Nothing Special   »   [go: up one dir, main page]

WO2022019420A1 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
WO2022019420A1
WO2022019420A1 PCT/KR2021/000661 KR2021000661W WO2022019420A1 WO 2022019420 A1 WO2022019420 A1 WO 2022019420A1 KR 2021000661 W KR2021000661 W KR 2021000661W WO 2022019420 A1 WO2022019420 A1 WO 2022019420A1
Authority
WO
WIPO (PCT)
Prior art keywords
muffler
suction
cylinder
shell
suction muffler
Prior art date
Application number
PCT/KR2021/000661
Other languages
French (fr)
Korean (ko)
Inventor
김영환
이종목
김상민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2022019420A1 publication Critical patent/WO2022019420A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/32Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members
    • F04C18/324Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having both the movement defined in group F04C18/02 and relative reciprocation between the co-operating members with vanes hinged to the inner member and reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/06Silencing
    • F04C29/065Noise dampening volumes, e.g. muffler chambers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/10Stators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/20Rotors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings

Definitions

  • the present invention relates to a rotary compressor.
  • a compressor is a device that compresses a refrigerant by transferring the power generated from the electric part to the compression part.
  • the electric part and the compression part may be installed inside the same shell or may be installed in different shells and connected using a separate power transmission mechanism.
  • the former is called a hermetic compressor, and the latter is called an open compressor.
  • the hermetic compressor is divided into a low-pressure compressor and a high-pressure compressor according to the refrigerant filled in the inner space of the shell.
  • the low-pressure compressor is a method in which the low-temperature and low-pressure refrigerant circulated in the refrigeration cycle is filled in the inner space of the shell, and in the high-pressure compressor, the high-temperature and high-pressure refrigerant discharged from the compression unit is filled in the inner space of the shell.
  • the low-pressure compressor cools the motor constituting the electric part as the inner space of the shell is filled with a low-temperature refrigerant, so that the motor efficiency can be improved.
  • the high-pressure compressor the refrigerant discharged from the compression unit circulates in the inner space of the shell, so that the oil separation effect can be improved.
  • the hermetic compressor may be divided into a spring support method and a shell support method according to a method of supporting the compressor body including the electric part and the compression part.
  • the vibration of the compressor body is attenuated by the spring, so that the shell vibration is low, whereas in the latter, the vibration of the compressor body is low as the compressor body is fixed to the shell.
  • Patent Document 1 Japanese Patent Laid-Open No. 2004-23252 discloses a hermetic compressor of a low pressure type and a shell support type.
  • Patent Document 1 has a double shell structure, and the compressor body is fixed to the inner shell by a shell support method, and the inner shell is supported by the outer shell by a spring support method.
  • the inner space of the inner shell is filled with the discharged refrigerant and is in a high pressure state, and this refrigerant is directly discharged without passing through the inner space of the outer shell. Accordingly, the inner space of the outer shell is maintained in a low pressure state.
  • Patent Document 1 the inner shell surrounding the electric part is cooled by the refrigerant filled in the inner space of the outer shell, so that the motor efficiency can be improved.
  • the inner shell to which the compressor body is fixed is supported by a spring on the outer shell, the vibration of the compressor body can be improved to some extent and the shell vibration can be lowered at the same time.
  • the volume and weight of the compressor may increase, and the number of parts may increase, thereby increasing the manufacturing cost.
  • the conventional hermetic compressor has a limitation in attenuating compressor noise in a low frequency band because a device for attenuating noise generated during suction is not separately installed while being of a low pressure type.
  • the size of the compressor may be enlarged when the suction muffler is installed in the inner space of the shell because the gap between the shell and the compressor body is narrow.
  • the conventional hermetic compressor has a so-called lower compression type and low pressure structure in which the compression part is located below the transmission part, so there is not enough space to install the roof pipe for a long time, and the roof pipe is submerged in oil and the temperature of the oil rises. As the oil viscosity decreases, friction loss may occur in the compressor body.
  • the refrigerant in the compression chamber leaks into the inner space of the shell due to a machining error or assembly error between the cylinder and both bearing plates and is compressed. losses could have occurred.
  • Another object of the present invention is to provide a rotary compressor in which a suction muffler can be stably installed in the inner space of the shell in the case of a low pressure type, a spring supported type, and an upper compression type.
  • the shell is formed in one layer to form an appearance; a compressor body provided spaced apart from the inner circumferential surface of the shell, comprising a transmission unit and a compression unit positioned above the transmission unit, and the compression unit formed in a rotary compression method; and a support part for elastically supporting the compressor body on the shell; a rotary compressor including a can be provided.
  • a compressor body having the rotary compression unit can be supported in a spring-supported manner with respect to the single-shell shell.
  • the shell It is provided spaced apart from the inner circumferential surface of the shell, and includes a transmission unit and a compression unit positioned above the transmission unit, the compression unit comprising: a compressor body made of a rotary compression method; a suction muffler having an inlet communicating with the inner space of the shell and having an outlet connected to a suction port of the compression unit; and a discharge muffler having an inlet connected to a discharge port of the compression unit, an outlet connected to a discharge pipe passing through the shell, and a discharge muffler installed at an upper end of the compressor body.
  • the rotary type compressor body can achieve a low pressure type and an upper compression type.
  • the shell is formed in one layer to form an appearance; a compressor body provided spaced apart from the inner circumferential surface of the shell, comprising a transmission unit and a compression unit positioned above the transmission unit, and the compression unit formed in a rotary compression method; a support part for elastically supporting the compressor body to the shell; a suction muffler having an inlet communicating with the inner space of the shell and having an outlet connected to a suction port of the compression unit; and a discharge muffler having an inlet connected to a discharge port of the compression unit and an outlet connected to a discharge pipe passing through the shell.
  • the compressor body having the rotary compression unit is supported with respect to the shell in a spring-supported manner, and a low pressure type in which the inner space of the shell is filled with suction refrigerant can be achieved.
  • the suction muffler may be installed to be located on the side of the compressor body. Through this, it is possible to reduce the size of the compressor while installing the suction muffler in the inner space of the shell.
  • the compression part may include an annular cylinder, a muffler mounting groove is formed on an outer circumferential surface of the cylinder, and an outlet of the suction muffler may be inserted into the muffler mounting groove to be supported in the circumferential direction.
  • the suction muffler can be installed stably.
  • a boss portion extending to be inserted into a suction port provided in the cylinder or a support protrusion supported on an outer surface of the cylinder may be formed at the outlet portion of the suction muffler.
  • the shell forming the appearance; an electric part provided to be spaced apart from the inner circumferential surface of the shell; a rotating shaft coupled to the electric motor to rotate; a cylinder spaced apart from the inner circumferential surface of the shell and provided on the upper side of the electric part, the cylinder being formed in an annular shape; a roller coupled to the rotation shaft and provided inside the cylinder; a vane provided between the cylinder and the roller to form a compression chamber inside the cylinder; a support part for elastically supporting the electric part on the shell; and a suction muffler having an inlet communicating with the inner space of the shell and an outlet communicating with a suction side of the compression chamber; and a discharge muffler having an inlet connected to a discharge side of the compression chamber and an outlet communicating with a discharge pipe passing through the shell.
  • the compressor body having the upper compression type compression unit is supported with respect to the shell in a spring support method, and a low pressure type in which the inner space
  • the main bearing plate provided on the upper side of the electric part; and a sub-bearing plate coupled to the cylinder from an upper side of the main bearing plate with the cylinder interposed therebetween, wherein the suction muffler is located below the sub-bearing plate, the outer peripheral surface of the electric part and the It may be provided between the inner peripheral surfaces of the facing shell.
  • a radially penetrating suction port is formed in the cylinder, and a muffler mounting groove is formed on the outer peripheral surface of the cylinder to be radially depressed to communicate with the suction port, and the outlet of the suction muffler is inserted into the muffler mounting groove can be combined.
  • a muffler fixing part fixed to the cylinder may extend from the outlet part of the suction muffler. Through this, the suction muffler can be easily aligned and can be stably fixed.
  • the muffler fixing part may extend from both side surfaces of the outlet part of the suction muffler to correspond to the outer peripheral surface of the cylinder. Through this, the suction muffler can be stably fixed from both sides.
  • the muffler fixing part may extend from the upper surface of the outlet part of the suction muffler to correspond to the upper surface of the cylinder. Through this, the suction muffler can also be supported in the axial direction.
  • the suction muffler may be fixed to the cylinder by a muffler fixing member that surrounds the outlet of the suction muffler and is fastened to the cylinder.
  • a muffler fixing member that surrounds the outlet of the suction muffler and is fastened to the cylinder.
  • a muffler support protrusion supported in an axial direction on an upper circumferential surface of the muffler mounting groove may extend from the outlet of the suction muffler.
  • the muffler fixing member may support the outlet of the suction muffler in the axial direction from the lower side of the muffler support protrusion. Through this, it is possible to more stably support the suction muffler while using the muffler fixing member.
  • the radial outer surface is opened, both circumferential side surfaces and the radial inner surface are closed to form a first muffler support surface and a second muffler support surface, and the suction port is the muffler mounting groove
  • a second muffler support surface constituting a radially inner surface of may be radially penetrated.
  • an outlet extension inserted into the suction port may extend toward the suction port.
  • a muffler sealing member may be provided between the outlet of the suction muffler and the second muffler support surface facing the same. Through this, it is possible to suppress oil from flowing into the suction port.
  • the suction muffler may include: a suction muffler body having a suction space therein; a suction muffler inlet for connecting the suction space of the suction muffler body to the inner space of the shell; a suction muffler outlet portion coupled to the cylinder to connect the suction space of the suction muffler body to the compression chamber; and a suction muffler connection part connecting between the suction muffler body part and the suction muffler outlet part, wherein the suction muffler connection part may be inclined toward the cylinder.
  • the cylinder may be provided with a vane slot into which the vane is slidably inserted, and an oil passage hole communicating with the vane slot may be formed in the sub-bearing plate. Through this, the oil can be smoothly supplied to the sliding part while the rotary compression type compression part is located above the electric part.
  • a discharge port is formed in the sub-bearing plate, and a discharge muffler having a discharge space to accommodate the discharge port is provided on the upper surface of the sub-bearing plate, and the upper surface of the discharge muffler collects oil discharged through the rotation shaft
  • An oil guide may be provided to guide the oil passage hole.
  • one end of the vane may be rotatably hinged to the outer peripheral surface of the roller.
  • the compressor according to this embodiment by elastically supporting the rotary type compressor body on the shell forming the exterior, blocks the vibration transmitted from the compressor body from being transmitted to the shell, thereby reducing the vibration noise of the compressor, and through this, the rotary compressor
  • the volume and weight of the product can be reduced, and the number of parts can be reduced, thereby lowering the manufacturing cost.
  • the rotary compressor according to this embodiment is a spring-supported type, an upper compression type, and a low pressure type, so that the electric part is rapidly cooled by the cold refrigerant sucked into the inner space of the shell, thereby improving motor efficiency and compressor performance.
  • the rotary compressor which is a spring-supported method
  • an upper compression method in which the compression part is located on the upper side of the electric part
  • a space for installing the suction muffler is secured to effectively offset the suction noise generated when the refrigerant is sucked.
  • the suction muffler can be stably fixed in the circumferential direction while configuring the compressor body including the suction muffler in a spring-supported manner.
  • the muffler fixing part to the suction muffler or fixing the suction muffler to the cylinder using a separate muffler fixing member, the stress of the muffler fixing part or the muffler fixing member fixing the suction muffler is reduced and the suction muffler is further improved. It can be fixed stably.
  • the assembling position of the suction muffler can be easily aligned when assembling the suction muffler, thereby facilitating the assembly operation of the suction muffler.
  • the sealing member is provided between the outlet and the suction port of the suction muffler, it is possible to suppress the oil inside the shell from flowing into the suction port, thereby reducing suction loss and increasing the compression efficiency.
  • the rotary compressor according to the present embodiment may be installed so that the loop pipe constituting the discharge flow path is separated without being submerged in the oil filled in the inner space of the shell by configuring it as a spring support method and an upper compression method.
  • the rotary compressor according to the present embodiment may be installed so that the loop pipe constituting the discharge flow path is separated without being submerged in the oil filled in the inner space of the shell by configuring it as a spring support method and an upper compression method.
  • FIG. 1 is an exploded perspective view showing the compression body of the rotary compressor according to the present embodiment
  • FIG. 2 is a perspective view showing the compressor body assembled in FIG. 1;
  • FIG. 3 is a cross-sectional view showing the inside of the rotary compressor according to FIG. 2;
  • FIG. 4 is a plan view showing the inside of the compression unit in FIG. 1;
  • FIG. 5 is a perspective view showing the compressor body in FIG. 1;
  • FIG. 6 is an exploded perspective view showing the compressor body by removing the suction muffler in FIG. 5;
  • FIG. 7 is a perspective view showing an embodiment of the suction muffler in FIG. 1;
  • FIG. 8 is a perspective view showing a state in which the suction muffler according to FIG. 7 is assembled
  • FIG. 9 is a sectional view of "IV-IV" in FIG. 8.
  • FIG. 10 is a perspective view showing another embodiment of the suction muffler outlet in the suction muffler of FIG. 6;
  • FIG. 11 is a cross-sectional view showing a state in which the suction muffler of FIG. 10 is assembled
  • FIG. 12 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1;
  • FIG. 13 is a perspective view showing a state in which the suction muffler of FIG. 12 is assembled
  • FIG. 14 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1;
  • Fig. 15 is a perspective view showing the state in which the suction muffler of Fig. 14 is assembled
  • the rotary compressor may be divided into a contact rotary compressor and a hinged vane rotary compressor depending on whether rollers and vanes are coupled.
  • the contact rotary compressor is a method in which the vanes are in sliding contact with the rollers
  • the hinged vane rotary compressor is a method in which the vanes are hinged to the rollers.
  • the rotary compressor may be divided into a rotary compressor and a vane rotary compressor according to the support position of the vane.
  • a rotary compressor is a conventional structure in which a vane is slidably inserted into a cylinder and supported, and a vane rotary compressor is a method in which a vane is slidably inserted into a roller.
  • the rotary compressor may be divided into an eccentric rotary compressor and a concentric rotary compressor according to the presence or absence of eccentricity of the rollers.
  • the eccentric rotary compressor is a method in which a roller is coupled to an eccentric portion of a rotating shaft
  • a concentric rotary compressor is a method in which a roller is formed coaxially of a rotating shaft.
  • a hinge vane type rotary compressor will be described as a representative example. Accordingly, unless otherwise specified in the description below, the rotary compressor may be understood as abbreviated as a hinge vane rotary compressor.
  • FIG. 1 is an exploded perspective view showing the compressor body in the rotary compressor according to the present embodiment
  • FIG. 2 is a perspective view showing the compressor body assembled in FIG. 1
  • FIG. 3 is a cross-sectional view showing the inside of the rotary compressor according to FIG.
  • FIG. 4 is a plan view showing the compression unit in FIG. 3
  • FIG. 4 is a plan view illustrating the inside of the compression unit in FIG. 1 .
  • the rotary compressor includes a shell 110 forming an external appearance, a compressor body C provided in an inner space 110a of the shell 110, and a compressor body C ) to the shell 110, the support 150, the suction/discharge unit 160 for guiding the refrigerant to the compressor body (C) and discharging the compressed refrigerant, and the oil contained in the oil reservoir of the shell 110 to the compressor body (C) includes a refueling unit 170 for supplying.
  • the compressor body (C) transmits the driving force from the electric part 120 providing the driving force, the rotating shaft 130 and the electric part 120 coupled in the electric part 120 to transmit the rotational force to the compression part 140 to be described later. and a compression unit 140 for receiving and compressing the refrigerant.
  • the shell 110 has the inner space 110a sealed, so that the compressor body C, the support part 150, the suction/discharge part 160 and the oil supply part 170 are accommodated.
  • the shell 110 is made of an aluminum alloy (hereinafter, abbreviated as aluminum) which is light and has a high thermal conductivity, and includes a base shell 111 and a cover shell 112 .
  • the base shell 111 is formed in a substantially hemispherical shape.
  • a suction pipe 115 , a discharge pipe 116 , and a process pipe 117 are respectively penetrated and coupled to the base shell 111 .
  • the suction pipe 115 , the discharge pipe 116 , and the process pipe 117 may be coupled to the base shell 111 by an insert die casting method, respectively.
  • the cover shell 112 is formed in a substantially hemispherical shape like the base shell 111 .
  • the cover shell 112 is coupled to the base shell 111 from the upper side of the base shell 111 to form the inner space 110a of the shell 110 .
  • cover shell 112 may be coupled to the base shell 111 by welding, but when the base shell 111 and the cover shell 112 are formed of an aluminum material that is difficult to weld, they may be bolted together.
  • the electric part 120 includes a stator 121 and a rotor 122 .
  • the stator 121 is spaced apart from the inner circumferential surface of the shell 110 and is elastically supported against the inner space 110a of the shell 110 , that is, the bottom surface of the base shell 111 , and the rotor 122 is the stator 121 . ) is rotatably installed inside the stator 121 .
  • the stator 121 includes a stator core 1211 and a stator coil 1212 .
  • the stator core 1211 is made of a metal material such as an electrical steel sheet, and when a voltage is applied from the outside to the electric part 120, the stator coil 1212 and the rotor 122, which will be described later, interact with each other through electromagnetic force.
  • stator core 1211 is formed in a substantially rectangular cylindrical shape.
  • the inner circumferential surface of the stator core 1211 may be formed in a circular shape, and the outer circumferential surface may be formed in a rectangular shape.
  • Bolt holes are formed through each of the four corners of the stator core 1211, and fixed self-fastening bolts (not shown) pass through each bolt hole, respectively, and are fastened to the main bearing plate 141 to be described later. Accordingly, the stator core 1211 is fixed to the lower surface of the main bearing plate 141 by the fixing self-fastening bolts.
  • the lower end of the stator core 1211 is attached to a support spring 152 to be described later with respect to the bottom surface of the shell 110 . supported by Accordingly, vibration generated during operation may be suppressed from being directly transmitted to the shell 110 .
  • the stator coil 1212 is wound inside the stator core 1211 . As described above, when a voltage is applied from the outside, the stator coil 1212 generates an electromagnetic force to perform electromagnetic interaction with the stator core 1211 and the rotor 122 . Through this, the electric unit 120 generates a driving force for the reciprocating motion of the compression unit 140 .
  • An insulator 1213 is disposed between the stator core 1211 and the stator coil 1212 . Accordingly, direct contact between the stator core 1211 and the stator coil 1212 is suppressed, so that electromagnetic interaction can be smoothly performed.
  • the rotor 122 includes a rotor core 1221 and a magnet 1222 .
  • the rotor core 1221 like the stator core 1211, is made of a metal material such as an electrical steel sheet, and has a substantially cylindrical shape.
  • a rotation shaft 130 to be described later may be press-fitted to the center of the rotor core 1221 .
  • the magnet 1222 is made of a permanent magnet, and may be inserted and coupled at equal intervals along the circumferential direction of the rotor core 1221 .
  • the rotor 122 rotates through electromagnetic interaction with the stator core 1211 and the stator coil 1212 when a voltage is applied. Accordingly, while the rotation shaft 130 rotates together with the rotor 122 , the rotational force of the electric unit 120 is transmitted to the compression unit 140 .
  • the rotary shaft 130 includes a rotor coupling portion 131 , a main bearing surface portion 132 , an eccentric portion 133 , and a sub bearing surface portion 134 .
  • the rotor coupling portion 131 is a portion press-fitted to the rotor core 1221 , and forms a lower half of the rotation shaft 130 .
  • a lower end of the rotor coupling unit 131 may extend longer than a lower end of the rotor 122 , and an oil feeder 138 to be described later may be installed at the lower end of the rotor coupling unit 131 .
  • the main bearing surface part 132 is formed in the middle of the rotation shaft 130 , that is, between the rotor coupling part 131 and the eccentric part 133 .
  • the main bearing surface part 132 is formed on the same axis as the rotor coupling part 131 and is rotatably inserted into the main bearing part 1413 of the main bearing plate 141 which will be described later.
  • the eccentric portion 133 is formed between the upper end of the main bearing surface portion 132 and the lower end of the sub bearing surface portion 134 .
  • the eccentric portion 133 is formed eccentrically with respect to the center of the rotor coupling portion 131 , that is, the center of the rotation shaft 130 , and a roller 1441 to be described later is rotatably inserted therein. Accordingly, when the rotating shaft 130 rotates, the roller 1441 compresses the refrigerant while rotating in the inside of the compression chamber (V).
  • the sub bearing surface portion 134 extends in the axial direction from the upper end of the eccentric portion 133 .
  • the sub bearing surface portion 134 is formed on the same axis as the main bearing surface portion 132 and is rotatably inserted into the sub bearing portion 1422 of the sub bearing plate 142 to be described later.
  • an oil pumping hole 135 penetrating between both ends of the rotation shaft 130 in the axial direction is formed inside the rotation shaft 130 , and a first oil supply hole is formed at a predetermined interval along the axial direction of the rotation shaft 130 .
  • the second oil supply hole 1362, the third oil supply hole 1363 is formed through the outer peripheral surface of the rotating shaft (130).
  • the first oil supply hole 1361 penetrates through the outer peripheral surface of the main bearing surface portion 132
  • the second oil supply hole 1362 penetrates through the outer peripheral surface of the eccentric part 133
  • the third oil supply hole 1363 Silver may penetrate through the outer peripheral surface of the sub-bearing surface portion 134 .
  • an oil feeder 138 for pumping oil in the shell 110 to the oil pumping hole 135 may be installed at the lower end of the oil pumping hole 135 .
  • the oil feeder 138 may be variously applied, such as a trochoid gear pump, a spiral shaft, or a propeller oil feeder.
  • the oil inside the shell 110 is pumped by the oil feeder 138 and moves toward the upper end of the rotation shaft 130 through the oil pumping hole 135, and a part of this oil is the oil pumping hole 135.
  • the oil pumping hole 135. In the middle of the lubrication is supplied to each bearing surface through the first oil supply hole 1361, the second oil supply hole 1362, and the third oil supply hole 1363.
  • FIG. 5 is a perspective view showing the compressor body in FIG. 1
  • FIG. 6 is an exploded perspective view showing the compressor body by removing the suction muffler in FIG. 5 .
  • the compression unit 140 includes a main bearing plate (hereinafter, referred to as a main bearing) 141 , a sub-bearing plate (hereinafter referred to as a sub-bearing) 142 , and a cylinder 143 . , including a vane roller 144 .
  • the main bearing 141 and the sub bearing 142 are provided on both sides of the axial direction with the cylinder 143 interposed therebetween to form a compression chamber V inside the cylinder 143 .
  • main bearing 141 and the sub bearing 142 radially support the rotation shaft 130 penetrating the cylinder 143 .
  • the vane roller 144 is coupled to the eccentric portion 133 of the rotating shaft 130 to compress the refrigerant while rotating in the cylinder 143 .
  • the main bearing 141 may have a main plate portion 1411 formed in a disk shape, and a stator fixing protrusion 1412 may be formed at an edge of the main plate portion 1411 .
  • the stator fixing protrusions 1412 may be formed to protrude downwardly from the four corners of the main plate 1411 toward the transmission 120 .
  • stator fixing protrusion 1412 is fastened to the stator 121 by a fixing self-fastening bolt (unsigned), and may be elastically supported by the base shell 111 together with the stator 121 of the transmission unit 120 .
  • a main bearing part 1413 is formed to protrude downward toward the transmission part in the center of the main plate part 1411 , and a main bearing hole 1413a is formed through the main bearing part 1413 so that the rotating shaft 130 is inserted and supported.
  • the sub plate portion 1421 is formed in a disk shape and may be bolted to the main bearing 141 together with the cylinder 143 .
  • the main bearing 141 may be bolted to the cylinder 143 together with the sub bearing 142 , respectively, and the sub bearing 142 is the shell 110 .
  • the cylinder 143 and the main bearing 141 may be fastened to the sub bearing 142 with bolts.
  • a sub-bearing part 1422 is formed to protrude downward toward the bottom surface of the shell 110, and a sub-bearing hole 1422a is provided in the sub-bearing part 1422 and a main bearing hole 1413a. It is formed by penetrating on the same axis as the The lower end of the rotation shaft 130 is supported in the sub bearing hole 1422a.
  • the cylinder 143 is formed in an annular shape.
  • the inner circumferential surface of the cylinder 143 is formed in a perfect circle shape having the same inner diameter.
  • the inner diameter of the cylinder 143 is formed larger than the outer diameter of the roller (1441). Accordingly, a compression chamber V is formed between the inner peripheral surface of the cylinder 143 and the outer peripheral surface of the roller 1441 .
  • the inner peripheral surface of the cylinder 143 is the outer wall surface of the compression chamber (V)
  • the outer peripheral surface of the roller 1441 is the inner wall surface of the compression chamber (V)
  • the vane 1445 is the compression chamber (V) side
  • Each wall can be formed. Therefore, as the roller 1441 rotates, the outer wall surface of the compression chamber V forms a fixed wall, while the inner wall surface and the side wall surface of the compression chamber V form a variable wall whose position is variable. have.
  • a suction port 1431 is formed in the cylinder 143, a vane slot 1432 is formed on one side in the circumferential direction of the suction port 1431, and a discharge guide groove is formed on the opposite side of the suction port 1431 with the vane slot 1432 interposed therebetween. (1433) is formed.
  • the suction port 1431 may be formed to radially penetrate the inner circumferential surface from the outer circumferential surface of the cylinder 143 .
  • the suction port 1431 may be formed to have a single inner diameter.
  • the extension portion insertion groove 1431a is stepped on the outer peripheral side of the suction port 1431 so that the outlet extension portion 1613a is inserted. may be formed.
  • a muffler mounting groove 1435 into which a suction muffler outlet 1613 to be described later is inserted and coupled may be formed on the outer periphery of the suction port 1431 .
  • the muffler mounting groove 1435 may be formed by being depressed in the radial direction from the outer circumferential surface of the cylinder 143 .
  • the muffler mounting groove 1435 may be formed in a substantially hexahedral shape to correspond to the suction muffler outlet 1613 .
  • the muffler mounting groove 1435 has both sides in the circumferential direction and a radially inner surface facing the inlet 1431 are each formed in a closed shape, and both axial side surfaces and radially outer surfaces are each formed in an open shape.
  • the blocked side surfaces of the muffler mounting groove 1435 form a support surface for supporting the side surfaces of the suction muffler outlet 1613 facing it.
  • both sides of the muffler mounting groove 1435 in the circumferential direction form a first muffler support surface 1435a
  • the inner surface of the muffler mounting groove 1435 forms a second muffler support surface 1435b.
  • the suction muffler outlet 1613 which will be described later, may be inserted and coupled from the outer circumferential side of the muffler mounting groove 1435 to the inner circumferential side. And, as both sides of the muffler mounting groove 1435 in the upper and lower axial directions are opened, the cross-sectional area of the suction muffler outlet 1613 is made as large as possible, so that the flow path area of the suction muffler outlet 1613 is secured as much as possible. can The muffler mounting groove 1435 will be described again later with the suction muffler 161 .
  • the vane slot 1432 is elongated in the direction toward the outer circumferential surface on the inner circumferential surface of the cylinder 143 .
  • the inner circumferential side of the vane slot 1432 is opened, and the outer circumferential side is formed to be blocked or blocked by the inner circumferential surface of the shell 110 .
  • the vane slot 1432 is formed to have a width approximately similar to the thickness or width of the vane 1445 so that the vane 1445 of the vane roller 144, which will be described later, slides. Accordingly, both sides of the vane 1445 are supported by both inner wall surfaces of the vane slot 1432 and slide approximately in a straight line.
  • the discharge guide groove 1433 is formed by chamfering the inner edge of the cylinder 143 in a hemispherical shape.
  • the discharge guide groove 1433 serves to guide the refrigerant compressed in the compression chamber V of the cylinder 143 to the discharge port 1423 of the sub bearing 142 . Accordingly, the discharge guide groove 1433 is formed at a position overlapping the discharge port 1423 when projected in the axial direction so as to communicate with the discharge port 1423 .
  • the discharge guide groove 1433 since the discharge guide groove 1433 generates a dead volume, it is preferable not to form the discharge guide groove 1433 as much as possible. .
  • compression chamber sealing grooves are formed on both upper and lower sides of the cylinder 143 , and the compression chamber sealing member 146 made of an O-ring or gasket may be inserted into the compression chamber sealing groove.
  • the compression chamber sealing member 146 may be formed in an annular shape and installed along the periphery of the compression chamber (V). Specifically, the compression chamber sealing member 146 surrounds the outer peripheral side of the vane slot 1432 and the outer peripheral side of the discharge guide groove 1433, and seals between the inner peripheral side of the muffler mounting groove 1435 and the compression chamber (V). It can be installed through the face.
  • the compression chamber sealing member 146 including the vane slot 1432 and the discharge guide groove 1433, encloses and seals the compression chamber V, and at the same time seals between the compression chamber V and the muffler mounting groove 1435. It is separated and sealed. Through this, it is possible to suppress leakage of the high-pressure refrigerant compressed in the compression chamber V into the internal space 110a of the shell 110 constituting the relatively low-pressure part.
  • the compression chamber sealing member 146 may be installed on both sides of the cylinder 143 in the axial direction, but in some cases, it is installed on the main bearing 141 or the sub bearing 142 facing both sides of the cylinder 143 . it might be
  • the vane roller 144 includes a roller 1441 and a vane 1445 as described above.
  • the roller 1441 and the vane 1445 may be formed as a single body, or may be combined to perform a relative motion.
  • the present embodiment will be mainly described with respect to an example in which the roller and the vane are rotatably coupled.
  • the roller 1441 is formed in a cylindrical shape.
  • the roller 1441 may be formed in a perfect circle shape having the same center as the inner circumferential surface and the outer circumferential surface, or may be formed in a perfect circle shape in which the inner circumferential surface and the outer circumferential surface of the roller 1441 have different centers.
  • the axial height of the roller 1441 is formed to be substantially equal to the height of the inner peripheral surface of the cylinder (143). However, since the roller 1441 must slide with respect to the main bearing 141 and the sub bearing 142 , the axial height of the roller 1441 may be formed to be slightly smaller than the height of the inner circumferential surface of the cylinder 143 .
  • the inner peripheral height and the outer peripheral height of the roller 1441 is formed to be substantially the same. Accordingly, both axial end surfaces connecting between the inner peripheral surface and the outer peripheral surface of the roller 1441 form a sealing surface, respectively. These sealing surfaces are formed at right angles to the inner circumferential surface or the outer circumferential surface of the roller 1441, respectively. However, the edge between the inner circumferential surface of the roller 1441 and each sealing surface or the edge between the outer circumferential surface of the roller 1441 and each sealing surface may be formed to be slightly inclined or curved.
  • roller 1441 is rotatably inserted and coupled to the eccentric portion 133 of the rotating shaft 130, and the vane 1445 is slidably coupled to the vane slot 1432 of the cylinder 143 to the roller 1441. is hinged to the outer circumferential surface of the Accordingly, when the rotating shaft 130 rotates, the roller 1441 makes a reciprocating motion within the cylinder 143 by the eccentric portion 133 and the vane reciprocates in a state coupled to the roller 1441 .
  • rollers 1441 may be aligned to be co-center with respect to the cylinder 143, but may be aligned slightly eccentrically in some cases.
  • the roller 1441 is formed in an annular shape so that its inner peripheral surface has an inner diameter that can be in sliding contact with the outer peripheral surface of the eccentric portion 133 of the rotation shaft 130 .
  • the radial width (thickness) of the roller 1441 is formed to a thickness sufficient to secure a sealing distance from the hinge groove 1411 to be described later.
  • the thickness of the roller 1441 may be uniformly formed along the circumferential direction, or may be formed differently in some cases.
  • the inner peripheral surface of the roller 1441 may be formed in an elliptical shape.
  • the inner and outer peripheral surfaces of the roller 1441 are formed in a round shape having the same center, and the radial thickness of the roller 1441 is formed uniformly along the circumferential direction. It may be desirable to minimize the load during rotation of the rotating shaft 130.
  • one hinge groove 1411 is formed on the outer peripheral surface of the roller 1441 so that a vane hinge portion 1445b of a vane 1445 to be described later is inserted and rotated.
  • the hinge groove 1411 is formed in an arc shape with an open outer circumferential surface.
  • the inner diameter of the hinge groove 1411 is formed to be larger than the outer diameter of the vane hinge portion 1445b, and is formed to a size sufficient to slide without falling out while the vane hinge portion 1445b is inserted.
  • the vane 1445 includes a vane body portion 1445a and a vane hinge unit 1445b.
  • the vane body portion 1445a is a portion constituting the vane body, and is formed in a flat plate shape having a predetermined length and thickness.
  • the vane body portion 1445a is formed in a rectangular hexahedral shape as a whole.
  • the vane body portion 1445a is formed with a length such that the vane 1445 remains in the vane slot 1432 even in a state in which the roller 1441 has completely moved to the opposite side of the vane slot 1432 .
  • the vane hinge portion 1445b is formed to extend to the front end of the vane body portion 1445a facing the roller 1441 .
  • the vane hinge portion 1445b is inserted into the hinge groove 1411 and formed to have a rotatable cross-sectional area.
  • the vane hinge portion 1445b may be formed in a semi-circular shape or a substantially circular cross-sectional shape excluding the connecting portion to correspond to the hinge groove 1411 .
  • the support part 150 includes a spring cap 151 and a support spring 152 .
  • the support part 150 supports between the lower surface of the electric part and the bottom surface of the base shell 111 facing it, and generally supports the four corners of the electric part 120 with respect to the shell 110 .
  • the support unit 150 forms a support unit as a pair of the spring cap 151 and the support spring 152 so that each support unit supports the four corners of the compressor body C.
  • a pair of support units will be described as a representative example.
  • the spring cap 151 is fixed to the first spring cap 1511 fixed to the bottom surface of the base shell 111 and the lower surface of the electric part 120 (precisely, the lower surface of the stator core). It may be formed of a second spring cap 1512 .
  • the first spring cap 1511 and the second spring cap 1512 may be disposed on a coaxial line in the axial direction, or may be disposed on different axial lines in some cases. When the first spring cap 1511 and the second spring cap 1512 are disposed on different axial lines, it is advantageous that the second spring cap 1512 is disposed outside the first spring cap 1511 . .
  • Each of the first spring cap 1511 and the second spring cap 1512 may be formed of a rubber material, or may be formed by being wrapped around an outer circumferential surface of a metal material with a rubber or plastic material in consideration of installation rigidity and cushioning.
  • the first spring cap 1511 is inserted into the cap fixing groove (not shown) in the metal base shell 111 to be firmly fixed, so it may be formed of a metal material.
  • the second spring cap 1512 is inserted into and fixed to the bolt head (not shown) of the fixing self-fastening bolt (not shown) protruding in the axial direction from the lower surface of the stator core 1211, it may be formed of a rubber or plastic material.
  • the support spring 152 may be formed of a compression coil spring. One end of the support spring 152 may be inserted into and fixed to the first spring cap 1511 , and the other end of the support spring 152 may be inserted and fixed into the second spring cap 1512 . Accordingly, the stator core 1211 may be elastically supported by the shell by the support spring 152 .
  • the suction/discharge unit 160 includes a suction muffler 161 and a discharge muffler 162 .
  • the suction muffler 161 may be coupled to the outer peripheral surface of the cylinder 143
  • the discharge muffler 162 may be coupled to the upper surface of the sub bearing 142 . Accordingly, the suction muffler 161 is located below the sub bearing 142 , and the discharge muffler 162 is located above the sub bearing 142 .
  • the inlet of the suction muffler 161 is spaced apart from the inner circumferential surface of the shell 110 and communicates with the inner space 110a of the shell 110 , and the outlet of the suction muffler 161 communicates with the suction port 1431 to the compression chamber. It can be directly connected to (V). Accordingly, the refrigerant sucked from the suction pipe 115 flows into the suction muffler 161 through the inner space 110a of the shell 110, and the refrigerant flows into the compression chamber V through the suction muffler 161. is inhaled
  • the inlet of the discharge muffler 162 is coupled to the sub bearing 142 to directly communicate with the discharge port 1423 , and the outlet of the discharge muffler 162 is connected to the loop pipe 118 and directly to the discharge pipe 116 .
  • the roof pipe 118 connects between the discharge muffler and the discharge pipe at a position higher than the oil level of the oil filled in the inner space 110a of the shell 110, and thereby the refrigerant discharged from the compression chamber V is discharged to the outside of the compressor through the discharge muffler 162 , the loop pipe 118 , and the discharge pipe 116 without heating the oil in the inner space 110a of the shell 110 .
  • suction muffler A detailed look at the suction muffler and the discharge muffler is as follows. The suction muffler will be described first.
  • FIG. 7 is a perspective view showing an embodiment of the suction muffler in FIG. 1
  • FIG. 8 is a perspective view showing the suction muffler according to FIG. 7 is assembled
  • FIG. 9 is a sectional view “IV-IV” in FIG.
  • the suction muffler 161 may include a suction muffler body 1611, a suction muffler inlet 1612, and a suction muffler outlet 1613.
  • the suction muffler 161 may have a suction space 1611a to be described later formed therein by assembling a plurality of members.
  • the suction muffler 161 may be formed by assembling the lower muffler and the upper muffler.
  • a suction space 1611a having a predetermined volume is formed inside the suction muffler body 1611 .
  • the suction muffler body 1611 may be formed as a single member, or may be formed by assembling a plurality of members. However, since the suction muffler body 1611 needs to have a suction space 1611a therein, it may be formed by assembling a plurality of members.
  • the inside of the suction space 1611a may be formed as a single space, but may be formed to have a plurality of spaces or flow paths in order to increase the noise attenuation effect. For this, it may be formed according to the internal shape of a conventional muffler.
  • the suction muffler inlet 1612 may communicate with the lower half of the suction space 1611a.
  • the suction muffler inlet 1612 may be preferably formed on the outer surface of the suction muffler body 1611. have.
  • the suction muffler inlet 1612 may be preferably formed eccentrically to one side in the circumferential direction to secure the length of the suction passage. Accordingly, the suction muffler outlet 1613 to be described later may be eccentrically formed on the opposite side of the suction muffler inlet 1612 in the circumferential direction.
  • the suction muffler outlet 1613 may communicate with the upper half of the suction space 1611a.
  • the suction muffler outlet 1613 may be formed consecutively to the suction muffler body 1611 .
  • the outlet portion 1613 of the suction muffler is coupled to the outer circumferential surface of the cylinder 143 , and the main bearing plate 141 is positioned below the cylinder 143 .
  • the suction muffler outlet 1613 should be installed at a radially widened position avoiding interference with the main bearing plate 141 .
  • the lateral diameter of the compressor may increase, making it difficult to downsize the compressor.
  • suction muffler body part 1611 and the suction muffler outlet part 1613 may be connected by the suction muffler connection part 1614 .
  • the suction muffler connecting portion 1614 may be formed to be long like a neck portion of a kind of muffler.
  • the suction muffler connection part 1614 may be inclined by a predetermined angle ⁇ in a direction from the suction muffler body part 1611 toward the cylinder 143 . Accordingly, the flow resistance of the refrigerant from the suction muffler body 1611 to the suction muffler outlet 1613 is reduced, so that the refrigerant can be smoothly sucked into the suction port 1431 of the cylinder 143 (refer to FIG. 9 ). )
  • the suction muffler outlet 1613 may be formed to correspond to the cross-sectional shape of the muffler mounting groove 1435 of the cylinder 143 .
  • the suction muffler outlet 1613 may have a substantially rectangular cross-sectional shape when projected in a radial direction. Accordingly, both sides of the suction muffler outlet portion 1613 in the circumferential direction may be respectively closely adhered to and supported in the circumferential direction of the muffler mounting groove 1435 in the circumferential direction.
  • the muffler fixing part 1615 may be formed to extend in the circumferential direction on both sides of the suction muffler outlet part 1613 in the circumferential direction.
  • the circumferential length of the muffler fixing part 1615 may be longer than the circumferential length of the muffler mounting groove 1435 . Accordingly, the muffler fixing part 1615 may be fixed to the cylinder 143 outside the muffler mounting groove 1435 .
  • the circumferential length (hereinafter, the first length) L1 from the center O of the suction port 1431 to the fixing point (ie, the fastening hole) of the muffler fixing part 1615 is the suction port 1431 .
  • the circumferential length (hereinafter, the second length) L2 may be formed to be equal to or longer than the length L2.
  • the first length L1 may be longer than the second length L2. Accordingly, the vibration transmitted by the suction muffler 161 during the operation of the compressor is buffered and absorbed to a certain extent by the muffler fixing unit 1615, and the stress in the muffler fixing unit 1615 is reduced to prevent the suction muffler 1616. It can be fixed more stably.
  • the muffler fixing part 1615 may be formed in a curved shape having the same curvature as that of the outer circumferential surface of the cylinder 143 . Accordingly, the muffler fixing part 1615 may be fixed in close contact with the outer peripheral surface of the cylinder 143 .
  • a fastening hole 1616a is formed in the muffler fixing part 1615 , and a fastening groove 143a may be formed on the outer peripheral surface of the cylinder 143 facing the fastening hole 1616a. Accordingly, the muffler fixing part 1615 is fastened by the muffler fastening bolt 1616 that penetrates the fastening hole 1616a and is fastened to the fastening groove 143a, and then the suction muffler 161 is stably attached to the cylinder 143. It can be fastened with
  • a muffler sealing member 1617 may be provided between the end surface 1613b of the suction muffler outlet 1613 and the inner surface of the muffler mounting groove 1435 of the cylinder 143 facing the same in the radial direction.
  • the muffler sealing member 1617 is formed of an O-ring or a flat gasket, and when an outlet extension 1613a to be described later is formed on the suction muffler outlet 1613, the outlet extension 1613a is wrapped around the suction muffler outlet portion ( 1613) may be in close contact between the end surface 1613b and the inner surface of the muffler mounting groove 1435.
  • a portion of the oil in the shell 110 inner space 110a (for example, oil flowing into the oil passage hole 1721 of the oil supply unit 170 to be described later) is partially transferred to the suction muffler 161 and the cylinder 143 . ) through the gap between the intake port 1431 can be suppressed.
  • the outlet extension portion 1613a of the suction muffler outlet portion 1613 may be formed to extend toward the cylinder (143).
  • the outlet extension portion 1613a is formed to extend in a cylindrical shape from the end surface 1613b of the suction muffler outlet portion 1613, and is inserted into the extension portion insertion groove 1431a of the suction port 1431 described above to be radially supported. can Accordingly, when the suction muffler 161 is inserted into the muffler mounting groove 1435 to be coupled, the assembly position of the suction muffler 161 is easily aligned and the refrigerant between the suction muffler 161 and the suction port 1431 . It can effectively block leakage or oil inflow.
  • the muffler fixing part 1615 is integrally formed with the suction muffler 161, but in some cases, a separate muffler fastened to the cylinder 143 without integrally forming the muffler fixing part.
  • the suction muffler 161 may be fixed to the cylinder 143 using a fixing member. This will be explained again later.
  • the discharge muffler 162 includes a discharge muffler body 1621 having a discharge space 1621a to accommodate the discharge port 1423, and a discharge muffler body ( It extends from 1621 and includes a discharge muffler fixing part 1622 fixed to the upper surface of the sub bearing 142 .
  • the discharge muffler body part 1621 is composed of a side wall surface and an upper wall surface forming the discharge space 1621a, and the side wall surface forming the discharge space 1621a is connected to the roof pipe 118 to form the discharge space 1621a.
  • a refrigerant discharge hole 1621b for guiding the discharged refrigerant to the discharge pipe 116 may be formed. Accordingly, the refrigerant discharged to the discharge space 1621a is discharged to the loop pipe 118 through the refrigerant discharge hole 1621b while the discharge noise is canceled in the discharge space 1621a, and the refrigerant is discharged through the discharge pipe 116 through the condenser.
  • a bearing part through hole 1621c through which the sub bearing part 1422 passes may be formed in the center of the upper wall surface of the discharge muffler body part 1621 .
  • the bearing part through-hole 1621c may be formed by simply passing through the upper wall surface of the discharge muffler body part 1621 .
  • a sealing member (unsigned) can be installed between the sub-bearing part 1422 and the inner side of the discharge space 1621a. It may be formed into a cylindrical shape by bending.
  • the oil supply unit 170 includes an oil guide 171 and an oil passage unit 172 .
  • the oil guide serves to collect oil scattered from the upper end of the rotation shaft 130
  • the oil passage 172 is connected to the oil guide 171 to guide the oil to the corresponding position. Accordingly, based on the flow order of the oil, the oil guide 171 is provided on the downstream side of the rotation shaft 130 , and the oil passage part 172 is provided to be located on the downstream side rather than the oil guide 171 .
  • the oil guide 171 may be provided outside the upper wall surface of the discharge muffler 162 .
  • the oil guide 171 may be integrally formed with the discharge muffler 162 , and may be welded or fastened according to a material.
  • the oil guide 171 may be formed of a metal or a material such as plastic.
  • the lower surface of the oil guide 171 in contact with the discharge muffler 162 may be opened, and the side and upper surfaces of the oil guide 171 may be formed in a closed shape to collect oil scattered from the upper end of the rotation shaft 130 . Accordingly, a portion of the side surface and the upper surface of the oil guide 171 may form an oil accommodating space 1711 together with the upper surface of the discharge muffler 163 . However, the side of the side that faces the oil passage portion 172 among the side surfaces constituting the oil receiving space 1711 may be opened to form a guide outlet 1712 .
  • An oil guide protrusion 1713 may be formed on the outer peripheral surface of the guide outlet 1712 .
  • the oil guide protrusion 1713 may be provided between the oil guide 171 and the oil passage portion 172 . Accordingly, the oil collected by the oil guide 171 may smoothly move to the oil passage portion 172 by the oil guide protrusion 1713 .
  • the oil guide protrusion 1713 may include a first guide protrusion 1713a and a second guide protrusion 1713b.
  • the first guide protrusion 1713a may be continuously formed along the upper surface and the side surface of the discharge muffler 162 .
  • the first guide protrusion 1713a may be integrally formed with the oil guide 171 or may be integrally formed with the outer surface of the discharge muffler 162 .
  • the first guide protrusion 1713a may be post-assembled to the oil guide 171 or the discharge muffler 162 .
  • the second guide protrusion 1713b may be formed on the upper surface of the sub bearing 142 in succession to the first guide protrusion 1713a.
  • the second guide protrusion 1713b may be formed to surround a portion of the circumference of the oil passage hole 1721 to be described later. Accordingly, the oil guided by the oil guide protrusion 1713 can move to the oil passage hole 1721 without flowing out to another place.
  • the oil passage portion 172 is formed through the sub bearing 142 and the cylinder 143 so as to supply the oil guided by the oil guide 171 toward the compression portion 140 , precisely to the rear of the vane slot 1432 .
  • the oil passage part 172 may include an oil passage hole 1721 formed in the sub bearing 142 .
  • the inlet end of the oil passage hole 1721 is exposed to the inner space 110a of the shell 110 and communicates with the oil guide 171 , and the outlet end of the oil passage hole 1721 communicates with the vane slot 1432 .
  • the outlet end of the oil passage hole 1721 communicates with the vane slot 1432 through the oil storage groove 1722 .
  • the oil receiving space 1711 of the oil guide 171 communicates with the vane slot 1432 through the oil passage hole 1721, and the oil collected by the oil guide 171 is the oil passage hole 1721. It may be supplied to the vane slot 1432 through.
  • the circumferential width of the oil passage hole 1721 may be wider than the circumferential width of the vane slot 1432 . Accordingly, the oil collected by the oil guide 171 and moving to the lower space of the shell 110 may be accommodated by the oil passage hole 1721 .
  • an oil storage groove 1722 recessed by a predetermined width and depth may be formed on the outer periphery of the vane slot 1432 .
  • the cross-sectional area of the oil storage groove 1722 may be formed to be substantially the same as the cross-sectional area of the oil passage hole 1721 . Accordingly, the oil moving to the oil passage hole 1721 is accommodated in the oil storage groove 1722 , so that a certain amount of oil can always be stored in the rear of the vane slot 1432 . Through this, oil can be quickly supplied between the vane 1445 and the vane slot 1432 even when the compressor is restarted.
  • a non-return valve (not shown) may be further installed in the middle of the oil passage part to selectively open and close the oil passage part to block the reverse flow of refrigerant or oil from the oil storage groove to the oil passage hole.
  • the rotary compressor according to the present embodiment as described above operates as follows.
  • the roller 1441 of the vane roller 144 rotates, and the vane 1445 is inserted into the cylinder 143 and reciprocating while sucking the refrigerant into the compression chamber (V) of the cylinder 143 and compressing it. do.
  • This compressed refrigerant is continuously compressed by the rollers 1441 and the vanes 1445 of the vane roller 144 to open the discharge valve 145 provided in the main bearing 141 and the discharge muffler ( 162), the discharged refrigerant is discharged to the condenser constituting the refrigeration cycle through the loop pipe 118 and the discharge pipe 116, repeating a series of processes.
  • the oil stored in the inner space 110a of the shell 110 is pumped by the oil feeder 138 provided at the lower end of the rotating shaft 130 and sucked through the oil pumping hole 135, and the sucked oil A portion is supplied to each bearing surface through the first oil supply hole 1361 , the second oil supply hole 1362 , and the third oil supply hole 1363 to lubricate it.
  • the suction muffler it is possible to stably connect the suction muffler to the compression unit by configuring the rotary compressor as a spring-supported method as an upper compression method in which the compression unit is located above the transmission unit. Accordingly, an upper compression type low pressure rotary compressor in which the inner space of the shell forms a low pressure unit may be configured. Through this, the electric part is rapidly cooled by the cold refrigerant sucked into the inner space of the shell, so that the motor efficiency and compressor performance can be improved.
  • the rotary compressor of the spring support type and upper compression type it is possible to install the loop pipe constituting the discharge flow path to be separated without being submerged in the oil filled in the inner space of the shell. Accordingly, it is possible to prevent in advance that the oil inside the shell is heated by the high-temperature refrigerant discharged through the loop pipe, thereby suppressing the lowering of the viscosity of the oil, thereby reducing friction loss on each bearing surface of the compressor body. can reduce
  • suction muffler is as follows.
  • the outlet extension is formed at the outlet of the suction muffler and inserted into the inlet.
  • the outlet extension may not be formed at the outlet of the suction muffler. In this case, the position may be aligned during assembly by the muffler fixing part extending from the suction muffler.
  • FIG. 10 is a perspective view showing another embodiment of the suction muffler outlet in the suction muffler of FIG. 6
  • FIG. 11 is a cross-sectional view showing the suction muffler of FIG. 10 assembled.
  • the end face 1613b of the suction muffler outlet 1613 is formed flat, and the end face of the suction muffler outlet 1613 ( 1613b) may be in close contact with the second muffler support surface 1435b of the muffler mounting groove 1435 facing in the radial direction.
  • the muffler sealing member 1617 may be interposed between the end surface 1613b of the suction muffler outlet 1613 and the second muffler support surface 1435b facing the same as in the above-described embodiment.
  • an O-ring or a gasket may be applied as in the above-described embodiment.
  • the suction port 1431 may be formed with a single inner diameter.
  • the inner diameter of the suction port 1431 may be increased by the depth of the extension part insertion groove of the above-described embodiment, and through this, the suction area of the suction port 1431 is increased, so that the suction amount of the refrigerant This can be improved.
  • the compression chamber sealing member 146 may be installed on the main bearing 141 or the sub bearing 142 .
  • suction muffler is as follows.
  • the muffler fixing part extends in the circumferential direction from both sides of the suction muffler outlet 1613 in the circumferential direction.
  • FIG. 12 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1
  • FIG. 13 is a perspective view showing the suction muffler of FIG. 12 in an assembled state.
  • a muffler fixing part 1615 may be formed at an upper end of the suction muffler outlet part 1613 .
  • the muffler fixing part 1615 may extend in the circumferential direction from the upper end of the suction muffler outlet part 1613 to correspond to the upper surface 143c of the cylinder 143 .
  • the muffler fixing part 1615 is a vane slot 1432.
  • the oil storage groove 1722 may be formed to extend to the other side in the circumferential direction where the groove 1722 is not formed.
  • the muffler fixing part 1615 may be formed flat to correspond to the upper surface 143c of the cylinder 143 . Accordingly, the muffler fixing part 1615 may be supported in the axial direction while seated on the upper surface of the cylinder 143 around the muffler mounting groove 1435 .
  • a fastening hole 1615a penetrating in the axial direction is formed in the muffler fixing part 1615 , and a fastening groove 143b may be formed on the upper surface of the cylinder 143 corresponding to the fastening hole 1615a. Accordingly, the muffler fastening bolt 1616 may pass through the fastening hole 1615a of the muffler fixing part 1615 to be fastened to the fastening groove 143b of the cylinder.
  • the muffler fixing part 1615 is formed at the upper end of the suction muffler outlet 1613 as described above, the effect thereof is similar to that of the above-described embodiment of FIG. 5 .
  • the muffler fixing part 1615 is formed at the upper end of the suction muffler outlet part 1613 , when the suction muffler 161 is installed, the muffler fixing part 1615 is on the upper surface of the cylinder 143 . It can be supported axially in a seated state.
  • the suction muffler 161 has its suction muffler outlet 1613 inserted into the muffler mounting groove 1435 to be supported in the circumferential direction by the first muffler support surface 1435a, and at the same time, the upper surface of the cylinder 143
  • the suction muffler 161 can be more stably supported by the cylinder 143 by being supported in the axial direction by the muffler fixing part 1615 mounted on the muffler.
  • suction muffler is as follows.
  • the muffler fixing part is integrally formed with the suction muffler, but in some cases, it may be fixed to the cylinder using a separate muffler fixing member.
  • FIG. 14 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1
  • FIG. 15 is a perspective view showing the suction muffler of FIG. 14 in an assembled state.
  • the suction muffler 161 may be fixed by a muffler fixing member 1618 that surrounds the suction muffler outlet 1613 and is fastened to the outer circumferential surface of the cylinder 143. have.
  • the muffler fixing member 1618 may be formed in a rectangular shape.
  • the circumferential length of the muffler fixing member 1618 may be longer than the circumferential length of the suction muffler outlet 1613 , specifically, the circumferential length of the muffler mounting groove 1435 .
  • the muffler fixing member 1618 wraps around the outer peripheral surface of the suction muffler outlet part (or the suction muffler connection part) 1613 to be coupled to the outer peripheral surface 143d of the cylinder 143 from both sides of the muffler mounting groove 1435 in the circumferential direction, respectively.
  • the vibration transmitted by the suction muffler 161 during operation of the compressor is buffered and absorbed to a certain extent by the muffler fixing member 1618, so that the stress in the muffler fixing part 1615 is reduced and the suction muffler 1616 is removed. It can be fixed stably.
  • fastening holes 1618a for bolting are formed at both ends of the muffler fixing member 1618, and fastening grooves 143a are formed on the outer peripheral surface 143d of the cylinder 143 corresponding to the fastening hole 1618a.
  • the muffler fixing member 1618 may be formed of a material or shape having elasticity so that the front end surface of the suction muffler outlet part 1613 is pressed toward the second muffler support surface 1435b of the cylinder 143 .
  • the muffler fixing member 1618 may be formed of a thin metal plate material having elasticity or a plastic material.
  • the muffler fixing member 1618 may be formed in a curved arc shape when projected in an axial direction so as to exert an elastic force in the radial direction.
  • the end face 1613b of the suction muffler outlet 1613 is closed to the muffler sealing member 1617. It may be in close contact with the second muffler support surface (1435b)) with the interposed therebetween.
  • the muffler fixing member 1618 may be formed of a thick metal plate or plastic material whose shape has already been determined. In this case, the suction muffler 161 can be stably fixed.
  • the muffler support protrusion 1613c is formed at the suction muffler outlet 1613. can be formed.
  • the muffler support protrusion 1613c may extend in a circumferential (or/and radial) direction from the upper end of the suction muffler outlet 1613 so as to span the upper surface 143c of the cylinder 143 . Accordingly, the suction muffler outlet portion 1613 is supported in the circumferential direction by the first muffler support surface 1435a, is radially supported by the second muffler support surface 1435b, and is attached to the muffler support protrusion 1613c. may be supported in the axial direction.
  • the muffler fixing member 1618 may be installed so as to be in close contact with the lower surface of the muffler support protrusion 1613c. Then, the muffler support protrusion 1613c is supported in the axial direction by the muffler fixing member 1618 so that the suction muffler 161 can be supported more stably.
  • the muffler support protrusion 1613c may be formed to extend from the middle of the suction muffler outlet 1613 in the circumferential direction.
  • the support groove may be stepped in a slit shape so that the muffler support protrusion 1613c is inserted into the first muffler support surface 1435a of the muffler mounting groove 1435 .
  • both ends of the muffler fixing member 1618 surrounding the suction muffler outlet 1613 are fastened to the outer circumferential surface of the cylinder 143, so the suction muffler 161 may be stably fixed to the cylinder 143 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

A rotary compressor according to the present embodiment may comprise: a motor unit provided to be spaced apart from the inner circumferential surface of a shell; a rotary shaft which rotates while being coupled to the motor unit; a cylinder which is provided on the upper side of the motor unit to be spaced apart from the inner circumferential surface of the shell, and which is formed in an annular shape; a roller coupled to the rotary shaft and provided in the cylinder; a vane which is provided between the cylinder and the roller and forms a compression chamber in the cylinder; a support which elastically supports the motor unit onto the shell; a suction muffler having an inlet communicating with the inner space of the shell and an outlet communicating with a suction side of the compression chamber; and a discharge muffler having an inlet communicating with a discharge side of the compression chamber and an outlet communicating with a discharge pipe that penetrates through the shell. As such, a rotary compressor of a low-pressure type, an upper compression type, and a spring-support type may be provided.

