Nothing Special   »   [go: up one dir, main page]

WO2022149187A1 - Refrigeration cycle apparatus - Google Patents

Refrigeration cycle apparatus Download PDF

Info

Publication number
WO2022149187A1
WO2022149187A1 PCT/JP2021/000098 JP2021000098W WO2022149187A1 WO 2022149187 A1 WO2022149187 A1 WO 2022149187A1 JP 2021000098 W JP2021000098 W JP 2021000098W WO 2022149187 A1 WO2022149187 A1 WO 2022149187A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
flow rate
rate adjusting
path
adjusting device
Prior art date
Application number
PCT/JP2021/000098
Other languages
French (fr)
Japanese (ja)
Inventor
正紘 伊藤
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022573816A priority Critical patent/JPWO2022149187A1/ja
Priority to CN202180088505.6A priority patent/CN116829884A/en
Priority to EP21917415.8A priority patent/EP4276384A4/en
Priority to US18/255,195 priority patent/US20240011696A1/en
Priority to PCT/JP2021/000098 priority patent/WO2022149187A1/en
Publication of WO2022149187A1 publication Critical patent/WO2022149187A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/002Defroster control
    • F25D21/004Control mechanisms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • F25B41/26Disposition of valves, e.g. of on-off valves or flow control valves of fluid flow reversing valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/003Indoor unit with water as a heat sink or heat source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/16Receivers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/19Pumping down refrigerant from one part of the cycle to another part of the cycle, e.g. when the cycle is changed from cooling to heating, or before a defrost cycle is started
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2513Expansion valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2523Receiver valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • This disclosure relates to a refrigeration cycle device.
  • the amount of refrigerant used in the cooling operation is larger than that in the heating operation. Therefore, in some conventional refrigeration cycle devices, a refrigerant storage device for temporarily storing a surplus refrigerant in the refrigerant circuit is provided in the case of heating operation.
  • a compressor As a conventional refrigeration cycle equipped with a refrigerant storage device, for example, as disclosed in International Publication No. 2016/121068 (Patent Document 1), a compressor, a flow path switching device, a heat source side heat exchanger, and the first It includes a refrigerant circuit including a throttle device and a heat exchanger on the user side, and a liquid back suppression circuit connected in parallel to the first throttle device, and the liquid back suppression circuit includes a second throttle device, an on-off valve, and a second throttle device. Some included a high pressure receiver connected to the on-off valve.
  • the temperature of the refrigerant storage device is extremely higher than the temperature of the water for heat exchange in the user side heat exchanger due to the outside air temperature. It's getting low.
  • the refrigerant path is used to enter the refrigerant storage device. Refrigerant may flow into and be stored in the room.
  • the refrigerant stored in the refrigerant storage device is discharged because the heat capacity of the refrigerant storage device is relatively large and the temperature of the refrigerant storage device does not easily rise. There was a risk that it could not be done.
  • the cooling operation is performed with the refrigerant stored in the refrigerant storage device, there is a problem that the capacity of the refrigeration cycle device is lowered due to the insufficient amount of the refrigerant required for the cooling operation. ..
  • the refrigerating cycle device of the present disclosure is intended to prevent a decrease in the capacity of the refrigerating cycle device during cooling operation.
  • the refrigeration cycle device is a compressor provided in the first refrigerant path between the first heat exchanger and the second heat exchanger, and a second refrigerant between the first heat exchanger and the second heat exchanger.
  • the first flow control device provided in the path and the second heat exchanger are provided in the third refrigerant path connected in parallel with a part of the second heat exchanger between the first heat exchanger and the second heat exchanger.
  • a refrigerant storage device capable of storing the refrigerant flowing in from the refrigerant path, a second flow rate adjusting device provided in the third refrigerant path and adjusting the flow rate of the refrigerant between the second refrigerant path and the refrigerant storage device, and a cooling operation. It is provided with a control device that controls the second flow rate adjusting device so as to block the inflow of the refrigerant from the second refrigerant path to the refrigerant storage device at the time of starting.
  • the second flow rate adjusting device when the cooling operation is started, the second flow rate adjusting device is controlled so as to block the inflow of the refrigerant from the second refrigerant path to the refrigerant storage device, so that the outside air temperature is adjusted. It is possible to prevent the refrigerant from flowing into the refrigerant storage device when the cooling operation is started in an extremely low state. Thereby, in the refrigerating cycle of the present disclosure, it is possible to prevent the refrigerating cycle apparatus from being functionally deteriorated because the amount of the refrigerant is not insufficient in the cooling operation.
  • FIG. 5 is a flowchart in which the CPU 102 of the control device 100 in the first embodiment controls the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation. It is a figure which shows the refrigerant circuit structure of the refrigerating cycle apparatus 1A in Embodiment 2.
  • FIG. It is a figure which shows the refrigerant circuit structure of the refrigerating cycle apparatus 1A in Embodiment 2.
  • FIG. 1 It is a flowchart of the control which executes the defrosting operation at the time of a heating operation by the CPU 102 of the control apparatus 100 in Embodiment 2.
  • FIG. It is a flowchart of the control which executes the defrosting operation at the time of a heating operation by the CPU 102 of the control apparatus 100 in Embodiment 3.
  • FIG. 1 It is a flowchart of the control which executes the defrosting operation at the time of a heating operation by the CPU 102 of the control apparatus 100 in Embodiment 3.
  • Embodiment 1. 1 and 2 are diagrams showing a refrigerant circuit configuration of the refrigeration cycle device 1 according to the first embodiment.
  • FIG. 1 shows the state of the refrigerant circuit of the refrigerating cycle device 1 during the cooling operation.
  • FIG. 1 shows the state of the refrigerant circuit of the refrigerating cycle device 1 during the heating operation.
  • the refrigeration cycle device 1 includes a compressor 13, a flow path switching device 15, a first heat exchanger 11, a second heat exchanger 12, a first flow rate adjusting device 14, and a refrigerant storage device.
  • a refrigerant circuit including 16, a first check valve 21, a second check valve 22, a third check valve 17, a second flow rate adjusting device 18, and a third flow rate adjusting device 19 is provided.
  • the refrigerant circuit is a path for the refrigerant used in the refrigeration cycle device 1. In FIGS. 1 and 2, the direction in which the refrigerant flows is indicated by an arrow.
  • the refrigeration cycle device 1 includes a first refrigerant path F1, a second refrigerant path F2, a third refrigerant path F3, a fourth refrigerant path F4, and a fifth refrigerant path F5 as the refrigerant paths.
  • the first heat exchanger 11 is an air heat exchanger that exchanges heat between the outdoor air and the refrigerant.
  • the first heat exchanger 11 functions as a refrigerant condenser during the cooling operation and as a refrigerant evaporator during the heating operation.
  • a fan fan for supplying air to the first heat exchanger 11 is provided in the vicinity of the first heat exchanger 11.
  • the blower fan has a function of sucking in outdoor air and discharging the air exchanged with the refrigerant by the first heat exchanger 11 to the outside.
  • the second heat exchanger 12 is a water heat exchanger that exchanges heat between the water of the indoor unit and the refrigerant (not shown).
  • the second heat exchanger 12 functions as a refrigerant evaporator during the cooling operation and as a refrigerant condenser during the heating operation.
  • a compressor 13 for compressing the refrigerant is provided in the first refrigerant path F1 between the first heat exchanger 11 and the second heat exchanger 12.
  • the compressor 13 is driven by, for example, a motor controlled by an inverter.
  • a first flow rate adjusting device 14 is provided in the second refrigerant path F2 between the first heat exchanger 11 and the second heat exchanger 12.
  • the first flow rate adjusting device 14 has a function of depressurizing and expanding the refrigerant, and is composed of, for example, an electronic expansion valve whose flow rate can be adjusted.
  • the first flow rate adjusting device 14 can adjust the flow rate of the refrigerant in the second refrigerant path F2 both during the cooling operation and the heating operation, and is used to reduce the pressure and expand the refrigerant.
  • a refrigerant storage device 16 capable of storing the refrigerant flowing in from the second refrigerant path F2 is provided.
  • the refrigerant storage device 16 is connected in parallel to the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12.
  • the refrigerant storage device 16 is a metal tubular refrigerant tank, and can store the refrigerant.
  • a third refrigerant can flow between the refrigerant storage device 16 and the first flow rate adjusting device 14 from the inside of the refrigerant storage device 16 in only one direction of the second refrigerant path F2.
  • a check valve 17 is provided.
  • the pressure inside the refrigerant storage device 16 is higher than the pressure of the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12 by a reference value or more. In this case, the refrigerant flows from the inside of the refrigerant storage device 16 into the second refrigerant path F2 and is discharged.
  • a refrigerant storage device 16 and a second flow rate adjusting device 18 capable of opening and closing the refrigerant path between the first flow rate adjusting device 14 and the second heat exchanger 12 are provided.
  • the second flow rate adjusting device 18 is composed of a valve whose flow rate can be adjusted, such as an electronic expansion valve, and is in either a fully closed state or a fully open state.
  • the second flow rate adjusting device 18 may use a solenoid valve that is in either a fully open state or a fully closed state. Further, the second flow rate adjusting device 18 may be controlled to an opening degree other than the fully open state and the fully closed state.
  • the amount of refrigerant used in the refrigerant circuit of the refrigeration cycle device 1 is larger during the cooling operation than during the heating operation.
  • basically all the refrigerant in the refrigerant circuit is used in the refrigerant circuit, so that it is not necessary to store the refrigerant in the refrigerant storage device 16.
  • the heating operation as shown in FIG. 2 basically, if all the refrigerants in the refrigerant circuit are used in the refrigerant circuit, the amount of the refrigerant becomes excessive. It is necessary to store the stored refrigerant 30 in the refrigerant storage device 16.
  • a third flow rate adjusting device 19 for supplying a liquid refrigerant (hereinafter referred to as a liquid refrigerant) to the compressor 13 is provided in the fourth refrigerant path F4 between the second refrigerant path F2 and the suction side of the compressor 13. .
  • the third flow rate adjusting device 19 uses a liquid refrigerant on the suction side of the compressor 13 for the purpose of preventing the compressor 13 from overheating even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used. It is provided to supply to. Specifically, a part of the liquid refrigerant flowing through the second refrigerant path F2 is supplied to the compressor 13 via the third flow rate adjusting device 19.
  • the third flow rate adjusting device 19 is composed of a valve whose flow rate can be adjusted, such as an electronic expansion valve.
  • the fourth refrigerant path F4 includes a first branch path F41, a second branch path F42, and a supply path F43.
  • the first branch path F41 is a path for flowing out a part of the liquid refrigerant from the second refrigerant path F2 and sending it to the third flow rate adjusting device 19 during the cooling operation of FIG. 1.
  • the second branch path F42 is a path for flowing out a part of the liquid refrigerant from the second refrigerant path F2 and sending it to the third flow rate adjusting device 19 during the heating operation of FIG.
  • the first branch path F41 branches from the path between the first heat exchanger 11 and the first flow rate adjusting device 14 in the second refrigerant path F2 and is connected to the inlet side of the third flow rate adjusting device 19.
  • the second branch path F42 branches from the path between the second heat exchanger 12 and the first flow rate adjusting device 14 in the second refrigerant path F2 and is connected to the inlet side of the third flow rate adjusting device 19.
  • the supply path F43 connects the outlet side of the third flow rate adjusting device 19 and the suction side of the compressor 13 from the first branch path F41 or the second branch path F42.
  • the first branch path F41 is provided with a first check valve 21 that allows liquid refrigerant to flow only in one direction from the first heat exchanger 11 side to the third flow rate adjusting device 19 during cooling operation.
  • the second branch path F42 is provided with a second check valve 22 that allows the liquid refrigerant to flow only in one direction from the second heat exchanger 12 side to the third flow rate adjusting device 19 during the heating operation.
  • Each of the first check valve 21 and the second check valve 22 directs the liquid refrigerant toward the third flow rate adjusting device 19 based on the fact that the pressure on the inlet side is higher than the pressure on the outlet side by a reference value or more. And shed.
  • the liquid refrigerant flows between the first heat exchanger 11 and the first flow rate adjusting device 14 in the second refrigerant path F2.
  • the liquid refrigerant flows from the first branch path F41 to the third flow rate adjusting device 19 via the first check valve 21, and further, the third flow rate adjusting device 19 It flows from the supply path F43 to the suction side of the compressor 13.
  • the liquid refrigerant flows between the second heat exchanger 12 and the first flow rate adjusting device 14 in the second refrigerant path F2.
  • the liquid refrigerant flows from the second branch path F42 to the third flow rate adjusting device 19 via the second check valve 22, and further, the third flow rate adjusting device 19 It flows from the supply path F43 to the suction side of the compressor 13.
  • the discharge-side path of the compressor 13 in the first refrigerant path F1 is connected to either the first heat exchanger 11 or the second heat exchanger 12 via the flow path switching device 15.
  • the flow path switching device 15 switches the flow path through which the refrigerant flows, and is composed of, for example, a four-way valve.
  • the flow path switching device 15 switches the flow path of the refrigerant so that the path on the discharge side of the compressor 13 is connected to the first heat exchanger 11 as shown in FIG.
  • the flow path switching device 15 switches the flow path of the refrigerant so that the path on the discharge side of the compressor 13 is connected to the second heat exchanger 12, as shown in FIG.
  • the refrigerant that can be used in the refrigeration cycle device 1 includes a single refrigerant, a pseudo-azeotropic mixed refrigerant, a non-azeotropic mixed refrigerant, and the like.
  • the control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including.
  • various electronic components are mounted on the control board.
  • the control board includes a plurality of input ports used for inputting signals such as detection signals of various sensors, and control signals of, for example, a first flow rate adjusting device 14, a second flow rate adjusting device 18, and a third flow rate adjusting device 19. It is equipped with a plurality of output ports used for outputting signals required for controlling the actuator of the above.
  • the CPU 102 expands the program stored in the ROM into a RAM or the like and executes it.
  • the program stored in the ROM is a program in which the processing procedure of the control device 100 is described.
  • the control device 100 executes control of each device in the refrigeration cycle device 1 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
  • the refrigeration cycle device 1 is provided with various sensors. As the sensor, for example, the following ones are provided.
  • a discharge temperature sensor 51 for detecting the temperature (hereinafter, referred to as discharge temperature) T1 of the refrigerant discharged from the compressor 13 is provided.
  • the first heat exchanger 11 is provided with a heat exchanger temperature sensor that detects the temperature of the first heat exchanger 11.
  • the heat exchanger temperature sensor detects the temperature of the frost adhering to the first heat exchanger 11.
  • An inlet temperature sensor for detecting the temperature of the refrigerant is provided on the inlet side of the second heat exchanger 12.
  • An outlet temperature sensor for detecting the temperature of the refrigerant is provided on the outlet side of the second heat exchanger 12.
  • the detection signals of various sensors showing the detection signals of the discharge temperature sensor 51 indicating the discharge temperature T1 of the compressor 13 as a representative example are input to the control device 100.
  • the control device 100 gives a control signal to each of the compressor 13, the first flow rate adjusting device 14, the flow path switching device 15, the second flow rate adjusting device 18, and the third flow rate adjusting device 19.
  • the control device 100 controls the operating frequency of the compressor 13 based on the control signal.
  • the control device 100 controls the opening degree of the first flow rate adjusting device 14 based on the control signal.
  • the control device 100 controls to switch the flow path of the flow path switching device 15 based on the control signal.
  • the control device 100 controls the opening degree of the second flow rate adjusting device 18 based on the control signal.
  • the control device 100 controls the opening degree of the third flow rate adjusting device 19 based on the control signal.
  • the control device 100 controls the flow path in the flow path switching device 15 so that the flow path is as shown in FIG.
  • the opening degree of the first flow rate adjusting device 14 is controlled by the control device 100 based on the degree of superheat. For example, in the control device 100, the suction superheat degree of the compressor 13 obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the first heat exchanger 11 becomes a target value (for example, 3 ° C to 5 ° C, etc.). As described above, the opening degree of the first flow rate adjusting device 14 is determined, and the opening degree of the first flow rate adjusting device 14 is controlled.
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 13 flows into the first heat exchanger 11 through the flow path switching device 15 in the first refrigerant path F1.
  • the high-temperature and high-pressure refrigerant that has flowed into the first heat exchanger 11 dissipates heat to the outdoor air and the like, and is condensed into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the first heat exchanger 11 flows into the first flow rate adjusting device 14, is expanded and depressurized, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flowing out of the first flow rate adjusting device 14 flows into the second heat exchanger 12.
  • the gas-liquid two-phase refrigerant flowing into the second heat exchanger 12 exchanges heat with water and evaporates to become a low-temperature low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the second heat exchanger 12 is sucked into the compressor 13 via the flow path switching device 15 and is compressed again.
  • the heat capacity of the refrigerant storage device 16 is relatively large, when the cooling operation is started in a state where the outside air temperature is extremely low, if the refrigerant flows into and is stored in the refrigerant storage device 16, the cooling operation is performed. Even if the refrigerant flows in the refrigerant circuit after the start-up, the temperature of the refrigerant storage device 16 is unlikely to rise, and the pressure in the refrigerant storage device 16 is unlikely to rise. As a result, when the refrigerant is stored in the refrigerant storage device 16 at the start of the cooling operation, the pressure in the second refrigerant path F2 is higher than the pressure in the refrigerant storage device 16 even after the start of the cooling operation. It is high, and based on this pressure difference, the refrigerant does not flow out from the refrigerant storage device 16.
  • the control device 100 controls the opening degree of the second flow rate adjusting device 18 to be fully closed when the cooling operation is started, and the second flow rate adjusting device 18 is opened even during the operation after the cooling operation is started. Controls to maintain the degree in a fully closed state. As a result, the capacity of the refrigerating cycle device 1 can be prevented from being lowered by preventing the amount of the refrigerant from being insufficient during the cooling operation.
  • the liquid refrigerant flows between the first heat exchanger 11 and the first flow rate adjusting device 14 in the second refrigerant path F2.
  • the liquid refrigerant flows from the first branch path F41 to the third flow rate adjusting device 19 via the first check valve 21, and further from the supply path F43 via the third flow rate adjusting device 19. It flows to the suction side of the compressor 13. This makes it possible to prevent the compressor 13 from overheating even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used.
  • the control device 100 controls the flow path in the flow path switching device 15 so as to be the flow path as shown in FIG.
  • the opening degree of the first flow rate adjusting device 14 is controlled by the control device 100 based on the degree of supercooling. Specifically, in the control device 100, the degree of supercooling at the outlet of the second heat exchanger 12 obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the second heat exchanger 12 is a target value (for example, 3 ° C.).
  • the opening degree of the first flow rate adjusting device 14 is determined so as to be ( ⁇ 5 ° C., etc.).
  • the high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 13 flows into the second heat exchanger 12 through the flow path switching device 15 in the first refrigerant path F1.
  • the high-temperature and high-pressure refrigerant that has flowed into the second heat exchanger 12 dissipates heat to water and is condensed into a high-pressure liquid refrigerant.
  • the high-pressure liquid refrigerant flowing out of the second heat exchanger 12 flows into the first flow rate adjusting device 14, is expanded and depressurized, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant.
  • the gas-liquid two-phase refrigerant flowing out of the first flow rate adjusting device 14 flows into the first heat exchanger 11.
  • the second flow rate adjusting device 18 is controlled to the open state by the control device 100.
  • the surplus refrigerant is stored in the refrigerant storage device 16.
  • the gas-liquid two-phase refrigerant flowing into the first heat exchanger 11 exchanges heat with the outdoor air and evaporates to become a low-temperature low-pressure gas refrigerant.
  • the gas refrigerant flowing out of the first heat exchanger 11 is sucked into the compressor 13 via the flow path switching device 15 and is compressed again.
  • the control device 100 controls to fully open the opening degree of the second flow rate adjusting device 18 during the heating operation. This makes it possible to prevent the amount of refrigerant from becoming excessive during the heating operation.
  • the liquid refrigerant flows between the second heat exchanger 12 and the first flow rate adjusting device 14 in the second refrigerant path F2.
  • the liquid refrigerant flows from the second branch path F42 to the third flow rate adjusting device 19 via the second check valve 22, and further from the supply path F43 via the third flow rate adjusting device 19. It flows to the suction side of the compressor 13. This makes it possible to prevent the compressor 13 from overheating even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used.
  • the refrigeration cycle device 1 performs a defrosting operation for melting the frost in the first heat exchanger 11 when frost is generated in the first heat exchanger 11 during the heating operation described above. Specifically, when the control device 100 determines that the defrosting operation start condition of the first heat exchanger 11 is satisfied during the heating operation, the control device 100 switches the flow path switching device 15 to the path during the cooling operation, and the first heat exchanger A cooling operation is performed in which 11 functions as a condenser. For example, the control device 100 frosts the first heat exchanger 11 when the temperature detected by the heat exchanger temperature sensor provided in the first heat exchanger 11 is lower than the reference value temperature (for example, 0 ° C.). Is generated, and it is judged that the defrosting operation start condition is satisfied.
  • the control device 100 determines that the defrosting operation start condition of the first heat exchanger 11 is satisfied during the heating operation
  • the control device 100 switches the flow path switching device 15 to the path during the cooling operation, and the first heat exchanger A cooling operation is performed in which
  • FIG. 3 is a flowchart in which the CPU 102 of the control device 100 in the first embodiment controls the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation.
  • step S1 the start of the cooling operation is started by step S1.
  • step S2 when the start of the cooling operation is started, the second flow rate adjusting device 18 capable of blocking the inflow of the refrigerant into the refrigerant storage device 16 is fully closed.
  • step S3 it is determined whether or not the discharge temperature T1 of the compressor 13 detected by the discharge temperature sensor 51 is higher than the threshold value.
  • the threshold value is set to an upper limit such as 100 ° C. so that the compressor 13 is not regarded as overheated.
  • step S3 when it is determined in step S3 that the discharge temperature T1 is equal to or lower than the threshold value, the third flow rate adjusting device 19 is controlled to the closed state by step S4 to shift to the normal control state in the cooling operation.
