧といった悪天候で視認性が低下した環境下における画像生成に適している。そのため、ミリ波イメージセンサを用いることで、これらの環境下における距離の測定精度を向上させることができる。 The image sensor constituting the imaging unit 120 preferably includes an image sensor capable of measuring the distance between the user U and a moving object existing in the surrounding environment, and is preferably a TOF (Time of Flight) image sensor and / or millimeter. It is more preferable to include a wave image sensor. The TOF image sensor is a TOF type distance image sensor, and can measure the distance to an object by using the time difference between irradiating the object with light and detecting the reflected light by the sensor. The millimeter wave image sensor is a sensor that images the power intensity of the millimeter wave by recording the magnitude of the detected millimeter wave energy as the shading of the image, emits the millimeter wave to the object, and measures the return time. Therefore, the distance to the object can be measured. Since millimeter waves have a higher transmittance of substances than visible light, millimeter wave image sensors can be used in environments where there are obstacles between the object and the image sensor, and in bad weather such as rain, snow, and fog. It is suitable for image generation in an environment with reduced visibility. Therefore, by using the millimeter wave image sensor, it is possible to improve the measurement accuracy of the distance in these environments.
 上記イメージセンサは、可視光イメージセンサをさらに含むことが好ましい。可視光イメージセンサによって周囲環境をイメージングすることで、周囲環境に関するより詳細な情報を取得できるため、周囲環境に存在する動体の検出精度を向上させることができる。 The image sensor preferably further includes a visible light image sensor. By imaging the surrounding environment with a visible light image sensor, more detailed information about the surrounding environment can be acquired, so that the detection accuracy of moving objects existing in the surrounding environment can be improved.
 イメージング部120が片耳につき2つ以上のイメージセンサを備える場合、これらのイメージセンサは、一部又は全部が同じ種類のイメージセンサであってもよく、全部が異なる種類のイメージセンサであってもよい。 When the imaging unit 120 includes two or more image sensors per ear, these image sensors may be part or all of the same type of image sensor, or all of them may be of different types of image sensors. ..
 GVS装置100は、さらに、ユーザUにGVSを与えるための電極部130を備える。電極部130は、図1に示されるように、好ましくは3つの電極131、132、133を有する。これら3つの電極はそれぞれ、GVS装置100の右耳装着時において、ユーザUの右側のこめかみ付近、右耳の後部の乳様突起上の皮膚付近、及び、右側の首筋(例えば右側の乳様突起の約6cm下)の3か所配置されうる。左耳用GVS装置(図示せず)も同様の3つの電極を有し、これら3つの電極も同様に3か所に配置される。すなわち、本技術において用いられる一対のGVS装置のそれぞれは、上記3つの電極131、132、133を含む電極部130を備えることができ、これによりユーザUの前庭を電流で刺激することができる。 The GVS device 100 further includes an electrode unit 130 for giving GVS to the user U. As shown in FIG. 1, the electrode portion 130 preferably has three electrodes 131, 132, 133. These three electrodes, respectively, when the GVS device 100 is attached to the right ear, are located near the temple on the right side of the user U, near the skin on the mastoid process behind the right ear, and on the right neck muscle (for example, the mastoid process on the right side). It can be placed in three places (about 6 cm below). The GVS device for the left ear (not shown) also has three similar electrodes, and these three electrodes are also arranged at three locations. That is, each of the pair of GVS devices used in the present technique can include an electrode portion 130 including the above three electrodes 131, 132, 133, whereby the vestibule of the user U can be stimulated by an electric current.
 GVS装置の全体構成は、図1に示されるものに限定されない。図2は、GVS装置101の全体構成の一例を示す図である。図2に示されるように、GVS装置101は、音声を出力する音声出力部150をさらに備えてもよい。音声出力部150は、例えばイヤホンでありうる。図3は、GVS装置102の全体構成の他の一例を示す図である。図3に示されるように、GVS装置102は、映像を表示する映像表示部160をさらに備えてもよい。映像表示部160は、例えば、AR(Augmented Reality)ゴーグル、VR(Virtual Reality)ゴーグル、又はヘッドマウントディスプレイの機能を備えるものでありうる。 The overall configuration of the GVS device is not limited to that shown in FIG. FIG. 2 is a diagram showing an example of the overall configuration of the GVS device 101. As shown in FIG. 2, the GVS device 101 may further include an audio output unit 150 that outputs audio. The audio output unit 150 may be, for example, an earphone. FIG. 3 is a diagram showing another example of the overall configuration of the GVS device 102. As shown in FIG. 3, the GVS device 102 may further include a video display unit 160 for displaying video. The image display unit 160 may include, for example, a function of AR (Augmented Reality) goggles, VR (Virtual Reality) goggles, or a head-mounted display.
(2-2)本体部の構成 (2-2) Configuration of the main body
 図4を参照して、GVS装置100の本体部110の構成について説明する。図4は、本体部110のハードウェア構成の一例を示す図である。図4に示されるように、本体部110は、プロセッサ11、メモリ12、ストレージ13、無線通信インタフェース14、及び電源15を備える。 The configuration of the main body 110 of the GVS device 100 will be described with reference to FIG. FIG. 4 is a diagram showing an example of the hardware configuration of the main body 110. As shown in FIG. 4, the main body 110 includes a processor 11, a memory 12, a storage 13, a wireless communication interface 14, and a power supply 15.
 プロセッサ11は、例えば、CPU(Central Processing Unit)などであり、GVS装置100の動作を制御する。メモリ12は、例えば、ROM(Read Only Memory)及びRAM(Random Access Memory)などであり、プロセッサ11によって実行されたときにGVS装置100に動作を実行させる命令などを格納する。ストレージ13は、例えば、SSD(Solid State Drive)などであり、GVS装置100の動作及び使用に関係する情報及びプログラムを記憶する。無線通信インタフェース14は、Bluetooth(登録商標)及び無線LANといった所定の無線通信規格によって他の装置と無線通信をするためのインタフェースである。電源15は、例えば蓄電池であり、GVS装置100の各部品に電力を供給する。図4では、いずれのハードウェアも単一のものとして示されているが、単なる例であり、いずれのハードウェアも1つ以上でありうる。 The processor 11 is, for example, a CPU (Central Processing Unit) or the like, and controls the operation of the GVS device 100. The memory 12 is, for example, a ROM (Read Only Memory), a RAM (Random Access Memory), or the like, and stores an instruction for causing the GVS device 100 to execute an operation when executed by the processor 11. The storage 13 is, for example, an SSD (Solid State Drive) or the like, and stores information and programs related to the operation and use of the GVS device 100. The wireless communication interface 14 is an interface for wirelessly communicating with another device according to a predetermined wireless communication standard such as Bluetooth (registered trademark) and wireless LAN. The power source 15 is, for example, a storage battery, and supplies electric power to each component of the GVS device 100. Although each piece of hardware is shown as a single piece in FIG. 4, it is merely an example, and any piece of hardware can be one or more.
(2-3)前庭電気刺激装置の機能構成 (2-3) Functional configuration of vestibular electrical stimulator
 図5を参照して、GVS装置100の機能構成について説明する。図5は、GVS装置100の機能構成の一例を示す図である。図5に示されるように、GVS装置100は、動体解析部111、速度算出部112、電流値取得部113、電流制御部114、結果確認部115、送受信部116、イメージング部120、及び電極部130を含みうる。動体解析部111、速度算出部112、電流値取得部113、電流制御部114、結果確認部115は、主に、プロセッサ11がメモリ12に格納されるプログラムを実行することにより実現される。送受信部116は、主に、プロセッサ11がメモリ12に格納されるプログラムを実行し、無線通信インタフェース14を制御することにより実現される。イメージング部120は、プロセッサ11がメモリ12に格納されるプログラムを実行し、イメージセンサ121、122、123を制御することにより実現される。電極部130は、主に、プロセッサ11がメモリ12に格納されたプログラムを実行し、電極131、132、133を制御することにより実現される。 The functional configuration of the GVS device 100 will be described with reference to FIG. FIG. 5 is a diagram showing an example of the functional configuration of the GVS device 100. As shown in FIG. 5, the GVS device 100 includes a moving object analysis unit 111, a speed calculation unit 112, a current value acquisition unit 113, a current control unit 114, a result confirmation unit 115, a transmission / reception unit 116, an imaging unit 120, and an electrode unit. It may include 130. The moving object analysis unit 111, the speed calculation unit 112, the current value acquisition unit 113, the current control unit 114, and the result confirmation unit 115 are mainly realized by the processor 11 executing a program stored in the memory 12. The transmission / reception unit 116 is mainly realized by the processor 11 executing a program stored in the memory 12 and controlling the wireless communication interface 14. The imaging unit 120 is realized by the processor 11 executing a program stored in the memory 12 and controlling the image sensors 121, 122, 123. The electrode unit 130 is mainly realized by the processor 11 executing a program stored in the memory 12 and controlling the electrodes 131, 132, 133.
(2-4)前庭電気刺激装置の動作 (2-4) Operation of vestibular electrical stimulator
 図6を参照して、GVS装置100の各機能部(図5参照)の動作、すなわち、本実施形態の接近回避システム1が実行する処理の流れについて説明する。図6は、GVS装置100が実行する処理の一例を示すフローチャートである。 With reference to FIG. 6, the operation of each functional unit (see FIG. 5) of the GVS device 100, that is, the flow of processing executed by the approach avoidance system 1 of the present embodiment will be described. FIG. 6 is a flowchart showing an example of processing executed by the GVS device 100.
 イメージング部120は、ユーザUの周囲環境の画像を時間間隔dTで生成する(ステップS11)。イメージング部120は、好ましくは、ユーザUの周囲環境の全方位の画像を時間間隔dTで生成する。具体的には、例えば、TOFイメージセンサ及び/又はミリ波イメージセンサと、可視光イメージセンサと、がユーザUの周囲環境の全方位の画像を時間間隔dTで生成する。このように周囲環境を時間間隔dTでイメージングすることで、周囲環境の変化を経時的にモニタリングすることができる。 The imaging unit 120 generates an image of the surrounding environment of the user U at a time interval dT (step S11). The imaging unit 120 preferably generates an omnidirectional image of the user U's surrounding environment at a time interval dT. Specifically, for example, the TOF image sensor and / or the millimeter wave image sensor and the visible light image sensor generate an omnidirectional image of the user U's surrounding environment at a time interval dT. By imaging the surrounding environment at time intervals dT in this way, changes in the surrounding environment can be monitored over time.
 動体解析部111は、上記画像に記録された周囲環境の情報から動体に関する情報を抽出する(ステップS12)。当該画像に記録された動体が複数である場合、動体解析部111は、複数の動体に関する情報を抽出することができる。 The moving body analysis unit 111 extracts information about the moving body from the information of the surrounding environment recorded in the above image (step S12). When there are a plurality of moving objects recorded in the image, the moving object analysis unit 111 can extract information about the plurality of moving objects.
 図7を参照して、ステップS12について説明する。図7は、イメージング部120により生成された画像の一例を説明するための模式図である。図7の右側上段のPIC1及び右側下段のPIC2は、イメージング部120により生成された画像の模式図である。PIC1及びPIC2は時間間隔dTで生成され、詳細には、PIC2はPIC1が生成された時間のdT後に生成されたものである。PIC1及びPIC2に記録されたM1~M4は、イメージング部120により捉えられた、ユーザUの周囲環境に存在する動体を模式的に示している。動体解析部111は、例えば、PIC1とPIC2とを比較して、時間間隔dTの間に画像に記録された位置が変化した物体を動体として抽出することができる。 Step S12 will be described with reference to FIG. 7. FIG. 7 is a schematic diagram for explaining an example of the image generated by the imaging unit 120. The upper right PIC1 and the lower right PIC2 in FIG. 7 are schematic views of images generated by the imaging unit 120. PIC1 and PIC2 are generated at a time interval dT, and more specifically, PIC2 is generated after dT of the time when PIC1 was generated. M1 to M4 recorded in PIC1 and PIC2 schematically show moving objects existing in the surrounding environment of the user U captured by the imaging unit 120. For example, the moving object analysis unit 111 can compare PIC1 and PIC2 and extract an object whose position recorded in the image has changed during the time interval dT as a moving object.
 図6に戻り、動体解析部111の動作について引き続き説明する。動体解析部111は、ユーザUと周囲環境に存在する動体との間の距離L、及び、ユーザUに対する動体の相対速度ベクトルVを算出し、当該距離L及び当該相対速度ベクトルVを用いてユーザUと動体とが所定の距離まで接近するのに要する時間Tを算出する(ステップS13)。当該動体が複数である場合、動体解析部111は、当該複数の動体のそれぞれについて、距離L、相対速度ベクトルV及び時間Tを算出することができる。 Returning to FIG. 6, the operation of the moving body analysis unit 111 will be continuously described. The moving body analysis unit 111 calculates the distance L between the user U and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the user U, and uses the distance L and the relative velocity vector V to use the user. The time T required for U and the moving object to approach each other to a predetermined distance is calculated (step S13). When there are a plurality of the moving objects, the moving object analysis unit 111 can calculate the distance L, the relative velocity vector V, and the time T for each of the plurality of moving objects.
 上記所定の距離がゼロである場合、上記時間Tは、言い換えれば、ユーザUと動体とが接触又は衝突するまでの時間である。上記所定の距離は、例えば、予めメモリ12に格納されてよく、又は、随時更新されてもよい。 When the predetermined distance is zero, the time T is, in other words, the time until the user U and the moving object come into contact with each other or collide with each other. The predetermined distance may be stored in the memory 12 in advance, or may be updated at any time, for example.
 図8を参照して、距離L、相対速度ベクトルV、及び時間Tについて説明する。図8は、距離L、相対速度ベクトルV、及び時間Tを示す模式図である。図8の左側上段のPIC3及び左側下段のPIC4は、イメージング部120により時間間隔dTで生成された、動体M1~M4を含む画像の模式図である。PIC3及びPIC4中のUは、ユーザの位置を模式的に示す。PIC3及びPIC4中のLは、ユーザUと動体M4との間の距離Lを示す。図8の右側のPIC5は、動体M1~M4の相対速度ベクトルVを模式的に示す矢印を含む。例えば、PIC5中の動体M1上の矢印は、動体解析部111により算出された動体M1の相対速度ベクトルV1を示す。PIC5中の動体M2上の矢印は、動体解析部111により算出された動体M2の相対速度ベクトルV2を示す。PIC5中のT1は、ユーザUと動体M1とが所定の距離まで接近するのに要する時間を意味する。同様に、PIC5中のT2は、ユーザUと動体M2とが所定の距離まで接近するのに要する時間を意味する。 The distance L, the relative velocity vector V, and the time T will be described with reference to FIG. FIG. 8 is a schematic diagram showing a distance L, a relative velocity vector V, and a time T. The upper left PIC3 and the lower left PIC4 in FIG. 8 are schematic views of images including moving objects M1 to M4 generated by the imaging unit 120 at a time interval dT. U in PIC3 and PIC4 schematically indicates the position of the user. L in PIC3 and PIC4 indicates the distance L between the user U and the moving body M4. The PIC5 on the right side of FIG. 8 includes an arrow schematically showing the relative velocity vectors V of the moving objects M1 to M4. For example, the arrow on the moving body M1 in the PIC 5 indicates the relative velocity vector V1 of the moving body M1 calculated by the moving body analysis unit 111. The arrow on the moving body M2 in the PIC 5 indicates the relative velocity vector V2 of the moving body M2 calculated by the moving body analysis unit 111. T1 in PIC5 means the time required for the user U and the moving body M1 to approach each other to a predetermined distance. Similarly, T2 in PIC5 means the time required for the user U and the moving body M2 to approach each other to a predetermined distance.
 PIC5に示される動体M1~M4のうち、動体M3及びM4は、相対速度ベクトルVがユーザUの方向を向いていないため、ユーザUに接近しないこと又はユーザUから遠ざかることが予測される。そのため、動体解析部111は、動体M3及びM4の上記時間Tを算出しなくてもよい。すなわち、動体解析部111は、ユーザUと、相対速度ベクトルVがユーザUの方向を向いていない動体と、について上記時間Tを算出しなくてもよい。この場合、動体解析部111は、例えば、ユーザUに対する相対速度ベクトルVを算出した後に、周囲に存在する動体の中から上記相対速度ベクトルVがユーザUの方向を向いていない動体を非接近動体と判定することができる。そして、動体解析部111は、ユーザUと、非接近動体を除く動体と、が所定の距離まで接近するのに要する時間Tを算出することができる。すなわち、動体解析部111は、非接近動体の上記時間Tを算出しないという処理を実行することができる。 Of the moving objects M1 to M4 shown in PIC5, the moving objects M3 and M4 are predicted not to approach the user U or to move away from the user U because the relative velocity vector V does not face the user U. Therefore, the moving body analysis unit 111 does not have to calculate the time T of the moving bodies M3 and M4. That is, the moving object analysis unit 111 does not have to calculate the time T for the user U and the moving object whose relative velocity vector V does not face the user U. In this case, for example, after calculating the relative velocity vector V with respect to the user U, the moving object analysis unit 111 selects a moving object in which the relative velocity vector V does not face the direction of the user U from among the moving objects existing in the surroundings. Can be determined. Then, the moving body analysis unit 111 can calculate the time T required for the user U and the moving body excluding the non-approaching moving body to approach each other to a predetermined distance. That is, the moving body analysis unit 111 can execute the process of not calculating the time T of the non-approaching moving body.
 図6に戻り、ステップS14について説明する。速度算出部112は、上記時間Tが判定時間Tj以内である動体を抽出する(ステップS14)。 Returning to FIG. 6, step S14 will be described. The velocity calculation unit 112 extracts a moving body whose time T is within the determination time Tj (step S14).
 上記判定時間Tjは、例えば、所定の状況下においてユーザUと動体とが接近することが予測される時間であってよく、詳細には、所定の状況下においてユーザUと動体とが衝突、接触又は所定の距離まで近づくことが予測される時間でありうる。これにより、速度算出部112は、ステップS13において上記時間Tが算出された動体の中から、ユーザUに接近することが予測される動体(詳細には、ユーザUに衝突、接触又は所定の距離まで近づくことが予測される動体)を抽出することができる。例えば、ユーザUが時速4kmで歩行中であり、ユーザUから4.4mの範囲内にユーザUに向かって時速4kmで歩行する歩行者が存在する場合、ユーザUと当該歩行者は2秒後に衝突することが予測される。この衝突するまでの時間である2秒を、判定時間Tjとしてもよい。判定時間Tjは、例えば、予めメモリ12に格納されてよく、又は、随時更新されてもよい。 The determination time Tj may be, for example, a time during which the user U and the moving object are predicted to approach each other under a predetermined situation. Specifically, the user U and the moving object collide with each other and come into contact with each other under a predetermined situation. Or it may be the time expected to approach a predetermined distance. As a result, the speed calculation unit 112 collides with, contacts, or a predetermined distance with the user U from among the moving bodies for which the time T is calculated in step S13. It is possible to extract moving objects that are expected to approach. For example, if the user U is walking at a speed of 4 km / h and there is a pedestrian walking toward the user U at a speed of 4 km / h within a range of 4.4 m from the user U, the user U and the pedestrian are after 2 seconds. It is expected to collide. The determination time Tj may be 2 seconds, which is the time until the collision. The determination time Tj may be stored in the memory 12 in advance, or may be updated at any time, for example.