Description

로터리 압축기rotary compressor
본 발명은 로터리 압축기에 관한 것이다.The present invention relates to a rotary compressor.
압축기는 전동부에서 발생되는 동력을 압축부로 전달하여 냉매를 압축하는 기기이다. 전동부와 압축부가 같은 쉘의 내부에 설치될 수도 있고, 서로 다른 쉘에 설치되어 별도의 동력전달기구를 이용하여 연결될 수도 있다. 전자를 밀폐형 압축기라고 하고, 후자를 개방형 압축기라고 한다.A compressor is a device that compresses a refrigerant by transferring the power generated from the electric part to the compression part. The electric part and the compression part may be installed inside the same shell or may be installed in different shells and connected using a separate power transmission mechanism. The former is called a hermetic compressor, and the latter is called an open compressor.
밀폐형 압축기는 쉘의 내부공간에 채워지는 냉매에 따라 저압식 압축기와 고압식 압축기로 구분된다. 저압식 압축기는 냉동사이클을 순환한 저온 저압의 냉매가 쉘의 내부공간에 채워지는 방식이고, 고압식 압축기는 압축부에서 토출된 고온 고압의 냉매가 쉘의 내부공간에 채워지는 방식이다. The hermetic compressor is divided into a low-pressure compressor and a high-pressure compressor according to the refrigerant filled in the inner space of the shell. The low-pressure compressor is a method in which the low-temperature and low-pressure refrigerant circulated in the refrigeration cycle is filled in the inner space of the shell, and in the high-pressure compressor, the high-temperature and high-pressure refrigerant discharged from the compression unit is filled in the inner space of the shell.
저압식 압축기는 쉘의 내부공간이 저온의 냉매로 채워짐에 따라 전동부를 이루는 모터를 냉각시켜 모터효율이 향상될 수 있다. 반면, 고압식 압축기는 압축부에서 토출되는 냉매가 쉘의 내부공간을 순환하게 되어 유분리 효과가 향상될 수 있다. The low-pressure compressor cools the motor constituting the electric part as the inner space of the shell is filled with a low-temperature refrigerant, so that the motor efficiency can be improved. On the other hand, in the high-pressure compressor, the refrigerant discharged from the compression unit circulates in the inner space of the shell, so that the oil separation effect can be improved.
또, 밀폐형 압축기는 전동부와 압축부를 포함한 압축기본체를 지지하는 방식에 따라 스프링 지지 방식과 쉘 지지 방식으로 구분될 수 있다. 전자는 압축기본체를 스프링으로 지지함에 따라 압축기본체의 진동이 스프링에 의해 감쇄되어 쉘 진동이 낮은 반면, 후자는 압축기본체를 쉘에 고정함에 따라 압축기본체의 진동이 낮다. In addition, the hermetic compressor may be divided into a spring support method and a shell support method according to a method of supporting the compressor body including the electric part and the compression part. In the former case, as the compressor body is supported by the spring, the vibration of the compressor body is attenuated by the spring, so that the shell vibration is low, whereas in the latter, the vibration of the compressor body is low as the compressor body is fixed to the shell.
특허문헌 1(일본공개특허 제2004-232524호)에는 저압식이면서 쉘 지지 방식인 밀폐형 압축기를 개시한다. 특허문헌 1은 이중 쉘 구조로 이루어져 내부쉘에 압축기본체가 쉘 지지 방식으로 고정되고, 내부쉘은 외부쉘에 스프링 지지 방식으로 지지되어 있다. 내부쉘의 내부공간은 토출된 냉매가 채워져 고압상태이고, 이 냉매는 외부쉘의 내부공간을 거치지 않고 직접 토출된다. 이에 따라, 외부쉘의 내부공간은 저압상태를 유지하게 된다.Patent Document 1 (Japanese Patent Laid-Open No. 2004-232524) discloses a hermetic compressor of a low pressure type and a shell support type. Patent Document 1 has a double shell structure, and the compressor body is fixed to the inner shell by a shell support method, and the inner shell is supported by the outer shell by a spring support method. The inner space of the inner shell is filled with the discharged refrigerant and is in a high pressure state, and this refrigerant is directly discharged without passing through the inner space of the outer shell. Accordingly, the inner space of the outer shell is maintained in a low pressure state.
상기와 같은 특허문헌 1은 전동부를 감싼 내부쉘이 외부쉘의 내부공간에 채워진 냉매에 의해 냉각되어 모터 효율이 개선될 수 있다. 또, 압축기본체가 고정된 내부쉘이 외부쉘에 스프링으로 지지됨에 따라 압축기본체의 진동을 어느정도 개선하는 동시에 쉘진동도 낮출 수 있다.In Patent Document 1 as described above, the inner shell surrounding the electric part is cooled by the refrigerant filled in the inner space of the outer shell, so that the motor efficiency can be improved. In addition, since the inner shell to which the compressor body is fixed is supported by a spring on the outer shell, the vibration of the compressor body can be improved to some extent and the shell vibration can be lowered at the same time.
그러나, 상기와 같은 종래의 밀폐형 압축기는, 압축기의 부피와 무게가 증가하고, 부품수가 증가하여 제조비용이 상승하게 될 수 있다. However, in the conventional hermetic compressor as described above, the volume and weight of the compressor may increase, and the number of parts may increase, thereby increasing the manufacturing cost.
또, 종래의 밀폐형 압축기는, 저압식이면서도 흡입시 발생되는 소음을 감쇄하기 위한 장치가 별도로 설치되지 않아 저주파 대역에서의 압축기 소음을 감쇄시키는데 한계가 있다. In addition, the conventional hermetic compressor has a limitation in attenuating compressor noise in a low frequency band because a device for attenuating noise generated during suction is not separately installed while being of a low pressure type.
또, 종래의 밀폐형 압축기는, 쉘과 압축기본체 사이의 간격이 좁아 쉘의 내부공간에 흡입머플러가 설치되는 경우에 압축기의 크기가 비대하게 될 수 있다.In addition, in the conventional hermetic compressor, the size of the compressor may be enlarged when the suction muffler is installed in the inner space of the shell because the gap between the shell and the compressor body is narrow.
또, 종래의 밀폐형 압축기는, 상부 압축 방식으로 형성될 경우 오일회수가 곤란하여 오일공급구조를 구비하기가 어려울 뿐만 아니라, 이로 인해 전체적으로 오일부족으로 인한 마찰손실이 발생될 수 있다.In addition, when the conventional hermetic compressor is formed in the upper compression method, it is difficult to recover oil, so it is difficult to provide an oil supply structure, and thus, friction loss due to insufficient oil may occur as a whole.
또, 종래의 밀폐형 압축기는, 압축부가 전동부보다 하측에 위치하는 소위 하부 압축 방식이면서 저압식 구조로 이루어져 루프 파이프를 길게 설치할 공간적 여유가 부족할 뿐만 아니라, 루프 파이프가 오일에 잠겨 오일의 온도가 상승되면서 오일점도가 낮아져 압축기본체에서의 마찰손실이 발생될 수 있다.In addition, the conventional hermetic compressor has a so-called lower compression type and low pressure structure in which the compression part is located below the transmission part, so there is not enough space to install the roof pipe for a long time, and the roof pipe is submerged in oil and the temperature of the oil rises. As the oil viscosity decreases, friction loss may occur in the compressor body.
또, 종래의 밀폐형 압축기는, 쉘의 내부공간이 저압부를 이룸에 따라 고압부를 이루는 압축실에서 쉘의 내부공간으로 냉매가 누설될 우려가 있었다. 특히, 로터리 압축기의 경우는 실린더의 양쪽에 메인베어링 플레이트와 서브베어링 플레이트가 결합됨에 따라, 실린더와 양쪽 베어링 플레이트 사이의 가공오차 또는 조립오차로 인해 압축실의 냉매가 쉘의 내부공간으로 누설되어 압축손실이 발생될 수 있었다. In addition, in the conventional hermetic compressor, as the inner space of the shell forms the low pressure portion, there is a fear that the refrigerant may leak from the compression chamber constituting the high pressure portion to the inner space of the shell. In particular, in the case of a rotary compressor, since the main bearing plate and the sub-bearing plate are combined on both sides of the cylinder, the refrigerant in the compression chamber leaks into the inner space of the shell due to a machining error or assembly error between the cylinder and both bearing plates and is compressed. losses could have occurred.
본 발명의 목적은, 저압식이면서 쉘에 대해 압축기본체를 탄력 지지하는 스프링 지지 구조로 된 로터리 압축기를 제공하려는데 있다.SUMMARY OF THE INVENTION It is an object of the present invention to provide a rotary compressor having a spring support structure that elastically supports the compressor body with respect to the shell while being of a low pressure type.
나아가, 본 발명의 다른 목적은, 쉘의 내부공간을 통해 흡입되는 냉매의 흡입소음을 효과적으로 감쇄시키도록 흡입머플러의 설치공간을 확보할 수 있는 로터리 압축기를 제공하려는데 있다. Furthermore, it is another object of the present invention to provide a rotary compressor capable of securing an installation space for a suction muffler to effectively attenuate suction noise of refrigerant sucked through the inner space of the shell.
더 나아가, 본 발명의 다른 목적은, 저압식이고 스프링 지지 방식이며 상부 압축 방식의 경우에 쉘의 내부공간에 흡입머플러가 안정적으로 설치될 수 있는 로터리 압축기를 제공하려는데 있다. Furthermore, another object of the present invention is to provide a rotary compressor in which a suction muffler can be stably installed in the inner space of the shell in the case of a low pressure type, a spring supported type, and an upper compression type.
나아가, 본 발명의 다른 목적은, 저압식이고 스프링 지지 방식이면서 토출유로가 오일에 잠기는 것을 미연에 방지하여 오일이 토출가스에 의해 가열되는 것을 억제할 수 있는 로터리 압축기를 제공하려는데 있다.Furthermore, it is another object of the present invention to provide a rotary compressor of a low pressure type and a spring supported type, which can prevent the discharge passage from being submerged in oil in advance, thereby suppressing the oil from being heated by the discharge gas.
더 나아가, 본 발명의 다른 목적은, 저압식이고 스프링 지지 방식이며 압축부가 전동부보다 상측에 위치하는 상부 압축 방식이면서도 압축부에 오일이 원활하게 공급될 수 있도록 하는 로터리 압축기를 제공하려는데 있다.Furthermore, it is another object of the present invention to provide a rotary compressor of a low pressure type, a spring supported type, and an upper compression type in which the compression unit is located above the transmission unit, so that oil can be smoothly supplied to the compression unit.
더 나아가, 본 발명의 다른 목적은, 저압식이면서 압축부를 이루는 실린더와 양쪽 베어링 플레이트 사이로 냉매가 누설되는 것을 억제할 수 있는 로터리 압축기를 제공하려는데 있다.Furthermore, it is another object of the present invention to provide a low-pressure rotary compressor capable of suppressing leakage of refrigerant between a cylinder and both bearing plates constituting a compression part.
본 발명의 목적을 달성하기 위하여, 한 겹으로 형성되어 외관을 이루는 쉘; 상기 쉘의 내주면으로부터 이격되어 구비되며, 전동부와 상기 전동부의 상측에 위치하는 압축부를 포함하고, 압축부는 로터리 압축방식으로 이루어진 압축기본체; 및 상기 압축기본체를 상기 쉘에 탄력 지지하는 지지부;를 포함하는 로터리 압축기가 제공될 수 있다. 이를 통해, 로터리 방식의 압축부를 가지는 압축기본체가 단일쉘로 이루어진 쉘에 대해 스프링 지지 방식으로 지지될 수 있다. In order to achieve the object of the present invention, the shell is formed in one layer to form an appearance; a compressor body provided spaced apart from the inner circumferential surface of the shell, comprising a transmission unit and a compression unit positioned above the transmission unit, and the compression unit formed in a rotary compression method; and a support part for elastically supporting the compressor body on the shell; a rotary compressor including a can be provided. Through this, the compressor body having the rotary compression unit can be supported in a spring-supported manner with respect to the single-shell shell.
또, 본 발명의 목적을 달성하기 위하여, 쉘; 상기 쉘의 내주면으로부터 이격되어 구비되며, 전동부와 상기 전동부의 상측에 위치하는 압축부를 포함하고, 상기 압축부는 로터리 압축방식으로 이루어진 압축기본체; 입구는 상기 쉘의 내부공간에 연통되고, 출구는 상기 압축부의 흡입구에 연결되는 흡입머플러; 및 입구는 상기 압축부의 토출구에 연결되고, 출구는 상기 쉘을 관통하는 토출파이프에 연결되며, 상기 압축기본체의 상단에 설치되는 토출머플러;를 포함하는 로터리 압축기가 제공될 수 있다. 이를 통해, 로터리 방식의 압축기본체가 저압식을 이루며 상부 압축 방식을 이룰 수 있다. In addition, in order to achieve the object of the present invention, the shell; It is provided spaced apart from the inner circumferential surface of the shell, and includes a transmission unit and a compression unit positioned above the transmission unit, the compression unit comprising: a compressor body made of a rotary compression method; a suction muffler having an inlet communicating with the inner space of the shell and having an outlet connected to a suction port of the compression unit; and a discharge muffler having an inlet connected to a discharge port of the compression unit, an outlet connected to a discharge pipe passing through the shell, and a discharge muffler installed at an upper end of the compressor body. Through this, the rotary type compressor body can achieve a low pressure type and an upper compression type.
또, 본 발명의 목적을 달성하기 위하여, 한 겹으로 형성되어 외관을 이루는 쉘; 상기 쉘의 내주면으로부터 이격되어 구비되며, 전동부와 상기 전동부의 상측에 위치하는 압축부를 포함하고, 압축부는 로터리 압축방식으로 이루어진 압축기본체; 상기 압축기본체를 상기 쉘에 탄력 지지하는 지지부; 입구는 상기 쉘의 내부공간에 연통되고, 출구는 상기 압축부의 흡입구에 연결되는 흡입머플러; 및 입구는 상기 압축부의 토출구에 연결되고, 출구는 상기 쉘을 관통하는 토출파이프에 연결되는 토출머플러;를 포함하는 로터리 압축기가 제공될 수 있다. 이를 통해, 로터리 방식의 압축부를 가지는 압축기본체가 쉘에 대해 스프링 지지 방식으로 지지되며, 쉘의 내부공간이 흡입냉매로 채워지는 저압식을 이룰 수 있다. In addition, in order to achieve the object of the present invention, the shell is formed in one layer to form an appearance; a compressor body provided spaced apart from the inner circumferential surface of the shell, comprising a transmission unit and a compression unit positioned above the transmission unit, and the compression unit formed in a rotary compression method; a support part for elastically supporting the compressor body to the shell; a suction muffler having an inlet communicating with the inner space of the shell and having an outlet connected to a suction port of the compression unit; and a discharge muffler having an inlet connected to a discharge port of the compression unit and an outlet connected to a discharge pipe passing through the shell. Through this, the compressor body having the rotary compression unit is supported with respect to the shell in a spring-supported manner, and a low pressure type in which the inner space of the shell is filled with suction refrigerant can be achieved.
여기서, 상기 흡입머플러는 압축기본체의 측면에 위치하도록 설치될 수 있다. 이를 통해, 쉘의 내부공간에 흡입머플러를 설치하면서도 압축기를 소형화할 수 있다.Here, the suction muffler may be installed to be located on the side of the compressor body. Through this, it is possible to reduce the size of the compressor while installing the suction muffler in the inner space of the shell.
그리고, 상기 압축부는 환형으로 된 실린더를 포함하고, 상기 실린더의 외주면에는 머플러장착홈이 형성되며, 상기 흡입머플러의 출구부가 상기 머플러장착홈에 삽입되어 원주방향으로 지지될 수 있다. 이를 통해 흡입머플러 안정적으로 설치할 수 있다.In addition, the compression part may include an annular cylinder, a muffler mounting groove is formed on an outer circumferential surface of the cylinder, and an outlet of the suction muffler may be inserted into the muffler mounting groove to be supported in the circumferential direction. Through this, the suction muffler can be installed stably.
그리고, 상기 흡입머플러의 출구부에는 상기 실린더에 구비되는 흡입구에 삽입되도록 보스부가 연장되거나 상기 실린더의 외면에 지지되는 지지돌부가 형성될 수 있다. 이를 통해, 흡입머플러의 조립시 흡입머플러의 정렬상태를 유지하여 용이하게 조립할 수 있다.In addition, a boss portion extending to be inserted into a suction port provided in the cylinder or a support protrusion supported on an outer surface of the cylinder may be formed at the outlet portion of the suction muffler. Through this, it is possible to easily assemble the suction muffler by maintaining the alignment state of the suction muffler when assembling the suction muffler.
또, 본 발명의 목적을 달성하기 위해, 외관을 이루는 쉘; 상기 쉘의 내주면으로부터 이격되어 구비되는 전동부; 상기 전동부에 결합되어 회전하는 회전축; 상기 쉘의 내주면으로부터 이격되어 상기 전동부의 상측에 구비되며, 환형으로 형성되는 실린더; 상기 회전축에 결합되어 상기 실린더의 내부에 구비되는 롤러; 상기 실린더와 상기 롤러 사이에 구비되어 상기 실린더의 내부에 압축실을 형성하는 베인; 상기 전동부를 상기 쉘에 탄력 지지하는 지지부; 및 입구는 상기 쉘의 내부공간에 연통되고, 출구는 상기 압축실의 흡입측에 연통되는 흡입머플러; 및 입구는 상기 압축실의 토출측에 연통되고, 출구는 상기 쉘을 관통하는 토출파이프에 연통되는 토출머플러;를 포함하는 로터리 압축기가 제공될 수 있다. 이를 통해, 상부 압축 방식의 압축부를 가지는 압축기본체가 쉘에 대해 스프링 지지 방식으로 지지되며, 쉘의 내부공간이 흡입냉매로 채워지는 저압식을 이룰 수 있다. In addition, in order to achieve the object of the present invention, the shell forming the appearance; an electric part provided to be spaced apart from the inner circumferential surface of the shell; a rotating shaft coupled to the electric motor to rotate; a cylinder spaced apart from the inner circumferential surface of the shell and provided on the upper side of the electric part, the cylinder being formed in an annular shape; a roller coupled to the rotation shaft and provided inside the cylinder; a vane provided between the cylinder and the roller to form a compression chamber inside the cylinder; a support part for elastically supporting the electric part on the shell; and a suction muffler having an inlet communicating with the inner space of the shell and an outlet communicating with a suction side of the compression chamber; and a discharge muffler having an inlet connected to a discharge side of the compression chamber and an outlet communicating with a discharge pipe passing through the shell. Through this, the compressor body having the upper compression type compression unit is supported with respect to the shell in a spring support method, and a low pressure type in which the inner space of the shell is filled with suction refrigerant can be achieved.
여기서, 상기 전동부의 상측에 구비되는 메인베어링 플레이트; 및 상기 실린더를 사이에 두고 상기 메인베어링 플레이트의 상측에서 상기 실린더에 결합되는 서브베어링 플레이트;를 더 포함하고, 상기 흡입머플러는, 상기 서브베어링 플레이트보다 하측에 위치하며, 상기 전동부의 외주면과 이를 마주보는 상기 쉘의 내주면 사이에 구비될 수 있다. 이를 통해, 셀의 내부공간에 흡입머플러를 설치하면서도 압축기의 크기를 유지할 수 있다.Here, the main bearing plate provided on the upper side of the electric part; and a sub-bearing plate coupled to the cylinder from an upper side of the main bearing plate with the cylinder interposed therebetween, wherein the suction muffler is located below the sub-bearing plate, the outer peripheral surface of the electric part and the It may be provided between the inner peripheral surfaces of the facing shell. Through this, it is possible to maintain the size of the compressor while installing the suction muffler in the inner space of the cell.
그리고, 상기 실린더에는 반경방향으로 관통되는 흡입구가 형성되고, 상기 실린더의 외주면에는 상기 흡입구에 연통되도록 반경방향으로 함몰되어 머플러장착홈이 형성되며, 상기 머플러장착홈에 상기 흡입머플러의 출구부가 삽입되어 결합될 수 있다. 이를 통해, 압축기의 크기를 유지하면서도 흡입머플러를 안정적으로 고정할 수 있다.In addition, a radially penetrating suction port is formed in the cylinder, and a muffler mounting groove is formed on the outer peripheral surface of the cylinder to be radially depressed to communicate with the suction port, and the outlet of the suction muffler is inserted into the muffler mounting groove can be combined. Through this, it is possible to stably fix the suction muffler while maintaining the size of the compressor.
그리고, 상기 흡입머플러의 출구부에는 상기 실린더에 고정되는 머플러고정부가 연장될 수 있다. 이를 통해, 흡입머플러를 용이하게 정렬할 수 있고, 안정적으로 고정할 수 있다.In addition, a muffler fixing part fixed to the cylinder may extend from the outlet part of the suction muffler. Through this, the suction muffler can be easily aligned and can be stably fixed.
그리고, 상기 머플러고정부는 상기 실린더의 외주면에 대응되도록 상기 흡입머플러의 출구부의 양쪽 측면에서 연장될 수 있다. 이를 통해, 흡입머플러를 양쪽에서 안정적으로 고정할 수 있다.In addition, the muffler fixing part may extend from both side surfaces of the outlet part of the suction muffler to correspond to the outer peripheral surface of the cylinder. Through this, the suction muffler can be stably fixed from both sides.
여기서, 상기 머플러고정부는 상기 실린더의 상면에 대응되도록 상기 흡입머플러의 출구부의 상면에서 연장될 수 있다. 이를 통해, 흡입머플러를 축방향으로도 지지할 수 있다.Here, the muffler fixing part may extend from the upper surface of the outlet part of the suction muffler to correspond to the upper surface of the cylinder. Through this, the suction muffler can also be supported in the axial direction.
여기서, 상기 흡입머플러는 상기 흡입머플러의 출구부를 감싸 상기 실린더에 체결되는 머플러고정부재에 의해 상기 실린더에 고정될 수 있다. 이를 통해, 흡입머플러를 견고하게 고정하면서도 흡입머플러의 구조를 간소화할 수 있다.Here, the suction muffler may be fixed to the cylinder by a muffler fixing member that surrounds the outlet of the suction muffler and is fastened to the cylinder. Through this, the structure of the suction muffler can be simplified while firmly fixing the suction muffler.
그리고, 상기 흡입머플러의 출구부에는 상기 머플러장착홈의 상측 둘레면에 축방향으로 지지되는 머플러지지돌부가 연장될 수 있다. 이를 통해, 머플러고정부재를 이용하면서도 흡입머플러를 축방향으로 지지할 수 있다.In addition, a muffler support protrusion supported in an axial direction on an upper circumferential surface of the muffler mounting groove may extend from the outlet of the suction muffler. Through this, it is possible to support the suction muffler in the axial direction while using the muffler fixing member.
그리고, 상기 머플러고정부재는 상기 머플러지지돌부의 하측에서 상기 흡입머플러의 출구부를 축방향으로 지지할 수 있다. 이를 통해, 머플러고정부재를 이용하면서도 흡입머플러를 더욱 안정적으로 지지할 수 있다.In addition, the muffler fixing member may support the outlet of the suction muffler in the axial direction from the lower side of the muffler support protrusion. Through this, it is possible to more stably support the suction muffler while using the muffler fixing member.
여기서, 상기 머플러장착홈은, 반경방향 외측면은 개구되고, 원주방향 양쪽 측면과 반경방향 내측면은 각각 막혀 제1 머플러지지면과 제2 머플러지지면이 형성되며, 상기 흡입구는 상기 머플러장착홈의 반경방향 내측면을 이루는 제2 머플러지지면에서 반경방향으로 관통될 수 있다. 이를 통해, 흡입머플러를 원주방향으로 지지할 수 있다.Here, in the muffler mounting groove, the radial outer surface is opened, both circumferential side surfaces and the radial inner surface are closed to form a first muffler support surface and a second muffler support surface, and the suction port is the muffler mounting groove A second muffler support surface constituting a radially inner surface of may be radially penetrated. Through this, the suction muffler can be supported in the circumferential direction.
그리고, 상기 흡입머플러의 출구부에는 상기 흡입구에 삽입되는 출구연장부가 상기 흡입구를 향해 연장될 수 있다. 이를 통해, 흡입머플러의 조립을 용이하게 하고 냉매누설 또는 오일유입을 효과적으로 억제할 수 있다.In addition, at the outlet of the suction muffler, an outlet extension inserted into the suction port may extend toward the suction port. Through this, it is possible to facilitate the assembly of the suction muffler and effectively suppress refrigerant leakage or oil inflow.
그리고, 상기 흡입머플러의 출구부와 이를 마주보는 상기 제2 머플러지지면의 사이에는 머플러실링부재가 구비될 수 있다. 이를 통해, 오일이 흡입구로 유입되는 것을 억제할 수 있다.A muffler sealing member may be provided between the outlet of the suction muffler and the second muffler support surface facing the same. Through this, it is possible to suppress oil from flowing into the suction port.
여기서, 상기 흡입머플러는, 내부에 흡입공간을 구비하는 흡입머플러 본체부; 상기 흡입머플러 본체부의 흡입공간을 상기 쉘의 내부공간에 연결하는 흡입머플러 입구부; 상기 흡입머플러 본체부의 흡입공간을 상기 압축실에 연결하도록 상기 실린더에 결합되는 흡입머플러 출구부; 및 상기 흡입머플러 본체부와 상기 흡입머플러 출구부 사이를 연결하는 흡입머플러 연결부;를 포함하고, 상기 흡입머플러 연결부는, 상기 실린더를 향해 경사지게 형성될 수 있다. 이를 통해, 압축기본체의 크기가 증가하는 것을 억제하는 동시에 흡입되는 냉매의 유동저항을 낮출 수 있다. Here, the suction muffler may include: a suction muffler body having a suction space therein; a suction muffler inlet for connecting the suction space of the suction muffler body to the inner space of the shell; a suction muffler outlet portion coupled to the cylinder to connect the suction space of the suction muffler body to the compression chamber; and a suction muffler connection part connecting between the suction muffler body part and the suction muffler outlet part, wherein the suction muffler connection part may be inclined toward the cylinder. Through this, it is possible to suppress an increase in the size of the compressor body and at the same time lower the flow resistance of the sucked refrigerant.
여기서, 상기 실린더에는 상기 베인이 미끄러지게 삽입되는 베인슬롯이 구비되고, 상기 서브베어링 플레이트에는 상기 베인슬롯에 연통되는 오일통로구멍이 형성될 수 있다. 이를 통해, 로터리 압축 방식의 압축부가 전동부보다 상측에 위치하면서도 습동부에 오일이 원활하게 공급될 수 있다.Here, the cylinder may be provided with a vane slot into which the vane is slidably inserted, and an oil passage hole communicating with the vane slot may be formed in the sub-bearing plate. Through this, the oil can be smoothly supplied to the sliding part while the rotary compression type compression part is located above the electric part.
그리고, 상기 서브베어링 플레이트에는 토출구가 형성되고, 상기 서브베어링 플레이트의 상면에는 상기 토출구가 수용되도록 토출공간을 가지는 토출머플러가 구비되며, 상기 토출머플러의 상면에는 상기 회전축을 통해 배출되는 오일을 포집하여 상기 오일통로구멍으로 안내하도록 오일 가이드가 구비될 수 있다.A discharge port is formed in the sub-bearing plate, and a discharge muffler having a discharge space to accommodate the discharge port is provided on the upper surface of the sub-bearing plate, and the upper surface of the discharge muffler collects oil discharged through the rotation shaft An oil guide may be provided to guide the oil passage hole.
여기서, 상기 베인의 일단은 상기 롤러의 외주면에 회전 가능하게 힌지 결합될 수 있다.Here, one end of the vane may be rotatably hinged to the outer peripheral surface of the roller.
본 실시예에 의한 압축기는, 외관을 이루는 쉘에 로터리 방식의 압축기본체를 탄력 지지함에 따라, 압축기본체로부터 전달되는 진동이 쉘로 전달되는 것을 차단하여 압축기의 진동 소음을 줄일 수 있고, 이를 통해 로터리 압축기의 부피와 무게를 줄이며 부품수를 줄여 제조비용을 낮출 수 있다.The compressor according to this embodiment, by elastically supporting the rotary type compressor body on the shell forming the exterior, blocks the vibration transmitted from the compressor body from being transmitted to the shell, thereby reducing the vibration noise of the compressor, and through this, the rotary compressor The volume and weight of the product can be reduced, and the number of parts can be reduced, thereby lowering the manufacturing cost.
또, 본 실시예에 의한 로터리 압축기는, 스프링 지지 방식이고 상부 압축 방식이면서 저압식으로 구성함에 따라, 전동부가 쉘의 내부공간으로 흡입되는 찬 냉매에 의해 신속하게 냉각되어 모터효율과 압축기 성능이 향상될 수 있다. In addition, the rotary compressor according to this embodiment is a spring-supported type, an upper compression type, and a low pressure type, so that the electric part is rapidly cooled by the cold refrigerant sucked into the inner space of the shell, thereby improving motor efficiency and compressor performance. can be
