技术问题technical problem
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种改进的气溶胶产生装置。The technical problem to be solved by the present invention is to provide an improved aerosol generating device in view of the above-mentioned defects of the prior art.
技术解决方案technical solutions
本发明解决其技术问题所采用的技术方案是:构造一种气溶胶产生装置,包括主机、与所述主机可分离设置的提取器以及设置于所述主机上的加热件,所述提取器内形成有用于收容气溶胶产生基质的收容空间,所述加热件包括用于插入到所述收容空间中的所述气溶胶产生基质内部的加热部;The technical solution adopted by the present invention to solve the technical problem is to construct an aerosol generating device, which includes a main engine, an extractor that can be separated from the main engine, and a heating element disposed on the main engine. an accommodating space for accommodating an aerosol-generating substrate is formed, and the heating member includes a heating portion for inserting the inside of the aerosol-generating substrate into the accommodating space;
其中,所述提取器在第一位置时,所述加热部能够加热所述气溶胶产生基质;所述提取器在第二位置时,所述提取器和所述主机分离,使所述加热部与所述气溶胶产生基质分离。Wherein, when the extractor is in the first position, the heating part can heat the aerosol-generating substrate; when the extractor is in the second position, the extractor and the host are separated, so that the heating part Separated from the aerosol-generating matrix.
在一些实施例中,所述提取器在所述第一位置时,所述提取器与所述主机接触;所述提取器在所述第二位置时,所述加热部至少部分从所述收容空间中脱出。In some embodiments, when the extractor is in the first position, the extractor is in contact with the host; when the extractor is in the second position, the heating part is at least partially removed from the receiving part. out of space.
在一些实施例中,所述收容空间的底部形成有用于供所述气溶胶产生基质抵靠的底壁,所述底壁上开设有用于供所述加热部插入的插口;所述提取器在所述第一位置时,所述加热部能够完全插入到所述收容空间中。In some embodiments, a bottom wall for the aerosol generating substrate to abut against is formed at the bottom of the receiving space, and a socket for inserting the heating part is opened on the bottom wall; In the first position, the heating part can be completely inserted into the accommodation space.
在一些实施例中,所述插口的形状与所述加热部的横截面的形状相对应,所述加热部间隙配合于所述插口中。In some embodiments, the shape of the socket corresponds to the shape of the cross-section of the heating portion, and the heating portion is clearance fit in the socket.
在一些实施例中,所述加热部呈片状或棒状,所述加热部的端部设有利于插入到所述气溶胶产生基质中的尖头导向结构。In some embodiments, the heating portion is in the shape of a sheet or a rod, and the end of the heating portion is provided with a pointed guide structure that facilitates insertion into the aerosol-generating substrate.
在一些实施例中,所述提取器包括第一壳体,所述第一壳体内形成有所述收容空间;所述主机包括第二壳体,所述第一壳体沿纵向可分离地设置所述第二壳体的上方。In some embodiments, the extractor includes a first casing in which the receiving space is formed; the host includes a second casing, and the first casing is detachably arranged in a longitudinal direction above the second shell.
在一些实施例中,所述提取器还包括沿纵向设置于所述第一壳体中的提取管,所述提取管的内壁面界定出所述收容空间。In some embodiments, the extractor further includes an extraction pipe longitudinally disposed in the first housing, and an inner wall surface of the extraction pipe defines the receiving space.
在一些实施例中,所述提取器还包括设置于所述第一壳体底部的第一磁体,所述主机还包括设置于所述第二壳体顶部的第二磁体;所述提取器和所述主机对接时,所述第一磁体与所述第二磁体相互靠近并吸附。In some embodiments, the extractor further includes a first magnet disposed at the bottom of the first housing, and the host further includes a second magnet disposed at the top of the second casing; the extractor and When the host is docked, the first magnet and the second magnet approach and attract each other.
在一些实施例中,所述主机的上端设有罩设于所述加热部外的筒状罩体,所述罩体分别与所述第一壳体的内壁面、所述提取管的外壁面之间具有间隔。In some embodiments, the upper end of the main body is provided with a cylindrical cover body that covers the outside of the heating part, and the cover body is connected to the inner wall surface of the first casing and the outer wall surface of the extraction pipe respectively. space in between.
