Nothing Special   »   [go: up one dir, main page]

WO2022032860A1 - 近零排放型烟气多污染物一体化脱除系统及方法 - Google Patents

近零排放型烟气多污染物一体化脱除系统及方法 Download PDF

Info

Publication number
WO2022032860A1
WO2022032860A1 PCT/CN2020/121308 CN2020121308W WO2022032860A1 WO 2022032860 A1 WO2022032860 A1 WO 2022032860A1 CN 2020121308 W CN2020121308 W CN 2020121308W WO 2022032860 A1 WO2022032860 A1 WO 2022032860A1
Authority
WO
WIPO (PCT)
Prior art keywords
flue gas
low
adsorption tower
temperature
pollutant
Prior art date
Application number
PCT/CN2020/121308
Other languages
English (en)
French (fr)
Inventor
汪世清
郜时旺
刘练波
王金意
牛红伟
郭东方
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Priority to JP2021600152U priority Critical patent/JP3239094U/ja
Priority to AU2020440901A priority patent/AU2020440901A1/en
Priority to EP20926357.3A priority patent/EP4197618A1/en
Priority to US17/501,561 priority patent/US20220048044A1/en
Publication of WO2022032860A1 publication Critical patent/WO2022032860A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/002Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by condensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D51/00Auxiliary pretreatment of gases or vapours to be cleaned
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/06Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with moving adsorbents, e.g. rotating beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C3/00Separating dispersed particles from gases or vapour, e.g. air, by electrostatic effect
    • B03C3/017Combinations of electrostatic separation with other processes, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2045Hydrochloric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/20Halogens or halogen compounds
    • B01D2257/204Inorganic halogen compounds
    • B01D2257/2047Hydrofluoric acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/30Sulfur compounds
    • B01D2257/302Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/60Heavy metals or heavy metal compounds
    • B01D2257/602Mercury or mercury compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/70Organic compounds not provided for in groups B01D2257/00 - B01D2257/602
    • B01D2257/708Volatile organic compounds V.O.C.'s
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0283Flue gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D47/00Separating dispersed particles from gases, air or vapours by liquid as separating agent
    • B01D47/06Spray cleaning