또, 스프링 지지 방식인 로터리 압축기를 구성하면서도 압축부가 전동부의 상측에 위치하는 상부 압축 방식으로 구성함으로써, 흡입머플러를 설치할 수 있는 공간을 확보하여 냉매의 흡입시 발생되는 흡입소음을 효과적으로 상쇄시킬 수 있다. 이를 통해, 전동부가 쉘의 내부공간으로 흡입되는 찬 냉매에 의해 신속하게 냉각되어 모터효율과 압축기 성능이 향상될 수 있다. In addition, by configuring the rotary compressor, which is a spring-supported method, in an upper compression method in which the compression part is located on the upper side of the electric part, a space for installing the suction muffler is secured to effectively offset the suction noise generated when the refrigerant is sucked. have. Through this, the electric part is rapidly cooled by the cold refrigerant sucked into the inner space of the shell, so that the motor efficiency and compressor performance can be improved.
또, 실린더에 머플러장착홈을 형성하여 흡입머플러를 삽입하여 결합함으로써, 흡입머플러를 포함하는 압축기본체를 스프링 지지 방식으로 구성하면서도 원주방향에 대해 흡입머플러를 안정적으로 고정할 수 있다. In addition, by forming a muffler mounting groove in the cylinder and inserting and coupling the suction muffler, the suction muffler can be stably fixed in the circumferential direction while configuring the compressor body including the suction muffler in a spring-supported manner.
또, 흡입머플러에 머플러고정부를 연장 형성하거나 또는 별도의 머플러고정부재를 이용하여 흡입머플러를 실린더에 고정함으로써, 흡입머플러를 고정하는 머플러고정부 또는 머플러고정부재의 응력이 감소되면서 흡입머플러를 더욱 안정적으로 고정할 수 있다. In addition, by extending the muffler fixing part to the suction muffler or fixing the suction muffler to the cylinder using a separate muffler fixing member, the stress of the muffler fixing part or the muffler fixing member fixing the suction muffler is reduced and the suction muffler is further improved. It can be fixed stably.
또, 흡입머플러의 출구에서 연장되는 출구연장부가 흡입구에 삽입됨에 따라, 흡입머플러의 조립시 조립위치를 용이하게 정렬할 수 있어 흡입머플러의 조립작업을 용이하게 할 수 있다. In addition, as the outlet extension extending from the outlet of the suction muffler is inserted into the suction port, the assembling position of the suction muffler can be easily aligned when assembling the suction muffler, thereby facilitating the assembly operation of the suction muffler.
또, 흡입머플러의 출구와 흡입구 사이에 실링부재가 구비됨에 따라 쉘 내부의 오일이 흡입구로 유입되는 것을 억제할 수 있고, 이를 통해 흡입손실을 줄여 압축효율을 높일 수 있다. In addition, since the sealing member is provided between the outlet and the suction port of the suction muffler, it is possible to suppress the oil inside the shell from flowing into the suction port, thereby reducing suction loss and increasing the compression efficiency.
또, 본 실시예에 의한 로터리 압축기는, 스프링 지지 방식이면서 상부 압축 방식으로 구성함으로써, 토출유로를 이루는 루프 파이프가 쉘의 내부공간에 채워진 오일에 잠기지 않고 분리되도록 설치할 수 있다. 이를 통해, 쉘 내부의 오일이 루프 파이프를 통해 토출되는 고온의 냉매에 의해 가열되는 것을 미연에 방지함으로써, 오일의 점도가 낮아지는 것을 억제하여 압축기본체의 각 베어링면에서의 마찰손실을 줄일 수 있다.In addition, the rotary compressor according to the present embodiment may be installed so that the loop pipe constituting the discharge flow path is separated without being submerged in the oil filled in the inner space of the shell by configuring it as a spring support method and an upper compression method. Through this, it is possible to prevent the oil inside the shell from being heated by the high-temperature refrigerant discharged through the loop pipe in advance, thereby suppressing the viscosity of the oil from lowering and reducing the friction loss on each bearing surface of the compressor body. .
또, 스프링 지지 방식이면서 상부 압축 방식인 로터리 압축기를 구성하면서도 오일 가이드 및 오일통로부를 이용하여 쉘에 저장된 오일을 압축부로 원활하게 공급할 수 있다. 이를 통해 오일이 압축기본체의 베어링면에 원활하게 공급되면서 각 베어링면에서의 오일부족으로 인한 마찰손실을 줄일 수 있다.In addition, it is possible to smoothly supply the oil stored in the shell to the compression unit by using the oil guide and the oil passage while configuring the rotary compressor of the spring-supported and upper compression type. Through this, oil is smoothly supplied to the bearing surfaces of the compressor body, and frictional losses due to insufficient oil on each bearing surface can be reduced.
도 1은 본 실시예에 따른 로터리 압축기에서 압추기본체를 보인 분해 사시도,1 is an exploded perspective view showing the compression body of the rotary compressor according to the present embodiment;
도 2는 도 1에서 압축기본체를 조립하여 보인 사시도,2 is a perspective view showing the compressor body assembled in FIG. 1;
도 3은 도 2에 따른 로터리 압축기의 내부를 보인 단면도,3 is a cross-sectional view showing the inside of the rotary compressor according to FIG. 2;
도 4는 도 1에서 압축부의 내부를 설명하기 위해 보인 평면도,4 is a plan view showing the inside of the compression unit in FIG. 1;
도 5는 도 1에서 압축기본체를 보인 사시도,5 is a perspective view showing the compressor body in FIG. 1;
도 6은 도 5에서 흡입머플러를 분리하여 압축기본체를 보인 분해 사시도,6 is an exploded perspective view showing the compressor body by removing the suction muffler in FIG. 5;
도 7은 도 1에서 흡입머플러의 일실시예를 보인 사시도,7 is a perspective view showing an embodiment of the suction muffler in FIG. 1;
도 8은 도 7에 따른 흡입머플러가 조립된 상태를 보인 사시도,8 is a perspective view showing a state in which the suction muffler according to FIG. 7 is assembled;
도 9는 도 8에서 "Ⅳ-Ⅳ"선단면도,9 is a sectional view of "IV-IV" in FIG. 8;
도 10은 도 6의 흡입머플러에서 흡입머플러 출구부에 대한 다른 실시예를 보인 사시도, 10 is a perspective view showing another embodiment of the suction muffler outlet in the suction muffler of FIG. 6;
도 11은 도 10의 흡입머플러가 조립된 상태를 보인 단면도,11 is a cross-sectional view showing a state in which the suction muffler of FIG. 10 is assembled;
도 12는 도 1에서 흡입머플러에 대한 다른 실시예를 보인 분해 사시도,12 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1;
도 13은 도 12의 흡입머플러가 조립된 상태를 보인 사시도,13 is a perspective view showing a state in which the suction muffler of FIG. 12 is assembled;
도 14는 도 1에서 흡입머플러에 대한 또다른 실시예를 보인 분해 사시도,14 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1;
도 15는 도 14의 흡입머플러가 조립된 상태를 보인 사시도.Fig. 15 is a perspective view showing the state in which the suction muffler of Fig. 14 is assembled;
이하, 본 발명에 의한 로터리 압축기를 첨부도면에 도시된 일실시예에 의거하여 상세하게 설명한다. 본 명세서는 서로 다른 실시예라도 동일·유사한 구성에 대해서는 동일 또는 유사한 참조번호를 부여하고, 그 설명은 처음의 설명으로 갈음한다. Hereinafter, a rotary compressor according to the present invention will be described in detail based on an embodiment shown in the accompanying drawings. In the present specification, the same or similar reference numerals are assigned to the same and similar components even in different embodiments, and the description is replaced with the first description.
또, 로터리 압축기는 롤러와 베인의 결합유무에 따라 접촉식 로터리 압축기와 힌지베인 로터리 압축기로 구분될 수 있다. 접촉식 로터리 압축기는 베인이 롤러에 미끄러지게 접촉되는 방식이고, 힌지베인 로터리 압축기는 베인이 롤러에 힌지 결합되는 방식이다.In addition, the rotary compressor may be divided into a contact rotary compressor and a hinged vane rotary compressor depending on whether rollers and vanes are coupled. The contact rotary compressor is a method in which the vanes are in sliding contact with the rollers, and the hinged vane rotary compressor is a method in which the vanes are hinged to the rollers.
또, 로터리 압축기는 베인의 지지 위치에 따라 로터리 압축기와 베인 로터리 압축기로 구분될 수 있다. 로터리 압축기는 전통적인 구조로서 베인이 실린더에 미끄러지게 삽입되어 지지되는 방식이고, 베인 로터리 압축기는 베인이 롤러에 미끄러지게 삽입되는 방식이다.In addition, the rotary compressor may be divided into a rotary compressor and a vane rotary compressor according to the support position of the vane. A rotary compressor is a conventional structure in which a vane is slidably inserted into a cylinder and supported, and a vane rotary compressor is a method in which a vane is slidably inserted into a roller.
또, 로터리 압축기는 롤러의 편심 유무에 따라 편심 로터리 압축기와 동심 로터리 압축기로 구분될 수 있다. 편심 로터리 압축기는 롤러가 회전축의 편심부에 결합되는 방식이고, 동심 로터리 압축기는 롤러가 회전축의 동축 상에 형성되는 방식이다. In addition, the rotary compressor may be divided into an eccentric rotary compressor and a concentric rotary compressor according to the presence or absence of eccentricity of the rollers. The eccentric rotary compressor is a method in which a roller is coupled to an eccentric portion of a rotating shaft, and a concentric rotary compressor is a method in which a roller is formed coaxially of a rotating shaft.
본 실시예는 힌지베인 방식이 적용된 로터리 압축기를 설명하는 것이나, 이에 한정되지 않고 기존에 알려진 로터리 방식의 압축기는 모두 적용될 수 있다. 다만, 이하에서는 힌지베인 방식의 로터리 압축기를 대표예로 설명한다. 따라서, 아래의 설명에서 특별한 언급이 없는 한, 로터리 압축기는 힌지베인 로터리 압축기를 약칭하여 정의한 것으로 이해될 수 있다.Although this embodiment describes a rotary compressor to which the hinge vane method is applied, the present invention is not limited thereto, and all known rotary compressors may be applied. However, hereinafter, a hinge vane type rotary compressor will be described as a representative example. Accordingly, unless otherwise specified in the description below, the rotary compressor may be understood as abbreviated as a hinge vane rotary compressor.
도 1은 본 실시예에 따른 로터리 압축기에서 압축기본체를 분해하여 보인 사시도이고, 도 2는 도 1에서 압축기본체를 조립하여 보인 사시도이며, 도 3은 도 2에 따른 로터리 압축기의 내부를 보인 단면도이고, 도 4는 도 3에서 압축기본체에서 압축부를 보인 평면도이고, 도 4는 도 1에서 압축부의 내부를 설명하기 위해 보인 평면도이다.1 is an exploded perspective view showing the compressor body in the rotary compressor according to the present embodiment, FIG. 2 is a perspective view showing the compressor body assembled in FIG. 1, and FIG. 3 is a cross-sectional view showing the inside of the rotary compressor according to FIG. , FIG. 4 is a plan view showing the compression unit in FIG. 3 , and FIG. 4 is a plan view illustrating the inside of the compression unit in FIG. 1 .
도 1 내지 도 4를 참조하면, 본 실시예에 따른 로터리 압축기는, 외관을 형성하는 쉘(110), 쉘(110)의 내부공간(110a)에 구비되는 압축기본체(C), 압축기본체(C)를 쉘(110)에 지지하는 지지부(150), 냉매를 압축기본체(C)로 안내하고 압축된 냉매를 토출시키는 흡토출부(160), 쉘(110)의 저유부에 담긴 오일을 압축기본체(C)로 공급하는 급유부(170)를 포함한다. 압축기본체(C)는 구동력을 제공하는 전동부(120), 전동부(120)에서 결합되어 회전력을 후술할 압축부(140)에 전달하는 회전축(130) 및 전동부(120)로부터 구동력을 전달받아 냉매를 압축하는 압축부(140)를 포함한다. 1 to 4 , the rotary compressor according to the present embodiment includes a shell 110 forming an external appearance, a compressor body C provided in an inner space 110a of the shell 110, and a compressor body C ) to the shell 110, the support 150, the suction/discharge unit 160 for guiding the refrigerant to the compressor body (C) and discharging the compressed refrigerant, and the oil contained in the oil reservoir of the shell 110 to the compressor body (C) includes a refueling unit 170 for supplying. The compressor body (C) transmits the driving force from the electric part 120 providing the driving force, the rotating shaft 130 and the electric part 120 coupled in the electric part 120 to transmit the rotational force to the compression part 140 to be described later. and a compression unit 140 for receiving and compressing the refrigerant.
쉘(110)은 내부공간(110a)이 밀폐되어 압축기본체(C), 지지부(150), 흡토출부(160) 및 급유부(170)가 수용된다. 쉘(110)은 가볍고 열전도계수가 높은 알루미늄 합금(이하, 알루미늄으로 약칭함)으로 이루어지며, 베이스 쉘(111) 및 커버 쉘(112)을 포함한다. The shell 110 has the inner space 110a sealed, so that the compressor body C, the support part 150, the suction/discharge part 160 and the oil supply part 170 are accommodated. The shell 110 is made of an aluminum alloy (hereinafter, abbreviated as aluminum) which is light and has a high thermal conductivity, and includes a base shell 111 and a cover shell 112 .
베이스 쉘(111)은 대략 반구 형상으로 형성된다. 베이스 쉘(111)에는 흡입파이프(115), 토출파이프(116) 및 프로세스 파이프(117)가 각각 관통되어 결합된다. 이들 흡입파이프(115), 토출파이프(116), 프로세스 파이프(117)는 각각 베이스 쉘(111)에 인서트 다이캐스팅 공법에 의해 결합될 수 있다. The base shell 111 is formed in a substantially hemispherical shape. A suction pipe 115 , a discharge pipe 116 , and a process pipe 117 are respectively penetrated and coupled to the base shell 111 . The suction pipe 115 , the discharge pipe 116 , and the process pipe 117 may be coupled to the base shell 111 by an insert die casting method, respectively.
커버 쉘(112)은 베이스 쉘(111)과 같이 대략 반구 형상으로 형성된다. 커버 쉘(112)은 베이스 쉘(111)의 상측에서 그 베이스 쉘(111)에 결합되어 쉘(110)의 내부공간(110a)을 형성한다.The cover shell 112 is formed in a substantially hemispherical shape like the base shell 111 . The cover shell 112 is coupled to the base shell 111 from the upper side of the base shell 111 to form the inner space 110a of the shell 110 .
또, 커버 쉘(112)은 베이스 쉘(111)에 용접하여 결합될 수 있으나, 베이스 쉘(111)과 커버 쉘(112)이 용접이 어려운 알루미늄 소재로 형성되는 경우에는 볼트 체결될 수 있다. In addition, the cover shell 112 may be coupled to the base shell 111 by welding, but when the base shell 111 and the cover shell 112 are formed of an aluminum material that is difficult to weld, they may be bolted together.
다음으로 전동부를 설명한다.Next, the electric part will be described.
본 실시예에 따른 전동부(120)는 고정자(121) 및 회전자(122)를 포함한다.The electric part 120 according to the present embodiment includes a stator 121 and a rotor 122 .
고정자(121)는 쉘(110)의 내주면에서 이격되어 쉘(110)의 내부공간(110a), 즉 베이스 쉘(111)의 바닥면에 대해 탄력적으로 지지되고, 회전자(122)는 고정자(121)의 안쪽에 회전 가능하게 설치된다. The stator 121 is spaced apart from the inner circumferential surface of the shell 110 and is elastically supported against the inner space 110a of the shell 110 , that is, the bottom surface of the base shell 111 , and the rotor 122 is the stator 121 . ) is rotatably installed inside the
본 실시예에 따른 고정자(121)는 고정자코어(1211) 및 고정자코일(1212)을 포함한다.The stator 121 according to the present embodiment includes a stator core 1211 and a stator coil 1212 .
고정자코어(1211)는 전기강판과 같은 금속 재질로 이루어지며, 외부로부터 전동부(120)로 전압을 인가하면 후술하는 고정자코일(1212) 및 회전자(122)와 함께 전자기력을 통한 전자기적 상호 작용을 수행한다.The stator core 1211 is made of a metal material such as an electrical steel sheet, and when a voltage is applied from the outside to the electric part 120, the stator coil 1212 and the rotor 122, which will be described later, interact with each other through electromagnetic force. carry out
또, 고정자코어(1211)는 대략 사각통 형상으로 형성된다. 예를 들어, 고정자코어(1211)의 내주면은 원형으로 형성되고, 외주면은 사각형 모양으로 형성될 수 있다. 고정자코어(1211)의 네 모서리에는 볼트구멍(미도시)이 각각 관통하여 형성되고, 각 볼트구멍에는 고정자체결볼트(미도시)가 각각 통과하여 후술할 메인베어링 플레이트(141)에 체결된다. 이에 따라, 고정자코어(1211)는 고정자체결볼트에 의해 메인베어링 플레이트(141)의 하면에 고정된다. In addition, the stator core 1211 is formed in a substantially rectangular cylindrical shape. For example, the inner circumferential surface of the stator core 1211 may be formed in a circular shape, and the outer circumferential surface may be formed in a rectangular shape. Bolt holes (not shown) are formed through each of the four corners of the stator core 1211, and fixed self-fastening bolts (not shown) pass through each bolt hole, respectively, and are fastened to the main bearing plate 141 to be described later. Accordingly, the stator core 1211 is fixed to the lower surface of the main bearing plate 141 by the fixing self-fastening bolts.
또, 고정자코어(1211)는 쉘(110)의 내주면에서 축방향 및 반경방향으로 이격된 상태에서 고정자코어(1211)의 하단이 쉘(110)의 바닥면에 대해 후술할 지지스프링(152)에 의해 지지된다. 이에 따라, 운전중에 발생되는 진동이 쉘(110)에 직접적으로 전달되는 것이 억제될 수 있다. In addition, in a state where the stator core 1211 is spaced apart from the inner circumferential surface of the shell 110 in the axial and radial directions, the lower end of the stator core 1211 is attached to a support spring 152 to be described later with respect to the bottom surface of the shell 110 . supported by Accordingly, vibration generated during operation may be suppressed from being directly transmitted to the shell 110 .
고정자코일(1212)은 고정자코어(1211) 내측에 권선된다. 앞서 살펴 본 바와 같이, 고정자코일(1212)은 외부로부터 전압이 인가되면 전자기력을 발생시켜 고정자코어(1211) 및 회전자(122)와 함께 전자기적 상호작용을 수행한다. 이를 통해, 전동부(120)는 압축부(140)의 왕복 운동을 위한 구동력이 발생된다.The stator coil 1212 is wound inside the stator core 1211 . As described above, when a voltage is applied from the outside, the stator coil 1212 generates an electromagnetic force to perform electromagnetic interaction with the stator core 1211 and the rotor 122 . Through this, the electric unit 120 generates a driving force for the reciprocating motion of the compression unit 140 .
고정자코어(1211)와 고정자코일(1212) 사이에는 인슐레이터(1213)는 배치된다. 이에 따라, 고정자코어(1211)와 고정자코일(1212)의 직접적인 접촉을 억제하여 전자기적 상호작용이 원활하게 이루어질 수 있다. An insulator 1213 is disposed between the stator core 1211 and the stator coil 1212 . Accordingly, direct contact between the stator core 1211 and the stator coil 1212 is suppressed, so that electromagnetic interaction can be smoothly performed.
본 실시예에 따른 회전자(122)는 회전자코어(1221) 및 마그네트(1222)를 포함한다.The rotor 122 according to this embodiment includes a rotor core 1221 and a magnet 1222 .
회전자코어(1221)는 고정자코어(1211)와 마찬가지로 전기강판과 같은 금속 재질로 이루어지며, 대략 원통 형상으로 형성된다. 회전자코어(1221)의 중심에는 후술할 회전축(130)이 압입되어 결합될 수 있다. The rotor core 1221, like the stator core 1211, is made of a metal material such as an electrical steel sheet, and has a substantially cylindrical shape. A rotation shaft 130 to be described later may be press-fitted to the center of the rotor core 1221 .
마그네트(1222)는 영구자석으로 이루어지고, 회전자코어(1221)의 원주방향을 따라 등간격으로 삽입되어 결합될 수 있다. 회전자(122)는 전압 인가시, 고정자코어(1211) 및 고정자코일(1212)과의 전자기적 상호 작용을 통해 회전하게 된다. 이에 따라, 회전축(130)이 회전자(122)와 함께 회전하면서 전동부(120)의 회전력을 압축부(140)에 전달하게 된다. The magnet 1222 is made of a permanent magnet, and may be inserted and coupled at equal intervals along the circumferential direction of the rotor core 1221 . The rotor 122 rotates through electromagnetic interaction with the stator core 1211 and the stator coil 1212 when a voltage is applied. Accordingly, while the rotation shaft 130 rotates together with the rotor 122 , the rotational force of the electric unit 120 is transmitted to the compression unit 140 .
다음으로 회전축을 설명한다.Next, the rotation shaft will be described.
본 실시예에 따른 회전축(130)은 회전자결합부(131), 메인 베어링면부(132), 편심부(133), 서브 베어링면부(134)를 포함한다. The rotary shaft 130 according to the present embodiment includes a rotor coupling portion 131 , a main bearing surface portion 132 , an eccentric portion 133 , and a sub bearing surface portion 134 .
회전자결합부(131)는 회전자코어(1221)에 압입되는 부분으로, 회전축(130)의 하반부를 이룬다. 회전자결합부(131)의 하단은 회전자(122)의 하단보다 길게 연장되고, 회전자결합부(131)의 하단에는 후술할 오일피더(138)가 설치될 수 있다. The rotor coupling portion 131 is a portion press-fitted to the rotor core 1221 , and forms a lower half of the rotation shaft 130 . A lower end of the rotor coupling unit 131 may extend longer than a lower end of the rotor 122 , and an oil feeder 138 to be described later may be installed at the lower end of the rotor coupling unit 131 .
메인 베어링면부(132)는 회전축(130)의 중간, 즉 회전자결합부(131)와 편심부(133)의 사이에 형성된다. 메인 베어링면부(132)는 회전자결합부(131)와 동일 축선상에 형성되어 후술할 메인베어링 플레이트(141)의 메인 베어링부(1413)에 회전 가능하게 삽입된다. The main bearing surface part 132 is formed in the middle of the rotation shaft 130 , that is, between the rotor coupling part 131 and the eccentric part 133 . The main bearing surface part 132 is formed on the same axis as the rotor coupling part 131 and is rotatably inserted into the main bearing part 1413 of the main bearing plate 141 which will be described later.
편심부(133)는 메인 베어링면부(132)의 상단과 서브 베어링면부(134)의 하단 사이에 형성된다. 편심부(133)는 회전자결합부(131)의 중심, 즉 회전축(130)의 중심에 대해 편심지게 형성되어 후술할 롤러(1441)가 회전 가능하게 삽입된다. 이에 따라, 회전축(130)의 회전시 롤러(1441)는 압축실(V)의 내부에서 선회운동을 하면서 냉매를 압축하게 된다.The eccentric portion 133 is formed between the upper end of the main bearing surface portion 132 and the lower end of the sub bearing surface portion 134 . The eccentric portion 133 is formed eccentrically with respect to the center of the rotor coupling portion 131 , that is, the center of the rotation shaft 130 , and a roller 1441 to be described later is rotatably inserted therein. Accordingly, when the rotating shaft 130 rotates, the roller 1441 compresses the refrigerant while rotating in the inside of the compression chamber (V).
서브 베어링면부(134)는 편심부(133)의 상단에서 축방향으로 연장된다. 서브 베어링면부(134)는 메인 베어링면부(132)와 동일 축선 상에 형성되어 후술할 서브베어링 플레이트(142)의 서브 베어링부(1422)에 회전 가능하게 삽입된다. The sub bearing surface portion 134 extends in the axial direction from the upper end of the eccentric portion 133 . The sub bearing surface portion 134 is formed on the same axis as the main bearing surface portion 132 and is rotatably inserted into the sub bearing portion 1422 of the sub bearing plate 142 to be described later.
한편, 회전축(130)의 내부에는 그 회전축(130)의 축방향 양단 사이를 관통하는 오일펌핑구멍(135)이 형성되고, 회전축(130)의 축방향을 따라 기설정된 간격을 두고 제1 급유구멍(1361), 제2 급유구멍(1362), 제3 급유구멍(1363)이 회전축(130)의 외주면을 향해 관통 형성된다. 예를 들어, 제1 급유구멍(1361)은 메인 베어링면부(132)의 외주면으로 관통되고, 제2 급유구멍(1362)은 편심부(133)의 외주면으로 관통되며, 제3 급유구멍(1363)은 서브 베어링면부(134)의 외주면으로 관통될 수 있다. On the other hand, an oil pumping hole 135 penetrating between both ends of the rotation shaft 130 in the axial direction is formed inside the rotation shaft 130 , and a first oil supply hole is formed at a predetermined interval along the axial direction of the rotation shaft 130 . (1361), the second oil supply hole 1362, the third oil supply hole 1363 is formed through the outer peripheral surface of the rotating shaft (130). For example, the first oil supply hole 1361 penetrates through the outer peripheral surface of the main bearing surface portion 132, the second oil supply hole 1362 penetrates through the outer peripheral surface of the eccentric part 133, and the third oil supply hole 1363 Silver may penetrate through the outer peripheral surface of the sub-bearing surface portion 134 .
또, 오일펌핑구멍(135)의 하단에는 쉘(110) 내의 오일을 오일펌핑구멍(135)으로 펌핑하는 오일피더(138)가 설치될 수 있다. 오일피더(138)는 트로코이드기어 펌프, 나선형 샤프트 또는 프로펠러 오일피더 등 다양하게 적용될 수 있다. In addition, an oil feeder 138 for pumping oil in the shell 110 to the oil pumping hole 135 may be installed at the lower end of the oil pumping hole 135 . The oil feeder 138 may be variously applied, such as a trochoid gear pump, a spiral shaft, or a propeller oil feeder.
이에 따라, 쉘(110) 내부의 오일은 오일피더(138)에 의해 펌핑되어 오일펌핑구멍(135)을 통해 회전축(130)의 상단을 향해 이동하고, 이 오일의 일부는 오일펌핑구멍(135)의 중간에서 제1 급유구멍(1361), 제2 급유구멍(1362), 제3 급유구멍(1363)을 통해 각각의 베어링면으로 공급되어 윤활하게 된다.Accordingly, the oil inside the shell 110 is pumped by the oil feeder 138 and moves toward the upper end of the rotation shaft 130 through the oil pumping hole 135, and a part of this oil is the oil pumping hole 135. In the middle of the lubrication is supplied to each bearing surface through the first oil supply hole 1361, the second oil supply hole 1362, and the third oil supply hole 1363.
다음으로 압축부를 설명한다.Next, the compression unit will be described.
도 5는 도 1에서 압축기본체를 보인 사시도이고, 도 6은 도 5에서 흡입머플러를 분리하여 압축기본체를 보인 분해 사시도이다.FIG. 5 is a perspective view showing the compressor body in FIG. 1 , and FIG. 6 is an exploded perspective view showing the compressor body by removing the suction muffler in FIG. 5 .
도 5 및 도 6을 참조하면, 본 실시예에 따른 압축부(140)는 메인베어링 플레이트(이하, 메인 베어링)(141), 서브베어링 플레이트(이하, 서브 베어링)(142), 실린더(143), 베인롤러(144)를 포함한다. 메인 베어링(141)과 서브 베어링(142)은 실린더(143)를 사이에 두고 축방향 양쪽에 구비되어 실린더(143)의 내부에 압축실(V)을 형성한다. 5 and 6 , the compression unit 140 according to the present embodiment includes a main bearing plate (hereinafter, referred to as a main bearing) 141 , a sub-bearing plate (hereinafter referred to as a sub-bearing) 142 , and a cylinder 143 . , including a vane roller 144 . The main bearing 141 and the sub bearing 142 are provided on both sides of the axial direction with the cylinder 143 interposed therebetween to form a compression chamber V inside the cylinder 143 .
또, 메인 베어링(141)과 서브 베어링(142)은 실린더(143)를 관통하는 회전축(130)을 반경방향으로 지지한다. 베인롤러(144)는 회전축(130)의 편심부(133)에 결합되어 실린더(143)에서 선회운동을 하면서 냉매를 압축한다. In addition, the main bearing 141 and the sub bearing 142 radially support the rotation shaft 130 penetrating the cylinder 143 . The vane roller 144 is coupled to the eccentric portion 133 of the rotating shaft 130 to compress the refrigerant while rotating in the cylinder 143 .
메인 베어링(141)은 메인 플레이트부(1411)가 원판 모양으로 형성되고, 메인 플레이트부(1411)의 가장자리에는 고정자고정돌부(1412)가 형성될 수 있다. 고정자고정돌부(1412)는 메인 플레이트부(1411)의 네 모서리에서 전동부(120)를 향해 하향 돌출되어 형성될 수 있다. The main bearing 141 may have a main plate portion 1411 formed in a disk shape, and a stator fixing protrusion 1412 may be formed at an edge of the main plate portion 1411 . The stator fixing protrusions 1412 may be formed to protrude downwardly from the four corners of the main plate 1411 toward the transmission 120 .