  • step S4 when it is determined in step S3 that the discharge temperature T1 is higher than the threshold value, the third flow rate adjusting device 19 is controlled to the open state by step S5, and the control device 100 returns to the normal control state in the cooling operation.
  • step S5 when it is determined in step S3 that the discharge temperature T1 is higher than the threshold value, the third flow rate adjusting device 19 is controlled to the open state by step S5, and the control device 100 returns to the normal control state in the cooling operation. Migrate and return.
  • the following effects can be obtained by controlling the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation.
  • a second flow rate adjusting device 18 capable of blocking the inflow of the refrigerant into the refrigerant storage device 16 is provided, and control is performed to fully close the second flow rate adjusting device 18 at the start of the cooling operation.
  • control is performed to fully close the second flow rate adjusting device 18 at the start of the cooling operation.
  • the liquid refrigerant is stopped from the first branch path F41 to the first check by opening the third flow rate adjusting device 19. It flows to the third flow rate adjusting device 19 through the valve 21, and further flows from the supply path F43 to the suction side of the compressor 13 through the third flow rate adjusting device 19. This makes it possible to prevent the compressor 13 from becoming overheated even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used.
  • a second flow rate adjusting device 18 that enables control to block the inflow of the refrigerant into the refrigerant storage device 16 is newly provided.
  • a flow rate adjusting device for depressurizing and expanding the refrigerant in the second refrigerant path F2 a flow rate adjusting device for cooling and a flow rate adjusting device for heating are separately provided, but in the refrigerating cycle device 1, for cooling.
  • a first flow rate adjusting device 14 which is also used as both a flow rate adjusting device for heating and a flow rate adjusting device for heating is provided. Therefore, the total number of flow rate adjusting devices in the refrigerating cycle device 1 does not increase. As a result, even if the second flow rate adjusting device 18 is newly provided, the number of output ports required for controlling the actuator on the control board of the control device 100 can be prevented from increasing.
  • one first flow rate adjusting device that is used as both a cooling flow rate adjusting device and a heating flow rate adjusting device as a flow rate adjusting device for depressurizing and expanding the refrigerant in the second refrigerant path F2.
  • the device 14 was provided. Therefore, in the second refrigerant path F2, the portion of the path through which the liquid refrigerant flows differs between the cooling operation and the heating operation.
  • a first branch path F41 is provided between the first heat exchanger 11 and the first flow rate adjusting device 14, which is a path portion through which the liquid refrigerant flows during cooling operation, and the liquid is provided.
  • the refrigerant is allowed to flow to the third flow rate adjusting device 19 via the first check valve 21.
  • a second branch path F42 is provided between the second heat exchanger 12 and the first flow rate adjusting device 14, which is a path portion through which the liquid refrigerant flows during the heating operation.
  • the liquid refrigerant was allowed to flow to the third flow rate adjusting device 19 via the second check valve 22.
  • Embodiment 2 in addition to the control of the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation as shown in the first embodiment, the second embodiment is performed during the defrosting operation in the heating operation. 2 An example of executing the control of the flow rate adjusting device 18 will be described.
  • FIGS. 4 and 5 are diagrams showing the refrigerant circuit configuration of the refrigerating cycle device 1A according to the second embodiment.
  • FIG. 4 shows the state of the refrigerant circuit of the refrigerating cycle device 1A during the cooling operation.
  • FIG. 5 shows the state of the refrigerant circuit of the refrigerating cycle device 1A during the heating operation.
  • the direction in which the refrigerant flows is indicated by an arrow.
  • the refrigerant stored in the refrigerant storage device 16 is discharged during the heating operation in order to secure the defrosting capacity. It is necessary to use it as a refrigerant in defrosting operation.
  • the temperature of the refrigerant storage device 16 is relatively high, as in the case where the heating operation is executed for a relatively long time immediately before the defrosting operation start condition is satisfied.
  • the second flow rate adjusting device 18 is fully opened, the pressure in the refrigerant storage device 16 is higher than the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12. As a result, the refrigerant in the refrigerant storage device 16 is discharged via the second flow rate adjusting device 18.
  • the temperature of the refrigerant storage device 16 is relatively low, as in the case where the heating operation for a short time is executed immediately before the defrosting operation start condition is satisfied.
  • the pressure in the refrigerant storage device 16 is lower than that of the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12 even when the second flow rate adjusting device 18 is fully opened. Therefore, the refrigerant in the refrigerant storage device 16 may not be discharged through the second flow rate adjusting device 18.
  • the refrigerant stored in the refrigerant storage device 16 even when the temperature of the refrigerant storage device 16 is relatively low when the defrosting operation start condition is satisfied.
  • the configuration and control of the refrigerating cycle apparatus 1A capable of discharging the freezing cycle device 1A will be described.
  • the parts of the refrigerating cycle apparatus 1A of the second embodiment different from the refrigerating cycle apparatus 1 of the first embodiment are the following parts.
  • the first flow rate adjusting device 14 is provided in the second refrigerant path F2 at a position parallel to the refrigerant storage device 16 in the third refrigerant path F3.
  • the refrigerant storage device 16 is provided with a level sensor 61 that detects the level L1 of the liquid level of the stored refrigerant. The detection signal of the level sensor 61 is input to the control device 100.
  • the first flow rate adjusting device 14 is located in parallel with the refrigerant storage device 16 in the third refrigerant path F3 in the second refrigerant path F2, and includes the first branch path F41 and the second branch path F42. It is provided between.
  • the second refrigerant path F2 between the first flow rate adjusting device 14 and the first heat exchanger 11 is in a low temperature and low pressure state.
  • the third check valve 17 is the third check valve 17 between the first heat exchanger 11 and the first flow rate adjusting device 14 from the inside of the refrigerant storage device 16. 2 It will be provided in such a manner that the refrigerant can flow out to the refrigerant path in only one direction.
  • the pressure inside the refrigerant storage device 16 of the third check valve 17 becomes higher than the pressure of the second refrigerant path F2 between the first heat exchanger 11 and the first flow rate adjusting device 14, the pressure is higher than the reference value.
  • Refrigerant flows out from the inside of the refrigerant storage device 16 only in one direction to the second refrigerant path between the first heat exchanger 11 and the first flow rate adjusting device 14.
  • Such a refrigeration cycle device 1A executes the same operation as that of the refrigeration cycle device 1 of the first embodiment, except when the defrosting operation is executed.
  • FIG. 6 is a flowchart of control in which the CPU 102 of the control device 100 in the second embodiment executes the defrosting operation during the heating operation.
  • step S11 after the start of the heating operation, it is determined whether or not the above-mentioned defrosting operation start condition is satisfied.
  • the control device 100 returns when it is determined in step S11 that the defrosting operation start condition is not satisfied.
  • step S12 determines in step S12 whether or not the operation time of the immediately preceding heating operation is longer than the threshold value. ..
  • the operation time of the heating operation immediately before is the duration of the heating operation executed immediately before the defrosting operation start condition is satisfied.
  • the duration of the heating operation is obtained by the control device 100 executing a process of timing the operation duration.
  • the threshold value is set to the duration of the heating operation such that the refrigerant stored in the refrigerant storage device 16 during the heating operation becomes equal to or higher than the reference temperature at which the refrigerant can easily flow out through the second flow rate adjusting device 18.
  • step S12 when it is determined in step S12 that the operation time of the immediately preceding heating operation is longer than the threshold value, the defrosting operation is started in step S13, and the second flow rate adjusting device 18 is set in step S14.
  • the temperature is equal to or higher than the reference temperature at which the refrigerant stored in the refrigerant storage device 16 during the heating operation can easily flow out through the second flow rate adjusting device 18 based on the operation time of the immediately preceding heating operation. Therefore, the pressure inside the refrigerant storage device 16 is higher than the pressure of the second refrigerant path F2 between the second heat exchanger 12 and the first flow rate adjusting device 14, and the refrigerant is stored in the refrigerant storage device 16. The refrigerant is discharged by flowing out through the second flow rate adjusting device 18 in the fully opened state.
  • step S15 it is determined whether or not the amount of the refrigerant liquid specified from the level L1 of the refrigerant in the refrigerant storage device 16 detected by the level sensor 61 is smaller than the threshold value.
  • the threshold value is set to an amount of the amount of refrigerant stored in the refrigerant storage device 16 during the heating operation, in which the minimum amount of refrigerant required for the defrosting operation is recognized to be discharged.
  • the control device 100 returns after waiting for the liquid amount of the refrigerant specified from the level L1 of the detected refrigerant to be equal to or less than the threshold value in step S15. After that, the defrosting operation is executed until the defrosting operation start condition is no longer satisfied.
  • the pressure inside the refrigerant storage device 16 is adjusted to the second heat exchanger 12 and the first flow rate by step S16.
  • the opening degree of the second flow rate adjusting device 18 is controlled to be narrowed down to the reference opening degree so as to be higher than the pressure of the second refrigerant path F2 between the device 14 and the device 14. In this case, the refrigerant stored in the refrigerant storage device 16 during the heating operation does not exceed the reference temperature at which the refrigerant can easily flow out through the second flow rate adjusting device 18 based on the operation time of the immediately preceding heating operation.
  • the second refrigerant path F2 between the second heat exchanger 12 and the first flow rate adjusting device 14 is in a low pressure state. Therefore, when the pressure inside the refrigerant storage device 16 becomes equal to or higher than the pressure of the second refrigerant path F2 between the first heat exchanger 11 and the first flow rate adjusting device 14 by the control of step S16, Refrigerant flows out from the inside of the refrigerant storage device 16 through the third check valve 17 to the second refrigerant path between the first heat exchanger 11 and the first flow rate adjusting device 14 and is discharged.
  • step S17 it is determined whether or not the liquid amount of the refrigerant specified from the level L1 of the refrigerant in the refrigerant storage device 16 detected by the level sensor 61 is equal to or less than the threshold value.
  • the threshold value is the same value as the threshold value used in step S15.
  • the defrosting operation is started and returned after waiting for the liquid amount of the refrigerant specified from the level L1 of the detected refrigerant to be equal to or less than the threshold value in step S17. After that, the defrosting operation is executed until the defrosting operation start condition is no longer satisfied.
  • the control device 100 when the defrosting operation is started, the control device 100 causes the refrigerant to flow out until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value.
  • the second flow rate adjusting device 18 is controlled. This makes it possible to secure the defrosting ability during the defrosting operation regardless of the state of the refrigerant storage device 16.
  • the refrigerant storage device is checked to see if the amount of the refrigerant liquid specified from the level L1 of the refrigerant in the refrigerant storage device 16 detected by the level sensor 61 is equal to or less than the threshold value. Since it is determined whether or not the amount of the refrigerant stored in 16 is equal to or less than the threshold value, it can be easily confirmed that the amount of the refrigerant stored in the refrigerant storage device 16 is equal to or less than the threshold value.
  • the determination of whether to control the second flow rate adjusting device 18 to be fully opened in step S14 or to control the opening of the second flow rate adjusting device 18 to the reference opening in step S16 is as follows. You may make a good decision. For example, when the heating operation is performed until immediately before the start of the defrosting operation, the refrigerant storage device 16 may be regarded as being heated and the second flow rate adjusting device 18 may be controlled to be fully opened. On the other hand, if the heating operation is not performed until immediately before the start of the defrosting operation and the heating operation is stopped before the defrosting operation is started, it is considered that the refrigerant storage device 16 is not heated. 2 Control may be performed to narrow the opening degree of the flow rate adjusting device 18 to the reference opening degree.
  • the determination of whether to control to fully open the second flow rate adjusting device 18 in step S14 or to control to narrow the opening degree of the second flow rate adjusting device 18 to the reference opening in step S16 is as follows. You may make a good decision.
  • a temperature sensor is provided in the refrigerant storage device 16, and the temperature of the refrigerant storage device 16 detected by the temperature sensor is such that the refrigerant stored in the refrigerant storage device 16 flows out through the second flow rate adjusting device 18.
  • the second flow rate adjusting device 18 is controlled to be fully opened, and when the refrigerant storage device 16 detected by the temperature sensor is less than the threshold value, the second flow rate adjusting device 18 is controlled. Control may be performed to narrow down the opening degree of 18 to the reference opening degree.
  • the amount of the refrigerant stored in the refrigerant storage device 16 determined in steps S15 and S17 may be determined based on the degree of subcooling on the outlet side of the second heat exchanger 12 in the heating operation. Further, the amount of the refrigerant stored in the refrigerant storage device 16 determined in steps S15 and S17 may be determined based on the degree of subcooling on the outlet side of the first heat exchanger 11 in the defrosting operation.
  • Embodiment 3 In the third embodiment, a modification of the control of the second flow rate adjusting device 18 during the defrosting operation in the heating operation shown in the second embodiment will be described.
  • FIG. 7 is a flowchart of control in which the CPU 102 of the control device 100 in the third embodiment executes the defrosting operation during the heating operation.
  • the difference between the control of FIG. 7 and the control of FIG. 6 is that step S17A is executed instead of step S17 of FIG.
  • the reference time is taken from the time when the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening degree by step S17A.
  • the reference time determined in step S17A is set to a time determined at the time of design when the minimum amount of refrigerant required for the defrosting operation flows out from the refrigerant storage device 16 through the third check valve 17.
  • the reference time determined in step S17A is timed by a timer that starts counting from the time when the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening degree in step S16 in the control device 100.
  • the reference time determined in step S17A is the third on the second heat exchanger 12 side in the second flow rate adjusting device 18 when the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening in step S16.
  • the pressure difference between the pressure in the refrigerant path F3 and the pressure in the third refrigerant path F3 on the outlet side of the third check valve 17 and the minimum amount of refrigerant required for defrosting operation are the first from the refrigerant storage device 16. 3 It may be set based on the correlation with the time discharged through the check valve 17. The reason is that the higher the pressure difference, the shorter the time for discharging the minimum amount of refrigerant required for the defrosting operation.
  • a data table for determining the above-mentioned reference time from the above-mentioned pressure difference based on the above-mentioned correlation is stored in the memory 104.
  • a pressure sensor for detecting the pressure in the third refrigerant path F3 on the second heat exchanger 12 side in the second flow rate adjusting device 18 and a pressure in the third refrigerant path F3 on the outlet side of the third check valve 17 are detected.
  • a pressure sensor is provided.
  • the control device 100 reduces the opening degree of the second flow rate adjusting device 18 to the reference opening degree in step S16, and based on the pressure detected by these pressure sensors, the control device 100 receives the second heat in the second flow rate adjusting device 18.
  • the pressure difference between the pressure in the third refrigerant path F3 on the exchanger 12 side and the pressure in the third refrigerant path F3 on the outlet side of the third check valve 17 is calculated. Based on the pressure difference calculated in this way, the control device 100 determines the above-mentioned reference time using the data table stored in the memory 104, and determines whether or not the reference time has elapsed in step S17A.
  • the control device 100 when the defrosting operation is started, the control device 100 causes the refrigerant to flow out until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value.
  • the second flow rate adjusting device 18 is controlled. This makes it possible to secure the defrosting ability during the defrosting operation regardless of the state of the refrigerant storage device 16.
  • the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value by checking the elapsed time after the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening degree. Since it is determined whether or not the refrigerant has been used, it can be easily confirmed that the amount of the refrigerant stored in the refrigerant storage device 16 is equal to or less than the threshold value.
  • the refrigeration cycle devices 1 and 1A include a compressor 13 provided in the first refrigerant path F1 between the first heat exchanger 11 and the second heat exchanger 12, and the first heat exchanger 11 and the second heat exchange.
  • the first flow rate adjusting device 14 provided in the second refrigerant path F2 between the device 12 and the first heat exchanger 11 and the second heat exchanger 12 are parallel to a part of the second refrigerant path F2.
  • a second flow rate adjusting device 18 that adjusts the flow rate of the refrigerant between the 16 and the second flow rate so as to block the inflow of the refrigerant from the second refrigerant path F2 to the refrigerant storage device 16 when the cooling operation is started.
  • a control device 100 for controlling the adjusting device 18 is provided.
  • the second flow rate adjusting device 18 is controlled so as to block the inflow of the refrigerant from the second refrigerant path F2 to the refrigerant storage device 16, so that the outside air is used. It is possible to prevent the refrigerant from flowing into the refrigerant storage device 16 when the cooling operation is started in a state where the temperature is extremely low. Thereby, in the refrigerating cycle apparatus of the present disclosure, it is possible to prevent the refrigerating cycle apparatus from being insufficient in the amount of the refrigerant and the function of the refrigerating cycle apparatus from being deteriorated in the cooling operation.
  • the first flow rate adjusting device 14 is controlled by the control device 100 so as to adjust the flow rate of the refrigerant in both the cooling operation and the heating operation.
  • the first flow rate adjusting device 14 adjusts the flow rate of the refrigerant in both the cooling operation and the heating operation, so that the inflow of the refrigerant from the second refrigerant path F2 to the refrigerant storage device 16 is blocked.
  • the second flow rate adjusting device 18 is newly provided, it is possible to prevent the number of output ports required for controlling the actuator from increasing in the control board of the control device 100.
  • the third flow rate adjusting device 19 and the second refrigerant path F2 provided in the fourth refrigerant path for supplying the liquid refrigerant to the compressor 13 between the second refrigerant path F2 and the suction side of the compressor 13.
  • the second heat in the first branch path F41 and the second refrigerant path F2 branched from the path between the first heat exchanger and the first flow rate adjusting device 14 and connected to the inlet side of the third flow rate adjusting device 19.
  • a third flow rate of liquid refrigerant in the second branch path F42 and the first branch path F41 branched from the path between the exchanger and the first flow rate adjusting device 14 and connected to the inlet side of the third flow rate adjusting device 19.
  • the liquid refrigerant flows from the first branch path F41 to the third flow rate adjusting device 19 via the first check valve 21 during the cooling operation, and is liquid during the heating operation. Since the liquid from the second branch path F42 flows from the second branch path F42 to the third flow rate adjusting device 19 via the second check valve 22, one first flow rate adjusting device 14 provides a flow rate adjusting device for cooling and a flow rate adjusting device for heating. Even in the case of combined use, the liquid refrigerant can always be supplied to the compressor 13 via the third flow rate adjusting device 19.
  • the discharge temperature sensor 51 for detecting the temperature on the discharge side of the compressor 13 is further provided, and the control device 100 is in the case where the temperature on the discharge side of the compressor 13 detected by the discharge temperature sensor 51 exceeds the threshold value.
  • the third flow rate adjusting device 19 is controlled to be in the open state. With such a configuration, even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used, the compressor 13 can be prevented from becoming overheated.
  • the first flow rate adjusting device 14 is provided at a position parallel to the refrigerant storage device 16 in the second refrigerant path F2 and is provided in the third refrigerant path F3 to exchange the refrigerant in the refrigerant storage device 16 with the first heat.
  • a third check valve for flowing out in one direction to the second refrigerant path F2 between the device and the first flow rate adjusting device 14 is further provided, and when the defrosting operation is started, the control device 100 is a refrigerant storage device.
  • the second flow rate adjusting device 18 is controlled so that the refrigerant flows out until the amount of the refrigerant stored in 16 becomes equal to or less than the threshold value. With such a configuration, it is possible to secure the defrosting ability during the defrosting operation regardless of the state of the refrigerant storage device 16.
  • the control device 100 adjusts to the storage amount of the refrigerant detected by the storage amount detection sensor. Based on this, the second flow rate adjusting device 18 is controlled so that the refrigerant flows out from the refrigerant storage device 16 through the second flow rate adjusting device 18 until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value. With such a configuration, the refrigerant stored in the refrigerant storage device 16 can be discharged while the refrigerant storage device 16 has a relatively high temperature.
  • the control device 100 adjusts to the storage amount of the refrigerant detected by the storage amount detection sensor. Based on this, the second flow rate adjusting device 18 is controlled so that the refrigerant flows out from the refrigerant storage device 16 through the third check valve until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value. With such a configuration, the refrigerant stored in the refrigerant storage device 16 can be discharged while the refrigerant storage device 16 is at a relatively low temperature.
  • the control device 100 controls the refrigerant for a predetermined time so that the refrigerant flows out until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value.
  • the second flow rate adjusting device 18 is controlled so that the refrigerant flows out from the storage device 16 through the third check valve 17. It can be easily confirmed that the amount of the refrigerant stored in the refrigerant storage device 16 is equal to or less than the threshold value.
  • the second refrigerant when the cooling operation is started, the second refrigerant is used. Since the second flow rate adjusting device 18 is controlled so as to block the inflow of the refrigerant from the path F2 to the refrigerant storage device 16, the refrigerant is introduced into the refrigerant storage device 16 when the cooling operation is started in a state where the outside air temperature is extremely low. It is possible to prevent the inflow. Thereby, in the refrigerating cycle apparatus of the present disclosure, it is possible to prevent the refrigerating cycle apparatus from being insufficient in the amount of the refrigerant and the function of the refrigerating cycle apparatus from being deteriorated in the cooling operation.
  • 1,1A Refrigerant cycle device 11 1st heat exchanger, 12 2nd heat exchanger, 10 compressor, F1 1st refrigerant path, 13 compressor, F2 2nd refrigerant path, 14 1st flow control device, F3 1st 3 refrigerant path, 18 second flow rate adjuster, 16 refrigerant storage device, 19 third flow rate adjuster, 100 control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