Definitions

  • the invention belongs to the technical field of flue gas pollutant treatment and purification, and in particular relates to a near-zero emission type integrated flue gas multi-pollutant removal system and method.
  • Coal-fired flue gas produces a large amount of pollutants, which is one of the important factors that endanger the atmospheric environment and human health.
  • Coal-fired flue gas pollutants can be divided into two categories: main pollutants and other pollutants according to their emissions and degree of harm.
  • the main pollutants include dust, SO 2 and NOx. These pollutants have mature control technologies.
  • the technologies widely used in large coal-fired boilers include bag dust removal, electrostatic dust removal, limestone-gypsum wet desulfurization, selective catalytic reduction ( SCR) denitrification, etc., calcium injection desulfurization and non-selective catalytic reduction (SNCR) denitrification technologies are also widely used in the upper furnace of small and medium-sized fluidized bed boilers.
  • pollutants include SO 3 , HCl, HF, Hg, and VOCs.
  • SO 3 sulfur dioxide
  • HCl and HF are generally removed together with SO 2 in wet desulfurization.
  • pollutants such as SO 3 , Hg and VOCs cannot be effectively removed in the current flue gas treatment system.
  • the control of these harmful substances is also imperative.
  • the activated coke method can simultaneously remove pollutants such as SO 3 , SO 3 , NO 2 , HCl, HF, Hg and VOCs by adsorption, but it cannot remove NO by adsorption, and NO is the main component of NOx, accounting for above 95.
  • a 70-80% denitrification rate can be achieved through catalytic reduction, but it is difficult to meet the current demand for near-zero emissions.
  • the purpose of the present invention is to provide a near-zero emission type flue gas multi-pollutant integrated removal system and method, to overcome the defects of the prior art, the present invention utilizes the solubility characteristics of pollutant components in flue gas at low temperature and The adsorption characteristics are used to remove pollutants, which can simultaneously remove SO 2 , SO 3 , NO, NO 2 , HCl, HF, Hg and VOCs in flue gas, and achieve near zero emissions.
  • the present invention adopts the following technical solutions:
  • Near-zero emission flue gas multi-pollutant integrated removal system including economizer, air preheater, electrostatic precipitator, flue gas cooler and low temperature adsorption tower;
  • the shell side inlet of the economizer is connected to boiler flue gas
  • the tube side inlet is connected to boiler feed water
  • the shell side outlet of the economizer is connected to the tube side inlet of the air preheater
  • the shell side inlet of the air preheater is connected to the boiler Inlet air
  • the tube-side outlet of the air preheater is connected to the electrostatic precipitator
  • the bottom of the electrostatic precipitator is provided with an ash discharge port
  • the flue gas outlet of the electrostatic precipitator is connected to the flue gas cooler
  • the bottom of the flue gas cooler is provided with condensed water
  • the cold flue gas outlet at the top is connected to the low temperature adsorption tower, and the clean flue gas outlet is set at the tail of the low temperature adsorption tower.
  • a direct spray cooling device or an indirect heat exchange cooling device is connected to the flue gas cooler.
  • the low temperature adsorption tower adopts a fixed bed adsorption tower or a moving bed adsorption tower.
  • the near-zero emission type flue gas multi-pollutant integrated removal method the boiler flue gas passes through the economizer to heat the boiler feed water, then passes through the air preheater to heat the boiler inlet air, and passes through the economizer and the air preheater to recover heat.
  • the flue gas enters the electrostatic precipitator to remove the dust in the flue gas; the flue gas after dust removal enters the flue gas cooler and cools down to room temperature or lower temperature.
  • all or part of the pollutant components in the flue gas are dissolved in the condensed water and discharged together.
  • the cooled flue gas enters the low-temperature adsorption tower for pollutant adsorption, and finally the clean flue gas is discharged.
  • the flue gas cooler adopts the direct spray cooling method or the indirect heat exchange cooling method.
  • the spray cooling method adopted, a small amount of dust not removed by the electrostatic precipitator is also washed down and discharged with the condensed water. .
  • the low-temperature adsorption tower there are two low-temperature adsorption towers.
  • the first low-temperature adsorption tower is saturated with adsorption and SO 2 or NO begins to penetrate, the low-temperature flue gas is switched to the second low-temperature adsorption tower for adsorption and removal. And regenerate the first cryogenic adsorption tower by heating or vacuum suction.
  • the present invention has the following beneficial technical effects:
  • the invention is suitable for coal-fired flue gas including power plant flue gas, steel mill sintering flue gas, coke oven flue gas, etc.
  • the flue gas temperature drops to room temperature or below, and the HCl/HF Part of SO 3 , NO 2 and Hg are dissolved in flue gas condensate for removal, the remaining pollutants such as SO 2 , NOx, Hg and VOCs are removed by integrated adsorption and removal of low-temperature adsorption towers, and the difficult-to-adsorb NO components are adsorbed by low-temperature oxidation.
