Nothing Special   »   [go: up one dir, main page]

WO2022032985A1 - 光学器件、系统及光学设备 - Google Patents

光学器件、系统及光学设备 Download PDF

Info

Publication number
WO2022032985A1
WO2022032985A1 PCT/CN2021/072061 CN2021072061W WO2022032985A1 WO 2022032985 A1 WO2022032985 A1 WO 2022032985A1 CN 2021072061 W CN2021072061 W CN 2021072061W WO 2022032985 A1 WO2022032985 A1 WO 2022032985A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical device
light
input
optical
waveguide
Prior art date
Application number
PCT/CN2021/072061
Other languages
English (en)
French (fr)
Inventor
谈顺毅
Original Assignee
上海慧希电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海慧希电子科技有限公司 filed Critical 上海慧希电子科技有限公司
Priority to US18/020,959 priority Critical patent/US20230305217A1/en
Priority to EP21855042.4A priority patent/EP4191295A4/en
Publication of WO2022032985A1 publication Critical patent/WO2022032985A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0081Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for altering, e.g. enlarging, the entrance or exit pupil
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted
    • G02B27/0172Head mounted characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type

Definitions

  • the present invention relates to the field of optical devices, systems and equipment, and in particular, to an optical device, system and optical equipment.
  • diffractive waveguide capable of dilating pupils and uniform light output a waveguide matrix, an incident grating, a light-equalizing grating array and an exit grating; wherein the incident grating, the light-equalizing grating array and the exit grating They are arranged in sequence on the surface of the waveguide substrate, and the incident gratings form a transmission light path through the light-equalizing grating array to the outgoing gratings.
  • the light of the incident grating enters the outgoing grating through the light-equalizing grating array.
  • waveguide systems such as diffractive waveguides, arrayed waveguides, etc.
  • the above-mentioned waveguides themselves only have the ability to dilate pupils and cannot replace optical devices such as lenses/reflectors to realize modulation such as compression or expansion of light. Function.
  • the purpose of the present invention is to provide an optical device, a system and an optical device, which integrates each device in an optical design, compresses the size of the optical path, and reduces the volume of the device/system.
  • An optical device provided according to the present invention includes a first optical device, the first optical device has a plurality of surfaces, and the first optical device has an input and output interface;
  • At least one of the input-output interfaces is connected to an optical modulation device, and the at least one optical modulation device guides the light back to the first optical device after modulating the light output from the input-output interface.
  • the light propagates in the first optical device.
  • At least two of the plurality of surfaces are parallel to each other.
  • At least two surfaces of the plurality of surfaces have a preset angle (such as a triangular or wedge-shaped structure) and/or at least one surface of the at least two surfaces is a curved surface (such as a conical surface, or a cross-section of parabolic cone, etc.).
  • a preset angle such as a triangular or wedge-shaped structure
  • at least one surface of the at least two surfaces is a curved surface (such as a conical surface, or a cross-section of parabolic cone, etc.).
  • different sections of the surface are respectively coated with one or more films.
  • the film is any one or more of antireflection, antireflection, microstructures (eg, microprisms, microlenses, etc.), gratings (diffractive structures), polarization dependent, wavelength selection, and angle selection.
  • microstructures eg, microprisms, microlenses, etc.
  • gratings diffractive structures
  • polarization dependent wavelength selection, and angle selection.
  • the light undergoes at least one total reflection and/or reflection inside the first optical device. It can be that the angle of light incident on the surface of the device is greater than the total reflection angle (the refractive index of the device and the refractive index of the external medium of the device are determined, the external medium can be air, and no coating is required at this time), and the total reflection of light can also be reflected on the surface of the device.
  • the thin film with properties (for example, making its surface a mirror surface) can completely reflect the light back to the inside of the first optical device.
  • the first optical device is a waveguide device, and the light propagates through total reflection in the waveguide.
  • At least two surfaces of the waveguide device are parallel or non-parallel.
  • the angle and/or the surface shape of the surface of the waveguide is such that: the light coupled out of the first optical device from the input and output interface is coupled into the first optical device before or on the light. From the time the optical device is coupled out of the first optical device this time, the number of reflections experienced in the first optical device is the same.
  • the input and output interface comprises a light selective design.
  • the light-selective design includes the angle, polarization direction, wavelength, and input/output time point of the input light (for example, the input is allowed in the previous time period, the input is not allowed in the next time period, and the next time period is not allowed). Allows input, interleaving, or filtering according to any one or more of external signal control).
  • the input and output interfaces are plated with thin films.
  • the input and output interfaces are coated with a graded refractive index thin film and/or partitioned with different refractive index thin films.
  • the thin film enables: the light coupled out of the first optical device from the input and output interface is coupled out of the first optical device this time or is coupled into the first optical device once on the light to be coupled out this time
  • the number of reflections experienced within the first optics is the same between the first optics.
  • the angle and/or surface shape between the surface of the thin film combined with the first optical device is such that: before the light coupled out of the first optical device from the input and output interface is coupled out of the first optical device this time or The number of reflections experienced in the first optical device is the same between the time the light is coupled into the first optical device once and is coupled out of the first optical device this time.
  • the input/output interface includes at least one of the following: a diffraction grating (surface grating or volume grating) is prepared, a prism is used, a polarizing prism is used, a microlens/microprism/micromirror is used, and these micromirrors are used.
  • a diffraction grating surface grating or volume grating
  • a prism is used
  • a polarizing prism is used
  • microlens/microprism/micromirror is used, and these micromirrors are used.
  • Array of structures using triangular prisms, using triangular mirrors, using polarizers, using filters.
  • the optical modulation device includes mirrors, micro-mirrors, micro-mirror arrays, lenses, micro-lenses, micro-lens arrays, prisms, micro-prisms, micro-prism arrays, diffraction devices, grating devices, wave plates, polarizers , any one or more of optically active devices and optical filters.
  • the optical modulation device comprises a spatial light modulator.
  • the spatial light modulator includes any one or more of LCoS, DMD, OLED, Microled, and micro-galvanometer.
  • the spatial light modulator uses intensity and/or phase modulation.
  • the spatial light modulator can be dynamically modulated according to an external signal.
  • the first optical device is formed by splicing a plurality of optical devices through the input and output interface.
  • the shape of the splices includes L-shaped folded splices or Z-shaped stacked splices at a certain angle.
  • the parameters of the optical devices spliced together may be the same or different.
  • the parameters include any one or more of thickness, length, included angle of the surface, shape of the surface, material, and coating.
  • the input and output interfaces are connected to photosensitive components, including at least one of film, CCD, and CMOS.
  • the first optical device has a plurality of input and output interfaces, and light is input and/or output from different input and output interfaces.
  • the first optical device has a plurality of input and output interfaces, and light is dynamically selectively input or output from different input and output interfaces.
  • an input and output interface of the first optical device can be connected to photosensitive components, including but not limited to CCD, CMOS, film, etc., so that the device can be used as a photographic camera lens by utilizing the principle of optical path reversibility, or While serving as an imaging optical device (eg, AR/VR and other devices) as a photographic camera device, it provides reusability and reduces the size of the device/system/device.
  • photosensitive components including but not limited to CCD, CMOS, film, etc.
  • An optical system provided according to the present invention includes a first optical device, the first optical device has a plurality of surfaces, and the first optical device has an input and output interface;
  • At least one of the input-output interfaces is connected to an optical modulation device, and the at least one optical modulation device guides light back to the first optical device after modulating the light output from the input-output interface.
  • An optical system provided according to the present invention includes the above-mentioned optical device.
  • An optical device provided according to the present invention includes the above-mentioned optical device and system.
  • the present invention has the following beneficial effects:
  • the present invention can realize the function of multiple groups of lenses/reflectors to modulate light in a small volume, thereby realizing the design and manufacture of ultra-light optical systems/devices, and can be applied In various fields related to light or electromagnetic wave modulation.
  • 1 is a schematic diagram of the optical path of an existing lens
  • FIG. 2 is a schematic diagram of the optical device of Embodiment 1 (it can be equivalent to the optical path of the existing lens in FIG. 1 );
  • FIG. 3 is another schematic diagram of the optical device of Embodiment 1;
  • Fig. 4 is the equivalent optical schematic diagram of embodiment 2;
  • Fig. 5 is the schematic diagram of the optical device of embodiment 2;
  • Fig. 6 is the schematic diagram of the optical device of embodiment 3.
  • Fig. 7 is the schematic diagram of the optical device of embodiment 4.
  • FIG. 8 is a schematic diagram of an equivalent stacking model of a wedge/tapered waveguide
  • FIG. 10 is a schematic diagram of an equivalent stacking model of light propagation in a partial area of a planar waveguide
  • Example 11 is a schematic diagram of the optical device of Example 6.
  • Figure 13 is a schematic diagram of an optical device.
  • An optical device that uses a waveguide combined with a modulator to focus light and shorten the optical path length.
  • the focal length of the existing lens is 100mm
  • the focal plane of the input parallel light is located at 100mm of the device
  • the length of the entire system is about 100mm.
  • a waveguide system is used in the present invention, The two surfaces of the waveguide are parallel planes with a thickness of 4mm. Parallel light is input into the waveguide from the first input interface.
  • the first input interface 11 is coated with a reflective film on one side of the waveguide to reflect the input light into the waveguide (also known as the waveguide).
  • the angle between the upper and lower surfaces of the waveguide is greater than the total reflection angle, and propagates in the waveguide. After a total reflection, it reaches the second input and output interface 12 on the lower surface, and the second input and output interface 12 on the lower surface is connected to a mirror.
  • the material of the mirror is the same as that of the waveguide (same wavelength of refraction), the lower surface of the mirror has a certain curvature and is coated with a reflective film, which can reflect the input parallel light and focus it to 100mm, here
  • the input and output interface of the 2000 adopts UV optical glue similar to the waveguide material (similar refractive index and dispersion coefficient) to glue the reflector (upper surface) on a specific position of the waveguide.
  • the parallel light enters the mirror and is reflected by the lower surface, returns to the waveguide, and starts to focus after being modulated by the mirror. After several reflections, it enters the third input and output interface 14.
  • This input and output interface is composed of two sides coated with a reflective film at about ⁇ 45° from the upper and lower surfaces of the waveguide (the interface can also be plated with a reflective surface).
  • the triangular prism of the film is glued to the sides of the upper and lower waveguides), and the light is coupled into the upper waveguide through the above interface and continues to propagate. There is a tiny gap between the lower surface of the upper waveguide and the upper surface of the lower waveguide.