This refrigeration cycle apparatus (1) comprises: a compressor (13) provided to a first refrigerant path (F1) between a first heat exchanger (11) and a second heat exchanger (12); a first flow rate adjustment device (14) provided to a second refrigerant path (F2) between the first heat exchanger (10) and the second heat exchanger (12); a refrigerant retention device (16) provided to a third refrigerant path (F3) connected in parallel to the second refrigerant path (F2) between the first heat exchanger (11) and the second heat exchanger (12), the refrigerant retention device (16) being capable of retaining a refrigerant flowing in from the second flow path (F2); a second flow rate adjustment device (18) provided to the third refrigerant path (F3), the second flow rate adjustment device (18) adjusting the flow rate of the refrigerant between the second refrigerant path (F2) and the refrigerant retention device (16); and a control device (100) that, when an air-cooling operation is started, controls the second flow rate adjustment device (18) so as to block the inflow of refrigerant from the second refrigerant path (F2) to the refrigerant retention device (16).

Description

冷凍サイクル装置Refrigeration cycle device
 本開示は、冷凍サイクル装置に関する。 This disclosure relates to a refrigeration cycle device.
 冷凍サイクル装置では、冷房運転をする場合の方が、暖房運転をする場合と比べて冷媒の使用量が多い。したがって、従来の冷凍サイクル装置では、暖房運転をする場合において冷媒回路における余剰分の冷媒を一時的に貯留する冷媒貯留装置が設けられるものがあった。 In the refrigeration cycle device, the amount of refrigerant used in the cooling operation is larger than that in the heating operation. Therefore, in some conventional refrigeration cycle devices, a refrigerant storage device for temporarily storing a surplus refrigerant in the refrigerant circuit is provided in the case of heating operation.
 冷媒貯留装置を備えた従来の冷凍サイクルとしては、例えば、国際公開第2016/121068号(特許文献1)に開示されたように、圧縮機、流路切替装置、熱源側熱交換器、第1絞り装置および利用側熱交換器を含む冷媒回路と、第1絞り装置に並列に接続される液バック抑制回路とを備え、液バック抑制回路が第2絞り装置、開閉弁および第2絞り装置と開閉弁との間に接続される高圧レシーバを含むものがあった。 As a conventional refrigeration cycle equipped with a refrigerant storage device, for example, as disclosed in International Publication No. 2016/121068 (Patent Document 1), a compressor, a flow path switching device, a heat source side heat exchanger, and the first It includes a refrigerant circuit including a throttle device and a heat exchanger on the user side, and a liquid back suppression circuit connected in parallel to the first throttle device, and the liquid back suppression circuit includes a second throttle device, an on-off valve, and a second throttle device. Some included a high pressure receiver connected to the on-off valve.
国際公開第2016/121068号(図1)International Publication No. 2016/121068 (Fig. 1)
 しかし、従来の冷凍サイクル装置では、外気温度が極めて低い状態での冷房運転の起動時には、外気温度によって冷媒貯留装置の温度が、利用側熱交換器における熱交換用の水の温度と比べて極めて低くなっている。これにより、このような冷房運転の起動時においては、冷媒貯留装置内の圧力と利用側熱交換器が接続された冷媒経路内の圧力との圧力差に基づき、その冷媒経路から冷媒貯留装置内に冷媒が流入して貯留されるおそれがある。そして、このような冷房運転の起動後においては、冷媒貯留装置の熱容量が比較的に大きく冷媒貯留装置の温度が上昇しにくいこと等を理由として、冷媒貯留装置内に貯留された冷媒を流出させることができないおそれがあった。このように、冷媒貯留装置に冷媒が貯留された状態で冷房運転が行われる場合には、冷房運転に必要な冷媒量が不足することにより、冷凍サイクル装置の能力が低下するという問題があった。 However, in the conventional refrigeration cycle device, when the cooling operation is started in a state where the outside air temperature is extremely low, the temperature of the refrigerant storage device is extremely higher than the temperature of the water for heat exchange in the user side heat exchanger due to the outside air temperature. It's getting low. As a result, at the time of starting such a cooling operation, based on the pressure difference between the pressure in the refrigerant storage device and the pressure in the refrigerant path to which the user-side heat exchanger is connected, the refrigerant path is used to enter the refrigerant storage device. Refrigerant may flow into and be stored in the room. Then, after the start of such a cooling operation, the refrigerant stored in the refrigerant storage device is discharged because the heat capacity of the refrigerant storage device is relatively large and the temperature of the refrigerant storage device does not easily rise. There was a risk that it could not be done. As described above, when the cooling operation is performed with the refrigerant stored in the refrigerant storage device, there is a problem that the capacity of the refrigeration cycle device is lowered due to the insufficient amount of the refrigerant required for the cooling operation. ..
 本開示の冷凍サイクル装置は、冷房運転時において冷凍サイクル装置の能力の低下を防ぐことを目的とする。 The refrigerating cycle device of the present disclosure is intended to prevent a decrease in the capacity of the refrigerating cycle device during cooling operation.
 本開示は、冷凍サイクル装置に関する。冷凍サイクル装置は、第1熱交換器と第2熱交換器との間における第1冷媒経路に設けられた圧縮機と、第1熱交換器と第2熱交換器との間における第2冷媒経路に設けられた第1流量調整装置と、第1熱交換器と第2熱交換器との間において第2冷媒経路の一部と並列に接続された第3冷媒経路に設けられ、第2冷媒経路から流入する冷媒を貯留可能な冷媒貯留装置と、第3冷媒経路に設けられ、第2冷媒経路と冷媒貯留装置との間の冷媒の流量を調整する第2流量調整装置と、冷房運転を起動するときに、第2冷媒経路から冷媒貯留装置への冷媒の流入を遮断するように第2流量調整装置を制御する制御装置とを備える。 This disclosure relates to a refrigeration cycle device. The refrigeration cycle device is a compressor provided in the first refrigerant path between the first heat exchanger and the second heat exchanger, and a second refrigerant between the first heat exchanger and the second heat exchanger. The first flow control device provided in the path and the second heat exchanger are provided in the third refrigerant path connected in parallel with a part of the second heat exchanger between the first heat exchanger and the second heat exchanger. A refrigerant storage device capable of storing the refrigerant flowing in from the refrigerant path, a second flow rate adjusting device provided in the third refrigerant path and adjusting the flow rate of the refrigerant between the second refrigerant path and the refrigerant storage device, and a cooling operation. It is provided with a control device that controls the second flow rate adjusting device so as to block the inflow of the refrigerant from the second refrigerant path to the refrigerant storage device at the time of starting.
 本開示の冷凍サイクル装置によれば、冷房運転を起動するときに、第2冷媒経路から冷媒貯留装置への冷媒の流入を遮断するように第2流量調整装置が制御されるので、外気温度が極めて低い状態での冷房運転の起動時に冷媒貯留装置内に冷媒が流入することを防ぐことができる。これにより、本開示の冷凍サイクルでは、冷房運転において、冷媒量が不足せず、冷凍サイクル装置の機能が低下しないようにすることができる。 According to the refrigeration cycle device of the present disclosure, when the cooling operation is started, the second flow rate adjusting device is controlled so as to block the inflow of the refrigerant from the second refrigerant path to the refrigerant storage device, so that the outside air temperature is adjusted. It is possible to prevent the refrigerant from flowing into the refrigerant storage device when the cooling operation is started in an extremely low state. Thereby, in the refrigerating cycle of the present disclosure, it is possible to prevent the refrigerating cycle apparatus from being functionally deteriorated because the amount of the refrigerant is not insufficient in the cooling operation.
実施の形態1における冷凍サイクル装置1の冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating cycle apparatus 1 in Embodiment 1. FIG. 実施の形態1における冷凍サイクル装置1の冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating cycle apparatus 1 in Embodiment 1. FIG. 実施の形態1における制御装置100のCPU102が冷房運転の起動開始時に第2流量調整装置18および第3流量調整装置19を制御するフローチャートである。FIG. 5 is a flowchart in which the CPU 102 of the control device 100 in the first embodiment controls the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation. 実施の形態2における冷凍サイクル装置1Aの冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating cycle apparatus 1A in Embodiment 2. FIG. 実施の形態2における冷凍サイクル装置1Aの冷媒回路構成を示す図である。It is a figure which shows the refrigerant circuit structure of the refrigerating cycle apparatus 1A in Embodiment 2. FIG. 実施の形態2における制御装置100のCPU102が暖房運転時において除霜運転を実行する制御のフローチャートである。It is a flowchart of the control which executes the defrosting operation at the time of a heating operation by the CPU 102 of the control apparatus 100 in Embodiment 2. FIG. 実施の形態3における制御装置100のCPU102が暖房運転時において除霜運転を実行する制御のフローチャートである。It is a flowchart of the control which executes the defrosting operation at the time of a heating operation by the CPU 102 of the control apparatus 100 in Embodiment 3. FIG.
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組み合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. Hereinafter, a plurality of embodiments will be described, but it is planned from the beginning of the application to appropriately combine the configurations described in the respective embodiments. The same or corresponding parts in the drawings are designated by the same reference numerals and the description thereof will not be repeated.
 実施の形態1.
 図1および図2は、実施の形態1における冷凍サイクル装置1の冷媒回路構成を示す図である。図1には、冷房運転時における冷凍サイクル装置1の冷媒回路の状態が示される。図1には、暖房運転時における冷凍サイクル装置1の冷媒回路の状態が示される。
Embodiment 1.
1 and 2 are diagrams showing a refrigerant circuit configuration of the refrigeration cycle device 1 according to the first embodiment. FIG. 1 shows the state of the refrigerant circuit of the refrigerating cycle device 1 during the cooling operation. FIG. 1 shows the state of the refrigerant circuit of the refrigerating cycle device 1 during the heating operation.
 図1および図2を参照して、冷凍サイクル装置1は、圧縮機13、流路切替装置15、第1熱交換器11、第2熱交換器12、第1流量調整装置14、冷媒貯留装置16、第1逆止弁21、および、第2逆止弁22、第3逆止弁17、第2流量調整装置18、および、第3流量調整装置19を含む冷媒回路を備える。冷媒回路は、冷凍サイクル装置1で用いられる冷媒の経路である。図1および図2においては、冷媒が流れる方向が矢印で示されている。 With reference to FIGS. 1 and 2, the refrigeration cycle device 1 includes a compressor 13, a flow path switching device 15, a first heat exchanger 11, a second heat exchanger 12, a first flow rate adjusting device 14, and a refrigerant storage device. A refrigerant circuit including 16, a first check valve 21, a second check valve 22, a third check valve 17, a second flow rate adjusting device 18, and a third flow rate adjusting device 19 is provided. The refrigerant circuit is a path for the refrigerant used in the refrigeration cycle device 1. In FIGS. 1 and 2, the direction in which the refrigerant flows is indicated by an arrow.
 冷凍サイクル装置1は、冷媒経路として、第1冷媒経路F1、第2冷媒経路F2、第3冷媒経路F3、第4冷媒経路F4、および、第5冷媒経路F5を含む。 The refrigeration cycle device 1 includes a first refrigerant path F1, a second refrigerant path F2, a third refrigerant path F3, a fourth refrigerant path F4, and a fifth refrigerant path F5 as the refrigerant paths.
 第1熱交換器11は、室外の空気と冷媒との間で熱交換をする空気熱交換器である。第1熱交換器11は、冷房運転時に冷媒の凝縮器として機能し、暖房運転時に冷媒の蒸発器として機能する。図示を省略するが、第1熱交換器11の近傍には、第1熱交換器11に空気を供給する送風機ファンが設けられる。送風機ファンは、室外の空気を吸入し、第1熱交換器11によって冷媒との間で熱交換された空気を室外に排出する機能を有する。 The first heat exchanger 11 is an air heat exchanger that exchanges heat between the outdoor air and the refrigerant. The first heat exchanger 11 functions as a refrigerant condenser during the cooling operation and as a refrigerant evaporator during the heating operation. Although not shown, a fan fan for supplying air to the first heat exchanger 11 is provided in the vicinity of the first heat exchanger 11. The blower fan has a function of sucking in outdoor air and discharging the air exchanged with the refrigerant by the first heat exchanger 11 to the outside.
 第2熱交換器12は、図示を省略する室内機の水と冷媒との間で熱交換をする水熱交換器である。第2熱交換器12は、冷房運転時に冷媒の蒸発器として機能し、暖房運転時に冷媒の凝縮器として機能する。 The second heat exchanger 12 is a water heat exchanger that exchanges heat between the water of the indoor unit and the refrigerant (not shown). The second heat exchanger 12 functions as a refrigerant evaporator during the cooling operation and as a refrigerant condenser during the heating operation.
 第1熱交換器11と第2熱交換器12との間における第1冷媒経路F1においては、冷媒を圧縮する圧縮機13が設けられる。圧縮機13は、例えばインバータ制御がされるモータによって駆動される。 In the first refrigerant path F1 between the first heat exchanger 11 and the second heat exchanger 12, a compressor 13 for compressing the refrigerant is provided. The compressor 13 is driven by, for example, a motor controlled by an inverter.
 第1熱交換器11と第2熱交換器12との間における第2冷媒経路F2においては、第1流量調整装置14が設けられる。第1流量調整装置14は、冷媒を減圧して膨張させる機能を有し、例えば流量が調整可能な電子膨張弁で構成される。第1流量調整装置14は、冷房運転時と暖房運転時との両方で第2冷媒経路F2における冷媒の流量を調整することが可能であり、冷媒を減圧して膨張させるために使用される。 A first flow rate adjusting device 14 is provided in the second refrigerant path F2 between the first heat exchanger 11 and the second heat exchanger 12. The first flow rate adjusting device 14 has a function of depressurizing and expanding the refrigerant, and is composed of, for example, an electronic expansion valve whose flow rate can be adjusted. The first flow rate adjusting device 14 can adjust the flow rate of the refrigerant in the second refrigerant path F2 both during the cooling operation and the heating operation, and is used to reduce the pressure and expand the refrigerant.
 第2冷媒経路F2の一部と並列に接続された第3冷媒経路F3においては、第2冷媒経路F2から流入する冷媒を貯留可能な冷媒貯留装置16が設けられる。具体的に、冷媒貯留装置16は、第1流量調整装置14と第2熱交換器12との間において第2冷媒経路F2に並列に接続される。冷媒貯留装置16は、金属製の筒形状の冷媒タンクであり、冷媒を貯留可能である。 In the third refrigerant path F3 connected in parallel with a part of the second refrigerant path F2, a refrigerant storage device 16 capable of storing the refrigerant flowing in from the second refrigerant path F2 is provided. Specifically, the refrigerant storage device 16 is connected in parallel to the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12. The refrigerant storage device 16 is a metal tubular refrigerant tank, and can store the refrigerant.
 第3冷媒経路F3においては、冷媒貯留装置16と第1流量調整装置14との間で、冷媒貯留装置16の内部から第2冷媒経路F2の一方向にのみ冷媒を流すことが可能な第3逆止弁17が設けられる。第3逆止弁17は、冷媒貯留装置16の内部の圧力が、第1流量調整装置14と第2熱交換器12との間における第2冷媒経路F2の圧力よりも基準値以上高くなった場合に、冷媒貯留装置16の内部から第2冷媒経路F2に冷媒を流して排出する。 In the third refrigerant path F3, a third refrigerant can flow between the refrigerant storage device 16 and the first flow rate adjusting device 14 from the inside of the refrigerant storage device 16 in only one direction of the second refrigerant path F2. A check valve 17 is provided. In the third check valve 17, the pressure inside the refrigerant storage device 16 is higher than the pressure of the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12 by a reference value or more. In this case, the refrigerant flows from the inside of the refrigerant storage device 16 into the second refrigerant path F2 and is discharged.
 第3冷媒経路F3においては、冷媒貯留装置16と、第1流量調整装置14および第2熱交換器12の間での冷媒の経路を開閉可能な第2流量調整装置18が設けられる。第2流量調整装置18は、例えば電子膨張弁のように流量が調整可能な弁で構成され、全閉状態と全開状態とのいずれかの状態とされる。なお、第2流量調整装置18は、全開状態と全閉状態とのいずれかの状態となる電磁弁を用いてもよい。また、第2流量調整装置18は、全開状態および全閉状態以外の開度に制御されるようにしてもよい。 In the third refrigerant path F3, a refrigerant storage device 16 and a second flow rate adjusting device 18 capable of opening and closing the refrigerant path between the first flow rate adjusting device 14 and the second heat exchanger 12 are provided. The second flow rate adjusting device 18 is composed of a valve whose flow rate can be adjusted, such as an electronic expansion valve, and is in either a fully closed state or a fully open state. The second flow rate adjusting device 18 may use a solenoid valve that is in either a fully open state or a fully closed state. Further, the second flow rate adjusting device 18 may be controlled to an opening degree other than the fully open state and the fully closed state.
 冷凍サイクル装置1の冷媒回路において使用される冷媒量は、冷房運転時の方が暖房運転時よりも多い。図1のような冷房運転時においては、基本的に、冷媒回路内のすべての冷媒が冷媒回路で使用されるので、冷媒貯留装置16に冷媒を貯留する必要がない。一方、図2のような暖房運転時においては、基本的に、冷媒回路内のすべての冷媒を冷媒回路で使用すると冷媒量が過剰となるので、図2で模式的に示すように、余剰分の貯留冷媒30を冷媒貯留装置16に貯留する必要がある。 The amount of refrigerant used in the refrigerant circuit of the refrigeration cycle device 1 is larger during the cooling operation than during the heating operation. During the cooling operation as shown in FIG. 1, basically all the refrigerant in the refrigerant circuit is used in the refrigerant circuit, so that it is not necessary to store the refrigerant in the refrigerant storage device 16. On the other hand, in the heating operation as shown in FIG. 2, basically, if all the refrigerants in the refrigerant circuit are used in the refrigerant circuit, the amount of the refrigerant becomes excessive. It is necessary to store the stored refrigerant 30 in the refrigerant storage device 16.
 第2冷媒経路F2と圧縮機13の吸入側との間における第4冷媒経路F4には、液状の冷媒(以下、液冷媒という)を圧縮機13に供給する第3流量調整装置19が設けられる。第3流量調整装置19は、例えばR32冷媒のように冷媒の温度が上がりやすい冷媒を使用する場合でも、圧縮機13が過熱しないようにすることを目的として、液冷媒を圧縮機13の吸入側に供給するために設けられる。具体的に、第2冷媒経路F2を流れる液冷媒の一部が、第3流量調整装置19を経て圧縮機13に供給される。第3流量調整装置19は、例えば電子膨張弁のように流量が調整可能な弁で構成される。 A third flow rate adjusting device 19 for supplying a liquid refrigerant (hereinafter referred to as a liquid refrigerant) to the compressor 13 is provided in the fourth refrigerant path F4 between the second refrigerant path F2 and the suction side of the compressor 13. .. The third flow rate adjusting device 19 uses a liquid refrigerant on the suction side of the compressor 13 for the purpose of preventing the compressor 13 from overheating even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used. It is provided to supply to. Specifically, a part of the liquid refrigerant flowing through the second refrigerant path F2 is supplied to the compressor 13 via the third flow rate adjusting device 19. The third flow rate adjusting device 19 is composed of a valve whose flow rate can be adjusted, such as an electronic expansion valve.
 第4冷媒経路F4は、第1分岐経路F41、第2分岐経路F42、および、供給経路F43を含む。第1分岐経路F41は、図1の冷房運転時において、第2冷媒経路F2から液冷媒の一部を流出させて第3流量調整装置19へ送るための経路である。第2分岐経路F42は、図2の暖房運転時において、第2冷媒経路F2から液冷媒の一部を流出させて第3流量調整装置19へ送るための経路である。 The fourth refrigerant path F4 includes a first branch path F41, a second branch path F42, and a supply path F43. The first branch path F41 is a path for flowing out a part of the liquid refrigerant from the second refrigerant path F2 and sending it to the third flow rate adjusting device 19 during the cooling operation of FIG. 1. The second branch path F42 is a path for flowing out a part of the liquid refrigerant from the second refrigerant path F2 and sending it to the third flow rate adjusting device 19 during the heating operation of FIG.
 第1分岐経路F41は、第2冷媒経路F2における第1熱交換器11と第1流量調整装置14との間の経路から分岐して第3流量調整装置19の入口側に接続される。第2分岐経路F42は、第2冷媒経路F2における第2熱交換器12と第1流量調整装置14との間の経路から分岐して第3流量調整装置19の入口側に接続される。供給経路F43は、第1分岐経路F41または第2分岐経路F42から第3流量調整装置19の出口側と圧縮機13の吸入側とを接続する。 The first branch path F41 branches from the path between the first heat exchanger 11 and the first flow rate adjusting device 14 in the second refrigerant path F2 and is connected to the inlet side of the third flow rate adjusting device 19. The second branch path F42 branches from the path between the second heat exchanger 12 and the first flow rate adjusting device 14 in the second refrigerant path F2 and is connected to the inlet side of the third flow rate adjusting device 19. The supply path F43 connects the outlet side of the third flow rate adjusting device 19 and the suction side of the compressor 13 from the first branch path F41 or the second branch path F42.
 第1分岐経路F41には、冷房運転時において、第1熱交換器11側から第3流量調整装置19への一方向にのみ液冷媒を流す第1逆止弁21が設けられる。第2分岐経路F42には、暖房運転時において、第2熱交換器12側から第3流量調整装置19への一方向にのみ液冷媒を流す第2逆止弁22が設けられる。第1逆止弁21および第2逆止弁22の各々は、入口側の圧力が出口側の圧力よりも基準値以上高くなったことに基づいて、液冷媒を第3流量調整装置19に向けて流す。 The first branch path F41 is provided with a first check valve 21 that allows liquid refrigerant to flow only in one direction from the first heat exchanger 11 side to the third flow rate adjusting device 19 during cooling operation. The second branch path F42 is provided with a second check valve 22 that allows the liquid refrigerant to flow only in one direction from the second heat exchanger 12 side to the third flow rate adjusting device 19 during the heating operation. Each of the first check valve 21 and the second check valve 22 directs the liquid refrigerant toward the third flow rate adjusting device 19 based on the fact that the pressure on the inlet side is higher than the pressure on the outlet side by a reference value or more. And shed.
 冷房運転時においては、第2冷媒経路F2における第1熱交換器11と第1流量調整装置14との間に液冷媒が流れる。これにより、冷房運転時においては、図1のように、液冷媒が、第1分岐経路F41から第1逆止弁21を経て第3流量調整装置19へ流れ、さらに、第3流量調整装置19を経て供給経路F43から圧縮機13の吸入側に流れる。暖房運転時においては、第2冷媒経路F2における第2熱交換器12と第1流量調整装置14との間に液冷媒が流れる。これにより、暖房運転時においては、図2のように、液冷媒が、第2分岐経路F42から第2逆止弁22を経て第3流量調整装置19へ流れ、さらに、第3流量調整装置19を経て供給経路F43から圧縮機13の吸入側に流れる。 During the cooling operation, the liquid refrigerant flows between the first heat exchanger 11 and the first flow rate adjusting device 14 in the second refrigerant path F2. As a result, during the cooling operation, as shown in FIG. 1, the liquid refrigerant flows from the first branch path F41 to the third flow rate adjusting device 19 via the first check valve 21, and further, the third flow rate adjusting device 19 It flows from the supply path F43 to the suction side of the compressor 13. During the heating operation, the liquid refrigerant flows between the second heat exchanger 12 and the first flow rate adjusting device 14 in the second refrigerant path F2. As a result, during the heating operation, as shown in FIG. 2, the liquid refrigerant flows from the second branch path F42 to the third flow rate adjusting device 19 via the second check valve 22, and further, the third flow rate adjusting device 19 It flows from the supply path F43 to the suction side of the compressor 13.