  • oxidation into NO adsorption and removal, pollutant removal links are all physical methods (dissolution or adsorption), do not consume NH and limestone and other materials, the operating cost is mainly the energy consumption cost of flue gas cooling, in addition, the present invention adopts The low-temperature adsorbent is regenerated by heating or vacuum suction and can be recycled; H 2 O, SO 2 and NOx in the flue gas can be recycled and utilized.
  • the flue gas cooler adopts the direct spray cooling method or the indirect heat exchange cooling method.
  • the spray cooling method adopted, a small amount of dust not removed by the electrostatic precipitator is also washed down and discharged with the condensed water.
  • the low-temperature adsorption tower there are two low-temperature adsorption towers.
  • the first low-temperature adsorption tower When the first low-temperature adsorption tower is saturated with adsorption and SO 2 or NO begins to penetrate, the low-temperature flue gas is switched to the second low-temperature adsorption tower for adsorption and removal, and is passed through.
  • the first cryogenic adsorption tower is regenerated by heating or vacuum suction.
  • Fig. 1 is the schematic diagram of the near-zero emission type flue gas multi-pollutant integrated removal method of the present invention
  • Figure 2 shows the removal efficiency of flue gas pollutants at different condensation temperatures through condensed water dissolution.
  • the near-zero emission flue gas multi-pollutant integrated removal system includes an economizer 1, an air preheater 2, an electrostatic precipitator 3, a flue gas cooler 4 and a low-temperature adsorption tower 5;
  • the shell side inlet of the economizer 1 is connected to the boiler flue gas
  • the tube side inlet is connected to the boiler feed water
  • the shell side outlet of the economizer 1 is connected to the tube side inlet of the air preheater 2
  • the shell side of the air preheater 2 is connected.
  • the inlet is connected to the inlet air of the boiler
  • the tube-side outlet of the air preheater 2 is connected to the electrostatic precipitator 3
  • the bottom of the electrostatic precipitator 3 is provided with an ash discharge port
  • the flue gas outlet of the electrostatic precipitator 3 is connected to the flue gas cooler 4
  • the flue gas cooler 4 is connected with a direct spray cooling device or an indirect heat exchange cooling device.
  • the bottom of the flue gas cooler 4 is provided with a condensed water outlet, and the cold flue gas outlet at the top is connected to the low-temperature adsorption tower 5, and the tail of the low-temperature adsorption tower 5 is connected.
  • a net flue gas outlet is provided, the low-temperature adsorption tower 5 adopts a fixed-bed adsorption tower or a moving-bed adsorption tower, and there are two low-temperature adsorption towers 5 .
  • Boiler flue gas passes through economizer 1 to heat boiler feed water; then passes through air preheater 2 to heat boiler inlet air; flue gas after heat recovery through economizer 1 and air preheater 2 enters electrostatic precipitator 3 to remove Dust in the flue gas; the flue gas after dust removal enters the flue gas cooler 4 and cools down to room temperature or lower.
  • the flue gas cooler 4 adopts the direct spray cooling method or the indirect heat exchange cooling method. The moisture in the flue gas is condensed and discharged out of the flue gas system.
  • the cooled flue gas enters the low-temperature adsorption tower 5, where SO 2 , NO, elemental mercury (Hg 0 ) and the remaining pollutants such as NO 2 , SO 3 , divalent mercury (Hg 2+ ) and VOCs are integrated into adsorption remove.
  • pollutants such as SO 2 , NO 2 , SO 3 , Hg and VOCs are directly adsorbed and removed, while NO cannot be directly adsorbed and removed, but can be combined with O 2 in flue gas through the oxidation adsorption mechanism under the action of low temperature and adsorbent.
  • Removal that is, the NO and O 2 in the flue gas are enriched on the surface of the adsorbent at low temperature to form a local high concentration, which is rapidly oxidized to NO 2 and then adsorbed on the surface of the adsorbent.
  • the oxidative adsorption mechanism is the key to the realization of low-temperature adsorption denitrification.
  • the adsorbent in the low-temperature adsorption tower 5 is regenerated by heating or vacuum suction, and is reused.
  • the low temperature adsorption tower 5 can be in the form of a fixed bed adsorption tower or a moving bed adsorption tower.
  • the desorbed gas rich in SO 2 and NOx is used for resource utilization by producing sulfuric acid, sulfur, nitric acid, sulfate or nitrate.
  • the medium dust is reduced to 20mg/Nm 3
  • the flue gas enters the flue gas cooler 4, and indirectly exchanges heat with the low-temperature refrigerant, and cools the flue gas to 5°C.
  • the HCl, HF and some SO 2 , SO 3 , NO 2 and divalent mercury Hg 2+ dissolve the flue gas condensed water and discharge the flue gas cooler 4.
  • the low-temperature flue gas enters the fixed-bed adsorption tower 5, and pollutants such as SO 2 , NO, NO 2 , SO 3 , Hg and VOC are adsorbed and removed by the filled activated carbon to achieve near zero emissions.
  • the low-temperature adsorption tower 5 is provided with two towers A/B, and the adsorption-regeneration alternate operation is carried out.
  • tower A When tower A is saturated with adsorption and SO 2 or NO begins to penetrate, the low-temperature flue gas is switched to tower B for adsorption and removal, and tower A is regenerated by heating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种近零排放型烟气多污染物一体化脱除系统及方法,包括省煤器(1)、空气预热器(2)、静电除尘器(3)、烟气冷却器(4)和低温吸附塔(5);所述省煤器(1)的壳程入口连接锅炉烟气,管程入口连接锅炉给水,省煤器(1)的壳程出口连接至空气预热器(2)的管程入口,空气预热器(2)的壳程入口连接至锅炉进风,空气预热器(2)的管程出口连接至静电除尘器(3),静电除尘器(3)底部设置有排灰口,静电除尘器(3)的烟气出口连接至烟气冷却器(4),烟气冷却器(4)底部设置有冷凝水出口,顶部的冷烟气出口连接至低温吸附塔(5),低温吸附塔(5)尾部设置净烟气出口;利用烟气中污染物组分在低温下的溶解特性和吸附特性进行污染物的脱除,能够同时脱除烟气中SO 2、SO 3、NO、NO 2、HCl、HF、Hg和VOCs,并实现近零排放。

