Nothing Special   »   [go: up one dir, main page]

WO2022017912A1 - Fuel composition - Google Patents

Fuel composition Download PDF

Info

Publication number
WO2022017912A1
WO2022017912A1 PCT/EP2021/069802 EP2021069802W WO2022017912A1 WO 2022017912 A1 WO2022017912 A1 WO 2022017912A1 EP 2021069802 W EP2021069802 W EP 2021069802W WO 2022017912 A1 WO2022017912 A1 WO 2022017912A1
Authority
WO
WIPO (PCT)
Prior art keywords
gasoline
fuel composition
naphtha
gasoline fuel
fuel
Prior art date
Application number
PCT/EP2021/069802
Other languages
French (fr)
Inventor
Jens STRUNK
Yasmin Verena HEMBERGER
Felix Johannes BALTHASAR
Original Assignee
Shell Internationale Research Maatschappij B.V.
Shell Oil Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Internationale Research Maatschappij B.V., Shell Oil Company filed Critical Shell Internationale Research Maatschappij B.V.
Priority to MX2023000822A priority Critical patent/MX2023000822A/en
Priority to JP2023503159A priority patent/JP2023534510A/en
Priority to CN202180049652.2A priority patent/CN115812096A/en
Priority to BR112023000164A priority patent/BR112023000164A2/en
Priority to US18/001,956 priority patent/US20230227742A1/en
Priority to CA3189342A priority patent/CA3189342A1/en
Priority to EP21743198.0A priority patent/EP4182420A1/en
Publication of WO2022017912A1 publication Critical patent/WO2022017912A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/06Liquid carbonaceous fuels essentially based on blends of hydrocarbons for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/023Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for spark ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1691Hydrocarbons petroleum waxes, mineral waxes; paraffines; alkylation products; Friedel-Crafts condensation products; petroleum resins; modified waxes (oxidised)
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0407Specifically defined hydrocarbon fractions as obtained from, e.g. a distillation column
    • C10L2200/0415Light distillates, e.g. LPG, naphtha
    • C10L2200/0423Gasoline
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • C10L2200/0461Fractions defined by their origin
    • C10L2200/0469Renewables or materials of biological origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/02Specifically adapted fuels for internal combustion engines
    • C10L2270/023Specifically adapted fuels for internal combustion engines for gasoline engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2290/00Fuel preparation or upgrading, processes or apparatus therefore, comprising specific process steps or apparatus units
    • C10L2290/24Mixing, stirring of fuel components
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2300/00Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
    • C10L2300/40Mixture of four or more components