 第1冷媒経路F1における圧縮機13の吐出側の経路は、流路切替装置15を経て、第1熱交換器11と第2熱交換器12とのいずれかに接続される。流路切替装置15は、冷媒が流れる流路を切り替えるものであり、例えば四方弁で構成される。 The discharge-side path of the compressor 13 in the first refrigerant path F1 is connected to either the first heat exchanger 11 or the second heat exchanger 12 via the flow path switching device 15. The flow path switching device 15 switches the flow path through which the refrigerant flows, and is composed of, for example, a four-way valve.
 冷房運転時において、流路切替装置15は、図1のように、圧縮機13の吐出側の経路が第1熱交換器11と接続されるように冷媒の流路を切り替える。暖房運転時において、流路切替装置15は、図2のように、圧縮機13の吐出側の経路が第2熱交換器12と接続されるように冷媒の流路を切り替える。 During the cooling operation, the flow path switching device 15 switches the flow path of the refrigerant so that the path on the discharge side of the compressor 13 is connected to the first heat exchanger 11 as shown in FIG. During the heating operation, the flow path switching device 15 switches the flow path of the refrigerant so that the path on the discharge side of the compressor 13 is connected to the second heat exchanger 12, as shown in FIG.
 なお、冷凍サイクル装置1に使用できる冷媒には、単一冷媒、擬似共沸混合冷媒、非共沸混合冷媒等がある。 The refrigerant that can be used in the refrigeration cycle device 1 includes a single refrigerant, a pseudo-azeotropic mixed refrigerant, a non-azeotropic mixed refrigerant, and the like.
 制御装置100は、CPU(Central Processing Unit)102、メモリ104(ROM(Read Only Memory)およびRAM(Random Access Memory))、および、各種信号を入出力するための入出力バッファ(図示せず)等を含んで構成される。制御装置においては、各種の電子部品が制御基板上に取付けられている。制御基板は、例えば各種センサの検出信号等の信号の入力に用いる複数の入力ポートと、例えば第1流量調整装置14、第2流量調整装置18、および、第3流量調整装置19の制御信号等のアクチュエータの制御に必要となる信号の出力に用いる複数の出力ポートとを備える。 The control device 100 includes a CPU (Central Processing Unit) 102, a memory 104 (ROM (Read Only Memory) and RAM (Random Access Memory)), an input / output buffer (not shown) for inputting / outputting various signals, and the like. Consists of including. In the control device, various electronic components are mounted on the control board. The control board includes a plurality of input ports used for inputting signals such as detection signals of various sensors, and control signals of, for example, a first flow rate adjusting device 14, a second flow rate adjusting device 18, and a third flow rate adjusting device 19. It is equipped with a plurality of output ports used for outputting signals required for controlling the actuator of the above.
 CPU102は、ROMに格納されているプログラムをRAM等に展開して実行する。ROMに格納されるプログラムは、制御装置100の処理手順が記されたプログラムである。制御装置100は、これらのプログラムに従って、冷凍サイクル装置1における各機器の制御を実行する。この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。 The CPU 102 expands the program stored in the ROM into a RAM or the like and executes it. The program stored in the ROM is a program in which the processing procedure of the control device 100 is described. The control device 100 executes control of each device in the refrigeration cycle device 1 according to these programs. This control is not limited to software processing, but can also be processed by dedicated hardware (electronic circuit).
 冷凍サイクル装置1には、各種のセンサが設けられている。センサとしては、例えば次のようなものが設けられている。圧縮機13の吐出側には、圧縮機13から吐出された冷媒の温度(以下、吐出温度と呼ぶ)T1を検出する吐出温度センサ51が設けられている。第1熱交換器11には、第1熱交換器11の温度を検出する熱交換器温度センサが設けられている。熱交換器温度センサは、第1熱交換器11に付着した霜の温度を検出するものである。第2熱交換器12の入口側には、冷媒の温度を検出する入口温度センサが設けられている。第2熱交換器12の出口側には、冷媒の温度を検出する出口温度センサが設けられている。圧縮機13の吐出温度T1を示す吐出温度センサ51の検出信号を代表例として示す各種のセンサの検出信号が、制御装置100に入力される。 The refrigeration cycle device 1 is provided with various sensors. As the sensor, for example, the following ones are provided. On the discharge side of the compressor 13, a discharge temperature sensor 51 for detecting the temperature (hereinafter, referred to as discharge temperature) T1 of the refrigerant discharged from the compressor 13 is provided. The first heat exchanger 11 is provided with a heat exchanger temperature sensor that detects the temperature of the first heat exchanger 11. The heat exchanger temperature sensor detects the temperature of the frost adhering to the first heat exchanger 11. An inlet temperature sensor for detecting the temperature of the refrigerant is provided on the inlet side of the second heat exchanger 12. An outlet temperature sensor for detecting the temperature of the refrigerant is provided on the outlet side of the second heat exchanger 12. The detection signals of various sensors showing the detection signals of the discharge temperature sensor 51 indicating the discharge temperature T1 of the compressor 13 as a representative example are input to the control device 100.
 制御装置100は、圧縮機13、第1流量調整装置14、流路切替装置15、第2流量調整装置18、および、第3流量調整装置19のそれぞれに制御信号を与える。制御装置100は、制御信号に基づいて圧縮機13の運転周波数を制御する。制御装置100は、制御信号に基づいて第1流量調整装置14の開度を制御する。制御装置100は、制御信号に基づいて流路切替装置15の流路を切替える制御をする。制御装置100は、制御信号に基づいて第2流量調整装置18の開度を制御する。制御装置100は、制御信号に基づいて第3流量調整装置19の開度を制御する。 The control device 100 gives a control signal to each of the compressor 13, the first flow rate adjusting device 14, the flow path switching device 15, the second flow rate adjusting device 18, and the third flow rate adjusting device 19. The control device 100 controls the operating frequency of the compressor 13 based on the control signal. The control device 100 controls the opening degree of the first flow rate adjusting device 14 based on the control signal. The control device 100 controls to switch the flow path of the flow path switching device 15 based on the control signal. The control device 100 controls the opening degree of the second flow rate adjusting device 18 based on the control signal. The control device 100 controls the opening degree of the third flow rate adjusting device 19 based on the control signal.
 次に、図1および図2を用いて、冷凍サイクル装置1の動作について説明する。
 図1を参照して、冷凍サイクル装置1における冷房運転時の動作について説明する。冷房運転時には、制御装置100によって、流路切替装置15における流路が図1に示すような流路となるように制御される。第1流量調整装置14は、制御装置100によって過熱度に基づいて開度が制御される。例えば、制御装置100は、第1熱交換器11の入口温度センサおよび出口温度センサで検出される温度から求められる圧縮機13の吸入過熱度が目標値(例えば3℃~5℃等)になるように、第1流量調整装置14の開度を決定し、第1流量調整装置14の開度を制御する。
Next, the operation of the refrigeration cycle apparatus 1 will be described with reference to FIGS. 1 and 2.
The operation of the refrigerating cycle apparatus 1 during the cooling operation will be described with reference to FIG. During the cooling operation, the control device 100 controls the flow path in the flow path switching device 15 so that the flow path is as shown in FIG. The opening degree of the first flow rate adjusting device 14 is controlled by the control device 100 based on the degree of superheat. For example, in the control device 100, the suction superheat degree of the compressor 13 obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the first heat exchanger 11 becomes a target value (for example, 3 ° C to 5 ° C, etc.). As described above, the opening degree of the first flow rate adjusting device 14 is determined, and the opening degree of the first flow rate adjusting device 14 is controlled.
 圧縮機13によって圧縮されて吐出された高温高圧のガス冷媒は、第1冷媒経路F1において、流路切替装置15を通って第1熱交換器11へ流入する。第1熱交換器11に流入した高温高圧の冷媒は、室外空気等に対して放熱し、凝縮されて高圧の液冷媒となる。第2冷媒経路F2において、第1熱交換器11から流出した高圧の液冷媒は、第1流量調整装置14へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。第2冷媒経路F2において、第1流量調整装置14から流出した気液二相冷媒は、第2熱交換器12へ流入する。第2熱交換器12へ流入した気液二相冷媒は、水と熱交換して蒸発し、低温低圧のガス冷媒となる。第2熱交換器12から流出したガス冷媒は、流路切替装置15を経て圧縮機13へ吸入され、再び圧縮される。 The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 13 flows into the first heat exchanger 11 through the flow path switching device 15 in the first refrigerant path F1. The high-temperature and high-pressure refrigerant that has flowed into the first heat exchanger 11 dissipates heat to the outdoor air and the like, and is condensed into a high-pressure liquid refrigerant. In the second refrigerant path F2, the high-pressure liquid refrigerant flowing out of the first heat exchanger 11 flows into the first flow rate adjusting device 14, is expanded and depressurized, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. In the second refrigerant path F2, the gas-liquid two-phase refrigerant flowing out of the first flow rate adjusting device 14 flows into the second heat exchanger 12. The gas-liquid two-phase refrigerant flowing into the second heat exchanger 12 exchanges heat with water and evaporates to become a low-temperature low-pressure gas refrigerant. The gas refrigerant flowing out of the second heat exchanger 12 is sucked into the compressor 13 via the flow path switching device 15 and is compressed again.
 冷房運転時においては、冷媒回路内のすべての冷媒が冷媒回路で使用されるので、冷媒貯留装置16に冷媒を貯留する必要がない。しかし、外気温度が極めて低い状態での冷房運転の起動時には、外気温度によって冷媒貯留装置16の温度が、第2熱交換器12の熱交換用の水の温度と比べて極めて低くなっている。これにより、冷媒貯留装置16内の圧力と第2冷媒経路F2内の圧力との圧力差に基づいて、第2冷媒経路F2において、第1流量調整装置14の下流側から冷媒貯留装置16内に冷媒が流入するおそれがある。 During the cooling operation, all the refrigerant in the refrigerant circuit is used in the refrigerant circuit, so it is not necessary to store the refrigerant in the refrigerant storage device 16. However, when the cooling operation is started in a state where the outside air temperature is extremely low, the temperature of the refrigerant storage device 16 is extremely lower than the temperature of the heat exchange water of the second heat exchanger 12 due to the outside air temperature. As a result, based on the pressure difference between the pressure in the refrigerant storage device 16 and the pressure in the second refrigerant path F2, in the second refrigerant path F2, from the downstream side of the first flow rate adjusting device 14 into the refrigerant storage device 16. Refrigerant may flow in.
 さらに、冷媒貯留装置16の熱容量が比較的に大きいため、外気温度が極めて低い状態での冷房運転の起動時において、冷媒貯留装置16内に冷媒が流入して貯留された場合には、冷房運転の起動後において冷媒回路内を冷媒が流れるようになっても、冷媒貯留装置16の温度が上昇しにくく、冷媒貯留装置16内の圧力が上昇しにくい。これにより、冷房運転の起動時に冷媒貯留装置16に冷媒が貯留された場合には、冷房運転の起動後においても、冷媒貯留装置16内の圧力よりも第2冷媒経路F2内の圧力の方が高く、この圧力差に基づいて、冷媒貯留装置16から冷媒が流れ出さない状態となる。 Further, since the heat capacity of the refrigerant storage device 16 is relatively large, when the cooling operation is started in a state where the outside air temperature is extremely low, if the refrigerant flows into and is stored in the refrigerant storage device 16, the cooling operation is performed. Even if the refrigerant flows in the refrigerant circuit after the start-up, the temperature of the refrigerant storage device 16 is unlikely to rise, and the pressure in the refrigerant storage device 16 is unlikely to rise. As a result, when the refrigerant is stored in the refrigerant storage device 16 at the start of the cooling operation, the pressure in the second refrigerant path F2 is higher than the pressure in the refrigerant storage device 16 even after the start of the cooling operation. It is high, and based on this pressure difference, the refrigerant does not flow out from the refrigerant storage device 16.
 このように、冷房運転時において冷媒貯留装置16に冷媒が貯留すると、冷房運転中に冷房運転に必要な冷媒量が不足することにより、冷凍サイクル装置1の能力が低下するという問題が生じる。そこで、制御装置100は、冷房運転の起動時において、第2流量調整装置18の開度を全閉状態にする制御を行ない、冷房運転の起動後の運転中も第2流量調整装置18の開度を全閉状態で維持させる制御を行う。これにより、冷房運転中における冷媒量が不足しなくなることにより、冷凍サイクル装置1の能力が低下しないようにすることができる。 As described above, when the refrigerant is stored in the refrigerant storage device 16 during the cooling operation, there arises a problem that the capacity of the refrigerating cycle device 1 is lowered due to the insufficient amount of the refrigerant required for the cooling operation during the cooling operation. Therefore, the control device 100 controls the opening degree of the second flow rate adjusting device 18 to be fully closed when the cooling operation is started, and the second flow rate adjusting device 18 is opened even during the operation after the cooling operation is started. Controls to maintain the degree in a fully closed state. As a result, the capacity of the refrigerating cycle device 1 can be prevented from being lowered by preventing the amount of the refrigerant from being insufficient during the cooling operation.
 冷房運転時においては、第2冷媒経路F2における第1熱交換器11と第1流量調整装置14との間に液冷媒が流れる。これにより、冷房運転時においては、液冷媒が、第1分岐経路F41から第1逆止弁21を経て第3流量調整装置19へ流れ、さらに、第3流量調整装置19を経て供給経路F43から圧縮機13の吸入側に流れる。これにより、例えばR32冷媒のように冷媒の温度が上がりやすい冷媒を使用する場合でも、圧縮機13が過熱しないようにすることができる。 During the cooling operation, the liquid refrigerant flows between the first heat exchanger 11 and the first flow rate adjusting device 14 in the second refrigerant path F2. As a result, during the cooling operation, the liquid refrigerant flows from the first branch path F41 to the third flow rate adjusting device 19 via the first check valve 21, and further from the supply path F43 via the third flow rate adjusting device 19. It flows to the suction side of the compressor 13. This makes it possible to prevent the compressor 13 from overheating even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used.
 図2を参照して、暖房運転時の動作について説明する。暖房運転時には、制御装置100によって、流路切替装置15における流路が図2に示すような流路となるように制御される。第1流量調整装置14は、制御装置100によって過冷却度に基づいて開度が制御される。具体的に、制御装置100は、第2熱交換器12の入口温度センサおよび出口温度センサで検出される温度から求められる第2熱交換器12の出口の過冷却度が目標値(例えば3℃~5℃等)になるように、第1流量調整装置14の開度を決定する。 The operation during the heating operation will be described with reference to FIG. During the heating operation, the control device 100 controls the flow path in the flow path switching device 15 so as to be the flow path as shown in FIG. The opening degree of the first flow rate adjusting device 14 is controlled by the control device 100 based on the degree of supercooling. Specifically, in the control device 100, the degree of supercooling at the outlet of the second heat exchanger 12 obtained from the temperatures detected by the inlet temperature sensor and the outlet temperature sensor of the second heat exchanger 12 is a target value (for example, 3 ° C.). The opening degree of the first flow rate adjusting device 14 is determined so as to be (~ 5 ° C., etc.).
 圧縮機13によって圧縮されて吐出された高温高圧のガス冷媒は、第1冷媒経路F1において、流路切替装置15を通って第2熱交換器12へ流入する。第2熱交換器12に流入した高温高圧の冷媒は、水に対して放熱し、凝縮されて高圧の液冷媒となる。第2冷媒経路F2において、第2熱交換器12から流出した高圧の液冷媒は、第1流量調整装置14へ流入し、膨張および減圧されて、低温低圧の気液二相冷媒となる。第2冷媒経路F2において、第1流量調整装置14から流出した気液二相冷媒は、第1熱交換器11へ流入する。このとき、第2流量調整装置18は、制御装置100によって開状態に制御される。これにより、余剰する冷媒が冷媒貯留装置16に貯留される。第1熱交換器11へ流入した気液二相冷媒は、室外空気と熱交換して蒸発し、低温低圧のガス冷媒となる。第1熱交換器11から流出したガス冷媒は、流路切替装置15を経て圧縮機13へ吸入され、再び圧縮される。 The high-temperature and high-pressure gas refrigerant compressed and discharged by the compressor 13 flows into the second heat exchanger 12 through the flow path switching device 15 in the first refrigerant path F1. The high-temperature and high-pressure refrigerant that has flowed into the second heat exchanger 12 dissipates heat to water and is condensed into a high-pressure liquid refrigerant. In the second refrigerant path F2, the high-pressure liquid refrigerant flowing out of the second heat exchanger 12 flows into the first flow rate adjusting device 14, is expanded and depressurized, and becomes a low-temperature low-pressure gas-liquid two-phase refrigerant. In the second refrigerant path F2, the gas-liquid two-phase refrigerant flowing out of the first flow rate adjusting device 14 flows into the first heat exchanger 11. At this time, the second flow rate adjusting device 18 is controlled to the open state by the control device 100. As a result, the surplus refrigerant is stored in the refrigerant storage device 16. The gas-liquid two-phase refrigerant flowing into the first heat exchanger 11 exchanges heat with the outdoor air and evaporates to become a low-temperature low-pressure gas refrigerant. The gas refrigerant flowing out of the first heat exchanger 11 is sucked into the compressor 13 via the flow path switching device 15 and is compressed again.
 暖房運転時においては、冷房運転時よりも少ない量の冷媒を使用するために、余剰分の冷媒を冷媒貯留装置16に貯留させる必要がある。そこで、制御装置100は、暖房運転時においては、第2流量調整装置18の開度を全開状態にする制御を行う。これにより、暖房運転中において冷媒量が過剰とならないようにすることができる。 In the heating operation, it is necessary to store the surplus refrigerant in the refrigerant storage device 16 in order to use a smaller amount of the refrigerant than in the cooling operation. Therefore, the control device 100 controls to fully open the opening degree of the second flow rate adjusting device 18 during the heating operation. This makes it possible to prevent the amount of refrigerant from becoming excessive during the heating operation.
 暖房運転時においては、第2冷媒経路F2における第2熱交換器12と第1流量調整装置14との間に液冷媒が流れる。これにより、暖房運転時においては、液冷媒が、第2分岐経路F42から第2逆止弁22を経て第3流量調整装置19へ流れ、さらに、第3流量調整装置19を経て供給経路F43から圧縮機13の吸入側に流れる。これにより、例えばR32冷媒のように冷媒の温度が上がりやすい冷媒を使用する場合でも、圧縮機13が過熱しないようにすることができる。 During the heating operation, the liquid refrigerant flows between the second heat exchanger 12 and the first flow rate adjusting device 14 in the second refrigerant path F2. As a result, during the heating operation, the liquid refrigerant flows from the second branch path F42 to the third flow rate adjusting device 19 via the second check valve 22, and further from the supply path F43 via the third flow rate adjusting device 19. It flows to the suction side of the compressor 13. This makes it possible to prevent the compressor 13 from overheating even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used.
 冷凍サイクル装置1は、前述した暖房運転時において、第1熱交換器11に霜が発生した場合に、第1熱交換器11の霜を融解させるための除霜運転を行う。具体的に、制御装置100は、暖房運転時に第1熱交換器11の除霜運転開始条件が成立したと判断すると、流路切替装置15を冷房運転時の経路に切り替え、第1熱交換器11を凝縮器として機能させる冷房運転を行う。例えば、制御装置100は、第1熱交換器11に設けられた熱交換器温度センサによって検出された温度が基準値温度(例えば0℃)よりも低い場合に、第1熱交換器11に霜が発生し、除霜運転開始条件が成立したと判断される。 The refrigeration cycle device 1 performs a defrosting operation for melting the frost in the first heat exchanger 11 when frost is generated in the first heat exchanger 11 during the heating operation described above. Specifically, when the control device 100 determines that the defrosting operation start condition of the first heat exchanger 11 is satisfied during the heating operation, the control device 100 switches the flow path switching device 15 to the path during the cooling operation, and the first heat exchanger A cooling operation is performed in which 11 functions as a condenser. For example, the control device 100 frosts the first heat exchanger 11 when the temperature detected by the heat exchanger temperature sensor provided in the first heat exchanger 11 is lower than the reference value temperature (for example, 0 ° C.). Is generated, and it is judged that the defrosting operation start condition is satisfied.
 図3は、実施の形態1における制御装置100のCPU102が冷房運転の起動開始時に第2流量調整装置18および第3流量調整装置19を制御するフローチャートである。 FIG. 3 is a flowchart in which the CPU 102 of the control device 100 in the first embodiment controls the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation.
 制御装置100では、ステップS1により、冷房運転の起動を開始させる。制御装置100では、ステップS2により、冷房運転の起動を開始させるときに、冷媒貯留装置16への冷媒の流入を遮断することが可能な第2流量調整装置18を全閉状態にする。 In the control device 100, the start of the cooling operation is started by step S1. In the control device 100, in step S2, when the start of the cooling operation is started, the second flow rate adjusting device 18 capable of blocking the inflow of the refrigerant into the refrigerant storage device 16 is fully closed.
 制御装置100では、ステップS3により、吐出温度センサ51により検出された圧縮機13の吐出温度T1が閾値よりも高いか否かを判断する。この場合の閾値は、例えば100℃のように、圧縮機13が過熱状態とみなされないような上限値が設定される。 In the control device 100, in step S3, it is determined whether or not the discharge temperature T1 of the compressor 13 detected by the discharge temperature sensor 51 is higher than the threshold value. In this case, the threshold value is set to an upper limit such as 100 ° C. so that the compressor 13 is not regarded as overheated.
 制御装置100では、ステップS3で吐出温度T1が閾値以下であると判断されたときに、ステップS4により、第3流量調整装置19を閉状態に制御し、冷房運転における通常の制御状態に移行させ、リターンする。一方、制御装置100では、ステップS3で吐出温度T1が閾値よりも高いと判断されたときに、ステップS5により、第3流量調整装置19を開状態に制御し、冷房運転における通常の制御状態に移行させ、リターンする。 In the control device 100, when it is determined in step S3 that the discharge temperature T1 is equal to or lower than the threshold value, the third flow rate adjusting device 19 is controlled to the closed state by step S4 to shift to the normal control state in the cooling operation. , Return. On the other hand, in the control device 100, when it is determined in step S3 that the discharge temperature T1 is higher than the threshold value, the third flow rate adjusting device 19 is controlled to the open state by step S5, and the control device 100 returns to the normal control state in the cooling operation. Migrate and return.
 以上のように、冷房運転の起動開始時において第2流量調整装置18および第3流量調整装置19の制御が実行されることにより、次のような効果を得ることができる。 As described above, the following effects can be obtained by controlling the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation.
 冷媒貯留装置16への冷媒の流入を遮断することが可能な第2流量調整装置18が設けられ、冷房運転の起動開始時に第2流量調整装置18を全閉状態にする制御が行なわれる。このような制御により、外気温度が極めて低い状態での冷房運転の起動時において、第1流量調整装置14の下流側から冷媒貯留装置16への冷媒の流れが遮断さられる。これにより、外気温度が極めて低い状態での冷房運転の起動時に冷媒貯留装置16内に冷媒が流入することを防ぐことができる。したがって、冷房運転中においては、冷媒量が不足せず、冷凍サイクル装置1の機能が低下しないようにすることができる。 A second flow rate adjusting device 18 capable of blocking the inflow of the refrigerant into the refrigerant storage device 16 is provided, and control is performed to fully close the second flow rate adjusting device 18 at the start of the cooling operation. By such control, the flow of the refrigerant from the downstream side of the first flow rate adjusting device 14 to the refrigerant storage device 16 is blocked when the cooling operation is started in a state where the outside air temperature is extremely low. This makes it possible to prevent the refrigerant from flowing into the refrigerant storage device 16 when the cooling operation is started in a state where the outside air temperature is extremely low. Therefore, during the cooling operation, the amount of the refrigerant is not insufficient and the function of the refrigerating cycle device 1 can be prevented from deteriorating.