 引き続き図6を参照して、ステップS15について説明する。速度算出部112は、上記判定時間Tj後においてユーザUと上記抽出された動体との間の距離Ljが所定の距離となるように、ユーザUが取るべき動作の大きさ及び方向を表す速度dVを算出する(ステップS15)。 Step S15 will be described with reference to FIG. The speed calculation unit 112 represents a speed dV indicating the magnitude and direction of the motion to be taken by the user U so that the distance Lj between the user U and the extracted moving object becomes a predetermined distance after the determination time Tj. Is calculated (step S15).
 ステップS15における上記所定の距離は、具体的には、判定時間Tj後においてユーザUと抽出された動体とが接近することがない距離であってよく、詳細には、判定時間Tj後においてユーザUと抽出された動体とが衝突すること、接触すること又は所定の距離まで近づくことがない距離でありうる。これにより、速度算出部113は、判定時間Tj後においてユーザUが抽出された動体に接近すること(より詳細には、判定時間Tj後においてユーザUが抽出された動体と衝突すること、接触すること又は所定の距離まで近づくこと)を回避可能な動作の大きさ及び方向を算出することができる。所定の距離の値は、例えば、予めメモリ12に格納されてよく、又は、随時更新されてもよい。 Specifically, the predetermined distance in step S15 may be a distance at which the user U and the extracted moving object do not approach each other after the determination time Tj, and more specifically, the user U after the determination time Tj. It can be a distance at which the extracted moving body does not collide with, touch with, or approach a predetermined distance. As a result, the velocity calculation unit 113 makes the user U approach the extracted moving object after the determination time Tj (more specifically, the user U collides with the extracted moving object after the determination time Tj, and comes into contact with the extracted moving object. It is possible to calculate the magnitude and direction of the movement that can avoid (or approaching a predetermined distance). The value of the predetermined distance may be stored in the memory 12 in advance, or may be updated at any time, for example.
 上記速度dVは、判定時間Tj後においてユーザUと抽出された動体との間の距離Ljが所定の距離となるように、ユーザUが取るべき動作の大きさ及び方向を表す。具体的には、当該速度dVは、判定時間Tj後においてユーザUが抽出された動体に接近することを回避可能な動作の大きさ及び方向を表す。より詳細には、当該速度dVは、判定時間Tj後においてユーザUが抽出された動体と衝突すること、接触すること又は所定の距離まで近づくことを回避可能な動作の大きさ及び方向を表す。抽出された動体が複数である場合、当該速度dVは、ユーザUと抽出された全ての動体との間の距離が所定の距離となるように算出される。これにより、抽出された全ての動体との接近を回避しうる動作を、GVSにより誘導することが可能となる。 The speed dV represents the magnitude and direction of the action that the user U should take so that the distance Lj between the user U and the extracted moving object becomes a predetermined distance after the determination time Tj. Specifically, the velocity dV represents the magnitude and direction of the operation that can prevent the user U from approaching the extracted moving body after the determination time Tj. More specifically, the velocity dV represents the magnitude and direction of movement that can prevent the user U from colliding with, touching, or approaching a predetermined distance with the extracted moving object after the determination time Tj. When there are a plurality of extracted moving objects, the velocity dV is calculated so that the distance between the user U and all the extracted moving objects is a predetermined distance. This makes it possible to induce an operation by GVS that can avoid approaching all the extracted moving objects.
 速度算出部112は、例えば、ユーザUと周囲環境に存在する動体との間の距離L、ユーザUに対する動体の相対速度ベクトルV、及び、判定時間Tjを用いて、上記速度dVを算出することができる。 The velocity calculation unit 112 calculates the velocity dV by using, for example, the distance L between the user U and the moving object existing in the surrounding environment, the relative velocity vector V of the moving object with respect to the user U, and the determination time Tj. Can be done.
 図9を参照して、ステップS14及びステップS15についてさらに説明する。図9は、速度算出部112が実行する処理の一例を説明するための模式図である。図9の左側は、ステップS13において算出された、ユーザUと動体M1とが所定の距離まで接近するのに要する時間T1が1秒内であることを模式的に示している。さらに、図9の左側は、ステップS13において同様に算出された、ユーザUと動体M2とが所定の距離まで接近するのに要する時間T2が2秒超であることを模式的に示す。 Step S14 and step S15 will be further described with reference to FIG. FIG. 9 is a schematic diagram for explaining an example of the processing executed by the speed calculation unit 112. The left side of FIG. 9 schematically shows that the time T1 required for the user U and the moving body M1 to approach each other to a predetermined distance calculated in step S13 is within 1 second. Further, the left side of FIG. 9 schematically shows that the time T2 required for the user U and the moving body M2 to approach each other to a predetermined distance, which is similarly calculated in step S13, is more than 2 seconds.
 上記判定時間Tjが2秒である場合、速度算出部112は、ステップS14において、2つの動体M1及びM2の中から、上記時間T1が判定時間Tj以内である(すなわち2秒以内である)動体M1を抽出する。 When the determination time Tj is 2 seconds, the speed calculation unit 112 determines in step S14 that the time T1 is within the determination time Tj (that is, within 2 seconds) from the two moving objects M1 and M2. Extract M1.
 図9の右側は、ステップS13において動体解析部111が算出した動体M1の相対速度ベクトルV1と、ステップS14において速度算出部112が算出したユーザUが取るべき動作の大きさ及び方向を表す速度dVと、を模式的示す。相対速度ベクトルV1で移動する動体M1は、1秒内に、ユーザUに所定の距離まで接近することが予測される。速度算出部112は、ステップS15において、2秒後においてユーザUが動体M1との間に所定の距離を確保できるようにユーザUが取るべき動作の速度dVを算出する。図9の右側は、当該速度dVの方向が、動体M1の相対速度ベクトルV1と垂直方向に設定された例を示す。 On the right side of FIG. 9, the relative velocity vector V1 of the moving object M1 calculated by the moving object analysis unit 111 in step S13 and the velocity dV representing the magnitude and direction of the motion to be taken by the user U calculated by the velocity calculating unit 112 in step S14. And are shown schematically. It is predicted that the moving body M1 moving by the relative velocity vector V1 approaches the user U to a predetermined distance within 1 second. In step S15, the speed calculation unit 112 calculates the speed dV of the operation that the user U should take so that the user U can secure a predetermined distance from the moving body M1 after 2 seconds. The right side of FIG. 9 shows an example in which the direction of the velocity dV is set in the direction perpendicular to the relative velocity vector V1 of the moving body M1.
 図6に戻り、ステップS16について説明する。GVS装置100は、必須ではないが、電流値取得部113を含みうる。電流値取得部113は、電極部130に電流値Iの電流が流れたときに誘導される動作の速度dVの情報を保持する電流値データベースを検索して、所定の速度dVに対応する電流値Iを取得する(ステップS16)。 Returning to FIG. 6, step S16 will be described. The GVS device 100 may include a current value acquisition unit 113, although it is not essential. The current value acquisition unit 113 searches a current value database that holds information on the speed dV of the operation induced when a current of the current value I flows through the electrode unit 130, and searches for a current value database corresponding to a predetermined speed dV. Acquire I (step S16).
 電流値データベースは、GVS装置100内に備えられているものでもよく、又は、クラウドデータベースなどのGVS装置100の外部にあるものでもよい。 The current value database may be provided in the GVS device 100, or may be located outside the GVS device 100 such as a cloud database.
 電流値データベースの初回の構築は、例えば、実験的手法により得られた電流値Iと速度dVとの対応関係を利用して行われうる。すなわち、GVS装置を装着した特定の対象を被験者として、当該GVS装置の電極部に電流値Iの電流を印加し、その時に誘導される動作の速度dVの情報を記録する実験を繰り返す。このようにして得られた電流値Iと速度dVとの対応関係が、電流値データベースの構築のために用いられうる。構築された電流値データベースが保持する情報は、随時更新されてよい。 The initial construction of the current value database can be performed, for example, by using the correspondence between the current value I obtained by the experimental method and the velocity dV. That is, the experiment of applying a current of the current value I to the electrode portion of the GVS device with a specific target equipped with the GVS device as a subject and recording the information of the speed dV of the operation induced at that time is repeated. The correspondence between the current value I and the velocity dV thus obtained can be used for constructing the current value database. The information held in the constructed current value database may be updated at any time.
 GVSの効果は対象によって差がある場合があるため、電流値Iによって誘導される動作の速度dVは、対象によって異なりうる。その要因の1つとして、電極部130に流れる電流値Iが同じでも、頭部の大きさなどの影響により、実際に前庭を刺激する電流の大きさが異なることが考えられる。他の要因の1つとして、前庭を刺激する電流の大きさが同じであっても、知覚される刺激の大きさが異なることが考えられる。このような個人差による影響を低減させるため、上記電流値データベースとして、好ましくはユーザUの固有の電流値データベースが用いられうる。これにより、電流値Iと速度dVとの対応精度を向上させて、個人差によるGVSの効果の差を低減することができる。その結果、GVSによるユーザUの動作の誘導を精度良く行うことができるため、本実施形態の接近回避システムにおける動体との接近回避の精度を向上させることができる。当該ユーザUの固有の電流値データベースは、ユーザUが本実施形態の接近回避システムを使用した結果に基づいて電流値Iと速度dVとを対応付けることで構築されうる。 Since the effect of GVS may differ depending on the target, the speed dV of the operation induced by the current value I may differ depending on the target. As one of the factors, it is considered that even if the current value I flowing through the electrode portion 130 is the same, the magnitude of the current that actually stimulates the vestibule differs due to the influence of the size of the head and the like. One of the other factors is that even if the magnitude of the current that stimulates the vestibule is the same, the magnitude of the perceived stimulus is different. In order to reduce the influence of such individual differences, the current value database unique to the user U can be preferably used as the current value database. As a result, the accuracy of correspondence between the current value I and the speed dV can be improved, and the difference in the effect of GVS due to individual differences can be reduced. As a result, since the operation of the user U can be guided by GVS with high accuracy, the accuracy of avoiding approach with a moving object in the approach avoidance system of the present embodiment can be improved. The unique current value database of the user U can be constructed by associating the current value I with the velocity dV based on the result of the user U using the approach avoidance system of the present embodiment.
 上記ユーザUの固有の電流値データベースは、さらに、ユーザUの属性情報を保持してもよい。当該属性情報は、例えば、国籍、性別、年齢、身長、及び体重からなる群から選ばれる1つ又は2つ以上を含みうる。 The user U's unique current value database may further hold the attribute information of the user U. The attribute information may include, for example, one or more selected from the group consisting of nationality, gender, age, height, and weight.
 本実施形態において、ユーザUの属性情報を保持する電流値データベースを複数集約した電流値データベース群が構築されてもよい。当該電流値データベース群は、好ましくはクラウドデータベースである。上記電流値取得部113は、当該電流値データベース群の中から当該属性情報を参照して選択した所定の電流値データベースを検索して、所定の速度dVに対応する電流値Iを取得してもよい。例えば、ユーザUが本実施形態の接近回避システムを使用した実績が少なく、個人差を反映した固有の電流値データベースの構築が難しい場合がある。このような場合、電流値取得部113は、当該電流値データベース群の中から、ユーザUと属性情報が近い他のユーザの電流値データベースを選択し、当該他のユーザの電流値データベースを検索して、所定の速度dVに対応する電流値Iを取得してもよい。属性情報が近い他のユーザの電流値データベースを用いることで、個人差によるGVSの効果の差を低減させることができる。その結果、GVSによるユーザUの動作の誘導を精度良く行うことができるため、本実施形態の接近回避システムにおける動体との接近回避の精度を向上させることができる。 In the present embodiment, a current value database group in which a plurality of current value databases holding the attribute information of the user U are aggregated may be constructed. The current value database group is preferably a cloud database. Even if the current value acquisition unit 113 searches for a predetermined current value database selected by referring to the attribute information from the current value database group and acquires the current value I corresponding to the predetermined speed dV. good. For example, the user U has little track record of using the approach avoidance system of the present embodiment, and it may be difficult to construct a unique current value database that reflects individual differences. In such a case, the current value acquisition unit 113 selects the current value database of another user whose attribute information is close to that of the user U from the current value database group, and searches the current value database of the other user. Therefore, the current value I corresponding to the predetermined speed dV may be acquired. By using the current value database of other users with similar attribute information, it is possible to reduce the difference in the effect of GVS due to individual differences. As a result, since the operation of the user U can be guided by GVS with high accuracy, the accuracy of avoiding approach with a moving object in the approach avoidance system of the present embodiment can be improved.
 図10は、電流値データベースが保持する電流値I及び速度dVの情報の一例を示す模式図である。図10に示されるように、電流値Iの単位はmAである。このような電流値データベースを用いることで、電流値取得部113は、所定の速度dVに対応する電流値Iを取得することができる。 FIG. 10 is a schematic diagram showing an example of information on the current value I and the velocity dV held in the current value database. As shown in FIG. 10, the unit of the current value I is mA. By using such a current value database, the current value acquisition unit 113 can acquire the current value I corresponding to a predetermined speed dV.
 図6に戻り、ステップS17について説明する。電流制御部114は、電極部130に電流値Iの電流を流して、ユーザUが上記速度dVで動作することを誘導すべくGVSをユーザUに与える(ステップS17)。GVS装置100が上記電流値取得部113を含まない場合、電流制御部114は、電極部130に所定の電流値の電流を流す。 Returning to FIG. 6, step S17 will be described. The current control unit 114 passes a current having a current value I through the electrode unit 130, and gives the user U a GVS to induce the user U to operate at the speed dV (step S17). When the GVS device 100 does not include the current value acquisition unit 113, the current control unit 114 causes a current having a predetermined current value to flow through the electrode unit 130.
 電流制御部114は、例えば、電極部130を構成する3つの電極131、132、133の中から、電流値Iの電流が流される電極を選択することができる。 The current control unit 114 can select, for example, an electrode through which a current having a current value I is passed from among the three electrodes 131, 132, and 133 constituting the electrode unit 130.
 図11を参照して、誘導されるユーザUの動作と電流が流される電極との関係について説明する。図11は、ユーザUの右耳付近に配置された3つの電極131、132、133と、ユーザUの方向(X、Y及びZ方向)を示す模式図である。図11において、電極131は右側のこめかみ付近に配置され、電極132は右側の乳様突起上の皮膚付近に配置され、電極133は右側の首筋部分に配置されている。同様の3つの電極が当該ユーザUの左耳付近にも配置されている(図示せず)。図11において、X方向はユーザUの前後方向を示し、Y方向はユーザUの左右方向を示し、Z方向はユーザUの上下方向を示す。 With reference to FIG. 11, the relationship between the induced operation of the user U and the electrode through which the current is passed will be described. FIG. 11 is a schematic view showing three electrodes 131, 132, 133 arranged near the right ear of the user U and the directions (X, Y, and Z directions) of the user U. In FIG. 11, the electrode 131 is arranged near the temple on the right side, the electrode 132 is arranged near the skin on the mastoid process on the right side, and the electrode 133 is arranged near the neck muscle portion on the right side. Similar three electrodes are also arranged near the left ear of the user U (not shown). In FIG. 11, the X direction indicates the front-back direction of the user U, the Y direction indicates the left-right direction of the user U, and the Z direction indicates the up-down direction of the user U.
 ユーザUが前後方向Xに動作することを誘導するGVSの場合、電流制御部114は、左右の乳様突起上の皮膚付近に配置された電極に電流を流す。ユーザUが左右方向Yに動作することを誘導するGVSの場合、電流制御部114は、乳様突起上の皮膚付近に配置された電極と、こめかみ付近に配置された電極と、に電流を流す。例えば右方向に誘導する場合、電流制御部114は、右側の乳様突起上の皮膚付近に配置された電極と、右側のこめかみ付近に配置された電極と、に電流を流す。例えば左方向に誘導する場合、電流制御部114は、左側の乳様突起上の皮膚付近に配置された電極と、左側のこめかみ付近に配置された電極と、に電流を流す。また、ユーザUが上下方向Zに動作することを誘導するGVSの場合、電流制御部114は、左右の乳様突起上の皮膚付近に配置された電極と、左右の首筋に配置された電極と、に電流を流す。 In the case of GVS that induces the user U to operate in the front-rear direction X, the current control unit 114 passes a current through electrodes arranged near the skin on the left and right mastoid processes. In the case of GVS that induces the user U to move in the left-right direction Y, the current control unit 114 passes a current through an electrode arranged near the skin on the mastoid process and an electrode arranged near the temple. .. For example, when inducing to the right, the current control unit 114 passes a current through an electrode arranged near the skin on the mastoid process on the right side and an electrode arranged near the temple on the right side. For example, when inducing to the left, the current control unit 114 passes a current through an electrode arranged near the skin on the mastoid process on the left side and an electrode arranged near the temple on the left side. Further, in the case of GVS that induces the user U to move in the vertical direction Z, the current control unit 114 includes electrodes arranged near the skin on the left and right mastoid processes and electrodes arranged on the left and right mastoid muscles. Apply current to.
 電流制御部114は、電極部130に所定の電流値(電流値I)の電流を流すときに、徐々に電流値を上げていき、所定の時間経過後に当該所定の電流値(電流値I)となるように調整することが好ましい。これにより、ユーザUが電流印加時の刺激を感じることを防止することができる。 When a current of a predetermined current value (current value I) is passed through the electrode unit 130, the current control unit 114 gradually increases the current value, and after a lapse of a predetermined time, the predetermined current value (current value I). It is preferable to adjust so as to be. This makes it possible to prevent the user U from feeling the stimulus when the current is applied.
 本実施形態の接近回避システムは、上記ステップS17を実行してユーザUにGVSを与えることで、ユーザUに対して周囲に存在する動体との接近を回避しうる動作を誘導することができる。その結果、ユーザUは、周囲に存在する動体との接近を回避することができる。なお、当該動体は1つに限定されず、2つ以上でありうる。 The approach avoidance system of the present embodiment can induce the user U to perform an operation that can avoid approaching a moving object existing in the surroundings by executing the above step S17 and giving the user U a GVS. As a result, the user U can avoid approaching the moving objects existing in the surroundings. The moving body is not limited to one, and may be two or more.