Definitions

  • the present invention is in the field of fuel formulations, particularly gasoline-type fuel formulations for spark ignition internal combustion engines.
  • Fuels are conventionally produced by refining crude oil (petroleum). This typically involves separating various fractions of crude oil by distillation.
  • One such fraction is naphtha, which is a volatile liquid fraction distilled between the light gaseous components of crude oil and the heavier kerosene fraction.
  • Naphtha contains a mixture of hydrocarbons (linear alkanes, branched alkanes, cycloalkanes and aromatic hydrocarbons) having a boiling point between about 30°C and about 200°C.
  • the density of naphtha is typically 750-785 kg/m 3 .
  • Naphtha has many uses, one of which is as an automotive fuel.
  • naphtha has historically not been used in gasoline, or has only been used in low amounts, because of its poor octane rating. This has been the case despite the fact that naphtha has comparable distillation properties to those of gasoline.
  • renewable fuels derived from biological matter are increasingly being used as a more sustainable alternative to fossil fuels. Due to an increase in production volumes of renewable naphtha in recent years, it would be advantageous to be able to blend renewable naphtha in gasoline, particularly in high blend ratios. The use of higher blend ratios of renewable naphtha has the advantage of enabling higher CO2 reduction and can help to meet regulated reduction targets, as stipulated in the Paris Agreement (2016). At the same time, it would be desirable to be able to formulate gasoline fuel compositions which comply with existing gasoline fuel specifications, such as, but not limited to, EN228 and North American specifications, e.g. ASTM D4814-13b, US Conventional, CaRFG Phase 3, Federal RFG Phase II, CAN/CGSB-3.5.
  • existing gasoline fuel specifications such as, but not limited to, EN228 and North American specifications, e.g. ASTM D4814-13b, US Conventional, CaRFG Phase 3, Federal RFG Phase II, CAN/CGSB-3.5.
  • W02017/093203 discloses a liquid fuel composition for a spark ignition internal combustion engine comprising (a) gasoline blending components, (b) Fischer- Tropsch derived naphtha at a level of up to 50% v/v and (c) oxygenated hydrocarbon at a level less than 50% v/v.
  • US2009/300971 discloses a naphtha composition produced from a renewable feedstock wherein the naphtha has a boiling range of about 70°F to about 400°F and a specific gravity at 20°C of from about 0.680 to about 0.740.
  • the renewable naphtha is used as an alternative gasoline fuel for combustion engines when blended between 1% and 85% by volume with ethanol.
  • WO2018/234187 relates to a process for the production of renewable base oil, diesel and naphtha from a feedstock of biological origin. However there is no disclosure in WO2018/234187 of specific gasoline fuel formulations containing the renewable naphtha produced in said process.
  • WO2018/069137 relates to a process for preparing an alkylate gasoline composition comprising renewable naphtha and iso-octane and iso-pentane.
  • the Examples of the alkylate gasolines in Table 2 contain up to 5 vol% of renewable naphtha.
  • the gasoline compositions in this application do not contain oxygenates and the focus is on small utility engines used in various portable gasoline powered tools, such as chainsaws and lawnmowers.
  • US9885000B2 relates to a renewable hydrocarbon composition obtainable from a renewable biological feedstock.
  • the composition can be used as a fuel component.
  • W02009/148909 relates to a method for producing a naphtha product from a renewable feedstock.
  • the renewable naphtha product can be used as fuel, or as fuel blend stock.
  • renewable naphtha can be included in, for example, ethanol-containing gasoline fuel compositions in surprisingly and significantly high blend ratios of renewable naphtha, e.g. high blend ratios of renewable naphtha to ethanol, while still meeting gasoline fuel specifications, such as but not limiting to EN228 and North American specifications, e.g. ASTM D4814- 13b, US Conventional, CaRFG Phase 3, Federal RFG Phase II, CAN/CGSB-3.5.
  • a gasoline fuel composition for a spark ignition internal combustion engine comprising (a) gasoline blending components, (b) renewable naphtha at a level of 10 to 30% v/v and (c) oxygenated hydrocarbon at a level of 20% v/v or less, wherein the gasoline blending components comprise (a) from 0% v/v to 30% v/v of alkylate, (b) from 0% v/v to 15% v/v of isomerate, (c) from 0% v/v to 20% v/v of catalytic cracked tops (CCT) naphtha; and (d) from 20% v/v to 40% v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops (CCT) naphtha and heavy reformate is at least 50% v/v, based on the gasoline fuel composition, and wherein the gasoline fuel composition meets the EN228 fuel specification.
  • a process for preparing a liquid fuel composition comprising blending (a) gasoline blending components, (b) renewable naphtha at a level from 10% v/v to 30% v/v and (c) oxygenated hydrocarbon at a level of 20% v/v or less, wherein the gasoline blending components comprise (a) from 0% v/v to 30 % v/v of alkylate, (b) from 0% v/v to 15% v/v of isomerate, (c) from 0% v/v to 20% v/v of catalytic cracked tops (CCT) naphtha; and (d) from 20% v/v to 40 % v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops (CCT) naphtha and heavy reformate is at least 50% v/v based on the gasoline fuel composition, and wherein the gasoline fuel composition meets the EN228 specification .
  • the present invention enables the use of renewable naphtha at significantly high blend ratios in gasoline and thereby provides a significant new outlet for renewable naphtha fuel.
  • the fuel compositions of the present invention have the advantage of meeting the requirements of the EN228 fuel specification.
  • liquid fuel compositions of the present invention also provide excellent fuel economy, emissions and power benefits, as required by the EN228 specification .
  • Figure 1 is a graphical representation of the results shown in Table 6.
  • Figure 2 is a graphical representation of the results shown in Table 7.
  • the liquid fuel composition of the present invention comprises gasoline blending components, such as a gasoline base fuel, suitable for use in an internal combustion engine, a renewable naphtha at a level of from 10% v/v to 30 %v/v and (c) oxygenated hydrocarbon at a level of 20 %v/v or less. Therefore the liquid fuel composition of the present invention is a gasoline composition .
  • the liquid fuel compositions herein comprise a naphtha.
  • the person skilled in the art would know what is meant by the term “naphtha”.
  • naphtha means a mixture of hydrocarbons generally having between 5 and 12 carbon atoms and having a boiling point in the range of 30 to 200° C.
  • the liquid fuel compositions herein comprise a naphtha which is a renewable naphtha, also known as a renewable naphtha distillate, or biorenewable naphtha.
  • renewable naphtha distillate may be produced as part of the refining of renewable diesel.
  • Renewable diesel may be obtained from the processing of fatty acid containing materials, such as animal fats, algae, and plant material.
  • Plant material may comprise both vegetable based material, such as vegetable oils as well as oils obtained from other plants, such as oils from trees, e.g. tall oil.
  • Renewable diesel and renewable naphtha distillate may be obtained from the hydrotreatment of fatty acids, and derivatives thereof, such as triglycerides.
  • the hydrotreatment of fatty acids and derivatives thereof involves deoxygenation reactions, such as hydrodeoxygenation (HDO), and may also involve other hydroprocessing reactions, such as isomerisation (for example hydroisomerisation) and cracking (for example hydrocracking).
  • HDO hydrodeoxygenation
  • isomerisation for example hydroisomerisation
  • cracking for example hydrocracking
  • a renewable naphtha distillate When refining the renewable diesel a renewable naphtha distillate is obtained. It may have an initial boiling point (IBP) of about 30°C or about 35°C and a final boiling point (FBP) of about 200°C or about 205°C.
  • IBP initial boiling point
  • FBP final boiling point
  • the hydrocarbons present in that distillation range usually range from those containing 4 or 5 carbon atoms to those containing about 10 or 11 or 12 carbon atoms.
  • renewable fuels such as renewable naphtha distillate
  • renewable naphtha distillate are collected from resources, which are naturally replenished on a human timescale, as opposed to fossil fuels, such as petroleum gasoline, which are derived from the refining of crude oil.
  • a renewable naphtha distillate may be obtained from the hydrotreatment of fatty acids, and derivatives thereof present in fatty acid containing materials such as animal fats and plant material, the hydrotreatment comprising hydrodeoxygenation and hydroisomerisation, and comprise the fraction with an IBP of 30°C, such as an IBP or 30°C or higher and a FBP of 200°C, such as a FBP of 200°C or lower.
  • renewable naphtha as used herein is meant a naphtha fraction which contains bio-based carbon atoms as determined according to ASTM method D6866-10 entitled "Standard Test Methods for Determining the Biobased Content of Solid, Liquid and Gaseous samples using Radiocarbon Analysis".
  • the renewable content may then be determined by isotopic distribution involving 14 C, 13 C and/or 12 C as described in ASTM D6866.
  • the renewable naphtha distillate is paraffinic with very little naphthenes and virtually no aromatics or oxygenates .
  • Renewable naphtha distillate is mainly comprised of paraffins (alkanes), which can be straight chain n- paraffins or branched chain iso-paraffins.
  • Renewable naphtha may have 90 vol% or more C 5 -C 12 paraffins, such as 95 vol% or more C 5 -C 12 paraffins, or 98 vol% or more C 5 -C 12 paraffins.
  • renewable naphtha distillate When the renewable naphtha distillate has been produced as described above as part of the refining of renewable diesel, it may comprise 30 vol% or more C 5 -C 6 paraffins, such as 40 vol% or more.
  • the renewable naphtha distillate also has a low content of naphthenes (cycloalkanes), which are alkanes with at least one non-aromatic ring structure, where the ring typically has 5 or 6 carbon atoms.
  • Renewable naphtha distillate may have 5 vol% or less of naphthenes, such as 1 vol% or less of naphthenes or 0.5 vol% or less of naphthenes.
  • the renewable naphtha distillate In addition to mainly comprising paraffins, the renewable naphtha distillate also has a very low content of aromatics.
  • Aromatic compounds contain a benzene ring or other ring structure that is aromatic.
  • Renewable naphtha distillate may have 1 vol% or less of aromatics, such as 0.5 vol% or less of aromatics, or 0.1 vol% or less of aromatics.
  • the renewable naphtha distillate In addition to mainly comprising paraffins, the renewable naphtha distillate also has a very low content of oxygenates.
  • Oxygenates are organic molecules that contain oxygen as part of their chemical structure, and are usually employed as gasoline additives to reduce carbon oxides and soot created during the burning of the fuel. Common oxygenates include alcohols, ethers and esters.
  • Renewable naphtha distillate may have 1 vol% or less of oxygenates, such as 0.5 vol% or less of oxygenates, or 0.1 vol% or less of oxygenates, although it is preferably essentially free of oxygenates.
  • the renewable naphtha used herein has a low octane number, i.e. for example having a RON and/or a MON of from 35 to 70, such as from 35 to 60 or from 35 to 50 or from 35 to 45. It has surprisingly been found that despite the low octane quality of the renewable naphtha, it can be included in the gasoline fuel composition of the present invention at a relatively high level, and the final gasoline fuel composition has a higher than expected octane number (RON).
  • RON octane number
  • the renewable naphtha distillate may have a vapour pressure below 30 kPa, such as below 25 kPa, such as below 20 kPa.
  • the vapour pressure of the renewable naphtha may equally also be 10 kPa or higher, such as 15 kPa or higher.
  • the renewable naphtha used herein comprises: 90 vol% or more of C 5 -C 12 paraffins, 30 vol% or more C 5 -C 6 paraffins, 5 vol% or less of naphthenes, 1 vol% of less of aromatics, 1 vol% or less of oxygenates.
  • the renewable naphtha distillate may have a boiling range of from 30 to 200°C, such as 90 to 200°C, or 40 to 180 0 C.
  • the amount of renewable naphtha present in the gasoline fuel composition of the present invention is from 10 vol% to 30 vol%, preferably from 15 vol% to 25 vol%, even more preferably from 18 vol% to 22 vol%, and especially 20 vol%, based on the total fuel composition. It is preferred to be able to add as much renewable naphtha as possible in order to increase the renewable part of the gasoline composition of the present invention.
  • the renewable naphtha may comprise an iso- paraffin/n-paraffin ratio of more than 1, such as more than 1.2, for example between 1 and 2.
  • renewable naphtha component of the present invention can be prepared according to the methods provided in WO2018/069137, WO2018/234187 US9885000B2 and W02009/148909, all of which are incorporated herein by reference in their entirety.
  • the renewable naphtha component is commercially available from Neste Oyj, Finland, under the tradename Neste renewable naphtha, also known as NexNaphtha.
  • the renewable naphtha component is also commercially available from UPM under the tradename BioVerno Naphtha.
  • the renewable naphtha component of the present invention may include a mixture of two or more renewable naphthas, or a mixture of renewable naphtha with petroleum-derived naphtha and/or Fischer-Tropsch derived naphtha.
  • Fischer-Tropsch derived is meant that the naphtha is, or is derived from, a product of a Fischer- Tropsch synthesis process (or Fischer-Tropsch condensation process).
  • a Fischer-Tropsch derived naphtha may also be referred to as a GTL (Gas-to-Liquid) naphtha. Further details of GTL naphtha can be found in W02017/093203, incorporated herein by reference in its entirety.
  • the gasoline blending components may already contain some naphtha components.
  • concentration of the naphtha referred to above means the concentration of naphtha which is added into the liquid fuel composition as a blend with the gasoline blending components, and does not include the concentration of any naphtha components already present in the gasoline blending components .
  • the liquid fuel composition of the present invention comprises oxygenated hydrocarbon at a level of 20 vol.% or less, preferably at a level of from 5 to 15% v/v, based on the liquid fuel composition.
  • the oxygenated hydrocarbon is present at a level of from 7 to 12% v/v, based on the liquid fuel composition.
  • the oxygenated hydrocarbon is present at a level of from 10 to 15% v/v, based on the liquid fuel composition.
  • the gasoline base fuel may already contain some oxygenated hydrocarbon components.
  • concentration of the oxygenated hydrocarbon referred to above means the concentration of oxygenated hydrocarbon which is added into the liquid fuel composition as a blend with the gasoline base fuel, and does not include the concentration of any oxygenated hydrocarbon components already present in the gasoline base fuel.
  • oxygenated hydrocarbons examples include alcohols, ethers, esters, ketones, aldehydes, carboxylic acids and their derivatives, and oxygen containing heterocyclic compounds, and mixtures thereof.
  • the oxygenated hydrocarbon is selected from alcohols, ethers and esters, and mixtures thereof.
  • Suitable alcohols for use herein include methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, iso-butanol, 2-butanol and mixtures thereof.
  • Suitable ethers for use herein include ethers containing 5 or more carbon atoms per molecule, e.g., methyl tert-butyl ether and ethyl tert-butyl ether, and mixtures thereof.
  • a preferred ether for use herein is ethyl tert-butyl ether (ETBE).
  • Suitable esters for use herein include esters containing 5 or more carbon atoms per molecule.
  • the oxygenated hydrocarbon is preferably selected from alcohols, ethers and mixtures thereof.
  • the oxygenated hydrocarbon is selected from alcohols, preferably at a level of from 0.1% v/v to 10% v/v, more preferably at a level of from 5% v/v to 10% v/v, based on the total gasoline fuel composition.
  • the oxygenated hydrocarbon is selected from ethers, preferably at a level of from 0.1% v/v to 15% v/v, based on the total gasoline fuel composition.
  • the oxygenated hydrocarbon is a mixture of alcohols and ethers, such as a mixture of at least one alcohol and at least one ether, preferably comprising from 5% v/v to 10% v/v of alcohol and from 2% v/v to 5% v/v of ether, based on the gasoline fuel composition.
  • a particularly preferred oxygenated hydrocarbon for use herein is ethanol.
  • Ethanol is preferably present in the fuel compositions herein at a level of from 0.1% v/v to 10% v/v, more preferably from 5% v/v to 10% v/v, based on the total gasoline fuel composition.
  • ethanol is present as the sole oxygenated hydrocarbon.
  • ETBE A particularly preferred ether for use as an oxygenated hydrocarbon herein is ETBE.
  • ETBE is present in the fuel composition herein at a level of from 0.1% v/v to 15% v/v, based on the total gasoline fuel composition.
  • ETBE is present as the sole oxygenated hydrocarbon.
  • the oxygenated hydrocarbon herein is a mixture of ethanol and ETBE comprising from 5% v/v to 10% v/v of ethanol and from 2% v/v and 5% v/v of ETBE, based on the total gasoline fuel composition.
  • the share of renewable content in the gasoline composition is increased.
  • bio-ethanol may be used as the oxygenated hydrocarbon herein.
  • the liquid fuel composition of the present invention comprises gasoline blending components.
  • the gasoline blending components comprise (a) from 0% v/v to 30% v/v of alkylate, (b) from 0% v/v to 15% v/v of isomerate; (c) from 0% v/v to 20% v/v of catalytic cracked tops; and (d) from 20% v/v to 40% v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops and heavy reformate is at least 50% v/v, based on the total fuel composition.
  • the gasoline blending components may be a gasoline base fuel comprising the components (a), (b),
  • gasoline blending components are present in a gasoline or liquid fuel composition in a major amount, for example greater than 50% v/v of the liquid fuel composition, and may be present in an amount of up to 90% v/v, or 95% v/v, or 99% v/v, or 99.9% v/v, or 99.99% v/v, or 99.999% v/v.
  • the liquid fuel composition contains or consists essentially of the gasoline blending components in conjunction with 10% v/v to 30% v/v of renewable naphtha and oxygenated hydrocarbon at a level of 20% v/v or less, and optionally one or more conventional gasoline fuel additives, such as specified hereinafter.
  • the gasoline blending components comprise from 0% v/v to 30% v/v, preferably from 15 to 30 %v/v, more preferably 15 to 25 %v/v, of alkylate, based on the total gasoline fuel composition.
  • Alkylate is a complex combination of hydrocarbons produced by distillation of the reaction products of isobutane with monoolefinic hydrocarbons usually ranging in carbon numbers from C 3 through C 5 .
  • Alkylate is a refinery stream and consists of predominantly branched chain saturated hydrocarbons having carbon numbers predominantly in the range of C 7 through C 12 and boiling in the range of approximately 90°C to 220°C (194°F to 428°F).
  • the gasoline blending components comprise from 0% v/v to 15% v/v, preferably from 5 to 10 vol%, of isomerate, based on the total gasoline fuel composition.