Description

近零排放型烟气多污染物一体化脱除系统及方法 技术领域
本发明属于烟气污染物治理净化技术领域,具体涉及一种近零排放型烟气多污染物一体化脱除系统及方法。
背景技术
燃煤烟气产生大量的污染物是危害大气环境和人类健康的重要因素之一。燃煤烟气污染物按照其排放量和危害程度可以分为主要污染物和其它污染物两大类。
主要污染物包含粉尘、SO 2和NOx,这些污染物有成熟的控制技术,目前在大型燃煤锅炉上广泛采用的技术有布袋除尘、静电除尘、石灰石-石膏湿法脱硫、选择性催化还原(SCR)脱硝等,在中小型流化床锅炉上炉内喷钙脱硫和非选择性催化还原(SNCR)脱硝技术也有广泛应用。
其它污染物包含SO 3,HCl、HF、Hg和VOCs等。其中,HCl和HF一般在湿法脱硫中会随SO 2一并脱除。但SO 3、Hg和VOCs这些污染物在目前的烟气治理系统中还无法得到有效的脱除。但随着环保要求的日益提高,这些有害物质的控制也势在必行。
由于目前的污染物脱除技术采用的工艺路线是污染物单个逐一脱除,系统串联的方式。工艺流程繁复,运行成本高。因此,多年来国内外一直致力于烟气多污染物一体化脱除技术的开发,例如臭氧氧化法、双氧水氧化法、电子束氨法、电催化氧化法、液相催化氧化法、活性焦法等。这些技术绝大部分是通过将难以湿法吸收脱除的NO前置氧化城NO 2,然后和SO 2一同湿法脱除,因此只局限于一体化脱硫脱硝,以及同时脱除HCl和HF,对SO 3、Hg和VOCs等污染物无法有效处理。活性焦法通过吸附的方式可以同时脱除SO 3、SO 3、NO 2、HCl、HF、Hg和VOCs等污染物,但是无法通过吸附脱除NO,而NO是NOx的最主要成分,占到95%以上。通过在活性焦床层内喷入 氨气,可以通过催化还原的方式实现70-80%的脱硝率,但是难以满足当下近零排放的需求。
除了烟气多污染物一体化脱除之外,近零排放技术的开发也成为当下烟气治理的热点。目前我国大部分大型机组都完成超低排放改造,即实现了排放标准:SO 2≦35mg/Nm 3,NOx≦50mg/Nm 3,粉尘≦5mg/Nm 3。虽然排放浓度已控制得相当之低,但由于烟气排放总量巨大,因此污染物排放得绝对值依然不可忽略。烟气污染物近零排放依旧是清洁煤电的终极目标之一。
发明内容
本发明的目的在于提供一种近零排放型烟气多污染物一体化脱除系统及方法,以克服现有技术的缺陷,本发明利用烟气中污染物组分在低温下的溶解特性和吸附特性进行污染物的脱除,能够同时脱除烟气中SO 2、SO 3、NO、NO 2、HCl、HF、Hg和VOCs,并实现近零排放。
为达到上述目的,本发明采用如下技术方案:
近零排放型烟气多污染物一体化脱除系统,包括省煤器、空气预热器、静电除尘器、烟气冷却器和低温吸附塔;
所述省煤器的壳程入口连接锅炉烟气,管程入口连接锅炉给水,省煤器的壳程出口连接至空气预热器的管程入口,空气预热器的壳程入口连接至锅炉进风,空气预热器的管程出口连接至静电除尘器,静电除尘器底部设置有排灰口,静电除尘器的烟气出口连接至烟气冷却器,烟气冷却器底部设置有冷凝水出口,顶部的冷烟气出口连接至低温吸附塔,低温吸附塔尾部设置净烟气出口。
进一步地,所述烟气冷却器上连接有直接喷淋降温装置或者间接换热冷却装置。
进一步地,所述低温吸附塔采用固定床吸附塔或移动床吸附塔。
进一步地,所述低温吸附塔设置有两个。
近零排放型烟气多污染物一体化脱除方法,锅炉烟气经过省煤器加热锅炉给水,然后经过空气预热器加热锅炉进风,经过省煤器和空气预热器回收热量后的烟气进入静电除尘器,除去烟气中灰尘;除尘后的烟气进入到烟气冷却器,降温至室温或更低温度,烟气中的水分冷凝下来后排出烟气系统,在烟气冷却器中,烟气中的污染物组分全部或部分溶解于冷凝水一同排出,经降温后的冷烟气进入到低温吸附塔进行污染物吸附,最终排出净烟气。
进一步地,所述烟气冷却器采用直接喷淋降温的方式或者间接换热冷却的方式,当采用喷淋降温的方式,静电除尘器未脱除的少量粉尘也被洗涤下来随着冷凝水排出。
进一步地,所述低温吸附塔设置有两个,当其中第一个低温吸附塔吸附饱和,SO 2或NO开始穿透后,将低温烟气切换至第二个低温吸附塔进行吸附脱除,并通过加热或真空抽吸的方式对第一个低温吸附塔进行再生。
与现有技术相比,本发明具有以下有益的技术效果:
本发明适用于包括电厂烟气、钢厂烧结烟气、焦炉烟气等燃煤烟气,在烟气冷却器中,烟气温度降至室温及以下温度,烟气中的HCl/HF以及部分SO 3、NO 2和Hg溶解于烟气冷凝水脱除,剩余的SO 2、NOx、Hg和VOCs等污染物通过低温吸附塔一体化吸附脱除,难吸附的NO组分通过低温氧化吸附机理,氧化成NO 2吸附脱除,污染物脱除环节均为物理方法(溶解或吸附),不消耗NH 3和石灰石等物料,运行成本主要为烟气降温能耗成本,另外本发明采用的低温吸附剂通过加热或真空抽吸方式再生,可循环使用;烟气中的H 2O、SO 2和NOx可以实现资源化回收利用。
进一步地,烟气冷却器采用直接喷淋降温的方式或者间接换热冷却的方式,当采用喷淋降温的方式,静电除尘器未脱除的少量粉尘也被洗涤下来随着冷凝水排出。
进一步地,低温吸附塔设置有两个,当其中第一个低温吸附塔吸附饱和, SO 2或NO开始穿透后,将低温烟气切换至第二个低温吸附塔进行吸附脱除,并通过加热或真空抽吸的方式对第一个低温吸附塔进行再生。
附图说明
说明书附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为本发明近零排放型烟气多污染物一体化脱除方法示意图;
图2是烟气污染物在不同冷凝温度通过冷凝水溶解脱除的脱除效率。
其中,1、省煤器;2、空气预热器;3、静电除尘器;4、烟气冷却器;5、低温吸附塔。
具体实施方式
下面对本发明作进一步详细描述:
如图1所示,近零排放型烟气多污染物一体化脱除系统,包括省煤器1、空气预热器2、静电除尘器3、烟气冷却器4和低温吸附塔5;
所述省煤器1的壳程入口连接锅炉烟气,管程入口连接锅炉给水,省煤器1的壳程出口连接至空气预热器2的管程入口,空气预热器2的壳程入口连接至锅炉进风,空气预热器2的管程出口连接至静电除尘器3,静电除尘器3底部设置有排灰口,静电除尘器3的烟气出口连接至烟气冷却器4,烟气冷却器4上连接有直接喷淋降温装置或者间接换热冷却装置,烟气冷却器4底部设置有冷凝水出口,顶部的冷烟气出口连接至低温吸附塔5,低温吸附塔5尾部设置净烟气出口,所述低温吸附塔5采用固定床吸附塔或移动床吸附塔,所述低温吸附塔5设置有两个。
锅炉烟气经过省煤器1,加热锅炉给水;然后经过空气预热器2,加热锅炉进风;经过省煤器1和空气预热器2回收热量后的烟气进入静电除尘器3,除去烟气中灰尘;除尘后的烟气进入到烟气冷却器4,降温至室温或更低温 度,烟气冷却器4采用直接喷淋降温的方式或者间接换热冷却的方式。烟气中的水分冷凝下来后排出烟气系统。
在烟气冷却器4中,烟气中的污染物组分全部或部分溶解于冷凝水一同排出。如附图2所示,HCl和HF溶解性强,几乎全部溶解于烟气冷凝水,NO 2和SO 3部分溶解于冷凝水,SO 2少量溶解于冷凝水,元素汞(Hg 0)不溶解于水,二价汞(Hg 2+)部分溶解于冷凝水,若采用喷淋降温方式,除尘器未脱除的少量粉尘也大部分被洗涤下来随着冷凝水排出。
经过降温后的冷烟气进入到低温吸附塔5,SO 2、NO、元素汞(Hg 0)以及剩余的NO 2、SO 3、二价汞(Hg 2+)和VOCs等污染物一体化吸附脱除。其中,SO 2、NO 2、SO 3、Hg和VOCs等污染物直接吸附脱除,NO无法直接吸附脱除,但可以和烟气中的O 2在低温和吸附剂的作用下通过氧化吸附机理脱除,即烟气中的NO和O 2在低温下通过吸附剂表面富集,形成局部高浓度,从而被快速氧化成NO 2,进而吸附在吸附剂表面。氧化吸附机理是低温吸附脱硝得以实现的关键。
经过烟气冷却器4和低温吸附塔5,烟气中的SO 2、SO 3、NO、NO 2、HCl、HF、Hg 0、Hg 2+、VOCs和粉尘等污染物几乎全部脱除,实现近零排放。
低温吸附塔5内吸附剂经过加热或真空抽吸方式再生,重复使用。低温吸附塔5可采用固定床吸附塔或移动床吸附塔的方式。解吸出来的富含SO 2和NOx的气体通过制作硫酸、硫磺、硝酸、硫酸盐或硝酸盐等方式进行资源化利用。
为清楚说明本发明,下面结合实施例及附图,对本发明进行进一步详细说明。本领域技术人员了解,下述内容不是对本发明保护范围的限制,任何在本发明基础上做出的改进和变化,都在本发明的保护范围之内。
实施例:如附图1所示,锅炉烟气经省煤器1进行热量回收后,降温至400℃,然后经过空气预热器2,进一步降温至120℃,经过静电除尘器3, 烟气中粉尘降至20mg/Nm 3,烟气进入到烟气冷却器4,与低温冷冻液间接换热,将烟气冷却至5℃,烟气中的HCl、HF以及部分SO 2、SO 3、NO 2和二价汞Hg 2+溶解烟气冷凝水排出烟气冷却器4。低温烟气进入到固定床吸附塔5,SO 2、NO、NO 2、SO 3、Hg和VOC等污染物被装填的活性炭吸附脱除,达到近零排放。
低温吸附塔5设置A/B两塔,进行吸附-再生轮换操作。当A塔吸附饱和,SO 2或NO开始穿透后,将低温烟气切换至B塔进行吸附脱除,并通过加热的方式对A塔进行再生。