 引き続き図6を参照して、ステップS18及びS19について説明する。GVS装置100は、必須ではないが、結果確認部115を含みうる。結果確認部115は、電流制御部114がGVSをユーザUに与えた後の、ユーザUと上記抽出された動体との間の距離Lrを確認する(ステップS18)。当該距離Lrが所定の条件を満たさない場合(ステップS18:No)、結果確認部115は処理を終了する。当該距離Lrが所定の条件を満たす場合(ステップS18:Yes)、結果確認部115は上記電流値データベースを更新し(ステップS19)、処理を終了する。 Steps S18 and S19 will be described with reference to FIG. The GVS device 100 may include a result confirmation unit 115, although it is not essential. The result confirmation unit 115 confirms the distance Lr between the user U and the extracted moving object after the current control unit 114 gives the GVS to the user U (step S18). When the distance Lr does not satisfy the predetermined condition (step S18: No), the result confirmation unit 115 ends the process. When the distance Lr satisfies a predetermined condition (step S18: Yes), the result confirmation unit 115 updates the current value database (step S19), and ends the process.
 ユーザUは、GVSによって、抽出された動体との間に距離Ljが確保できるような動作(速度dV)を誘導される。そのため、ユーザUは、速度dVで動作すれば抽出された動体との接近を回避しうる。しかしながら、GVSの効果は必ずしも一定ではないことから、GVSを与えられたユーザUが上記速度dVで動作しない場合がある。この場合、ユーザUが抽出された動体との接近を回避できないことがある。すなわち、GVSによって誘導される実際の動作は、想定された動作と異なる場合がある。そこで、実際の動作の結果を確認するための工程が、上記のステップS18である。 User U is guided by GVS to move (velocity dV) so that a distance Lj can be secured between the extracted moving body and the moving body. Therefore, the user U can avoid approaching the extracted moving object if it operates at a speed of dV. However, since the effect of GVS is not always constant, the user U given GVS may not operate at the above speed dV. In this case, the user U may not be able to avoid approaching the extracted moving object. That is, the actual operation induced by GVS may differ from the assumed operation. Therefore, the step for confirming the result of the actual operation is the above step S18.
 ステップS18における上記所定の条件は、例えば、実際の動作の結果、ユーザUが、動体と衝突すること、接触すること又は所定の距離まで近づくことを回避できたことを確認できる条件でありうる。具体的には、当該所定の条件は、例えば上記Lrが上記Ljと一致することであってもよい。これにより、GVSを与えられて動いた後のユーザUと動体との間の実際の距離(距離Lr)と、想定された距離(距離Lj)と、が一致したことが確認されうる。当該所定の条件は、例えば距離Lrと距離Ljとの差分が所定値以内であることであってもよく、これにより、距離Lrと距離Ljとの誤差が所定値以内であることが確認されうる。当該所定の条件は、例えば距離Lrが所定値であることであってもよく、これにより、実際の距離が所定値であって所定の距離が実際に確保されたことが確認されうる。当該所定の条件は、例えば距離Lrがゼロではないことであってもよく、これにより、実際に衝突又は接触が起こらなかったことが確認されうる。 The predetermined condition in step S18 can be, for example, a condition that can confirm that the user U has been able to avoid colliding with, contacting, or approaching a predetermined distance with a moving object as a result of an actual operation. Specifically, the predetermined condition may be, for example, that the Lr matches the Lj. As a result, it can be confirmed that the actual distance (distance Lr) between the user U and the moving object after being given the GVS and moving and the assumed distance (distance Lj) match. The predetermined condition may be, for example, that the difference between the distance Lr and the distance Lj is within the predetermined value, and thereby it can be confirmed that the error between the distance Lr and the distance Lj is within the predetermined value. .. The predetermined condition may be, for example, that the distance Lr is a predetermined value, and thereby it can be confirmed that the actual distance is a predetermined value and the predetermined distance is actually secured. The predetermined condition may be, for example, that the distance Lr is not zero, which can confirm that no collision or contact actually occurred.
 上記ステップS19において、結果確認部115は、距離Lrが所定の条件を満たす場合に、電流値データベースを更新する。結果確認部115は、例えば、実際の動作の結果、ユーザUが、動体と衝突すること、接触すること又は所定の距離まで近づくことを回避できたことを確認した場合に、電流値データベースを更新することができる。ステップS19の処理が実行されることで、ユーザUが本実施形態の接近回避システムを使用した結果を電流値データベースに反映することができるため、ユーザUの固有の電流値データベースが構築されうる。このようなユーザ固有の電流値データベースは、当該接近回避システムにおける接近回避精度の向上に寄与しうる。 In step S19 above, the result confirmation unit 115 updates the current value database when the distance Lr satisfies a predetermined condition. The result confirmation unit 115 updates the current value database, for example, when it is confirmed that the user U can avoid colliding with, touching, or approaching a predetermined distance as a result of the actual operation. can do. By executing the process of step S19, the result of using the approach avoidance system of the present embodiment by the user U can be reflected in the current value database, so that the user U's unique current value database can be constructed. Such a user-specific current value database can contribute to improving the approach avoidance accuracy in the approach avoidance system.
3.第2の実施形態(前庭電気刺激装置及びモバイル端末を含む第1の例) 3. 3. Second embodiment (first example including vestibular electrical stimulator and mobile terminal)
 本技術の第2の実施形態に係る接近回避システムは、一対のGVS装置と、モバイル端末と、を含む。当該一対のGVS装置と当該モバイル端末とは通信可能に接続されうる。本実施形態の接近回避システムは、モバイル端末がイメージング部を含み、GVS装置がその他の機能部を含むことが、上記第1の実施形態との主な相違点である。以下、本実施形態の接近回避システムについて、上記第1の実施形態と異なる点を主に説明する。なお、本実施形態の接近回避システムの構成について、上記第1の実施形態と同一の説明が当てはまるものについては上記第1の実施形態と同一の符号を付す。 The approach avoidance system according to the second embodiment of the present technology includes a pair of GVS devices and a mobile terminal. The pair of GVS devices and the mobile terminal can be communicably connected. The approach avoidance system of the present embodiment is mainly different from the first embodiment in that the mobile terminal includes an imaging unit and the GVS device includes other functional units. Hereinafter, the approach avoidance system of the present embodiment will be mainly described as being different from the first embodiment. Regarding the configuration of the approach avoidance system of the present embodiment, those to which the same description as that of the first embodiment is applied are designated by the same reference numerals as those of the first embodiment.
 図12を参照して、本実施形態の接近回避システム1Aについて説明する。図12は、第2の実施形態の接近回避システム1Aの全体構成の一例を示す図である。図12に示される接近回避システム1Aは、右耳用GVS装置100Aと、左耳用GVS装置(図示せず)と、から構成される左右一対のGVS装置、及び、モバイル端末200Aを含む。 The approach avoidance system 1A of the present embodiment will be described with reference to FIG. FIG. 12 is a diagram showing an example of the overall configuration of the approach avoidance system 1A of the second embodiment. The approach avoidance system 1A shown in FIG. 12 includes a pair of left and right GVS devices including a right ear GVS device 100A and a left ear GVS device (not shown), and a mobile terminal 200A.
 図12に示されるGVS装置100Aは、イメージング部を含んでおらず、具体的にはイメージングセンサを備えていない。その代わりに、モバイル端末200Aがイメージング部を含んで構成され、具体的にはイメージングセンサ(図示せず)を備える。モバイル端末200Aが含むイメージング部の機能は、上記第1の実施形態において説明したとおりである。当該イメージング部を構成するイメージセンサについても、上記第1の実施形態において説明したとおりである。 The GVS device 100A shown in FIG. 12 does not include an imaging unit, and specifically does not include an imaging sensor. Instead, the mobile terminal 200A is configured to include an imaging unit, specifically including an imaging sensor (not shown). The functions of the imaging unit included in the mobile terminal 200A are as described in the first embodiment. The image sensor constituting the imaging unit is also as described in the first embodiment.
 モバイル端末200Aは、通信機能を備える持ち運び可能なコンピュータ装置である。モバイル端末200Aは、例えば、携帯電話、スマートフォン、又はタブレット型端末などでありうる。モバイル端末200Aのハードウェア構成は、通信機能を備える一般的なコンピュータ装置と同様の構成でありうる。モバイル端末200Aは、一例として、プロセッサ、メモリ、無線通信インタフェース、入力装置、及び出力装置を備えることができる。モバイル端末200Aの機能は、基本的に、プロセッサがメモリに格納された所定の制御プログラムを実行することにより実現される。 The mobile terminal 200A is a portable computer device having a communication function. The mobile terminal 200A can be, for example, a mobile phone, a smartphone, a tablet terminal, or the like. The hardware configuration of the mobile terminal 200A may be the same as that of a general computer device having a communication function. As an example, the mobile terminal 200A can include a processor, a memory, a wireless communication interface, an input device, and an output device. The function of the mobile terminal 200A is basically realized by the processor executing a predetermined control program stored in the memory.
 図13を参照して、接近回避システム1Aの機能構成について説明する。図13は、第2の実施形態に係る接近回避システム1Aの機能構成の一例を示す図である。図13に示されるように、GVS装置100Aは、イメージング部を含まない。GVS装置100Aに含まれる機能部は、イメージング部以外は、上記第1の実施形態で図5を参照して説明したGVS装置100の機能部と同じである。モバイル端末200Aは、イメージング部201及び無線通信部205を含む。イメージング部120の機能は、上記第1の実施形態において説明したとおりである。無線通信部205は、例えばモバイル端末200が備える無線通信インタフェースによって実現される。モバイル端末200Aの無線通信部205とGVS装置100Aの送受信部116との間で無線通信が行われる。 The functional configuration of the approach avoidance system 1A will be described with reference to FIG. FIG. 13 is a diagram showing an example of the functional configuration of the approach avoidance system 1A according to the second embodiment. As shown in FIG. 13, the GVS device 100A does not include an imaging unit. The functional unit included in the GVS device 100A is the same as the functional unit of the GVS device 100 described with reference to FIG. 5 in the first embodiment, except for the imaging unit. The mobile terminal 200A includes an imaging unit 201 and a wireless communication unit 205. The function of the imaging unit 120 is as described in the first embodiment. The wireless communication unit 205 is realized by, for example, a wireless communication interface included in the mobile terminal 200. Wireless communication is performed between the wireless communication unit 205 of the mobile terminal 200A and the transmission / reception unit 116 of the GVS device 100A.
 上記モバイル端末200A及びGVS装置100Aの動作、すなわち、本実施形態の接近回避システム1Aが実行する処理について説明する。接近回避システム1Aが実行する処理のフローは、全体的は、図6を参照して上記で説明した、第1の実施形態の接近回避システム1が実行する処理のフローと同様でありうる。本実施形態の接近回避システム1Aにおいては、モバイル端末200Aが図6に示されるステップS11の処理を実行し、GVS装置100Aが他のステップの処理を実行することが、第1の実施形態の接近回避システム1との主な相違点である。モバイル端末200AとGVS装置100Aとの間における必要な情報の送受信は、無線通信によって行われる。 The operation of the mobile terminal 200A and the GVS device 100A, that is, the process executed by the approach avoidance system 1A of the present embodiment will be described. The flow of processing executed by the approach avoidance system 1A may be generally the same as the flow of processing executed by the approach avoidance system 1 of the first embodiment described above with reference to FIG. In the approach avoidance system 1A of the present embodiment, the approach of the first embodiment is that the mobile terminal 200A executes the process of step S11 shown in FIG. 6 and the GVS device 100A executes the process of another step. This is the main difference from the avoidance system 1. The transmission and reception of necessary information between the mobile terminal 200A and the GVS device 100A is performed by wireless communication.
4.第3の実施形態(前庭電気刺激装置及びモバイル端末を含む第2の例) 4. Third embodiment (second example including vestibular electrical stimulator and mobile terminal)
 本技術の第3の実施形態に係る接近回避システムは、一対のGVS装置と、モバイル端末と、を含む。当該一対のGVS装置と当該モバイル端末とは通信可能に接続されうる。本実施形態の接近回避システムは、モバイル端末がイメージング部、動体解析部、速度算出部、及び電流値取得部を含み、GVS装置がその他の機能部を含むことが、上記第1の実施形態との主な相違点である。以下、本実施形態の接近回避システムについて、上記第1又は第2の実施形態と異なる点を主に説明する。なお、本実施形態の接近回避システムの構成について、上記第1又は第2の実施形態と同一の説明が当てはまるものについては上記第1又は第2の実施形態と同一の符号を付す。 The approach avoidance system according to the third embodiment of the present technology includes a pair of GVS devices and a mobile terminal. The pair of GVS devices and the mobile terminal can be communicably connected. In the approach avoidance system of the present embodiment, the mobile terminal includes an imaging unit, a moving object analysis unit, a speed calculation unit, and a current value acquisition unit, and the GVS device includes other functional units. The main difference is. Hereinafter, the approach avoidance system of the present embodiment will be mainly described in that it differs from the first or second embodiment. Regarding the configuration of the approach avoidance system of the present embodiment, those to which the same description as that of the first or second embodiment is applied are designated by the same reference numerals as those of the first or second embodiment.
 図14及び図15を参照して、本実施形態の接近回避システム1Bについて説明する。図14は、第3の実施形態の接近回避システム1Bの全体構成の一例を示す図である。図15は、第3の実施形態の接近回避システム1Bの機能構成の一例を示す図である。 The approach avoidance system 1B of the present embodiment will be described with reference to FIGS. 14 and 15. FIG. 14 is a diagram showing an example of the overall configuration of the approach avoidance system 1B of the third embodiment. FIG. 15 is a diagram showing an example of the functional configuration of the approach avoidance system 1B of the third embodiment.
 接近回避システム1Bは、図14に示されるように、右耳用GVS装置100Bと、左耳用GVS装置(図示せず)と、から構成される左右一対のGVS装置、モバイル端末200B、及び、電流値データベース500を含む。当該電流値データベース500は、例えばクラウドデータベースでありうる。 As shown in FIG. 14, the approach avoidance system 1B includes a pair of left and right GVS devices including a right ear GVS device 100B and a left ear GVS device (not shown), a mobile terminal 200B, and a mobile terminal 200B. Includes current value database 500. The current value database 500 can be, for example, a cloud database.
 モバイル端末200Bは、通信機能を備える持ち運び可能なコンピュータ端末であり、例えば、携帯電話、スマートフォン、又はタブレット型端末などでありうる。モバイル端末200Bのハードウェア構成は、上記第2の実施形態において説明したモバイル端末200Aと同じでありうる。モバイル端末200Bの機能は、基本的に、プロセッサがメモリに格納された所定の制御プログラムを実行することにより実現される。 The mobile terminal 200B is a portable computer terminal having a communication function, and may be, for example, a mobile phone, a smartphone, a tablet terminal, or the like. The hardware configuration of the mobile terminal 200B may be the same as that of the mobile terminal 200A described in the second embodiment. The function of the mobile terminal 200B is basically realized by the processor executing a predetermined control program stored in the memory.
 モバイル端末200Bは、図15に示されるように、機能部として、イメージング部201、動体解析部202、速度算出部203、電流値取得部204、及び無線通信部205を含みうる。GVS装置100Bは、機能部として、電流制御部114、結果確認部115、送受信部116、及び電極部130を含みうる。 As shown in FIG. 15, the mobile terminal 200B may include an imaging unit 201, a moving object analysis unit 202, a speed calculation unit 203, a current value acquisition unit 204, and a wireless communication unit 205 as functional units. The GVS device 100B may include a current control unit 114, a result confirmation unit 115, a transmission / reception unit 116, and an electrode unit 130 as functional units.
 上記接近回避システム1Bが実行する処理のフローは、全体的には、図6を参照して上記で説明した、第1の実施形態の接近回避システム1が実行する処理のフローと同様でありうる。本実施形態の接近回避システム1Bにおいては、GVS装置100Bが図6に示されるステップS17~S19の処理を実行し、モバイル端末200Bが他のステップの処理を実行することが、第1の実施形態の接近回避システム1との主な相違点である。また、本実施形態の接近回避システム1Bにおいては、モバイル端末200Bの電流値取得部204が、図6に示されるステップS16において検索する電流値データベースは、図14及び図15に示される電流値データベース500(クラウドデータベース)である。 The flow of processing executed by the approach avoidance system 1B may be generally the same as the flow of processing executed by the approach avoidance system 1 of the first embodiment described above with reference to FIG. .. In the approach avoidance system 1B of the present embodiment, the GVS device 100B executes the processes of steps S17 to S19 shown in FIG. 6, and the mobile terminal 200B executes the processes of other steps, that is, the first embodiment. This is the main difference from the approach avoidance system 1. Further, in the approach avoidance system 1B of the present embodiment, the current value database searched by the current value acquisition unit 204 of the mobile terminal 200B in step S16 shown in FIG. 6 is the current value database shown in FIGS. 14 and 15. It is 500 (cloud database).
5.第4の実施形態(前庭電気刺激装置及びモバイル端末を含む第3の例) 5. Fourth Embodiment (Third Example Including Vestibular Electrical Stimulator and Mobile Terminal)
 本技術の第4の実施形態に係る接近回避システムは、一対のGVS装置と、モバイル端末と、を含む。当該一対のGVS装置と当該モバイル端末とは通信可能に接続されうる。本実施形態の接近回避システムは、モバイル端末が速度算出部を含み、その他の機能部をGVS装置が含むことが、上記第1の実施形態との主な相違点である。 The approach avoidance system according to the fourth embodiment of the present technology includes a pair of GVS devices and a mobile terminal. The pair of GVS devices and the mobile terminal can be communicably connected. The approach avoidance system of the present embodiment is mainly different from the first embodiment in that the mobile terminal includes a speed calculation unit and the GVS device includes other functional units.
 本実施形態で用いられるモバイル端末は、通信機能を備える持ち運び可能なコンピュータ端末であり、例えば、携帯電話、スマートフォン、又はタブレット型端末などでありうる。当該モバイル端末のハードウェア構成は、上記第2の実施形態において説明したモバイル端末200Aと同じでありうる。モバイル端末の機能は、基本的に、プロセッサがメモリに格納された所定の制御プログラムを実行することにより実現される。 The mobile terminal used in the present embodiment is a portable computer terminal having a communication function, and may be, for example, a mobile phone, a smartphone, a tablet terminal, or the like. The hardware configuration of the mobile terminal may be the same as the mobile terminal 200A described in the second embodiment. The function of the mobile terminal is basically realized by the processor executing a predetermined control program stored in the memory.
 本実施形態で用いられるモバイル端末は、機能部として、速度算出部及び無線通信部を含む。本実施形態で用いられる一対のGVS装置のそれぞれは、機能部として、イメージング部、動体解析部、電流値取得部、電流制御部、結果確認部、送受信部、及び電極部を含みうる。 The mobile terminal used in this embodiment includes a speed calculation unit and a wireless communication unit as functional units. Each of the pair of GVS devices used in the present embodiment may include an imaging unit, a moving object analysis unit, a current value acquisition unit, a current control unit, a result confirmation unit, a transmission / reception unit, and an electrode unit as functional units.
 本実施形態の接近回避システムが実行する処理のフローは、全体的には、図6を用いて上記で説明した、第1の実施形態の接近回避システム1が実行する処理のフローと同様でありうる。本実施形態の接近回避システムにおいては、モバイル端末の速度算出部が図6に示されるステップS14及びS15の処理を実行し、GVS装置が他のステップの処理を実行することが、第1の実施形態の接近回避システム1が実行する処理との主な相違点である。 The flow of processing executed by the approach avoidance system 1 of the present embodiment is generally the same as the flow of processing executed by the approach avoidance system 1 of the first embodiment described above with reference to FIG. sell. In the approach avoidance system of the present embodiment, the first embodiment is that the speed calculation unit of the mobile terminal executes the processes of steps S14 and S15 shown in FIG. 6, and the GVS device executes the processes of the other steps. This is the main difference from the processing executed by the approach avoidance system 1 of the form.