  • Isomerate is a complex combination of hydrocarbons obtained from catalytic isomerization of straight chain paraffinic C 4 through C 6 hydrocarbons. Isomerate is a refinery stream and consists predominantly of saturated hydrocarbons such as isobutane, isopentane, 2,2- dimethylbutane, 2-methylpentane, and 3-methylpentane and boiling in the range of approximately 35°C to 220°C (95°F to 428°F).
  • the gasoline blending components comprise from 20% v/v to 40% v/v of heavy reformate, based on the total gasoline fuel composition, provided that the total amount of alkylate, isomerate, catalytic cracked tops and heavy reformate in the final fuel composition is at least 50% v/v, based on the total gasoline fuel composition.
  • the gasoline blending components comprise from 30% v/v to 35% v/v of heavy reformate, based on the total fuel composition. In another embodiment of the present invention, the gasoline blending components comprise from 20% v/v to 25% v/v of heavy reformate, based on the total fuel composition.
  • Heavy reformate (or heavy catalytic reformed naphtha) is a complex combination of hydrocarbons produced from the distillation of products from a catalytic reforming process. It consists of predominantly aromatic hydrocarbons having carbon numbers predominantly in the range of C 7 through C 12 and boiling in the range of approximately 90°C to 230°C (194°F to 446°F). Heavy Reformate is a refinery stream, rich in aromatics and high octane component (typically 98-102 RON, depending on requirements, type of unit and naphtha feed and is used for mogas blending or as feedstock.
  • the gasoline blending components comprise from 0% v/v to 20% v/v, preferably from 5% v/v to 20% v/v of catalytic cracked tops, based on the total fuel composition, provided that the total amount of alkylate, isomerate, catalytic cracked tops and heavy reformate in the final fuel composition is at least 50% v/v, based on the total fuel composition.
  • CCT naphtha (or light catalytic cracked naphtha), otherwise known as FCC naphtha), is a complex combination of hydrocarbons produced by the distillation of products from a fluid catalytic cracking process.
  • Fluid catalytic cracking (FCC) is widely used to convert the high-boiling point, high molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases and other products.
  • the FCC end products are cracked petroleum naphtha, fuel oil and offgas. After further processing for removal of sulfur compounds, the cracked naphtha becomes a high-octane component of the refinery's blended gasolines.
  • CCT naphtha/FCC naphtha consists of hydrocarbons having carbon numbers predominantly in the range of C4 through C11 and boiling in the range of approximately minus 20°C to 190°C (-4°F to 374°F).
  • CCT naphtha/FCC naphtha is a refinery stream and contains a relatively large proportion of unsaturated hydrocarbons, depending on requirements, type of unit and naphtha feed and is used for mogas blending or as feedstock.
  • CCT naphtha/FCC naphtha has the CAS no. 64741555
  • the liquid fuel composition according to the present invention has a Research Octane Number (RON) in the range of from 85 to 105, for example meeting the European specifications of 95 or premium product grade of 98.
  • the liquid fuel composition used in the present invention has a Motor Octane Number in the range of from 75 to 90.
  • the gasoline composition of the present invention may conveniently include one or more optional fuel additives.
  • concentration and nature of the optional fuel additive (s) that may be included in the gasoline blending components or the gasoline composition of the present invention is not critical.
  • suitable types of fuel additives include anti oxidants, corrosion inhibitors, detergents, dehazers, antiknock additives, metal deactivators, valve-seat recession protectant compounds, dyes, solvents, carrier fluids, diluents and markers. Examples of suitable such additives are described generally in US Patent No.
  • the fuel additives can be blended with one or more solvents to form an additive concentrate, the additive concentrate can then be admixed with the gasoline blending components or the gasoline composition of the present invention.
  • the (active matter) concentration of any optional additives present in the gasoline blending components or the gasoline composition of the present invention is preferably up to 1% m/m, more preferably in the range from 5 to 2000mg/kg, advantageously in the range of from 300 to 1500 mg/kg, such as from 300 to 1000 mg/kg.
  • gasoline composition may also contain synthetic or mineral carrier oils and/or solvents.
  • mineral carrier oils are fractions obtained in crude oil processing, such as brightstock or base oils having viscosities, for example, from the SN 500 - 2000 class; and also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols.
  • mineral carrier oil is a fraction which is obtained in the refining of mineral oil and is known as "hydrocrack oil” (vacuum distillate cut having a boiling range of from about 360 to 500° C, obtainable from natural mineral oil which has been catalytically hydrogenated under high pressure and isomerized and also deparaffinized) .
  • suitable synthetic carrier oils are: polyolefins (poly-alpha-olefins or poly (internal olefin)s), (poly)esters, (poly)alkoxylates, polyethers, aliphatic polyether amines, alkylphenol-started polyethers, alkylphenol-started polyether amines and carboxylic esters of long-chain alkanols.
  • Suitable polyolefins are olefin polymers, in particular based on polybutene or polyisobutene (hydrogenated or nonhydrogenated).
  • suitable polyethers or polyetheramines are preferably compounds comprising polyoxy-C 2 -C 4 alkylene moieties which are obtainable by reacting C 2 - C 60 _ alkanols, C 6 -C 30 -alkanediols, mono- or di-C 2 -C 30 - alkylamines, C 1 -C 30 _ alkylcyclohexanols or C 1 -C 30 _ alkylphenols with from 1 to 30 mol of ethylene oxide and/or propylene oxide and/or butylene oxide per hydroxyl group or amino group, and, in the case of the polyether amines, by subsequent reductive amination with ammonia, monoamines or polyamines.
  • the polyether amines used may be poly-C 2 -C 6 -alkylene oxide amines or functional derivatives thereof. Typical examples thereof are tridecanol butoxylates or isotridecanol butoxylates, isononylphenol butoxylates and also polyisobutenol butoxylates and propoxylates, and also the corresponding reaction products with ammonia.
  • carboxylic esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A-3838 918.
  • the mono-, di- or tricarboxylic acids used may be aliphatic or aromatic acids; suitable ester alcohols or polyols are in particular long-chain representatives having, for example, from 6 to 24 carbon atoms.
  • esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and isotridecanol, for example di-(n- or isotridecyl) phthalate.
  • suitable synthetic carrier oils are alcohol-started polyethers having from about 5 to 35, for example from about 5 to 30, C 3 -C 6 -alkylene oxide units, for example selected from propylene oxide, n-butylene oxide and isobutylene oxide units, or mixtures thereof.
  • suitable starter alcohols are long-chain alkanols or phenols substituted by long-chain alkyl in which the long-chain alkyl radical is in particular a straight-chain or branched C 6 -C 18 - alkyl radical.
  • Preferred examples include tridecanol and nonylphenol.
  • suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A-10102 913.6.
  • Mixtures of mineral carrier oils, synthetic carrier oils, and mineral and synthetic carrier oils may also be used.
  • Any solvent and optionally co-solvent suitable for use in fuels may be used.
  • suitable solvents for use in fuels include: non-polar hydrocarbon solvents such as kerosene, heavy aromatic solvent ("solvent naphtha heavy", “Solvesso 150"), toluene, xylene, paraffins, petroleum, white spirits, those sold by Shell companies under the trademark "SHELLSOL", and the like.
  • suitable co-solvents include: polar solvents such as esters and, in particular, alcohols (e.g., t- butanol, i-butanol, hexanol, 2-ethylhexanol, 2-propyl heptanol, decanol, isotridecanol, butyl glycols, and alcohol mixtures such as those sold by Shell companies under the trade mark "LINEVOL”, especially LINEVOL 79 alcohol which is a mixture of C 7 _ 9 primary alcohols, or a
  • Dehazers/demulsifiers suitable for use in liquid fuels are well known in the art.
  • Non-limiting examples include glycol oxyalkylate polyol blends (such as sold under the trade designation TOLADTM 9312), alkoxylated phenol formaldehyde polymers, phenol/formaldehyde or C 1 -
  • alkylphenol/-formaldehyde resin oxyalkylates modified by oxyalkylation with C 1 - 18 epoxides and diepoxides (such as sold under the trade designation TOLADTM 9308), and C 1 - 4 epoxide copolymers cross-linked with diepoxides, diacids, diesters, diols, diacrylates, dimethacrylates or diisocyanates, and blends thereof.
  • the glycol oxyalkylate polyol blends may be polyols oxyalkylated with C 1 _ 4 epoxides.
  • the alkylphenol phenol/- formaldehyde resin oxyalkylates modified by oxyalkylation with C 1 - 18 g epoxides and diepoxides may be based on, for example, cresol, t-butyl phenol, dodecyl phenol or dinonyl phenol, or a mixture of phenols (such as a mixture of t-butyl phenol and nonyl phenol).
  • the dehazer should be used in an amount sufficient to inhibit the hazing that might otherwise occur when the gasoline without the dehazer contacts water, and this amount will be referred to herein as a "haze-inhibiting amount.” Generally, this amount is from about 0.1 to about 20 mg/kg (e.g., from about 0.1 to about 10 mg/kg), more preferably from 1 to 15 mg/kg, still more preferably from 1 to 10 mg/kg, advantageously from 1 to 5 mg/kg based on the weight of the gasoline.
  • corrosion inhibitors for example based on ammonium salts of organic carboxylic acids, said salts tending to form films, or of heterocyclic aromatics for nonferrous metal corrosion protection; antioxidants or stabilizers, for example based on amines such as phenyldiamines, e.g., p- phenylenediamine, N,N'-di-sec-butyl-p-phenyldiamine, dicyclohexylamine or derivatives thereof or of phenols such as 2,4-di-tert-butylphenol or 3,5-di-tert-butyl-4- hydroxy-phenylpropionic acid; anti-static agents; metallocenes such as ferrocene; methylcyclo- pentadienylmanganese tricarbonyl; lubricity additives, such as certain fatty acids, alkenylsuccinic esters, bis (hydroxyalkyl) fatty amine
  • the gasoline compositions herein can also comprise a detergent additive.
  • Suitable detergent additives include those disclosed in W02009/50287, incorporated herein by reference.
  • Preferred detergent additives for use in the gasoline composition herein typically have at least one hydrophobic hydrocarbon radical having a number-average molecular weight (Mn) of from 85 to 20000 and at least one polar moiety selected from:
  • the hydrophobic hydrocarbon radical in the above detergent additives which ensures the adequate solubility in the base fluid, has a number-average molecular weight (Mn) of from 85 to 20000, especially from 113 to 10000, in particular from 300 to 5000.
  • Typical hydrophobic hydrocarbon radicals especially in conjunction with the polar moieties (Al), (A8) and (A9), include polyalkenes (polyolefins), such as the polypropenyl, polybutenyl and polyisobutenyl radicals each having Mn of from 300 to 5000, preferably from 500 to 2500, more preferably from 700 to 2300, and especially from 700 to 1000.
  • polyalkenes polyolefins
  • Non-limiting examples of the above groups of detergent additives include the following:
  • Additives comprising mono- or polyamino groups are preferably polyalkenemono- or polyalkenepolyamines based on polypropene or conventional (i.e., having predominantly internal double bonds) polybutene or polyisobutene having Mn of from 300 to 5000.
  • polybutene or polyisobutene having predominantly internal double bonds are used as starting materials in the preparation of the additives, a possible preparative route is by chlorination and subsequent amination or by oxidation of the double bond with air or ozone to give the carbonyl or carboxyl compound and subsequent amination under reductive (hydrogenating) conditions.
  • the amines used here for the amination may be, for example, ammonia, monoamines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylene- triamine, triethylenetetramine or tetraethylenepentamine.
  • Corresponding additives based on polypropene are described in particular in WO-A-94/24231.
  • Further preferred additives comprising monoamino groups (Al) are the hydrogenation products of the reaction products of polyisobutenes having an average degree of polymerization of from 5 to 100, with nitrogen oxides or mixtures of nitrogen oxides and oxygen, as described in particular in WO-A-97/03946.
  • additives comprising monoamino groups (Al) are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in DE-A-19620 262.
  • Additives comprising polyoxy-C 2 -C 4 -alkylene moieties (A6) are preferably polyethers or polyetheramines which are obtainable by reaction of C 2 - to C 60 _ alkanols, C 6 - to
  • C 30 _ alkanediols mono- or di-C 2 - C 30 _ alkylamines, C 1 - C 30 _ alkylcyclohexanols or C 1 -C 30 _ alkylphenols with from 1 to
  • Additives comprising moieties derived from succinic anhydride and having hydroxyl and/or amino and/or amido and/or imido groups are preferably corresponding derivatives of polyisobutenylsuccinic anhydride which are obtainable by reacting conventional or highly reactive polyisobutene having Mn of from 300 to 5000 with maleic anhydride by a thermal route or via the chlorinated polyisobutene.
  • derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine . Such additives are described in particular in US-A-4849 572.
  • Additives comprising moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono- or polyamines are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine.
  • the polyisobutenyl-substituted phenols may stem from conventional or highly reactive polyisobutene having Mn of from 300 to 5000. Such "polyisobutene-Mannich bases" are described in particular in EP-A-831 141.
  • the detergent additive used in the gasoline compositions of the present invention contains at least one nitrogen-containing detergent, more preferably at least one nitrogen-containing detergent containing a hydrophobic hydrocarbon radical having a number average molecular weight in the range of from 300 to 5000.
  • the nitrogen-containing detergent is selected from a group comprising polyalkene monoamines, polyetheramines, polyalkene Mannich amines and polyalkene succinimides.
  • the nitrogen- containing detergent may be a polyalkene monoamine.
  • amounts (concentrations, % v/v, mg/kg (ppm), % m/m) of components are of active matter, i.e., exclusive of volatile solvents/diluent materials.
  • the liquid fuel composition of the present invention can be produced by admixing the renewable naphtha and the oxygenated hydrocarbon with the gasoline blending components. Since the blending components to which the renewable naphtha and the oxygenated hydrocarbon are admixed are gasoline blending components, then the liquid fuel composition produced is a gasoline composition.
  • the fuel composition of the present invention is suitable for use in a spark-ignition internal combustion engine, such as used in passenger cars.
  • a spark-ignition internal combustion engine such as used in passenger cars.
  • a gasoline composition as described hereinabove for fuelling a spark ignition internal combustion engine in a passenger car is provided.
  • the fuel composition of the present invention is also suitable for use in a spark-ignition internal combustion engine, when used in the powertrain of a hybrid electric vehicle, in particular a plug-in hydrbrid electric vehicle (PHEV).
  • PHEV plug-in hydrbrid electric vehicle
  • the fuel composition of the present invention has been found to be particularly useful in reducing particulate matter (PM) emissions.
  • Example 1 The invention is further described by reference to the following non-limiting examples.
  • Example 1 The invention is further described by reference to the following non-limiting examples.
  • Fuel A was a standard refinery E10 gasoline market fuel formulation (containing 10%v/v ethanol) meeting the EN228 Class A specification.
  • Fuel B was an E20 gasoline fuel formulation containing 20 %v/v ethanol and 20%v of renewable naphtha (but not meeting the EN228 Class A specification due to failing the oxygen specification which is 3.7%w max in EN228).
  • Fuel C was a gasoline fuel formulation meeting the EN228 Class A specification and containing 9 %v/v ethanol and 20 %v/v of renewable naphtha.
  • Fuel D was a gasoline fuel formulation meeting the EN228 Class A specification and containing 8% v/v ethanol and 20% v/v of renewable naphtha.
  • the renewable naphtha used in Fuels B, C and D was supplied by UPM under the tradename UPM BioVerno Naphtha.
  • the ethanol used in the Examples was bio-ethanol supplied by Clariant under the tradename Sunliquid (RTM) bioethanol (99.8%) denatured with 2% toluene.
  • RTM Sunliquid
  • alkylate/isomerate/ETBE components used in the Examples were supplied together as a mixture by Shell Global Solutions under the tradename ASF.
  • the CCT naphtha (also known as FCC naphtha) used had the CAS no. 64741-55-5.
  • the Heavy Reformate used had the CAS no. 64741-68-0.
  • the RON (measured) for Fuel C is 97 and the RON (measured) for Fuel D is 96.
  • This is surprising in view of the high level of renewable naphtha which is present in the formulations, and is greater than what would have been expected from calculating the RON value using the individual RON numbers of the components used within the compositions (see Table 2 below). From Table 2 below, it can be seen that the calculated RON value of Fuel C is 92, whereas the measured RON value is 97. It can also be seen that the calculated RON value of Fuel D is 91, whereas the measured RON value is 96. Table 2
  • Fuel A (E10), Fuel B (E20) and Fuel C (according to the present invention) were tested in a gasoline single cylinder engine manufactured by AVL to understand if Fuel C would give comparable fuel consumption, pre-catalyst emissions and power performance to standard E10 & E20 fuels.
  • the engine specification details are set out in
  • the pre-catalyst emissions were measured with a Horiba Mexa 7100 system and fuel consumption was determined using an AVL 735 Coriolis meter.
  • In-cylinder pressure measurements were taken using an AVL piezo- electric GU22C sensor.
  • the power output is related to the indicated mean effective pressure (IMEP), which is derived from the in-cylinder pressure measurements.
  • IMEP mean effective pressure
  • Tables 4 and 5 set out the full load operating conditions for the gasoline direct injecton (GDI) configuration and the port fuel injection (PFI) configuration, respectively.
  • GDI gasoline direct injecton
  • PFI port fuel injection
  • Tables 6 and 7 set out the IMEP results obtained for the two engine configurations over a range of speeds at full load engine operating conditions.
  • Table 7 IMEP results for the port fuel injection (PFI) configuration The results set out in Table 6 and 7 are shown graphically in Figures 1 and 2, respectively.
  • Tables 8 and 9 below set out the fuel consumption and pre-catalyst emissions results obtained for the two engine configurations at 1300 rpm.
  • Fuel C has a similar fuel consumption performance to the conventional E10 (Fuel A) fuel composition.
  • E20 Fluel B
  • it is lower compared to E10 (Fuel A) due to the caloric values (lower heating values) being different and effecting the fuel consumption values.
  • the pre-catalyst emissions (CO, NOx, THC) performance for Fuel C are similar to the reference fuels A and B (E10 & E20).
  • Fuel C appears to show beneficial results for PM emissions compared to conventional E10 Fuel (Fuel A).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

