Nothing Special   »   [go: up one dir, main page]

WO2022145013A1 - ギヤスカイビング加工法 - Google Patents

ギヤスカイビング加工法 Download PDF

Info

Publication number
WO2022145013A1
WO2022145013A1 PCT/JP2020/049239 JP2020049239W WO2022145013A1 WO 2022145013 A1 WO2022145013 A1 WO 2022145013A1 JP 2020049239 W JP2020049239 W JP 2020049239W WO 2022145013 A1 WO2022145013 A1 WO 2022145013A1
Authority
WO
WIPO (PCT)
Prior art keywords
skiving
work
tooth
cutters
cutter
Prior art date
Application number
PCT/JP2020/049239
Other languages
English (en)
French (fr)
Inventor
教夫 城越
Original Assignee
株式会社ハーモニック・ドライブ・システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ハーモニック・ドライブ・システムズ filed Critical 株式会社ハーモニック・ドライブ・システムズ
Priority to KR1020237014207A priority Critical patent/KR20230073323A/ko
Priority to CN202080106575.5A priority patent/CN116490312A/zh
Priority to JP2022572856A priority patent/JP7430824B2/ja
Priority to PCT/JP2020/049239 priority patent/WO2022145013A1/ja
Priority to EP20968024.8A priority patent/EP4269010A4/en
Priority to US18/027,153 priority patent/US20230330763A1/en
Priority to TW110127299A priority patent/TW202224818A/zh
Publication of WO2022145013A1 publication Critical patent/WO2022145013A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • B23F5/16Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof
    • B23F5/163Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof the tool and workpiece being in crossed axis arrangement, e.g. skiving, i.e. "Waelzschaelen"
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F5/00Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made
    • B23F5/12Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting
    • B23F5/16Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof
    • B23F5/166Making straight gear teeth involving moving a tool relatively to a workpiece with a rolling-off or an enveloping motion with respect to the gear teeth to be made by planing or slotting the tool having a shape similar to that of a spur wheel or part thereof with plural tools