6.第5の実施形態(前庭電気刺激装置及び情報処理装置を含む例) 6. Fifth Embodiment (Example including vestibular electrical stimulator and information processing device)
 本技術の第5の実施形態に係る接近回避システムは、一対のGVS装置と、情報処理装置と、を含む。当該一対のGVS装置と当該情報処理装置とは通信可能に接続されうる。本実施形態の接近回避システムは、上記第4の実施形態の接近回避システムにおいてモバイル端末が実行する処理を情報処理装置で実行するものである。すなわち、本実施形態の接近回避システムは、第4の実施形態で用いられるモバイル端末を情報処理装置に置き換えたこと以外は、第4の実施形態と同様でありうる。 The approach avoidance system according to the fifth embodiment of the present technology includes a pair of GVS devices and an information processing device. The pair of GVS devices and the information processing device can be communicably connected to each other. In the approach avoidance system of the present embodiment, the information processing device executes the process executed by the mobile terminal in the approach avoidance system of the fourth embodiment. That is, the approach avoidance system of the present embodiment can be the same as that of the fourth embodiment except that the mobile terminal used in the fourth embodiment is replaced with an information processing device.
 上記情報処理装置は、通信機能を備えるコンピュータ装置であり、例えばサーバ装置でありうる。当該サーバ装置は、1又は複数の物理サーバであってもよく、1又は複数の物理サーバ上で構築された1又は複数の仮想サーバであってもよい。上記複数の物理サーバは、地理的に同一の場所に配置されてもよく、地理的に分散されて配置されてもよい。 The information processing device is a computer device having a communication function, and may be, for example, a server device. The server device may be one or more physical servers, or may be one or more virtual servers built on one or more physical servers. The plurality of physical servers may be geographically located at the same location, or may be geographically distributed.
 上記情報処理装置のハードウェア構成は、通信機能を備える一般的なコンピュータ装置と同様でありうる。当該情報処理装置は、一例として、プロセッサ、メモリ、通信インタフェース、入力装置、及び出力装置を備えることができる。情報処理装置の機能は、基本的に、プロセッサがメモリに格納された所定の制御プログラムを実行することにより実現される。 The hardware configuration of the information processing device can be the same as that of a general computer device having a communication function. As an example, the information processing device may include a processor, a memory, a communication interface, an input device, and an output device. The function of the information processing device is basically realized by the processor executing a predetermined control program stored in the memory.
 本実施形態で用いられる情報処理装置は、上記第4の実施形態で説明したモバイル端末と同一の機能部を含むものであり、具体的には速度算出部及び無線通信部を含む。本実施形態で用いられる一対のGVS装置のそれぞれは、上記第4の実施形態のGVS装置と同様に、機能部として、イメージング部、動体解析部、電流値取得部、電流制御部、結果確認部、送受信部、及び電極部を含みうる。 The information processing device used in the present embodiment includes the same functional unit as the mobile terminal described in the fourth embodiment, and specifically includes a speed calculation unit and a wireless communication unit. Each of the pair of GVS devices used in the present embodiment has an imaging unit, a moving object analysis unit, a current value acquisition unit, a current control unit, and a result confirmation unit as functional units, similarly to the GVS equipment of the fourth embodiment. , Transmission / reception unit, and electrode unit may be included.
 本実施形態の接近回避システムにおいて、情報処理装置の速度算出部が図6に示されるステップS14及びS15の処理を実行し、GVS装置が他のステップの処理を実行する。 In the approach avoidance system of the present embodiment, the speed calculation unit of the information processing device executes the processes of steps S14 and S15 shown in FIG. 6, and the GVS device executes the processes of the other steps.
7.第6の実施形態(地図情報を利用する例) 7. Sixth embodiment (example of using map information)
 本技術の第6の実施形態に係る接近回避システムは、一対のGVS装置を含む。本実施形態の接近回避システムは、位置情報及び地図情報を利用することなどが、第1の実施形態と相違する。以下、本実施形態の接近回避システムについて、上記第1の実施形態と異なる点を主に説明する。なお、本実施形態の接近回避システムの構成について、上記第1の実施形態と同一の説明が当てはまるものについては上記第1の実施形態と同一の符号を付す。 The approach avoidance system according to the sixth embodiment of the present technology includes a pair of GVS devices. The approach avoidance system of the present embodiment is different from the first embodiment in that it uses position information and map information. Hereinafter, the approach avoidance system of the present embodiment will be mainly described as being different from the first embodiment. Regarding the configuration of the approach avoidance system of the present embodiment, those to which the same description as that of the first embodiment is applied are designated by the same reference numerals as those of the first embodiment.
 図16及び図17を参照して、本実施形態の接近回避システム1Cについて説明する。図16は、第6の実施形態の接近回避システム1Cの全体構成の一例を示す図である。図17は、第6の実施形態の接近回避システム1Cの機能構成の一例を示す図である。 The approach avoidance system 1C of the present embodiment will be described with reference to FIGS. 16 and 17. FIG. 16 is a diagram showing an example of the overall configuration of the approach avoidance system 1C according to the sixth embodiment. FIG. 17 is a diagram showing an example of the functional configuration of the approach avoidance system 1C of the sixth embodiment.
 接近回避システム1Cは、図16に示されるように、右耳用GVS装置100Cと、左耳用GVS装置(図示せず)と、から構成される左右一対のGVS装置、及び、地図情報を保持する地図情報データベース600を含む。当該地図情報データベース600は、例えばクラウドデータベースでありうる。 As shown in FIG. 16, the approach avoidance system 1C holds a pair of left and right GVS devices including a right ear GVS device 100C and a left ear GVS device (not shown), and map information. The map information database 600 to be used is included. The map information database 600 can be, for example, a cloud database.
 図16に示されるGVS装置100Cの本体部110Cのハードウェア構成は、図4を参照して説明した第1の実施形態の本体部110のハードウェアの構成要素に加えて、位置情報取得装置を含む。位置情報取得装置は、例えばGPS(Global Positioning System)受信機などにより構成されており、GVS装置100Cの現在の位置情報、すなわち、ユーザUの現在の位置情報を取得する。 The hardware configuration of the main body 110C of the GVS device 100C shown in FIG. 16 includes a position information acquisition device in addition to the hardware components of the main body 110 of the first embodiment described with reference to FIG. include. The position information acquisition device is composed of, for example, a GPS (Global Positioning System) receiver or the like, and acquires the current position information of the GVS device 100C, that is, the current position information of the user U.
 図17に示されるGVS装置100Cの機能部は、位置情報取得部117及び経路選定部118を含むことが、図5を参照して説明した第1の実施形態で用いられるGVS装置100との相違点である。位置情報取得部117は、主に、プロセッサ、メモリ、及び位置情報取得装置によって実現される。経路選定部118は、主に、プロセッサ及びメモリにより実現される。 The functional unit of the GVS device 100C shown in FIG. 17 includes a position information acquisition unit 117 and a route selection unit 118, which is different from the GVS device 100 used in the first embodiment described with reference to FIG. It is a point. The position information acquisition unit 117 is mainly realized by a processor, a memory, and a position information acquisition device. The route selection unit 118 is mainly realized by a processor and a memory.
 図18を参照して、GVS装置100Cの動作、すなわち、本実施形態の接近回避システム1Cが実行する処理の流れについて説明する。図18は、GVS装置100Cが実行する処理の一例を示すフローチャートである。 With reference to FIG. 18, the operation of the GVS device 100C, that is, the flow of processing executed by the approach avoidance system 1C of the present embodiment will be described. FIG. 18 is a flowchart showing an example of processing executed by the GVS device 100C.
 図18に示されるフローチャートは、ステップS15C及びS21~S23を含むことが、図6を参照して上記で説明した第1の実施形態のフローと相違する。その他のステップ、すなわち、ステップS11~S14及びS16~S19は、上記第1の実施形態において説明したとおりである。 The flowchart shown in FIG. 18 is different from the flow of the first embodiment described above with reference to FIG. 6 in that it includes steps S15C and S21 to S23. The other steps, that is, steps S11 to S14 and S16 to S19, are as described in the first embodiment.
 本実施形態の接近回避システム1Cにおいて、位置情報取得部117は、ユーザUの現在の位置情報を取得する(ステップS21)。次に、経路選定部118は、地図情報データベース600に保持される地図情報と、ステップS21において取得された位置情報と、に基づいて、ユーザUが目的地に到達するまでの経路を選定する(ステップS22)。当該目的地に関する情報は、予め設定されてよい。例えば、GVS装置100Cは、ユーザUからの情報の入力を受け付ける入力装置を備えてよく、当該入力装置によって受け付けられた目的地に関する情報が、メモリ12に格納されてもよい。 In the approach avoidance system 1C of the present embodiment, the position information acquisition unit 117 acquires the current position information of the user U (step S21). Next, the route selection unit 118 selects a route until the user U reaches the destination based on the map information stored in the map information database 600 and the position information acquired in step S21 (). Step S22). Information about the destination may be preset. For example, the GVS device 100C may include an input device that receives input of information from the user U, and the information about the destination received by the input device may be stored in the memory 12.
 次に、経路選定部118は、地図情報から上記経路に関する情報(以下、経路情報ともいう)を取得する(ステップS23)。当該経路情報には、例えば、当該経路に存在する障害物に関する情報が含まれうる。 Next, the route selection unit 118 acquires information related to the above route (hereinafter, also referred to as route information) from the map information (step S23). The route information may include, for example, information about obstacles existing on the route.
 上記ステップS21~S23の処理は、例えば、図18に示されるステップS11~S14の処理と平行して実施されてもよい。 The processes of steps S21 to S23 may be performed in parallel with the processes of steps S11 to S14 shown in FIG. 18, for example.
 速度算出部112は、上記速度dVを算出する際に、上記経路に関する情報を用いることができる(ステップS15C)。上記速度dVの算出方法は、上記第1の実施形態におけるステップS15で説明したとおりである。 The speed calculation unit 112 can use the information related to the route when calculating the speed dV (step S15C). The method for calculating the speed dV is as described in step S15 in the first embodiment.
 本実施形態の接近回避システム1Cは、経路情報を加味して上記速度dVを算出することが可能である。そのため、接近回避システム1Cは、ステップS22において選定された経路を通るようにユーザUの動作を誘導することができ、すなわち、ユーザUを上記目的地まで自動で誘導することができる。また、上記経路情報が経路に存在する障害物に関する情報を含む場合、接近回避システム1Cは、当該障害物との接近を回避しながら目的地に到達できるように、ユーザUを誘導することができる。 The approach avoidance system 1C of the present embodiment can calculate the speed dV in consideration of the route information. Therefore, the approach avoidance system 1C can guide the operation of the user U so as to follow the route selected in step S22, that is, can automatically guide the user U to the destination. Further, when the route information includes information about an obstacle existing in the route, the approach avoidance system 1C can guide the user U so that the user U can reach the destination while avoiding the approach to the obstacle. ..
8.第7の実施形態(第三者が遠隔制御する例) 8. Seventh embodiment (example of remote control by a third party)
 本技術の第7の実施形態に係る接近回避システムは、一対のGVS装置を含む。本実施形態の接近回避システムは、ユーザ以外の第三者によって使用される操作端末装置をさらに含み、当該第三者がGVS装置を遠隔で制御可能であることなどが、第1の実施形態と相違する。より詳細には、当該第三者は、本実施形態の接近回避システムを用いることで、ユーザの視界情報をモニタしながらユーザが装着するGVS装置を遠隔で制御することができる。以下、本実施形態の接近回避システムについて、記第1の実施形態と異なる点を主に説明する。なお、本実施形態の接近回避システムの構成について、上記第1の実施形態と同一の説明が当てはまるものについては上記第1の実施形態と同一の符号を付す。 The approach avoidance system according to the seventh embodiment of the present technology includes a pair of GVS devices. The approach avoidance system of the present embodiment further includes an operation terminal device used by a third party other than the user, and the third party can remotely control the GVS device. It's different. More specifically, the third party can remotely control the GVS device worn by the user while monitoring the user's visual field information by using the approach avoidance system of the present embodiment. Hereinafter, the approach avoidance system of the present embodiment will be mainly described as being different from the first embodiment. Regarding the configuration of the approach avoidance system of the present embodiment, those to which the same description as that of the first embodiment is applied are designated by the same reference numerals as those of the first embodiment.
 図19及び図20を参照して、本実施形態の接近回避システム1Dの構成について説明する。図19は、第7の実施形態の接近回避システム1Dの全体構成の一例を示す図である。図20は、第7の実施形態の接近回避システム1Dの機能構成の一例を示す図である。 The configuration of the approach avoidance system 1D of the present embodiment will be described with reference to FIGS. 19 and 20. FIG. 19 is a diagram showing an example of the overall configuration of the approach avoidance system 1D according to the seventh embodiment. FIG. 20 is a diagram showing an example of the functional configuration of the approach avoidance system 1D according to the seventh embodiment.
 接近回避システム1Dは、図19に示されるように、右耳用GVS装置100と、左耳用GVS装置(図示せず)と、から構成される左右一対のGVS装置、及び、ユーザU以外の第三者によって使用される操作端末装置300を含む。当該一対のGVS装置と当該操作端末装置300とは通信可能に接続されうる。操作端末装置300は、一対のGVS装置を遠隔で制御することが可能な装置でありうる。 As shown in FIG. 19, the approach avoidance system 1D includes a pair of left and right GVS devices including a right ear GVS device 100 and a left ear GVS device (not shown), and a device other than the user U. Includes an operating terminal device 300 used by a third party. The pair of GVS devices and the operation terminal device 300 can be communicably connected to each other. The operation terminal device 300 may be a device capable of remotely controlling a pair of GVS devices.
 操作端末装置300は、通信機能を備えるコンピュータ装置である。操作端末装置300は、例えば、スマートフォン、携帯電話、タブレット端末、ラップトップ型パーソナルコンピュータ、及びデスクトップ型パーソナルコンピュータなどである。操作端末装置300のハードウェア構成は、通信機能を備える一般的なコンピュータ装置と同様の構成でありうる。操作端末装置300は、一例として、プロセッサ、メモリ、通信インタフェース、入力装置、及び出力装置を備えることができる。操作端末装置300の機能は、基本的に、プロセッサがメモリに格納された所定の制御プログラムを実行することにより実現される。 The operation terminal device 300 is a computer device having a communication function. The operation terminal device 300 is, for example, a smartphone, a mobile phone, a tablet terminal, a laptop personal computer, a desktop personal computer, or the like. The hardware configuration of the operation terminal device 300 may be the same as that of a general computer device having a communication function. As an example, the operation terminal device 300 can include a processor, a memory, a communication interface, an input device, and an output device. The function of the operation terminal device 300 is basically realized by the processor executing a predetermined control program stored in the memory.
 図20に示されるGVS装置100の各機能部の動作は、第1の実施形態で説明したとおりである。操作端末装置300は、図20に示されるように、機能部として、視界情報取得部301、視界表示部302、及び電流値設定部303を含む。 The operation of each functional unit of the GVS device 100 shown in FIG. 20 is as described in the first embodiment. As shown in FIG. 20, the operation terminal device 300 includes a field of view information acquisition unit 301, a field of view display unit 302, and a current value setting unit 303 as functional units.
 図21を参照して、GVS装置100及び操作端末装置300の動作、すなわち、本実施形態の接近回避システム1Dが実行する処理の流れについて説明する。図21は、GVS装置100及び操作端末装置300が実行する処理の一例を示すフローチャートである。 With reference to FIG. 21, the operation of the GVS device 100 and the operation terminal device 300, that is, the flow of processing executed by the approach avoidance system 1D of the present embodiment will be described. FIG. 21 is a flowchart showing an example of processing executed by the GVS device 100 and the operation terminal device 300.
 図21に示されるフローチャートは、ステップS31~S34を含むことが、図6を参照して上記で説明した第1の実施形態のフローと相違する。その他のステップ、すなわち、ステップS11~S19は、上記第1の実施形態において説明したとおりである。 The flowchart shown in FIG. 21 is different from the flow of the first embodiment described above with reference to FIG. 6 in that it includes steps S31 to S34. The other steps, that is, steps S11 to S19, are as described in the first embodiment.
 本実施形態の接近回避システム1Dにおいて、視界情報取得部301は、ユーザUの視界を特定可能な視界情報を取得する(ステップS31)。当該視界情報は、例えば、ユーザUが目で見渡すことができる範囲を確認可能な画像情報であってもよい。具体的には、当該視界情報は、ユーザUが目で見渡すことができる範囲に存在する動体を確認可能な画像情報であってもよい。当該視界情報は、例えば、GVS装置100のイメージング部120によって取得された情報でもよく、又は、ユーザUに装着されたGVS装置100以外のウェアラブルデバイスによって取得された情報でもよい。 In the approach avoidance system 1D of the present embodiment, the field of view information acquisition unit 301 acquires the field of view information that can specify the field of view of the user U (step S31). The field of view information may be, for example, image information capable of confirming a range that the user U can see with his / her eyes. Specifically, the field of view information may be image information capable of confirming a moving object existing in a range that the user U can see with his / her eyes. The field of view information may be, for example, information acquired by the imaging unit 120 of the GVS device 100, or information acquired by a wearable device other than the GVS device 100 mounted on the user U.
 視界表示部302は、ステップS31において取得されユーザUの視界情報を表示する(ステップS32)。視界表示部302は、例えば、当該視界情報を操作端末装置300の出力装置(例えばディスプレイ)に表示してもよい。上記第三者は、視界表示部302をモニタすることができ、これによりユーザUの視界を経時的に捉えることができる。 The field of view display unit 302 displays the field of view information of the user U acquired in step S31 (step S32). The field of view display unit 302 may display the field of view information on an output device (for example, a display) of the operation terminal device 300, for example. The third party can monitor the field of view display unit 302, whereby the field of view of the user U can be captured over time.
 次に、ステップS16において電流値取得部113が電流値データベースから取得した電流値Iが、上記第三者によって参照されてもよい(ステップS33)。なお、GVS装置100において、電流値取得部113は必須の機能部ではない。GVS装置100が電流値取得部113を含まない場合、ステップS33において参照されうる電流値は、電流値Iの代わりに、電極部130に印加されうる所定の電流値であってもよい。 Next, the current value I acquired by the current value acquisition unit 113 from the current value database in step S16 may be referred to by the third party (step S33). In the GVS device 100, the current value acquisition unit 113 is not an essential functional unit. When the GVS device 100 does not include the current value acquisition unit 113, the current value that can be referred to in step S33 may be a predetermined current value that can be applied to the electrode unit 130 instead of the current value I.