  • a reflective film or other film as shown in Figure 2 to separate it from the next layer of waveguides).
  • the waveguide When propagating in the waveguide medium to a position close to the focal plane, the waveguide is derived from the fourth input-output interface 15.
  • the fourth optical input-output interface 15 can be a thin film with microstructures (such as microprism film, SRG grating, etc.), or can be The sloping sides shown in Figure 3 are coated with reflectors or coupled out using prisms. Since the propagation of light is mainly carried out in the waveguide, the length of about 100mm of the original lens system is greatly shortened to less than 10mm.
  • the second input and output interface is an adhesive layer that glues the mirror and the waveguide together, and there is no special design. It can also be understood that the achievement is a part of the light modulator itself, and does not need to correspond to a specific object.
  • the reflector since the light is obliquely incident on the reflector in the waveguide, the reflector can be designed with an off-axis design to reduce aberration, and the reflector can also be made of a material with a higher refractive index than the waveguide medium, thereby reducing the input The off-axis angle of the mirror rays.
  • the curved surface of the above-mentioned reflector can also be made of the same material as the waveguide, which is manufactured by integral molding or injection molding and then coated with a reflector, instead of being connected to the waveguide later by gluing.
  • FIG. 5 a system including a plurality of optical modulation devices is described in this embodiment, and an equivalent optical system thereof is shown in FIG. 4 .
  • the light rays 1, 2, and 3 are coupled into the waveguide through the input and output interface 21 and then undergo total reflection in the waveguide before reaching the input and output interface 22.
  • the input and output interface 22 is glued with the optical modulator 23, and the optical modulator 23 modulates the light and returns it to the waveguide , after several propagations, it reaches the optical input and output interface 24, the input and output interface 24 is glued with the optical modulator 25, the optical modulator 25 modulates the incident light and reflects it into the waveguide, and then after a series of total reflections, the light reaches the optical input and output interface. 26.
  • the input and output interface 26 is glued to the light modulator 27.
  • different regions of the input and output interface 26 are respectively coated with films with different refractive indices, which can control the incident light of different angles to exit in different regions respectively.
  • the angle is ⁇ 1
  • n 1 is smaller than the refractive index n of the waveguide medium itself.
  • the above angle satisfies the condition n sin ⁇ 1 ⁇ n 1 , so light 1 emerges from and is The light modulator 27 is reflected and output from the waveguide.
  • the angle is ⁇ 3 , and the above angle satisfies the condition n sin ⁇ 3 ⁇ n 3 , so the light 3 exits and is reflected by the light modulator 27 and then output from the waveguide.
  • each interface when the exit position of the light at the input and output interfaces does not meet the design requirements, each interface can be partitioned with films with different refractive indices to control the exit position of the light, thereby controlling the position of the incident optical modulation device.
  • the thickness of the thin film is generally controlled between several microns to tens of microns, and the thickness is very thin, and its influence on the entire optical system is small, and in some cases it can be ignored.
  • an anti-reflection film may also be plated between the optical input and output interface and the waveguide and/or the optical modulation device, so as to improve the utilization rate of light.
  • a polarizing device such as a 1/4 wave plate
  • a polarizing device can also be added as a part of the optical modulator 27, located between the original optical modulator 27 and the input and output interface 26, and attached to the lower surface of part of the waveguide.
  • Polarizer or coated with polarizing film When the input light is linearly polarized light, it passes through the 1/4 wave plate incident modulator and is reflected, and then passes through the 1/4 wave plate again, and the polarization direction will be rotated by 90°.
  • the polarization direction of the light modulated by the light modulator 27 is consistent with the polarizer and can be emitted, while the light in the waveguide that is not coupled out from the input and output interface 26 and modulated by the light modulator 27 is still the original polarization direction and will be filtered out by the polarizer .
  • the system is AR near-eye display
  • the reflective surface of the light modulator 27 is coated with a semi-transparent and semi-reflector (according to the design, the light emitted from the waveguide can meet the condition of total reflection on the curved surface 27, and the same as the subsequent
  • the device has a certain gap or is filled with a medium with a certain refractive index between the device and the subsequent device to make it meet the conditions of total reflection, so there is no need to coat the anti-reflection/reflection film, which can improve the utilization rate of light), and the reflective surface is also glued (or left behind).
  • a small gap has a corresponding surface with the same surface as the reflective surface, and the other surface is a flat device.
  • Both surfaces have high transmittance, which can couple the external light to the light modulator 27, and part of the light It will enter the waveguide through the surface of the transflective light modulator 27, and because its one side surface is exactly the same as the curved surface of the light modulator 27, its modulation of the external ambient light can be canceled, so that the viewer can The external ambient light transmitted through the light modulator 27 and the image light reflected by the light modulator 27 are seen through the waveguide.
  • the other surface added to the device in this embodiment can also be a curved surface to compensate for errors such as myopia, hyperopia, astigmatism, etc.
  • the calibration of the input light of the waveguide for the error of the human eye can be performed through the aforementioned 23, 25, 27, etc. multi-piece optics calibration).
  • a modulation device can be added to the other side of the waveguide corresponding to 27, and the output light of the waveguide and the external ambient light can be calibrated at the same time, so that viewers with nearsightedness/farsightedness and other defects can see all images clearly.
  • the device in Example 2 can be used as the lens of the camera system, and a CCD/CMOS device can be set near the image pixel interface (here the interface 21) of the same first optical device, so that the camera can be photographed.
  • the condition of the viewer's eyes eye tracking is performed), and the output image is adjusted according to the condition of the viewer's eyes (such as the focal distance, the position of the viewing image, etc.).
  • the input and output interface and the adjustment device can be reasonably arranged on the same first optical device, and the external scene (ambient light) can also be photographed through this device.
  • the input ambient light can be filtered into linearly polarized light in one direction through the input and output interface, and the image light output from the pixel to the viewer through the first optical device is linearly polarized light in the other direction.
  • the connected modulators can choose to process ambient light or image light through the polarization selectivity of the corresponding input and output interfaces (the input and output interfaces of some modulation devices can also be left unselected, and both ambient light and image light are modulated). Through this method, near-eye display and photography can be simultaneously realized by one device/system.
  • the input and output interface 31 adopts SRG surface grating, the initial input light is linearly polarized, and the light enters the waveguide and then arrives at the input and output interfaces 32 , 33 , 34 , 35 and 36 in sequence.
  • the input and output interfaces 33 , 34 and 35 have a light selective design and are coated with a polarization selective film.
  • the input and output interfaces 34 can couple light whose polarization direction is the same as that of the initial incident light to its corresponding glued modulation device 37 . , and the light whose polarization direction is perpendicular to the polarization direction of the initial incident light will not be introduced into the modulator 37, and will be directly returned to the waveguide for propagation according to the original reflected path.
  • the light whose polarization direction of the initial incident light is vertical is coupled to its corresponding modulation device, and the light whose polarization direction is consistent with the polarization direction of the initial incident light will continue to propagate back to the waveguide according to the original reflection path.
  • the initial input light is coupled into its glued modulation device 38 through the input and output interface 32 and then propagates to the input and output interface 33. Due to the selectivity of the polarization direction, it will not be coupled out of the waveguide by the input and output interface 33 but will be reflected along the original The path continues to propagate to the input and output interface 34, and is coupled into the corresponding modulation device 37 by the input and output interface 34.
  • the modulator 310 includes a piece of electronically controllable device (can also be replaced by a common wave plate or optical rotator), and a reflective mirror with a certain optical curvature coated with a reflective film (according to the specific The optical design can also be a flat mirror, or the reflective film can be directly coated on the ITO glass on the back surface of the liquid crystal panel).
  • the polarization direction is rotated by 90°, and is reflected back to the original waveguide.
  • the light reaches the input and output interface 35, since the polarization direction has been changed, it will be coupled into the light modulator 39, and then reflected back to the waveguide after modulation.
  • the light reaches the original input/output interface 34, since the polarization direction is already perpendicular to the original input light, the light will not be guided into the modulation device 37, but will continue to propagate along the reflected path.
  • the light reaches the input/output interface 33, and due to the change of the polarization direction, the light will be coupled out of the waveguide from the input/output interface 33 this time.
  • the input and output interfaces 33 and 35 are also coated with dielectric films with different refractive indices on the surface of the waveguide, just like the input and output interface 26 in Embodiment 2, so that the light that meets the polarization requirements can be emitted at the correct position of the interface through angle control.
  • the wavelength of the input light can also be changed as required.
  • a control system inputs light with different wavelength bands into the waveguide at different times (eg, time-division multiplexing display in a display system), and the electrical energy in the light modulator 310
  • the control liquid crystal device through the modulation of the liquid crystal by the electronic control, can realize the function of 90° optical rotation for the light of different wavelength bands.
  • the first optical device in Example 4 is formed by splicing multiple waveguides, and the splicing is completed by a modulation device (coupling device, such as a triangular prism coated with a reflective film) connected through an input and output interface.
  • a modulation device coupled device, such as a triangular prism coated with a reflective film
  • There is a certain gap between the upper and lower layers of the partially spliced waveguide which can be used to accommodate the input and output interfaces and their connections. of light modulation devices.
  • the spliced waveguides have wedge-shaped waveguides whose upper and lower surfaces are not parallel (every time the light is reflected on the upper and lower surfaces, the angle between the light and the surface will change), so that the angle of the light can be controlled, and the angle can be distinguished to make it in the right position Coupling out the waveguide into the modulation device (the input and output interface can be omitted, the interface is integrated with the modulation device, and angle control can also be realized), or combined with the coating with changing refractive index to better control the light coupling out of the waveguide.
  • the wedge-shaped waveguide (or the surface is a curved waveguide) is to controllably change the angle of the light (the angle can be increased or decreased, depending on whether the input and output ends are the thick or thin ends of the waveguide), which can facilitate The subsequent system modulates the light.
  • the thicknesses of the waveguides are not the same, and they can be connected together through different input and output interfaces (such as triangular prisms with different side lengths coated with a reflective film).
