WO2022032860A1 - 近零排放型烟气多污染物一体化脱除系统及方法 - Google Patents
近零排放型烟气多污染物一体化脱除系统及方法 Download PDFInfo
- Publication number
- WO2022032860A1 WO2022032860A1 PCT/CN2020/121308 CN2020121308W WO2022032860A1 WO 2022032860 A1 WO2022032860 A1 WO 2022032860A1 CN 2020121308 W CN2020121308 W CN 2020121308W WO 2022032860 A1 WO2022032860 A1 WO 2022032860A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flue gas
- low
- adsorption tower
- temperature
- pollutant
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/002—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D51/00—Auxiliary pretreatment of gases or vapours to be cleaned
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/04—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/02—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
- B01D53/06—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B03—SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C—MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
- B03C3/00—Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
- B03C3/017—Combinations of electrostatic separation with other processes, not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/20—Halogens or halogen compounds
- B01D2257/204—Inorganic halogen compounds
- B01D2257/2045—Hydrochloric acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/20—Halogens or halogen compounds
- B01D2257/204—Inorganic halogen compounds
- B01D2257/2047—Hydrofluoric acid
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/30—Sulfur compounds
- B01D2257/302—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/40—Nitrogen compounds
- B01D2257/404—Nitrogen oxides other than dinitrogen oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/60—Heavy metals or heavy metal compounds
- B01D2257/602—Mercury or mercury compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2257/00—Components to be removed
- B01D2257/70—Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
- B01D2257/708—Volatile organic compounds V.O.C.'s
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/02—Other waste gases
- B01D2258/0283—Flue gases
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2259/00—Type of treatment
- B01D2259/80—Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D47/00—Separating dispersed particles from gases, air or vapours by liquid as separating agent
- B01D47/06—Spray cleaning
Definitions
- the invention belongs to the technical field of flue gas pollutant treatment and purification, and in particular relates to a near-zero emission type integrated flue gas multi-pollutant removal system and method.
- Coal-fired flue gas produces a large amount of pollutants, which is one of the important factors that endanger the atmospheric environment and human health.
- Coal-fired flue gas pollutants can be divided into two categories: main pollutants and other pollutants according to their emissions and degree of harm.
- the main pollutants include dust, SO 2 and NOx. These pollutants have mature control technologies.
- the technologies widely used in large coal-fired boilers include bag dust removal, electrostatic dust removal, limestone-gypsum wet desulfurization, selective catalytic reduction ( SCR) denitrification, etc., calcium injection desulfurization and non-selective catalytic reduction (SNCR) denitrification technologies are also widely used in the upper furnace of small and medium-sized fluidized bed boilers.
- pollutants include SO 3 , HCl, HF, Hg, and VOCs.
- SO 3 sulfur dioxide
- HCl and HF are generally removed together with SO 2 in wet desulfurization.
- pollutants such as SO 3 , Hg and VOCs cannot be effectively removed in the current flue gas treatment system.
- the control of these harmful substances is also imperative.
- the activated coke method can simultaneously remove pollutants such as SO 3 , SO 3 , NO 2 , HCl, HF, Hg and VOCs by adsorption, but it cannot remove NO by adsorption, and NO is the main component of NOx, accounting for above 95.
- a 70-80% denitrification rate can be achieved through catalytic reduction, but it is difficult to meet the current demand for near-zero emissions.
- the purpose of the present invention is to provide a near-zero emission type flue gas multi-pollutant integrated removal system and method, to overcome the defects of the prior art, the present invention utilizes the solubility characteristics of pollutant components in flue gas at low temperature and The adsorption characteristics are used to remove pollutants, which can simultaneously remove SO 2 , SO 3 , NO, NO 2 , HCl, HF, Hg and VOCs in flue gas, and achieve near zero emissions.
- the present invention adopts the following technical solutions:
- Near-zero emission flue gas multi-pollutant integrated removal system including economizer, air preheater, electrostatic precipitator, flue gas cooler and low temperature adsorption tower;
- the shell side inlet of the economizer is connected to boiler flue gas
- the tube side inlet is connected to boiler feed water
- the shell side outlet of the economizer is connected to the tube side inlet of the air preheater
- the shell side inlet of the air preheater is connected to the boiler Inlet air
- the tube-side outlet of the air preheater is connected to the electrostatic precipitator
- the bottom of the electrostatic precipitator is provided with an ash discharge port
- the flue gas outlet of the electrostatic precipitator is connected to the flue gas cooler
- the bottom of the flue gas cooler is provided with condensed water
- the cold flue gas outlet at the top is connected to the low temperature adsorption tower, and the clean flue gas outlet is set at the tail of the low temperature adsorption tower.