A gasoline fuel composition for a spark ignition internal combustion engine comprising (a) gasoline blending components, (b) renewable naphtha at a level of 10 to 30% v/v and (c) oxygenated hydrocarbon at a level of 20% v/v or less, wherein the gasoline blending components comprise (a) 0- 30 % v/v alkylate, (b) from 0 to 15% v/v isomerate; (c) 0 to 20% v/v catalytic cracked tops naphtha; and (d) 20% to 40 % v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops naphtha and heavy reformate is at least 50% v/v based on the total fuel composition, and wherein the gasoline fuel composition meets the EN228 specification. While the low octane number of renewable naphtha would normally severely restrict its blendability in gasoline to low levels, it has now been found that renewable naphtha can be included in, for example, ethanol-containing gasoline fuel compositions, in surprisingly and significantly high blend ratios of renewable naphtha to ethanol.

Description

FUEL COMPOSITION
Field of the Invention
The present invention is in the field of fuel formulations, particularly gasoline-type fuel formulations for spark ignition internal combustion engines.
Background of the Invention
Fuels are conventionally produced by refining crude oil (petroleum). This typically involves separating various fractions of crude oil by distillation. One such fraction is naphtha, which is a volatile liquid fraction distilled between the light gaseous components of crude oil and the heavier kerosene fraction. Naphtha contains a mixture of hydrocarbons (linear alkanes, branched alkanes, cycloalkanes and aromatic hydrocarbons) having a boiling point between about 30°C and about 200°C. The density of naphtha is typically 750-785 kg/m3. Naphtha has many uses, one of which is as an automotive fuel.
Whereas the longer chain molecules in gasoil have a high cetane number and can be blended into diesel, naphtha has historically not been used in gasoline, or has only been used in low amounts, because of its poor octane rating. This has been the case despite the fact that naphtha has comparable distillation properties to those of gasoline.
Renewable fuels derived from biological matter ('biofuels') are increasingly being used as a more sustainable alternative to fossil fuels. Due to an increase in production volumes of renewable naphtha in recent years, it would be advantageous to be able to blend renewable naphtha in gasoline, particularly in high blend ratios. The use of higher blend ratios of renewable naphtha has the advantage of enabling higher CO2 reduction and can help to meet regulated reduction targets, as stipulated in the Paris Agreement (2016). At the same time, it would be desirable to be able to formulate gasoline fuel compositions which comply with existing gasoline fuel specifications, such as, but not limited to, EN228 and North American specifications, e.g. ASTM D4814-13b, US Conventional, CaRFG Phase 3, Federal RFG Phase II, CAN/CGSB-3.5.
W02017/093203 discloses a liquid fuel composition for a spark ignition internal combustion engine comprising (a) gasoline blending components, (b) Fischer- Tropsch derived naphtha at a level of up to 50% v/v and (c) oxygenated hydrocarbon at a level less than 50% v/v.
US2009/300971 discloses a naphtha composition produced from a renewable feedstock wherein the naphtha has a boiling range of about 70°F to about 400°F and a specific gravity at 20°C of from about 0.680 to about 0.740. In one embodiment, the renewable naphtha is used as an alternative gasoline fuel for combustion engines when blended between 1% and 85% by volume with ethanol.
WO2018/234187 relates to a process for the production of renewable base oil, diesel and naphtha from a feedstock of biological origin. However there is no disclosure in WO2018/234187 of specific gasoline fuel formulations containing the renewable naphtha produced in said process.
WO2018/069137 relates to a process for preparing an alkylate gasoline composition comprising renewable naphtha and iso-octane and iso-pentane. The Examples of the alkylate gasolines in Table 2 contain up to 5 vol% of renewable naphtha. The gasoline compositions in this application do not contain oxygenates and the focus is on small utility engines used in various portable gasoline powered tools, such as chainsaws and lawnmowers.
US9885000B2 relates to a renewable hydrocarbon composition obtainable from a renewable biological feedstock. The composition can be used as a fuel component.
W02009/148909 relates to a method for producing a naphtha product from a renewable feedstock. The renewable naphtha product can be used as fuel, or as fuel blend stock.
While the low octane number of renewable naphtha would normally severely restrict its blendability in gasoline to low levels, it has now been found by the present inventors that renewable naphtha can be included in, for example, ethanol-containing gasoline fuel compositions in surprisingly and significantly high blend ratios of renewable naphtha, e.g. high blend ratios of renewable naphtha to ethanol, while still meeting gasoline fuel specifications, such as but not limiting to EN228 and North American specifications, e.g. ASTM D4814- 13b, US Conventional, CaRFG Phase 3, Federal RFG Phase II, CAN/CGSB-3.5.
Summary of the Invention
According to a first aspect of the present invention there is provided a gasoline fuel composition for a spark ignition internal combustion engine comprising (a) gasoline blending components, (b) renewable naphtha at a level of 10 to 30% v/v and (c) oxygenated hydrocarbon at a level of 20% v/v or less, wherein the gasoline blending components comprise (a) from 0% v/v to 30% v/v of alkylate, (b) from 0% v/v to 15% v/v of isomerate, (c) from 0% v/v to 20% v/v of catalytic cracked tops (CCT) naphtha; and (d) from 20% v/v to 40% v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops (CCT) naphtha and heavy reformate is at least 50% v/v, based on the gasoline fuel composition, and wherein the gasoline fuel composition meets the EN228 fuel specification.
According to another aspect of the present invention there is provided a process for preparing a liquid fuel composition comprising blending (a) gasoline blending components, (b) renewable naphtha at a level from 10% v/v to 30% v/v and (c) oxygenated hydrocarbon at a level of 20% v/v or less, wherein the gasoline blending components comprise (a) from 0% v/v to 30 % v/v of alkylate, (b) from 0% v/v to 15% v/v of isomerate, (c) from 0% v/v to 20% v/v of catalytic cracked tops (CCT) naphtha; and (d) from 20% v/v to 40 % v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops (CCT) naphtha and heavy reformate is at least 50% v/v based on the gasoline fuel composition, and wherein the gasoline fuel composition meets the EN228 specification .
The present invention enables the use of renewable naphtha at significantly high blend ratios in gasoline and thereby provides a significant new outlet for renewable naphtha fuel.
It has surprisingly been found by the present inventors that by blending the gasoline blending components in certain concentrations and ratios, the limitations normally experienced due to the low octane of the renewable naphtha can be overcome.
In addition, the fuel compositions of the present invention have the advantage of meeting the requirements of the EN228 fuel specification.
It has also surprisingly been found that the fuel compositions of the present invention have higher RON values than expected.
The liquid fuel compositions of the present invention also provide excellent fuel economy, emissions and power benefits, as required by the EN228 specification .
Brief Description of the Drawings
Figure 1 is a graphical representation of the results shown in Table 6.
Figure 2 is a graphical representation of the results shown in Table 7.
Detailed Description of the Invention
The liquid fuel composition of the present invention comprises gasoline blending components, such as a gasoline base fuel, suitable for use in an internal combustion engine, a renewable naphtha at a level of from 10% v/v to 30 %v/v and (c) oxygenated hydrocarbon at a level of 20 %v/v or less. Therefore the liquid fuel composition of the present invention is a gasoline composition .
The term "comprises" as used herein is intended to indicate that as a minimum the recited components are included but that other components that are not specified may also be included as well.
The liquid fuel compositions herein comprise a naphtha. The person skilled in the art would know what is meant by the term "naphtha". Typically, the term "naphtha" means a mixture of hydrocarbons generally having between 5 and 12 carbon atoms and having a boiling point in the range of 30 to 200° C. The liquid fuel compositions herein comprise a naphtha which is a renewable naphtha, also known as a renewable naphtha distillate, or biorenewable naphtha.
A renewable naphtha distillate may be produced as part of the refining of renewable diesel. Renewable diesel may be obtained from the processing of fatty acid containing materials, such as animal fats, algae, and plant material. Plant material may comprise both vegetable based material, such as vegetable oils as well as oils obtained from other plants, such as oils from trees, e.g. tall oil. Renewable diesel and renewable naphtha distillate may be obtained from the hydrotreatment of fatty acids, and derivatives thereof, such as triglycerides. The hydrotreatment of fatty acids and derivatives thereof involves deoxygenation reactions, such as hydrodeoxygenation (HDO), and may also involve other hydroprocessing reactions, such as isomerisation (for example hydroisomerisation) and cracking (for example hydrocracking). When refining the renewable diesel a renewable naphtha distillate is obtained. It may have an initial boiling point (IBP) of about 30°C or about 35°C and a final boiling point (FBP) of about 200°C or about 205°C. The hydrocarbons present in that distillation range usually range from those containing 4 or 5 carbon atoms to those containing about 10 or 11 or 12 carbon atoms.
Renewable fuels, such as renewable naphtha distillate, are collected from resources, which are naturally replenished on a human timescale, as opposed to fossil fuels, such as petroleum gasoline, which are derived from the refining of crude oil. A renewable naphtha distillate may be obtained from the hydrotreatment of fatty acids, and derivatives thereof present in fatty acid containing materials such as animal fats and plant material, the hydrotreatment comprising hydrodeoxygenation and hydroisomerisation, and comprise the fraction with an IBP of 30°C, such as an IBP or 30°C or higher and a FBP of 200°C, such as a FBP of 200°C or lower. By the term renewable naphtha as used herein is meant a naphtha fraction which contains bio-based carbon atoms as determined according to ASTM method D6866-10 entitled "Standard Test Methods for Determining the Biobased Content of Solid, Liquid and Gaseous samples using Radiocarbon Analysis". The renewable content may then be determined by isotopic distribution involving 14C, 13C and/or 12C as described in ASTM D6866.
Because the paraffins of the renewable naphtha is obtained from the processing of fatty acid containing materials, such as animal fats and plant material, the renewable naphtha distillate is paraffinic with very little naphthenes and virtually no aromatics or oxygenates .
Renewable naphtha distillate is mainly comprised of paraffins (alkanes), which can be straight chain n- paraffins or branched chain iso-paraffins. Renewable naphtha may have 90 vol% or more C5-C12 paraffins, such as 95 vol% or more C5-C12 paraffins, or 98 vol% or more C5-C12 paraffins.
When the renewable naphtha distillate has been produced as described above as part of the refining of renewable diesel, it may comprise 30 vol% or more C5-C6 paraffins, such as 40 vol% or more.
In addition to mainly comprising paraffins, the renewable naphtha distillate also has a low content of naphthenes (cycloalkanes), which are alkanes with at least one non-aromatic ring structure, where the ring typically has 5 or 6 carbon atoms. Renewable naphtha distillate may have 5 vol% or less of naphthenes, such as 1 vol% or less of naphthenes or 0.5 vol% or less of naphthenes.
In addition to mainly comprising paraffins, the renewable naphtha distillate also has a very low content of aromatics. Aromatic compounds contain a benzene ring or other ring structure that is aromatic. Renewable naphtha distillate may have 1 vol% or less of aromatics, such as 0.5 vol% or less of aromatics, or 0.1 vol% or less of aromatics.
In addition to mainly comprising paraffins, the renewable naphtha distillate also has a very low content of oxygenates. Oxygenates are organic molecules that contain oxygen as part of their chemical structure, and are usually employed as gasoline additives to reduce carbon oxides and soot created during the burning of the fuel. Common oxygenates include alcohols, ethers and esters. Renewable naphtha distillate may have 1 vol% or less of oxygenates, such as 0.5 vol% or less of oxygenates, or 0.1 vol% or less of oxygenates, although it is preferably essentially free of oxygenates.
The renewable naphtha used herein has a low octane number, i.e. for example having a RON and/or a MON of from 35 to 70, such as from 35 to 60 or from 35 to 50 or from 35 to 45. It has surprisingly been found that despite the low octane quality of the renewable naphtha, it can be included in the gasoline fuel composition of the present invention at a relatively high level, and the final gasoline fuel composition has a higher than expected octane number (RON).
The renewable naphtha distillate may have a vapour pressure below 30 kPa, such as below 25 kPa, such as below 20 kPa. The vapour pressure of the renewable naphtha may equally also be 10 kPa or higher, such as 15 kPa or higher.
In a preferred embodiment, the renewable naphtha used herein comprises: 90 vol% or more of C5-C12 paraffins, 30 vol% or more C5-C6 paraffins, 5 vol% or less of naphthenes, 1 vol% of less of aromatics, 1 vol% or less of oxygenates.
The renewable naphtha distillate may have a boiling range of from 30 to 200°C, such as 90 to 200°C, or 40 to 1800C.
The amount of renewable naphtha present in the gasoline fuel composition of the present invention is from 10 vol% to 30 vol%, preferably from 15 vol% to 25 vol%, even more preferably from 18 vol% to 22 vol%, and especially 20 vol%, based on the total fuel composition. It is preferred to be able to add as much renewable naphtha as possible in order to increase the renewable part of the gasoline composition of the present invention.
The renewable naphtha may comprise an iso- paraffin/n-paraffin ratio of more than 1, such as more than 1.2, for example between 1 and 2.
The renewable naphtha component of the present invention can be prepared according to the methods provided in WO2018/069137, WO2018/234187 US9885000B2 and W02009/148909, all of which are incorporated herein by reference in their entirety.
These references also provide further details of the chemical and physical properties of the renewable naphtha component.
The renewable naphtha component is commercially available from Neste Oyj, Finland, under the tradename Neste renewable naphtha, also known as NexNaphtha. The renewable naphtha component is also commercially available from UPM under the tradename BioVerno Naphtha.
In the liquid fuel composition herein, the renewable naphtha component of the present invention may include a mixture of two or more renewable naphthas, or a mixture of renewable naphtha with petroleum-derived naphtha and/or Fischer-Tropsch derived naphtha.