 電流値設定部303は、視界表示部302をモニタする上記第三者によって決定される電流値を、電流値Iとして(又は所定の電流値として)設定することができる(ステップS34)。ステップS34の後に実行されるステップS17において、電流制御部114は、電流値設定部303によって設定された電流値の電流を電極部130に流す。 The current value setting unit 303 can set the current value determined by the third party who monitors the field of view display unit 302 as the current value I (or as a predetermined current value) (step S34). In step S17 executed after step S34, the current control unit 114 causes the current of the current value set by the current value setting unit 303 to flow to the electrode unit 130.
 本実施形態の接近回避システム1Dの適用例について説明する。例えば、歩行中に周囲の動体と衝突又は接触するリスクに晒される機会が比較的多いと考えられる人(例えば、子供、視覚障害者、又は認知症患者など)が、当該接近回避システム1Dのユーザであってもよい。例えば、第三者は、本実施形態の接近回避システム1Dを用いることで、当該ユーザの視界情報をモニタして、当該ユーザが動体と衝突する可能性があると判断とした際に、所定の電流値を設定して、当該ユーザが動体との接近を回避できるように誘導することが可能である。これにより、第三者は、離れた場所からユーザを見守りつつ安全な歩行をサポートすることができる。なお、本実施形態の接近回避システム1Dの対象は、上述したような人に限定されるものではなく、例えば他の人でもよく、人以外の動物でもよい。 An application example of the approach avoidance system 1D of the present embodiment will be described. For example, a person (eg, a child, a visually impaired person, or a dementia patient) who is considered to have a relatively high risk of colliding with or coming into contact with surrounding moving objects while walking is a user of the approach avoidance system 1D. It may be. For example, when a third party monitors the visibility information of the user by using the approach avoidance system 1D of the present embodiment and determines that the user may collide with a moving object, a predetermined value is determined. It is possible to set a current value to guide the user to avoid approaching a moving object. As a result, a third party can support safe walking while watching over the user from a remote location. The target of the approach avoidance system 1D of the present embodiment is not limited to the above-mentioned human beings, and may be, for example, another human being or an animal other than a human being.
 本実施形態の接近回避システム1Dの変形例について説明する。当該変形例において、ユーザが装着するGVS装置は、ユーザの音声及び周囲の環境音などの音を取得するマイクロフォンを備えてもよい。さらに、当該ユーザは指に圧力センサを装着してもよい。一方、ユーザ以外の第三者が操作する操作端末装置は音を取得するマイクロフォン及び音を出力するスピーカを備えてよく、さらに、当該第三者は指に圧力センサを装着してもよい。GVS装置、圧力センサ、及び操作端末装置は、相互に無線(例えばBluetooth(登録商標))によって互いに通信可能に構成される。このような構成であることにより、第三者は、遠隔にいながらも、ユーザの周囲環境をリアルタイムで感じつつユーザの動作を制御することが可能である。そのため、本変形例は、例えば、遠隔での旅行又はデートといったエンターテインメント性のある用途にも適用されうる。 A modified example of the approach avoidance system 1D of the present embodiment will be described. In the modification, the GVS device worn by the user may include a microphone that acquires sounds such as the user's voice and ambient environmental sounds. In addition, the user may wear a pressure sensor on his finger. On the other hand, the operation terminal device operated by a third party other than the user may be provided with a microphone for acquiring sound and a speaker for outputting sound, and the third party may wear a pressure sensor on his / her finger. The GVS device, the pressure sensor, and the operation terminal device are configured to be able to communicate with each other wirelessly (for example, Bluetooth®). With such a configuration, a third party can control the user's operation while feeling the user's surrounding environment in real time while being remote. Therefore, this modification can also be applied to entertainment applications such as remote travel or dating.
9.第8の実施形態(前庭電気刺激装置同士が相互通信する例) 9. Eighth embodiment (example of mutual communication between vestibular electrical stimulators)
 本技術の第8の実施形態に係る接近回避システムは、一対のGVS装置を複数含む。複数存在する一対のGVS装置同士は、通信可能に接続されうる。以下、本実施形態の接近回避システムについて、上記第1の実施形態と異なる点を主に説明する。 The approach avoidance system according to the eighth embodiment of the present technology includes a plurality of a pair of GVS devices. A plurality of pairs of GVS devices can be connected to each other so as to be able to communicate with each other. Hereinafter, the approach avoidance system of the present embodiment will be mainly described in that it differs from the first embodiment.
 図22及び図23を参照して、本実施形態の接近回避システム10について説明する。図22は、第8の実施形態の接近回避システム10の全体構成の一例を示す図である。図23は、第8の実施形態の接近回避システム10の機能構成の一例を示す図である。 The approach avoidance system 10 of the present embodiment will be described with reference to FIGS. 22 and 23. FIG. 22 is a diagram showing an example of the overall configuration of the approach avoidance system 10 of the eighth embodiment. FIG. 23 is a diagram showing an example of the functional configuration of the approach avoidance system 10 of the eighth embodiment.
 図22に示されるように、本実施形態の接近回避システム10において、ユーザUaはGVS装置100aを装着しており、ユーザUbはGVS装置100bを装着している。すなわち、本実施形態の接近回避システム10は、複数のユーザを対象としており、当該複数のユーザのそれぞれが、GVS装置を装着する。図22に示されるGVS装置100a及びGVS装置100bは、それぞれ、右耳用及び左耳用から構成される左右一対のGVS装置である。すなわち、図22に示される接近回避システム10は、一対のGVS装置を2つ含む。なお、本実施形態で用いられる一対のGVS装置の数は、2つに限定されず、2つ以上であればよい。 As shown in FIG. 22, in the approach avoidance system 10 of the present embodiment, the user Ua is equipped with the GVS device 100a, and the user Ub is equipped with the GVS device 100b. That is, the approach avoidance system 10 of the present embodiment targets a plurality of users, and each of the plurality of users wears a GVS device. The GVS device 100a and the GVS device 100b shown in FIG. 22 are a pair of left and right GVS devices composed of one for the right ear and one for the left ear, respectively. That is, the approach avoidance system 10 shown in FIG. 22 includes two pairs of GVS devices. The number of pairs of GVS devices used in this embodiment is not limited to two, and may be two or more.
 図23に示されるように、GVS装置100aは認識信号生成部119aを含み、GVS装置100bは認識信号生成部119bを含む。これらの認識信号生成部119a、119bは、第1の実施形態において用いられるGVS装置100との相違点である。図23に示される機能部のうち、認識信号生成部119a、119b以外の機能部は、上記第1の実施形態において説明したとおりである。 As shown in FIG. 23, the GVS device 100a includes a recognition signal generation unit 119a, and the GVS device 100b includes a recognition signal generation unit 119b. These recognition signal generation units 119a and 119b are different from the GVS device 100 used in the first embodiment. Among the functional units shown in FIG. 23, the functional units other than the recognition signal generation units 119a and 119b are as described in the first embodiment.
 GVS装置100aの認識信号生成部119aは、他のGVS装置100bに、自身のGVS装置100aを認識させるための認識信号を生成する。同様に、GVS装置100bの認識信号生成部119bは、他のGVS装置100aに、自身のGVS装置100bを認識させるための認識信号を生成する。このように、本実施形態の接近回避システム10では、一対のGVS装置100a、100bのそれぞれが、他のGVS装置に自身のGVS装置を認識させる認識信号を生成する認識信号生成部を含む。当該認識信号は、例えば、自身のGVS装置に関する情報を含むことができ、具体的には、自身のGVS装置によって誘導されるユーザの動作の大きさ及び方向に関する情報を含みうる。 The recognition signal generation unit 119a of the GVS device 100a generates a recognition signal for causing another GVS device 100b to recognize its own GVS device 100a. Similarly, the recognition signal generation unit 119b of the GVS device 100b generates a recognition signal for causing another GVS device 100a to recognize its own GVS device 100b. As described above, in the approach avoidance system 10 of the present embodiment, each of the pair of GVS devices 100a and 100b includes a recognition signal generation unit that generates a recognition signal that causes another GVS device to recognize its own GVS device. The recognition signal can include, for example, information about its own GVS device, and specifically can include information about the magnitude and direction of the user's movements guided by its own GVS device.
 GVS装置100a、100bは、それぞれ、上記認識信号を送受信する送受信部116a、116bを含む。上記認識信号は、例えばRF信号であってよく、この場合、送受信部116a、116bは、RF送受信部であってよい。 The GVS devices 100a and 100b include transmission / reception units 116a and 116b for transmitting and receiving the recognition signal, respectively. The recognition signal may be, for example, an RF signal, and in this case, the transmission / reception units 116a and 116b may be RF transmission / reception units.
 本実施形態で用いられるGVS装置100a、100bは、他のGVS装置の認識信号を受信することで、当該認識信号をユーザ同士の接近回避に利用することができる。具体的には、GVS装置100aの速度算出部112aは、送受信部116aが受信した他のGVS装置100bからの認識信号に基づいて、上記速度dVを算出することができる。同様に、GVS装置100bの速度算出部112bは、送受信部116bが受信した他のGVS装置100aからの認識信号に基づいて、上記速度dVを算出することができる。当該速度dVの算出方法は、上記第1の実施形態におけるステップS15で説明したとおりである。当該認識信号が、上述したようなユーザの動作の大きさ及び方向に関する情報を含む場合、他のGVS装置からの認識信号を用いて速度dVを算出することで、他のユーザとの接近を回避しうる速度dVが得られうる。 By receiving the recognition signals of other GVS devices, the GVS devices 100a and 100b used in the present embodiment can use the recognition signals to avoid approaching each other. Specifically, the speed calculation unit 112a of the GVS device 100a can calculate the speed dV based on the recognition signal from the other GVS device 100b received by the transmission / reception unit 116a. Similarly, the speed calculation unit 112b of the GVS device 100b can calculate the speed dV based on the recognition signal from the other GVS device 100a received by the transmission / reception unit 116b. The method of calculating the speed dV is as described in step S15 in the first embodiment. When the recognition signal includes information on the magnitude and direction of the user's movement as described above, the speed dV is calculated using the recognition signal from another GVS device to avoid approaching another user. A possible speed dV can be obtained.
10.第9の実施形態(行動履歴を利用する例) 10. Ninth embodiment (example of using action history)
 本技術の第9の実施形態に係る接近回避システムは、一対のGVS装置を複数含む。複数存在する一対のGVS装置同士は、通信可能に接続されうる。本実施形態の接近回避システムは、行動履歴データベースをさらに含み、当該行動履歴データベースを利用することが、上記第8の実施形態との主な相違点である。以下、本実施形態の接近回避システムについて、上記第8の実施形態と異なる点を主に説明する。なお、本実施形態の接近回避システムの構成について、上記第8の実施形態と同一の説明が当てはまるものについては上記第8の実施形態と同一の符号を付す。 The approach avoidance system according to the ninth embodiment of the present technology includes a plurality of a pair of GVS devices. A plurality of pairs of GVS devices can be connected to each other so as to be able to communicate with each other. The approach avoidance system of the present embodiment further includes an action history database, and the use of the action history database is the main difference from the eighth embodiment. Hereinafter, the approach avoidance system of the present embodiment will be mainly described as being different from the eighth embodiment. Regarding the configuration of the approach avoidance system of the present embodiment, those to which the same description as that of the eighth embodiment is applied are designated by the same reference numerals as those of the eighth embodiment.
 図24は、第9の実施形態の接近回避システム10Aの全体構成の一例を示す図である。図24に示されるように、本実施形態の接近回避システム10Aは、行動履歴管理装置700を含む。行動履歴管理装置700は、通信機能を備えるコンピュータ装置であり、例えばクラウドサーバであってもよい。行動履歴管理装置700は、1又は複数の一対のGVS装置と通信可能に接続されうる。 FIG. 24 is a diagram showing an example of the overall configuration of the approach avoidance system 10A of the ninth embodiment. As shown in FIG. 24, the approach avoidance system 10A of the present embodiment includes the action history management device 700. The action history management device 700 is a computer device having a communication function, and may be, for example, a cloud server. The action history management device 700 may be communicably connected to one or more pairs of GVS devices.
 上記行動履歴管理装置700のハードウェア構成は、通信機能を備える一般的なコンピュータ装置と同様でありうる。当該行動履歴管理装置700は、一例として、プロセッサ、メモリ、通信インタフェース、入力装置、及び出力装置を備えることができる。行動履歴管理装置700の機能は、基本的に、プロセッサがメモリに格納された所定の制御プログラムを実行することにより実現される。 The hardware configuration of the behavior history management device 700 may be the same as that of a general computer device having a communication function. The action history management device 700 may include, for example, a processor, a memory, a communication interface, an input device, and an output device. The function of the action history management device 700 is basically realized by the processor executing a predetermined control program stored in the memory.
 行動履歴管理装置700は、行動履歴データベースを含む。行動履歴データベースは、ユーザごとの行動履歴情報を保持する。行動履歴情報は、例えば、GVS装置を装着したユーザの過去の行動に関連する情報であってよく、具体的には、時刻情報、GPS情報、地図情報、加速度情報、及び周囲環境のイメージング情報などが含まれうる。 The action history management device 700 includes an action history database. The action history database holds the action history information for each user. The behavior history information may be, for example, information related to the past behavior of the user wearing the GVS device, specifically, time information, GPS information, map information, acceleration information, imaging information of the surrounding environment, and the like. Can be included.
 本実施形態において用いられるGVS装置100a、100bは、それぞれ、図23を参照して説明した第8の実施形態におけるGVS装置100a、100bの機能部を含む。さらに、本実施形態において用いられるGVS装置100a、100bは、それぞれ、機能部として、情報取得部を含む。情報取得部は、他のGVS装置からの認識信号に基づいて、当該他のGVS装置を装着している他のユーザの行動履歴を保持する行動履歴データベースから、当該他のユーザの行動履歴を取得することがきる。例えば、GVS装置100aの情報取得部は、他のGVS装置100bからの認識信号に基づいて、当該他のGVS装置100bを装着している他のユーザUbの行動履歴を保持する行動履歴データベースから、ユーザUbの行動履歴を取得することができる。 The GVS devices 100a and 100b used in the present embodiment include functional parts of the GVS devices 100a and 100b in the eighth embodiment described with reference to FIG. 23, respectively. Further, each of the GVS devices 100a and 100b used in the present embodiment includes an information acquisition unit as a functional unit. The information acquisition unit acquires the behavior history of the other user from the behavior history database that holds the behavior history of the other user wearing the other GVS device based on the recognition signal from the other GVS device. I can do it. For example, the information acquisition unit of the GVS device 100a can obtain the action history of another user Ub wearing the other GVS device 100b based on the recognition signal from the other GVS device 100b from the action history database. The action history of the user Ub can be acquired.
 行動履歴管理装置700は、機能部として行動予測部を含んでもよい。当該行動予測部は、行動履歴情報に基づいて、ユーザの行動を予測して予測速度ベクトルVpを算出することができる。当該行動予測部は、例えば、ディープラーニングなどの機械学習によって実現されうる。 The action history management device 700 may include an action prediction unit as a functional unit. The behavior prediction unit can predict the user's behavior and calculate the prediction speed vector Vp based on the behavior history information. The behavior prediction unit can be realized by machine learning such as deep learning.
 GVS装置100a、100bの各情報取得部は、行動履歴管理装置700の行動予測部から、上記予測速度ベクトルVpを取得することができる。例えば、GVS装置100aは、他のGVS装置100bを装着する他のユーザUbの予測速度ベクトルVpを取得することができる。この場合、GVS装置100aの速度算出部112aは、当該他のユーザUbの予測速度ベクトルVpを用いて、上記速度dVを算出することができる。このように、他のユーザの予測速度ベクトルVpを用いて速度dVを算出することで、他のユーザとの接近をより精度良く回避することができる。 Each information acquisition unit of the GVS devices 100a and 100b can acquire the predicted speed vector Vp from the action prediction unit of the action history management device 700. For example, the GVS device 100a can acquire the predicted speed vector Vp of another user Ub who wears the other GVS device 100b. In this case, the speed calculation unit 112a of the GVS device 100a can calculate the speed dV by using the predicted speed vector Vp of the other user Ub. In this way, by calculating the speed dV using the predicted speed vector Vp of the other user, it is possible to avoid approaching the other user more accurately.
11.第10の実施形態(人の密集及び密接を回避するためのシステム) 11. Tenth embodiment (system for avoiding crowding and closeness of people)
 本技術の第10の実施形態は、本技術の接近回避システムであって、人の密集及び密接を回避するために用いられるシステムである。当該接近回避システムにおいて、対象は人であり、周囲環境に存在する動体も人である。このような条件下で本技術の接近回避システムを用いることで、人同士の接近を回避することができ、その結果、人の密集及び密接を回避することができる。 The tenth embodiment of the present technology is an approach avoidance system of the present technology, which is used to avoid crowding and close contact of people. In the approach avoidance system, the target is a human being, and the moving object existing in the surrounding environment is also a human being. By using the approach avoidance system of the present technology under such conditions, it is possible to avoid the approach between people, and as a result, it is possible to avoid the crowding and close contact of people.
 上記人の密集及び密接を回避するための接近回避システムは、例えば、子供が運動する時又は遊ぶ時に密集及び密接することを防ぐサービスのために用いられうる。以下、当該サービスの一例について説明する。 The approach avoidance system for avoiding crowding and closeness of people can be used, for example, for a service to prevent crowding and close contact when a child is exercising or playing. Hereinafter, an example of the service will be described.
 上記サービスは、公園、学校の校庭、及びアミューズメントパークなどの特定の領域内で実施されることを前提とする。当該サービスの利用者は、当該サービスの申し込み用のwebサイトに必要事項を入力して、又は、当該サービスを提供する場所へ行って紙面に必要事項を記入して、サービス提供者とサービス利用に関する契約を締結する。これにより、サービスの提供が開始される。利用者に提供される装置及びサービスは、例えば、GVS装置、接近回避システムの定期メンテナンス、GVS装置の電流値データベース、他利用者の行動履歴データベース、第三者(特に子供の親)が操作する制御ツール、並びに、ARゴーグル、VRゴーグル又はヘッドマウントディスプレイにより視聴可能な映像又はゲームコンテンツなどでありうる。 It is assumed that the above services will be implemented in specific areas such as parks, school playgrounds, and amusement parks. The user of the service enters the necessary information on the website for applying for the service, or goes to the place where the service is provided and fills in the necessary items on the paper, regarding the service provider and the use of the service. We signed a contract. As a result, the service is started to be provided. The devices and services provided to users are operated by, for example, GVS devices, regular maintenance of approach avoidance systems, current value databases of GVS devices, behavior history databases of other users, and third parties (especially parents of children). It can be a control tool and video or game content that can be viewed by AR goggles, VR goggles, or a head-mounted display.