Claims (7)

  1. 近零排放型烟气多污染物一体化脱除系统,其特征在于,包括省煤器(1)、空气预热器(2)、静电除尘器(3)、烟气冷却器(4)和低温吸附塔(5);
    所述省煤器(1)的壳程入口连接锅炉烟气,管程入口连接锅炉给水,省煤器(1)的壳程出口连接至空气预热器(2)的管程入口,空气预热器(2)的壳程入口连接至锅炉进风,空气预热器(2)的管程出口连接至静电除尘器(3),静电除尘器(3)底部设置有排灰口,静电除尘器(3)的烟气出口连接至烟气冷却器(4),烟气冷却器(4)底部设置有冷凝水出口,顶部的冷烟气出口连接至低温吸附塔(5),低温吸附塔(5)尾部设置净烟气出口。
  2. 根据权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,所述烟气冷却器(4)上连接有直接喷淋降温装置或者间接换热冷却装置。
  3. 根据权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,所述低温吸附塔(5)采用固定床吸附塔或移动床吸附塔。
  4. 根据权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,所述低温吸附塔(5)设置有两个。
  5. 近零排放型烟气多污染物一体化脱除方法,采用权利要求1所述的近零排放型烟气多污染物一体化脱除系统,其特征在于,锅炉烟气经过省煤器(1)加热锅炉给水,然后经过空气预热器(2)加热锅炉进风,经过省煤器(1)和空气预热器(2)回收热量后的烟气进入静电除尘器(3),除去烟气中灰尘;除尘后的烟气进入到烟气冷却器(4),降温至室温或更低温度,烟气中的水分冷凝下来后排出烟气系统,在烟气冷却器(4)中,烟气中的污染物组分全部或部分溶解于冷凝水一同排出,经降温后的冷烟气进入到低温吸附塔(5)进行污染物吸附,最终排出净烟气。
  6. 根据权利要求5所述的近零排放型烟气多污染物一体化脱除方法,其特征在于,所述烟气冷却器(4)采用直接喷淋降温的方式或者间接换热冷却 的方式,当采用喷淋降温的方式,静电除尘器(3)未脱除的少量粉尘也被洗涤下来随着冷凝水排出。
  7. 根据权利要求5所述的近零排放型烟气多污染物一体化脱除方法,其特征在于,所述低温吸附塔(5)设置有两个,当其中第一个低温吸附塔(5)吸附饱和,SO 2或NO开始穿透后,将低温烟气切换至第二个低温吸附塔(5)进行吸附脱除,并通过加热或真空抽吸的方式对第一个低温吸附塔(5)进行再生。
PCT/CN2020/121308 2020-08-14 2020-10-15 近零排放型烟气多污染物一体化脱除系统及方法 WO2022032860A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021600152U JP3239094U (ja) 2020-08-14 2020-10-15 ニアゼロエミッション型煙道ガスの多汚染物質の一体化除去システム。
AU2020440901A AU2020440901A1 (en) 2020-08-14 2020-10-15 System and method for integrated removal of multiple pollutants in flue gas with near-zero emission
EP20926357.3A EP4197618A1 (en) 2020-08-14 2020-10-15 Near-zero emission-type flue gas multi-pollutant integrated removal system and method
US17/501,561 US20220048044A1 (en) 2020-08-14 2021-10-14 System and method for integrated removal of multiple pollutants in flue gas with near-zero emission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010819460.2 2020-08-14
CN202010819460.2A CN111841065A (zh) 2020-08-14 2020-08-14 近零排放型烟气多污染物一体化脱除系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/501,561 Continuation US20220048044A1 (en) 2020-08-14 2021-10-14 System and method for integrated removal of multiple pollutants in flue gas with near-zero emission