Definitions

  • the present invention is a gear skiving processing method in which a skiving cutter (gear-type tool) is used to perform gear cutting on one of the outer peripheral surface and the inner peripheral surface of a cylindrical workpiece (gear). Regarding.
  • the gear skiving processing method is known as a gear cutting method for internal gears and external gears.
  • the tool is rotated in the axial direction of the work while the rotation shaft of the work (work gear) and the rotation shaft of the tool are given an axial angle and both are rotated at a rotation ratio according to the number of teeth ratio. Process by sending to.
  • FIG. 4A is an explanatory diagram showing an example of a machining state of a workpiece for an internal gear by a skiving cutter in gear skiving machining.
  • the skiving cutter 1 is arranged so that its rotation axis 1a has a predetermined intersection angle (axis intersection angle) with the rotation axis 3a of the work 3 (internal gear to be machined).
  • the skiving cutter 1 is positioned at a predetermined machining position in the circumferential direction on the work surface 31 (circular inner peripheral surface) of the work 3.
  • the work 3 and the skiving cutter 1 are rotated synchronously in the same direction. In this state, the skiving cutter 1 is fed along the work surface 31 of the work 3 in the direction of the rotation axis 3a of the work.
  • the internal teeth 32 are formed on the work surface 31 of the work 3 by the cutting blade 1b of the skiving cutter 1.
  • the shape and twist angle of the cutting edge of the skiving cutter 1, the axial crossing angle between the skiving cutter 1 and the work 3, and each of the skiving cutter 1 and the work 3. Processing conditions such as the rotation speed of the skiving cutter 1, the feed speed of the skiving cutter 1, and the depth of cut are appropriately set.
  • FIG. 4B is a schematic diagram showing the skiving cutter 1 and the work 3 shown in FIG. 4A in a simplified manner. Similarly, in each of the figures (FIGS. 1 to 3) described below, the skiving cutter and the work are shown in a simplified manner.
  • the same skiving tool is used to perform gear cutting twice on the workpiece to finish the right tooth surface and the left tooth surface to be created. Processing is performed in a separate process.
  • a tooth profile in which the tooth surface shape changes in the tooth muscle direction by performing gear cutting while moving the skiving cutter along the axial direction and the circumferential direction of the work material. It makes it possible to create a tooth profile whose tooth length changes in the direction of the tooth muscle.
  • an object of the present invention is gear skiving capable of efficiently performing gear cutting of a gear having a tooth profile that changes along the tooth trace direction, a tooth profile that has different tooth surfaces on the left and right, and the like. It is to propose a processing method.
  • the present invention relates to a gear skiving processing method in which gear cutting is performed on one of the outer peripheral surface and the inner peripheral surface of a cylindrical workpiece.
  • the first skiving cutter is positioned at the first machining position in the circumferential direction on the work surface of the work so as to have a predetermined depth of cut.
  • the second skiving cutter is positioned at the second machining position on the work surface, which is separated from the first machining position by a predetermined angle in the circumferential direction, so as to have a predetermined depth of cut.
  • the first skiving cutter is arranged with respect to the work so as to have the first axis crossing angle
  • the second skiving cutter is arranged with respect to the work so as to have the second axis crossing angle.
  • the first and second skiving cutters While synchronously rotating the work and the first and second skiving cutters, the first and second skiving cutters are simultaneously sent in the direction of the rotation axis of the work to perform gear cutting of the work surface.
  • gear cutting process one of the left tooth surface and the right tooth surface of the tooth created on the work surface is cut by the first skiving cutter, and the second skiving cutter is used.
  • the left tooth surface and the right tooth surface are characterized by cutting the other tooth surface.
  • the work is geared using two skiving cutters.
  • the tooth cutting process is performed in one step, one of the left and right tooth surfaces of the tooth to be created is processed by the first skiving cutter, and the other is processed by the second skiving cutter.
  • the tooth cutting process consisting of one process, it is possible to efficiently cut teeth having an asymmetric tooth surface on the left and right.
  • the tooth cutting process can be performed in two steps.
  • the cutting edge of the first skiving cutter is processed so as to have an acute rake angle with respect to one of the tooth surfaces on both sides of the tooth created on the work surface of the work.
  • the processing conditions are set so that the cutting edge of the second skiving cutter has an acute rake angle with respect to the other tooth surface, and the other tooth surface is cut.
  • the left and right tooth surfaces can be processed into different tooth profiles.
  • the pressure angle can be changed from the middle of the tooth muscle direction.
  • a three-dimensional tooth profile having a symmetrical tooth surface in which the pressure angle changes along the direction of the tooth muscle or a left-right asymmetric tooth surface can be obtained.
  • a tapered tooth profile in which the tooth length changes along the tooth muscle direction can be obtained.
  • (A) is an explanatory diagram showing an example of the machining state of the work by the first and second skiving cutters in the roughing process of the work for the internal gear, and (b) is an axial crossing angle, a rotation direction and a left tooth. It is explanatory drawing which shows the surface and the right tooth surface, (c) shows the arrangement relation of the 1st skiving cutter with respect to the work surface when viewed from the direction along the diameter line of the work which passes through the center of the 1st skiving cutter. It is explanatory drawing which shows, (d) is explanatory drawing which shows the arrangement relation of the 2nd skiving cutter with respect to the work surface when seen from the direction along the diameter line of the work which passes through the center of the 2nd skiving cutter.
  • (A) is an explanatory view showing an example of the processing state of the work by the first and second skiving cutters in the finishing processing process, and (b) is the right tooth surface and the left of the internal teeth formed on the work surface of the work. It is explanatory drawing which shows the tooth surface.
  • (A) is an explanatory diagram showing an example of the machining state of the work by the first and second skiving cutters in the roughing process of the work for the internal gear, and (b) is the main machining conditions and the right tooth surface.
  • FIG. 3D is an explanatory diagram showing the arrangement relationship of the second skiving cutter with respect to the work surface when viewed from the direction along the diameter line of the work passing through the center of the second skiving cutter.
  • A is an explanatory diagram showing an example of a machining state of a work for an internal gear by a skiving cutter
  • (b) is an explanatory diagram showing a simplified skiving cutter and a work.
  • the work for the internal gear is obtained, for example, through a material forging process and a turning process.
  • the work is subjected to a roughing step (first gear cutting step), and internal teeth (tooth grooves) are machined on the circular inner peripheral surface which is the work surface thereof.
  • the work is subjected to a finishing process on the left tooth surface and the right tooth surface of the internal teeth in the finishing step (second gear cutting step) after undergoing a step such as heat treatment.
  • the gear skiving process of the present invention is used in the roughing process and the finishing process.
  • the first skiving cutter 10 is positioned at the first machining position P1 (1) in the circumferential direction on the work surface 31 of the work 3.
  • the second skiving cutter 20 is positioned at the second machining position P2 (1) separated from the first machining position P1 on the work surface 31 by an angle of 180 ° in the circumferential direction. That is, the first and second skiving cutters 10 and 20 are arranged at opposite positions facing each other with the rotation shaft 3a of the work 3 interposed therebetween.
  • first and second skiving cutters 10 and 20 cutters having the same configuration are used. Further, the rotation shafts 10a and 20a of the first and second skiving cutters 10 and 20 are tilted in the same direction by the same angle with respect to the rotation shaft 3a of the work 3. That is, assuming that the axis crossing angle (first axis crossing angle) between the first skiving cutter 10 and the work 3 is ⁇ , the axis crossing angle (second axis) between the second skiving cutter 20 and the work 3 (Cross angle) is also ⁇ . The rotation direction of the work 3, the first and second skiving cutters 10 and 20 is clockwise.
  • the portion where the right tooth surface 32R of the internal tooth 32 is formed is mainly cut by the cutting edge portion of the cutting edge that hits the work surface 31 of the work 3 at an acute rake angle.