- a direct spray cooling device or an indirect heat exchange cooling device is connected to the flue gas cooler.
- the low temperature adsorption tower adopts a fixed bed adsorption tower or a moving bed adsorption tower.
- the near-zero emission type flue gas multi-pollutant integrated removal method the boiler flue gas passes through the economizer to heat the boiler feed water, then passes through the air preheater to heat the boiler inlet air, and passes through the economizer and the air preheater to recover heat.
- the flue gas enters the electrostatic precipitator to remove the dust in the flue gas; the flue gas after dust removal enters the flue gas cooler and cools down to room temperature or lower temperature.
- all or part of the pollutant components in the flue gas are dissolved in the condensed water and discharged together.
- the cooled flue gas enters the low-temperature adsorption tower for pollutant adsorption, and finally the clean flue gas is discharged.
- the flue gas cooler adopts the direct spray cooling method or the indirect heat exchange cooling method.
- the spray cooling method adopted, a small amount of dust not removed by the electrostatic precipitator is also washed down and discharged with the condensed water. .
- the low-temperature adsorption tower there are two low-temperature adsorption towers.
- the first low-temperature adsorption tower is saturated with adsorption and SO 2 or NO begins to penetrate, the low-temperature flue gas is switched to the second low-temperature adsorption tower for adsorption and removal. And regenerate the first cryogenic adsorption tower by heating or vacuum suction.
- the present invention has the following beneficial technical effects:
- the invention is suitable for coal-fired flue gas including power plant flue gas, steel mill sintering flue gas, coke oven flue gas, etc.
- the flue gas temperature drops to room temperature or below, and the HCl/HF Part of SO 3 , NO 2 and Hg are dissolved in flue gas condensate for removal, the remaining pollutants such as SO 2 , NOx, Hg and VOCs are removed by integrated adsorption and removal of low-temperature adsorption towers, and the difficult-to-adsorb NO components are adsorbed by low-temperature oxidation.
- oxidation into NO adsorption and removal, pollutant removal links are all physical methods (dissolution or adsorption), do not consume NH and limestone and other materials, the operating cost is mainly the energy consumption cost of flue gas cooling, in addition, the present invention adopts The low-temperature adsorbent is regenerated by heating or vacuum suction and can be recycled; H 2 O, SO 2 and NOx in the flue gas can be recycled and utilized.
- the flue gas cooler adopts the direct spray cooling method or the indirect heat exchange cooling method.
- the spray cooling method adopted, a small amount of dust not removed by the electrostatic precipitator is also washed down and discharged with the condensed water.
- the low-temperature adsorption tower there are two low-temperature adsorption towers.
- the first low-temperature adsorption tower When the first low-temperature adsorption tower is saturated with adsorption and SO 2 or NO begins to penetrate, the low-temperature flue gas is switched to the second low-temperature adsorption tower for adsorption and removal, and is passed through.
- the first cryogenic adsorption tower is regenerated by heating or vacuum suction.
- Fig. 1 is the schematic diagram of the near-zero emission type flue gas multi-pollutant integrated removal method of the present invention
- Figure 2 shows the removal efficiency of flue gas pollutants at different condensation temperatures through condensed water dissolution.
- the near-zero emission flue gas multi-pollutant integrated removal system includes an economizer 1, an air preheater 2, an electrostatic precipitator 3, a flue gas cooler 4 and a low-temperature adsorption tower 5;
- the shell side inlet of the economizer 1 is connected to the boiler flue gas
- the tube side inlet is connected to the boiler feed water
- the shell side outlet of the economizer 1 is connected to the tube side inlet of the air preheater 2
- the shell side of the air preheater 2 is connected.
- the inlet is connected to the inlet air of the boiler
- the tube-side outlet of the air preheater 2 is connected to the electrostatic precipitator 3
- the bottom of the electrostatic precipitator 3 is provided with an ash discharge port
- the flue gas outlet of the electrostatic precipitator 3 is connected to the flue gas cooler 4
- the flue gas cooler 4 is connected with a direct spray cooling device or an indirect heat exchange cooling device.
- the bottom of the flue gas cooler 4 is provided with a condensed water outlet, and the cold flue gas outlet at the top is connected to the low-temperature adsorption tower 5, and the tail of the low-temperature adsorption tower 5 is connected.