또, 고정자고정돌부(1412)에는 고정자체결볼트(미부호)에 의해 고정자(121)에 체결되어, 전동부(120)의 고정자(121)와 함께 베이스 쉘(111)에 탄력 지지될 수 있다. In addition, the stator fixing protrusion 1412 is fastened to the stator 121 by a fixing self-fastening bolt (unsigned), and may be elastically supported by the base shell 111 together with the stator 121 of the transmission unit 120 .
메인 플레이트부(1411)의 중앙에는 메인 베어링부(1413)가 전동부를 향해 하향 돌출되어 형성되고, 메인 베어링부(1413)에는 회전축(130)이 삽입되어 지지되도록 메인 베어링구멍(1413a)이 관통 형성될 수 있다.A main bearing part 1413 is formed to protrude downward toward the transmission part in the center of the main plate part 1411 , and a main bearing hole 1413a is formed through the main bearing part 1413 so that the rotating shaft 130 is inserted and supported. can be
서브 베어링(142)은 서브 플레이트부(1421)가 원판 모양으로 형성되어 실린더(143)와 함께 메인 베어링(141)에 볼트로 체결될 수 있다. 물론, 실린더(143)가 쉘(110)에 고정되는 경우에는 메인 베어링(141)은 서브 베어링(142)과 함께 실린더(143)에 각각 볼트 체결될 수 있고, 서브 베어링(142)이 쉘(110)에 고정되는 경우에는 실린더(143)와 메인 베어링(141)이 서브 베어링(142)에 볼트로 체결될 수 있다.In the sub bearing 142 , the sub plate portion 1421 is formed in a disk shape and may be bolted to the main bearing 141 together with the cylinder 143 . Of course, when the cylinder 143 is fixed to the shell 110 , the main bearing 141 may be bolted to the cylinder 143 together with the sub bearing 142 , respectively, and the sub bearing 142 is the shell 110 . ), the cylinder 143 and the main bearing 141 may be fastened to the sub bearing 142 with bolts.
서브 플레이트부(1421)의 중앙에는 서브 베어링부(1422)가 쉘(110)의 저면을 향해 하향 돌출되어 형성되고, 서브 베어링부(1422)에는 서브 베어링구멍(1422a)이 메인 베어링구멍(1413a)과 동일축선 상에서 관통되어 형성된다. 서브 베어링구멍(1422a)에는 회전축(130)의 하단을 지지하게 된다.In the center of the sub-plate part 1421, a sub-bearing part 1422 is formed to protrude downward toward the bottom surface of the shell 110, and a sub-bearing hole 1422a is provided in the sub-bearing part 1422 and a main bearing hole 1413a. It is formed by penetrating on the same axis as the The lower end of the rotation shaft 130 is supported in the sub bearing hole 1422a.
다시 도 4를 참조하면, 실린더(143)는 환형으로 형성된다. 실린더(143)의 내주면은 내경이 동일한 진원형상으로 형성된다. 실린더(143)의 내경은 롤러(1441)의 외경보다 크게 형성된다. 이에 따라 실린더(143)의 내주면과 롤러(1441)의 외주면 사이에는 압축실(V)이 형성된다. Referring back to FIG. 4 , the cylinder 143 is formed in an annular shape. The inner circumferential surface of the cylinder 143 is formed in a perfect circle shape having the same inner diameter. The inner diameter of the cylinder 143 is formed larger than the outer diameter of the roller (1441). Accordingly, a compression chamber V is formed between the inner peripheral surface of the cylinder 143 and the outer peripheral surface of the roller 1441 .
예를 들어, 실린더(143)의 내주면은 압축실(V)의 외벽면을, 롤러(1441)의 외주면은 압축실(V)의 내벽면을, 베인(1445)은 압축실(V)의 측벽면을 각각 형성할 수 있다. 따라서, 롤러(1441)가 선회운동을 함에 따라 압축실(V)의 외벽면은 고정벽을 이루는 반면 압축실(V)의 내벽면과 측벽면은 그 위치가 가변되는 가변벽을 형성하게 될 수 있다.For example, the inner peripheral surface of the cylinder 143 is the outer wall surface of the compression chamber (V), the outer peripheral surface of the roller 1441 is the inner wall surface of the compression chamber (V), the vane 1445 is the compression chamber (V) side Each wall can be formed. Therefore, as the roller 1441 rotates, the outer wall surface of the compression chamber V forms a fixed wall, while the inner wall surface and the side wall surface of the compression chamber V form a variable wall whose position is variable. have.
실린더(143)에는 흡입구(1431)가 형성되고, 흡입구(1431)의 원주방향 일측에는 베인슬롯(1432)이 형성되며, 베인슬롯(1432)을 사이에 두고 흡입구(1431)의 반대쪽에는 토출안내홈(1433)이 형성된다.A suction port 1431 is formed in the cylinder 143, a vane slot 1432 is formed on one side in the circumferential direction of the suction port 1431, and a discharge guide groove is formed on the opposite side of the suction port 1431 with the vane slot 1432 interposed therebetween. (1433) is formed.
흡입구(1431)는 실린더(143)의 외주면에서 내주면을 반경방향으로 관통되도록 형성될 수 있다. 흡입구(1431)는 단일 내경을 가지도록 형성될 수도 있다. 하지만, 후술할 흡입머플러(161)의 출구단에 출구연장부(1613a)가 형성되는 경우에는 그 출구연장부(1613a)가 삽입되도록 흡입구(1431)의 외주측에는 연장부삽입홈(1431a)이 단차지게 형성될 수 있다. 이에 따라, 흡입머플러(161)의 출구단에 구비된 출구연장부(1613a)가 흡입구(1431)에 삽입되더라도 흡입구(1431)의 내경이 감소되는 것을 억제하여 냉매흡입량을 확보할 수 있다.The suction port 1431 may be formed to radially penetrate the inner circumferential surface from the outer circumferential surface of the cylinder 143 . The suction port 1431 may be formed to have a single inner diameter. However, when the outlet extension portion 1613a is formed at the outlet end of the suction muffler 161 to be described later, the extension portion insertion groove 1431a is stepped on the outer peripheral side of the suction port 1431 so that the outlet extension portion 1613a is inserted. may be formed. Accordingly, even if the outlet extension portion 1613a provided at the outlet end of the suction muffler 161 is inserted into the suction port 1431 , it is possible to suppress a decrease in the inner diameter of the suction port 1431 to secure the refrigerant suction amount.
또, 흡입구(1431)의 외주측에는 후술할 흡입머플러 출구부(1613)가 삽입되어 결합되는 머플러장착홈(1435)이 형성될 수 있다. 머플러장착홈(1435)은 실린더(143)의 외주면에서 반경방향으로 함몰되어 형성될 수 있다. In addition, a muffler mounting groove 1435 into which a suction muffler outlet 1613 to be described later is inserted and coupled may be formed on the outer periphery of the suction port 1431 . The muffler mounting groove 1435 may be formed by being depressed in the radial direction from the outer circumferential surface of the cylinder 143 .
예를 들어, 머플러장착홈(1435)은 흡입머플러 출구부(1613)와 대응하도록 대략 육면체 형상으로 형성될 수 있다. 구체적으로, 머플러장착홈(1435)은 원주방향 양쪽 측면과 흡입구(1431)를 향하는 반경방향 내측면은 각각 막힌 형상으로 형성되고, 축방향 양쪽 측면과 반경방향 외측면은 각각 개구되는 형상으로 형성될 수 있다. For example, the muffler mounting groove 1435 may be formed in a substantially hexahedral shape to correspond to the suction muffler outlet 1613 . Specifically, the muffler mounting groove 1435 has both sides in the circumferential direction and a radially inner surface facing the inlet 1431 are each formed in a closed shape, and both axial side surfaces and radially outer surfaces are each formed in an open shape. can
여기서, 머플러장착홈(1435)의 막힌 측면들은 그를 마주보는 흡입머플러 출구부(1613)의 측면들을 지지하는 지지면을 형성하게 된다. 예를 들어, 머플러장착홈(1435)의 원주방향 양쪽 측면은 제1 머플러지지면(1435a)을 형성하고, 머플러장착홈(1435)의 내측면은 제2 머플러지지면(1435b)을 형성하게 된다. Here, the blocked side surfaces of the muffler mounting groove 1435 form a support surface for supporting the side surfaces of the suction muffler outlet 1613 facing it. For example, both sides of the muffler mounting groove 1435 in the circumferential direction form a first muffler support surface 1435a, and the inner surface of the muffler mounting groove 1435 forms a second muffler support surface 1435b. .
이에 따라, 후술할 흡입머플러 출구부(1613)는 머플러장착홈(1435)의 외주면쪽에서 내주면쪽으로 삽입되어 결합될 수 있다. 그리고, 머플러장착홈(1435)의 상하 축방향 양쪽 측면은 개구됨에 따라, 흡입머플러 출구부(1613)의 단면적을 최대한으로 크게 형성하여 그만큼 흡입머플러 출구부(1613)의 유로면적을 최대한으로 확보할 수 있다. 머플러장착홈(1435)에 대해서는 나중에 흡입머플러(161)와 함께 다시 설명한다.Accordingly, the suction muffler outlet 1613, which will be described later, may be inserted and coupled from the outer circumferential side of the muffler mounting groove 1435 to the inner circumferential side. And, as both sides of the muffler mounting groove 1435 in the upper and lower axial directions are opened, the cross-sectional area of the suction muffler outlet 1613 is made as large as possible, so that the flow path area of the suction muffler outlet 1613 is secured as much as possible. can The muffler mounting groove 1435 will be described again later with the suction muffler 161 .
베인슬롯(1432)은 실린더(143)의 내주면에 외주면을 향하는 방향으로 길게 형성된다. 베인슬롯(1432)의 내주측은 개구되고, 외주측은 막히거나 또는 쉘(110)의 내주면에 의해 막히도록 개구되어 형성된다. The vane slot 1432 is elongated in the direction toward the outer circumferential surface on the inner circumferential surface of the cylinder 143 . The inner circumferential side of the vane slot 1432 is opened, and the outer circumferential side is formed to be blocked or blocked by the inner circumferential surface of the shell 110 .
베인슬롯(1432)은 후술할 베인롤러(144)의 베인(1445)이 미끄러질 수 있도록 베인(1445)의 두께 또는 폭과 대략 비슷한 정도의 폭을 가지도록 형성된다. 이에 따라, 베인(1445)의 양쪽 측면은 베인슬롯(1432)의 양쪽 내벽면에 의해 지지되어 대략 직선으로 미끄러지게 된다. The vane slot 1432 is formed to have a width approximately similar to the thickness or width of the vane 1445 so that the vane 1445 of the vane roller 144, which will be described later, slides. Accordingly, both sides of the vane 1445 are supported by both inner wall surfaces of the vane slot 1432 and slide approximately in a straight line.
토출안내홈(1433)은 실린더(143)의 내측 모서리에 반구 형상으로 모따기하여 형성된다. 토출안내홈(1433)은 실린더(143)의 압축실(V)에서 압축된 냉매를 서브 베어링(142)의 토출구(1423)로 안내하는 역할을 한다. 이에 따라, 토출안내홈(1433)은 토출구(1423)와 연통되도록 축방향 투영시 토출구(1423)와 중첩되는 위치에 형성된다. The discharge guide groove 1433 is formed by chamfering the inner edge of the cylinder 143 in a hemispherical shape. The discharge guide groove 1433 serves to guide the refrigerant compressed in the compression chamber V of the cylinder 143 to the discharge port 1423 of the sub bearing 142 . Accordingly, the discharge guide groove 1433 is formed at a position overlapping the discharge port 1423 when projected in the axial direction so as to communicate with the discharge port 1423 .
하지만, 토출안내홈(1433)은 사체적을 발생시키므로 가급적 토출안내홈(1433)을 형성하지 않는 것이 바람직하며, 토출안내홈(1433)을 형성하더라도 그 체적이 최소가 되도록 형성되는 것이 바람직할 수 있다.However, since the discharge guide groove 1433 generates a dead volume, it is preferable not to form the discharge guide groove 1433 as much as possible. .
한편, 실린더(143)의 상하 양쪽 측면에는 압축실 실링홈(미부호)이 형성되고, 압축실 실링홈에는 오링 또는 가스켓으로 된 압축실 실링부재(146)가 삽입될 수 있다. Meanwhile, compression chamber sealing grooves (unsigned) are formed on both upper and lower sides of the cylinder 143 , and the compression chamber sealing member 146 made of an O-ring or gasket may be inserted into the compression chamber sealing groove.
예를 들어, 압축실 실링부재(146)는 환형으로 형성되어 압축실(V)의 주변을 따라 설치될 수 있다. 구체적으로, 압축실 실링부재(146)는 베인슬롯(1432)의 외주측과 토출안내홈(1433)의 외주측을 감싸며, 머플러장착홈(1435)의 내주측과 압축실(V) 사이의 실링면을 통과하여 설치될 수 있다.For example, the compression chamber sealing member 146 may be formed in an annular shape and installed along the periphery of the compression chamber (V). Specifically, the compression chamber sealing member 146 surrounds the outer peripheral side of the vane slot 1432 and the outer peripheral side of the discharge guide groove 1433, and seals between the inner peripheral side of the muffler mounting groove 1435 and the compression chamber (V). It can be installed through the face.
이에 따라, 압축실 실링부재(146)가 베인슬롯(1432)과 토출안내홈(1433)을 포함하여 압축실(V)을 감싸 실링하는 동시에 압축실(V)과 머플러장착홈(1435) 사이를 분리하여 실링하게 된다. 이를 통해, 압축실(V)에서 압축되는 고압의 냉매가 상대적으로 저압부를 이루는 쉘(110)의 내부공간(110a)으로 누설되는 것을 억제할 수 있다. Accordingly, the compression chamber sealing member 146, including the vane slot 1432 and the discharge guide groove 1433, encloses and seals the compression chamber V, and at the same time seals between the compression chamber V and the muffler mounting groove 1435. It is separated and sealed. Through this, it is possible to suppress leakage of the high-pressure refrigerant compressed in the compression chamber V into the internal space 110a of the shell 110 constituting the relatively low-pressure part.
압축실 실링부재(146)는 실린더(143)의 축방향 양쪽 측면에 설치될 수도 있지만, 경우에 따라서는 실린더(143)의 양쪽 측면을 마주보는 메인 베어링(141) 또는 서브 베어링(142)에 설치될 수도 있다. The compression chamber sealing member 146 may be installed on both sides of the cylinder 143 in the axial direction, but in some cases, it is installed on the main bearing 141 or the sub bearing 142 facing both sides of the cylinder 143 . it might be
한편, 베인롤러(144)는 앞서 설명한 바와 같이 롤러(1441)와 베인(1445)으로 이루어진다. 롤러(1441)와 베인(1445)이 단일체로 형성될 수도 있고, 상대운동을 할 수 있도록 결합될 수도 있다. 이하, 본 실시예는 롤러와 베인이 회전 가능하게 결합된 예를 중심으로 설명한다.Meanwhile, the vane roller 144 includes a roller 1441 and a vane 1445 as described above. The roller 1441 and the vane 1445 may be formed as a single body, or may be combined to perform a relative motion. Hereinafter, the present embodiment will be mainly described with respect to an example in which the roller and the vane are rotatably coupled.
다시 도 4를 참조하면, 롤러(1441)는 원통 형상으로 형성된다. 롤러(1441)는 그 내주면과 외주면이 동일한 중심을 가지는 진원 형상으로 형성될 수도 있고, 경우에 따라서는 롤러(1441)의 내주면과 외주면이 서로 다른 중심을 가지는 진원 형상으로 형성될 수도 있다. Referring back to FIG. 4 , the roller 1441 is formed in a cylindrical shape. The roller 1441 may be formed in a perfect circle shape having the same center as the inner circumferential surface and the outer circumferential surface, or may be formed in a perfect circle shape in which the inner circumferential surface and the outer circumferential surface of the roller 1441 have different centers.
또, 롤러(1441)의 축방향 높이는 실린더(143)의 내주면 높이와 대략 동일하게 형성된다. 하지만, 롤러(1441)가 메인 베어링(141)과 서브 베어링(142)에 대해 미끄럼 운동을 하여야 하므로, 롤러(1441)의 축방향 높이는 실린더(143)의 내주면 높이보다 약간 작게 형성될 수도 있다. In addition, the axial height of the roller 1441 is formed to be substantially equal to the height of the inner peripheral surface of the cylinder (143). However, since the roller 1441 must slide with respect to the main bearing 141 and the sub bearing 142 , the axial height of the roller 1441 may be formed to be slightly smaller than the height of the inner circumferential surface of the cylinder 143 .
또, 롤러(1441)의 내주면 높이와 외주면 높이는 거의 동일하게 형성된다. 이에 따라, 롤러(1441)의 내주면과 외주면 사이를 연결하는 양쪽 축방향 단면은 각각 실링면을 형성하게 된다. 이 실링면들은 롤러(1441)의 내주면 또는 외주면에 대해 각각 직각을 이루게 된다. 하지만, 롤러(1441)의 내주면과 각 실링면 사이의 모서리 또는 롤러(1441)의 외주면과 각 실링면 사이의 모서리는 미세하게 경사지거나 곡면으로 형성될 수도 있다. In addition, the inner peripheral height and the outer peripheral height of the roller 1441 is formed to be substantially the same. Accordingly, both axial end surfaces connecting between the inner peripheral surface and the outer peripheral surface of the roller 1441 form a sealing surface, respectively. These sealing surfaces are formed at right angles to the inner circumferential surface or the outer circumferential surface of the roller 1441, respectively. However, the edge between the inner circumferential surface of the roller 1441 and each sealing surface or the edge between the outer circumferential surface of the roller 1441 and each sealing surface may be formed to be slightly inclined or curved.
또, 롤러(1441)는 회전축(130)의 편심부(133)에 회전 가능하게 삽입되어 결합되고, 베인(1445)은 실린더(143)의 베인슬롯(1432)에 미끄러지게 결합되어 롤러(1441)의 외주면에 힌지 결합된다. 이에 따라, 회전축(130)의 회전시 롤러(1441)는 편심부(133)에 의해 실린더(143)의 내부에서 선회운동을 하고 베인은 롤러(1441)에 결합된 상태로 왕복운동을 하게 된다.In addition, the roller 1441 is rotatably inserted and coupled to the eccentric portion 133 of the rotating shaft 130, and the vane 1445 is slidably coupled to the vane slot 1432 of the cylinder 143 to the roller 1441. is hinged to the outer circumferential surface of the Accordingly, when the rotating shaft 130 rotates, the roller 1441 makes a reciprocating motion within the cylinder 143 by the eccentric portion 133 and the vane reciprocates in a state coupled to the roller 1441 .
또, 롤러(1441)는 실린더(143)에 대해 동일 중심에 위치하도록 정렬될 수도 있지만, 경우에 따라서는 약간 편심되게 정렬될 수 있다. Also, the rollers 1441 may be aligned to be co-center with respect to the cylinder 143, but may be aligned slightly eccentrically in some cases.
또, 롤러(1441)는 그 내주면이 회전축(130)의 편심부(133) 외주면과 미끄럼 접촉될 수 있는 정도의 내경을 가지도록 환형으로 형성된다. 롤러(1441)의 반경방향 폭(두께)은 후술할 힌지홈(1411)과 실링거리를 확보할 수 있을 정도의 두께로 형성된다.In addition, the roller 1441 is formed in an annular shape so that its inner peripheral surface has an inner diameter that can be in sliding contact with the outer peripheral surface of the eccentric portion 133 of the rotation shaft 130 . The radial width (thickness) of the roller 1441 is formed to a thickness sufficient to secure a sealing distance from the hinge groove 1411 to be described later.
또, 롤러(1441)는 두께는 원주방향을 따라 일정하게 형성될 수도 있고, 경우에 따라서는 상이하게 형성될 수도 있다. 예를 들어, 롤러(1441)의 내주면은 타원 형상으로 형성될 수도 있다. In addition, the thickness of the roller 1441 may be uniformly formed along the circumferential direction, or may be formed differently in some cases. For example, the inner peripheral surface of the roller 1441 may be formed in an elliptical shape.
다만, 회전축(130)의 회전시 부하를 최소화하기 위해서는 롤러(1441)의 내주면과 외주면은 동일한 중심을 가지는 진원 형상으로 형성되고, 롤러(1441)의 반경방향 두께는 원주방향을 따라 일정하게 형성되는 것이 바람직할 수 있다.However, in order to minimize the load during rotation of the rotating shaft 130, the inner and outer peripheral surfaces of the roller 1441 are formed in a round shape having the same center, and the radial thickness of the roller 1441 is formed uniformly along the circumferential direction. it may be desirable
또, 롤러(1441)의 외주면에는 후술할 베인(1445)의 베인힌지부(1445b)가 삽입되어 회전할 수 있도록 한 개의 힌지홈(1411)이 형성된다. 힌지홈(1411)은 외주면이 개구된 원호 형상으로 형성된다. In addition, one hinge groove 1411 is formed on the outer peripheral surface of the roller 1441 so that a vane hinge portion 1445b of a vane 1445 to be described later is inserted and rotated. The hinge groove 1411 is formed in an arc shape with an open outer circumferential surface.
힌지홈(1411)의 내경은 베인힌지부(1445b)의 외경보다는 크게 형성되되, 베인힌지부(1445b)가 삽입된 상태에서 빠지지 않으면서 미끄럼 운동을 할 수 있을 정도의 크기로 형성된다. The inner diameter of the hinge groove 1411 is formed to be larger than the outer diameter of the vane hinge portion 1445b, and is formed to a size sufficient to slide without falling out while the vane hinge portion 1445b is inserted.
한편, 다시 도 4를 참조하면, 베인(1445)은 베인바디부(1445a), 베인힌지부(1445b)를 포함한다.Meanwhile, referring back to FIG. 4 , the vane 1445 includes a vane body portion 1445a and a vane hinge unit 1445b.
베인바디부(1445a)는 베인몸체를 이루는 부분으로, 기설정된 길이와 두께를 가지는 평판모양으로 형성된다. 예를 들어, 베인바디부(1445a)는 전체적으로는 장방형의 6면체 형상으로 형성된다. 또, 베인바디부(1445a)는 롤러(1441)가 베인슬롯(1432)의 반대쪽으로 완전히 이동한 상태에서도 베인(1445)이 베인슬롯(1432)에 남아있을 정도의 길이로 형성된다. The vane body portion 1445a is a portion constituting the vane body, and is formed in a flat plate shape having a predetermined length and thickness. For example, the vane body portion 1445a is formed in a rectangular hexahedral shape as a whole. In addition, the vane body portion 1445a is formed with a length such that the vane 1445 remains in the vane slot 1432 even in a state in which the roller 1441 has completely moved to the opposite side of the vane slot 1432 .
베인힌지부(1445b)는 롤러(1441)를 마주보는 베인바디부(1445a)의 전방측 단부에 연장되어 형성된다. 베인힌지부(1445b)는 힌지홈(1411)에 삽입되어 회전할 수 있는 단면적을 가지도록 형성된다. 베인힌지부(1445b)는 힌지홈(1411)에 대응하도록 반원형 또는 연결부분을 제외한 거의 원형 단면 형상으로 형성될 수 있다.The vane hinge portion 1445b is formed to extend to the front end of the vane body portion 1445a facing the roller 1441 . The vane hinge portion 1445b is inserted into the hinge groove 1411 and formed to have a rotatable cross-sectional area. The vane hinge portion 1445b may be formed in a semi-circular shape or a substantially circular cross-sectional shape excluding the connecting portion to correspond to the hinge groove 1411 .
다음으로 지지부를 설명한다.Next, the support part will be described.
다시 도 3을 참조하면, 본 실시예에 따른 지지부(150)는 스프링 캡(151), 지지스프링(152)을 포함한다. 지지부(150)는 전동부의 하면과 이를 마주보는 베이스 쉘(111)의 바닥면 사이를 지지하는 것으로, 통상 전동부(120)의 네 모서리를 쉘(110)에 대해 지지하게 된다. 이에 따라, 지지부(150)는 스프링 캡(151)과 지지스프링(152)을 한 쌍으로 지지단위체를 형성하여 각 지지단위체가 압축기본체(C)의 네 모서리를 지지하게 된다. 이하에서는 한 쌍의 지지단위체를 대표예로 설명한다.Referring back to FIG. 3 , the support part 150 according to the present embodiment includes a spring cap 151 and a support spring 152 . The support part 150 supports between the lower surface of the electric part and the bottom surface of the base shell 111 facing it, and generally supports the four corners of the electric part 120 with respect to the shell 110 . Accordingly, the support unit 150 forms a support unit as a pair of the spring cap 151 and the support spring 152 so that each support unit supports the four corners of the compressor body C. Hereinafter, a pair of support units will be described as a representative example.
본 실시예에 따른 스프링 캡(151)은, 베이스 쉘(111)의 바닥면에 고정되는 제1 스프링 캡(1511)과, 전동부(120)의 하면(정확하게는 고정자코어의 하면)에 고정되는 제2 스프링 캡(1512)으로 이루어질 수 있다. The spring cap 151 according to this embodiment is fixed to the first spring cap 1511 fixed to the bottom surface of the base shell 111 and the lower surface of the electric part 120 (precisely, the lower surface of the stator core). It may be formed of a second spring cap 1512 .
제1 스프링 캡(1511)과 제2 스프링 캡(1512)은 축방향으로 동축 선상에 배치될 수도 있고, 경우에 따라서는 서로 다른 축 선상에 배치될 수도 있다. 제1 스프링 캡(1511)과 제2 스프링 캡(1512)이 서로 다른 축 선상에 배치되는 경우에는 제2 스프링 캡(1512)이 제1 스프링 캡(1511)보다 바깥쪽에 위치하도록 배치되는 것이 유리하다.The first spring cap 1511 and the second spring cap 1512 may be disposed on a coaxial line in the axial direction, or may be disposed on different axial lines in some cases. When the first spring cap 1511 and the second spring cap 1512 are disposed on different axial lines, it is advantageous that the second spring cap 1512 is disposed outside the first spring cap 1511 . .
제1 스프링 캡(1511)과 제2 스프링 캡(1512)은 각각 고무재질로 형성되거나, 또는 설치강성과 완충을 고려하여 금속재의 외주면에 고무 또는 플라스틱 재질로 감싸져 형성될 수 있다. Each of the first spring cap 1511 and the second spring cap 1512 may be formed of a rubber material, or may be formed by being wrapped around an outer circumferential surface of a metal material with a rubber or plastic material in consideration of installation rigidity and cushioning.
예를 들어, 제1 스프링 캡(1511)은 금속인 베이스 쉘(111)에 캡고정홈(미도시)에 삽입되어 견고하게 고정되어야 하므로 금속재로 형성될 수 있다. 하지만, 제2 스프링 캡(1512)은 고정자코어(1211)의 하면에서 축방향으로 돌출되는 고정자체결볼트(미도시)의 볼트머리부(미도시)에 삽입되어 고정되므로 고무 또는 플라스틱 재질로 형성될 수 있다. For example, the first spring cap 1511 is inserted into the cap fixing groove (not shown) in the metal base shell 111 to be firmly fixed, so it may be formed of a metal material. However, since the second spring cap 1512 is inserted into and fixed to the bolt head (not shown) of the fixing self-fastening bolt (not shown) protruding in the axial direction from the lower surface of the stator core 1211, it may be formed of a rubber or plastic material. can
지지스프링(152)은 압축코일스프링으로 이루어질 수 있다. 지지스프링(152)의 일단은 제1 스프링 캡(1511)에 삽입되어 고정되고, 지지스프링(152)의 타단은 제2 스프링 캡(1512)에 삽입되어 고정될 수 있다. 이에 따라, 고정자코어(1211)는 지지스프링(152)에 의해 쉘에 탄력적으로 지지될 수 있다. The support spring 152 may be formed of a compression coil spring. One end of the support spring 152 may be inserted into and fixed to the first spring cap 1511 , and the other end of the support spring 152 may be inserted and fixed into the second spring cap 1512 . Accordingly, the stator core 1211 may be elastically supported by the shell by the support spring 152 .
다음으로 흡토출부를 설명한다.Next, the suction/discharge part will be described.
다시 도 1을 참조하면, 본 실시예에 따른 흡토출부(160)는 흡입머플러(161), 토출머플러(162)를 포함한다. 흡입머플러(161)는 실린더(143)의 외주면에 결합되고, 토출머플러(162)는 서브 베어링(142)의 상면에 결합될 수 있다. 이에 따라, 흡입머플러(161)는 서브 베어링(142)보다 하측에 위치하고, 토출머플러(162)는 서브 베어링(142)보다 상측에 위치하게 된다.Referring back to FIG. 1 , the suction/discharge unit 160 according to the present embodiment includes a suction muffler 161 and a discharge muffler 162 . The suction muffler 161 may be coupled to the outer peripheral surface of the cylinder 143 , and the discharge muffler 162 may be coupled to the upper surface of the sub bearing 142 . Accordingly, the suction muffler 161 is located below the sub bearing 142 , and the discharge muffler 162 is located above the sub bearing 142 .
또, 흡입머플러(161)의 입구는 쉘(110)의 내주면으로부터 이격되어 쉘(110)의 내부공간(110a)에 연통되고, 흡입머플러(161)의 출구는 흡입구(1431)에 연통되어 압축실(V)에 직접 연결될 수 있다. 이에 따라, 흡입파이프(115)로부터 흡입되는 냉매는 쉘(110)의 내부공간(110a)을 거쳐 흡입머플러(161)로 유입되고, 이 냉매는 흡입머플러(161)를 통해 압축실(V)로 흡입된다.In addition, the inlet of the suction muffler 161 is spaced apart from the inner circumferential surface of the shell 110 and communicates with the inner space 110a of the shell 110 , and the outlet of the suction muffler 161 communicates with the suction port 1431 to the compression chamber. It can be directly connected to (V). Accordingly, the refrigerant sucked from the suction pipe 115 flows into the suction muffler 161 through the inner space 110a of the shell 110, and the refrigerant flows into the compression chamber V through the suction muffler 161. is inhaled