  • the portion where the left tooth surface 32L of the internal tooth 32 is formed is mainly cut by the cutting edge portion of the cutting edge that hits the work surface 31 at the obtuse rake angle.
  • the first and second skiving cutters 10 and 20 rotate from the work surface 31 with respect to the first and second machining positions P1 (1) and P2 (2) on the diameter line L in the work circumferential direction. It is located off the axis 3a in the direction.
  • the first and second skiving cutters 10 and 20 are rotated synchronously in the same direction as the rotation direction of the work 3.
  • the first and second skiving cutters 10 and 20 are positioned in the work diameter direction so as to have a predetermined depth of cut.
  • the work surface 31 is cut at a predetermined speed in the direction along the rotation axis 3a of the work 3 with respect to the work surface 31 of the work 3 to create a tooth groove of the internal teeth 32.
  • the first skiving cutter 10 mainly cuts the portion of the internal tooth 32 that becomes the right tooth surface 32R
  • the second skiving cutter 20 mainly cuts the portion of the internal tooth 32 that becomes the left tooth surface 32L. ..
  • the tooth surface finishing process which is the second tooth cutting process, will be described with reference to FIGS. 2 (a) and 2 (b).
  • the tooth surface finishing step the right tooth surface 32R of each internal tooth 32 created on the machined surface 31 by the roughing step is mainly finished by using the first skiving cutter 10.
  • the other left tooth surface 32L is mainly finished by using the second skiving cutter 20.
  • the shaft crossing angle between the first skiving cutter 10 and the work 3 is set to ⁇
  • the shaft crossing angle between the second skiving cutter 20 and the work is also set to the same ⁇ . ..
  • the processing position of the first skiving cutter 10 is set from the first processing position P1 (1) on the diameter line L in the first gear cutting step to the right clock.
  • the position is changed to the first processing position P1 (2), which is moved around by a minute angle ⁇ .
  • the machining position of the second skiving cutter 20 is moved by the same angle ⁇ counterclockwise in the circumferential direction from the second machining position P2 (1) of the diameter line L in the first gear cutting step. Change to P2 (2).
  • the amount of movement (angle) is very small, but it is exaggerated in the figure.
  • FIG. 2B is an enlarged explanatory view showing the internal teeth 32 formed on the work surface 31 of the work 3.
  • the finishing process of the right tooth surface 32R of the internal tooth 32 is mainly performed by the first skiving cutter 10.
  • the finishing process of the left tooth surface 32L on the opposite side is mainly performed by the second skiving cutter 20.
  • the feed rate, depth of cut, etc. of the first and second skiving cutters 10 and 20 can be controlled independently. Therefore, it is possible to process an internal tooth having an asymmetric tooth surface on the left and right.
  • the axis crossing angles of the first and second skiving cutters 10 and 20 are changed during the processing, so that the pressure angles of the left and right tooth surfaces are changed from the middle of the tooth muscle direction. Can be changed. This makes it possible to process a three-dimensional tooth profile in which the pressure angles of the left and right tooth surfaces change symmetrically along the direction of the tooth muscle.
  • the processing time can be shortened as compared with the case of using a single cutter. Further, it is possible to suppress the wear of the cutting edge of the cutters 10 and 20 and extend the life of the cutters 10 and 20.
  • the work surface 31 of the work 3 is simultaneously processed by the first and second skiving cutters 10 and 20.
  • Each step may be divided into two steps, that is, processing by the first skiving cutter 10 and processing by the second skiving cutter 20.
  • FIG. 3 is an explanatory diagram showing gear cutting of the internal gear in the case of two steps.
  • the first skiving cutter 10 in the roughing step, is positioned at the first machining position P1 (1) in the circumferential direction on the work surface 31 of the work 3.
  • the second skiving cutter 20 is positioned at the second machining position P2 (1) separated from the first machining position P1 on the work surface 31 by an angle of 180 ° in the circumferential direction. That is, the first and second skiving cutters 10 and 20 are arranged at opposite positions facing each other with the rotation shaft 3a of the work 3 interposed therebetween.
  • cutters having opposite helix angles are used as the first and second skiving cutters 10 and 20.
  • the axis crossing angle (first axis crossing angle) between the first skiving cutter 10 and the work 3 is + ⁇
  • the axis crossing angle (second axis) between the second skiving cutter 20 and the work 3 is set.
  • (Cross angle) is ⁇ . That is, as shown in FIG. 3C, the axis crossing angle between the rotation axis 3a of the work 3 and the rotation axis 10a of the first skiving cutter 10 is clockwise around the rotation axis 3a of the work 3. When the direction of is positive, it is + ⁇ .
  • FIG. 3C the axis crossing angle between the rotation axis 3a of the work 3 and the rotation axis 10a of the first skiving cutter 10 is clockwise around the rotation axis 3a of the work 3.
  • the direction of is positive, it is + ⁇ .
  • the axis crossing angle between the rotation axis 3a of the work 3 and the rotation axis 20a of the second skiving cutter 20 is ⁇ .
  • the rotation directions of the work 3, the first, and the second skiving cutters 10 and 20 are clockwise.
  • the rotation directions of the work 3, the first, and the second skiving cutters 10 and 20 are counterclockwise.
  • the right tooth surface 32R of the internal tooth 32 is mainly formed by the cutting edge portion of the cutting edge that hits the work surface 31 of the work 3 at an acute rake angle in the first skiving cutter 10 that rotates clockwise.
  • the part where is formed is cut.
  • the cutting edge of the cutting edge moves along the surface of the portion cut by the first skiving cutter 10, and the cutting surface 31 is cut. I can't.
  • the left tooth surface 32L of the internal tooth 32 is mainly formed by the cutting edge portion of the cutting edge that hits the work surface 31 of the work 3 at an acute rake angle in the second skiving cutter 20 that rotates counterclockwise.
  • the part where is formed is cut.
  • the cutting edge of the cutting edge moves along the surface of the portion cut by the second skiving cutter 20, and the cutting surface 31 is cut. Not done.
  • the first and second skiving cutters 10 and 20 are used with respect to the first and second processing positions P1 (1) and P2 (2) on the diameter line L in the work circumferential direction. , Each is positioned at a position deviated from the work surface 31 in the direction along the rotation axis 3a.
  • the workpieces 3, 1 and 2 skiving cutters 10 and 20 are rotated clockwise synchronously, and the 1st and 2nd skiving cutters 10 and 20 have a workpiece diameter so as to have a predetermined cutting amount.
  • the work surface 31 is cut at a predetermined speed in the direction along the rotation axis 3a of the work 3 with respect to the work surface 31 of the work 3 to create a tooth groove of the internal teeth 32.
  • the portion of the internal tooth 32 on which the right tooth surface 32R is formed is mainly cut by the first skiving cutter 10.
  • the second skiving cutter 20 is substantially not involved in cutting.
  • the workpieces 3, 1 and 2 skiving cutters 10 and 20 are rotated synchronously around the countermeter, and the 1st and 2nd skiving cutters 10 and 20 are worked so as to have a predetermined cutting amount.
  • the work surface 31 is cut at a predetermined speed in the direction along the rotation axis 3a of the work 3 with respect to the work surface 31 of the work 3 to create a tooth groove of the internal teeth 32.
  • the portion of the internal tooth 32 on which the left tooth surface 32L is formed is mainly cut by the second skiving cutter 20.
  • the first skiving cutter 10 is substantially not involved in cutting.
  • the machining conditions are set in the same manner as in the above rough machining step, and the first step and the second step are performed.
  • the right tooth surface 32R of each internal tooth 32 created on the machined surface 31 by the first gear cutting step is mainly finished by the first skiving cutter 10.
  • the other left tooth surface 32L is mainly finished by the second skiving cutter 20.
  • the cutting edge of the cutting edge of the first skiving cutter 10 hits the right tooth surface 32R with an acute rake angle
  • the second skiving cutter 20 has the left tooth surface.
  • the rake angle hits 32L in an acute angle. Therefore, the left and right tooth surfaces can be processed with high accuracy.
  • the feed rate, the depth of cut, etc. of the first and second skiving cutters 10 and 20 can be independently controlled, the internal teeth having different tooth surfaces on the left and right tooth surfaces are similar to those shown in FIGS. 1 and 2. Can be processed. Further, since the two first and second skiving cutters 10 and 20 are used, it is possible to suppress the wear of the cutting edge of each cutting edge as compared with the case of using a single cutter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Gear Processing (AREA)