  • the materials used in the waveguide can also be different, so that the modulation of light can be better achieved in combination with the modulation device.
  • a wedge-shaped waveguide is added in this embodiment.
  • the angle between it and the surface will change by 2 ⁇ , where ⁇ is the extension of the two surfaces of the wedge-shaped waveguide.
  • Figure 8 stacked model of wedge/triangle/tapered waveguide
  • the light is incident from the rear end of the waveguide. If the light is incident from the thin end of the waveguide, each upper and lower surface is reflected once, and the light and the surface are reflected once. The included angle decreases by 2 ⁇ .
  • the included angle between the light and the surface increases by 2 ⁇ .
  • the angle of the incident light can be controllably changed, and the light can be coupled out at the appropriate position of the waveguide by the method of angle control and selection (the general practice is to make all the light experience the same number of reflections in the waveguide when it is coupled out of the waveguide, Or experience the same number of reflections in the waveguide from the previous interface to the next interface), or combine different areas of the surface with different refractive index coatings to better select the outcoupling light at an angle.
  • the upper and lower surfaces of the above-mentioned wedge-shaped waveguide can be connected to various optical modulation devices through input and output interfaces, or can not be connected to any optical modulator, but only pre-control the angle of light propagation in the latter layer of the waveguide.
  • connection of multiple waveguides adopts Z-shaped stacking.
  • various types of connections such as L-shaped can also be used.
  • the Z-shaped or L-shaped connection can make the propagation plane of the light in the two connected waveguides (the plane formed by the line segments of the same light reflected twice in the waveguide) parallel (for example, as shown in Fig. 7 and Fig. 12), or it can be connected so that the propagation plane in the waveguide (the plane formed by the line segments of the same light reflected twice in the waveguide) in the waveguide where the light is connected at each turning before and after the connection is vertical or vertical. a certain angle (such as shown in Figure 13).
  • the connection can also be a combination of the above two ways.
  • the optical device can be used as a miniature lens system, and external photosensitive components, such as film, CCD/CMOS, etc., can be connected through the input and output interface, so as to be used in the photography and camera systems of mobile phones and wearable devices.
  • external photosensitive components such as film, CCD/CMOS, etc.
  • Embodiment 5 is a head-mounted display system, which is applied in the field of AR/VR.
  • the system includes RGB three-color LED light sources.
  • the three-color light of R, G, and B is output at different times according to the sequence.
  • PBS After passing through PBS, it becomes linearly polarized light and enters the rear LCoS chip.
  • LCoS uses intensity modulation to change the polarization.
  • the light is reflected into the PBS again, and the PBS guides the image light into the waveguide through the input and output interface 51 (here, the polarizing prism PBS) according to the polarization.
  • the refractive index of the waveguide is n, and the light propagates through total reflection in the waveguide, passes through the input and output interfaces 52, 53, and 54 in turn, and is modulated by the corresponding optical modulation devices 56, 57, and 58 into parallel light corresponding to various angles (corresponding to infinity).
  • the image can also be non-parallel light, thus modulated into an image with a certain image distance).
  • the different regions of the input and output interfaces 52 , 53 and 54 are respectively coated with films with different refractive indices (or films with graded refractive indices).
  • the light After modulation, the light reaches the input and output interface 55 and the optical modulation device 59 (55 and 59 can be the same device, and play the role of the input and output interface and the modulator at the same time).
  • the optical modulation device 59 is an SRG surface grating. The energy is coupled out of the waveguide by it, and part of the energy continues to propagate and reflect along the original path, and then reaches the input and output interface 55 again, and is partially coupled out of the waveguide again (the light can be partially coupled out of the waveguide through the grating for many times), so as to realize the pupil dilation function through the SRG. , to bring a bigger EYEBOX to the viewer.
  • the films with different refractive indices plated in different regions of the above-mentioned interfaces satisfy the following conditions: all the light coupled out of the waveguide by the corresponding interface is before being coupled out of the waveguide (or from the last time after being coupled into the waveguide by the previous input interface to the current coupling out of the waveguide). between waveguides) experience the same number of reflections within the waveguide.
  • the angles between rays 1 and 2 and the surface of the waveguide when they propagate in the waveguide after being output from the previous input and output interface are ⁇ 1 and ⁇ 2
  • the position where light 1 reaches the next interface after three reflections on the upper and lower surfaces is coated with a film with a refractive index of n 1 , but n sin ⁇ 1 ⁇ n 1 , so light 1 is coupled out of the waveguide and is modulated by the corresponding modulation device Then return to the waveguide to continue propagation.
  • Light 2 is coated with a film with a refractive index of n 1 at the position where it reaches the next interface after being reflected twice on the upper and lower surfaces, but n sin ⁇ 2 >n 1 , so light 2 reaches the interface after being reflected once again on the upper and lower surfaces.
  • the position of ray 2 is coated with a film with a refractive index of n 2 , and n sin ⁇ 2 >n 2 , so the light 2 is coupled out of the waveguide and modulated by the corresponding modulation device, and then returns to the waveguide to continue propagating.
  • the incident light can be screened.
  • the light that meets the three times of reflection in the waveguide is coupled out of the waveguide through the angle, and the rest of the light is not. will be coupled out of the waveguide to be modulated by the corresponding modulation device.
  • An anti-reflection coating can also be coated between the different refractive index film layers of the interface and the waveguide to improve the transmittance of qualified light and reduce reflected stray light.
  • a film with a certain refractive index can also be plated between the waveguide surfaces of the former input and output interface and the latter input and output interface (different refractive index films or films with continuously changing refractive index can be coated in different regions).
  • layer which can be understood as a special interface
  • the angle of the light modulated by the modulator in the out-coupled waveguide in the previous interface has changed, the angle with the light that is not coupled out of the waveguide (which can be regarded as stray light in most cases) It has been different so that stray light can be coupled out of the waveguide through the angular selectivity of this film (eg absorption or no longer returning it into the waveguide).
  • This method can also eliminate part of the stray light.
  • the LCoS as the imaging element (pixel) can also be flatly attached to the input and output interfaces like other optical devices, the light is obliquely incident from the input and output interfaces through the polarizer, and the surface of the LCoS adopts a high refractive index of ITO glass, thereby reducing the off-axis angle of incident light.
  • the polarization directions of the image light and the stray light become different.
  • the stray light is filtered out by means of polarization selection, and the image continues to propagate in the waveguide.
  • an arrayed waveguide made by splicing prism arrays), a volume grating, or a thin film prepared with a certain microstructure (such as a microprism array) can also be used instead of a surface grating, it performs the same pupil dilation (expansion of the optical aperture).
  • Embodiment 6 is a head-mounted display system.
  • the light source is incident from the side of the waveguide, and enters the modulation device 62 through the input and output interface 61.
  • the modulation device 62 is an imaging device/pixel, such as LCD, LCoS, DMD or Mems Scanner, etc. (OLED, Micro LED and other self-illuminating image components can also be used, and no light source illumination is required at this time).
  • optical modulation devices there are devices that can dynamically adjust the focal length/light wavefront (such as phase-modulated spatial light modulators, such as phase-modulated LCoS, liquid crystal lenses, variable focus lenses, etc.), and light passes through multiple input and output interfaces and corresponding optical
  • the modulating device modulates the device that propagates to the dynamically modulated light wavefront, which can realize real-time change of the image distance and adjust the aberration, so that the final image distance seen by the viewer can be dynamically changed in real time according to the needs (generally controlled and adjusted by electronic signals)
  • the image seen by the viewer in the previous time contains an object with an image distance of 0.3 meters
  • the control system controls the light modulator to change the wavefront of the input light through electrical signals Modulation so that the viewer sees an image containing two objects at image distances of 0.5 m and 5 m.
  • the pixel can also use a phase-modulated spatial light modulator (such as phase-modulated LCOS, or dual-LCOS using dual-phase modulation) to output a kinoogram/hologram.
  • a phase-modulated spatial light modulator such as phase-modulated LCOS, or dual-LCOS using dual-phase modulation
  • One device can simultaneously achieve image imaging and image depth and image depth. Modulation/adjustment of aberrations without adding dynamic spatial light modulators that adjust image distance and aberrations.
  • the dynamic spatial light modulator can also be used to compensate for errors such as nearsightedness/farsightedness, astigmatism, etc. existing in the viewer's eyes, so that the viewer can use the system/device in this example to see the image clearly without wearing glasses .
  • a modulation device can also be added on the side of the waveguide facing the external environment (as shown in Figure 11, at this time, the dynamic spatial light modulator is set before the final coupling/combining optical path, and the The external ambient light introduced into the waveguide generates modulation), so that the added modulation device can compensate for the external ambient light (similar to spectacle lenses), so that viewers with vision defects can clearly see the virtual image output by the device and the external environment at the same time .
  • a photosensitive element such as CCD/CMOS
  • the ambient light input from the outside and/or the image of the human eye for eye tracking
  • the functions of taking pictures and video can be realized (the ambient light is input from the external ambient light position on the other end of the waveguide, and the image light of the human eye can output the displayed image from the other side of the waveguide to the interface input of the human eye).
  • the external control system adjusts the output image of the pixel according to the result after processing the information on the CCD/CMOS. For example, through the external image information and/or the current diopter information of the human eye, the spatial light modulator is controlled to adjust the image distance of the displayed image.
  • a transparent dynamic spatial light modulator can also be used on the side of the waveguide facing the external environment to compensate for the external ambient light (at this time, the dynamic spatial light modulation that modulates the image distance/aberration)
  • the device is arranged after the final coupling/combining optical path, which affects the external ambient light introduced into the waveguide), so that the added modulator can compensate for the external ambient light, and the spatial light modulator that will be affected by the subsequent image modulation will be affected.
  • the ambient light is pre-compensated (the pre-compensation parameters here are dynamically changed according to the parameters of the image modulation spatial light modulator) to offset the influence of subsequent modulation (you can also add compensation for the eyes of the viewer with vision defects, such as myopia, hyperopia, Astigmatism, etc.), so that the viewer can clearly see the virtual image output by the device and the external environment at the same time.
  • the pre-compensation parameters here are dynamically changed according to the parameters of the image modulation spatial light modulator to offset the influence of subsequent modulation (you can also add compensation for the eyes of the viewer with vision defects, such as myopia, hyperopia, Astigmatism, etc.), so that the viewer can clearly see the virtual image output by the device and the external environment at the same time.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