 上記サービスによって、公園、学校の校庭、及びアミューズメントパークなどの子供が密状態になりやすい場所での密集及び密接を抑制することができる。 The above services can prevent crowding and closeness in places where children tend to be dense, such as parks, school playgrounds, and amusement parks.
12.変形例(車酔い抑制システム) 12. Modification example (vehicle sickness suppression system)
 本技術の接近回避システムの基本構成は、例えば、車酔いを抑制する技術に応用されうる。以下、本技術の変形例として、車酔い抑制システムについて説明する。 The basic configuration of the approach avoidance system of this technology can be applied to, for example, a technique for suppressing motion sickness. Hereinafter, a motion sickness suppression system will be described as a modification of the present technology.
 本変形例の車酔い抑制システムの概要を説明する。当該車酔い抑制システムは、完全自動運転化され、且つ、車窓が全面ディスプレイ化された自動車向けの技術であり、当該自動車に搭乗する人の車酔いを抑制することを目的とする。本システムでは、上記実施形態において説明したイメージング部を赤外線及び可視光イメージング部として構成する。そして、本システムは、上記実施形態で説明したGVS装置を、動体との接近回避のためではなく、実際の加速度と映像中の加速度との差によって生じる車内での酔い抑制のために利用する。 The outline of the motion sickness suppression system of this modified example will be explained. The vehicle sickness suppression system is a technology for automobiles that is fully automated and has a full-screen display of the vehicle window, and aims to suppress vehicle sickness of a person occupying the vehicle. In this system, the imaging unit described in the above embodiment is configured as an infrared and visible light imaging unit. Then, this system uses the GVS device described in the above embodiment not for avoiding approaching a moving object but for suppressing sickness in a vehicle caused by a difference between an actual acceleration and an acceleration in an image.
 図25を参照して、上記車酔いの原因について説明する。上記自動車に搭乗している際に、車窓全面に表示されている映像を見ていると、搭乗者の前庭により感知される加速度(実際の加速度)と、搭乗者が視覚情報から感じる加速度との間に差が生じる場合がある。すなわち、前庭によって感知された情報と、視覚により得られた情報との間には、不整合が生じる場合がある。このような前庭情報と視覚情報との不整合が、車酔いの原因となりうる。 The cause of the above-mentioned motion sickness will be described with reference to FIG. When looking at the image displayed on the entire surface of the vehicle window while boarding the above vehicle, the acceleration perceived by the passenger's front yard (actual acceleration) and the acceleration perceived by the passenger from visual information There may be a difference between them. That is, there may be inconsistencies between the information perceived by the vestibule and the information obtained visually. Such inconsistency between vestibular information and visual information can cause motion sickness.
 図26を参照して、上記車酔い抑制システムについて説明する。図26は、本変形例の車酔い抑制システム20の一例を説明するための模式図である。車酔い抑制システム20は、右耳用GVS装置103と、左耳用GVS装置(図示せず)と、から構成される左右一対のGVS装置を含む。一対のGVS装置を装着するユーザUは、図26に示される自動車800の搭乗者でもある。自動車800の車窓は、全面がディスプレイ化されている。 The above-mentioned motion sickness suppression system will be described with reference to FIG. 26. FIG. 26 is a schematic diagram for explaining an example of the motion sickness suppression system 20 of this modified example. The motion sickness suppression system 20 includes a pair of left and right GVS devices including a GVS device 103 for the right ear and a GVS device for the left ear (not shown). The user U who wears the pair of GVS devices is also the passenger of the automobile 800 shown in FIG. The entire surface of the window of the automobile 800 is displayed.
 自動車800は、可視光イメージセンサ部、赤外線イメージセンサ部、顔色判断部、車体加速度センサ部、ディスプレイ画像処理部、及び運動解析部を備える。可視光イメージセンサ部は、可視光イメージングによって搭乗者(ユーザU)の顔を識別する。赤外線イメージセンサ部は、近赤外線イメージングによって搭乗者の血中のヘモグロビン量の変動を判断し、そして脈拍変化を算出する。可視光イメージセンサ部及び赤外線イメージセンサ部は、それぞれ、自動車800の内部に複数実装されてよく、これにより複数の搭乗者の状態が個別に判断されうる。 The automobile 800 includes a visible light image sensor unit, an infrared image sensor unit, a complexion determination unit, a vehicle body acceleration sensor unit, a display image processing unit, and a motion analysis unit. The visible light image sensor unit identifies the face of the passenger (user U) by visible light imaging. The infrared image sensor unit determines the fluctuation of the amount of hemoglobin in the blood of the passenger by near-infrared imaging, and calculates the pulse change. A plurality of the visible light image sensor unit and the infrared image sensor unit may be mounted inside the automobile 800, respectively, whereby the states of the plurality of passengers can be individually determined.
 顔色判断部は、可視光イメージセンサ部及び赤外線イメージセンサ部から得られる情報を用いて、搭乗者の顔色を判断する。顔色判断部は、当該顔色が所定の閾値を超えた場合、搭乗者が酔いの兆候であるストレス状態にあると判断する。 The complexion determination unit determines the complexion of the passenger using the information obtained from the visible light image sensor unit and the infrared image sensor unit. The complexion determination unit determines that the passenger is in a stressed state, which is a sign of sickness, when the complexion exceeds a predetermined threshold value.
 車体加速度センサ部は、自動車800の加速度を抽出する。ディスプレイ画像処理部は、車窓のディスプレイに表示される映像中の加速度を抽出する。運動解析部は、当該自動車800の加速度と当該映像中の加速度との差分が算出する。GVS装置103は、当該差分を埋め合わせるように、装置内の電極に印加する電流値を決定する。本変形例の車酔い抑制システムにおいては、加速度と電流値とを対応付けたデータベースが作成されてもよく、GVS装置103の電極に印加される電流値は、当該データベースを用いて決定されてもよい。 The vehicle body acceleration sensor unit extracts the acceleration of the automobile 800. The display image processing unit extracts the acceleration in the image displayed on the display of the vehicle window. The motion analysis unit calculates the difference between the acceleration of the automobile 800 and the acceleration in the image. The GVS device 103 determines the current value applied to the electrodes in the device so as to make up for the difference. In the motion sickness suppression system of this modification, a database in which acceleration and current value are associated may be created, and the current value applied to the electrodes of the GVS device 103 may be determined using the database. good.
 なお、上記複数の実施形態は、その構成及び動作に矛盾が生じない範囲において、組み合わせて実施することが可能である。 It should be noted that the above-mentioned plurality of embodiments can be combined and implemented as long as there is no contradiction in their configurations and operations.
 本技術では、以下の構成を取ることもできる。
〔1〕
 対象の周囲環境の画像を時間間隔dTで生成するイメージング部と、
 前記対象と前記周囲環境に存在する動体との間の距離L、及び、前記対象に対する前記動体の相対速度ベクトルVを算出し、前記距離L及び前記相対速度ベクトルVを用いて前記対象と前記動体とが所定の距離まで接近するのに要する時間Tを算出する動体解析部と、
 前記時間Tが判定時間Tj以内である前記動体を抽出し、前記判定時間Tj後において前記対象と前記抽出された動体との間の距離Ljが所定の距離となるように、前記対象が取るべき動作の大きさ及び方向を表す速度dVを算出する速度算出部と、
 前庭電気刺激を前記対象に与えるための電極部と、
 前記電極部に所定の電流値の電流を流して、前記対象が前記速度dVで動作することを誘導すべく前記前庭電気刺激を前記対象に与える電流制御部と、を含む、接近回避システム。
〔2〕
 前記電極部に電流値Iの電流が流れたときに誘導される動作の速度dVの情報を保持する電流値データベースを検索して、所定の速度dVに対応する電流値Iを取得する電流値取得部をさらに含み、
 前記電流制御部が前記電極部に前記電流値Iの電流を流す、〔1〕に記載の接近回避システム。
〔3〕
 前記電流制御部が前記前庭電気刺激を前記対象に与えた後の前記対象と前記抽出された動体との間の距離Lrを確認する結果確認部をさらに含み、
 前記結果確認部は、前記距離Lrが所定の条件を満たす場合に前記電流値データベースを更新する、〔2〕に記載の接近回避システム。
〔4〕
 前記イメージング部が、TOFイメージンセンサ及び/又はミリ波イメージセンサを含む、〔1〕~〔3〕のいずれか1つに記載に接近回避システム。
〔5〕
 前記イメージング部が、可視光イメージセンサをさらに含む、〔4〕に記載の接近回避システム。
〔6〕
 前記接近回避システムが、一対の前庭電気刺激装置を含み、
 前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記速度算出部、前記電極部、及び前記電流制御部を含む、〔1〕~〔5〕のいずれか1つに記載の接近回避システム。
〔7〕
 前記接近回避システムが、一対の前庭電気刺激装置と、モバイル端末と、を含み、
 前記一対の前庭電気刺激装置と、前記モバイル端末と、が通信可能に接続されており、
 前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記電極部、及び前記電流制御部を含み、
 前記モバイル端末が、前記速度算出部を含む、〔1〕~〔6〕のいずれか1つに記載の接近回避システム。
〔8〕
 前記接近回避システムが、一対の前庭電気刺激装置と、情報処理装置と、を含み、
 前記一対の前庭電気刺激装置と、前記情報処理装置と、が通信可能に接続されており、
 前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記電極部、及び前記電流制御部を含み、
 前記情報処理装置が、前記速度算出部を含む、〔1〕~〔7〕のいずれか1つに記載の接近回避システム。
〔9〕
 前記接近回避システムが、モバイル端末を含み、
 前記モバイル端末が、前記イメージング部を含む、〔1〕~〔8〕のいずれか1つに記載の接近回避システム。
〔10〕
 前記接近回避システムが、モバイル端末を含み、
 前記モバイル端末が、前記イメージング部、前記動体解析部、前記速度算出部、及び前記電流値取得部を含む、〔2〕又は〔3〕に記載の接近回避システム。
〔11〕
 音声を出力する音声出力部をさらに含む、〔1〕~〔10〕のいずれか1つに記載の接近回避システム。
〔12〕
 映像を表示する映像表示部をさらに含む、〔1〕~〔11〕のいずれか1つに記載の接近回避システム。
〔13〕
 前記対象の現在の位置情報を取得する位置情報取得部と、
 地図情報と前記位置情報とに基づいて前記対象が目的地に到達するまでの経路を選定し、前記地図情報から前記経路に関する情報を取得する経路選定部と、をさらに含み、
 前記速度算出部が、前記速度dVを算出する際に前記経路に関する情報を用いる、〔1〕~〔12〕のいずれか1つに記載の接近回避システム。
〔14〕
 前記対象の視界を特定可能な視界情報を取得する視界情報取得部と、
 前記視界情報を表示する視界表示部と、
 前記視界表示部をモニタする前記対象以外の第三者によって決定される電流値を、前記所定の電流値として設定する電流値設定部と、を含む、〔1〕~〔13〕のいずれか1つに記載の接近回避システム。
〔15〕
 前記接近回避システムが、一対の前庭電気刺激装置を複数含み、
 前記複数存在する一対の前庭電気刺激装置同士が、通信可能に接続されており、
 複数の前記対象のそれぞれが、前記一対の前庭電気刺激装置を装着し、
 前記一対の前庭電気刺激装置が、他の一対の前庭電気刺激装置に自身の前庭電気刺激装置を認識させる認識信号を生成する認識信号生成部と、前記認識信号を送受信する送受信部と、を含み、
 前記速度算出部が、前記送受信部が受信した前記他の一対の前庭電気刺激装置からの前記認識信号に基づいて前記速度dVを算出する、〔1〕~〔14〕のいずれか1つに記載の接近回避システム。
〔16〕
 前記接近回避システムが、
 前記他の一対の前庭電気刺激装置からの前記認識信号に基づいて、前記他の一対の前庭電気刺激装置を装着している他の対象の行動履歴情報を保持する行動履歴データベースから、前記行動履歴情報を取得する情報取得部と、
 取得された前記行動履歴情報に基づいて、前記他の対象の行動を予測して予測速度ベクトルVpを算出する行動予測部と、を含み、
 前記速度算出部が、前記他の対象の前記予測速度ベクトルVpを用いて前記速度dVを算出する、〔15〕に記載の接近回避システム。
〔17〕
 前記対象が人であり、前記周囲環境に存在する動体も人であり、
 人同士の間に所定の距離を確保して人の密集及び密接を回避するために用いられるものである、〔1〕~〔16〕のいずれか1つに記載の接近回避システム。
〔18〕
 一対の前庭電気刺激装置であって、
 前記一対の前庭電気刺激装置のそれぞれが、
 対象の周囲環境の画像を時間間隔dTで生成するイメージング部と、
 前記対象と前記周囲環境に存在する動体との間の距離L、及び、前記対象に対する前記動体の相対速度ベクトルVを算出し、前記距離L及び前記相対速度ベクトルVを用いて前記対象と前記動体とが所定の距離まで接近するのに要する時間Tを算出する動体解析部と、
 前記時間Tが判定時間Tj以内である前記動体を抽出し、前記判定時間Tj後において前記対象と前記抽出された動体との間の距離Ljが所定の距離となるように、前記対象が取るべき動作の大きさ及び方向を表す速度dVを算出する速度算出部と、
 前庭電気刺激を前記対象に与えるための電極部と、
 前記電極部に所定の電流値の電流を流して、前記対象が前記速度dVで動作することを誘導すべく前庭電気刺激を前記対象に与える電流制御部と、を含む、前記一対の前庭電気刺激装置。
〔19〕
 前記一対の前庭電気刺激装置が、一対の耳掛け型のウェアラブル装置であり、
 前記一対の前庭電気刺激装置のそれぞれが、1つ以上のイメージセンサを含む前記イメージング部と、3つの電極を含む前記電極部と、を含む、〔18〕に記載の一対の前庭電気刺激装置。
The present technology can also have the following configurations.
[1]
An imaging unit that generates an image of the surrounding environment of the target at time intervals dT,
The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V. A moving object analysis unit that calculates the time T required for and to approach a predetermined distance,
The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj. A speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement,
An electrode part for applying vestibular electrical stimulation to the subject,
An approach avoidance system including a current control unit that applies a vestibular electrical stimulus to the object in order to induce the object to operate at the speed dV by passing a current of a predetermined current value through the electrode unit.
[2]
Acquire the current value I that corresponds to the predetermined speed dV by searching the current value database that holds the information of the speed dV of the operation induced when the current of the current value I flows through the electrode portion. Including the part
The approach avoidance system according to [1], wherein the current control unit causes a current having the current value I to flow through the electrode unit.
[3]
The current control unit further includes a result confirmation unit that confirms the distance Lr between the object and the extracted moving object after the vestibular electrical stimulation is applied to the object.
The approach avoidance system according to [2], wherein the result confirmation unit updates the current value database when the distance Lr satisfies a predetermined condition.
[4]
The approach avoidance system according to any one of [1] to [3], wherein the imaging unit includes a TOF imagen sensor and / or a millimeter wave image sensor.
[5]
The approach avoidance system according to [4], wherein the imaging unit further includes a visible light image sensor.
[6]
The approach avoidance system includes a pair of vestibular electrical stimulators.
Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the speed calculation unit, the electrode unit, and the current control unit, in any one of [1] to [5]. The approach avoidance system described.
[7]
The approach avoidance system includes a pair of vestibular electrical stimulators and a mobile terminal.
The pair of vestibular electrical stimulators and the mobile terminal are communicably connected to each other.
Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
The approach avoidance system according to any one of [1] to [6], wherein the mobile terminal includes the speed calculation unit.
[8]
The approach avoidance system includes a pair of vestibular electrical stimulators and an information processing device.
The pair of vestibular electrical stimulators and the information processing device are communicably connected to each other.
Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
The approach avoidance system according to any one of [1] to [7], wherein the information processing device includes the speed calculation unit.
[9]
The approach avoidance system includes a mobile terminal.
The approach avoidance system according to any one of [1] to [8], wherein the mobile terminal includes the imaging unit.
[10]
The approach avoidance system includes a mobile terminal.
The approach avoidance system according to [2] or [3], wherein the mobile terminal includes the imaging unit, the moving object analysis unit, the speed calculation unit, and the current value acquisition unit.
[11]
The approach avoidance system according to any one of [1] to [10], further including an audio output unit that outputs audio.
[12]
The approach avoidance system according to any one of [1] to [11], further including an image display unit for displaying an image.
[13]
A position information acquisition unit that acquires the current position information of the target, and
A route selection unit that selects a route until the target reaches the destination based on the map information and the position information and acquires information about the route from the map information is further included.
The approach avoidance system according to any one of [1] to [12], wherein the speed calculation unit uses information about the route when calculating the speed dV.
[14]
A field of view information acquisition unit that acquires field of view information that can identify the field of view of the target, and
A field of view display unit that displays the field of view information and
Any one of [1] to [13], including a current value setting unit that sets a current value determined by a third party other than the target that monitors the visibility display unit as the predetermined current value. The approach avoidance system described in one.
[15]
The approach avoidance system includes a plurality of a pair of vestibular electrical stimulators.
The pair of existing vestibular electrical stimulators are connected to each other so as to be able to communicate with each other.
Each of the plurality of objects is fitted with the pair of vestibular electrical stimulators.
The pair of vestibular electrical stimulators includes a recognition signal generator that generates a recognition signal that causes the other pair of vestibular electrical stimulators to recognize their own vestibular electrical stimulator, and a transmission / reception unit that transmits and receives the recognition signal. ,
The speed dV is calculated based on the recognition signal from the other pair of vestibular electrical stimulators received by the transmission / reception unit, according to any one of [1] to [14]. Approach avoidance system.
[16]
The approach avoidance system
Based on the recognition signal from the other pair of vestibular electrical stimulators, the behavior history is obtained from the behavior history database that holds the behavior history information of the other target wearing the other pair of vestibular electrical stimulators. Information acquisition department to acquire information and
A behavior prediction unit that predicts the behavior of the other target and calculates a prediction speed vector Vp based on the acquired behavior history information is included.
The approach avoidance system according to [15], wherein the speed calculation unit calculates the speed dV using the predicted speed vector Vp of the other object.
[17]
The target is a human, and the moving body existing in the surrounding environment is also a human.
The approach avoidance system according to any one of [1] to [16], which is used to secure a predetermined distance between people and avoid crowding and close contact of people.
[18]
A pair of vestibular electrical stimulators
Each of the pair of vestibular electrical stimulators
An imaging unit that generates an image of the surrounding environment of the target at time intervals dT,
The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V. A moving object analysis unit that calculates the time T required for and to approach a predetermined distance,
The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj. A speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement,
An electrode part for applying vestibular electrical stimulation to the subject,
The pair of vestibular electrical stimuli, including a current control unit that supplies a vestibular electrical stimulus to the subject in order to induce the subject to operate at the speed dV by passing a current of a predetermined current value through the electrode portion. Device.
[19]
The pair of vestibular electrical stimulators is a pair of ear-hook type wearable devices.
The pair of vestibular electrical stimulators according to [18], wherein each of the pair of vestibular electrical stimulators includes the imaging unit including one or more image sensors and the electrode unit including three electrodes.
1 接近回避システム
100 前庭電気刺激装置
111 動体解析部
112 速度算出部
114 電流制御部
120 イメージング部
130 電極部
1 Approach avoidance system 100 Vestibular electrical stimulator 111 Dynamic body analysis unit 112 Velocity calculation unit 114 Current control unit 120 Imaging unit 130 Electrode unit