 冷房運転の起動開始時に圧縮機13の吐出温度T1が閾値よりも高い場合には、第3流量調整装置19を開状態にすることにより、液冷媒が、第1分岐経路F41から第1逆止弁21を経て第3流量調整装置19へ流れ、さらに、第3流量調整装置19を経て供給経路F43から圧縮機13の吸入側に流れる。これにより、例えばR32冷媒のように冷媒の温度が上がりやすい冷媒を使用する場合でも、圧縮機13が過熱状態とならないようにすることができる。 When the discharge temperature T1 of the compressor 13 is higher than the threshold value at the start of the cooling operation, the liquid refrigerant is stopped from the first branch path F41 to the first check by opening the third flow rate adjusting device 19. It flows to the third flow rate adjusting device 19 through the valve 21, and further flows from the supply path F43 to the suction side of the compressor 13 through the third flow rate adjusting device 19. This makes it possible to prevent the compressor 13 from becoming overheated even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used.
 冷凍サイクル装置1では、冷媒貯留装置16への冷媒の流入を遮断する制御を可能とする第2流量調整装置18が新たに設けられた。第2冷媒経路F2において冷媒を減圧して膨張させる流量調整装置として、従来では冷房用の流量調整装置と暖房用の流量調整装置とを別個に設けていたが、冷凍サイクル装置1では、冷房用の流量調整装置および暖房用の流量調整装置の両方として兼用される1つの第1流量調整装置14を設けた。したがって、冷凍サイクル装置1における流量調整装置の全数が増加しない。これにより、第2流量調整装置18を新たに設けても、制御装置100の制御基板においてアクチュエータの制御に必要となる出力ポートが増加しないようにすることができる。 In the refrigeration cycle device 1, a second flow rate adjusting device 18 that enables control to block the inflow of the refrigerant into the refrigerant storage device 16 is newly provided. Conventionally, as a flow rate adjusting device for depressurizing and expanding the refrigerant in the second refrigerant path F2, a flow rate adjusting device for cooling and a flow rate adjusting device for heating are separately provided, but in the refrigerating cycle device 1, for cooling. A first flow rate adjusting device 14 which is also used as both a flow rate adjusting device for heating and a flow rate adjusting device for heating is provided. Therefore, the total number of flow rate adjusting devices in the refrigerating cycle device 1 does not increase. As a result, even if the second flow rate adjusting device 18 is newly provided, the number of output ports required for controlling the actuator on the control board of the control device 100 can be prevented from increasing.
 冷凍サイクル装置1では、第2冷媒経路F2において、冷媒を減圧して膨張させる流量調整装置として、冷房用の流量調整装置および暖房用の流量調整装置の両方として兼用される1つの第1流量調整装置14を設けた。したがって、第2冷媒経路F2においては、冷房運転時と暖房運転時とで液冷媒が流れる経路の部分が異なる。冷凍サイクル装置1では、第2冷媒経路F2において、冷房運転時に液冷媒が流れる経路部分である第1熱交換器11と第1流量調整装置14との間に第1分岐経路F41を設け、液冷媒が第1逆止弁21を経て第3流量調整装置19へ流れるようにした。さらに、冷凍サイクル装置1では、第2冷媒経路F2において、暖房運転時に液冷媒が流れる経路部分である第2熱交換器12と第1流量調整装置14との間に第2分岐経路F42を設け、液冷媒が第2逆止弁22を経て第3流量調整装置19へ流れるようにした。これにより、1つの第1流量調整装置14で冷房用の流量調整装置および暖房用の流量調整装置を兼用する場合でも、常に液冷媒を第3流量調整装置19を経て圧縮機13に供給することができる。 In the refrigeration cycle device 1, one first flow rate adjusting device that is used as both a cooling flow rate adjusting device and a heating flow rate adjusting device as a flow rate adjusting device for depressurizing and expanding the refrigerant in the second refrigerant path F2. The device 14 was provided. Therefore, in the second refrigerant path F2, the portion of the path through which the liquid refrigerant flows differs between the cooling operation and the heating operation. In the refrigeration cycle device 1, in the second refrigerant path F2, a first branch path F41 is provided between the first heat exchanger 11 and the first flow rate adjusting device 14, which is a path portion through which the liquid refrigerant flows during cooling operation, and the liquid is provided. The refrigerant is allowed to flow to the third flow rate adjusting device 19 via the first check valve 21. Further, in the refrigeration cycle device 1, in the second refrigerant path F2, a second branch path F42 is provided between the second heat exchanger 12 and the first flow rate adjusting device 14, which is a path portion through which the liquid refrigerant flows during the heating operation. , The liquid refrigerant was allowed to flow to the third flow rate adjusting device 19 via the second check valve 22. As a result, even when one first flow rate adjusting device 14 also serves as a flow rate adjusting device for cooling and a flow rate adjusting device for heating, the liquid refrigerant is always supplied to the compressor 13 via the third flow rate adjusting device 19. Can be done.
 実施の形態2.
 実施の形態2においては、実施の形態1に示したような冷房運転の開始時における第2流量調整装置18および第3流量調整装置19の制御に加え、暖房運転での除霜運転時において第2流量調整装置18の制御を実行する例を説明する。
Embodiment 2.
In the second embodiment, in addition to the control of the second flow rate adjusting device 18 and the third flow rate adjusting device 19 at the start of the cooling operation as shown in the first embodiment, the second embodiment is performed during the defrosting operation in the heating operation. 2 An example of executing the control of the flow rate adjusting device 18 will be described.
 図4および図5は、実施の形態2における冷凍サイクル装置1Aの冷媒回路構成を示す図である。図4には、冷房運転時における冷凍サイクル装置1Aの冷媒回路の状態が示される。図5には、暖房運転時における冷凍サイクル装置1Aの冷媒回路の状態が示される。図4および図5においては、冷媒が流れる方向が矢印で示されている。 4 and 5 are diagrams showing the refrigerant circuit configuration of the refrigerating cycle device 1A according to the second embodiment. FIG. 4 shows the state of the refrigerant circuit of the refrigerating cycle device 1A during the cooling operation. FIG. 5 shows the state of the refrigerant circuit of the refrigerating cycle device 1A during the heating operation. In FIGS. 4 and 5, the direction in which the refrigerant flows is indicated by an arrow.
 暖房運転時において除霜運転開始条件が成立して除霜運転が実行される場合には、除霜能力を確保するためには、暖房運転時に冷媒貯留装置16に貯留された冷媒を排出して除霜運転における冷媒として使用する必要がある。 When the defrosting operation start condition is satisfied and the defrosting operation is executed during the heating operation, the refrigerant stored in the refrigerant storage device 16 is discharged during the heating operation in order to secure the defrosting capacity. It is necessary to use it as a refrigerant in defrosting operation.
 除霜運転をする場合において、除霜運転開始条件が成立する直前に比較的長時間に亘り暖房運転が実行されていた場合のように、冷媒貯留装置16の温度が比較的に高温状態である場合には、第2流量調整装置18を全開状態にすると、冷媒貯留装置16内の圧力が第1流量調整装置14と第2熱交換器12との間の第2冷媒経路F2よりも高いことにより、冷媒貯留装置16内の冷媒が、第2流量調整装置18を経て排出される。一方、除霜運転をする場合において、除霜運転開始条件が成立する直前に短時間の暖房運転が実行されていた場合のように、冷媒貯留装置16の温度が比較的に低温状態である場合には、第2流量調整装置18を全開状態にしても、冷媒貯留装置16内の圧力が第1流量調整装置14と第2熱交換器12との間の第2冷媒経路F2よりも低いことにより、冷媒貯留装置16内の冷媒が第2流量調整装置18を経て排出されない場合がある。 In the defrosting operation, the temperature of the refrigerant storage device 16 is relatively high, as in the case where the heating operation is executed for a relatively long time immediately before the defrosting operation start condition is satisfied. In this case, when the second flow rate adjusting device 18 is fully opened, the pressure in the refrigerant storage device 16 is higher than the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12. As a result, the refrigerant in the refrigerant storage device 16 is discharged via the second flow rate adjusting device 18. On the other hand, in the case of defrosting operation, the temperature of the refrigerant storage device 16 is relatively low, as in the case where the heating operation for a short time is executed immediately before the defrosting operation start condition is satisfied. The pressure in the refrigerant storage device 16 is lower than that of the second refrigerant path F2 between the first flow rate adjusting device 14 and the second heat exchanger 12 even when the second flow rate adjusting device 18 is fully opened. Therefore, the refrigerant in the refrigerant storage device 16 may not be discharged through the second flow rate adjusting device 18.
 実施の形態2では、除霜運転をする場合において、除霜運転開始条件が成立したときに冷媒貯留装置16の温度が比較的に低温状態である場合でも、冷媒貯留装置16に貯留された冷媒を排出することを可能とする冷凍サイクル装置1Aの構成および制御について説明する。 In the second embodiment, in the case of the defrosting operation, the refrigerant stored in the refrigerant storage device 16 even when the temperature of the refrigerant storage device 16 is relatively low when the defrosting operation start condition is satisfied. The configuration and control of the refrigerating cycle apparatus 1A capable of discharging the freezing cycle device 1A will be described.
 図4および図5を参照して、実施の形態2の冷凍サイクル装置1Aが実施の形態1の冷凍サイクル装置1と異なる部分は、次の部分である。第1流量調整装置14が第2冷媒経路F2において、第3冷媒経路F3における冷媒貯留装置16と並列する位置に設けられる。冷媒貯留装置16においては、貯留されている冷媒の液面のレベルL1を検出するレベルセンサ61が設けられている。レベルセンサ61の検出信号は、制御装置100に入力される。 With reference to FIGS. 4 and 5, the parts of the refrigerating cycle apparatus 1A of the second embodiment different from the refrigerating cycle apparatus 1 of the first embodiment are the following parts. The first flow rate adjusting device 14 is provided in the second refrigerant path F2 at a position parallel to the refrigerant storage device 16 in the third refrigerant path F3. The refrigerant storage device 16 is provided with a level sensor 61 that detects the level L1 of the liquid level of the stored refrigerant. The detection signal of the level sensor 61 is input to the control device 100.
 より具体的に、第1流量調整装置14は、第2冷媒経路F2において、第3冷媒経路F3における冷媒貯留装置16と並列する位置であって、第1分岐経路F41と第2分岐経路F42との間に設けられる。これにより、暖房運転時において、第1流量調整装置14と第1熱交換器11との間における第2冷媒経路F2は、低温低圧の状態となる。 More specifically, the first flow rate adjusting device 14 is located in parallel with the refrigerant storage device 16 in the third refrigerant path F3 in the second refrigerant path F2, and includes the first branch path F41 and the second branch path F42. It is provided between. As a result, during the heating operation, the second refrigerant path F2 between the first flow rate adjusting device 14 and the first heat exchanger 11 is in a low temperature and low pressure state.
 このような位置に第1流量調整装置14を設けたことにより、第3逆止弁17は、冷媒貯留装置16の内部から第1熱交換器11と第1流量調整装置14との間における第2冷媒経路への一方向にのみ冷媒を流出させることが可能となる態様で設けられることとなる。第3逆止弁17は、冷媒貯留装置16の内部の圧力が、第1熱交換器11と第1流量調整装置14との間における第2冷媒経路F2の圧力よりも基準値以上高くなると、冷媒貯留装置16の内部から第1熱交換器11と第1流量調整装置14との間における第2冷媒経路への一方向にのみ冷媒を流出させる。 By providing the first flow rate adjusting device 14 at such a position, the third check valve 17 is the third check valve 17 between the first heat exchanger 11 and the first flow rate adjusting device 14 from the inside of the refrigerant storage device 16. 2 It will be provided in such a manner that the refrigerant can flow out to the refrigerant path in only one direction. When the pressure inside the refrigerant storage device 16 of the third check valve 17 becomes higher than the pressure of the second refrigerant path F2 between the first heat exchanger 11 and the first flow rate adjusting device 14, the pressure is higher than the reference value. Refrigerant flows out from the inside of the refrigerant storage device 16 only in one direction to the second refrigerant path between the first heat exchanger 11 and the first flow rate adjusting device 14.
 このような冷凍サイクル装置1Aは、除霜運転を実行する場合を除き、実施の形態1の冷凍サイクル装置1と同様の動作を実行する。 Such a refrigeration cycle device 1A executes the same operation as that of the refrigeration cycle device 1 of the first embodiment, except when the defrosting operation is executed.
 図6は、実施の形態2における制御装置100のCPU102が暖房運転時において除霜運転を実行する制御のフローチャートである。 FIG. 6 is a flowchart of control in which the CPU 102 of the control device 100 in the second embodiment executes the defrosting operation during the heating operation.
 制御装置100では、ステップS11により、暖房運転の開始後に、前述のような除霜運転開始条件が成立したか否かを判断する。制御装置100では、ステップS11で除霜運転開始条件が成立していないと判断された場合にリターンする。ステップS11で除霜運転開始条件が成立していると判断された場合は、制御装置100では、ステップS12により、直前の暖房運転の運転時間が閾値以上の長時間であるか否かを判断する。直前の暖房運転の運転時間とは、除霜運転開始条件が成立する直前に実行されていた暖房運転の継続時間である。暖房運転の継続時間は、制御装置100が運転継続時間を計時する処理を実行することにより得られる。当該閾値は、暖房運転時に冷媒貯留装置16に貯留された冷媒が第2流量調整装置18を経て容易に流出可能となる基準温度以上となるような暖房運転の継続時間に設定される。 In the control device 100, in step S11, after the start of the heating operation, it is determined whether or not the above-mentioned defrosting operation start condition is satisfied. The control device 100 returns when it is determined in step S11 that the defrosting operation start condition is not satisfied. When it is determined in step S11 that the defrosting operation start condition is satisfied, the control device 100 determines in step S12 whether or not the operation time of the immediately preceding heating operation is longer than the threshold value. .. The operation time of the heating operation immediately before is the duration of the heating operation executed immediately before the defrosting operation start condition is satisfied. The duration of the heating operation is obtained by the control device 100 executing a process of timing the operation duration. The threshold value is set to the duration of the heating operation such that the refrigerant stored in the refrigerant storage device 16 during the heating operation becomes equal to or higher than the reference temperature at which the refrigerant can easily flow out through the second flow rate adjusting device 18.
 制御装置100では、ステップS12で直前の暖房運転の運転時間が閾値以上の長時間であると判断された場合に、ステップS13により除霜運転を開始させ、ステップS14により第2流量調整装置18を全開状態に制御する。この場合は、直前の暖房運転の運転時間に基づいて、暖房運転時に冷媒貯留装置16に貯留された冷媒が第2流量調整装置18を経て容易に流出可能となる基準温度以上となっている。したがって、冷媒貯留装置16の内部の圧力が第2熱交換器12と第1流量調整装置14との間における第2冷媒経路F2の圧力よりも高いことに基き、冷媒貯留装置16に貯留された冷媒が全開状態の第2流量調整装置18を経て流出することにより排出される。 In the control device 100, when it is determined in step S12 that the operation time of the immediately preceding heating operation is longer than the threshold value, the defrosting operation is started in step S13, and the second flow rate adjusting device 18 is set in step S14. Control to fully open state. In this case, the temperature is equal to or higher than the reference temperature at which the refrigerant stored in the refrigerant storage device 16 during the heating operation can easily flow out through the second flow rate adjusting device 18 based on the operation time of the immediately preceding heating operation. Therefore, the pressure inside the refrigerant storage device 16 is higher than the pressure of the second refrigerant path F2 between the second heat exchanger 12 and the first flow rate adjusting device 14, and the refrigerant is stored in the refrigerant storage device 16. The refrigerant is discharged by flowing out through the second flow rate adjusting device 18 in the fully opened state.
 そして、制御装置100では、ステップS15により、レベルセンサ61により検出された冷媒貯留装置16内での冷媒のレベルL1から特定される冷媒の液量が閾値よりも少ないか否かを判断する。当該閾値は、暖房運転中に冷媒貯留装置16内に貯留された冷媒量のうち、除霜運転に最低限必要となる冷媒量が排出されていると認められる量に設定されている。制御装置100では、ステップS15により、検出された冷媒のレベルL1から特定される冷媒の液量が閾値以下となるのを待ってリターンする。その後、除霜運転は、除霜運転開始条件が成立しなくなるまで実行される。 Then, in the control device 100, in step S15, it is determined whether or not the amount of the refrigerant liquid specified from the level L1 of the refrigerant in the refrigerant storage device 16 detected by the level sensor 61 is smaller than the threshold value. The threshold value is set to an amount of the amount of refrigerant stored in the refrigerant storage device 16 during the heating operation, in which the minimum amount of refrigerant required for the defrosting operation is recognized to be discharged. The control device 100 returns after waiting for the liquid amount of the refrigerant specified from the level L1 of the detected refrigerant to be equal to or less than the threshold value in step S15. After that, the defrosting operation is executed until the defrosting operation start condition is no longer satisfied.
 制御装置100では、ステップS12で直前の暖房運転の運転時間が閾値以上でないと判断された場合に、ステップS16により、冷媒貯留装置16の内部の圧力が第2熱交換器12と第1流量調整装置14との間における第2冷媒経路F2の圧力よりも高くなるように、第2流量調整装置18の開度を基準開度に絞る制御をする。この場合は、直前の暖房運転の運転時間に基づいて、暖房運転時に冷媒貯留装置16に貯留された冷媒が第2流量調整装置18を経て容易に流出可能となる基準温度以上となっていないが、暖房運転時においては第2熱交換器12と第1流量調整装置14との間における第2冷媒経路F2が低圧状態となっている。したがって、ステップS16の制御により、冷媒貯留装置16の内部の圧力が、第1熱交換器11と第1流量調整装置14との間における第2冷媒経路F2の圧力よりも基準値以上となると、冷媒貯留装置16の内部から冷媒が第3逆止弁17を経て第1熱交換器11と第1流量調整装置14との間における第2冷媒経路に流出して排出される。 In the control device 100, when it is determined in step S12 that the operation time of the immediately preceding heating operation is not equal to or longer than the threshold value, the pressure inside the refrigerant storage device 16 is adjusted to the second heat exchanger 12 and the first flow rate by step S16. The opening degree of the second flow rate adjusting device 18 is controlled to be narrowed down to the reference opening degree so as to be higher than the pressure of the second refrigerant path F2 between the device 14 and the device 14. In this case, the refrigerant stored in the refrigerant storage device 16 during the heating operation does not exceed the reference temperature at which the refrigerant can easily flow out through the second flow rate adjusting device 18 based on the operation time of the immediately preceding heating operation. During the heating operation, the second refrigerant path F2 between the second heat exchanger 12 and the first flow rate adjusting device 14 is in a low pressure state. Therefore, when the pressure inside the refrigerant storage device 16 becomes equal to or higher than the pressure of the second refrigerant path F2 between the first heat exchanger 11 and the first flow rate adjusting device 14 by the control of step S16, Refrigerant flows out from the inside of the refrigerant storage device 16 through the third check valve 17 to the second refrigerant path between the first heat exchanger 11 and the first flow rate adjusting device 14 and is discharged.
 そして、制御装置100では、ステップS17により、レベルセンサ61により検出された冷媒貯留装置16内での冷媒のレベルL1から特定される冷媒の液量が閾値以下となっているか否かを判断する。当該閾値は、ステップS15で用いる閾値と同じ値である。制御装置100では、ステップS17により、検出された冷媒のレベルL1から特定される冷媒の液量が閾値以下となるのを待って除霜運転を開始させ、リターンする。その後、除霜運転は、除霜運転開始条件が成立しなくなるまで実行される。 Then, in the control device 100, in step S17, it is determined whether or not the liquid amount of the refrigerant specified from the level L1 of the refrigerant in the refrigerant storage device 16 detected by the level sensor 61 is equal to or less than the threshold value. The threshold value is the same value as the threshold value used in step S15. In the control device 100, the defrosting operation is started and returned after waiting for the liquid amount of the refrigerant specified from the level L1 of the detected refrigerant to be equal to or less than the threshold value in step S17. After that, the defrosting operation is executed until the defrosting operation start condition is no longer satisfied.
 以上に説明したように、実施の形態2では、除霜運転を開始する場合に、制御装置100が、冷媒貯留装置16に貯留された冷媒の液量が閾値以下となるまで冷媒が流出するように第2流量調整装置18を制御する。これにより、冷媒貯留装置16がどのような状態であっても除霜運転時における除霜能力を確保することができる。また、実施の形態2では、レベルセンサ61により検出された冷媒貯留装置16内での冷媒のレベルL1から特定される冷媒の液量が閾値以下であるか否かを確認することにより冷媒貯留装置16に貯留された冷媒の液量が閾値以下であるか否かを判断するので、冷媒貯留装置16に貯留された冷媒の液量が閾値以下となったことを容易に確認することができる。 As described above, in the second embodiment, when the defrosting operation is started, the control device 100 causes the refrigerant to flow out until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value. The second flow rate adjusting device 18 is controlled. This makes it possible to secure the defrosting ability during the defrosting operation regardless of the state of the refrigerant storage device 16. Further, in the second embodiment, the refrigerant storage device is checked to see if the amount of the refrigerant liquid specified from the level L1 of the refrigerant in the refrigerant storage device 16 detected by the level sensor 61 is equal to or less than the threshold value. Since it is determined whether or not the amount of the refrigerant stored in 16 is equal to or less than the threshold value, it can be easily confirmed that the amount of the refrigerant stored in the refrigerant storage device 16 is equal to or less than the threshold value.
 なお、ステップS14により第2流量調整装置18を全開にする制御をするか、ステップS16により第2流量調整装置18の開度を基準開度に絞る制御をするかの判断としては、次のような判断をしてもよい。例えば、除霜運転を開始する直前まで暖房運転をしていた場合は、冷媒貯留装置16が加熱されているのとみなして第2流量調整装置18を全開にする制御をしてもよい。一方、除霜運転を開始する直前まで暖房運転をしておらず除霜運転を開始する前に、暖房運転を停止していた場合には、冷媒貯留装置16が加熱されていないとみなして第2流量調整装置18の開度を基準開度に絞る制御をしてもよい。 The determination of whether to control the second flow rate adjusting device 18 to be fully opened in step S14 or to control the opening of the second flow rate adjusting device 18 to the reference opening in step S16 is as follows. You may make a good decision. For example, when the heating operation is performed until immediately before the start of the defrosting operation, the refrigerant storage device 16 may be regarded as being heated and the second flow rate adjusting device 18 may be controlled to be fully opened. On the other hand, if the heating operation is not performed until immediately before the start of the defrosting operation and the heating operation is stopped before the defrosting operation is started, it is considered that the refrigerant storage device 16 is not heated. 2 Control may be performed to narrow the opening degree of the flow rate adjusting device 18 to the reference opening degree.