Abstract

ギヤスカイビング加工法では、ワーク(3)の被削面(31)における第1加工位置(P1)に配置した第1スカイビングカッタ(10)と、第1加工位置(P1)から円周方向に180°だけ離れた第2加工位置(P2)に配置した第2スカイビングカッタ(20)とを用いて、被削面(31)の歯切り加工を行う。主として、第1スカイビングカッタ(10)により、ワーク(3)の被削面(31)に創成される内歯(32)の右歯面(32R)となる部分が切削される。また、主として、第2スカイビングカッタ(20)により、左歯面(32L)となる部分が切削される。第1、第2スカイビングカッタ(10、20)による加工条件を個別に制御でき、左右の歯面が異なる形状の歯を効率良く加工できる。

Description

ギヤスカイビング加工法
 本発明は、円筒形状のワーク(被削歯車)の外周面および内周面のうちの一方の被削面に、スカイビングカッタ(歯車型工具)を用いて歯切り加工を行うギヤスカイビング加工法に関する。
 内歯車、外歯車の歯切り加工法としてギヤスカイビング加工法が知られている。ギヤスカイビング加工は、ワーク(被削歯車)の回転軸と工具回転軸に、軸角を与えた状態で、双方を歯数比に応じた回転比で回転させながら、工具をワークの軸方向に送ることで加工する。
 図4(a)は、ギヤスカイビング加工におけるスカイビングカッタによる内歯車用のワークの加工状態の一例を示す説明図である。スカイビング加工では、スカイビングカッタ1は、その回転軸1aが、ワーク3(被削内歯車)の回転軸3aと所定の交差角(軸交差角)となるように、配置される。スカイビングカッタ1は、ワーク3の被削面31(円形内周面)における円周方向の所定の加工位置に位置決めされる。ワーク3およびスカイビングカッタ1を同一方向に同期回転させる。この状態で、スカイビングカッタ1を、ワーク3の被削面31に沿って、ワークの回転軸3aの方向に送る。これにより、スカイビングカッタ1の切削刃1bによりワーク3の被削面31に内歯32が形成される。公知のように、創成される歯形に応じて、スカイビングカッタ1の切刃の形状、ねじれ角、スカイビングカッタ1とワーク3との間の軸交差角、スカイビングカッタ1およびワーク3のそれぞれの回転速度、スカイビングカッタ1の送り速度、切込み量等の加工条件が適切に設定される。
 なお、図4(b)は図4(a)に示すスカイビングカッタ1およびワーク3を単純化して示す模式図である。以下に説明する各図(図1~図3)においても、同様に、スカイビングカッタおよびワークを単純化して示してある。
 ここで、特許文献1に記載のスカイビング加工法では、同一のスカイビングツールを用いて、ワークピースに対して、歯切り加工を2回行い、創成される右歯面と左歯面の仕上げ加工を別工程で行うようにしている。特許文献2に記載の歯車加工法においては、スカイビングカッタを、被削材の軸方向および周方向に沿って移動させながら歯切り加工を行い、歯筋方向に歯面形状が変化する歯形、歯筋方向に歯丈が変化する歯形を創成できるようにしている。
特開2013-63506号公報 特開2020-19096号公報
 ギヤスカイビング加工では、スカイビングカッタで左歯面と右歯面とが同時に切削される場合には、左右の歯面が異なる形状の歯車の歯切り加工ができない。切削される左右の歯面において、すくい角が鋭角となる歯面に比べて、すくい角がマイナス(鈍角)となる反対側の歯面の加工精度が悪い。
 本発明の目的は、このような点に鑑みて、歯すじ方向に沿って変化する歯形、左右の歯面が異なる歯形などを備えた歯車の歯切り加工を効率良く行うことのできるギヤスカイビング加工法を提案することにある。
 上記の課題を解決するために、本発明は、円筒形状のワークの外周面および内周面のうちの一方の被削面に歯切り加工を行うギヤスカイビング加工法において、
 前記ワークの前記被削面における円周方向の第1加工位置に、所定の切込み量となるように、第1スカイビングカッタを位置決めし、
 前記被削面における前記第1加工位置から前記円周方向に所定の角度だけ離れた第2加工位置に、所定の切込み量となるように、第2スカイビングカッタを位置決めし、
 前記ワークに対して第1スカイビングカッタを第1軸交差角となるように配置し、前記ワークに対して第2スカイビングカッタを第2軸交差角となるように配置し、
 前記ワーク、前記第1、第2スカイビングカッタを同期回転させながら、前記第1、第2スカイビングカッタを前記ワークの回転軸の方向に同時に送って前記被削面の歯切り加工を行い、
 前記歯切り加工においては、前記第1スカイビングカッタによって、前記被削面に創成される歯の左歯面および右歯面のうちの一方の歯面の切削を行い、前記第2スカイビングカッタによって、前記左歯面および右歯面のうちの他方の歯面の切削を行うことを特徴としている。
 本発明の方法では、2台のスカイビングカッタを用いてワークの歯切り加工を行う。歯切り加工を1工程で行う場合には、創成される歯の左右の歯面の一方を第1スカイビングカッタにより加工し、他方を第2スカイビングカッタにより加工する。1工程からなる歯切り加工により、左右の歯面が非対称な歯形の歯を、効率よく切削加工できる。
 また、歯切り加工を2工程で行うこともできる。この場合には、例えば、ワークの被削面に創成される歯の両側の歯面のうちの一方の歯面に対して第1スカイビングカッタの切刃が鋭角のすくい角となるように、加工条件を設定して、当該一方の歯面を切削する。次の工程では、他方の歯面に対して第2スカイビングカッタの切刃が鋭角のすくい角となるように、加工条件を設定して、当該他方の歯面を切削する。これにより、双方の歯面を精度良く切削できる。
 なお、ワークと第1、第2スカイビングカッタとの間の軸交差角を相互に異なる角度に設定することで、左右の歯面を異なる歯形に加工できる。ワークと第1、第2スカイビングカッタとの間の軸交差角を加工途中で変えることで、歯筋方向の途中から圧力角を変えることができる。これにより、歯筋方向に沿って圧力角が変化する左右対称な歯面、あるいは左右非対称な歯面を備えた三次元歯形が得られる。また、第1、第2スカイビングカッタのラジアル方向の送り量を変えることで、歯筋方向に沿って歯丈が変化するテーパ歯形(三次元歯形)が得られる。