By "Fischer-Tropsch derived" is meant that the naphtha is, or is derived from, a product of a Fischer- Tropsch synthesis process (or Fischer-Tropsch condensation process). A Fischer-Tropsch derived naphtha may also be referred to as a GTL (Gas-to-Liquid) naphtha. Further details of GTL naphtha can be found in W02017/093203, incorporated herein by reference in its entirety.
It will be appreciated by a person skilled in the art that the gasoline blending components may already contain some naphtha components. The concentration of the naphtha referred to above means the concentration of naphtha which is added into the liquid fuel composition as a blend with the gasoline blending components, and does not include the concentration of any naphtha components already present in the gasoline blending components .
In addition to the renewable naphtha, the liquid fuel composition of the present invention comprises oxygenated hydrocarbon at a level of 20 vol.% or less, preferably at a level of from 5 to 15% v/v, based on the liquid fuel composition. In one embodiment, the oxygenated hydrocarbon is present at a level of from 7 to 12% v/v, based on the liquid fuel composition. In another embodiment, the oxygenated hydrocarbon is present at a level of from 10 to 15% v/v, based on the liquid fuel composition.
It will be appreciated by a person skilled in the art that the gasoline base fuel may already contain some oxygenated hydrocarbon components. The concentration of the oxygenated hydrocarbon referred to above means the concentration of oxygenated hydrocarbon which is added into the liquid fuel composition as a blend with the gasoline base fuel, and does not include the concentration of any oxygenated hydrocarbon components already present in the gasoline base fuel.
Examples of suitable oxygenated hydrocarbons that may be incorporated into the gasoline include alcohols, ethers, esters, ketones, aldehydes, carboxylic acids and their derivatives, and oxygen containing heterocyclic compounds, and mixtures thereof. In one embodiment of the present invention, the oxygenated hydrocarbon is selected from alcohols, ethers and esters, and mixtures thereof.
Suitable alcohols for use herein include methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, iso-butanol, 2-butanol and mixtures thereof. Suitable ethers for use herein include ethers containing 5 or more carbon atoms per molecule, e.g., methyl tert-butyl ether and ethyl tert-butyl ether, and mixtures thereof. A preferred ether for use herein is ethyl tert-butyl ether (ETBE). Suitable esters for use herein include esters containing 5 or more carbon atoms per molecule.
The oxygenated hydrocarbon is preferably selected from alcohols, ethers and mixtures thereof. In one preferred embodiment of the present invention, the oxygenated hydrocarbon is selected from alcohols, preferably at a level of from 0.1% v/v to 10% v/v, more preferably at a level of from 5% v/v to 10% v/v, based on the total gasoline fuel composition. In another embodiment of the present invention, the oxygenated hydrocarbon is selected from ethers, preferably at a level of from 0.1% v/v to 15% v/v, based on the total gasoline fuel composition. In another preferred embodiment of the present invention, the oxygenated hydrocarbon is a mixture of alcohols and ethers, such as a mixture of at least one alcohol and at least one ether, preferably comprising from 5% v/v to 10% v/v of alcohol and from 2% v/v to 5% v/v of ether, based on the gasoline fuel composition.
A particularly preferred oxygenated hydrocarbon for use herein is ethanol. Ethanol is preferably present in the fuel compositions herein at a level of from 0.1% v/v to 10% v/v, more preferably from 5% v/v to 10% v/v, based on the total gasoline fuel composition. In one embodiment of the present invention, ethanol is present as the sole oxygenated hydrocarbon.
A particularly preferred ether for use as an oxygenated hydrocarbon herein is ETBE. In one embodiment of the present invention ETBE is present in the fuel composition herein at a level of from 0.1% v/v to 15% v/v, based on the total gasoline fuel composition. In another embodiment of the present invention ETBE is present as the sole oxygenated hydrocarbon.
In a particularly preferred embodiment of the present invention, the oxygenated hydrocarbon herein is a mixture of ethanol and ETBE comprising from 5% v/v to 10% v/v of ethanol and from 2% v/v and 5% v/v of ETBE, based on the total gasoline fuel composition.
When both the oxygenated hydrocarbon and the naphtha are of renewable origin, the share of renewable content in the gasoline composition is increased. For example, bio-ethanol may be used as the oxygenated hydrocarbon herein.
The liquid fuel composition of the present invention comprises gasoline blending components. The gasoline blending components comprise (a) from 0% v/v to 30% v/v of alkylate, (b) from 0% v/v to 15% v/v of isomerate; (c) from 0% v/v to 20% v/v of catalytic cracked tops; and (d) from 20% v/v to 40% v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops and heavy reformate is at least 50% v/v, based on the total fuel composition.
In the liquid fuel compositions of the present invention, the gasoline blending components may be a gasoline base fuel comprising the components (a), (b),
(c) and (d) as mentioned above.
Conventionally gasoline blending components are present in a gasoline or liquid fuel composition in a major amount, for example greater than 50% v/v of the liquid fuel composition, and may be present in an amount of up to 90% v/v, or 95% v/v, or 99% v/v, or 99.9% v/v, or 99.99% v/v, or 99.999% v/v. Suitably, the liquid fuel composition contains or consists essentially of the gasoline blending components in conjunction with 10% v/v to 30% v/v of renewable naphtha and oxygenated hydrocarbon at a level of 20% v/v or less, and optionally one or more conventional gasoline fuel additives, such as specified hereinafter.
The gasoline blending components comprise from 0% v/v to 30% v/v, preferably from 15 to 30 %v/v, more preferably 15 to 25 %v/v, of alkylate, based on the total gasoline fuel composition.
Alkylate is a complex combination of hydrocarbons produced by distillation of the reaction products of isobutane with monoolefinic hydrocarbons usually ranging in carbon numbers from C3 through C5. Alkylate is a refinery stream and consists of predominantly branched chain saturated hydrocarbons having carbon numbers predominantly in the range of C7 through C12 and boiling in the range of approximately 90°C to 220°C (194°F to 428°F).
The gasoline blending components comprise from 0% v/v to 15% v/v, preferably from 5 to 10 vol%, of isomerate, based on the total gasoline fuel composition.
Isomerate is a complex combination of hydrocarbons obtained from catalytic isomerization of straight chain paraffinic C4 through C6 hydrocarbons. Isomerate is a refinery stream and consists predominantly of saturated hydrocarbons such as isobutane, isopentane, 2,2- dimethylbutane, 2-methylpentane, and 3-methylpentane and boiling in the range of approximately 35°C to 220°C (95°F to 428°F).
The gasoline blending components comprise from 20% v/v to 40% v/v of heavy reformate, based on the total gasoline fuel composition, provided that the total amount of alkylate, isomerate, catalytic cracked tops and heavy reformate in the final fuel composition is at least 50% v/v, based on the total gasoline fuel composition.
In one embodiment of the present invention, the gasoline blending components comprise from 30% v/v to 35% v/v of heavy reformate, based on the total fuel composition. In another embodiment of the present invention, the gasoline blending components comprise from 20% v/v to 25% v/v of heavy reformate, based on the total fuel composition.
Heavy reformate (or heavy catalytic reformed naphtha) is a complex combination of hydrocarbons produced from the distillation of products from a catalytic reforming process. It consists of predominantly aromatic hydrocarbons having carbon numbers predominantly in the range of C7 through C12 and boiling in the range of approximately 90°C to 230°C (194°F to 446°F). Heavy Reformate is a refinery stream, rich in aromatics and high octane component (typically 98-102 RON, depending on requirements, type of unit and naphtha feed and is used for mogas blending or as feedstock.
The gasoline blending components comprise from 0% v/v to 20% v/v, preferably from 5% v/v to 20% v/v of catalytic cracked tops, based on the total fuel composition, provided that the total amount of alkylate, isomerate, catalytic cracked tops and heavy reformate in the final fuel composition is at least 50% v/v, based on the total fuel composition.
CCT naphtha (or light catalytic cracked naphtha), otherwise known as FCC naphtha (fluid catalytic cracked naphtha), is a complex combination of hydrocarbons produced by the distillation of products from a fluid catalytic cracking process. Fluid catalytic cracking (FCC) is widely used to convert the high-boiling point, high molecular weight hydrocarbon fractions of petroleum crude oils into more valuable gasoline, olefinic gases and other products. The FCC end products are cracked petroleum naphtha, fuel oil and offgas. After further processing for removal of sulfur compounds, the cracked naphtha becomes a high-octane component of the refinery's blended gasolines. The CCT naphtha/FCC naphtha consists of hydrocarbons having carbon numbers predominantly in the range of C4 through C11 and boiling in the range of approximately minus 20°C to 190°C (-4°F to 374°F). CCT naphtha/FCC naphtha is a refinery stream and contains a relatively large proportion of unsaturated hydrocarbons, depending on requirements, type of unit and naphtha feed and is used for mogas blending or as feedstock. CCT naphtha/FCC naphtha has the CAS no. 64741555
The liquid fuel composition according to the present invention has a Research Octane Number (RON) in the range of from 85 to 105, for example meeting the European specifications of 95 or premium product grade of 98. The liquid fuel composition used in the present invention has a Motor Octane Number in the range of from 75 to 90.
Whilst not critical to the present invention, the gasoline composition of the present invention may conveniently include one or more optional fuel additives. The concentration and nature of the optional fuel additive (s) that may be included in the gasoline blending components or the gasoline composition of the present invention is not critical. Non-limiting examples of suitable types of fuel additives that can be included in the gasoline blending components or the gasoline composition of the present invention include anti oxidants, corrosion inhibitors, detergents, dehazers, antiknock additives, metal deactivators, valve-seat recession protectant compounds, dyes, solvents, carrier fluids, diluents and markers. Examples of suitable such additives are described generally in US Patent No.
5,855,629.
Conveniently, the fuel additives can be blended with one or more solvents to form an additive concentrate, the additive concentrate can then be admixed with the gasoline blending components or the gasoline composition of the present invention. The (active matter) concentration of any optional additives present in the gasoline blending components or the gasoline composition of the present invention is preferably up to 1% m/m, more preferably in the range from 5 to 2000mg/kg, advantageously in the range of from 300 to 1500 mg/kg, such as from 300 to 1000 mg/kg.
As stated above, the gasoline composition may also contain synthetic or mineral carrier oils and/or solvents.
Examples of suitable mineral carrier oils are fractions obtained in crude oil processing, such as brightstock or base oils having viscosities, for example, from the SN 500 - 2000 class; and also aromatic hydrocarbons, paraffinic hydrocarbons and alkoxyalkanols. Also useful as a mineral carrier oil is a fraction which is obtained in the refining of mineral oil and is known as "hydrocrack oil" (vacuum distillate cut having a boiling range of from about 360 to 500° C, obtainable from natural mineral oil which has been catalytically hydrogenated under high pressure and isomerized and also deparaffinized) .
Examples of suitable synthetic carrier oils are: polyolefins (poly-alpha-olefins or poly (internal olefin)s), (poly)esters, (poly)alkoxylates, polyethers, aliphatic polyether amines, alkylphenol-started polyethers, alkylphenol-started polyether amines and carboxylic esters of long-chain alkanols.
Examples of suitable polyolefins are olefin polymers, in particular based on polybutene or polyisobutene (hydrogenated or nonhydrogenated).
Examples of suitable polyethers or polyetheramines are preferably compounds comprising polyoxy-C2-C4 alkylene moieties which are obtainable by reacting C2- C60 _alkanols, C6-C30-alkanediols, mono- or di-C2-C30- alkylamines, C1-C30 _alkylcyclohexanols or C1-C30 _ alkylphenols with from 1 to 30 mol of ethylene oxide and/or propylene oxide and/or butylene oxide per hydroxyl group or amino group, and, in the case of the polyether amines, by subsequent reductive amination with ammonia, monoamines or polyamines. Such products are described in particular in EP-A-310875, EP-A-356 725, EP-A-700985 and US-A-4,877,416. For example, the polyether amines used may be poly-C2-C6-alkylene oxide amines or functional derivatives thereof. Typical examples thereof are tridecanol butoxylates or isotridecanol butoxylates, isononylphenol butoxylates and also polyisobutenol butoxylates and propoxylates, and also the corresponding reaction products with ammonia.
Examples of carboxylic esters of long-chain alkanols are in particular esters of mono-, di- or tricarboxylic acids with long-chain alkanols or polyols, as described in particular in DE-A-3838 918. The mono-, di- or tricarboxylic acids used may be aliphatic or aromatic acids; suitable ester alcohols or polyols are in particular long-chain representatives having, for example, from 6 to 24 carbon atoms. Typical representatives of the esters are adipates, phthalates, isophthalates, terephthalates and trimellitates of isooctanol, isononanol, isodecanol and isotridecanol, for example di-(n- or isotridecyl) phthalate.
Further suitable carrier oil systems are described, for example, in DE-A-3826 608, DE-A-41 42 241, DE-A-43 09 074, EP-A-0452 328 and EP-A-0 548 617, which are incorporated herein by way of reference.
Examples of particularly suitable synthetic carrier oils are alcohol-started polyethers having from about 5 to 35, for example from about 5 to 30, C3-C6-alkylene oxide units, for example selected from propylene oxide, n-butylene oxide and isobutylene oxide units, or mixtures thereof. Non-limiting examples of suitable starter alcohols are long-chain alkanols or phenols substituted by long-chain alkyl in which the long-chain alkyl radical is in particular a straight-chain or branched C6-C18 - alkyl radical. Preferred examples include tridecanol and nonylphenol.
Further suitable synthetic carrier oils are alkoxylated alkylphenols, as described in DE-A-10102 913.6.
Mixtures of mineral carrier oils, synthetic carrier oils, and mineral and synthetic carrier oils may also be used.
Any solvent and optionally co-solvent suitable for use in fuels may be used. Examples of suitable solvents for use in fuels include: non-polar hydrocarbon solvents such as kerosene, heavy aromatic solvent ("solvent naphtha heavy", "Solvesso 150"), toluene, xylene, paraffins, petroleum, white spirits, those sold by Shell companies under the trademark "SHELLSOL", and the like. Examples of suitable co-solvents include: polar solvents such as esters and, in particular, alcohols (e.g., t- butanol, i-butanol, hexanol, 2-ethylhexanol, 2-propyl heptanol, decanol, isotridecanol, butyl glycols, and alcohol mixtures such as those sold by Shell companies under the trade mark "LINEVOL", especially LINEVOL 79 alcohol which is a mixture of C7_9 primary alcohols, or a