一种光学器件、系统及光学设备,包含第一光学器件,第一光学器件具有多个表面,第一光学器件具有输入输出接口(11-15,21,22,24,26,31-36,51-55,61);至少一个输入输出接口(11-15,21,22,24,26,31-36,51-55,61)连接光学调制器件(13,23,27,37,38,39,310,56-59),至少一个光学调制器件(13,23,27,37,38,39,310,56-59)在调制输入输出接口(11-15,21,22,24,26,31-36,51-55,61)输出的光线之后将光线引导回第一光学器件。通过结合传统的透镜系统与波导本身的优势,可以在较小的体积内实现多组透镜/反射镜对光线调制的功能,从而实现超轻便的光学系统/器件的设计与制造,可以应用于各种与光或电磁波调制相关领域中。

Description

光学器件、系统及光学设备 技术领域
本发明涉及光学器件、系统及设备领域,具体地,涉及一种光学器件、系统及光学设备。
背景技术
光学设计中为了对光线进行调制(例如压缩或扩展,聚焦等),往往需要使被光线器件(例如透镜)调制的光线传播一定的距离,从而导致整个光学系统必须占据一定的空间大小。在一些对体积较为敏感的应用中,例如头戴式的AR/VR系统,手机、穿戴式设备的照相镜头等,压缩光学系统的体积是一个设计难题。
正如专利文献“能扩瞳且出光均匀的衍射波导”(CN111123524A),波导基体、入射光栅、均光光栅阵列和出射光栅;其中,所述入射光栅、所述均光光栅阵列和所述出射光栅依次间隔排列设置在所述波导基体的表面,所述入射光栅经所述均光光栅阵列至所述出射光栅形成传输光路。通过在入射光栅与出射光栅之间的波导基体上设置均光光栅阵列,使入射光栅的光经均光光栅阵列进入出射光栅。现有技术往往通过波导系统(例如衍射波导,阵列式波导等)来实现,但上述波导本身只具备扩瞳能力,并不能替代透镜/反射镜等光学器件来实现对光线的压缩或扩展等调制功能。
发明内容
针对现有技术中的缺陷,本发明的目的是提供一种光学器件、系统及光学设备,将光学设计中的各个器件集成在一起,压缩光路大小,减小器件/系统体积。
根据本发明提供的一种光学器件,包含第一光学器件,所述第一光学器件具有多个表面,所述第一光学器件具有输入输出接口;
至少一个所述输入输出接口连接光学调制器件,至少一个光学调制器件在调制所述输入输出接口输出的光线之后将光线引导回所述第一光学器件。
优选地,所述光线在所述第一光学器件中传播。
优选地,所述多个表面中有至少两个表面相互平行。
优选地,所述多个表面中的至少两个表面具有预设的角度(例如三角形或楔形结构)和/或所述至少两个表面中至少一个表面为曲面(例如锥面,或者横截面为抛物线的锥面等)。
优选地,所述表面的不同区段分别镀有一种或多种薄膜。
优选地,所述薄膜为增透、增反、微结构(例如微棱镜、微透镜等)、光栅(衍射结构)、偏振相关、波长选择、角度选择中的任一种或任多种。
优选地,所述光线在所述第一光学器件内部至少经历一次全反射/或反射。可以是光线入射到器件表面的角度大于全反射角(器件折射率及器件外部介质折射率决定,外部介质可以是空气,此时无需镀膜),光线全反射也可以是在器件表面镀了增反性质的薄膜(例如使其表面成为镜面),使光线完全的反射回第一光线器件内部。
优选地,所述第一光学器件为波导器件,所述光线在波导中全反射传播。
优选地,所述波导器件的至少两个表面平行或不平行。
优选地,波导表面的夹角和/或面型使得:从所述输入输出接口上耦合出第一光学器件的光线本次耦合出第一光学器件之前或在所述光线上一次耦合入第一光学器件至本次耦合出第一光学器件之间,在第一光学器件内经历的反射次数相同。
优选地,所述输入输出接口包含光选择性设计。
优选地,所述光选择性设计包括对输入光的角度、偏振方向、波长、以及输入/输出的时间点(例如前一时间周期允许输入,下一时间周期不允许输入,再下一时间周期允许输入,交错罔替,或根据外部信号控制)的任一种或任多种进行筛选。
优选地,所述输入输出接口镀有薄膜。
优选地,所述输入输出接口镀有折射率渐变的薄膜和/或分区镀有不同折射率的薄膜。
优选地,所述薄膜使得:从所述输入输出接口上耦合出第一光学器件的光线本次耦合出第一光学器件之前或在所述光线上一次耦合入第一光学器件至本次耦合出第一光学器件之间,在第一光学器件内经历的反射次数相同。
优选地,所述薄膜结合第一光学器件的表面之间的夹角和/或面型使得:从所述输入输出接口上耦合出第一光学器件的光线本次耦合出第一光学器件之前或在所述光线上一次耦合入第一光学器件至本次耦合出第一光学器件之间,在第一光学器件内经历的反射次数相同。
优选地,所述输入输出接口包括下述情况的至少其中之一:制备有衍射光栅(表面光栅或体光栅)、使用棱镜、使用偏振棱镜、使用微透镜/微棱镜/微反射镜及这些微结构组成的阵列、使用三角棱镜、使用三角反射镜、使用偏振片、使用滤光片。
优选地,所述光学调制器件包括反射镜、微反射镜、微反射镜阵列、透镜、微透镜、微透镜阵列、棱镜、微棱镜、微棱镜阵列、衍射器件、光栅器件、波片、偏振片、旋光器件、滤光片中的任一种或任多种。
优选地,所述光学调制器件包括空间光调制器。
优选地,所述空间光调制器包括LCoS,DMD,OLED,Microled、微振镜中的任一种或任多种。
优选地,所述空间光调制器使用强度和/或相位调制。
优选地,所述空间光调制器能够根据外部信号做动态调制。
优选地,所述第一光学器件通过所述输入输出接口由多个光学器件拼接而成。
优选地,所述拼接的形状包括呈一定角度的L型折叠拼接或Z型堆叠拼接。
优选地,拼接在一起的光学器件参数可以相同,也可以不同。
优选地,所述参数包括厚度、长度、表面的夹角、表面的面型、材料、镀膜的任一种或任多种。
优选地,所述输入输出接口连接感光元器件,包括:胶片、CCD、CMOS的至少其中之一。
优选地,所述第一光学器件具有多个输入输出接口,光线从不同的输入输出接口输入和/或输出。
优选地,所述第一光学器件具有多个输入输出接口,光线从不同的输入输出接口动态选择性输入或输出。
优选地,在所述第一光学器件的一个输入输出接口,可以连接感光元器件,包括但不限于CCD、CMOS、胶片等,从而可以利用光路可逆原理将所述器件应用做摄影摄像镜头,或在作为成像光学器件的同时(例如AR/VR等设备)作为摄影摄像器件,提供复用性减小器件/系统/设备体积。
根据本发明提供的一种光学系统,包含第一光学器件,所述第一光学器件具有多个表面,所述第一光学器件具有输入输出接口;
至少一个所述输入输出接口连接光学调制器件,至少一个光学调制器件在调制所述 输入输出接口输出的光线之后将光线引导回所述第一光学器件。
根据本发明提供的一种光学系统,包括上述的光学器件。
根据本发明提供的一种光学设备,包括上述的光学器件和系统。
与现有技术相比,本发明具有如下的有益效果:
本发明通过结合传统的透镜系统与波导本身的优势,可以在较小的体积内实现多组透镜/反射镜对光线调制的功能,从而实现超轻便的光学系统/器件的设计与制造,可以应用于各种与光或电磁波调制相关领域中。
附图说明
通过阅读参照以下附图对非限制性实施例所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:
图1为现有透镜光路示意图;
图2为实施例1的光学器件的一种示意图(可以等效于图1中的现有透镜光路);
图3为实施例1的光学器件的另一种示意图;
图4为实施例2的等效光学示意图;
图5为实施例2的光学器件的示意图;
图6为实施例3的光学器件的示意图;
图7为实施例4的光学器件的示意图;
图8为楔形/锥形波导的等效堆叠模型示意图;
图9为实施例5的光学系统/设备的示意图;
图10为平面波导部分区域中光线传播的等效堆叠模型示意图;
图11为实施例6的光学器件的示意图;
图12为一种光学器件的示意图;
图13为一种光学器件的示意图。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。这些都属于 本发明的保护范围。
实施例1