在一些实施例中,所述提取管由所述第一壳体的顶壁一体向下延伸形成,或者所述提取管与所述第一壳体分别独立制造并且所述提取管与所述第一壳体的顶壁组装在一起。In some embodiments, the extraction pipe is integrally formed by extending downward from the top wall of the first casing, or the extraction pipe and the first casing are separately manufactured and the extraction pipe and the first casing are separately manufactured. The top walls of a housing are assembled together.
在一些实施例中,所述提取管包括固定于所述第一壳体上的固定管以及沿轴向可滑动地套接于所述固定管下端的活动管,所述固定管和所述活动管的内壁面共同界定出所述收容空间,所述活动管的底部形成所述底壁和所述插口。In some embodiments, the extraction pipe includes a fixed pipe fixed on the first casing and a movable pipe slidably sleeved on the lower end of the fixed pipe in the axial direction, the fixed pipe and the movable pipe The inner wall surfaces of the tubes jointly define the receiving space, and the bottom of the movable tube forms the bottom wall and the socket.
在一些实施例中,所述固定管的下端向外延伸形成有凸台,所述活动管的顶部向内延伸形成有凸缘,所述凸缘与所述凸台相配合,以将所述凸台卡止于所述凸缘的下方。In some embodiments, the lower end of the fixed tube extends outward to form a boss, and the top of the movable tube extends inward to form a flange, and the flange is matched with the boss to connect the The boss is locked under the flange.
在一些实施例中,所述主机包括套接部,所述提取器的底部套设于所述套接部外,所述套接部的轴向长度小于等于所述活动管相对于所述固定管的滑动行程。In some embodiments, the host includes a socket part, the bottom of the extractor is sheathed outside the socket part, and the axial length of the socket part is less than or equal to the fixed relative to the movable tube Sliding stroke of the tube.
在一些实施例中,所述主机的上端外部形成有轴向高度小于所述活动管相对于所述固定管的滑动行程的第一卡接部,所述提取器的底端内部形成有与所述第一卡接部相互卡接配合的第二卡接部。In some embodiments, a first clamping portion is formed on the outside of the upper end of the main body, and the axial height is smaller than the sliding stroke of the movable tube relative to the fixed tube, and the inside of the bottom end of the extractor is formed with The first engaging portions are snap-fitted with each other and are second engaging portions.
在一些实施例中,所述主机包括嵌置于所述第二壳体顶部的基部、由所述基部的顶壁向上延伸的套接部以及由所述套接部的顶壁向上延伸的罩体,所述套接部的外壁面形成所述第一卡接部,所述罩体罩设于所述加热部外且分别与所述第一壳体的内壁面、所述提取管的外壁面之间具有间隔;In some embodiments, the host includes a base embedded in the top of the second housing, a socket extending upward from a top wall of the base, and a cover extending upward from the top wall of the socket The outer wall surface of the socket part forms the first clamping part, and the cover body is covered outside the heating part and is respectively connected with the inner wall surface of the first casing and the outer surface of the extraction pipe. There is a space between the walls;
所述提取器还包括嵌置于所述第一壳体底部的第一磁体,所述第一磁体形成所述第二卡接部,所述主机内对应于所述第一磁体设置有第二磁体。The extractor further includes a first magnet embedded in the bottom of the first housing, the first magnet forms the second clamping portion, and a second magnet is provided in the host corresponding to the first magnet. magnet.
在一些实施例中,所述提取器和所述主机对接后,所述活动管的下端面抵靠于所述套接部的顶壁上,所述固定管的下端面抵靠于所述底壁上。In some embodiments, after the extractor is docked with the host, the lower end surface of the movable tube abuts against the top wall of the socket part, and the lower end surface of the fixed tube abuts against the bottom on the wall.
在一些实施例中,所述主机还包括嵌置于所述第二壳体顶部的基座组件以及插装于所述基座组件上的所述加热件,所述加热件的上端形成所述加热部。In some embodiments, the host further includes a base assembly embedded in the top of the second housing and the heating element inserted on the base assembly, and the upper end of the heating element forms the heating section.