또, 토출머플러(162)의 입구는 서브 베어링(142)에 결합되어 토출구(1423)에 직접 연통되고, 토출머플러(162)의 출구는 루프파이프(118)에 연결되어 토출파이프(116)에 직접 연결될 수 있다. 이에 따라, 루프파이프(118)는 쉘(110)의 내부공간(110a)에 채워진 오일의 유면보다 높은 위치에서 토출머플러와 토출파이프 사이를 연결하게 되고, 이로 인해 압축실(V)에서 토출되는 냉매는 쉘(110) 내부공간(110a)의 오일을 가열하지 않으면서 토출머플러(162), 루프파이프(118), 토출파이프(116)를 통해 압축기의 외부로 배출된다. In addition, the inlet of the discharge muffler 162 is coupled to the sub bearing 142 to directly communicate with the discharge port 1423 , and the outlet of the discharge muffler 162 is connected to the loop pipe 118 and directly to the discharge pipe 116 . can be connected Accordingly, the roof pipe 118 connects between the discharge muffler and the discharge pipe at a position higher than the oil level of the oil filled in the inner space 110a of the shell 110, and thereby the refrigerant discharged from the compression chamber V is discharged to the outside of the compressor through the discharge muffler 162 , the loop pipe 118 , and the discharge pipe 116 without heating the oil in the inner space 110a of the shell 110 .
흡입머플러와 토출머플러를 구체적으로 살펴보면 다음과 같다. 흡입머플러를 먼저 설명한다.A detailed look at the suction muffler and the discharge muffler is as follows. The suction muffler will be described first.
도 7은 도 1에서 흡입머플러의 일실시예를 보인 사시도이고, 도 8은 도 7에 따른 흡입머플러가 조립된 상태를 보인 사시도이며, 도 9는 도 8에서 "Ⅳ-Ⅳ"선단면도이다. 7 is a perspective view showing an embodiment of the suction muffler in FIG. 1 , FIG. 8 is a perspective view showing the suction muffler according to FIG. 7 is assembled, and FIG. 9 is a sectional view “IV-IV” in FIG.
다시 도 5 및 도 6을 참고하면, 본 실시예에 따른 흡입머플러(161)는, 흡입머플러 본체부(1611)와, 흡입머플러 입구부(1612)와, 흡입머플러 출구부(1613)를 포함할 수 있다. 흡입머플러(161)는 복수 개의 부재를 조립하여 내부에 후술할 흡입공간(1611a)이 형성되도록 할 수 있다. 본 실시예에서는 하부머플러와 상부머플러를 조립하여 흡입머플러(161)가 형성될 수 있다.5 and 6 again, the suction muffler 161 according to the present embodiment may include a suction muffler body 1611, a suction muffler inlet 1612, and a suction muffler outlet 1613. can The suction muffler 161 may have a suction space 1611a to be described later formed therein by assembling a plurality of members. In this embodiment, the suction muffler 161 may be formed by assembling the lower muffler and the upper muffler.
흡입머플러 본체부(1611)의 내부에는 기설정된 체적을 가지는 흡입공간(1611a)이 형성된다. 흡입머플러 본체부(1611)는 단일 부재로 형성될 수도 있지만, 복수 개의 부재를 조립하여 형성될 수도 있다. 하지만, 흡입머플러 본체부(1611)는 내부에 흡입공간(1611a)이 형성되어야 하므로, 통상 복수 개의 부재를 조립하여 형성될 수 있다.A suction space 1611a having a predetermined volume is formed inside the suction muffler body 1611 . The suction muffler body 1611 may be formed as a single member, or may be formed by assembling a plurality of members. However, since the suction muffler body 1611 needs to have a suction space 1611a therein, it may be formed by assembling a plurality of members.
흡입공간(1611a)의 내부는 단일 공간으로 형성될 수도 있지만, 소음 감쇄 효과를 높이기 위해 복수 개의 공간 또는 유로를 가지도록 형성될 수 있다. 이에 대해서는 통상적인 머플러의 내부형상에 준하여 형성될 수 있다.The inside of the suction space 1611a may be formed as a single space, but may be formed to have a plurality of spaces or flow paths in order to increase the noise attenuation effect. For this, it may be formed according to the internal shape of a conventional muffler.
흡입머플러 입구부(1612)는 흡입공간(1611a)의 하반부에 연통될 수 있다. 또, 흡입머플러(161)가 전동부를 포함한 압축기본체(C)의 외주면에 인접되게 배치됨에 따라, 흡입머플러 입구부(1612)는 흡입머플러 본체부(1611)의 외측면에 형성되는 것이 바람직할 수 있다.The suction muffler inlet 1612 may communicate with the lower half of the suction space 1611a. In addition, as the suction muffler 161 is disposed adjacent to the outer circumferential surface of the compressor body C including the electric part, the suction muffler inlet 1612 may be preferably formed on the outer surface of the suction muffler body 1611. have.
흡입머플러 입구부(1612)는 흡입유로의 길이를 확보하기 위해 원주방향 일측으로 편심지게 형성되는 것이 바람직할 수 있다. 이에 따라, 후술할 흡입머플러 출구부(1613)는 흡입머플러 입구부(1612)의 원주방향 반대쪽에 편심지게 형성될 수 있다.The suction muffler inlet 1612 may be preferably formed eccentrically to one side in the circumferential direction to secure the length of the suction passage. Accordingly, the suction muffler outlet 1613 to be described later may be eccentrically formed on the opposite side of the suction muffler inlet 1612 in the circumferential direction.
흡입머플러 출구부(1613)는 흡입공간(1611a)의 상반부에 연통될 수 있다. 흡입머플러 출구부(1613)는 흡입머플러 본체부(1611)에 연이어 형성될 수 있다. 하지만, 흡입머플러의 출구부(1613)가 실린더(143)의 외주면에 결합되고, 실린더(143)의 하측에는 메인베어링 플레이트(141)가 위치한다. 그러면, 흡입머플러 출구부(1613)는 흡입머플러 본체부(1611)에 연이어 형성되면 흡입머플러 본체부(1611)는 메인베어링 플레이트(141)와의 간섭을 피해 반경방향으로 벌어진 위치에 설치되어야 한다. 그러면, 압축기의 횡방향 직경이 증가하게 되어 압축기의 소형화가 어려워질 수 있다.The suction muffler outlet 1613 may communicate with the upper half of the suction space 1611a. The suction muffler outlet 1613 may be formed consecutively to the suction muffler body 1611 . However, the outlet portion 1613 of the suction muffler is coupled to the outer circumferential surface of the cylinder 143 , and the main bearing plate 141 is positioned below the cylinder 143 . Then, when the suction muffler outlet 1613 is formed successively to the suction muffler body 1611 , the suction muffler body 1611 should be installed at a radially widened position avoiding interference with the main bearing plate 141 . Then, the lateral diameter of the compressor may increase, making it difficult to downsize the compressor.
이에 따라, 흡입머플러 본체부(1611)와 흡입머플러 출구부(1613)는 흡입머플러 연결부(1614)에 의해 연결될 수 있다. 흡입머플러 연결부(1614)는 일종의 머플러의 목부(neck portion)와 같이 길게 형성될 수 있다. Accordingly, the suction muffler body part 1611 and the suction muffler outlet part 1613 may be connected by the suction muffler connection part 1614 . The suction muffler connecting portion 1614 may be formed to be long like a neck portion of a kind of muffler.
흡입머플러 연결부(1614)는 흡입머플러 본체부(1611)에서 실린더(143)를 향하는 방향으로 기설정된 각도(α)만큼 경사지도록 기울어지게 형성될 수 있다. 이에 따라, 흡입머플러 본체부(1611)에서 흡입머플러 출구부(1613)로 향하는 냉매의 유동저항이 감소되어 냉매가 원활하게 실린더(143)의 흡입구(1431)로 흡입될 수 있다.(도 9 참조)The suction muffler connection part 1614 may be inclined by a predetermined angle α in a direction from the suction muffler body part 1611 toward the cylinder 143 . Accordingly, the flow resistance of the refrigerant from the suction muffler body 1611 to the suction muffler outlet 1613 is reduced, so that the refrigerant can be smoothly sucked into the suction port 1431 of the cylinder 143 (refer to FIG. 9 ). )
한편, 흡입머플러 출구부(1613)는 실린더(143)의 머플러장착홈(1435)의 단면 형상과 대응되어 형성될 수 있다. 예를 들어, 흡입머플러 출구부(1613)는 반경방향 투영시 대략 사각형 단면 형상으로 형성될 수 있다. 이에 따라, 흡입머플러 출구부(1613)의 원주방향 양쪽 측면은 머플러장착홈(1435)의 원주방향 양쪽 측면에 각각 밀착되어 원주방향으로 지지될 수 있다.Meanwhile, the suction muffler outlet 1613 may be formed to correspond to the cross-sectional shape of the muffler mounting groove 1435 of the cylinder 143 . For example, the suction muffler outlet 1613 may have a substantially rectangular cross-sectional shape when projected in a radial direction. Accordingly, both sides of the suction muffler outlet portion 1613 in the circumferential direction may be respectively closely adhered to and supported in the circumferential direction of the muffler mounting groove 1435 in the circumferential direction.
또, 흡입머플러 출구부(1613)의 원주방향 양쪽 측면에는 머플러고정부(1615)가 원주방향으로 연장되어 형성될 수 있다. 머플러고정부(1615)의 원주방향 길이는 머플러장착홈(1435)의 원주방향 길이보다 길게 형성될 수 있다. 이에 따라, 머플러고정부(1615)는 머플러장착홈(1435)의 외곽에서 실린더(143)에 고정될 수 있다. In addition, the muffler fixing part 1615 may be formed to extend in the circumferential direction on both sides of the suction muffler outlet part 1613 in the circumferential direction. The circumferential length of the muffler fixing part 1615 may be longer than the circumferential length of the muffler mounting groove 1435 . Accordingly, the muffler fixing part 1615 may be fixed to the cylinder 143 outside the muffler mounting groove 1435 .
예를 들어, 흡입구(1431)의 중심(O)에서 머플러고정부(1615)의 고정점(즉, 체결구멍)까지의 원주방향 길이(이하, 제1 길이)(L1)는 흡입구(1431)의 중심(O)에서 머플러장착홈(1435)의 제1 머플러지지면(1435a)까지의 원주방향 길이(이하, 제2 길이)(L2)보다 길거나 같게 형성될 수 있다. For example, the circumferential length (hereinafter, the first length) L1 from the center O of the suction port 1431 to the fixing point (ie, the fastening hole) of the muffler fixing part 1615 is the suction port 1431 . From the center O to the first muffler support surface 1435a of the muffler mounting groove 1435, the circumferential length (hereinafter, the second length) L2 may be formed to be equal to or longer than the length L2.
구체적으로, 제1 길이(L1)는 제2 길이(L2)보다 길게 형성될 수 있다. 이에 따라, 압축기의 운전시 흡입머플러(161)에 의해 전달되는 진동이 머플러고정부(1615)에서 일정정도 완충되어 흡수되어, 머플러고정부(1615)에서의 응력이 감소되어 흡입머플러(1616)를 더욱 안정적으로 고정할 수 있다. Specifically, the first length L1 may be longer than the second length L2. Accordingly, the vibration transmitted by the suction muffler 161 during the operation of the compressor is buffered and absorbed to a certain extent by the muffler fixing unit 1615, and the stress in the muffler fixing unit 1615 is reduced to prevent the suction muffler 1616. It can be fixed more stably.
또, 머플러고정부(1615)는 실린더(143)의 외주면 곡률과 동일한 곡률을 가지는 곡선 형상으로 형성될 수 있다. 이에 따라, 머플러고정부(1615)는 실린더(143)의 외주면에 밀착되어 고정될 수 있다.In addition, the muffler fixing part 1615 may be formed in a curved shape having the same curvature as that of the outer circumferential surface of the cylinder 143 . Accordingly, the muffler fixing part 1615 may be fixed in close contact with the outer peripheral surface of the cylinder 143 .
또, 머플러고정부(1615)에는 체결구멍(1616a)이 형성되고, 이 체결구멍(1616a)을 마주보는 실린더(143)의 외주면에는 체결홈(143a)이 형성될 수 있다. 이에 따라, 머플러고정부(1615)는 체결구멍(1616a)을 관통하여 체결홈(143a)에 체결되는 머플러체결볼트(1616)에 의해 체결되고, 그러면 흡입머플러(161)가 실린더(143)에 안정적으로 체결되어 고정될 수 있다. In addition, a fastening hole 1616a is formed in the muffler fixing part 1615 , and a fastening groove 143a may be formed on the outer peripheral surface of the cylinder 143 facing the fastening hole 1616a. Accordingly, the muffler fixing part 1615 is fastened by the muffler fastening bolt 1616 that penetrates the fastening hole 1616a and is fastened to the fastening groove 143a, and then the suction muffler 161 is stably attached to the cylinder 143. It can be fastened with
또, 흡입머플러 출구부(1613)의 단부면(1613b)과 이를 반경방향으로 마주보는 실린더(143)의 머플러장착홈(1435)의 내측면 사이에는 머플러실링부재(1617)가 구비될 수 있다. 머플러실링부재(1617)는 오링 또는 평평한 가스켓으로 형성되며, 흡입머플러 출구부(1613)에 후술할 출구연장부(1613a)가 형성되는 경우에는 그 출구연장부(1613a)를 감싸 흡입머플러 출구부(1613)의 단부면(1613b)과 머플러장착홈(1435)의 내측면 사이에 밀착될 수 있다.In addition, a muffler sealing member 1617 may be provided between the end surface 1613b of the suction muffler outlet 1613 and the inner surface of the muffler mounting groove 1435 of the cylinder 143 facing the same in the radial direction. The muffler sealing member 1617 is formed of an O-ring or a flat gasket, and when an outlet extension 1613a to be described later is formed on the suction muffler outlet 1613, the outlet extension 1613a is wrapped around the suction muffler outlet portion ( 1613) may be in close contact between the end surface 1613b and the inner surface of the muffler mounting groove 1435.
이에 따라, 쉘(110) 내부공간(110a)의 오일[예를 들어, 후술할 급유부(170)의 오일통로구멍(1721)으로 유입되는 오일]의 일부가 흡입머플러(161)와 실린더(143) 사이의 틈새를 통해 흡입구(1431)로 유입되는 것을 억제할 수 있다. Accordingly, a portion of the oil in the shell 110 inner space 110a (for example, oil flowing into the oil passage hole 1721 of the oil supply unit 170 to be described later) is partially transferred to the suction muffler 161 and the cylinder 143 . ) through the gap between the intake port 1431 can be suppressed.
한편, 흡입머플러 출구부(1613)에는 출구연장부(1613a)가 실린더(143)를 향해 연장 형성될 수 있다. 출구연장부(1613a)는 흡입머플러 출구부(1613)의 단부면(1613b)에서 원통형상으로 연장되어 형성되며, 전술한 흡입구(1431)의 연장부삽입홈(1431a)에 삽입되어 방사상으로 지지될 수 있다. 이에 따라, 흡입머플러(161)를 머플러장착홈(1435)에 삽입하여 결합하는 경우, 그 흡입머플러(161)의 조립위치를 용이하게 정렬하는 동시에 흡입머플러(161)와 흡입구(1431) 사이의 냉매누설이나 오일유입을 효과적으로 차단할 수 있다.On the other hand, the outlet extension portion 1613a of the suction muffler outlet portion 1613 may be formed to extend toward the cylinder (143). The outlet extension portion 1613a is formed to extend in a cylindrical shape from the end surface 1613b of the suction muffler outlet portion 1613, and is inserted into the extension portion insertion groove 1431a of the suction port 1431 described above to be radially supported. can Accordingly, when the suction muffler 161 is inserted into the muffler mounting groove 1435 to be coupled, the assembly position of the suction muffler 161 is easily aligned and the refrigerant between the suction muffler 161 and the suction port 1431 . It can effectively block leakage or oil inflow.
한편, 도면으로 도시하지는 않았으나, 실린더(143)에 머플러장착홈을 형성하지 않고 흡입머플러 출구부(1613)의 선단면을 실린더(143)의 외주면에 밀착시킨 상태에서 고정할 수 있다. Meanwhile, although not shown in the drawings, it is possible to fix the front end surface of the suction muffler outlet 1613 in close contact with the outer circumferential surface of the cylinder 143 without forming a muffler mounting groove in the cylinder 143 .
또, 전술한 실시예에서는 흡입머플러(161)에 머플러고정부(1615)를 일체로 연장 형성하는 것이나, 경우에 따라서는 머플러고정부를 일체로 형성하지 않고 실린더(143)에 체결되는 별도의 머플러고정부재를 이용하여 흡입머플러(161)를 실린더(143)에 고정할 수도 있다. 이에 대해서는 나중에 다시 설명한다.In addition, in the above-described embodiment, the muffler fixing part 1615 is integrally formed with the suction muffler 161, but in some cases, a separate muffler fastened to the cylinder 143 without integrally forming the muffler fixing part. The suction muffler 161 may be fixed to the cylinder 143 using a fixing member. This will be explained again later.
다음으로 토출머플러를 설명한다.Next, the discharge muffler will be described.
다시 도 2 및 도 3을 참조하면, 본 실시예에 따른 토출머플러(162)는 토출구(1423)를 수용하도록 토출공간(1621a)을 구비하는 토출머플러 본체부(1621)와, 토출머플러 본체부(1621)에서 연장되어 서브 베어링(142)의 상면에 고정되는 토출머플러 고정부(1622)를 포함한다.2 and 3 again, the discharge muffler 162 according to the present embodiment includes a discharge muffler body 1621 having a discharge space 1621a to accommodate the discharge port 1423, and a discharge muffler body ( It extends from 1621 and includes a discharge muffler fixing part 1622 fixed to the upper surface of the sub bearing 142 .
토출머플러 본체부(1621)는 토출공간(1621a)을 형성하는 측벽면과 상벽면으로 이루어지고, 토출공간(1621a)을 형성하는 측벽면에는 루프파이프(118)에 연결되어 토출공간(1621a)으로 토출되는 냉매를 토출파이프(116)로 안내하는 냉매배출구멍(1621b)이 형성될 수 있다. 이에 따라, 토출공간(1621a)으로 토출되는 냉매는 그 토출공간(1621a)에서 토출소음이 상쇄되면서 냉매배출구멍(1621b)을 통해 루프파이프(118)로 배출되고, 이 냉매는 토출파이프(116)를 통해 응축기로 이동하게 된다.The discharge muffler body part 1621 is composed of a side wall surface and an upper wall surface forming the discharge space 1621a, and the side wall surface forming the discharge space 1621a is connected to the roof pipe 118 to form the discharge space 1621a. A refrigerant discharge hole 1621b for guiding the discharged refrigerant to the discharge pipe 116 may be formed. Accordingly, the refrigerant discharged to the discharge space 1621a is discharged to the loop pipe 118 through the refrigerant discharge hole 1621b while the discharge noise is canceled in the discharge space 1621a, and the refrigerant is discharged through the discharge pipe 116 through the condenser.
또, 토출머플러 본체부(1621)의 상벽면 중앙에는 서브 베어링부(1422)가 관통되는 베어링부 관통구멍(1621c)이 형성될 수 있다. 베어링부 관통구멍(1621c)은 토출머플러 본체부(1621)의 상벽면을 단순 관통하여 형성될 수도 있다. 하지만, 서브 베어링부(1422)가 베어링부 관통구멍(1621c)에 관통되도록 삽입되므로, 그 서브 베어링부(1422)와의 사이에 실링부재(미부호)를 설치할 수 있도록 토출공간(1621a)의 내측쪽으로 절곡하여 원통 형상으로 형성될 수 있다. Also, a bearing part through hole 1621c through which the sub bearing part 1422 passes may be formed in the center of the upper wall surface of the discharge muffler body part 1621 . The bearing part through-hole 1621c may be formed by simply passing through the upper wall surface of the discharge muffler body part 1621 . However, since the sub-bearing part 1422 is inserted through the bearing part through-hole 1621c, a sealing member (unsigned) can be installed between the sub-bearing part 1422 and the inner side of the discharge space 1621a. It may be formed into a cylindrical shape by bending.
또, 서브 베어링부(1422)의 내부에는 회전축(130)이 관통되도록 삽입됨에 따라, 회전축(130)의 상단은 토출머플러(162)의 외부로 노출된다. 이에 따라, 오일펌핑구멍(135)이 형성된 회전축(130)의 상단이 토출머플러(162)의 외부로 노출되어, 오일펌핑구멍(135)을 통해 흡상되는 오일은 토출머플러(162)의 외부로 배출되게 된다. 이 오일은 후술할 오일 가이드(171)에 의해 베인슬롯(1432)의 후방측으로 공급된다. 이에 대해서는 급유부에서 다시 설명한다.In addition, as the rotation shaft 130 is inserted into the sub-bearing part 1422 to pass through, the upper end of the rotation shaft 130 is exposed to the outside of the discharge muffler 162 . Accordingly, the upper end of the rotation shaft 130 on which the oil pumping hole 135 is formed is exposed to the outside of the discharge muffler 162 , and the oil sucked through the oil pumping hole 135 is discharged to the outside of the discharge muffler 162 . will become This oil is supplied to the rear side of the vane slot 1432 by an oil guide 171 to be described later. This will be explained again in the refueling department.
다음으로 급유부를 설명한다.Next, the oil supply part will be described.
도 2 내지 도 4를 참조하면, 본 실시예에 따른 급유부(170)는 오일 가이드(171) 및 오일통로부(172)를 포함한다. 오일 가이드는 회전축(130)의 상단에서 비산되는 오일을 포집하는 역할을 하며, 오일통로부(172)는 오일 가이드(171)에 연결되어 오일을 해당 위치로 안내하는 역할을 한다. 이에 따라, 오일의 유동순서를 기준으로 보면 오일 가이드(171)는 회전축(130)의 하류쪽에 구비되고, 오일통로부(172)는 오일 가이드(171)보다는 후류쪽에 위치하게 구비된다.2 to 4 , the oil supply unit 170 according to the present embodiment includes an oil guide 171 and an oil passage unit 172 . The oil guide serves to collect oil scattered from the upper end of the rotation shaft 130 , and the oil passage 172 is connected to the oil guide 171 to guide the oil to the corresponding position. Accordingly, based on the flow order of the oil, the oil guide 171 is provided on the downstream side of the rotation shaft 130 , and the oil passage part 172 is provided to be located on the downstream side rather than the oil guide 171 .
오일 가이드(171)는 토출머플러(162)의 상벽면 외측에 구비될 수 있다. 오일 가이드(171)는 토출머플러(162)에 일체로 형성될 수도 있고, 재질에 따라 용접 또는 체결될 수 있다. 오일 가이드(171)는 금속으로 형성될 수도 있고, 플라스틱과 같은 재질로 형성될 수도 있다.The oil guide 171 may be provided outside the upper wall surface of the discharge muffler 162 . The oil guide 171 may be integrally formed with the discharge muffler 162 , and may be welded or fastened according to a material. The oil guide 171 may be formed of a metal or a material such as plastic.
또, 오일 가이드(171)는 토출머플러(162)에 접하는 하면은 개구되고, 회전축(130)의 상단에서 비산되는 오일을 포집할 수 있도록 측면과 상면은 막힌 형상으로 형성될 수 있다. 이에 따라, 오일 가이드(171)의 측면 일부와 상면은 토출머플러(163)의 상면과 함께 오일수용공간(1711)이 형성될 수 있다. 다만, 오일수용공간(1711)을 이루는 측면 중에서 오일통로부(172)를 향하는 쪽의 측면은 개구되어 가이드출구(1712)가 형성될 수 있다.In addition, the lower surface of the oil guide 171 in contact with the discharge muffler 162 may be opened, and the side and upper surfaces of the oil guide 171 may be formed in a closed shape to collect oil scattered from the upper end of the rotation shaft 130 . Accordingly, a portion of the side surface and the upper surface of the oil guide 171 may form an oil accommodating space 1711 together with the upper surface of the discharge muffler 163 . However, the side of the side that faces the oil passage portion 172 among the side surfaces constituting the oil receiving space 1711 may be opened to form a guide outlet 1712 .
가이드출구(1712)의 외주면에는 오일안내돌부(1713)가 형성될 수 있다. 오일안내돌부(1713)는 오일 가이드(171)와 오일통로부(172)의 사이에 구비될 수 있다. 이에 따라, 오일 가이드(171)에서 포집된 오일이 오일안내돌부(1713)에 의해 오일통로부(172)로 원활하게 이동할 수 있다.An oil guide protrusion 1713 may be formed on the outer peripheral surface of the guide outlet 1712 . The oil guide protrusion 1713 may be provided between the oil guide 171 and the oil passage portion 172 . Accordingly, the oil collected by the oil guide 171 may smoothly move to the oil passage portion 172 by the oil guide protrusion 1713 .
오일안내돌부(1713)는 제1 안내돌부(1713a)와 제2 안내돌부(1713b)로 이루어질 수 있다. The oil guide protrusion 1713 may include a first guide protrusion 1713a and a second guide protrusion 1713b.
제1 안내돌부(1713a)는 토출머플러(162)의 상면과 측면을 따라 연이어 형성될 수 있다. 제1 안내돌부(1713a)는 오일 가이드(171)에 일체로 연장 형성될 수도 있고, 토출머플러(162)의 외면에 일체로 형성될 수도 있다. 또, 제1 안내돌부(1713a)는 오일 가이드(171) 또는 토출머플러(162)에 후조립될 수도 있다. The first guide protrusion 1713a may be continuously formed along the upper surface and the side surface of the discharge muffler 162 . The first guide protrusion 1713a may be integrally formed with the oil guide 171 or may be integrally formed with the outer surface of the discharge muffler 162 . In addition, the first guide protrusion 1713a may be post-assembled to the oil guide 171 or the discharge muffler 162 .
제2 안내돌부(1713b)는 제1 안내돌부(1713a)에 연이어 서브 베어링(142)의 상면에 형성될 수 있다. 예를 들어, 제2 안내돌부(1713b)는 후술할 오일통로구멍(1721)의 둘레의 일부를 감싸도록 형성될 수 있다. 이에 따라, 오일안내돌부(1713)에 의해 안내되는 오일이 다른 곳으로 흘러나가지 않고 오일통로구멍(1721)으로 이동할 수 있다. The second guide protrusion 1713b may be formed on the upper surface of the sub bearing 142 in succession to the first guide protrusion 1713a. For example, the second guide protrusion 1713b may be formed to surround a portion of the circumference of the oil passage hole 1721 to be described later. Accordingly, the oil guided by the oil guide protrusion 1713 can move to the oil passage hole 1721 without flowing out to another place.
오일통로부(172)는 오일 가이드(171)에 의해 안내되는 오일을 압축부(140), 정확하게는 베인슬롯(1432)의 후방쪽으로 공급하도록 서브 베어링(142)과 실린더(143)를 관통하여 형성될 수 있다. 예를 들어, 오일통로부(172)는 서브 베어링(142)에 형성되는 오일통로구멍(1721)을 포함할 수 있다. The oil passage portion 172 is formed through the sub bearing 142 and the cylinder 143 so as to supply the oil guided by the oil guide 171 toward the compression portion 140 , precisely to the rear of the vane slot 1432 . can be For example, the oil passage part 172 may include an oil passage hole 1721 formed in the sub bearing 142 .
오일통로구멍(1721)의 입구단은 쉘(110)의 내부공간(110a)에 노출되어 오일 가이드(171)에 연통되고, 오일통로구멍(1721)의 출구단은 베인슬롯(1432)에 연통된다. 다만, 베인슬롯(1432)의 외주측에 후술할 오일저장홈(1722)이 형성되는 경우에는 오일통로구멍(1721)의 출구단은 오일저장홈(1722)을 통해 베인슬롯(1432)에 연통될 수 있다. The inlet end of the oil passage hole 1721 is exposed to the inner space 110a of the shell 110 and communicates with the oil guide 171 , and the outlet end of the oil passage hole 1721 communicates with the vane slot 1432 . . However, when an oil storage groove 1722 to be described later is formed on the outer periphery of the vane slot 1432 , the outlet end of the oil passage hole 1721 communicates with the vane slot 1432 through the oil storage groove 1722 . can
이에 따라, 오일 가이드(171)의 오일수용공간(1711)은 오일통로구멍(1721)을 통해 베인슬롯(1432)에 연통되고, 오일 가이드(171)에 의해 포집된 오일은 오일통로구멍(1721)을 통해 베인슬롯(1432)에 공급될 수 있다.Accordingly, the oil receiving space 1711 of the oil guide 171 communicates with the vane slot 1432 through the oil passage hole 1721, and the oil collected by the oil guide 171 is the oil passage hole 1721. It may be supplied to the vane slot 1432 through.
오일통로구멍(1721)의 원주방향 폭은 베인슬롯(1432)의 원주방향 폭보다 넓게 형성될 수 있다. 이에 따라, 오일 가이드(171)에서 포집되어 쉘(110)의 하부공간으로 이동하는 오일은 오일통로구멍(1721)에 의해 수용할 수 있다. The circumferential width of the oil passage hole 1721 may be wider than the circumferential width of the vane slot 1432 . Accordingly, the oil collected by the oil guide 171 and moving to the lower space of the shell 110 may be accommodated by the oil passage hole 1721 .
한편, 베인슬롯(1432)의 외주측에는 기설정된 넓이와 깊이만큼 함몰되는 오일저장홈(1722) 형성될 수 있다. 오일저장홈(1722)의 단면적은 오일통로구멍(1721)의 단면적과 거의 동일하게 형성될 수 있다. 이에 따라, 오일통로구멍(1721)으로 이동하는 오일이 오일저장홈(1722)에 수용되어, 베인슬롯(1432)의 후방에 항상 일정량의 오일이 저장될 수 있도록 할 수 있다. 이를 통해 압축기의 재기동시에도 오일이 베인(1445)과 베인슬롯(1432) 사이로 신속하게 공급될 수 있다. Meanwhile, an oil storage groove 1722 recessed by a predetermined width and depth may be formed on the outer periphery of the vane slot 1432 . The cross-sectional area of the oil storage groove 1722 may be formed to be substantially the same as the cross-sectional area of the oil passage hole 1721 . Accordingly, the oil moving to the oil passage hole 1721 is accommodated in the oil storage groove 1722 , so that a certain amount of oil can always be stored in the rear of the vane slot 1432 . Through this, oil can be quickly supplied between the vane 1445 and the vane slot 1432 even when the compressor is restarted.