C12-14 alcohol mixture which is commercially available).
Dehazers/demulsifiers suitable for use in liquid fuels are well known in the art. Non-limiting examples include glycol oxyalkylate polyol blends (such as sold under the trade designation TOLAD™ 9312), alkoxylated phenol formaldehyde polymers, phenol/formaldehyde or C1-
18 alkylphenol/-formaldehyde resin oxyalkylates modified by oxyalkylation with C1-18 epoxides and diepoxides (such as sold under the trade designation TOLAD™ 9308), and C1- 4 epoxide copolymers cross-linked with diepoxides, diacids, diesters, diols, diacrylates, dimethacrylates or diisocyanates, and blends thereof. The glycol oxyalkylate polyol blends may be polyols oxyalkylated with C1 _ 4 epoxides. The alkylphenol phenol/- formaldehyde resin oxyalkylates modified by oxyalkylation with C1-18g epoxides and diepoxides may be based on, for example, cresol, t-butyl phenol, dodecyl phenol or dinonyl phenol, or a mixture of phenols (such as a mixture of t-butyl phenol and nonyl phenol). The dehazer should be used in an amount sufficient to inhibit the hazing that might otherwise occur when the gasoline without the dehazer contacts water, and this amount will be referred to herein as a "haze-inhibiting amount." Generally, this amount is from about 0.1 to about 20 mg/kg (e.g., from about 0.1 to about 10 mg/kg), more preferably from 1 to 15 mg/kg, still more preferably from 1 to 10 mg/kg, advantageously from 1 to 5 mg/kg based on the weight of the gasoline.
Further customary additives for use in gasolines are corrosion inhibitors, for example based on ammonium salts of organic carboxylic acids, said salts tending to form films, or of heterocyclic aromatics for nonferrous metal corrosion protection; antioxidants or stabilizers, for example based on amines such as phenyldiamines, e.g., p- phenylenediamine, N,N'-di-sec-butyl-p-phenyldiamine, dicyclohexylamine or derivatives thereof or of phenols such as 2,4-di-tert-butylphenol or 3,5-di-tert-butyl-4- hydroxy-phenylpropionic acid; anti-static agents; metallocenes such as ferrocene; methylcyclo- pentadienylmanganese tricarbonyl; lubricity additives, such as certain fatty acids, alkenylsuccinic esters, bis (hydroxyalkyl) fatty amines, hydroxyacetamides or castor oil; and also dyes (markers). Amines may also be added, if appropriate, for example as described in WO03/076554. Optionally anti-valve seat recession additives may be used such as sodium or potassium salts of polymeric organic acids.
The gasoline compositions herein can also comprise a detergent additive. Suitable detergent additives include those disclosed in W02009/50287, incorporated herein by reference.
Preferred detergent additives for use in the gasoline composition herein typically have at least one hydrophobic hydrocarbon radical having a number-average molecular weight (Mn) of from 85 to 20000 and at least one polar moiety selected from:
(Al) mono- or polyamino groups having up to 6 nitrogen atoms, of which at least one nitrogen atom has basic properties;
(A6) polyoxy-C2- to -C4-alkylene groups which are terminated by hydroxyl groups, mono- or polyamino groups, in which at least one nitrogen atom has basic properties, or by carbamate groups;
(A8) moieties derived from succinic anhydride and having hydroxyl and/or amino and/or amido and/or imido groups; and/or
(A9) moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono- or polyamines . The hydrophobic hydrocarbon radical in the above detergent additives, which ensures the adequate solubility in the base fluid, has a number-average molecular weight (Mn) of from 85 to 20000, especially from 113 to 10000, in particular from 300 to 5000. Typical hydrophobic hydrocarbon radicals, especially in conjunction with the polar moieties (Al), (A8) and (A9), include polyalkenes (polyolefins), such as the polypropenyl, polybutenyl and polyisobutenyl radicals each having Mn of from 300 to 5000, preferably from 500 to 2500, more preferably from 700 to 2300, and especially from 700 to 1000.
Non-limiting examples of the above groups of detergent additives include the following:
Additives comprising mono- or polyamino groups (Al) are preferably polyalkenemono- or polyalkenepolyamines based on polypropene or conventional (i.e., having predominantly internal double bonds) polybutene or polyisobutene having Mn of from 300 to 5000. When polybutene or polyisobutene having predominantly internal double bonds (usually in the beta and gamma position) are used as starting materials in the preparation of the additives, a possible preparative route is by chlorination and subsequent amination or by oxidation of the double bond with air or ozone to give the carbonyl or carboxyl compound and subsequent amination under reductive (hydrogenating) conditions. The amines used here for the amination may be, for example, ammonia, monoamines or polyamines, such as dimethylaminopropylamine, ethylenediamine, diethylene- triamine, triethylenetetramine or tetraethylenepentamine. Corresponding additives based on polypropene are described in particular in WO-A-94/24231. Further preferred additives comprising monoamino groups (Al) are the hydrogenation products of the reaction products of polyisobutenes having an average degree of polymerization of from 5 to 100, with nitrogen oxides or mixtures of nitrogen oxides and oxygen, as described in particular in WO-A-97/03946.
Further preferred additives comprising monoamino groups (Al) are the compounds obtainable from polyisobutene epoxides by reaction with amines and subsequent dehydration and reduction of the amino alcohols, as described in particular in DE-A-19620 262.
Additives comprising polyoxy-C2-C4-alkylene moieties (A6) are preferably polyethers or polyetheramines which are obtainable by reaction of C2- to C60 _alkanols, C6- to
C30 _alkanediols, mono- or di-C2- C30 _alkylamines, C1- C30 _ alkylcyclohexanols or C1-C30 _alkylphenols with from 1 to
30 mol of ethylene oxide and/or propylene oxide and/or butylene oxide per hydroxyl group or amino group and, in the case of the polyether-amines, by subsequent reductive amination with ammonia, monoamines or polyamines. Such products are described in particular in EP-A-310875, EP- A-356 725, EP-A-700985 and US-A-4 877 416. In the case of polyethers, such products also have carrier oil properties. Typical examples of these are tridecanol butoxylates, isotridecanol butoxylates, isononylphenol butoxylates and polyisobutenol butoxylates and propoxylates and also the corresponding reaction products with ammonia.
Additives comprising moieties derived from succinic anhydride and having hydroxyl and/or amino and/or amido and/or imido groups (A8) are preferably corresponding derivatives of polyisobutenylsuccinic anhydride which are obtainable by reacting conventional or highly reactive polyisobutene having Mn of from 300 to 5000 with maleic anhydride by a thermal route or via the chlorinated polyisobutene. Of particular interest are derivatives with aliphatic polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine or tetraethylenepentamine . Such additives are described in particular in US-A-4849 572.
Additives comprising moieties obtained by Mannich reaction of substituted phenols with aldehydes and mono- or polyamines (A9) are preferably reaction products of polyisobutene-substituted phenols with formaldehyde and mono- or polyamines such as ethylenediamine, diethylenetriamine, triethylenetetramine, tetraethylenepentamine or dimethylaminopropylamine. The polyisobutenyl-substituted phenols may stem from conventional or highly reactive polyisobutene having Mn of from 300 to 5000. Such "polyisobutene-Mannich bases" are described in particular in EP-A-831 141.
Preferably, the detergent additive used in the gasoline compositions of the present invention contains at least one nitrogen-containing detergent, more preferably at least one nitrogen-containing detergent containing a hydrophobic hydrocarbon radical having a number average molecular weight in the range of from 300 to 5000. Preferably, the nitrogen-containing detergent is selected from a group comprising polyalkene monoamines, polyetheramines, polyalkene Mannich amines and polyalkene succinimides. Conveniently, the nitrogen- containing detergent may be a polyalkene monoamine.
In the above, amounts (concentrations, % v/v, mg/kg (ppm), % m/m) of components are of active matter, i.e., exclusive of volatile solvents/diluent materials.
The liquid fuel composition of the present invention can be produced by admixing the renewable naphtha and the oxygenated hydrocarbon with the gasoline blending components. Since the blending components to which the renewable naphtha and the oxygenated hydrocarbon are admixed are gasoline blending components, then the liquid fuel composition produced is a gasoline composition.
The fuel composition of the present invention is suitable for use in a spark-ignition internal combustion engine, such as used in passenger cars. Hence, according to another aspect of the present invention there is provided the use of a gasoline composition as described hereinabove for fuelling a spark ignition internal combustion engine in a passenger car.
The fuel composition of the present invention is also suitable for use in a spark-ignition internal combustion engine, when used in the powertrain of a hybrid electric vehicle, in particular a plug-in hydrbrid electric vehicle (PHEV). Hence, according to another aspect of the present invention there is provided the use of a gasoline composition as described hereinabove for fuelling a spark ignition internal combustion engine when used in the powertrain of a hybrid electric vehicle, in particular a plug-in hybrid electric vehicle.
The fuel composition of the present invention has been found to be particularly useful in reducing particulate matter (PM) emissions. Hence according to yet another aspect of the present invention there is provided the use of a gasoline composition as described hereinabove for reducing particulate matter emissions (PM emissions) in a spark ignition internal combustion engine, such as in a passenger car.
The invention is further described by reference to the following non-limiting examples. Example 1
Several fuel blends were prepared having the properties and compositions as shown in Table 1 below.
Fuel A was a standard refinery E10 gasoline market fuel formulation (containing 10%v/v ethanol) meeting the EN228 Class A specification.
Fuel B was an E20 gasoline fuel formulation containing 20 %v/v ethanol and 20%v of renewable naphtha (but not meeting the EN228 Class A specification due to failing the oxygen specification which is 3.7%w max in EN228).
Fuel C was a gasoline fuel formulation meeting the EN228 Class A specification and containing 9 %v/v ethanol and 20 %v/v of renewable naphtha.
Fuel D was a gasoline fuel formulation meeting the EN228 Class A specification and containing 8% v/v ethanol and 20% v/v of renewable naphtha.
The renewable naphtha used in Fuels B, C and D was supplied by UPM under the tradename UPM BioVerno Naphtha.
The ethanol used in the Examples was bio-ethanol supplied by Clariant under the tradename Sunliquid (RTM) bioethanol (99.8%) denatured with 2% toluene.
The alkylate/isomerate/ETBE components used in the Examples were supplied together as a mixture by Shell Global Solutions under the tradename ASF.
The CCT naphtha (also known as FCC naphtha) used had the CAS no. 64741-55-5.
The Heavy Reformate used had the CAS no. 64741-68-0.
The fuel analysis results in Table 1 below show that renewable naphtha can be blended with the gasoline blending components in certain concentrations/ratios to give an EN228 compliant ethanol-containing fuel.
Figure imgf000028_0001
Figure imgf000029_0001
2.Fuel B is an E20 blend and exceeds the current EN228 specification for the mass fraction of 3.7 %m/m, as the specification is designed for E10 fuels.
3.Supplied as a mixture containing Alkylate, isomerate and ETBE ND = Not determined
N/A = Not Applicable *Comparative examples
As can be seen from Table 1 above, the RON (measured) for Fuel C is 97 and the RON (measured) for Fuel D is 96. This is surprising in view of the high level of renewable naphtha which is present in the formulations, and is greater than what would have been expected from calculating the RON value using the individual RON numbers of the components used within the compositions (see Table 2 below). From Table 2 below, it can be seen that the calculated RON value of Fuel C is 92, whereas the measured RON value is 97. It can also be seen that the calculated RON value of Fuel D is 91, whereas the measured RON value is 96. Table 2
Figure imgf000031_0001
Emissions And Power Performance Tests Fuel A (E10), Fuel B (E20) and Fuel C (according to the present invention) were tested in a gasoline single cylinder engine manufactured by AVL to understand if Fuel C would give comparable fuel consumption, pre-catalyst emissions and power performance to standard E10 & E20 fuels. The engine specification details are set out in
Table 3 below.
Table 3: Engine Specification Details
Figure imgf000031_0002
Figure imgf000032_0001
All the fuels were tested in two engine configurations representing present and future engine hardware. A wide range of engine conditions (full and part load in steady state test conditions) were tested for each configuration.
The pre-catalyst emissions were measured with a Horiba Mexa 7100 system and fuel consumption was determined using an AVL 735 Coriolis meter. In-cylinder pressure measurements were taken using an AVL piezo- electric GU22C sensor. The power output is related to the indicated mean effective pressure (IMEP), which is derived from the in-cylinder pressure measurements.
Tables 4 and 5 set out the full load operating conditions for the gasoline direct injecton (GDI) configuration and the port fuel injection (PFI) configuration, respectively.
Figure imgf000033_0001
Figure imgf000034_0001
Results
Tables 6 and 7 set out the IMEP results obtained for the two engine configurations over a range of speeds at full load engine operating conditions.
Table 6: IMEP Results for the Gasoline Direct Injection (GDI) Configuration
Figure imgf000035_0001
Table 7: IMEP results for the port fuel injection (PFI) configuration
Figure imgf000035_0002
The results set out in Table 6 and 7 are shown graphically in Figures 1 and 2, respectively.
Tables 8 and 9 below set out the fuel consumption and pre-catalyst emissions results obtained for the two engine configurations at 1300 rpm. Table 8: Fuels Consumption and Emissions Results for the
Gasoline Direct Injection (GDI) Configuration
Figure imgf000035_0003
Figure imgf000036_0001
Table 9: Fuel Consumption and Emissions Results for the port fuel injection (PFI) configuration
Figure imgf000036_0002
Discussion
The results for the IMEP for both engine configurations (GDI & PFI) at the different engine speeds show that Fuel C (fuel according to the present invention) performs similarly to the conventional E10
(Fuel A) & E20 (Fuel B) fuel compositions.
For both engine configurations, Fuel C has a similar fuel consumption performance to the conventional E10 (Fuel A) fuel composition. For E20 (Fuel B) it is lower compared to E10 (Fuel A) due to the caloric values (lower heating values) being different and effecting the fuel consumption values.
For both engine configurations, the pre-catalyst emissions (CO, NOx, THC) performance for Fuel C are similar to the reference fuels A and B (E10 & E20).
Whilst PN emissions are on a comparable level for all three fuels, Fuel C appears to show beneficial results for PM emissions compared to conventional E10 Fuel (Fuel A).