一种光学器件,通过波导结合调制器来将将光线聚焦,并缩短光路长度。如图1所示,现有透镜焦距100mm,输入的平行光聚焦的焦面位于器件100mm处,整个系统的长度约100mm,如图2和图3所示,本发明中使用一种波导系统,波导两个表面为平行平面,厚度为4mm,平行光从第一输入接口输入波导,此例中的第一输入接口11是在波导的一个侧面镀上反射薄膜,将输入光线反射入波导(也可替换成棱镜或使用SRG光栅,微棱镜薄膜等)。光线输入波导后与波导上下表面的夹角大于全反射角,在波导内传播,经历一次全反射后到达下表面的第二输入输出接口12,下表面的第二输入输出接口12连接一块反射镜13(光调制器),反射镜材质与波导材质相同(相同波长折射率相同),反射镜下表面具有一定曲率并镀有反射膜,能将输入的平行光反射后聚焦到100mm处,此处的输入输出接口采用与波导材质相近(折射率及色散系数相近)的UV光学胶将反射镜(上表面)胶合在波导的特定位置上。平行光线输入反射镜后被下表面反射,重新返回入波导,并且经过反射镜调制后开始聚焦。再经过数次反射后,进入第三输入输出接口14,此输入输出接口为与波导上下表面成约±45°的镀有反射膜的两个侧面构成(所述接口也可采用表面镀有反射膜的三角棱镜胶合到上下两片波导的侧面),光通过上述接口被耦合入上一层的波导继续传播,上一层波导的下表面与下一层波导的上表面间有微小的间隙,保证光不会从下一层波导直接入射上一层波导(或者也可以是上一层波导的下表面镀有图2所示反射膜或其它薄膜,将其与下一层波导分开),光在波导介质内传播到接近焦面位置时由第四输入输出接口15导出波导,第四光输入输出接口15可以是具有微结构的薄膜(例如微棱镜膜,SRG光栅等等),也可以是图3所示的倾斜的侧面镀有反射膜或使用棱镜耦出。由于光线的传播主要在波导中进行,相比原透镜系统约100mm的长度大大缩短至小于10mm。
此实施例中,第二输入输出接口是将反射镜与波导胶合在一起的胶层,并无特殊设计,也可以理解成就是光调制器本身的一部分,并不必需要对应特定的实物。
此外,上述实施例中由于光线在波导中斜入射反射镜,反射镜可以采用离轴设计来减小像差,还可以采用比波导介质折射率更大的材料来制作反射镜,从而减小输入反射镜光线的离轴角度。
此外,上述反射镜的曲面也可以是和波导采用同一块材料,通过加工制造一体成型或注模的方式制造后再镀上反射膜,而不是后期通过胶合的方式连接到波导上。
实施例2
如图5所示,本实施例中描述了一种包含多个光学调制器件的系统,其等效的光学系统如图4所示。光线1,2,3通过输入输出接口21耦合入波导后在波导内经历全反射后到达输入输出接口22,输入输出接口22胶合了光学调制器23,光学调制器23调制光线后将其返回波导,经过数次传播后到达光输入输出接口24,输入输出接口24胶合光学调制器25,光学调制器25调制入射光线后将其反射入波导,再经过一系列全反射后光线到达光输入输出接口26,输入输出接口26胶合光调制器27,与先前的光输入输出接口不同,输入输出接口26的不同区域分别镀有不同折射率的薄膜,能够控制不同角度的入射光分别在不同区域出射。例如光线1达到镀有折射率为n 1的薄膜区域时角度为θ 1,n 1小于波导介质本身的折射率n,上述角度满足条件n sin θ 1<n 1,故光线1从出射并被光调制器27反射后从波导输出。光线2达到镀有折射率为n 1的薄膜区域时角度为θ 2,上述角度满足条件n sin θ 2>n 1,故光线2再次全反射后到达镀有折射率为n 3薄膜的区域,n sin θ 2<n 3,故光线2出射并被光调制器27反射后从波导输出。光线3达到镀有折射率为n 3的薄膜区域时角度为θ 3,上述角度满足条件n sin θ 3<n 3,故光线3从出射并被光调制器27反射后从波导输出。
上述实施例中,当光线在输入输出接口的出射位置不符合设计需求时,可以在各个接口都分区镀有不同折射率的薄膜,以控制光线的出射位置,从而控制其入射光学调制器件的位置。薄膜的厚度一般控制在几个微米至几十微米之间,厚度很薄,其对整个光学系统产生的影响较小,一些情况下往往可以忽略不计。
上述实施例中,还可以在光输入输出接口与波导和/或光学调制器件之间镀有增透膜,提高光的利用率。
上述实施例中,还可以在加入偏振器件(例如1/4波片)作为光调制器27的一部分,位置在原光调制器27和输入输出接口26之间,并在波导的部分下表面贴合偏振片或镀上偏振薄膜。当输入的光为线偏光时,其经过1/4波片入射调制器并反射后再次经过1/4波片后偏振方向会旋转90°出射,当入射到下表面的偏振片或偏振薄膜时,经过光调制器27调制的光偏振方向与偏振片一致能够出射,而波导内未从输入输出接口26耦合出并经光调制器27调制的光仍为原偏振方向,将被偏振片滤除。
上述实施例的一个应用中,系统为AR近眼显示,光调制器27反射面镀膜为半透半反(也可以根据设计使从波导入射的光线在曲面27上满足全反射条件,且与后续的器件留有一定空隙或与后续器件之间填充一定折射率的介质使其满足全反射条件,从而27 无需镀增反/反射膜,可以提高光线利用率),反射面之后还胶合(或留有微小间隙)有一个对应表面曲面面型与反射面完全相同,另一表面为平面的器件,其两个表面都有很高的透射率,可以将外部的光耦合到光调制器27,一部分光将会透过半透半反的光调制器27的表面进入波导,且由于其一侧表面与光调制器27的曲面面型完全相同,其对外部环境光的调制可以被抵消,从而观看者可以通过波导看到透过光调制器27的外部环境光以及被光调制器27反射的图像光。此实施例中增加器件的另一个表面也可以是曲面,用以补偿观看者眼睛存在的近视/远视/散光等误差,从而实现眼镜的功能(波导输入光对于人眼误差的校准可以通过前述的23、25、27等多片光学器件校准)。或者也可以在27对应的波导另一面增加一片调制器件,同时校准波导的输出光及外部环境光,使具有近视/远视等缺陷的观看者能够看清所有的图像。
还可以根据光路可逆的原理,将实施例2中的器件用作照相系统的镜头,在同一第一光学器件的图像像元接口(此处为接口21)附近设置CCD/CMOS器件,从而可以拍摄观看者眼睛的情况(做眼睛追踪eye tracking),根据观看者眼睛的情况(如焦点距离,观看图像的位置等)对输出图像做调整。
或者还可以通过在同一第一光学器件上合理设置输入输出接口及调节器件,将外部的景象(环境光)也通过此器件拍摄下来。可以通过输入输出接口将输入的环境光过滤成一个方向的线偏振光,而从像元通过第一光学器件输出到观看者的图像光为另一个方向的线偏振光,则第一光学器件上连接的各调制器可以通过对应输入输出接口的偏振选择性来选择对环境光还是图像光做处理(部分调制器件的输入输出接口也可不做选择,则对环境光和图像光都做调制)。通过此中方法,可以通过一个器件/系统来同时实现近眼显示和摄影摄像。
实施例3
如图6所示,输入输出接口31采用SRG表面光栅,初始的输入光为线偏振,光线输入波导后依次到达输入输出接口32、33、34、35、36。其中输入输出接口33、34、35具有光线选择性设计,其镀有偏振选择性的薄膜,输入输出接口34能够将偏振方向与初始入射光偏振方向一致的光耦合至其对应胶合的调制器件37,而偏振方向与初始入射光偏振方向垂直的光并不会被导入调制器37,其将被直接按原反射的路径继续返回至波导传播,输入输出接口33、35则是能够将偏振方向与初始入射光偏振方向垂直的光耦合至其对应的调制器件,而偏振方向与初始入射光偏振方向一致的光将被按原反射的路径继续返回至波导传播。初始的输入光线经输入输出接口32被耦合入其胶合的调 制器件38后传播至输入输出接口33,由于偏振方向的选择性,其并不会被输入输出接口33耦合出波导而是沿原反射路径继续传播至输入输出接口34,被输入输出接口34耦合入对应的调制器件37,经调制后部分传播至输入输出接口35所在位置,部分在传播至波导其它区域,但由于输入输出接口35的偏振选择性,传播至输入输出接口35的这部分光线将于传播至其它波导区域的光线一样在波导中反射传播至波导侧面的输入输出接口36,输入输出接口36制备在波导的一个侧边上,输入输出接口36胶合了调制器310,调制器310包含一片可电控的器件(也可使用普通波片或旋光片替代),以及镀有反射膜的具有一定光学曲率的反射镜面(根据具体光学设计也可以是平面反射镜,或直接将反射膜镀在液晶片后一表面的ITO玻璃上)。光线经调制器310调制反射后偏振方向旋转90°,并被反射回原波导。当光线到达输入输出接口35时,由于偏振方向已被改变,其将被耦合入光调制器39,经调制后反射回波导。光线到达原输入输出接口34时,由于偏振方向已与初始的输入光垂直,光线将不会被导入调制器件37,而是沿反射的路径继续传播。最终光线到达输入输出接口33,由于偏振方向的改变,此次光线将会从输入输出接口33耦合出波导。输入输出接口33、35在波导表面还分区域镀有不同折射率的介质膜,如实施例2中的输入输出接口26一样,以通过角度控制使符合偏振要求的光线在接口正确的位置出射。
此实施例中,输入光线的波长还可以根据需要改变,例如有控制系统在不同时间分别将不同波段的光线输入波导(如显示系统中的时分复用显示),而光调制器310中的电控液晶器件,通过电控对液晶的调制实现对不同波段的光都能实现90°旋光的功能。
实施例4
如图7所示,实施例4中的第一光学器件使用多块波导拼接而成,拼接通过输入输出接口连接的调制器件(耦合器件,例如镀有反射膜的三角棱镜)完成。部分拼接的波导上下层之间没有空隙,通过之间的镀膜或两块波导材料折射率的不同来区分,部分拼接的波导上下层之间有一定的间隙,可以用容纳输入输出接口及其连接的光调制器件。拼接的波导中有上下两个表面不平行的楔形波导(光线每在其上下表面反射一次,其与表面的夹角都将会改变),从而可以控制光线角度,通过角度区分使其在合适位置耦出波导进入调制器件(可以省去输入输出接口,接口与调制器件一体,还可以实现角度控制),或者结合折射率变化的镀膜更好的控制光线耦出波导。楔形波导(或表面为曲面波导)的另一作用是可控的改变光线角度(可增大也可减小角度,视输入和输出端是波导的厚端还是薄端而定),从而能够方便后续系统对光的调制处理。此例中各波导的厚度 并不相同,可以通过不同的输入输出接口(例如边长不等的镀有反射膜的三角棱镜)连接在一起。波导使用的材质也可以是不同的,从而结合调制器件更好的实现对光的调制。