한편, 도면으로 도시하지는 않았지만, 오일통로부의 중간에는 그 오일통로부를 선택적으로 개폐하여 오일저장홈에서 오일통로구멍쪽으로 냉매 또는 오일이 역류하는 것을 차단하는 역류방지밸브(미도시)가 더 설치될 수 있다. On the other hand, although not shown in the drawings, a non-return valve (not shown) may be further installed in the middle of the oil passage part to selectively open and close the oil passage part to block the reverse flow of refrigerant or oil from the oil storage groove to the oil passage hole. have.
이를 통해 압축기의 운전시 압축실에서 압축되고 있는 냉매가 오일통로부를 통해 쉘의 내부공간으로 누설되는 것을 차단하는 동시에, 압축기의 정지시에는 일정량의 오일이 오일통로부에 저장되었다가 재기동시 압축부에 신속하게 공급되도록 할 수 있다. This prevents the refrigerant being compressed in the compression chamber from leaking into the inner space of the shell through the oil passage during operation of the compressor. can be supplied quickly.
상기와 같은 본 실시예에 따른 로터리 압축기는 다음과 같이 동작된다.The rotary compressor according to the present embodiment as described above operates as follows.
즉, 전동부(120)에 전원이 인가되면 회전자(122)가 회전을 하게 된다. 회전자(122)가 회전을 하면 그 회전자(122)에 결합된 회전축(130)이 회전을 하면서 회전력을 회전축(130)의 편심부(133)에 결합된 베인롤러(144)에 전달하게 된다.That is, when power is applied to the electric part 120, the rotor 122 rotates. When the rotor 122 rotates, the rotation shaft 130 coupled to the rotor 122 rotates while transmitting the rotational force to the vane roller 144 coupled to the eccentric portion 133 of the rotation shaft 130 . .
그러면 베인롤러(144)의 롤러(1441)는 선회운동을 하고, 베인(1445)은 실린더(143)에 삽입되어 왕복운동을 하면서 냉매를 실린더(143)의 압축실(V)로 흡입하여 압축하게 된다. 이 압축된 냉매는 베인롤러(144)의 롤러(1441)와 베인(1445)에 의해 지속적으로 압축되어 메인 베어링(141)에 구비된 토출밸브(145)를 열고 토출구(1423)를 통해 토출머플러(162)의 토출공간(1621a)으로 토출되며, 이 토출된 냉매는 루프파이프(118)와 토출파이프(116)를 통해 냉동사이클을 이루는 응축기로 토출되는 일련의 과정을 반복하게 된다.Then, the roller 1441 of the vane roller 144 rotates, and the vane 1445 is inserted into the cylinder 143 and reciprocating while sucking the refrigerant into the compression chamber (V) of the cylinder 143 and compressing it. do. This compressed refrigerant is continuously compressed by the rollers 1441 and the vanes 1445 of the vane roller 144 to open the discharge valve 145 provided in the main bearing 141 and the discharge muffler ( 162), the discharged refrigerant is discharged to the condenser constituting the refrigeration cycle through the loop pipe 118 and the discharge pipe 116, repeating a series of processes.
이때, 쉘(110)의 내부공간(110a)에 저장된 오일은 회전축(130)의 하단에 구비된 오일피더(138)에 의해 펌핑되어 오일펌핑구멍(135)을 통해 흡상되고, 이 흡상되는 오일의 일부는 제1 급유구멍(1361), 제2 급유구멍(1362), 제3 급유구멍(1363)을 통해 각각의 베어링면으로 공급되어 윤활하게 된다.At this time, the oil stored in the inner space 110a of the shell 110 is pumped by the oil feeder 138 provided at the lower end of the rotating shaft 130 and sucked through the oil pumping hole 135, and the sucked oil A portion is supplied to each bearing surface through the first oil supply hole 1361 , the second oil supply hole 1362 , and the third oil supply hole 1363 to lubricate it.
그리고 회전축(130)의 상단까지 흡상된 오일은 토출머플러(162)의 상면과 오일 가이드(171)에 의해 형성되는 오일수용공간(1711)에서 비산된다. 이 오일은 오일 가이드(171)에 의해 포집되어 가이드출구(1712)를 통해 토출머플러(162)의 상면과 서브 베어링(142)의 상면을 타고 흘러내리게 된다. 이 오일은 서브 베어링(142)의 오일통로구멍(1721)과 오일저장홈(1722)을 통해 베인슬롯(1432)으로 안내되고, 베인슬롯(1432)에 고인 오일은 베인(1445)이 왕복운동을 할 때 그 베인(1445)에 뭍어 압축실(V)쪽으로 이동하면서 베인슬롯(1432)과의 사이를 윤활하거나 또는 롤러(1451)의 베어링면을 윤활하게 된다.And the oil sucked up to the upper end of the rotation shaft 130 is scattered in the oil receiving space 1711 formed by the upper surface of the discharge muffler 162 and the oil guide 171 . This oil is collected by the oil guide 171 and flows down the upper surface of the discharge muffler 162 and the upper surface of the sub bearing 142 through the guide outlet 1712 . This oil is guided to the vane slot 1432 through the oil passage hole 1721 and the oil storage groove 1722 of the sub bearing 142, and the oil accumulated in the vane slot 1432 causes the vane 1445 to reciprocate. When doing so, it lubricates between the vane 1445 and the vane slot 1432 or lubricates the bearing surface of the roller 1451 while moving toward the compression chamber (V).
한편, 전술한 바와 같이, 베인슬롯(1432)의 외주측에는 오일저장홈(1722)이 형성됨에 따라 일정량이 오일이 저장되고, 이 오일저장홈(1722)의 오일은 압축기의 운전중에는 베인슬롯(1432)으로 오일을 지속적으로 공급하는 한편 압축기의 정지시에도 일정량의 오일을 저장하고 있다가 압축기의 재기동시 신속하게 오일을 베인슬롯(1432)에 공급할 수 있다. 이를 통해 재기동시 베인(1445)과 베인슬롯(1432)을 비롯한 압축부(140)에서의 오일부족으로 인한 마찰손실을 줄일 수 있다.On the other hand, as described above, as the oil storage groove 1722 is formed on the outer periphery of the vane slot 1432, a certain amount of oil is stored, and the oil in the oil storage groove 1722 is stored in the vane slot 1432 during the operation of the compressor. ), while storing a certain amount of oil even when the compressor is stopped, oil can be quickly supplied to the vane slot 1432 when the compressor is restarted. Through this, it is possible to reduce friction loss due to insufficient oil in the compression unit 140 including the vanes 1445 and the vane slots 1432 during restart.
이렇게 하여, 한 개의 쉘을 이용하여 전동부와 압축부로 이루어지는 압축기본체를 쉘로부터 이격시키는 스프링 지지 방식의 로터리 압축기를 구성할 수 있다. 이에 따라, 압축기본체로부터 전달되는 진동이 쉘로 전달되는 것을 차단하여 압축기의 진동 소음을 줄일 수 있다. 이를 통해, 로터리 압축기의 부피와 무게를 줄이고 부품수를 줄여 제조비용을 낮출 수 있다.In this way, it is possible to configure a rotary compressor of a spring-supported type in which the compressor body including the electric part and the compression part is spaced apart from the shell by using a single shell. Accordingly, it is possible to reduce the vibration noise of the compressor by preventing the vibration transmitted from the compressor body from being transmitted to the shell. Through this, the volume and weight of the rotary compressor can be reduced, and the number of parts can be reduced, thereby lowering the manufacturing cost.
또, 스프링 지지 방식인 로터리 압축기를 구성하면서도 압축부가 전동부의 상측에 위치하는 상부 압축 방식으로 구성하여 흡입머플러를 압축부에 안정적으로 연결할 수 있다. 이에 따라, 쉘의 내부공간이 저압부를 이루는 상부 압축 방식의 저압식 로터리 압축기를 구성할 수 있다. 이를 통해, 전동부가 쉘의 내부공간으로 흡입되는 찬 냉매에 의해 신속하게 냉각되어 모터효율과 압축기 성능이 향상될 수 있다. In addition, it is possible to stably connect the suction muffler to the compression unit by configuring the rotary compressor as a spring-supported method as an upper compression method in which the compression unit is located above the transmission unit. Accordingly, an upper compression type low pressure rotary compressor in which the inner space of the shell forms a low pressure unit may be configured. Through this, the electric part is rapidly cooled by the cold refrigerant sucked into the inner space of the shell, so that the motor efficiency and compressor performance can be improved.
또, 스프링 지지 방식이면서 상부 압축 방식인 로터리 압축기를 구성함으로써, 토출유로를 이루는 루프파이프가 쉘의 내부공간에 채워진 오일에 잠기지 않고 분리되도록 설치할 수 있다. 이에 따라, 쉘 내부의 오일이 루프파이프를 통해 토출되는 고온의 냉매에 의해 가열되는 것을 미연에 방지할 수 있고, 이를 통해 오일의 점도가 낮아지는 것을 억제하여 압축기본체의 각 베어링면에서의 마찰손실을 줄일 수 있다.In addition, by configuring the rotary compressor of the spring support type and upper compression type, it is possible to install the loop pipe constituting the discharge flow path to be separated without being submerged in the oil filled in the inner space of the shell. Accordingly, it is possible to prevent in advance that the oil inside the shell is heated by the high-temperature refrigerant discharged through the loop pipe, thereby suppressing the lowering of the viscosity of the oil, thereby reducing friction loss on each bearing surface of the compressor body. can reduce
또, 스프링 지지 방식이면서 상부 압축 방식인 로터리 압축기를 구성하면서도 오일 가이드 및 오일통로부를 이용하여 쉘에 저장된 오일을 압축부로 원활하게 공급할 수 있다. 이를 통해 오일이 압축기본체의 베어링면에 원활하게 공급되면서 각 베어링면에서의 오일부족으로 인한 마찰손실을 줄일 수 있다.In addition, it is possible to smoothly supply the oil stored in the shell to the compression unit by using the oil guide and the oil passage while configuring the rotary compressor of the spring-supported and upper compression type. Through this, oil is smoothly supplied to the bearing surfaces of the compressor body, and frictional losses due to insufficient oil on each bearing surface can be reduced.
한편, 흡입머플러에 대한 다른 실시예가 있는 경우는 다음과 같다.On the other hand, another embodiment of the suction muffler is as follows.
즉, 전술한 실시예에서는 흡입머플러 출구부에 출구연장부가 형성되어 흡입구에 삽입되는 것이나, 경우에 따라서는 흡입머플러의 출구부에 출구연장부가 형성되지 않을 수도 있다. 이 경우에는 흡입머플러에서 연장되는 머플러고정부에 의해 조립시 제위치가 정렬될 수 있다.That is, in the above-described embodiment, the outlet extension is formed at the outlet of the suction muffler and inserted into the inlet. However, in some cases, the outlet extension may not be formed at the outlet of the suction muffler. In this case, the position may be aligned during assembly by the muffler fixing part extending from the suction muffler.
도 10은 도 6의 흡입머플러에서 흡입머플러 출구부에 대한 다른 실시예를 보인 사시도이고, 도 11은 도 10의 흡입머플러가 조립된 상태를 보인 단면도이다.10 is a perspective view showing another embodiment of the suction muffler outlet in the suction muffler of FIG. 6 , and FIG. 11 is a cross-sectional view showing the suction muffler of FIG. 10 assembled.
도 10 및 도 11을 참고하면, 본 실시예에 따른 흡입머플러(161)는 흡입머플러 출구부(1613)의 단부면(1613b)이 편평하게 형성되고, 흡입머플러 출구부(1613)의 단부면(1613b)이 반경방향으로 마주보는 머플러장착홈(1435)의 제2 머플러지지면(1435b)에 밀착될 수 있다. 10 and 11, in the suction muffler 161 according to the present embodiment, the end face 1613b of the suction muffler outlet 1613 is formed flat, and the end face of the suction muffler outlet 1613 ( 1613b) may be in close contact with the second muffler support surface 1435b of the muffler mounting groove 1435 facing in the radial direction.
이 경우에도 흡입머플러 출구부(1613)의 단부면(1613b)과 이를 마주보는 제2 머플러지지면(1435b) 사이에는 전술한 실시예와 같이 머플러실링부재(1617)가 개재될 수 있다. 머플러실링부재(1617)는 전술한 실시예에서와 같이 오링 또는 가스켓 등이 적용될 수 있다.Also in this case, the muffler sealing member 1617 may be interposed between the end surface 1613b of the suction muffler outlet 1613 and the second muffler support surface 1435b facing the same as in the above-described embodiment. As the muffler sealing member 1617, an O-ring or a gasket may be applied as in the above-described embodiment.
본 실시예에 따른 흡입머플러(161)의 기본적인 구성 및 그에 따른 작용효과는 전술한 실시예와 동일하므로 이에 대한 구체적인 설명은 생략한다. 다만, 본 실시예에서는 흡입머플러(161)의 출구측에 출구연장부가 형성되지 않음에 따라 흡입구(1431)가 단일 내경으로 형성될 수 있다. Since the basic configuration of the suction muffler 161 according to the present embodiment and the effects thereof are the same as those of the above-described embodiment, a detailed description thereof will be omitted. However, in the present embodiment, since the outlet extension is not formed on the outlet side of the suction muffler 161, the suction port 1431 may be formed with a single inner diameter.
이에 따라, 실린더(143)의 흡입구(1431) 및 흡입머플러(161)에 대한 가공이 용이하게 될 수 있다. Accordingly, processing of the suction port 1431 and the suction muffler 161 of the cylinder 143 may be facilitated.
또한, 실린더(143)의 동일두께를 기준으로 전술한 실시예의 연장부삽입홈의 깊이만큼 흡입구(1431)의 내경이 증가될 수 있고, 이를 통해 흡입구(1431)의 흡입면적이 증가되어 냉매의 흡입량이 향상될 수 있다. 이 경우 압축실 실링부재(146)를 메인 베어링(141) 또는 서브 베어링(142)에 설치할 수 있다.In addition, based on the same thickness of the cylinder 143, the inner diameter of the suction port 1431 may be increased by the depth of the extension part insertion groove of the above-described embodiment, and through this, the suction area of the suction port 1431 is increased, so that the suction amount of the refrigerant This can be improved. In this case, the compression chamber sealing member 146 may be installed on the main bearing 141 or the sub bearing 142 .
한편, 흡입머플러에 대한 또다른 실시예가 있는 경우는 다음과 같다.On the other hand, another embodiment of the suction muffler is as follows.
즉, 전술한 실시예에서는 머플러고정부가 흡입머플러 출구부(1613)의 원주방향 양쪽 측면에서 원주방향으로 연장되는 것이나, 경우에 따라서는 머플러고정부가 흡입머플러 출구부의 축방향 상측 단부에 형성될 수도 있다. That is, in the above embodiment, the muffler fixing part extends in the circumferential direction from both sides of the suction muffler outlet 1613 in the circumferential direction. .
도 12는 도 1에서 흡입머플러에 대한 다른 실시예를 보인 분해 사시도이고, 도 13은 도 12의 흡입머플러가 조립된 상태를 보인 사시도이다.12 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1 , and FIG. 13 is a perspective view showing the suction muffler of FIG. 12 in an assembled state.
도 12 및 도 13을 참고하면, 본 실시예에 따른 흡입머플러(161)는 흡입머플러 출구부(1613)의 상측 단부에 머플러고정부(1615)가 형성될 수 있다. 머플러고정부(1615)는 실린더(143)의 상면(143c)에 대응하도록 흡입머플러 출구부(1613)의 상측 단부에서 원주방향으로 연장될 수 있다. 12 and 13 , in the suction muffler 161 according to the present embodiment, a muffler fixing part 1615 may be formed at an upper end of the suction muffler outlet part 1613 . The muffler fixing part 1615 may extend in the circumferential direction from the upper end of the suction muffler outlet part 1613 to correspond to the upper surface 143c of the cylinder 143 .
다만, 본 실시예에 따른 머플러장착홈(1435)의 원주방향 일측에는 베인슬롯(1432) 또는 오일저장홈(1722)이 인접한 위치에 형성됨에 따라, 머플러고정부(1615)는 베인슬롯(1432) 또는 오일저장홈(1722)이 형성되지 않는 원주방향 타측으로 연장 형성될 수 있다. However, as the vane slot 1432 or the oil storage groove 1722 is formed in an adjacent position on one side of the circumferential direction of the muffler mounting groove 1435 according to the present embodiment, the muffler fixing part 1615 is a vane slot 1432. Alternatively, the oil storage groove 1722 may be formed to extend to the other side in the circumferential direction where the groove 1722 is not formed.
또, 머플러고정부(1615)는 실린더(143)의 상면(143c)에 대응하도록 편평하게 형성될 수 있다. 이에 따라, 머플러고정부(1615)는 머플러장착홈(1435)의 주변에서 실린더(143)의 상면에 안착된 상태에서 축방향으로 지지될 수 있다. In addition, the muffler fixing part 1615 may be formed flat to correspond to the upper surface 143c of the cylinder 143 . Accordingly, the muffler fixing part 1615 may be supported in the axial direction while seated on the upper surface of the cylinder 143 around the muffler mounting groove 1435 .
또, 머플러고정부(1615)에는 축방향으로 관통되는 체결구멍(1615a)이 형성되고, 이 체결구멍(1615a)에 대응하는 실린더(143)의 상면에는 체결홈(143b)이 형성될 수 있다. 이에 따라, 머플러체결볼트(1616)로 머플러고정부(1615)의 체결구멍(1615a)을 관통하여 실린더의 체결홈(143b)에 체결될 수 있다.In addition, a fastening hole 1615a penetrating in the axial direction is formed in the muffler fixing part 1615 , and a fastening groove 143b may be formed on the upper surface of the cylinder 143 corresponding to the fastening hole 1615a. Accordingly, the muffler fastening bolt 1616 may pass through the fastening hole 1615a of the muffler fixing part 1615 to be fastened to the fastening groove 143b of the cylinder.
상기와 같이 흡입머플러 출구부(1613)의 상측 단부에 머플러고정부(1615)가 형성되는 경우에도 그에 따른 작용효과는 전술한 도 5의 실시예와 유사하다. 다만, 본 실시예에서는 머플러고정부(1615)가 흡입머플러 출구부(1613)의 상측 단부에 형성됨에 따라, 흡입머플러(161)의 설치시 머플러고정부(1615)가 실린더(143)의 상면에 안착된 상태에서 축방향으로 지지될 수 있다. 이에 따라, 흡입머플러(161)는 그 흡입머플러 출구부(1613)가 머플러장착홈(1435)에 삽입되어 제1 머플러지지면(1435a)에 의해 원주방향으로 지지되는 동시에, 실린더(143)의 상면에 얹힌 머플러고정부(1615)에 의해 축방향으로 지지되어, 흡입머플러(161)가 실린더(143)에 더욱 안정적으로 지지될 수 있다.Even when the muffler fixing part 1615 is formed at the upper end of the suction muffler outlet 1613 as described above, the effect thereof is similar to that of the above-described embodiment of FIG. 5 . However, in this embodiment, as the muffler fixing part 1615 is formed at the upper end of the suction muffler outlet part 1613 , when the suction muffler 161 is installed, the muffler fixing part 1615 is on the upper surface of the cylinder 143 . It can be supported axially in a seated state. Accordingly, the suction muffler 161 has its suction muffler outlet 1613 inserted into the muffler mounting groove 1435 to be supported in the circumferential direction by the first muffler support surface 1435a, and at the same time, the upper surface of the cylinder 143 The suction muffler 161 can be more stably supported by the cylinder 143 by being supported in the axial direction by the muffler fixing part 1615 mounted on the muffler.
한편, 흡입머플러에 대한 또다른 실시예가 있는 경우는 다음과 같다.On the other hand, another embodiment of the suction muffler is as follows.
즉, 전술한 실시예들에서는 흡입머플러에 머플러고정부가 일체로 형성되는 것이나, 경우에 따라서는 별도의 머플러고정부재를 이용하여 실린더에 고정할 수도 있다. That is, in the above-described embodiments, the muffler fixing part is integrally formed with the suction muffler, but in some cases, it may be fixed to the cylinder using a separate muffler fixing member.
도 14는 도 1에서 흡입머플러에 대한 또다른 실시예를 보인 분해 사시도이고, 도 15는 도 14의 흡입머플러가 조립된 상태를 보인 사시도이다.14 is an exploded perspective view showing another embodiment of the suction muffler in FIG. 1 , and FIG. 15 is a perspective view showing the suction muffler of FIG. 14 in an assembled state.
도 14 및 도 15를 참고하면, 본 실시예에 따른 흡입머플러(161)는 그 흡입머플러 출구부(1613)를 감싸 실린더(143)의 외주면에 체결되는 머플러고정부재(1618)에 의해 고정될 수 있다. 14 and 15 , the suction muffler 161 according to the present embodiment may be fixed by a muffler fixing member 1618 that surrounds the suction muffler outlet 1613 and is fastened to the outer circumferential surface of the cylinder 143. have.
예를 들어, 머플러고정부재(1618)는 장방형으로 형성될 수 있다. 예를 들어, 머플러고정부재(1618)의 원주방향 길이는 흡입머플러 출구부(1613)의 원주방향 길이, 구체적으로 머플러장착홈(1435)의 원주방향 길이보다 길게 형성될 수 있다. For example, the muffler fixing member 1618 may be formed in a rectangular shape. For example, the circumferential length of the muffler fixing member 1618 may be longer than the circumferential length of the suction muffler outlet 1613 , specifically, the circumferential length of the muffler mounting groove 1435 .
즉, 머플러고정부재(1618)는 흡입머플러 출구부(또는 흡입머플러 연결부)(1613)의 외주면을 감싸 머플러장착홈(1435)의 원주방향 양쪽에서 실린더(143)의 외주면(143d)에 각각 결합될 수 있다. 이에 따라, 압축기의 운전시 흡입머플러(161)에 의해 전달되는 진동이 머플러고정부재(1618)에서 일정정도 완충되어 흡수됨으로써, 머플러고정부(1615)에서의 응력이 감소되어 흡입머플러(1616)를 안정적으로 고정할 수 있다. That is, the muffler fixing member 1618 wraps around the outer peripheral surface of the suction muffler outlet part (or the suction muffler connection part) 1613 to be coupled to the outer peripheral surface 143d of the cylinder 143 from both sides of the muffler mounting groove 1435 in the circumferential direction, respectively. can Accordingly, the vibration transmitted by the suction muffler 161 during operation of the compressor is buffered and absorbed to a certain extent by the muffler fixing member 1618, so that the stress in the muffler fixing part 1615 is reduced and the suction muffler 1616 is removed. It can be fixed stably.
또, 머플러고정부재(1618)의 양단에는 볼트 체결을 위한 체결구멍(1618a)이 형성되고, 체결구멍(1618a)에 대응되는 실린더(143)의 외주면(143d)에는 체결홈(143a)이 형성될 수 있다. 이에 따라, 머플러고정부재(1618)를 실린더(143)에 볼트 체결하여 흡입머플러(161)를 실린더(143)에 안정적으로 고정할 수 있다.In addition, fastening holes 1618a for bolting are formed at both ends of the muffler fixing member 1618, and fastening grooves 143a are formed on the outer peripheral surface 143d of the cylinder 143 corresponding to the fastening hole 1618a. can Accordingly, the suction muffler 161 can be stably fixed to the cylinder 143 by bolting the muffler fixing member 1618 to the cylinder 143 .
또, 머플러고정부재(1618)는 흡입머플러 출구부(1613)의 선단면이 실린더(143)의 제2 머플러지지면(1435b)쪽으로 가압되도록 탄성을 가지는 재질 또는 형상으로 형성될 수 있다. 예를 들어, 머플러고정부재(1618)는 탄성을 가지는 얇은 금속판 소재로 형성되거나 플라스틱 재질로 형성될 수 있다. 그리고 머플러고정부재(1618)는 반경방향을 향해 탄성력을 발휘하도록 축방향 투영시 곡면진 원호 형상으로 형성될 수 있다. In addition, the muffler fixing member 1618 may be formed of a material or shape having elasticity so that the front end surface of the suction muffler outlet part 1613 is pressed toward the second muffler support surface 1435b of the cylinder 143 . For example, the muffler fixing member 1618 may be formed of a thin metal plate material having elasticity or a plastic material. In addition, the muffler fixing member 1618 may be formed in a curved arc shape when projected in an axial direction so as to exert an elastic force in the radial direction.
이에 따라, 머플러고정부재(1618)를 이용하여 흡입머플러 출구부(1613)를 실린더(143)에 탄력적으로 고정함으로써, 흡입머플러 출구부(1613)의 단부면(1613b)이 머플러실링부재(1617)를 사이에 두고 제2 머플러지지면(1435b))에 긴밀하게 밀착될 수 있다. Accordingly, by elastically fixing the suction muffler outlet 1613 to the cylinder 143 using the muffler fixing member 1618, the end face 1613b of the suction muffler outlet 1613 is closed to the muffler sealing member 1617. It may be in close contact with the second muffler support surface (1435b)) with the interposed therebetween.
또, 머플러고정부재(1618)는 형상이 이미 결정된 두꺼운 금속판 또는 플라스틱 재질로 형성될 수도 있다. 이 경우, 흡입머플러(161)를 안정적으로 고정할 수 있다. In addition, the muffler fixing member 1618 may be formed of a thick metal plate or plastic material whose shape has already been determined. In this case, the suction muffler 161 can be stably fixed.
또, 흡입머플러(161)를 원주방향으로 감싸는 머플러고정부재(1618)에 의해 흡입머플러(161)가 실린더(143)에 고정되는 경우에는 흡입머플러 출구부(1613)에 머플러지지돌부(1613c)가 형성될 수 있다. In addition, when the suction muffler 161 is fixed to the cylinder 143 by the muffler fixing member 1618 surrounding the suction muffler 161 in the circumferential direction, the muffler support protrusion 1613c is formed at the suction muffler outlet 1613. can be formed.
예를 들어, 머플러지지돌부(1613c)는 실린더(143)의 상면(143c)에 걸쳐지도록 흡입머플러 출구부(1613)의 상단에서 원주방향(또는/및 반경방향)으로 연장될 수 있다. 이에 따라, 흡입머플러 출구부(1613)는 제1 머플러지지면(1435a)에 의해 원주방향으로 지지되고, 제2 머플러지지면(1435b)에 의해 반경방향으로 지지되며, 머플러지지돌부(1613c)에 의해 축방향으로 지지될 수 있다. For example, the muffler support protrusion 1613c may extend in a circumferential (or/and radial) direction from the upper end of the suction muffler outlet 1613 so as to span the upper surface 143c of the cylinder 143 . Accordingly, the suction muffler outlet portion 1613 is supported in the circumferential direction by the first muffler support surface 1435a, is radially supported by the second muffler support surface 1435b, and is attached to the muffler support protrusion 1613c. may be supported in the axial direction.
이때, 머플러고정부재(1618)는 머플러지지돌부(1613c)의 하면에 밀착되도록 설치될 수 있다. 그러면, 머플러지지돌부(1613c)가 머플러고정부재(1618)에 의해 축방향으로 지지되어 흡입머플러(161)가 더욱 안정적으로 지지될 수 있다. At this time, the muffler fixing member 1618 may be installed so as to be in close contact with the lower surface of the muffler support protrusion 1613c. Then, the muffler support protrusion 1613c is supported in the axial direction by the muffler fixing member 1618 so that the suction muffler 161 can be supported more stably.
도면으로 도시하지는 않았으나, 머플러지지돌부(1613c)는 흡입머플러 출구부(1613)의 중간에서 원주방향으로 연장 형성될 수도 있다. 이 경우에는 머플러장착홈(1435)의 제1 머플러지지면(1435a)에 머플러지지돌부(1613c)가 삽입되도록 지지홈이 슬릿형상으로 단차지게 형성될 수 있다.Although not shown in the drawings, the muffler support protrusion 1613c may be formed to extend from the middle of the suction muffler outlet 1613 in the circumferential direction. In this case, the support groove may be stepped in a slit shape so that the muffler support protrusion 1613c is inserted into the first muffler support surface 1435a of the muffler mounting groove 1435 .
상기와 같이 흡입머플러(161)는 실린더(143)에 지지된 상태에서 그 흡입머플러 출구부(1613)를 감싼 머플러고정부재(1618)의 양단이 실린더(143)의 외주면에 체결됨에 따라, 흡입머플러(161)는 실린더(143)에 안정적으로 고정될 수 있다. As described above, in the state that the suction muffler 161 is supported by the cylinder 143, both ends of the muffler fixing member 1618 surrounding the suction muffler outlet 1613 are fastened to the outer circumferential surface of the cylinder 143, so the suction muffler 161 may be stably fixed to the cylinder 143 .
이상에서는 본 발명의 특정한 실시예에 관하여 도시하고 설명하였다. 하지만, 본 발명은 그 사상 또는 본질적인 특징에서 벗어나지 않는 범위 내에서 여러 가지 형태로 실시될 수 있으므로, 위에서 설명된 실시예는 그 상세한 설명의 내용에 의해 제한되지 않아야 한다. In the above, specific embodiments of the present invention have been shown and described. However, since the present invention can be embodied in various forms without departing from the spirit or essential characteristics thereof, the embodiments described above should not be limited by the content of the detailed description.
또한, 앞서 기술한 상세한 설명에서 일일이 나열되지 않은 실시예라 하더라도 첨부된 특허청구범위에서 정의된 그 기술 사상의 범위 내에서 넓게 해석되어야 할 것이다. 그리고, 특허청구범위의 기술적 범위와 그 균등범위 내에 포함되는 모든 변경 및 변형은 첨부된 특허청구범위에 의해 포함되어야 할 것이다.In addition, even the embodiments not listed in the detailed description described above should be broadly interpreted within the scope of the technical spirit defined in the appended claims. And, all changes and modifications included within the technical scope of the claims and their equivalents should be included by the appended claims.