Claims (19)

  1.  対象の周囲環境の画像を時間間隔dTで生成するイメージング部と、
     前記対象と前記周囲環境に存在する動体との間の距離L、及び、前記対象に対する前記動体の相対速度ベクトルVを算出し、前記距離L及び前記相対速度ベクトルVを用いて前記対象と前記動体とが所定の距離まで接近するのに要する時間Tを算出する動体解析部と、
     前記時間Tが判定時間Tj以内である前記動体を抽出し、前記判定時間Tj後において前記対象と前記抽出された動体との間の距離Ljが所定の距離となるように、前記対象が取るべき動作の大きさ及び方向を表す速度dVを算出する速度算出部と、
     前庭電気刺激を前記対象に与えるための電極部と、
     前記電極部に所定の電流値の電流を流して、前記対象が前記速度dVで動作することを誘導すべく前記前庭電気刺激を前記対象に与える電流制御部と、を含む、接近回避システム。
    An imaging unit that generates an image of the surrounding environment of the target at time intervals dT,
    The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V. A moving object analysis unit that calculates the time T required for and to approach a predetermined distance,
    The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj. A speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement,
    An electrode part for applying vestibular electrical stimulation to the subject,
    An approach avoidance system including a current control unit that applies a vestibular electrical stimulus to the object in order to induce the object to operate at the speed dV by passing a current of a predetermined current value through the electrode unit.
  2.  前記電極部に電流値Iの電流が流れたときに誘導される動作の速度dVの情報を保持する電流値データベースを検索して、所定の速度dVに対応する電流値Iを取得する電流値取得部をさらに含み、
     前記電流制御部が前記電極部に前記電流値Iの電流を流す、請求項1に記載の接近回避システム。
    Acquire the current value I that corresponds to the predetermined speed dV by searching the current value database that holds the information of the speed dV of the operation induced when the current of the current value I flows through the electrode portion. Including the part
    The approach avoidance system according to claim 1, wherein the current control unit causes a current having the current value I to flow through the electrode unit.
  3.  前記電流制御部が前記前庭電気刺激を前記対象に与えた後の前記対象と前記抽出された動体との間の距離Lrを確認する結果確認部をさらに含み、
     前記結果確認部は、前記距離Lrが所定の条件を満たす場合に前記電流値データベースを更新する、請求項2に記載の接近回避システム。
    The current control unit further includes a result confirmation unit that confirms the distance Lr between the object and the extracted moving object after the vestibular electrical stimulation is applied to the object.
    The approach avoidance system according to claim 2, wherein the result confirmation unit updates the current value database when the distance Lr satisfies a predetermined condition.
  4.  前記イメージング部が、TOFイメージンセンサ及び/又はミリ波イメージセンサを含む、請求項1に記載に接近回避システム。 The approach avoidance system according to claim 1, wherein the imaging unit includes a TOF imagen sensor and / or a millimeter wave image sensor.
  5.  前記イメージング部が、可視光イメージセンサをさらに含む、請求項4に記載の接近回避システム。 The approach avoidance system according to claim 4, wherein the imaging unit further includes a visible light image sensor.
  6.  前記接近回避システムが、一対の前庭電気刺激装置を含み、
     前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記速度算出部、前記電極部、及び前記電流制御部を含む、請求項1に記載の接近回避システム。
    The approach avoidance system includes a pair of vestibular electrical stimulators.
    The approach avoidance system according to claim 1, wherein each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the speed calculation unit, the electrode unit, and the current control unit.
  7.  前記接近回避システムが、一対の前庭電気刺激装置と、モバイル端末と、を含み、
     前記一対の前庭電気刺激装置と、前記モバイル端末と、が通信可能に接続されており、
     前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記電極部、及び前記電流制御部を含み、
     前記モバイル端末が、前記速度算出部を含む、請求項1に記載の接近回避システム。
    The approach avoidance system includes a pair of vestibular electrical stimulators and a mobile terminal.
    The pair of vestibular electrical stimulators and the mobile terminal are communicably connected to each other.
    Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
    The approach avoidance system according to claim 1, wherein the mobile terminal includes the speed calculation unit.
  8.  前記接近回避システムが、一対の前庭電気刺激装置と、情報処理装置と、を含み、
     前記一対の前庭電気刺激装置と、前記情報処理装置と、が通信可能に接続されており、
     前記一対の前庭電気刺激装置のそれぞれが、前記イメージング部、前記動体解析部、前記電極部、及び前記電流制御部を含み、
     前記情報処理装置が、前記速度算出部を含む、請求項1に記載の接近回避システム。
    The approach avoidance system includes a pair of vestibular electrical stimulators and an information processing device.
    The pair of vestibular electrical stimulators and the information processing device are communicably connected to each other.
    Each of the pair of vestibular electrical stimulators includes the imaging unit, the moving object analysis unit, the electrode unit, and the current control unit.
    The approach avoidance system according to claim 1, wherein the information processing device includes the speed calculation unit.
  9.  前記接近回避システムが、モバイル端末を含み、
     前記モバイル端末が、前記イメージング部を含む、請求項1に記載の接近回避システム。
    The approach avoidance system includes a mobile terminal.
    The approach avoidance system according to claim 1, wherein the mobile terminal includes the imaging unit.
  10.  前記接近回避システムが、モバイル端末を含み、
     前記モバイル端末が、前記イメージング部、前記動体解析部、前記速度算出部、及び前記電流値取得部を含む、請求項2に記載の接近回避システム。
    The approach avoidance system includes a mobile terminal.
    The approach avoidance system according to claim 2, wherein the mobile terminal includes the imaging unit, the moving object analysis unit, the speed calculation unit, and the current value acquisition unit.
  11.  音声を出力する音声出力部をさらに含む、請求項1に記載の接近回避システム。 The approach avoidance system according to claim 1, further including an audio output unit that outputs audio.
  12.  映像を表示する映像表示部をさらに含む、請求項1に記載の接近回避システム。 The approach avoidance system according to claim 1, further including a video display unit for displaying video.
  13.  前記対象の現在の位置情報を取得する位置情報取得部と、
     地図情報と前記位置情報とに基づいて前記対象が目的地に到達するまでの経路を選定し、前記地図情報から前記経路に関する情報を取得する経路選定部と、をさらに含み、
     前記速度算出部が、前記速度dVを算出する際に前記経路に関する情報を用いる、請求項1に記載の接近回避システム。
    A position information acquisition unit that acquires the current position information of the target, and
    A route selection unit that selects a route until the target reaches the destination based on the map information and the position information and acquires information about the route from the map information is further included.
    The approach avoidance system according to claim 1, wherein the speed calculation unit uses information about the route when calculating the speed dV.
  14.  前記対象の視界を特定可能な視界情報を取得する視界情報取得部と、
     前記視界情報を表示する視界表示部と、
     前記視界表示部をモニタする前記対象以外の第三者によって決定される電流値を、前記所定の電流値として設定する電流値設定部と、を含む、請求項1に記載の接近回避システム。
    A field of view information acquisition unit that acquires field of view information that can identify the field of view of the target, and
    A field of view display unit that displays the field of view information and
    The approach avoidance system according to claim 1, further comprising a current value setting unit that sets a current value determined by a third party other than the target that monitors the visibility display unit as the predetermined current value.
  15.  前記接近回避システムが、一対の前庭電気刺激装置を複数含み、
     前記複数存在する一対の前庭電気刺激装置同士が、通信可能に接続されており、
     複数の前記対象のそれぞれが、前記一対の前庭電気刺激装置を装着し、
     前記一対の前庭電気刺激装置が、他の一対の前庭電気刺激装置に自身の前庭電気刺激装置を認識させる認識信号を生成する認識信号生成部と、前記認識信号を送受信する送受信部と、を含み、
     前記速度算出部が、前記送受信部が受信した前記他の一対の前庭電気刺激装置からの前記認識信号に基づいて前記速度dVを算出する、請求項1に記載の接近回避システム。
    The approach avoidance system includes a plurality of a pair of vestibular electrical stimulators.
    The pair of existing vestibular electrical stimulators are connected to each other so as to be able to communicate with each other.
    Each of the plurality of objects is fitted with the pair of vestibular electrical stimulators.
    The pair of vestibular electrical stimulators includes a recognition signal generator that generates a recognition signal that causes the other pair of vestibular electrical stimulators to recognize their own vestibular electrical stimulator, and a transmission / reception unit that transmits and receives the recognition signal. ,
    The approach avoidance system according to claim 1, wherein the speed calculation unit calculates the speed dV based on the recognition signal from the other pair of vestibular electrical stimulators received by the transmission / reception unit.
  16.  前記接近回避システムが、
     前記他の一対の前庭電気刺激装置からの前記認識信号に基づいて、前記他の一対の前庭電気刺激装置を装着している他の対象の行動履歴情報を保持する行動履歴データベースから、前記行動履歴情報を取得する情報取得部と、
     取得された前記行動履歴情報に基づいて、前記他の対象の行動を予測して予測速度ベクトルVpを算出する行動予測部と、を含み、
     前記速度算出部が、前記他の対象の前記予測速度ベクトルVpを用いて前記速度dVを算出する、請求項15に記載の接近回避システム。
    The approach avoidance system
    Based on the recognition signal from the other pair of vestibular electrical stimulators, the behavior history is obtained from the behavior history database that holds the behavior history information of the other target wearing the other pair of vestibular electrical stimulators. Information acquisition department to acquire information and
    A behavior prediction unit that predicts the behavior of the other target and calculates a prediction speed vector Vp based on the acquired behavior history information is included.
    The approach avoidance system according to claim 15, wherein the speed calculation unit calculates the speed dV using the predicted speed vector Vp of the other object.
  17.  前記対象が人であり、前記周囲環境に存在する動体も人であり、
     人同士の間に所定の距離を確保して人の密集及び密接を回避するために用いられるものである、請求項1に記載の接近回避システム。
    The target is a human, and the moving body existing in the surrounding environment is also a human.
    The approach avoidance system according to claim 1, which is used to secure a predetermined distance between people and avoid crowding and close contact of people.
  18.  一対の前庭電気刺激装置であって、
     前記一対の前庭電気刺激装置のそれぞれが、
     対象の周囲環境の画像を時間間隔dTで生成するイメージング部と、
     前記対象と前記周囲環境に存在する動体との間の距離L、及び、前記対象に対する前記動体の相対速度ベクトルVを算出し、前記距離L及び前記相対速度ベクトルVを用いて前記対象と前記動体とが所定の距離まで接近するのに要する時間Tを算出する動体解析部と、
     前記時間Tが判定時間Tj以内である前記動体を抽出し、前記判定時間Tj後において前記対象と前記抽出された動体との間の距離Ljが所定の距離となるように、前記対象が取るべき動作の大きさ及び方向を表す速度dVを算出する速度算出部と、
     前庭電気刺激を前記対象に与えるための電極部と、
     前記電極部に所定の電流値の電流を流して、前記対象が前記速度dVで動作することを誘導すべく前庭電気刺激を前記対象に与える電流制御部と、を含む、前記一対の前庭電気刺激装置。
    A pair of vestibular electrical stimulators
    Each of the pair of vestibular electrical stimulators
    An imaging unit that generates an image of the surrounding environment of the target at time intervals dT,
    The distance L between the target and the moving body existing in the surrounding environment and the relative velocity vector V of the moving body with respect to the target are calculated, and the target and the moving body are used using the distance L and the relative velocity vector V. A moving object analysis unit that calculates the time T required for and to approach a predetermined distance,
    The moving body whose time T is within the determination time Tj is extracted, and the target should take a predetermined distance so that the distance Lj between the target and the extracted moving body becomes a predetermined distance after the judgment time Tj. A speed calculation unit that calculates the speed dV that represents the magnitude and direction of movement,
    An electrode part for applying vestibular electrical stimulation to the subject,
    The pair of vestibular electrical stimuli, including a current control unit that supplies a vestibular electrical stimulus to the subject in order to induce the subject to operate at the speed dV by passing a current of a predetermined current value through the electrode portion. Device.
  19.  前記一対の前庭電気刺激装置が、一対の耳掛け型のウェアラブル装置であり、
     前記一対の前庭電気刺激装置のそれぞれが、1つ以上のイメージセンサを含む前記イメージング部と、3つの電極を含む前記電極部と、を含む、請求項18に記載の一対の前庭電気刺激装置。
     