需要指出的是本实施例中加入了楔形波导,光线在楔形波导中传播时每在波导的上下表面各经历一次反射,其与表面的夹角将改变2α,其中α为楔形波导两个表面延长后的夹角,如图8(楔形/三角形/锥形波导的堆叠模型)所示,此图中光线从波导后端入射若光线从波导的薄端入射,每上下表面反射一次,光线与表面夹角减小2α,若从厚端入射,则每上下表面反射一次,光线与表面夹角增加2α。通过楔形波导可以可控的改变入射光线的角度,用角度控制和选择的方法使光线在波导的合适位置耦出(一般做法是使所有光线在耦出波导时在波导内经历相同的反射次数,或从上一接口开始至下一接口之间在波导内经历相同的反射次数),也可以结合表面不同区域分别镀不同折射率镀膜的方式来更好以角度选择耦出光线。上述楔形波导上下表面都可以通过输入输出接口连接各种光调制器件,也可以不连接任何光调制器,而只是为光在后一层波导中的传播预先做角度控制。
上述实施例中,多块波导的连接采用Z型的堆叠,在其变化例中,根据系统对空间形状的要求,也可以采用例如L型等各种根据需求形状的连接。
上述实施例中,Z型或L型的连接可以使得连接前后每次转折时光线在相连接的两块波导中的传播平面(同一光线在波导中两次反射的光线线段构成的平面)平行(例如图7,图12所示),或者也可以是连接使得连接前后每次转折时光线相连接的波导中的传播平面(同一光线在波导中两次反射的光线线段构成的平面)垂直或成一定角度(例如图13所示)。所述连接也可以是上述两种方式的组合。
上述实施例中光学器件可以作为微型的镜头系统应用,通过输入输出接口外接感光元器件,例如胶片、CCD/CMOS等器件,从而应用于手机、穿戴式设备的摄影摄像系统中。
实施例5
如图9所示,实施例5为一种头戴式显示系统,应用于AR/VR领域。系统中包含RGB三色LED光源,根据外部的电子控制系统按时序分别在不同时间输出R、G、B三色光线,经过PBS后成为线偏振光入射后面LCoS芯片,LCoS采用强度调制,改变偏振后再次将光线反射入PBS,PBS根据偏振将图像光通过输入输出接口51(此处为偏振棱镜PBS)导入波导。波导折射率为n,光线在波导中全反射传播,依次经过输入输出接口52、53、54,被其对应的光学调制器件56、57、58调制为各种角度对应的平行光 (对应无穷远的像,也可以是非平行光,从而调制为一定像距的像)。其中输入输出接口52、53、54的不同区域分别镀有不同折射率的薄膜(或折射率渐变的膜层)。经调制后光线到达输入输出接口55及光学调制器件59(55和59可以是同一器件,同时起输入输出接口和调制器的作用),此例中光学调制器件59为SRG表面光栅,光线的部分能量被其耦合出波导,部分能量沿原路径继续传播反射后再次到达输入输出接口55,再次部分被耦合出波导(光线可以通过光栅多次被部分耦合出波导),从而通过SRG实现扩瞳功能,给观看者带来更大的EYEBOX。
上述接口不同区域镀有的不同折射率的膜层满足如下条件:使得被相应接口耦合出波导的所有光线在耦合出波导之前(或从上一次由先前输入接口耦合入波导后至本次耦合出波导之间)在波导内经历相同的反射次数。例如图10所示(平面波导部分区域中光线传播的等效堆栈模型),光线1和2在从上一个输入输出接口输出后在波导中的传播时与波导表面的夹角分别为θ 1和θ 2,光线1在经过上下表面各3次反射后到达下一接口的位置镀有折射率为n 1的薄膜,但n sin θ 1<n 1,故光线1耦合出波导被对应调制器件调制后再返回波导继续传播。光线2在经过上下表面各2次反射后到达下一接口的位置镀有折射率为n 1的薄膜,但n sin θ 2>n 1,所以光线2又在上下表面各反射一次后,到达接口的位置镀有折射率n 2的薄膜,n sin θ 2>n 2,故光线2耦合出波导被对应调制器件调制后再返回波导继续传播。综上所述通过对接口不同区域镀有不同折射率薄膜的方法,可以对入射光线进行筛选,在此例中为通过角度将满足在波导内反射3次的光线耦合出波导,其余光线则不会被耦合出波导被相应调制器件调制。在接口的不同折射率膜层与波导之间,还可以镀有增透膜层,以提高符合条件的光的透射率,降低反射的杂光。
此实施例中,还可以在前一输入输出接口和后一输入输出接口的波导表面之间也镀上一定折射率的膜层(可以分区域镀不同折射率膜层或折射率连续变化的膜层,可以理解为一种特殊接口),由于前一接口中耦出波导被调制器调制的光角度已经发生改变,与未被耦出波导的光(大多情况下可以被视为杂光)角度已有所不同,从而可以通过此膜层的角度选择性将杂光耦出波导处理(例如吸收或不再将其返回波导中)。这种方法也可以消除部分的杂光。
此实施例的一个变化中,作为成像元件(像元)的LCoS还可以如其它光学器件一样平贴在输入输出接口上,光从输入输出接口透过偏振片倾斜入射,LCoS表面采用高折射率的ITO玻璃,从而减小入射光的离轴角度。光线经调制后图像光和杂光的偏振方向 变得不同,耦合回波导后,通过偏振选择的方式杂光被滤除而图像继续在波导中传播。
此实施例的变化中,还可以使用DMD芯片、微振镜(MEMS SCANNER)、OLED、Micro LED等其它像元替代,其耦合入波导的方式可以做相应的改变。此实施例的一个变化中,在最后将光耦合出波导的表面光栅处,还可以用阵列式波导(棱镜阵列拼接而成)、体光栅或制备有一定微结构(例如微棱镜阵列)的薄膜替代表面光栅,起到相同的扩瞳(光学孔径的扩展)作用。
实施例6
如图11所示,实施例6是一种头戴式显示系统,光源从波导侧面入射,经输入输出接口61进入调制器件62,此例中调制器件62为成像器件/像元,例如LCD、LCoS,DMD或Mems Scanner等(也可以用OLED、Micro LED等自发光的像元器件,此时无需光源照明)。光学调制器件中有可动态调节焦距/光波前的器件(例如相位调制的空间光调制器、如相位调制的LCoS、液晶透镜、可变焦透镜等),光经过多个输入输出接口及对应的光学调制器件调制后传播到动态调制光波前的器件,可以实现对图像像距的实时改变及调节像差,使观看者看到的最终像距可根据需求实时动态改变(一般通过电子信号控制调节),例如前一时间内观看者看到的图像包含像距为0.3米的一个物体,而下一时间周期内,根据需求,控制系统通过电信号控制所述光调制器改变对输入光的波前调制,使观看者看到的图像中包含像距为0.5米和5米的两个物体。
此例中像元也可采用相位调制的空间光调制器(例如相位调制的LCOS,或双LCOS采用双相位方式调制)输出相息图/全息图,一个器件同时实现图像的成像及图像深度及像差的调制/调节,而无需再增加调节像距和像差的动态空间光调制器。
此例中,还可以通过动态的空间光调制器补偿观看者眼睛存在的近视/远视、散光等等误差,从而使观看者无需佩戴眼镜就可使用此例中的系统/设备清晰的观看到图像。当其为AR/MR设备时,还可以在波导对着外部环境的一面增加一片调制器件(如图11,此时动态空间光调制器设置在最后的耦出/合路光路之前,并未对导入波导的外部环境光产生调制),使增加的调制器件能对外部环境光做补偿(类似眼镜镜片),使视力有缺陷的观看者能够同时清晰的看到设备输出的虚拟图像及外部的环境。
此实施例中,还可以在成像元件62附近设置感光元器件(例如CCD/CMOS),利用光路可逆的原理通过波导将外部输入的环境光和/或人眼的图像(做eye tracking用)聚焦在感光原件上,从而实现拍照和摄像的功能(环境光从波导另一端的外部环境光位置输入,人眼的图像光则可从波导另一面将显示图像输出至人眼的接口输入)。外部控制 系统处理CCD/CMOS上的信息后根据结果对像元的输出图像做调整,例如通过外部图像信息和/或人眼当前的屈光度信息,控制空间光调制器调节所显示图像的像距。
此例的一个变化例中,还可以在波导对着外部环境的一面使用透明的动态空间光调制器对外部环境光进行补偿,(此时对图像像距/像差进行调制的动态空间光调制器设置在最后的耦出/合路光路之后,对导入波导的外部环境光产生影响),使增加的调制器能对外部环境光做补偿,对将受到后续图像调制的空间光调制器影响的环境光进行预补偿(此处的预补偿参数根据图像调制空间光调制器的参数动态变化),抵消后续调制的影响(还可以加入对视力有缺陷的观看者眼睛的补偿,例如近视、远视、散光等),使观看者能够同时清晰的看到设备输出的虚拟图像及外部的环境。
在本申请的描述中,需要理解的是,术语“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变化或修改,这并不影响本发明的实质内容。在不冲突的情况下,本申请的实施例和实施例中的特征可以任意相互组合。