(a)は、内歯車用のワークの粗加工工程における第1、第2スカイビングカッタによるワークの加工状態の一例を示す説明図であり、(b)は軸交差角、回転方向および左歯面、右歯面を示す説明図であり、(c)は第1スカイビングカッタの中心を通るワークの直径線に沿った方向から見た場合の被削面に対する第1スカイビングカッタの配置関係を示す説明図であり、(d)は第2スカイビングカッタの中心を通るワークの直径線に沿った方向から見た場合の被削面に対する第2スカイビングカッタの配置関係を示す説明図である。 (a)は仕上げ加工工程における第1、第2スカイビングカッタによるワークの加工状態の一例を示す説明図であり、(b)はワークの被削面に形成される内歯の右歯面、左歯面を示す説明図である。 (a)は、内歯車用のワークの粗加工工程における第1、第2スカイビングカッタによるワークの加工状態の一例を示す説明図であり、(b)は主要な加工条件および右歯面、左歯面を示す説明図であり、(c)は第1スカイビングカッタの中心を通るワークの直径線に沿った方向から見た場合の被削面に対する第1スカイビングカッタの配置関係を示す説明図であり、(d)は第2スカイビングカッタの中心を通るワークの直径線に沿った方向から見た場合の被削面に対する第2スカイビングカッタの配置関係を示す説明図である。 (a)はスカイビングカッタによる内歯車用のワークの加工状態の一例を示す説明図であり、(b)は、スカイビングカッタおよびワークを単純化して示す説明図である。
 以下に、図面を参照して、本発明のギヤスカイビング加工方法を用いた歯切り加工の実施の形態を説明する。以下の例は、本発明のギヤスカイビング加工法を用いた内歯車の加工法である。
 内歯車用のワークは、例えば、素材鍛造工程および旋削工程を経て得られる。ワークは、粗加工工程(第1歯切り工程)を経て、その被削面である円形内周面に内歯(歯溝)が加工される。次に、ワークは、熱処理等の工程を経た後に、仕上げ工程(第2歯切り工程)において、内歯の左歯面、右歯面に仕上げ加工が施される。粗加工工程および仕上げ工程に、本発明のギヤスカイビング加工が用いられる。
 図1(a)~(d)を参照して粗加工工程を説明する。粗加工工程では、ワーク3の被削面31における円周方向の第1加工位置P1(1)に、第1スカイビングカッタ10が位置決めされる。また、被削面31における第1加工位置P1から円周方向に180°の角度だけ離れた第2加工位置P2(1)に、第2スカイビングカッタ20が位置決めされる。すなわち、第1、第2スカイビングカッタ10、20は、ワーク3の回転軸3aを挟み対向する対向位置に配置されている。
 例えば、第1、第2スカイビングカッタ10、20として、同一構成のカッタが用いられる。また、ワーク3の回転軸3aに対して、第1、第2スカイビングカッタ10、20の回転軸10a、20aを、同一方向に同一角度だけ傾斜させる。すなわち、第1スカイビングカッタ10とワーク3との間の軸交差角(第1軸交差角)をθとすると、第2スカイビングカッタ20とワーク3との間の軸交差角(第2軸交差角)もθである。ワーク3、第1、第2スカイビングカッタ10、20の回転方向を、時計回りとする。
 この場合、第1スカイビングカッタ10では、鋭角のすくい角でワーク3の被削面31に当たる切れ刃の刃先部分によって、主として、内歯32の右歯面32Rが形成される部分が切削される。これに対して、第2スカイビングカッタ20では、鈍角のすくい角で被削面31に当たる切れ刃の刃先部分によって、主として、内歯32の左歯面32Lが形成される部分が切削される。
 第1、第2スカイビングカッタ10、20は、ワーク円周方向においては、直径線L上の第1、第2加工位置P1(1)、P2(2)に対して、被削面31から回転軸3aに沿った方向に外れた位置にある。第1、第2スカイビングカッタ10、20を、ワーク3の回転方向と同一方向に、同期回転させる。所定の切込み量となるように第1、第2スカイビングカッタ10、20をワーク直径方向に位置決めする。この状態で、ワーク3の被削面31に対して、ワーク3の回転軸3aに沿った方向に所定の速度で送りながら、被削面31を切削して内歯32の歯溝を創成する。第1スカイビングカッタ10によって、主として、内歯32の右歯面32Rとなる部分が切削され、第2スカイビングカッタ20によって、主として、内歯32の左歯面32Lとなる部分が切削される。
 次に、図2(a)、(b)を参照して、第2歯切り工程である歯面の仕上げ工程を説明する。歯面の仕上げ工程においては、粗加工工程により被削面31に創成された各内歯32の右歯面32Rに、主として、第1スカイビングカッタ10を用いて仕上げ加工が施される。同時に、他方の左歯面32Lに、主として、第2スカイビングカッタ20を用いて仕上げ加工が施される。
 仕上げ加工においても、第1スカイビングカッタ10とワーク3との間の軸交差角はθに設定され、第2スカイビングカッタ20とワークとの間の軸交差角も同一のθに設定される。また、図2(a)に示すように、仕上げ加工においては、第1スカイビングカッタ10の加工位置を、第1歯切り工程における直径線L上の第1加工位置P1(1)から右時計回りに微小角度δだけ移動させた第1加工位置P1(2)に変更する。第2スカイビングカッタ20の加工位置を、第1歯切り工程における直径線Lの第2加工位置P2(1)から円周方向における反時計回りに同一の角度δだけ移動させた第2加工位置P2(2)に変更する。移動量(角度)は微小であるが、図においては誇張して示してある。
 この状態で、ワーク3、第1、第2スカイビングカッタ10、20を同期回転させ、第1、第2スカイビングカッタ10、20を、ワーク3の回転軸3aの方向に送りながら左右の歯面32R、32Lに仕上げ加工を施す。図2(b)は、ワーク3の被削面31に形成された内歯32を拡大して示す説明図である。内歯32の右歯面32Rの仕上げ加工は、主として第1スカイビングカッタ10によって施される。反対側の左歯面32Lの仕上げ加工は、主として第2スカイビングカッタ20によって施される。