在一些实施例中,所述基座组件中形成有围绕所述加热件并与所述收容空间相连通的气流通道,所述第一壳体和/或所述第二壳体上开设有与所述气流通道相连通的至少一个进气孔。In some embodiments, an airflow channel surrounding the heating element and communicating with the receiving space is formed in the base assembly, and the first casing and/or the second casing are provided with At least one air intake hole communicated with the air flow channel.
有益效果beneficial effect
实施本发明至少具有以下有益效果:提取器和主机对接后,加热部能够对气溶胶产生基质进行加热;加热完成后,可将提取器和主机分离,使加热部与气溶胶产生基质分离,从而可便于快捷地将气溶胶产生基质从提取器中拔出且不损坏气溶胶产生基质,避免气溶胶产生基质上的介质残留在气溶胶产生装置中。The implementation of the present invention has at least the following beneficial effects: after the extractor and the host are connected, the heating part can heat the aerosol-generating matrix; after the heating is completed, the extractor and the host can be separated, so that the heating part is separated from the aerosol-generating matrix, thereby The aerosol-generating substrate can be easily and quickly pulled out of the extractor without damaging the aerosol-generating substrate, and preventing the medium on the aerosol-generating substrate from remaining in the aerosol-generating device.
本发明的实施方式Embodiments of the present invention
为了对本发明的技术特征、目的和效果有更加清楚的理解,现对照附图详细说明本发明的具体实施方式。In order to have a clearer understanding of the technical features, objects and effects of the present invention, the specific embodiments of the present invention will now be described in detail with reference to the accompanying drawings.
图1-2所示为本发明第一实施例中的气溶胶产生装置,其大致可呈圆柱状并包括提取器1、沿纵向可分离地设置于提取器1上的主机2以及设置于主机2上的加热件22。该气溶胶产生装置可通过低温加热不燃烧的方式加热气溶胶产生基质3,形成可供用户抽吸的烟雾。可以理解地,该气溶胶产生装置并不局限于呈圆柱状,其也可以呈方形柱状等其他形状。在本实施方式中,气溶胶产生基质3可以为烟支。1-2 shows the aerosol generating device in the first embodiment of the present invention, which can be roughly cylindrical and includes an extractor 1, a main body 2 detachably disposed on the extractor 1 along the longitudinal direction, and a main body 2 disposed on the main body 2 on the heating element 22. The aerosol-generating device can heat the aerosol-generating substrate 3 in a low-temperature heating-not-combustion manner to form smoke that can be inhaled by a user. It can be understood that the aerosol generating device is not limited to be in a cylindrical shape, and it can also be in other shapes such as a square column. In this embodiment, the aerosol generating substrate 3 may be a cigarette.
提取器1在一些实施例中可包括第一壳体11以及呈圆环状并紧密地嵌置于第一壳体11底部的第一磁体13。第一壳体11的内壁面界定出一个用于收容气溶胶产生基质3的收容空间110,收容空间110的顶部敞开,收容空间110的底部形成有一底壁112,底壁112上开设有可供加热件22插入的插口111。气溶胶产生基质3可从收容空间110的顶部敞开口处插入到收容空间110中并抵靠在底壁112上。In some embodiments, the extractor 1 may include a first casing 11 and a first magnet 13 which is annular and tightly embedded in the bottom of the first casing 11 . The inner wall surface of the first housing 11 defines an accommodation space 110 for accommodating the aerosol generating substrate 3. The top of the accommodation space 110 is open, and a bottom wall 112 is formed at the bottom of the accommodation space 110. The socket 111 into which the heating element 22 is inserted. The aerosol-generating substrate 3 can be inserted into the receiving space 110 from the opening at the top of the receiving space 110 and abut against the bottom wall 112 .