- a net flue gas outlet is provided, the low-temperature adsorption tower 5 adopts a fixed-bed adsorption tower or a moving-bed adsorption tower, and there are two low-temperature adsorption towers 5 .
- Boiler flue gas passes through economizer 1 to heat boiler feed water; then passes through air preheater 2 to heat boiler inlet air; flue gas after heat recovery through economizer 1 and air preheater 2 enters electrostatic precipitator 3 to remove Dust in the flue gas; the flue gas after dust removal enters the flue gas cooler 4 and cools down to room temperature or lower.
- the flue gas cooler 4 adopts the direct spray cooling method or the indirect heat exchange cooling method. The moisture in the flue gas is condensed and discharged out of the flue gas system.
- the cooled flue gas enters the low-temperature adsorption tower 5, where SO 2 , NO, elemental mercury (Hg 0 ) and the remaining pollutants such as NO 2 , SO 3 , divalent mercury (Hg 2+ ) and VOCs are integrated into adsorption remove.
- pollutants such as SO 2 , NO 2 , SO 3 , Hg and VOCs are directly adsorbed and removed, while NO cannot be directly adsorbed and removed, but can be combined with O 2 in flue gas through the oxidation adsorption mechanism under the action of low temperature and adsorbent.
- Removal that is, the NO and O 2 in the flue gas are enriched on the surface of the adsorbent at low temperature to form a local high concentration, which is rapidly oxidized to NO 2 and then adsorbed on the surface of the adsorbent.
- the oxidative adsorption mechanism is the key to the realization of low-temperature adsorption denitrification.
- the adsorbent in the low-temperature adsorption tower 5 is regenerated by heating or vacuum suction, and is reused.
- the low temperature adsorption tower 5 can be in the form of a fixed bed adsorption tower or a moving bed adsorption tower.
- the desorbed gas rich in SO 2 and NOx is used for resource utilization by producing sulfuric acid, sulfur, nitric acid, sulfate or nitrate.
- the medium dust is reduced to 20mg/Nm 3
- the flue gas enters the flue gas cooler 4, and indirectly exchanges heat with the low-temperature refrigerant, and cools the flue gas to 5°C.
- the HCl, HF and some SO 2 , SO 3 , NO 2 and divalent mercury Hg 2+ dissolve the flue gas condensed water and discharge the flue gas cooler 4.
- the low-temperature flue gas enters the fixed-bed adsorption tower 5, and pollutants such as SO 2 , NO, NO 2 , SO 3 , Hg and VOC are adsorbed and removed by the filled activated carbon to achieve near zero emissions.
- the low-temperature adsorption tower 5 is provided with two towers A/B, and the adsorption-regeneration alternate operation is carried out.
- tower A When tower A is saturated with adsorption and SO 2 or NO begins to penetrate, the low-temperature flue gas is switched to tower B for adsorption and removal, and tower A is regenerated by heating.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Treating Waste Gases (AREA)