 本例のギヤスカイビング加工方法では、第1、第2スカイビングカッタ10、20の送り速度、切込み量等を独立して制御できる。このため、左右の歯面が非対称な歯形の内歯を加工できる。例えば、第1、第2歯切り加工において、第1、第2スカイビングカッタ10、20の軸交差角を、加工途中において変化させることで、歯筋方向の途中から左右の歯面の圧力角を変えることができる。これにより、歯筋方向に沿って左右の歯面の圧力角が対称な状態で変化する三次元歯形を加工できる。また、歯筋方向に沿って左右の歯面の圧力角が非対称な状態で変化する三次元歯形を加工できる。さらに、第1、第2スカイビングカッタ10、20のラジアル方向の送り量(切込み量)を変えることで、左右の歯面が異なる歯形の歯車を加工できる。
 また、本例の方法によれば、2台の第1、第2スカイビングカッタ10、20を用いているので、単一のカッタを用いる場合に比べて、加工時間を短縮できる。また、各カッタ10、20の切れ刃の刃先摩耗を抑制でき、カッタ10、20の寿命を延ばすことができる。
(改変例)
 上記の例では、粗加工工程および仕上げ工程のそれぞれにおいて、第1、第2スカイビングカッタ10、20により、ワーク3の被削面31に同時加工を施している。各工程を、第1スカイビングカッタ10による加工と、第2スカイビングカッタ20による加工との2工程とすることもできる。
 図3は、2工程の場合の内歯車の歯切り加工を示す説明図である。図3(a)に示すように、粗加工工程では、ワーク3の被削面31における円周方向の第1加工位置P1(1)に、第1スカイビングカッタ10が位置決めされる。また、被削面31における第1加工位置P1から円周方向に180°の角度だけ離れた第2加工位置P2(1)に、第2スカイビングカッタ20が位置決めされる。すなわち、第1、第2スカイビングカッタ10、20は、ワーク3の回転軸3aを挟み対向する対向位置に配置されている。
 本例では、図3(b)に示すように、第1、第2スカイビングカッタ10、20として、ねじれ角が逆のカッタが用いられる。また、第1スカイビングカッタ10とワーク3との間の軸交差角(第1軸交差角)を+θとすると、第2スカイビングカッタ20とワーク3との間の軸交差角(第2軸交差角)は、-θである。すなわち、図3(c)に示すように、ワーク3の回転軸3aと第1スカイビングカッタ10の回転軸10aとの間の軸交差角は、ワーク3の回転軸3aを中心とする時計回りの方向を正とした場合に、+θである。図3(d)に示すように、ワーク3の回転軸3aと第2スカイビングカッタ20の回転軸20aとの間の軸交差角は-θである。また、第1工程では、ワーク3、第1、第2スカイビングカッタ10、20の回転方向は、時計回りである。第2工程では、ワーク3、第1、第2スカイビングカッタ10、20の回転方向は、反時計回りである。
 この場合、第1工程では、時計回りに回転する第1スカイビングカッタ10における、鋭角のすくい角でワーク3の被削面31に当たる切れ刃の刃先部分によって、主として、内歯32の右歯面32Rが形成される部分が切削される。これに対して、時計回りに回転する第2スカイビングカッタ20においては、第1スカイビングカッタ10によって切削された部分の表面に沿って切れ刃の刃先が移動し、被削面31の切削は行われない。
 次の第2工程では、反時計回りに回転する第2スカイビングカッタ20における、鋭角のすくい角でワーク3の被削面31に当たる切れ刃の刃先部分によって、主として、内歯32の左歯面32Lが形成される部分が切削される。これに対して、反時計回りに回転する第1スカイビングカッタ10においては、第2スカイビングカッタ20によって切削された部分の表面に沿って切れ刃の刃先が移動し、被削面31の切削は行われない。
 歯切り加工においては、第1、第2スカイビングカッタ10、20を、ワーク円周方向においては、直径線L上の第1、第2加工位置P1(1)、P2(2)に対して、被削面31から回転軸3aに沿った方向に外れた位置に、それぞれ位置させる。
 第1工程では、ワーク3、第1、第2スカイビングカッタ10、20を、時計回りに同期回転させ、所定の切込み量となるように第1、第2スカイビングカッタ10、20をワーク直径方向に位置決めする。この状態で、ワーク3の被削面31に対して、ワーク3の回転軸3aに沿った方向に所定の速度で送りながら、被削面31を切削して内歯32の歯溝を創成する。第1スカイビングカッタ10によって、主として、内歯32の右歯面32Rが形成される部分が切削される。第2スカイビングカッタ20は実質的に切削には関与しない。
 第2工程では、ワーク3、第1、第2スカイビングカッタ10、20を、反計回りに同期回転させ、所定の切込み量となるように第1、第2スカイビングカッタ10、20をワーク直径方向に位置決めする。この状態で、ワーク3の被削面31に対して、ワーク3の回転軸3aに沿った方向に所定の速度で送りながら、被削面31を切削して内歯32の歯溝を創成する。第2スカイビングカッタ20によって、主として、内歯32の左歯面32Lが形成される部分が切削される。第1スカイビングカッタ10は実質的に切削には関与しない。
 次に、第2歯切り工程である歯面の仕上げ工程においても、上記の粗加工工程と同様に加工条件が設定され、第1工程および第2工程が行われる。第1工程では、第1歯切り工程により被削面31に創成された各内歯32の右歯面32Rに、主として、第1スカイビングカッタ10により仕上げ加工が施される。第2工程では、他方の左歯面32Lに、主として、第2スカイビングカッタ20により仕上げ加工が施される。
 本例のギヤスカイビング加工方法では、第1スカイビングカッタ10の切れ刃の刃先は、右歯面32Rに対してすくい角が鋭角の状態で当たり、第2スカイビングカッタ20は、左歯面32Lに対して、すくい角が鋭角の状態で当たる。したがって、左右の歯面を精度良く加工できる。
 また、第1、第2スカイビングカッタ10、20の送り速度、切込み量等を独立して制御できるので、図1、図2に示す場合と同様に、左右の歯面が異なる歯形の内歯を加工できる。また、2台の第1、第2スカイビングカッタ10、20を用いているので、単一のカッタを用いる場合に比べて、各切れ刃の刃先摩耗を抑制できる。
(その他の実施の形態)
 上記の例は、内歯車の歯切り加工に関するものであるが、本発明は、外歯車の歯切り加工にも同様に適用できることは勿論である。