 また、ステップS14により第2流量調整装置18を全開にする制御をするか、ステップS16により第2流量調整装置18の開度を基準開度に絞る制御をするかの判断としては、次のような判断をしてもよい。例えば、冷媒貯留装置16に温度センサを設け、その温度センサにより検出された冷媒貯留装置16の温度が、冷媒貯留装置16に貯留された冷媒が第2流量調整装置18を経て流出するような温度とみなされる閾値以上である場合には、第2流量調整装置18を全開にする制御をし、その温度センサにより検出された冷媒貯留装置16が閾値未満である場合には、第2流量調整装置18の開度を基準開度に絞る制御をしてもよい。 Further, the determination of whether to control to fully open the second flow rate adjusting device 18 in step S14 or to control to narrow the opening degree of the second flow rate adjusting device 18 to the reference opening in step S16 is as follows. You may make a good decision. For example, a temperature sensor is provided in the refrigerant storage device 16, and the temperature of the refrigerant storage device 16 detected by the temperature sensor is such that the refrigerant stored in the refrigerant storage device 16 flows out through the second flow rate adjusting device 18. When the temperature is equal to or higher than the threshold value, the second flow rate adjusting device 18 is controlled to be fully opened, and when the refrigerant storage device 16 detected by the temperature sensor is less than the threshold value, the second flow rate adjusting device 18 is controlled. Control may be performed to narrow down the opening degree of 18 to the reference opening degree.
 また、ステップS15,S17で判断する冷媒貯留装置16に貯留された冷媒の液量は、暖房運転における第2熱交換器12の出口側のサブクール度に基づいて判断してもよい。また、ステップS15,S17で判断する冷媒貯留装置16に貯留された冷媒の液量は、除霜運転における第1熱交換器11の出口側のサブクール度に基づいて判断してもよい。 Further, the amount of the refrigerant stored in the refrigerant storage device 16 determined in steps S15 and S17 may be determined based on the degree of subcooling on the outlet side of the second heat exchanger 12 in the heating operation. Further, the amount of the refrigerant stored in the refrigerant storage device 16 determined in steps S15 and S17 may be determined based on the degree of subcooling on the outlet side of the first heat exchanger 11 in the defrosting operation.
 実施の形態3.
 実施の形態3においては、実施の形態2に示した暖房運転での除霜運転時における第2流量調整装置18の制御の変形例を説明する。
Embodiment 3.
In the third embodiment, a modification of the control of the second flow rate adjusting device 18 during the defrosting operation in the heating operation shown in the second embodiment will be described.
 図7は実施の形態3における制御装置100のCPU102が暖房運転時において除霜運転を実行する制御のフローチャートである。図7の制御が、図6の制御と異なる部分は、図6のステップS17の代わりに、ステップS17Aを実行することである。 FIG. 7 is a flowchart of control in which the CPU 102 of the control device 100 in the third embodiment executes the defrosting operation during the heating operation. The difference between the control of FIG. 7 and the control of FIG. 6 is that step S17A is executed instead of step S17 of FIG.
 制御装置100では、ステップS16で第2流量調整装置18の開度を基準開度に絞った後、ステップS17Aにより、第2流量調整装置18の開度を基準開度に絞ったときから基準時間が経過した否かを判断する。ステップS17Aで判断される基準時間は、除霜運転に最低限必要となる冷媒量が冷媒貯留装置16から第3逆止弁17を経て流出すると設計時に決定された時間に設定される。ステップS17Aで判断される基準時間は、制御装置100において、ステップS16で第2流量調整装置18の開度を基準開度に絞ったときから計時を開始するタイマにより計時される。 In the control device 100, after the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening degree in step S16, the reference time is taken from the time when the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening degree by step S17A. Judge whether or not has passed. The reference time determined in step S17A is set to a time determined at the time of design when the minimum amount of refrigerant required for the defrosting operation flows out from the refrigerant storage device 16 through the third check valve 17. The reference time determined in step S17A is timed by a timer that starts counting from the time when the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening degree in step S16 in the control device 100.
 なお、ステップS17Aで判断する基準時間は、ステップS16で第2流量調整装置18の開度を基準開度に絞ったときにおける第2流量調整装置18での第2熱交換器12側の第3冷媒経路F3内の圧力と第3逆止弁17での出口側の第3冷媒経路F3内の圧力との圧力差と、除霜運転に最低限必要となる冷媒量が冷媒貯留装置16から第3逆止弁17を経て排出される時間との相関関係に基づいて設定してもよい。その理由は、このような圧力差が高くなる程、除霜運転に最低限必要となる冷媒量が排出される時間が短くなるという相関関係があるからである。 The reference time determined in step S17A is the third on the second heat exchanger 12 side in the second flow rate adjusting device 18 when the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening in step S16. The pressure difference between the pressure in the refrigerant path F3 and the pressure in the third refrigerant path F3 on the outlet side of the third check valve 17 and the minimum amount of refrigerant required for defrosting operation are the first from the refrigerant storage device 16. 3 It may be set based on the correlation with the time discharged through the check valve 17. The reason is that the higher the pressure difference, the shorter the time for discharging the minimum amount of refrigerant required for the defrosting operation.
 例えば、前述のような相関関係に基づいて前述の圧力差から前述の基準時間を決定するデータテーブルをメモリ104に記憶しておく。第2流量調整装置18における第2熱交換器12側の第3冷媒経路F3内の圧力を検出する圧力センサと、第3逆止弁17の出口側の第3冷媒経路F3内の圧力を検出する圧力センサとを設ける。制御装置100は、ステップS16で第2流量調整装置18の開度を基準開度に絞ったときに、これらの圧力センサにより検出された圧力に基づいて、第2流量調整装置18における第2熱交換器12側の第3冷媒経路F3内の圧力と第3逆止弁17の出口側の第3冷媒経路F3内の圧力との圧力差を算出する。制御装置100は、このように算出された圧力差に基づき、メモリ104に記憶したデータテーブルを用いて、前述の基準時間を決定し、ステップS17Aで基準時間が経過したか否かを判断する。 For example, a data table for determining the above-mentioned reference time from the above-mentioned pressure difference based on the above-mentioned correlation is stored in the memory 104. A pressure sensor for detecting the pressure in the third refrigerant path F3 on the second heat exchanger 12 side in the second flow rate adjusting device 18 and a pressure in the third refrigerant path F3 on the outlet side of the third check valve 17 are detected. A pressure sensor is provided. The control device 100 reduces the opening degree of the second flow rate adjusting device 18 to the reference opening degree in step S16, and based on the pressure detected by these pressure sensors, the control device 100 receives the second heat in the second flow rate adjusting device 18. The pressure difference between the pressure in the third refrigerant path F3 on the exchanger 12 side and the pressure in the third refrigerant path F3 on the outlet side of the third check valve 17 is calculated. Based on the pressure difference calculated in this way, the control device 100 determines the above-mentioned reference time using the data table stored in the memory 104, and determines whether or not the reference time has elapsed in step S17A.
 以上に説明したように、実施の形態3では、除霜運転を開始する場合に、制御装置100が、冷媒貯留装置16に貯留された冷媒の液量が閾値以下となるまで冷媒が流出するように、第2流量調整装置18を制御する。これにより、冷媒貯留装置16がどのような状態であっても除霜運転時における除霜能力を確保することができる。また、実施の形態3では、第2流量調整装置18の開度を基準開度に絞った後の経過時間を確認することにより冷媒貯留装置16に貯留された冷媒の液量が閾値以下となったか否かを判断するので、冷媒貯留装置16に貯留された冷媒の液量が閾値以下となったことを容易に確認することができる。 As described above, in the third embodiment, when the defrosting operation is started, the control device 100 causes the refrigerant to flow out until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value. In addition, the second flow rate adjusting device 18 is controlled. This makes it possible to secure the defrosting ability during the defrosting operation regardless of the state of the refrigerant storage device 16. Further, in the third embodiment, the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value by checking the elapsed time after the opening degree of the second flow rate adjusting device 18 is narrowed down to the reference opening degree. Since it is determined whether or not the refrigerant has been used, it can be easily confirmed that the amount of the refrigerant stored in the refrigerant storage device 16 is equal to or less than the threshold value.
 以上に説明した実施の形態1~実施の形態3においては、第3流量調整装置19が故障した場合に、第1逆止弁21と第3流量調整装置19との間の経路、および、第2逆止弁22と第3流量調整装置19との間の経路が液封状態となるおそれがあるので、これらの経路においては、圧力逃がし弁を設けて当該圧力逃がし弁を経て冷媒を外部に排出することにより圧力を下げるようにしてもよい。また、これらの経路においては、破裂板を設けて当該破裂板が破裂することにより圧力を下げるようにしてもよい。 In the first to third embodiments described above, when the third flow rate adjusting device 19 fails, the path between the first check valve 21 and the third flow rate adjusting device 19, and the third flow rate adjusting device 19. 2 Since the path between the check valve 22 and the third flow rate adjusting device 19 may be in a liquid-sealed state, a pressure relief valve is provided in these paths to send the refrigerant to the outside through the pressure relief valve. The pressure may be reduced by discharging. Further, in these paths, a plosive plate may be provided to reduce the pressure by causing the plosive plate to burst.
 [実施の形態のまとめ]
 以上説明した実施の形態について、再び図面を参照して説明する。
[Summary of embodiments]
The embodiments described above will be described again with reference to the drawings.
 本開示は、冷凍サイクル装置1,1Aに関する。冷凍サイクル装置1,1Aは、第1熱交換器11と第2熱交換器12との間における第1冷媒経路F1に設けられた圧縮機13と、第1熱交換器11と第2熱交換器12との間における第2冷媒経路F2に設けられた第1流量調整装置14と、第1熱交換器11と第2熱交換器12との間において第2冷媒経路F2の一部と並列に接続された第3冷媒経路F3に設けられ、第2冷媒経路F2から流入する冷媒を貯留可能な冷媒貯留装置16と、第3冷媒経路F3に設けられ、第2冷媒経路F2と冷媒貯留装置16との間の冷媒の流量を調整する第2流量調整装置18と、冷房運転を起動するときに、第2冷媒経路F2から冷媒貯留装置16への冷媒の流入を遮断するように第2流量調整装置18を制御する制御装置100とを備える。 This disclosure relates to refrigeration cycle devices 1, 1A. The refrigeration cycle devices 1 and 1A include a compressor 13 provided in the first refrigerant path F1 between the first heat exchanger 11 and the second heat exchanger 12, and the first heat exchanger 11 and the second heat exchange. The first flow rate adjusting device 14 provided in the second refrigerant path F2 between the device 12 and the first heat exchanger 11 and the second heat exchanger 12 are parallel to a part of the second refrigerant path F2. A refrigerant storage device 16 provided in the third refrigerant path F3 connected to the third refrigerant path F3 and capable of storing the refrigerant flowing in from the second refrigerant path F2, and a second refrigerant path F2 and a refrigerant storage device provided in the third refrigerant path F3. A second flow rate adjusting device 18 that adjusts the flow rate of the refrigerant between the 16 and the second flow rate so as to block the inflow of the refrigerant from the second refrigerant path F2 to the refrigerant storage device 16 when the cooling operation is started. A control device 100 for controlling the adjusting device 18 is provided.
 このような構成とすることによって、冷房運転を起動するときに、第2冷媒経路F2から冷媒貯留装置16への冷媒の流入を遮断するように第2流量調整装置18が制御されるので、外気温度が極めて低い状態での冷房運転の起動時に冷媒貯留装置16内に冷媒が流入することを防ぐことができる。これにより、本開示の冷凍サイクル装置では、冷房運転において、冷媒量が不足せず、冷凍サイクル装置の機能が低下しないようにすることができる。 With such a configuration, when the cooling operation is started, the second flow rate adjusting device 18 is controlled so as to block the inflow of the refrigerant from the second refrigerant path F2 to the refrigerant storage device 16, so that the outside air is used. It is possible to prevent the refrigerant from flowing into the refrigerant storage device 16 when the cooling operation is started in a state where the temperature is extremely low. Thereby, in the refrigerating cycle apparatus of the present disclosure, it is possible to prevent the refrigerating cycle apparatus from being insufficient in the amount of the refrigerant and the function of the refrigerating cycle apparatus from being deteriorated in the cooling operation.
 好ましくは、第1流量調整装置14は、冷房運転および暖房運転の両方において、冷媒の流量を調整するように制御装置100により制御される。このような構成とすることによって、第1流量調整装置14が冷房運転および暖房運転の両方において冷媒の流量を調整するので、第2冷媒経路F2から冷媒貯留装置16への冷媒の流入を遮断する第2流量調整装置18が新たに設けられても、制御装置100の制御基板においてアクチュエータの制御に必要となる出力ポートが増加しないようにすることができる。 Preferably, the first flow rate adjusting device 14 is controlled by the control device 100 so as to adjust the flow rate of the refrigerant in both the cooling operation and the heating operation. With such a configuration, the first flow rate adjusting device 14 adjusts the flow rate of the refrigerant in both the cooling operation and the heating operation, so that the inflow of the refrigerant from the second refrigerant path F2 to the refrigerant storage device 16 is blocked. Even if the second flow rate adjusting device 18 is newly provided, it is possible to prevent the number of output ports required for controlling the actuator from increasing in the control board of the control device 100.
 より好ましくは、第2冷媒経路F2と圧縮機13の吸入側との間において液状の冷媒を圧縮機13に供給する第4冷媒経路に設けられた第3流量調整装置19と第2冷媒経路F2における第1熱交換器と第1流量調整装置14との間の経路から分岐して第3流量調整装置19の入口側に接続される第1分岐経路F41と第2冷媒経路F2における第2熱交換器と第1流量調整装置14との間の経路から分岐して第3流量調整装置19の入口側に接続される第2分岐経路F42と第1分岐経路F41において液状の冷媒を第3流量調整装置19の入口側への一方向に供給する第1逆止弁21と第2分岐経路F42において液状の冷媒を第3流量調整装置19の入口側への一方向に供給する第2逆止弁22とをさらに備える。このような構成とすることによって、第2冷媒経路F2において、冷房運転時に液状の冷媒が第1分岐経路F41から第1逆止弁21を経て第3流量調整装置19へ流れ、暖房運転時に液状の冷媒が第2分岐経路F42から第2逆止弁22を経て第3流量調整装置19へ流れるので、1つの第1流量調整装置14が冷房用の流量調整装置および暖房用の流量調整装置を兼用する場合でも、常に液状の冷媒を第3流量調整装置19を経て圧縮機13に供給することができる。 More preferably, the third flow rate adjusting device 19 and the second refrigerant path F2 provided in the fourth refrigerant path for supplying the liquid refrigerant to the compressor 13 between the second refrigerant path F2 and the suction side of the compressor 13. The second heat in the first branch path F41 and the second refrigerant path F2 branched from the path between the first heat exchanger and the first flow rate adjusting device 14 and connected to the inlet side of the third flow rate adjusting device 19. A third flow rate of liquid refrigerant in the second branch path F42 and the first branch path F41 branched from the path between the exchanger and the first flow rate adjusting device 14 and connected to the inlet side of the third flow rate adjusting device 19. The second check valve 21 that supplies the liquid refrigerant in one direction to the inlet side of the adjusting device 19 and the second check valve that supplies the liquid refrigerant in the second branch path F42 in one direction to the inlet side of the third flow rate adjusting device 19. Further provided with a valve 22. With such a configuration, in the second refrigerant path F2, the liquid refrigerant flows from the first branch path F41 to the third flow rate adjusting device 19 via the first check valve 21 during the cooling operation, and is liquid during the heating operation. Since the liquid from the second branch path F42 flows from the second branch path F42 to the third flow rate adjusting device 19 via the second check valve 22, one first flow rate adjusting device 14 provides a flow rate adjusting device for cooling and a flow rate adjusting device for heating. Even in the case of combined use, the liquid refrigerant can always be supplied to the compressor 13 via the third flow rate adjusting device 19.
 より好ましくは、圧縮機13の吐出側の温度を検出する吐出温度センサ51をさらに備え、制御装置100は、吐出温度センサ51により検出された圧縮機13の吐出側の温度が閾値を超えた場合に、第3流量調整装置19を開状態に制御する。このような構成とすることによって、例えばR32冷媒のように冷媒の温度が上がりやすい冷媒を使用する場合でも、圧縮機13が過熱状態とならないようにすることができる。 More preferably, the discharge temperature sensor 51 for detecting the temperature on the discharge side of the compressor 13 is further provided, and the control device 100 is in the case where the temperature on the discharge side of the compressor 13 detected by the discharge temperature sensor 51 exceeds the threshold value. In addition, the third flow rate adjusting device 19 is controlled to be in the open state. With such a configuration, even when a refrigerant such as R32 refrigerant whose temperature tends to rise is used, the compressor 13 can be prevented from becoming overheated.
 より好ましくは、第1流量調整装置14は、第2冷媒経路F2において冷媒貯留装置16と並列する位置に設けられ第3冷媒経路F3に設けられ、冷媒貯留装置16内の冷媒を第1熱交換器と第1流量調整装置14との間における第2冷媒経路F2への一方向に流出させる第3逆止弁をさらに備え、除霜運転を開始する場合に、制御装置100は、冷媒貯留装置16に貯留された冷媒の量が閾値以下となるまで冷媒が流出するように第2流量調整装置18を制御する。このような構成とすることによって、冷媒貯留装置16がどのような状態であっても除霜運転時における除霜能力を確保することができる。 More preferably, the first flow rate adjusting device 14 is provided at a position parallel to the refrigerant storage device 16 in the second refrigerant path F2 and is provided in the third refrigerant path F3 to exchange the refrigerant in the refrigerant storage device 16 with the first heat. Further, a third check valve for flowing out in one direction to the second refrigerant path F2 between the device and the first flow rate adjusting device 14 is further provided, and when the defrosting operation is started, the control device 100 is a refrigerant storage device. The second flow rate adjusting device 18 is controlled so that the refrigerant flows out until the amount of the refrigerant stored in 16 becomes equal to or less than the threshold value. With such a configuration, it is possible to secure the defrosting ability during the defrosting operation regardless of the state of the refrigerant storage device 16.
 より好ましくは、冷媒貯留装置16における冷媒の貯留量を検出する貯留量検出センサをさらに備え除霜運転を開始する場合に、制御装置100は、貯留量検出センサにより検出された冷媒の貯留量に基づいて、冷媒貯留装置16に貯留された冷媒の量が閾値以下となるまで冷媒貯留装置16から第2流量調整装置18を経て冷媒が流出するように第2流量調整装置18を制御する。このような構成とすることによって、冷媒貯留装置16が比較的に高温である状態において、冷媒貯留装置16に貯留された冷媒を排出することができる。 More preferably, when a storage amount detection sensor for detecting the storage amount of the refrigerant in the refrigerant storage device 16 is further provided and the defrosting operation is started, the control device 100 adjusts to the storage amount of the refrigerant detected by the storage amount detection sensor. Based on this, the second flow rate adjusting device 18 is controlled so that the refrigerant flows out from the refrigerant storage device 16 through the second flow rate adjusting device 18 until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value. With such a configuration, the refrigerant stored in the refrigerant storage device 16 can be discharged while the refrigerant storage device 16 has a relatively high temperature.
 より好ましくは、冷媒貯留装置16における冷媒の貯留量を検出する貯留量検出センサをさらに備え除霜運転を開始する場合に、制御装置100は、貯留量検出センサにより検出された冷媒の貯留量に基づいて、冷媒貯留装置16に貯留された冷媒の量が閾値以下となるまで冷媒貯留装置16から第3逆止弁を経て冷媒が流出するように第2流量調整装置18を制御する。このような構成とすることによって、冷媒貯留装置16が比較的に低温である状態において、冷媒貯留装置16に貯留された冷媒を排出することができる。 More preferably, when a storage amount detection sensor for detecting the storage amount of the refrigerant in the refrigerant storage device 16 is further provided and the defrosting operation is started, the control device 100 adjusts to the storage amount of the refrigerant detected by the storage amount detection sensor. Based on this, the second flow rate adjusting device 18 is controlled so that the refrigerant flows out from the refrigerant storage device 16 through the third check valve until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value. With such a configuration, the refrigerant stored in the refrigerant storage device 16 can be discharged while the refrigerant storage device 16 is at a relatively low temperature.
 より好ましくは、除霜運転を開始する場合に、制御装置100は、冷媒貯留装置16に貯留された冷媒の量が閾値以下となるまで冷媒が流出するように、予め定められた時間に亘り冷媒貯留装置16から第3逆止弁17を経て冷媒が流出するように第2流量調整装置18を制御する。冷媒貯留装置16に貯留された冷媒の液量が閾値以下となったことを容易に確認することができる。 More preferably, when the defrosting operation is started, the control device 100 controls the refrigerant for a predetermined time so that the refrigerant flows out until the amount of the refrigerant stored in the refrigerant storage device 16 becomes equal to or less than the threshold value. The second flow rate adjusting device 18 is controlled so that the refrigerant flows out from the storage device 16 through the third check valve 17. It can be easily confirmed that the amount of the refrigerant stored in the refrigerant storage device 16 is equal to or less than the threshold value.
 以上説明したように、実施の形態1の冷凍サイクル装置1、実施の形態2の冷凍サイクル装置1A、および、実施の形態3の冷凍サイクル装置1Aでは、冷房運転を起動するときに、第2冷媒経路F2から冷媒貯留装置16への冷媒の流入を遮断するように第2流量調整装置18が制御されるので、外気温度が極めて低い状態での冷房運転の起動時に冷媒貯留装置16内に冷媒が流入することを防ぐことができる。これにより、本開示の冷凍サイクル装置では、冷房運転において、冷媒量が不足せず、冷凍サイクル装置の機能が低下しないようにすることができる。 As described above, in the refrigerating cycle device 1 of the first embodiment, the refrigerating cycle device 1A of the second embodiment, and the refrigerating cycle device 1A of the third embodiment, when the cooling operation is started, the second refrigerant is used. Since the second flow rate adjusting device 18 is controlled so as to block the inflow of the refrigerant from the path F2 to the refrigerant storage device 16, the refrigerant is introduced into the refrigerant storage device 16 when the cooling operation is started in a state where the outside air temperature is extremely low. It is possible to prevent the inflow. Thereby, in the refrigerating cycle apparatus of the present disclosure, it is possible to prevent the refrigerating cycle apparatus from being insufficient in the amount of the refrigerant and the function of the refrigerating cycle apparatus from being deteriorated in the cooling operation.
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is set forth by the scope of claims rather than the description of the embodiments described above, and is intended to include all modifications within the meaning and scope of the claims.
 1,1A 冷凍サイクル装置、11 第1熱交換器、12 第2熱交換器、10 圧縮機、F1 第1冷媒経路、13 圧縮機、F2 第2冷媒経路、14 第1流量調整装置、F3 第3冷媒経路、18 第2流量調整装置、16 冷媒貯留装置、19 第3流量調整装置、100 制御装置。 1,1A Refrigerant cycle device, 11 1st heat exchanger, 12 2nd heat exchanger, 10 compressor, F1 1st refrigerant path, 13 compressor, F2 2nd refrigerant path, 14 1st flow control device, F3 1st 3 refrigerant path, 18 second flow rate adjuster, 16 refrigerant storage device, 19 third flow rate adjuster, 100 control device.