    The pair of vestibular electrical stimulators is a pair of ear-hook type wearable devices.
    The pair of vestibular electrical stimulators according to claim 18, wherein each of the pair of vestibular electrical stimulators comprises the imaging unit including one or more image sensors and the electrode unit including three electrodes.
PCT/JP2021/046900 2021-01-12 2021-12-20 Approach avoidance system and galvanic vestibular stimulation device WO2022153792A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-002933 2021-01-12
JP2021002933A JP2022108093A (en) 2021-01-12 2021-01-12 Approach avoidance system and galvanic vestibular stimulation device

Publications (1)

Publication Number Publication Date
WO2022153792A1 true WO2022153792A1 (en) 2022-07-21

Family

ID=82447174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046900 WO2022153792A1 (en) 2021-01-12 2021-12-20 Approach avoidance system and galvanic vestibular stimulation device

Country Status (2)

Country Link
JP (1) JP2022108093A (en)
WO (1) WO2022153792A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254790A (en) * 2003-02-25 2004-09-16 Japan Science & Technology Agency Body induction apparatus
JP2006296221A (en) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Animal-guiding system
JP2009292332A (en) * 2008-06-05 2009-12-17 Nissan Motor Co Ltd Vehicle driving support device and vehicle driving support method
JP2010198205A (en) * 2009-02-24 2010-09-09 Toyota Motor Corp Collision avoidance support device
JP2012519538A (en) * 2009-03-05 2012-08-30 インフォサイテックス・コーポレーション Vestibular electrical stimulation system and method of use for simulation, directional cueing, and mitigation of illness related to perturbation
JP2012196997A (en) * 2011-03-18 2012-10-18 Fuji Heavy Ind Ltd Vehicle drive support device
JP2018048921A (en) * 2016-09-22 2018-03-29 株式会社デンソー Object detection apparatus and object detection method
JP2018151347A (en) * 2017-03-15 2018-09-27 株式会社日立製作所 Device and method for aiding movement of user
JP2019516174A (en) * 2016-03-30 2019-06-13 株式会社ソニー・インタラクティブエンタテインメント Head mounted display tracking

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004254790A (en) * 2003-02-25 2004-09-16 Japan Science & Technology Agency Body induction apparatus
JP2006296221A (en) * 2005-04-15 2006-11-02 Nippon Telegr & Teleph Corp <Ntt> Animal-guiding system
JP2009292332A (en) * 2008-06-05 2009-12-17 Nissan Motor Co Ltd Vehicle driving support device and vehicle driving support method
JP2010198205A (en) * 2009-02-24 2010-09-09 Toyota Motor Corp Collision avoidance support device
JP2012519538A (en) * 2009-03-05 2012-08-30 インフォサイテックス・コーポレーション Vestibular electrical stimulation system and method of use for simulation, directional cueing, and mitigation of illness related to perturbation
JP2012196997A (en) * 2011-03-18 2012-10-18 Fuji Heavy Ind Ltd Vehicle drive support device
JP2019516174A (en) * 2016-03-30 2019-06-13 株式会社ソニー・インタラクティブエンタテインメント Head mounted display tracking
JP2018048921A (en) * 2016-09-22 2018-03-29 株式会社デンソー Object detection apparatus and object detection method
JP2018151347A (en) * 2017-03-15 2018-09-27 株式会社日立製作所 Device and method for aiding movement of user

Also Published As

Publication number Publication date
JP2022108093A (en) 2022-07-25

Similar Documents

Publication Publication Date Title
Meier et al. Exploring vibrotactile feedback on the body and foot for the purpose of pedestrian navigation
US20140184384A1 (en) Wearable navigation assistance for the vision-impaired
CN112204640B (en) Auxiliary device for visually impaired
CN110641468B (en) Controlling autonomous vehicles based on passenger behavior
US20210154430A1 (en) Systems and methods for predicting and preventing motion sickness
US20140176296A1 (en) Methods and systems for managing motion sickness
JP2020527432A (en) Racing simulation
US10342462B2 (en) Application of gait characteristics for mobile
CN109074748A (en) Image processing equipment, image processing method and movable body
CN104427960A (en) Adaptive visual assistive device
KR20200113202A (en) Information processing device, mobile device, and method, and program
JP2005315802A (en) User support device
Zeng et al. Exploration and avoidance of surrounding obstacles for the visually impaired
US11338106B2 (en) Hearing assistance devices with motion sickness prevention and mitigation features
Telpaz et al. An approach for measurement of passenger comfort: real-time classification based on in-cabin and exterior data
US10488222B2 (en) Mobile device control leveraging user kinematics
Guo et al. Psycho-physiological measures on a bicycle simulator in immersive virtual environments: How protected/curbside bike lanes may improve perceived safety
Bovonsunthonchai et al. The impact of different mobile phone tasks on gait behaviour in healthy young adults
Matviienko et al. QuantiBike: quantifying perceived cyclists' safety via head movements in virtual reality and outdoors
CN109983784B (en) Information processing apparatus, method and storage medium
WO2022153792A1 (en) Approach avoidance system and galvanic vestibular stimulation device
Guo et al. Roadway Design Matters: Variation in Bicyclists' Psycho-Physiological Responses in Different Urban Roadway Designs
KR20220014254A (en) Method of providing traveling virtual reality contents in vehicle such as a bus and a system thereof
Woźniak et al. Gapeau: Enhancing the Sense of Distance to Others with a Head-Mounted Sensor
CN110169779A (en) A kind of Visual Characteristics Analysis of Drivers method based on eye movement vision mode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919680

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919680

Country of ref document: EP

Kind code of ref document: A1