Abstract
Description
Claims (7)
- 近零排放型烟气多污染物一体化脱除系统,其特征在于,包括省煤器(1)、空气预热器(2)、静电除尘器(3)、烟气冷却器(4)和低温吸附塔(5);所述省煤器(1)的壳程入口连接锅炉烟气,管程入口连接锅炉给水,省煤器(1)的壳程出口连接至空气预热器(2)的管程入口,空气预热器(2)的壳程入口连接至锅炉进风,空气预热器(2)的管程出口连接至静电除尘器(3),静电除尘器(3)底部设置有排灰口,静电除尘器(3)的烟气出口连接至烟气冷却器(4),烟气冷却器(4)底部设置有冷凝水出口,顶部的冷烟气出口连接至低温吸附塔(5),低温吸附塔(5)尾部设置净烟气出口。
- 根据权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,所述烟气冷却器(4)上连接有直接喷淋降温装置或者间接换热冷却装置。
- 根据权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,所述低温吸附塔(5)采用固定床吸附塔或移动床吸附塔。
- 根据权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,所述低温吸附塔(5)设置有两个。
- 近零排放型烟气多污染物一体化脱除方法,采用权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,锅炉烟气经过省煤器(1)加热锅炉给水,然后经过空气预热器(2)加热锅炉进风,经过省煤器(1)和空气预热器(2)回收热量后的烟气进入静电除尘器(3),除去烟气中灰尘;除尘后的烟气进入到烟气冷却器(4),降温至室温或更低温度,烟气中的水分冷凝下来后排出烟气系统,在烟气冷却器(4)中,烟气中的污染物组分全部或部分溶解于冷凝水一同排出,经降温后的冷烟气进入到低温吸附塔(5)进行污染物吸附,最终排出净烟气。
- 根据权利要求5所述的近零排放型烟气多污染物一体化脱除方法,其特征在于,所述烟气冷却器(4)采用直接喷淋降温的方式或者间接换热冷却 的方式,当采用喷淋降温的方式,静电除尘器(3)未脱除的少量粉尘也被洗涤下来随着冷凝水排出。
- 根据权利要求5所述的近零排放型烟气多污染物一体化脱除方法,其特征在于,所述低温吸附塔(5)设置有两个,当其中第一个低温吸附塔(5)吸附饱和,SO 2或NO开始穿透后,将低温烟气切换至第二个低温吸附塔(5)进行吸附脱除,并通过加热或真空抽吸的方式对第一个低温吸附塔(5)进行再生。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021600152U JP3239094U (ja) | 2020-08-14 | 2020-10-15 | ニアゼロエミッション型煙道ガスの多汚染物質の一体化除去システム。 |
AU2020440901A AU2020440901A1 (en) | 2020-08-14 | 2020-10-15 | System and method for integrated removal of multiple pollutants in flue gas with near-zero emission |
EP20926357.3A EP4197618A1 (en) | 2020-08-14 | 2020-10-15 | Near-zero emission-type flue gas multi-pollutant integrated removal system and method |
US17/501,561 US20220048044A1 (en) | 2020-08-14 | 2021-10-14 | System and method for integrated removal of multiple pollutants in flue gas with near-zero emission |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010819460.2 | 2020-08-14 | ||
CN202010819460.2A CN111841065A (zh) | 2020-08-14 | 2020-08-14 | 近零排放型烟气多污染物一体化脱除系统及方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/501,561 Continuation US20220048044A1 (en) | 2020-08-14 | 2021-10-14 | System and method for integrated removal of multiple pollutants in flue gas with near-zero emission |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022032860A1 true WO2022032860A1 (zh) | 2022-02-17 |
Family
ID=72968994
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/121308 WO2022032860A1 (zh) | 2020-08-14 | 2020-10-15 | 近零排放型烟气多污染物一体化脱除系统及方法 |
PCT/CN2021/112041 WO2022033512A1 (zh) | 2020-08-14 | 2021-08-11 | 近零排放型烟气多污染物一体化脱除系统及方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/112041 WO2022033512A1 (zh) | 2020-08-14 | 2021-08-11 | 近零排放型烟气多污染物一体化脱除系统及方法 |
Country Status (4)
Country | Link |
---|---|
CN (1) | CN111841065A (zh) |
AU (1) | AU2020104494A4 (zh) |
DE (1) | DE202020005634U1 (zh) |
WO (2) | WO2022032860A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111569603A (zh) * | 2020-05-18 | 2020-08-25 | 中国华能集团有限公司 | 一种基于低温吸附原理的烟气一体化脱硫脱硝方法 |