Claims (3)

  1.  円筒形状のワークの外周面および内周面のうちの一方の面である被削面に、歯切り加工を行うギヤスカイビング加工方法において、
     前記ワークの前記被削面における円周方向の第1加工位置に、所定の切込み量となるように、第1スカイビングカッタを位置決めし、
     前記被削面における前記第1加工位置から前記円周方向に180°離れた第2加工位置に、所定の切込み量となるように、第2スカイビングカッタを位置決めし、
     前記ワークに対して第1スカイビングカッタを第1軸交差角となるように配置し、前記ワークに対して第2スカイビングカッタを第2軸交差角となるように配置し、
     前記ワーク、前記第1、第2スカイビングカッタを同期回転させながら、前記第1、第2スカイビングカッタを前記ワークの回転軸に沿った方向に同時に送って、前記第1、第2スカイビングカッタの一方あるいは双方により、前記被削面の歯切り加工を行うことを特徴とするギヤスカイビング加工法。
  2.  請求項1において、
     前記第1スカイビングカッタと前記第2スカイビングカッタは、同一構成のカッタであり、
     前記第1軸交差角と第2軸交差角は同一であり、
     前記被削面の歯切り加工においては、前記第1スカイビングカッタにより、前記被削面に創成される歯の左歯面および右歯面のうちの一方の歯面となる部分を切削し、前記第2スカイビングカッタにより、前記左歯面および右歯面にうちの他方の歯面となる部分を切削するギヤスカイビング加工法。
  3.  請求項1において、
     前記第1スカイビングカッタと前記第2スカイビングカッタは、ねじれ角が逆のカッタであり、
     前記第1軸交差角と前記第2軸交差角は、ワーク回転軸に対して、相互に、逆方向に同一量だけ傾斜した角度であり、
     前記被削面の歯切り加工は、第1工程および第2工程の2工程を含み、
     前記第1工程では、前記ワーク、前記第1、第2スカイビングカッタを、それぞれの回転軸回りに、第1方向に、同期回転させながら、前記第1、第2スカイビングカッタをワーク中心軸線に沿った方向に同時に送って、前記第1スカイビングカッタにより、前記被削面に創成される歯の左歯面および右歯面のうちの一方の歯面となる部分を切削し、前記第2スカイビングカッタは前記被削面の切削に関与しない状態とし、
     前記第2工程では、前記ワーク、前記第1、第2スカイビングカッタを、それぞれの回転軸回りに、前記第1方向とは逆の第2方向に、同期回転させながら、前記第1、第2スカイビングカッタをワーク中心軸線に沿った方向に同時に送って、前記第2スカイビングカッタにより、前記被削面に創成される歯の左歯面および右歯面のうちの他方の歯面となる部分を切削し、前記第1スカイビングカッタは前記被削面の切削に関与しない状態とするギヤスカイビング加工法。
PCT/JP2020/049239 2020-12-28 2020-12-28 ギヤスカイビング加工法 WO2022145013A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020237014207A KR20230073323A (ko) 2020-12-28 2020-12-28 기어 스카이빙 가공법
CN202080106575.5A CN116490312A (zh) 2020-12-28 2020-12-28 齿轮旋刮加工法
JP2022572856A JP7430824B2 (ja) 2020-12-28 2020-12-28 ギヤスカイビング加工法
PCT/JP2020/049239 WO2022145013A1 (ja) 2020-12-28 2020-12-28 ギヤスカイビング加工法
EP20968024.8A EP4269010A4 (en) 2020-12-28 2020-12-28 GEAR SKEWING PROCESS
US18/027,153 US20230330763A1 (en) 2020-12-28 2020-12-28 Gear skiving process method
TW110127299A TW202224818A (zh) 2020-12-28 2021-07-26 齒輪刮滾加工法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/049239 WO2022145013A1 (ja) 2020-12-28 2020-12-28 ギヤスカイビング加工法

Publications (1)

Publication Number Publication Date
WO2022145013A1 true WO2022145013A1 (ja) 2022-07-07

Family

ID=82259137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/049239 WO2022145013A1 (ja) 2020-12-28 2020-12-28 ギヤスカイビング加工法

Country Status (7)