Claims (29)

  1. 一种光学器件,其特征在于,包含第一光学器件,所述第一光学器件具有多个表面,所述第一光学器件具有输入输出接口;
    至少一个所述输入输出接口连接光学调制器件,至少一个光学调制器件在调制所述输入输出接口输出的光线之后将光线引导回所述第一光学器件。
  2. 根据权利要求1所述的光学器件,其特征在于,所述光线在所述第一光学器件中传播。
  3. 根据权利要求1所述的光学器件,其特征在于,所述多个表面中有至少两个表面相互平行。
  4. 根据权利要求1所述的光学器件,其特征在于,所述多个表面中的至少两个表面具有预设的角度和/或所述至少两个表面中至少一个表面为曲面。
  5. 根据权利要求1所述的光学器件,其特征在于,所述表面的不同区段分别镀有一种或多种薄膜。
  6. 根据权利要求5所述的光学器件,其特征在于,所述薄膜为增透、增反、微结构、光栅、偏振相关、波长选择、角度选择中的任一种或任多种。
  7. 根据权利要求1所述的光学器件,其特征在于,所述光线在所述第一光学器件内部至少经历一次全反射/或反射。
  8. 根据权利要求1所述的光学器件,其特征在于,所述第一光学器件为波导器件,所述光线在波导中全反射传播。
  9. 根据权利要求1所述的光学器件,其特征在于,所述输入输出接口包含光选择性设计。
  10. 根据权利要求9所述的光学器件,其特征在于,所述光选择性设计包括对输入光的角度、偏振方向、波长、输入/输出的时间点的任一种或任多种进行筛选。
  11. 根据权利要求1所述的光学器件,其特征在于,所述输入输出接口镀有薄膜。
  12. 根据权利要求1所述的光学器件,其特征在于,所述输入输出接口镀有折射率渐变的薄膜和/或分区镀有不同折射率的薄膜。
  13. 根据权利要求12所述的光学器件,其特征在于,所述薄膜使得:从所述输入输出接口上耦合出第一光学器件的光线本次耦合出第一光学器件之前或在所述光线上一次耦合入第一光学器件至本次耦合出第一光学器件之间,在第一光学器件内经历的反 射次数相同。
  14. 根据权利要求4所述的光学器件,其特征在于,所述预设角度或曲面面型使得:从所述输入输出接口上耦合出第一光学器件的光线本次耦合出第一光学器件之前或在所述光线上一次耦合入第一光学器件至本次耦合出第一光学器件之间,在第一光学器件内经历的反射次数相同。
  15. 根据权利要求1所述的光学器件,其特征在于,所述输入输出接口包括下述情况的至少其中之一:使用光栅、使用棱镜、使用偏振棱镜、使用微透镜/微棱镜/微反射镜、使用微透镜阵列/微棱镜阵列/微反射镜阵列、使用三角棱镜、使用反射镜、使用三角反射镜、使用偏振片、使用滤光片。
  16. 根据权利要求1所述的光学器件,其特征在于,所述光学调制器件包括反射镜、微反射镜、微反射镜阵列、透镜、微透镜、微透镜阵列、棱镜、微棱镜、微棱镜阵列、衍射器件、光栅器件、波片、偏振片、旋光器件、滤光片中的任一种或任多种。
  17. 根据权利要求1所述的光学器件,其特征在于,所述光学调制器件包括空间光调制器。
  18. 根据权利要求17所述的光学器件,其特征在于,所述空间光调制器包括LCoS,DMD,OLED,Micro LED、微振镜中的任一种或任多种。
  19. 根据权利要求17所述的光学器件,其特征在于,所述空间光调制器使用强度和/或相位调制。
  20. 根据权利要求17所述的光学器件,其特征在于,所述空间光调制器能够根据外部信号做动态调制。
  21. 根据权利要求1所述的光学器件,其特征在于,所述第一光学器件通过所述输入输出接口由多个光学器件拼接而成。
  22. 根据权利要求21所述的光学器件,其特征在于,所述拼接的形状包括呈一定角度的L型折叠拼接和/或Z型拼接。
  23. 根据权利要求21所述的光学器件,其特征在于,拼接在一起的光学器件参数相同或不同。
  24. 根据权利要求23所述的光学器件,其特征在于,所述参数包括厚度、长度、表面的夹角、表面的面型、器件材料、镀膜的任一种或任多种。
  25. 根据权利要求1所述的光学器件,其特征在于,所述输入输出接口连接感光元器件,包括:胶片、CCD、CMOS的至少其中之一。
  26. 根据权利要求1所述的光学器件,其特征在于,所述第一光学器件具有多个输入输出接口,光线从不同的输入输出接口输入和/或输出。
  27. 根据权利要求1所述的光学器件,其特征在于,所述第一光学器件具有多个输入输出接口,光线从不同的输入输出接口动态选择性输入和/或输出。
  28. 一种光学系统,其特征在于,其特征在于,包括权利要求1至27任一项所述的光学器件。
  29. 一种光学设备,其特征在于,包括权利要求1至27任一项所述的光学器件或权利要求28所述的光学系统。
PCT/CN2021/072061 2020-08-13 2021-01-15 光学器件、系统及光学设备 WO2022032985A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/020,959 US20230305217A1 (en) 2020-08-13 2021-01-15 Optical device, optical system and optical apparatus
EP21855042.4A EP4191295A4 (en) 2020-08-13 2021-01-15 OPTICAL ELEMENT AND SYSTEM AND OPTICAL DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010814795.5 2020-08-13
CN202010814795.5A CN111965813A (zh) 2020-08-13 2020-08-13 光学器件、系统及光学设备