CN111841065A (zh) * | 2020-08-14 | 2020-10-30 | 中国华能集团清洁能源技术研究院有限公司 | 近零排放型烟气多污染物一体化脱除系统及方法 |
CN113418189A (zh) * | 2021-06-18 | 2021-09-21 | 江西南方环保机械制造总公司 | 一种火化机高温粉尘烟气冷却处理设备 |
CN114602313B (zh) * | 2022-04-01 | 2024-05-28 | 中国恩菲工程技术有限公司 | 烟气处理系统及烟气处理方法 |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524477A (en) * | 1975-06-29 | 1977-01-13 | Meiwa Tekko Kk | Process for removal of sulfurous acid gas in exhaust gases by wet acti vated carbon method |
CN103264996A (zh) * | 2013-04-28 | 2013-08-28 | 中国华能集团清洁能源技术研究院有限公司 | 一种用于石煤提硒的循环流化床锅炉系统 |
CN204648188U (zh) * | 2015-04-29 | 2015-09-16 | 鲍守明 | 膜式壁隔烟墙螺纹管对流管束纵向换热式水管锅炉 |
CN208519756U (zh) * | 2018-04-27 | 2019-02-19 | 吉林省光大节能技术有限责任公司 | 火力发电厂的汽水节能系统 |
CN109499313A (zh) * | 2018-12-07 | 2019-03-22 | 湖北申昙环保新材料有限公司 | 烧结烟气的低温脱硫脱硝方法 |
CN109513341A (zh) * | 2018-12-07 | 2019-03-26 | 山东洲蓝环保科技有限公司 | 球团烟气低温脱硫脱硝方法 |
CN110743312A (zh) * | 2019-10-29 | 2020-02-04 | 中国华能集团有限公司 | 一种烟气低温吸附脱硝系统及工艺 |
CN110743313A (zh) * | 2019-10-29 | 2020-02-04 | 中国华能集团有限公司 | 一种烟气低温吸附脱硝方法 |
CN210934359U (zh) * | 2019-10-29 | 2020-07-07 | 中国华能集团有限公司 | 一种烟气低温吸附脱硝系统 |
CN111495118A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种移动床式烟气低温吸附脱硫装置 |
CN111495111A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种低温固定床一体化吸附脱硫脱硝系统 |
CN111495113A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种固定床式烟气低温吸附脱硫系统及方法 |
CN111495112A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种低温移动床一体化吸附脱硫脱硝系统 |
CN111569604A (zh) * | 2020-05-18 | 2020-08-25 | 中国华能集团有限公司 | 一种烟气低温吸附脱硫方法 |
CN111569603A (zh) * | 2020-05-18 | 2020-08-25 | 中国华能集团有限公司 | 一种基于低温吸附原理的烟气一体化脱硫脱硝方法 |
CN212395927U (zh) * | 2020-08-14 | 2021-01-26 | 中国华能集团清洁能源技术研究院有限公司 | 近零排放型烟气多污染物一体化脱除系统 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5598421B2 (ja) * | 2011-05-25 | 2014-10-01 | 新日鐵住金株式会社 | 焼結炉排ガスの脱硫・脱硝方法および一酸化炭素酸化触媒の製造方法 |
CN108310968A (zh) * | 2018-02-02 | 2018-07-24 | 陕西煤业化工技术研究院有限责任公司 | 一种实现超低温烟气中NOx高效脱除及其资源化利用的方法及工艺系统 |
CN110152478A (zh) * | 2019-06-18 | 2019-08-23 | 中国华能集团有限公司 | 一种基于物理吸附前置氧化的烟气湿法脱硝系统及方法 |
CN111302424A (zh) * | 2020-03-27 | 2020-06-19 | 中国华能集团清洁能源技术研究院有限公司 | 一种低能耗脱硫废水处理系统及其工作方法 |
CN111841065A (zh) * | 2020-08-14 | 2020-10-30 | 中国华能集团清洁能源技术研究院有限公司 | 近零排放型烟气多污染物一体化脱除系统及方法 |
CN112915724A (zh) * | 2021-03-29 | 2021-06-08 | 中国华能集团清洁能源技术研究院有限公司 | 一种烟气多污染物一体化脱除系统及方法 |
-
2020
- 2020-08-14 CN CN202010819460.2A patent/CN111841065A/zh active Pending
- 2020-10-15 WO PCT/CN2020/121308 patent/WO2022032860A1/zh unknown
- 2020-10-15 DE DE202020005634.0U patent/DE202020005634U1/de active Active
- 2020-10-15 AU AU2020104494A patent/AU2020104494A4/en active Active
-
2021
- 2021-08-11 WO PCT/CN2021/112041 patent/WO2022033512A1/zh active Application Filing
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS524477A (en) * | 1975-06-29 | 1977-01-13 | Meiwa Tekko Kk | Process for removal of sulfurous acid gas in exhaust gases by wet acti vated carbon method |
CN103264996A (zh) * | 2013-04-28 | 2013-08-28 | 中国华能集团清洁能源技术研究院有限公司 | 一种用于石煤提硒的循环流化床锅炉系统 |