Country Link
US (1) US20230330763A1 (ja)
EP (1) EP4269010A4 (ja)
JP (1) JP7430824B2 (ja)
KR (1) KR20230073323A (ja)
CN (1) CN116490312A (ja)
TW (1) TW202224818A (ja)
WO (1) WO2022145013A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4049786A1 (de) * 2021-02-26 2022-08-31 PITTLER T&S GmbH Vorrichtung und verfahren zur bearbeitung eines werkstücks

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2121840A (en) * 1935-06-26 1938-06-28 Fellows Gear Shaper Co Method of gear generation and apparatus for performing such method
JPS6379120U (ja) * 1986-11-14 1988-05-25
JP2013063506A (ja) 2011-09-15 2013-04-11 Klingenberg Ag 半完結スカイビング法を実行するための対応するスカイビングツールを有する半完結スカイビング加工の方法および装置
DE102016113512A1 (de) * 2016-07-21 2018-01-25 Profilator Gmbh & Co. Kg Verfahren zur Fertigung eines einsatzgehärteten Zahnrades, insbesondere mit einer Innenverzahnung
DE102018004241A1 (de) * 2018-05-28 2019-11-28 EMAG GmbH & Co. KG Verfahren und Vorrichtung zum Herstellen einer Fase an einer Verzahnung und/oder Entgraten von Verzahnungen
JP2020019096A (ja) 2018-08-01 2020-02-06 株式会社不二越 歯車加工方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITRM20100228A1 (it) 2010-05-10 2011-11-10 Bayer Materialscience Ag Composizione polimerica con caratteristiche di assorbimento del calore e migliorate caratteristiche di colore.
JP6212876B2 (ja) * 2013-02-15 2017-10-18 アイシン精機株式会社 歯車加工方法及び歯車加工用カッター
DE102014218082B4 (de) * 2014-09-10 2016-11-10 Felsomat Gmbh & Co. Kg Vorrichtung zur Wälzschälbearbeitung eines Werkstücks zur Fertigung einer Fase und zugehöriges Betriebsverfahren
JP6379120B2 (ja) 2016-01-18 2018-08-22 Kyb株式会社 ミキサドラム駆動装置
DE102018213635B4 (de) 2018-08-13 2020-11-05 Infineon Technologies Ag Halbleitervorrichtung

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2121840A (en) * 1935-06-26 1938-06-28 Fellows Gear Shaper Co Method of gear generation and apparatus for performing such method
JPS6379120U (ja) * 1986-11-14 1988-05-25
JP2013063506A (ja) 2011-09-15 2013-04-11 Klingenberg Ag 半完結スカイビング法を実行するための対応するスカイビングツールを有する半完結スカイビング加工の方法および装置
DE102016113512A1 (de) * 2016-07-21 2018-01-25 Profilator Gmbh & Co. Kg Verfahren zur Fertigung eines einsatzgehärteten Zahnrades, insbesondere mit einer Innenverzahnung
DE102018004241A1 (de) * 2018-05-28 2019-11-28 EMAG GmbH & Co. KG Verfahren und Vorrichtung zum Herstellen einer Fase an einer Verzahnung und/oder Entgraten von Verzahnungen
JP2020019096A (ja) 2018-08-01 2020-02-06 株式会社不二越 歯車加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4269010A4

Also Published As

Publication number Publication date
KR20230073323A (ko) 2023-05-25
JP7430824B2 (ja) 2024-02-13
JPWO2022145013A1 (ja) 2022-07-07
EP4269010A4 (en) 2024-09-18
US20230330763A1 (en) 2023-10-19
CN116490312A (zh) 2023-07-25
EP4269010A1 (en) 2023-11-01
TW202224818A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
KR101976847B1 (ko) 세미 컴플리팅 스카이빙 방법 및 세미 컴플리팅 스카이빙 방법을 실행하기 위한 대응하는 스카이빙 공구를 갖춘 장치
CN108602144B (zh) 用于在有齿的工件轮上制造倒棱的设备和方法
CN107530803B (zh) 齿精整的制齿方法及其组合刀具
US10399161B2 (en) Method and device for producing a gearing in workpiece gears by means of skiving
JP6531021B2 (ja) エルボ
JP2013000879A (ja) 複数の異なるかさ歯車の予備歯切り方法および同一のフライス工具の使用方法
JP2017534472A (ja) 多回転刃部を持ったアキシャルホブ
RU2358843C2 (ru) Способ фрезерования деталей
WO2017199911A1 (ja) 回転切削工具を用いたディンプル加工方法
US20220266364A1 (en) Tool and method for machining a workpiece
WO2022145013A1 (ja) ギヤスカイビング加工法
JP6565399B2 (ja) 歯車加工装置
US20190366455A1 (en) Method for machining of ball tracks of inner races of constant velocity joints
KR20220148166A (ko) 피가공물 치형 배열체의 치형 플랭크 영역을 기계가공하기 위한 방법, 모따기 공구, 방법을 수행하기 위한 제어 명령어를 갖는 제어 프로그램, 및 기어 절삭기
JP2005169513A (ja) 荒削り用回転切削工具及びその製造方法
JP6819099B2 (ja) 歯車加工方法
KR102670318B1 (ko) 내부 톱니가 있는 공작물을 디버링하는 방법 및 장치
JPWO2022145013A5 (ja)
CN109014439A (zh) 用于圆柱齿轮齿廓倒棱的盘状锉齿齿轮倒棱刀及制造方法
JP2588353B2 (ja) 歯車加工装置
JP2015006713A (ja) 歯車加工装置
JPH10175036A (ja) 円錐歯歯車と鼓形ウォームおよびその工作方法
US20240227049A1 (en) Method for machining a tooth flank region of a workpiece tooth arrangement, chamfering tool, control program having control instructions for carrying out the method, and gear-cutting machine
RU2504459C1 (ru) Способ чистовой обработки зубьев эвольвентных шлицевых валов
RU2631576C1 (ru) Способ обработки эксцентриковых валов

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20968024

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022572856

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080106575.5

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20237014207

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2020968024

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020968024

Country of ref document: EP

Effective date: 20230728