Claims (16)

  1. 외관을 이루는 쉘;shells that make up the facade;
    상기 쉘의 내주면으로부터 이격되어 구비되는 전동부;an electric part provided to be spaced apart from the inner circumferential surface of the shell;
    상기 전동부에 결합되어 회전하는 회전축;a rotating shaft coupled to the electric motor to rotate;
    상기 쉘의 내주면으로부터 이격되어 상기 전동부의 상측에 구비되며, 환형으로 형성되는 실린더;a cylinder spaced apart from the inner circumferential surface of the shell and provided on the upper side of the electric part, the cylinder being formed in an annular shape;
    상기 회전축에 결합되어 상기 실린더의 내부에 구비되는 롤러;a roller coupled to the rotation shaft and provided inside the cylinder;
    상기 실린더와 상기 롤러 사이에 구비되어 상기 실린더의 내부에 압축실을 형성하는 베인;a vane provided between the cylinder and the roller to form a compression chamber inside the cylinder;
    상기 전동부를 상기 쉘에 탄력 지지하는 지지부;a support part for elastically supporting the electric part on the shell;
    입구는 상기 쉘의 내부공간에 연통되고, 출구는 상기 압축실의 흡입측에 연통되는 흡입머플러; 및 a suction muffler having an inlet communicating with the inner space of the shell and an outlet communicating with a suction side of the compression chamber; and
    입구는 상기 압축실의 토출측에 연통되고, 출구는 상기 쉘을 관통하는 토출파이프에 연통되는 토출머플러;를 포함하는 로터리 압축기.and a discharge muffler having an inlet connected to a discharge side of the compression chamber and an outlet communicating with a discharge pipe passing through the shell.
  2. 제1항에 있어서,According to claim 1,
    상기 전동부의 상측에 구비되는 메인베어링 플레이트; 및 a main bearing plate provided on an upper side of the electric part; and
    상기 실린더를 사이에 두고 상기 메인베어링 플레이트의 상측에서 상기 실린더에 결합되는 서브베어링 플레이트;를 더 포함하고,Further comprising; a sub-bearing plate coupled to the cylinder from an upper side of the main bearing plate with the cylinder interposed therebetween,
    상기 흡입머플러는, The suction muffler is
    상기 서브베어링 플레이트보다 하측에 위치하며, 상기 전동부의 외주면과 이를 마주보는 상기 쉘의 내주면 사이에 구비되는 로터리 압축기.A rotary compressor positioned below the sub-bearing plate and provided between an outer peripheral surface of the electric part and an inner peripheral surface of the shell facing it.
  3. 제2항에 있어서,3. The method of claim 2,
    상기 실린더에는 반경방향으로 관통되는 흡입구가 형성되고, 상기 실린더의 외주면에는 상기 흡입구에 연통되도록 반경방향으로 함몰되어 머플러장착홈이 형성되며,A suction port penetrating in a radial direction is formed in the cylinder, and a muffler mounting groove is formed on the outer circumferential surface of the cylinder by being depressed in a radial direction so as to communicate with the suction port,
    상기 머플러장착홈에 상기 흡입머플러의 출구부가 삽입되어 결합되는 로터리 압축기.A rotary compressor in which the outlet of the suction muffler is inserted into the muffler mounting groove and coupled thereto.
  4. 제3항에 있어서,4. The method of claim 3,
    상기 흡입머플러의 출구부에는 상기 실린더에 고정되는 머플러고정부가 연장 형성되는 로터리 압축기.A rotary compressor having a muffler fixing part fixed to the cylinder extended at the outlet of the suction muffler.
  5. 제4항에 있어서,5. The method of claim 4,
    상기 머플러고정부는 상기 실린더의 외주면에 대응되도록 상기 흡입머플러의 양쪽 측면에서 연장되는 로터리 압축기.The muffler fixing portion extends from both sides of the suction muffler to correspond to an outer circumferential surface of the cylinder.
  6. 제4항에 있어서,5. The method of claim 4,
    상기 머플러고정부는 상기 실린더의 상면에 대응되도록 상기 흡입머플러의 출구부 상면에서 연장되는 로터리 압축기.The muffler fixing part extends from an upper surface of the outlet of the suction muffler to correspond to the upper surface of the cylinder.
  7. 제3항에 있어서,4. The method of claim 3,
    상기 흡입머플러는 상기 흡입머플러의 출구부를 감싸 상기 실린더에 체결되는 머플러고정부재에 의해 상기 실린더에 고정되는 로터리 압축기.The suction muffler is fixed to the cylinder by a muffler fixing member that wraps around an outlet of the suction muffler and is fastened to the cylinder.
  8. 제7항에 있어서,8. The method of claim 7,
    상기 흡입머플러의 출구부에는 상기 머플러장착홈의 상측 둘레면에 축방향으로 지지되는 머플러지지돌부가 연장되는 로터리 압축기.A muffler support protrusion supported in an axial direction on an upper circumferential surface of the muffler mounting groove extends from an outlet portion of the suction muffler.
  9. 제8항에 있어서,9. The method of claim 8,
    상기 머플러고정부재는 상기 머플러지지돌부의 하측에서 상기 흡입머플러의 출구부를 축방향으로 지지하는 로터리 압축기.The muffler fixing member is a rotary compressor that axially supports the outlet of the suction muffler from the lower side of the muffler support protrusion.
  10. 제3항에 있어서,4. The method of claim 3,
    상기 머플러장착홈은,The muffler mounting groove is
    반경방향 외측면은 개구되고, 원주방향 양쪽 측면과 반경방향 내측면은 각각 막혀 제1 머플러지지면과 제2 머플러지지면이 형성되며, The radially outer surface is opened, and both circumferential side surfaces and the radially inner surface are closed, respectively, to form a first muffler support surface and a second muffler support surface,
    상기 흡입구는 상기 머플러장착홈의 반경방향 내측면을 이루는 제2 머플러지지면에서 반경방향으로 관통되는 로터리 압축기.The suction port is radially penetrated through a second muffler support surface forming a radially inner surface of the muffler mounting groove.
  11. 제10항에 있어서,11. The method of claim 10,
    상기 흡입머플러의 출구부에는 상기 흡입구에 삽입되는 출구연장부가 상기 흡입구를 향해 연장되는 로터리 압축기.An outlet extending portion inserted into the suction port extends toward the suction port at the outlet portion of the suction muffler.
  12. 제10항에 있어서,11. The method of claim 10,
    상기 흡입머플러의 출구부와 이를 마주보는 상기 제2 머플러지지면의 사이에는 머플러실링부재가 구비되는 로터리 압축기.A muffler sealing member is provided between the outlet of the suction muffler and the second muffler support surface facing the same.
  13. 제2항에 있어서,3. The method of claim 2,
    상기 흡입머플러는,The suction muffler is
    내부에 흡입공간을 구비하는 흡입머플러 본체부;a suction muffler body having a suction space therein;
    상기 흡입머플러 본체부의 흡입공간을 상기 쉘의 내부공간에 연결하는 흡입머플러 입구부;a suction muffler inlet for connecting the suction space of the suction muffler body to the inner space of the shell;
    상기 흡입머플러 본체부의 흡입공간을 상기 압축실에 연결하도록 상기 실린더에 결합되는 흡입머플러 출구부; 및a suction muffler outlet portion coupled to the cylinder to connect the suction space of the suction muffler body portion to the compression chamber; and
    상기 흡입머플러 본체부와 상기 흡입머플러 출구부 사이를 연결하는 흡입머플러 연결부;를 포함하고,and a suction muffler connection unit connecting the suction muffler body and the suction muffler outlet.
    상기 흡입머플러 연결부는,The suction muffler connection part,
    상기 실린더를 향해 경사지게 형성되는 로터리 압축기.A rotary compressor inclined toward the cylinder.
  14. 제2항에 있어서,3. The method of claim 2,
    상기 실린더에는 상기 베인이 미끄러지게 삽입되는 베인슬롯이 구비되고, The cylinder is provided with a vane slot into which the vane is slidably inserted,
    상기 서브베어링 플레이트에는 상기 베인슬롯에 연통되는 오일통로구멍이 형성되는 로터리 압축기.A rotary compressor in which an oil passage hole communicating with the vane slot is formed in the sub-bearing plate.
  15. 제14항에 있어서,15. The method of claim 14,
    상기 서브베어링 플레이트에는 토출구가 형성되고, 상기 서브베어링 플레이트의 상면에는 상기 토출구가 수용되도록 토출공간을 가지는 토출머플러가 구비되며, A discharge port is formed in the sub-bearing plate, and a discharge muffler having a discharge space to accommodate the discharge port is provided on an upper surface of the sub-bearing plate,
    상기 토출머플러의 상면에는 상기 회전축을 통해 배출되는 오일을 포집하여 상기 오일통로구멍으로 안내하도록 오일 가이드가 구비되는 로터리 압축기.An oil guide is provided on an upper surface of the discharge muffler to collect oil discharged through the rotation shaft and guide it to the oil passage hole.
  16. 제1항 내지 제15항 중 어느 한 항에 있어서,16. The method according to any one of claims 1 to 15,
    상기 베인의 일단은 상기 롤러의 외주면에 회전 가능하게 힌지 결합되는 로터리 압축기.One end of the vane is rotatably hinged to the outer peripheral surface of the roller rotary compressor.
PCT/KR2021/000661 2020-07-21 2021-01-18 Rotary compressor WO2022019420A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200090604A KR102393072B1 (en) 2020-07-21 2020-07-21 Rotary compressor
KR10-2020-0090604 2020-07-21