CN204648188U (zh) * | 2015-04-29 | 2015-09-16 | 鲍守明 | 膜式壁隔烟墙螺纹管对流管束纵向换热式水管锅炉 |
CN208519756U (zh) * | 2018-04-27 | 2019-02-19 | 吉林省光大节能技术有限责任公司 | 火力发电厂的汽水节能系统 |
CN109499313A (zh) * | 2018-12-07 | 2019-03-22 | 湖北申昙环保新材料有限公司 | 烧结烟气的低温脱硫脱硝方法 |
CN109513341A (zh) * | 2018-12-07 | 2019-03-26 | 山东洲蓝环保科技有限公司 | 球团烟气低温脱硫脱硝方法 |
CN110743312A (zh) * | 2019-10-29 | 2020-02-04 | 中国华能集团有限公司 | 一种烟气低温吸附脱硝系统及工艺 |
CN110743313A (zh) * | 2019-10-29 | 2020-02-04 | 中国华能集团有限公司 | 一种烟气低温吸附脱硝方法 |
CN210934359U (zh) * | 2019-10-29 | 2020-07-07 | 中国华能集团有限公司 | 一种烟气低温吸附脱硝系统 |
CN111495118A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种移动床式烟气低温吸附脱硫装置 |
CN111495111A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种低温固定床一体化吸附脱硫脱硝系统 |
CN111495113A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种固定床式烟气低温吸附脱硫系统及方法 |
CN111495112A (zh) * | 2020-05-18 | 2020-08-07 | 中国华能集团有限公司 | 一种低温移动床一体化吸附脱硫脱硝系统 |
CN111569604A (zh) * | 2020-05-18 | 2020-08-25 | 中国华能集团有限公司 | 一种烟气低温吸附脱硫方法 |
CN111569603A (zh) * | 2020-05-18 | 2020-08-25 | 中国华能集团有限公司 | 一种基于低温吸附原理的烟气一体化脱硫脱硝方法 |
CN212395927U (zh) * | 2020-08-14 | 2021-01-26 | 中国华能集团清洁能源技术研究院有限公司 | 近零排放型烟气多污染物一体化脱除系统 |
Also Published As
Publication number | Publication date |
---|---|
WO2022033512A1 (zh) | 2022-02-17 |
CN111841065A (zh) | 2020-10-30 |
DE202020005634U1 (de) | 2021-12-10 |
AU2020104494A4 (en) | 2023-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022033512A1 (zh) | 近零排放型烟气多污染物一体化脱除系统及方法 | |
WO2021082307A1 (zh) | 一种烟气低温吸附脱硝系统及工艺 | |
CN202973140U (zh) | 一种高效烟气净化和余热利用系统 | |
CN104689679B (zh) | 一种焦炉烟道废气脱硫脱硝工艺 | |
WO2021082308A1 (zh) | 一种烟气低温吸附脱硝方法 | |
CN212915058U (zh) | 一种低温移动床一体化吸附脱硫脱硝系统 | |
CN111495112A (zh) | 一种低温移动床一体化吸附脱硫脱硝系统 | |
CN111841066B (zh) | 一种烟气中酸性气体脱除系统及方法 | |
CN105862053B (zh) | 盐酸废液再生方法及系统 | |
CN111495111A (zh) | 一种低温固定床一体化吸附脱硫脱硝系统 | |
CN109529549A (zh) | 超洁净氨法脱硫技术应用于碳捕集过程的方法 | |
CN210145819U (zh) | 一种制药行业发酵尾气处理系统 | |
KR101146710B1 (ko) | 연소배가스에서 온도변동 흡착공정을 이용한 이산화탄소를 회수 장치 및 그 운전방법 | |
WO2022033539A1 (zh) | 低温戊烷洗烟气同时脱硫脱碳系统及工艺 | |
CN102380295A (zh) | 废橡胶裂解烟气净化工艺及其设备 | |
CN111495113A (zh) | 一种固定床式烟气低温吸附脱硫系统及方法 | |
CN113663466B (zh) | 一种热量综合利用的烟气净化系统及其工艺 | |
CN105080265A (zh) | 一种工业尾气回收利用大循环工艺 | |
CN107930388A (zh) | 一种焦炉烟气脱硫工艺及焦炉烟气脱硫系统 | |
CN115554826A (zh) | 烟气脱硫、脱硝、除尘及脱碳系统 | |
CN212395927U (zh) | 近零排放型烟气多污染物一体化脱除系统 | |
CN101920211A (zh) | 一种用于低温催化氧化的半焦烟气脱硝剂的制备方法 | |
US20220048044A1 (en) | System and method for integrated removal of multiple pollutants in flue gas with near-zero emission | |
CN212283448U (zh) | 一种固定床式烟气低温吸附脱硫系统 | |
CN212790372U (zh) | 一种低温固定床一体化吸附脱硫脱硝系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021600152 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2020440901 Country of ref document: AU Date of ref document: 20201015 Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20926357 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020926357 Country of ref document: EP Effective date: 20230314 |