Publications (1)

Publication Number Publication Date
WO2022032860A1 true WO2022032860A1 (zh) 2022-02-17

Family

ID=72968994

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/121308 WO2022032860A1 (zh) 2020-08-14 2020-10-15 近零排放型烟气多污染物一体化脱除系统及方法
PCT/CN2021/112041 WO2022033512A1 (zh) 2020-08-14 2021-08-11 近零排放型烟气多污染物一体化脱除系统及方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112041 WO2022033512A1 (zh) 2020-08-14 2021-08-11 近零排放型烟气多污染物一体化脱除系统及方法

Country Status (4)

Country Link
CN (1) CN111841065A (zh)
AU (1) AU2020104494A4 (zh)
DE (1) DE202020005634U1 (zh)
WO (2) WO2022032860A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111569603A (zh) * 2020-05-18 2020-08-25 中国华能集团有限公司 一种基于低温吸附原理的烟气一体化脱硫脱硝方法
CN111841065A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 近零排放型烟气多污染物一体化脱除系统及方法
CN113418189A (zh) * 2021-06-18 2021-09-21 江西南方环保机械制造总公司 一种火化机高温粉尘烟气冷却处理设备
CN114602313B (zh) * 2022-04-01 2024-05-28 中国恩菲工程技术有限公司 烟气处理系统及烟气处理方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524477A (en) * 1975-06-29 1977-01-13 Meiwa Tekko Kk Process for removal of sulfurous acid gas in exhaust gases by wet acti vated carbon method
CN103264996A (zh) * 2013-04-28 2013-08-28 中国华能集团清洁能源技术研究院有限公司 一种用于石煤提硒的循环流化床锅炉系统
CN204648188U (zh) * 2015-04-29 2015-09-16 鲍守明 膜式壁隔烟墙螺纹管对流管束纵向换热式水管锅炉
CN208519756U (zh) * 2018-04-27 2019-02-19 吉林省光大节能技术有限责任公司 火力发电厂的汽水节能系统
CN109499313A (zh) * 2018-12-07 2019-03-22 湖北申昙环保新材料有限公司 烧结烟气的低温脱硫脱硝方法
CN109513341A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN110743312A (zh) * 2019-10-29 2020-02-04 中国华能集团有限公司 一种烟气低温吸附脱硝系统及工艺
CN110743313A (zh) * 2019-10-29 2020-02-04 中国华能集团有限公司 一种烟气低温吸附脱硝方法
CN210934359U (zh) * 2019-10-29 2020-07-07 中国华能集团有限公司 一种烟气低温吸附脱硝系统
CN111495118A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种移动床式烟气低温吸附脱硫装置
CN111495111A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种低温固定床一体化吸附脱硫脱硝系统
CN111495113A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种固定床式烟气低温吸附脱硫系统及方法
CN111495112A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种低温移动床一体化吸附脱硫脱硝系统
CN111569604A (zh) * 2020-05-18 2020-08-25 中国华能集团有限公司 一种烟气低温吸附脱硫方法
CN111569603A (zh) * 2020-05-18 2020-08-25 中国华能集团有限公司 一种基于低温吸附原理的烟气一体化脱硫脱硝方法
CN212395927U (zh) * 2020-08-14 2021-01-26 中国华能集团清洁能源技术研究院有限公司 近零排放型烟气多污染物一体化脱除系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5598421B2 (ja) * 2011-05-25 2014-10-01 新日鐵住金株式会社 焼結炉排ガスの脱硫・脱硝方法および一酸化炭素酸化触媒の製造方法
CN108310968A (zh) * 2018-02-02 2018-07-24 陕西煤业化工技术研究院有限责任公司 一种实现超低温烟气中NOx高效脱除及其资源化利用的方法及工艺系统
CN110152478A (zh) * 2019-06-18 2019-08-23 中国华能集团有限公司 一种基于物理吸附前置氧化的烟气湿法脱硝系统及方法
CN111302424A (zh) * 2020-03-27 2020-06-19 中国华能集团清洁能源技术研究院有限公司 一种低能耗脱硫废水处理系统及其工作方法
CN111841065A (zh) * 2020-08-14 2020-10-30 中国华能集团清洁能源技术研究院有限公司 近零排放型烟气多污染物一体化脱除系统及方法
CN112915724A (zh) * 2021-03-29 2021-06-08 中国华能集团清洁能源技术研究院有限公司 一种烟气多污染物一体化脱除系统及方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS524477A (en) * 1975-06-29 1977-01-13 Meiwa Tekko Kk Process for removal of sulfurous acid gas in exhaust gases by wet acti vated carbon method
CN103264996A (zh) * 2013-04-28 2013-08-28 中国华能集团清洁能源技术研究院有限公司 一种用于石煤提硒的循环流化床锅炉系统
CN204648188U (zh) * 2015-04-29 2015-09-16 鲍守明 膜式壁隔烟墙螺纹管对流管束纵向换热式水管锅炉
CN208519756U (zh) * 2018-04-27 2019-02-19 吉林省光大节能技术有限责任公司 火力发电厂的汽水节能系统
CN109499313A (zh) * 2018-12-07 2019-03-22 湖北申昙环保新材料有限公司 烧结烟气的低温脱硫脱硝方法
CN109513341A (zh) * 2018-12-07 2019-03-26 山东洲蓝环保科技有限公司 球团烟气低温脱硫脱硝方法
CN110743312A (zh) * 2019-10-29 2020-02-04 中国华能集团有限公司 一种烟气低温吸附脱硝系统及工艺
CN110743313A (zh) * 2019-10-29 2020-02-04 中国华能集团有限公司 一种烟气低温吸附脱硝方法
CN210934359U (zh) * 2019-10-29 2020-07-07 中国华能集团有限公司 一种烟气低温吸附脱硝系统
CN111495118A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种移动床式烟气低温吸附脱硫装置
CN111495111A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种低温固定床一体化吸附脱硫脱硝系统
CN111495113A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种固定床式烟气低温吸附脱硫系统及方法
CN111495112A (zh) * 2020-05-18 2020-08-07 中国华能集团有限公司 一种低温移动床一体化吸附脱硫脱硝系统
CN111569604A (zh) * 2020-05-18 2020-08-25 中国华能集团有限公司 一种烟气低温吸附脱硫方法
CN111569603A (zh) * 2020-05-18 2020-08-25 中国华能集团有限公司 一种基于低温吸附原理的烟气一体化脱硫脱硝方法
CN212395927U (zh) * 2020-08-14 2021-01-26 中国华能集团清洁能源技术研究院有限公司 近零排放型烟气多污染物一体化脱除系统