Claims (8)

  1.  第1熱交換器と、
     第2熱交換器と、
     前記第1熱交換器と前記第2熱交換器との間における第1冷媒経路に設けられた圧縮機と、
     前記第1熱交換器と前記第2熱交換器との間における第2冷媒経路に設けられた第1流量調整装置と、
     前記第1熱交換器と前記第2熱交換器との間において前記第2冷媒経路の一部と並列に接続された第3冷媒経路に設けられ、前記第2冷媒経路から流入する冷媒を貯留可能な冷媒貯留装置と、
     前記第3冷媒経路に設けられ、前記第2熱交換器および前記第1流量調整装置の間における前記第2冷媒経路と前記冷媒貯留装置との間の冷媒の流量を調整する第2流量調整装置と、
     冷房運転を起動するときに、前記第2冷媒経路から前記冷媒貯留装置への冷媒の流入を遮断するように前記第2流量調整装置を制御する制御装置とを備える、冷凍サイクル装置。
    With the first heat exchanger,
    With the second heat exchanger,
    A compressor provided in the first refrigerant path between the first heat exchanger and the second heat exchanger, and
    A first flow rate adjusting device provided in the second refrigerant path between the first heat exchanger and the second heat exchanger, and
    It is provided in a third refrigerant path connected in parallel with a part of the second refrigerant path between the first heat exchanger and the second heat exchanger, and stores the refrigerant flowing in from the second refrigerant path. Possible refrigerant storage and
    A second flow rate adjusting device provided in the third refrigerant path to adjust the flow rate of the refrigerant between the second refrigerant path and the refrigerant storage device between the second heat exchanger and the first flow rate adjusting device. When,
    A refrigeration cycle device including a control device that controls the second flow rate adjusting device so as to block the inflow of refrigerant from the second refrigerant path to the refrigerant storage device when the cooling operation is started.
  2.  前記第1流量調整装置は、冷房運転および暖房運転の両方において、冷媒の流量を調整するように前記制御装置により制御される、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle device according to claim 1, wherein the first flow rate adjusting device is controlled by the control device so as to adjust the flow rate of the refrigerant in both the cooling operation and the heating operation.
  3.  前記第2冷媒経路と前記圧縮機の吸入側との間において液状の冷媒を前記圧縮機に供給する第4冷媒経路に設けられた第3流量調整装置と、
     前記第2冷媒経路における前記第1熱交換器と前記第1流量調整装置との間の経路から分岐して前記第3流量調整装置の入口側に接続される第1分岐経路と、
     前記第2冷媒経路における前記第2熱交換器と前記第1流量調整装置との間の経路から分岐して前記第3流量調整装置の入口側に接続される第2分岐経路と、
     前記第1分岐経路において前記液状の冷媒を前記第3流量調整装置の入口側への一方向に供給する第1逆止弁と、
     前記第2分岐経路において前記液状の冷媒を前記第3流量調整装置の入口側への一方向に供給する第2逆止弁とをさらに備える、請求項2に記載の冷凍サイクル装置。
    A third flow rate adjusting device provided in the fourth refrigerant path for supplying a liquid refrigerant to the compressor between the second refrigerant path and the suction side of the compressor.
    A first branch path that branches from the path between the first heat exchanger and the first flow rate adjusting device in the second refrigerant path and is connected to the inlet side of the third flow rate adjusting device.
    A second branch path that branches from the path between the second heat exchanger and the first flow rate adjusting device in the second refrigerant path and is connected to the inlet side of the third flow rate adjusting device.
    A first check valve that supplies the liquid refrigerant in one direction to the inlet side of the third flow rate adjusting device in the first branch path.
    The refrigerating cycle apparatus according to claim 2, further comprising a second check valve for supplying the liquid refrigerant in the second branch path in one direction toward the inlet side of the third flow rate adjusting device.
  4.  前記圧縮機の吐出側の温度を検出する温度センサをさらに備え、
     前記制御装置は、前記温度センサにより検出された前記圧縮機の吐出側の温度が閾値を超えた場合に、前記第3流量調整装置を開状態に制御する、請求項3に記載の冷凍サイクル装置。
    Further equipped with a temperature sensor for detecting the temperature on the discharge side of the compressor,
    The refrigerating cycle device according to claim 3, wherein the control device controls the third flow rate adjusting device to an open state when the temperature on the discharge side of the compressor detected by the temperature sensor exceeds a threshold value. ..
  5.  前記第1流量調整装置は、前記第2冷媒経路において前記冷媒貯留装置と並列する位置に設けられ、
     前記第3冷媒経路に設けられ、前記冷媒貯留装置内の冷媒を前記第1熱交換器と前記第1流量調整装置との間における前記第2冷媒経路への一方向に流出させる第3逆止弁をさらに備え、
     除霜運転を開始する場合に、前記制御装置は、前記冷媒貯留装置に貯留された冷媒の量が閾値以下となるまで冷媒が流出するように前記第2流量調整装置を制御する、請求項1に記載の冷凍サイクル装置。
    The first flow rate adjusting device is provided at a position parallel to the refrigerant storage device in the second refrigerant path.
    A third check that is provided in the third refrigerant path and causes the refrigerant in the refrigerant storage device to flow out in one direction to the second refrigerant path between the first heat exchanger and the first flow rate adjusting device. With more valves
    When the defrosting operation is started, the control device controls the second flow rate adjusting device so that the refrigerant flows out until the amount of the refrigerant stored in the refrigerant storage device becomes equal to or less than the threshold value. The refrigeration cycle device described in.
  6.  前記冷媒貯留装置における冷媒の貯留量を検出する貯留量検出センサをさらに備え、
     前記除霜運転を開始する場合に、前記制御装置は、前記貯留量検出センサにより検出された冷媒の貯留量に基づいて、前記冷媒貯留装置に貯留された冷媒の量が閾値以下となるまで前記冷媒貯留装置から前記第2流量調整装置を経て冷媒が流出するように前記第2流量調整装置を制御する、請求項5に記載の冷凍サイクル装置。
    Further, a storage amount detection sensor for detecting the storage amount of the refrigerant in the refrigerant storage device is provided.
    When the defrosting operation is started, the control device uses the refrigerant storage amount detected by the storage amount detection sensor until the amount of the refrigerant stored in the refrigerant storage device becomes equal to or less than the threshold value. The refrigeration cycle device according to claim 5, wherein the second flow rate adjusting device is controlled so that the refrigerant flows out from the refrigerant storage device through the second flow rate adjusting device.
  7.  前記冷媒貯留装置における冷媒の貯留量を検出する貯留量検出センサをさらに備え、
     前記除霜運転を開始する場合に、前記制御装置は、前記貯留量検出センサにより検出された冷媒の貯留量に基づいて、前記冷媒貯留装置に貯留された冷媒の量が閾値以下となるまで前記冷媒貯留装置から前記第3逆止弁を経て冷媒が流出するように前記第2流量調整装置を制御する、請求項5に記載の冷凍サイクル装置。
    Further, a storage amount detection sensor for detecting the storage amount of the refrigerant in the refrigerant storage device is provided.
    When the defrosting operation is started, the control device uses the refrigerant storage amount detected by the storage amount detection sensor until the amount of the refrigerant stored in the refrigerant storage device becomes equal to or less than the threshold value. The refrigerating cycle device according to claim 5, wherein the second flow rate adjusting device is controlled so that the refrigerant flows out from the refrigerant storage device through the third check valve.
  8.  前記除霜運転を開始する場合に、前記制御装置は、前記冷媒貯留装置に貯留された冷媒の量が閾値以下となるまで冷媒が流出するように、予め定められた時間に亘り前記冷媒貯留装置から前記第3逆止弁を経て冷媒が流出するように前記第2流量調整装置を制御する、請求項5に記載の冷凍サイクル装置。 When the defrosting operation is started, the control device is the refrigerant storage device for a predetermined time so that the refrigerant flows out until the amount of the refrigerant stored in the refrigerant storage device becomes equal to or less than the threshold value. The refrigeration cycle device according to claim 5, wherein the second flow rate adjusting device is controlled so that the refrigerant flows out from the third check valve.
PCT/JP2021/000098 2021-01-05 2021-01-05 Refrigeration cycle apparatus WO2022149187A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2022573816A JPWO2022149187A1 (en) 2021-01-05 2021-01-05
CN202180088505.6A CN116829884A (en) 2021-01-05 2021-01-05 Refrigeration cycle device
EP21917415.8A EP4276384A4 (en) 2021-01-05 2021-01-05 Refrigeration cycle apparatus
US18/255,195 US20240011696A1 (en) 2021-01-05 2021-01-05 Refrigeration cycle apparatus
PCT/JP2021/000098 WO2022149187A1 (en) 2021-01-05 2021-01-05 Refrigeration cycle apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/000098 WO2022149187A1 (en) 2021-01-05 2021-01-05 Refrigeration cycle apparatus