Publications (1)

Publication Number Publication Date
WO2022032985A1 true WO2022032985A1 (zh) 2022-02-17

Family

ID=73365596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072061 WO2022032985A1 (zh) 2020-08-13 2021-01-15 光学器件、系统及光学设备

Country Status (4)

Country Link
US (1) US20230305217A1 (zh)
EP (1) EP4191295A4 (zh)
CN (1) CN111965813A (zh)
WO (1) WO2022032985A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112796060B (zh) * 2020-11-30 2023-05-12 北京服装学院 一种服装表面处理设备
CN113093324B (zh) * 2021-04-12 2022-09-02 维沃移动通信有限公司 光学系统和可穿戴设备
CN113126191B (zh) * 2021-04-27 2023-06-27 上海慧希电子科技有限公司 一种光学器件及光学系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882868A (zh) * 2003-12-10 2006-12-20 松下电器产业株式会社 光学元件、激光光源和二维图像形成装置
US20180024286A1 (en) * 2016-07-21 2018-01-25 Google Inc. Head-mounted display with off-board illumination
CN110488490A (zh) * 2019-07-22 2019-11-22 渭南正和电子科技有限公司 一种紧凑型增强现实近眼显示装置
CN110927975A (zh) * 2019-12-20 2020-03-27 北京理工大学 一种波导显示系统、增强现实眼镜
CN210323583U (zh) * 2019-06-13 2020-04-14 句容福芯电子有限公司 基于全息波导的近眼显示器
CN111123524A (zh) 2020-01-17 2020-05-08 北京枭龙科技有限公司 能扩瞳且出光均匀的衍射波导
CN111175975A (zh) * 2020-01-16 2020-05-19 华东交通大学 一种用于实现大焦深成像的近眼显示装置
CN111399221A (zh) * 2019-01-02 2020-07-10 宏达国际电子股份有限公司 波导装置及光学引擎

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3279265B2 (ja) * 1998-03-26 2002-04-30 株式会社エム・アール・システム研究所 画像表示装置
US7565054B2 (en) * 2004-04-30 2009-07-21 Oy Modilis Ltd. Ultra thin lighting element
IL171820A (en) * 2005-11-08 2014-04-30 Lumus Ltd A polarizing optical component for light coupling within a conductive substrate
JP4893200B2 (ja) * 2006-09-28 2012-03-07 ブラザー工業株式会社 光束転送用の光学系、及び、これを用いた網膜走査型ディスプレイ
US9395544B2 (en) * 2014-03-13 2016-07-19 Google Inc. Eyepiece with switchable reflector for head wearable display
CN105319627B (zh) * 2014-06-05 2019-10-22 杨文君 光学结构以及透明、侧投、镜面和前投显示屏
CN106796348B (zh) * 2014-08-18 2019-05-03 精工爱普生株式会社 导光装置及虚像显示设备
US20180003892A1 (en) * 2015-02-27 2018-01-04 3M Innovative Properties Company Light guide articles and methods of making
JP7138051B2 (ja) * 2016-06-09 2022-09-15 スリーエム イノベイティブ プロパティズ カンパニー ディスプレイシステム及びライトガイド
FI128665B (en) * 2017-12-22 2020-09-30 Dispelix Oy Waveguide display with improved glow
CN108363206A (zh) * 2018-01-30 2018-08-03 北京理工大学 一种宽视角的波导显示器
CN110275303A (zh) * 2019-06-13 2019-09-24 句容福芯电子有限公司 基于全息波导的近眼显示器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1882868A (zh) * 2003-12-10 2006-12-20 松下电器产业株式会社 光学元件、激光光源和二维图像形成装置
US20180024286A1 (en) * 2016-07-21 2018-01-25 Google Inc. Head-mounted display with off-board illumination
CN111399221A (zh) * 2019-01-02 2020-07-10 宏达国际电子股份有限公司 波导装置及光学引擎
CN210323583U (zh) * 2019-06-13 2020-04-14 句容福芯电子有限公司 基于全息波导的近眼显示器
CN110488490A (zh) * 2019-07-22 2019-11-22 渭南正和电子科技有限公司 一种紧凑型增强现实近眼显示装置
CN110927975A (zh) * 2019-12-20 2020-03-27 北京理工大学 一种波导显示系统、增强现实眼镜
CN111175975A (zh) * 2020-01-16 2020-05-19 华东交通大学 一种用于实现大焦深成像的近眼显示装置
CN111123524A (zh) 2020-01-17 2020-05-08 北京枭龙科技有限公司 能扩瞳且出光均匀的衍射波导

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4191295A4

Also Published As

Publication number Publication date
EP4191295A1 (en) 2023-06-07
CN111965813A (zh) 2020-11-20
EP4191295A4 (en) 2024-01-17
US20230305217A1 (en) 2023-09-28

Similar Documents

Publication Publication Date Title
US11867906B2 (en) Wearable AR system and AR display device
US10782532B2 (en) Compact head-mounted display system protected by a hyperfine structure
WO2022142602A1 (zh) 光学器件、系统及光学设备
JP7420817B2 (ja) 入力開口が小さく、かつ高効率なコンパクトヘッドマウントディスプレイシステム
TWI712821B (zh) 光學系統、擴增實境系統、抬頭顯示系統、電子裝置以及光學模組
KR102578625B1 (ko) 기판 유도식 광학 장치
US6331916B1 (en) Virtual image optical system
WO2022032985A1 (zh) 光学器件、系统及光学设备
PL209571B1 (pl) Urządzenie optyczne z materiałem o całkowitym wewnętrznym odbiciu światła
CN113138462A (zh) 使用光导的显示器光学器件
WO2023108949A1 (zh) 光学器件和光学系统以及ar设备
JP2001166252A (ja) 画像表示装置
WO2017033975A1 (ja) ホログラム記録構造,光学デバイス及び製造方法
CN113126191B (zh) 一种光学器件及光学系统
US20230236420A1 (en) Compact near eye display engine
TWI829434B (zh) 光學鏡頭模組、光機模組以及頭戴式顯示裝置
US20230059918A1 (en) Compact near eye display engine
CN117389050A (zh) 光学系统及光学设备
KR20240035815A (ko) 투영 유닛, 및 투영 유닛을 갖는 투영 장치
Rallison et al. Combat vehicle stereo HMD

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21855042

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021855042

Country of ref document: EP

Effective date: 20230228

NENP Non-entry into the national phase

Ref country code: DE