Claims

C L A IM S
1. A gasoline fuel composition for a spark ignition internal combustion engine comprising (a) gasoline blending components, (b) renewable naphtha at a level of 10 to 30% v/v and (c) oxygenated hydrocarbon at a level of 20% v/v or less, wherein the gasoline blending components comprise (a) 0 to 30 % v/v alkylate, (b) 0 to 15% v/v isomerate, (c) 0 to 20% v/v catalytic cracked tops naphtha; and (d) 20% to 40 % v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops naphtha and heavy reformate is at least 50% v/v based on the total fuel composition, and wherein the gasoline fuel composition meets the EN228 specification .
2. A gasoline fuel composition according to Claim 1 which comprises from 5 to 15% v/v of oxygenated hydrocarbon, based on the gasoline fuel composition.
3. A gasoline fuel composition according to Claim 1 or 2 wherein the gasoline blending components comprise from 30 to 35 vol% of heavy reformate, based on the gasoline fuel composition.
4. A gasoline fuel composition according to Claim 1 or 2 wherein the gasoline blending components comprise from 20 to 25 vol% of heavy reformate, based on the gasoline fuel composition.
5. A gasoline fuel composition according to any of Claims 1 to 4 wherein the gasoline blending components comprise from 5 to 20 vol% of catalytic cracked tops naphtha, based on the gasoline fuel composition.
6. A gasoline fuel composition according to any of Claims 1 to 5 wherein the gasoline blending components comprise from 15 to 30 vol% of alkylate, based on the gasoline fuel composition.
7. A gasoline fuel composition according to any of Claims 1 to 6 wherein the oxygenated hydrocarbon is selected from alcohols, ethers, and mixtures thereof.
8. A gasoline fuel composition according to any of Claims 1 to 7 wherein the oxygenated hydrocarbon is an alcohol.
9. A gasoline fuel composition according to any of Claims 1 to 7 wherein the oxygenated hydrocarbon is an ether.
10. A gasoline fuel composition according to any of Claims 1 to 7 wherein the oxygenated hydrocarbon is a mixture of alcohols and ethers.
11. A gasoline fuel composition according to Claim 8 or 10 wherein the alcohols are selected from methanol, ethanol, propanol, 2-propanol, butanol, tert-butanol, iso-butanol and 2-butanol, and mixtures thereof.
12. A gasoline fuel composition according to Claim 11 wherein the alcohol is ethanol.
13. A gasoline fuel composition according to Claim 12 where the ethanol is present at a level of from 5%v/v to 10%v/v, based on the total fuel composition.
14. A gasoline fuel composition according to Claim 9 or 10 wherein the ether is ETBE.
15. Process for preparing a gasoline fuel composition comprising blending (a) gasoline blending components, (b) renewable naphtha at a level of 10 to 30% v/v and (c) oxygenated hydrocarbon at a level of 20% v/v or less, wherein the gasoline blending components comprise (a) 0 to 30 % v/v alkylate, (b) from 0% v/v to 15% v/v of isomerate; (c) 0 to 20% v/v catalytic cracked tops naphtha; and (d) 20% to 40 % v/v of heavy reformate, wherein the total amount of alkylate, isomerate, catalytic cracked tops and heavy reformate is at least 50% v/v based on the gasoline fuel composition, and wherein the gasoline fuel composition meets the EN228 specification .
16. Use of a gasoline composition according to any of Claims 1 to 14 for fuelling a spark ignition internal combustion engine, such as in a passenger car.
PCT/EP2021/069802 2020-07-15 2021-07-15 Fuel composition WO2022017912A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
MX2023000822A MX2023000822A (en) 2020-07-20 2021-07-15 Fuel composition.
JP2023503159A JP2023534510A (en) 2020-07-20 2021-07-15 fuel composition
CN202180049652.2A CN115812096A (en) 2020-07-20 2021-07-15 Fuel composition
BR112023000164A BR112023000164A2 (en) 2020-07-20 2021-07-15 COMPOSITION OF FUEL GASOLINE, PROCESS, AND USE
US18/001,956 US20230227742A1 (en) 2020-07-15 2021-07-15 Fuel composition
CA3189342A CA3189342A1 (en) 2020-07-20 2021-07-15 Fuel composition
EP21743198.0A EP4182420A1 (en) 2020-07-20 2021-07-15 Fuel composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP20186637.3 2020-07-20
EP20186637 2020-07-20