Publications (1)

Publication Number Publication Date
WO2022019420A1 true WO2022019420A1 (en) 2022-01-27

Family

ID=79729240

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000661 WO2022019420A1 (en) 2020-07-21 2021-01-18 Rotary compressor

Country Status (2)

Country Link
KR (1) KR102393072B1 (en)
WO (1) WO2022019420A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453000B1 (en) * 2002-08-30 2004-10-14 엘지전자 주식회사 muffler mounting structure in hermetic compressor
KR20070095484A (en) * 2005-09-06 2007-10-01 엘지전자 주식회사 Compressor
KR20120076157A (en) * 2010-12-29 2012-07-09 엘지전자 주식회사 Hermetic compressor
KR20180100881A (en) * 2017-03-02 2018-09-12 엘지전자 주식회사 Reciprocating compressor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4265229B2 (en) 2003-01-29 2009-05-20 ダイキン工業株式会社 Rotary compressor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453000B1 (en) * 2002-08-30 2004-10-14 엘지전자 주식회사 muffler mounting structure in hermetic compressor
KR20070095484A (en) * 2005-09-06 2007-10-01 엘지전자 주식회사 Compressor
KR20120076157A (en) * 2010-12-29 2012-07-09 엘지전자 주식회사 Hermetic compressor
KR20180100881A (en) * 2017-03-02 2018-09-12 엘지전자 주식회사 Reciprocating compressor

Also Published As

Publication number Publication date
KR20220011542A (en) 2022-01-28
KR102393072B1 (en) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2017175945A1 (en) Motor-operated compressor
WO2017026744A1 (en) Compressor
EP3824186A1 (en) Scroll compressor
WO2018147574A1 (en) Linear compressor
WO2021015439A1 (en) Scroll compressor
WO2021194113A1 (en) Rotary engine
WO2022019420A1 (en) Rotary compressor
WO2018190544A1 (en) Scroll compressor
WO2021015429A1 (en) Scroll compressor
WO2022145805A1 (en) Linear compressor
WO2022211331A1 (en) Rotary compressor
WO2021040271A1 (en) Scroll compressor
WO2022080611A1 (en) Rotary compressor
WO2021215652A1 (en) Compressor
WO2022181914A1 (en) Rotary compressor
WO2022097853A1 (en) Rotary compressor
WO2024025159A1 (en) Scroll compressor
WO2024034741A1 (en) Scroll compressor
WO2022197092A1 (en) Rotary compressor
WO2019221400A1 (en) Compressor having integrated valve seat and stopper seat
WO2020050605A1 (en) Compressor
WO2024106793A1 (en) Rotary compressor having flat muffler
WO2023204354A1 (en) Scroll compressor
WO2021215734A1 (en) Compressor
WO2023038293A1 (en) Scroll compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21847322

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21847322

Country of ref document: EP

Kind code of ref document: A1