Publications (1)

Publication Number Publication Date
WO2022149187A1 true WO2022149187A1 (en) 2022-07-14

Family

ID=82358118

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/000098 WO2022149187A1 (en) 2021-01-05 2021-01-05 Refrigeration cycle apparatus

Country Status (5)

Country Link
US (1) US20240011696A1 (en)
EP (1) EP4276384A4 (en)
JP (1) JPWO2022149187A1 (en)
CN (1) CN116829884A (en)
WO (1) WO2022149187A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520945A (en) * 2005-06-03 2008-06-19 キャリア コーポレイション Refrigerant system with water heating
JP2009236447A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Refrigeration apparatus
JP2014119145A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
WO2016121068A1 (en) 2015-01-29 2016-08-04 三菱電機株式会社 Refrigeration cycle device
WO2017060986A1 (en) * 2015-10-07 2017-04-13 三菱電機株式会社 Refrigeration cycle device
WO2017061009A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
JP2018021721A (en) * 2016-08-04 2018-02-08 三菱重工サーマルシステムズ株式会社 Freezer and its control method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315875B1 (en) * 2015-06-24 2019-02-13 Mitsubishi Electric Corporation Heat source apparatus
JP6580149B2 (en) * 2015-10-08 2019-09-25 三菱電機株式会社 Refrigeration cycle equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008520945A (en) * 2005-06-03 2008-06-19 キャリア コーポレイション Refrigerant system with water heating
JP2009236447A (en) * 2008-03-28 2009-10-15 Daikin Ind Ltd Refrigeration apparatus
JP2014119145A (en) * 2012-12-14 2014-06-30 Sharp Corp Air conditioner
WO2016121068A1 (en) 2015-01-29 2016-08-04 三菱電機株式会社 Refrigeration cycle device
WO2017060986A1 (en) * 2015-10-07 2017-04-13 三菱電機株式会社 Refrigeration cycle device
WO2017061009A1 (en) * 2015-10-08 2017-04-13 三菱電機株式会社 Refrigeration cycle device
JP2018021721A (en) * 2016-08-04 2018-02-08 三菱重工サーマルシステムズ株式会社 Freezer and its control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4276384A4

Also Published As

Publication number Publication date
US20240011696A1 (en) 2024-01-11
JPWO2022149187A1 (en) 2022-07-14
CN116829884A (en) 2023-09-29
EP4276384A1 (en) 2023-11-15
EP4276384A4 (en) 2024-03-06

Similar Documents

Publication Publication Date Title
EP2083230B1 (en) Air conditioning system
EP2228612B1 (en) Refrigeration system
US10788256B2 (en) Cooling device
JP2008096033A (en) Refrigerating device
JP4905018B2 (en) Refrigeration equipment
US11920841B2 (en) Air-conditioning apparatus
EP0976994B1 (en) Refrigerator and method of filling it with coolant
JP2003240391A (en) Air conditioner
JP7224480B2 (en) Outdoor unit and refrigeration cycle equipment
WO2018229826A1 (en) Refrigeration cycle device
JPH04222353A (en) Operation controller for air conditioner
CN111919073B (en) Refrigerating device
JP4269476B2 (en) Refrigeration equipment
WO2022149187A1 (en) Refrigeration cycle apparatus
JPH04340046A (en) Operation control device of air conditioner
JP7512650B2 (en) Air conditioners
JPH1038387A (en) Operation controller of air conditioner
CN111219818B (en) Air conditioning system, air conditioner and control method of air conditioner
KR20190005052A (en) Method for controlling multi-type air conditioner
WO2020179005A1 (en) Refrigeration cycle device
JPH04344085A (en) Defrosting operation control device for refrigerating apparatus
JPWO2020234994A1 (en) Air conditioner
JPH11237126A (en) Refrigerating device coping with hfc series refrigerant
JPH11118264A (en) Freezer adapted to hfc refrigerant
EP4089349B1 (en) Air conditioner and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21917415

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18255195

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022573816

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180088505.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021917415

Country of ref document: EP

Effective date: 20230807