Publications (1)

Publication Number Publication Date
WO2022017912A1 true WO2022017912A1 (en) 2022-01-27

Family

ID=71728584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/069802 WO2022017912A1 (en) 2020-07-15 2021-07-15 Fuel composition

Country Status (8)

Country Link
US (1) US20230227742A1 (en)
EP (1) EP4182420A1 (en)
JP (1) JP2023534510A (en)
CN (1) CN115812096A (en)
BR (1) BR112023000164A2 (en)
CA (1) CA3189342A1 (en)
MX (1) MX2023000822A (en)
WO (1) WO2022017912A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381307A (en) * 2022-03-22 2022-04-22 玉门祥天新能源产业发展有限公司 Alcohol-based fuel for ignition type internal combustion engine and preparation method thereof
WO2024141399A1 (en) * 2022-12-30 2024-07-04 Shell Internationale Research Maatschappij B.V. Fuel compositions

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310875A1 (en) 1987-09-30 1989-04-12 BASF Aktiengesellschaft Fuels containing a polyether amine for spark ignition engines
US4849572A (en) 1987-12-22 1989-07-18 Exxon Chemical Patents Inc. Process for preparing polybutenes having enhanced reactivity using boron trifluoride catalysts (PT-647)
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
DE3826608A1 (en) 1988-08-05 1990-02-08 Basf Ag FUELS CONTAINING POLYETHERAMINE OR POLYETHERAMINE DERIVATIVES FOR OTTO ENGINES
DE3838918A1 (en) 1988-11-17 1990-05-23 Basf Ag FUELS FOR COMBUSTION ENGINES
DE4142241A1 (en) 1991-12-20 1993-06-24 Basf Ag FUELS FOR OTTO ENGINES
DE4309074A1 (en) 1993-03-20 1994-09-22 Basf Ag Mixtures suitable as fuel additives
WO1994024231A1 (en) 1993-04-22 1994-10-27 Basf Aktiengesellschaft Poly-1-n-alkene amines and motor fuel and lubricant compositions containing them
EP0700985A1 (en) 1994-09-09 1996-03-13 BASF Aktiengesellschaft Fuels, for spark-ignition engines, containing polyether amines
WO1997003946A1 (en) 1995-07-17 1997-02-06 Basf Aktiengesellschaft Process for producing organic nitrogen compounds, special organic nitrogen compounds and mixtures of such compounds and their use as fuel and lubricant additives
DE19620262A1 (en) 1996-05-20 1997-11-27 Basf Ag Process for the preparation of polyalkenamines
EP0831141A1 (en) 1996-09-05 1998-03-25 BP Chemicals (Additives) Limited Detergents for hydrocarbon fuels
US5855629A (en) 1996-04-26 1999-01-05 Shell Oil Company Alkoxy acetic acid derivatives
US6338791B1 (en) * 1997-11-25 2002-01-15 Institut Francais Du Petrole High octane number gasolines and their production using a process associating hydro-isomerization and separation
DE10102913A1 (en) 2001-01-23 2002-07-25 Basf Ag Alkoxylated alkylphenols used as additives for fuel or lubricant compositions, have a long-chain alkyl group with tertiary or quaternary carbon atoms
WO2003076554A1 (en) 2002-03-14 2003-09-18 Shell Internationale Research Maatschappij B.V. Gasoline additives
WO2009050287A1 (en) 2007-10-19 2009-04-23 Shell Internationale Research Maatschappij B.V. Functional fluids for internal combustion engines
US20090300971A1 (en) 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
WO2017093203A1 (en) 2015-11-30 2017-06-08 Shell Internationale Research Maatschappij B.V. Fuel composition
US9885000B2 (en) 2013-04-02 2018-02-06 Upm-Kymmene Corporation Renewable hydrocarbon composition
WO2018069137A1 (en) 2016-10-13 2018-04-19 Neste Oyj Alkylate gasoline composition with renewable naphtha and iso-octane
WO2018234187A1 (en) 2017-06-19 2018-12-27 Neste Oyj Process for the production of renewable base oil, diesel and naphtha

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8747492B2 (en) * 2010-02-02 2014-06-10 Celanese International Corporation Ethanol/fuel blends for use as motor fuels
JP6605203B2 (en) * 2011-12-30 2019-11-13 ビュータマックス・アドバンスド・バイオフューエルズ・エルエルシー Corrosion inhibiting composition for oxygenated gasoline
WO2017209778A2 (en) * 2015-08-13 2017-12-07 Virent, Inc. Production of alternative gasoline fuels

Patent Citations (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0310875A1 (en) 1987-09-30 1989-04-12 BASF Aktiengesellschaft Fuels containing a polyether amine for spark ignition engines
US4877416A (en) 1987-11-18 1989-10-31 Chevron Research Company Synergistic fuel compositions
EP0452328A1 (en) 1987-11-18 1991-10-23 Chevron Res & Tech Synergistic fuel compositions.
US4849572A (en) 1987-12-22 1989-07-18 Exxon Chemical Patents Inc. Process for preparing polybutenes having enhanced reactivity using boron trifluoride catalysts (PT-647)
DE3826608A1 (en) 1988-08-05 1990-02-08 Basf Ag FUELS CONTAINING POLYETHERAMINE OR POLYETHERAMINE DERIVATIVES FOR OTTO ENGINES
EP0356725A1 (en) 1988-08-05 1990-03-07 BASF Aktiengesellschaft Fuels for spark ignition engines containing polyether amines or polyether amine derivatives
DE3838918A1 (en) 1988-11-17 1990-05-23 Basf Ag FUELS FOR COMBUSTION ENGINES
DE4142241A1 (en) 1991-12-20 1993-06-24 Basf Ag FUELS FOR OTTO ENGINES
EP0548617A2 (en) 1991-12-20 1993-06-30 BASF Aktiengesellschaft Fuels for spark ignition engines
DE4309074A1 (en) 1993-03-20 1994-09-22 Basf Ag Mixtures suitable as fuel additives
WO1994024231A1 (en) 1993-04-22 1994-10-27 Basf Aktiengesellschaft Poly-1-n-alkene amines and motor fuel and lubricant compositions containing them
EP0700985A1 (en) 1994-09-09 1996-03-13 BASF Aktiengesellschaft Fuels, for spark-ignition engines, containing polyether amines
WO1997003946A1 (en) 1995-07-17 1997-02-06 Basf Aktiengesellschaft Process for producing organic nitrogen compounds, special organic nitrogen compounds and mixtures of such compounds and their use as fuel and lubricant additives
US5855629A (en) 1996-04-26 1999-01-05 Shell Oil Company Alkoxy acetic acid derivatives
DE19620262A1 (en) 1996-05-20 1997-11-27 Basf Ag Process for the preparation of polyalkenamines
EP0831141A1 (en) 1996-09-05 1998-03-25 BP Chemicals (Additives) Limited Detergents for hydrocarbon fuels
US6338791B1 (en) * 1997-11-25 2002-01-15 Institut Francais Du Petrole High octane number gasolines and their production using a process associating hydro-isomerization and separation
DE10102913A1 (en) 2001-01-23 2002-07-25 Basf Ag Alkoxylated alkylphenols used as additives for fuel or lubricant compositions, have a long-chain alkyl group with tertiary or quaternary carbon atoms
WO2003076554A1 (en) 2002-03-14 2003-09-18 Shell Internationale Research Maatschappij B.V. Gasoline additives
WO2009050287A1 (en) 2007-10-19 2009-04-23 Shell Internationale Research Maatschappij B.V. Functional fluids for internal combustion engines
US20090300971A1 (en) 2008-06-04 2009-12-10 Ramin Abhari Biorenewable naphtha
WO2009148909A2 (en) 2008-06-04 2009-12-10 Syntroleum Corporation Biorenewable naphtha
US9885000B2 (en) 2013-04-02 2018-02-06 Upm-Kymmene Corporation Renewable hydrocarbon composition
WO2017093203A1 (en) 2015-11-30 2017-06-08 Shell Internationale Research Maatschappij B.V. Fuel composition
WO2018069137A1 (en) 2016-10-13 2018-04-19 Neste Oyj Alkylate gasoline composition with renewable naphtha and iso-octane
WO2018234187A1 (en) 2017-06-19 2018-12-27 Neste Oyj Process for the production of renewable base oil, diesel and naphtha

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"CAS", Database accession no. 64741-68-0
ICCT: "AN INTRODUCTION TO PETROLEUM REFINING AND THE PRODUCTION OF ULTRA LOW SULFUR GASOLINE AND DIESEL FUEL", 24 October 2011 (2011-10-24), XP055321911, Retrieved from the Internet <URL:http://www.theicct.org/sites/default/files/publications/ICCT05_Refining_Tutorial_FINAL_R1.pdf> [retrieved on 20161122] *
LIU HAIYAN ET AL: "A scenario-based clean diesel production strategy for China National Petroleum Corporation", PETROLEUM SCIENCE, CHINA UNIVERSITY OF PETROLEUM (BEIJING), HEIDELBERG, vol. 8, no. 2, 28 May 2011 (2011-05-28), pages 229 - 238, XP035979620, ISSN: 1672-5107, [retrieved on 20110528], DOI: 10.1007/S12182-011-0140-2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114381307A (en) * 2022-03-22 2022-04-22 玉门祥天新能源产业发展有限公司 Alcohol-based fuel for ignition type internal combustion engine and preparation method thereof
WO2024141399A1 (en) * 2022-12-30 2024-07-04 Shell Internationale Research Maatschappij B.V. Fuel compositions

Also Published As

Publication number Publication date
US20230227742A1 (en) 2023-07-20
JP2023534510A (en) 2023-08-09
CA3189342A1 (en) 2022-01-27
EP4182420A1 (en) 2023-05-24
MX2023000822A (en) 2023-02-14
CN115812096A (en) 2023-03-17
BR112023000164A2 (en) 2023-01-31

Similar Documents

Publication Publication Date Title
US10294436B2 (en) Fuel composition
US11959033B2 (en) Fuel composition
US10808195B2 (en) Fuel compositions
US20230227742A1 (en) Fuel composition
WO2015193463A1 (en) Fischer tropsch derived diesel fuel formulation
EP2891699B1 (en) Unleaded fuel compositions
EP3371280B1 (en) Fuel composition
US20240182804A1 (en) Fuel compositions
WO2023052286A1 (en) Fuel compositions
EP4330358A1 (en) Fuel compositions
EP3887489A1 (en) Fuel compositions

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21743198

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3189342

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202317002702

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2023503159

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023000164

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023000164

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230104

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021743198

Country of ref document: EP

Effective date: 20230220