Also Published As

Publication number Publication date
WO2022033512A1 (zh) 2022-02-17
CN111841065A (zh) 2020-10-30
DE202020005634U1 (de) 2021-12-10
AU2020104494A4 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2022033512A1 (zh) 近零排放型烟气多污染物一体化脱除系统及方法
WO2021082307A1 (zh) 一种烟气低温吸附脱硝系统及工艺
CN202973140U (zh) 一种高效烟气净化和余热利用系统
CN104689679B (zh) 一种焦炉烟道废气脱硫脱硝工艺
WO2021082308A1 (zh) 一种烟气低温吸附脱硝方法
CN212915058U (zh) 一种低温移动床一体化吸附脱硫脱硝系统
CN111495112A (zh) 一种低温移动床一体化吸附脱硫脱硝系统
CN111841066B (zh) 一种烟气中酸性气体脱除系统及方法
CN105862053B (zh) 盐酸废液再生方法及系统
CN111495111A (zh) 一种低温固定床一体化吸附脱硫脱硝系统
CN109529549A (zh) 超洁净氨法脱硫技术应用于碳捕集过程的方法
CN210145819U (zh) 一种制药行业发酵尾气处理系统
KR101146710B1 (ko) 연소배가스에서 온도변동 흡착공정을 이용한 이산화탄소를 회수 장치 및 그 운전방법
WO2022033539A1 (zh) 低温戊烷洗烟气同时脱硫脱碳系统及工艺
CN102380295A (zh) 废橡胶裂解烟气净化工艺及其设备
CN111495113A (zh) 一种固定床式烟气低温吸附脱硫系统及方法
CN113663466B (zh) 一种热量综合利用的烟气净化系统及其工艺
CN105080265A (zh) 一种工业尾气回收利用大循环工艺
CN107930388A (zh) 一种焦炉烟气脱硫工艺及焦炉烟气脱硫系统
CN115554826A (zh) 烟气脱硫、脱硝、除尘及脱碳系统
CN212395927U (zh) 近零排放型烟气多污染物一体化脱除系统
CN101920211A (zh) 一种用于低温催化氧化的半焦烟气脱硝剂的制备方法
US20220048044A1 (en) System and method for integrated removal of multiple pollutants in flue gas with near-zero emission
CN212283448U (zh) 一种固定床式烟气低温吸附脱硫系统
CN212790372U (zh) 一种低温固定床一体化吸附脱硫脱硝系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021600152

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020440901

Country of ref document: AU

Date of ref document: 20201015

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20926357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020926357

Country of ref document: EP

Effective date: 20230314