主机2在一些实施例中可包括第二壳体21、加热件22、座体24以及第二磁体23。第二壳体21内可设置有电池和电路板等电子元器件,用于给加热件22供电以及控制整个气溶胶产生装置的开启或关闭等操作。In some embodiments, the host 2 may include a second casing 21 , a heating element 22 , a seat 24 and a second magnet 23 . The second housing 21 may be provided with electronic components such as a battery and a circuit board, which are used to supply power to the heating element 22 and control operations such as turning on or off the entire aerosol generating device.
座体24可沿纵向嵌置于第二壳体21的上端,其包括圆筒状侧壁2411以及一体结合于侧壁2411顶部的圆板状的顶壁2412。侧壁2411的周向两侧分别向外凸出形成有一个卡台2413,第二壳体21的内壁面对应卡台2413凹陷形成有卡槽211,卡台2413、卡槽211相互扣合,从而将座体24扣合固定于第二壳体21内。座体24和第二壳体21之间采用插接和内扣连接的方式固定,方便可靠,且使得主机2的外部无扣位外露,更加美观。第二磁体23呈圆环状,其可紧密地嵌置于侧壁2411内并抵靠于座体24的下端面上。第一磁体13、第二磁体23可以为相互吸引的磁铁,或者也可以是其他具有磁性的元件(如铁钴镍)。The seat body 24 can be embedded in the upper end of the second casing 21 in the longitudinal direction, and includes a cylindrical side wall 2411 and a circular plate-shaped top wall 2412 integrally combined with the top of the side wall 2411 . A clamping table 2413 is formed on both sides of the side wall 2411 in the circumferential direction, respectively protruding outward. The inner wall surface of the second housing 21 is recessed to form a clamping groove 211 corresponding to the clamping table 2413. The clamping table 2413 and the clamping groove 211 are mutually buckled. Therefore, the seat body 24 is fastened and fixed in the second casing 21 . The seat body 24 and the second shell 21 are fixed by means of plugging and inner buckle connection, which is convenient and reliable, and makes the outside of the host 2 not exposed without buckles, which is more beautiful. The second magnet 23 is annular, and can be tightly embedded in the side wall 2411 and abut against the lower end surface of the base body 24 . The first magnet 13 and the second magnet 23 may be magnets that attract each other, or may be other magnetic elements (eg, iron cobalt nickel).
加热件22沿纵向嵌置于顶壁2412上,其可包括伸入到收容空间110中用于加热气溶胶产生基质3的加热部221。加热部221可从收容空间110底部的插口111伸入到收容空间110中并插入到气溶胶产生基质3内,对气溶胶产生基质3进行烘烤加热。加热件22可以为片状或棒状,加热件22的上端可设有尖头导向结构,利于插入到气溶胶产生基质3中。插口111的形状可与加热部221的横截面的形状相对应,且插口111的横截面尺寸可略大于加热部221的横截面尺寸,使得加热部221与插口111间隙配合,以利于加热部221的插入和退出,并可使加热部221与气溶胶产生基质3分离时,底壁112可通过摩擦作用刮去加热部221上的残余物质,例如粘结在加热部221上的加热后的气溶胶产成基质,对加热部221进行清洁。在本实施例中,加热件22为片状,插口111为横截面尺寸略大于加热部221的横截面尺寸的矩形。可以理解地,在其他实施例中,加热件22也可以以可拆卸可分离的方式设置于主机2上。The heating element 22 is longitudinally embedded on the top wall 2412 , and may include a heating portion 221 extending into the receiving space 110 for heating the aerosol-generating substrate 3 . The heating part 221 can extend into the receiving space 110 from the socket 111 at the bottom of the receiving space 110 and be inserted into the aerosol generating substrate 3 to bake and heat the aerosol generating substrate 3 . The heating element 22 can be in the shape of a sheet or a rod, and the upper end of the heating element 22 can be provided with a pointed guide structure, which is convenient for being inserted into the aerosol generating substrate 3 . The shape of the socket 111 may correspond to the shape of the cross-section of the heating part 221 , and the cross-sectional dimension of the socket 111 may be slightly larger than that of the heating part 221 , so that the heating part 221 and the socket 111 are clearance fit to facilitate the heating part 221 When the heating part 221 is inserted and withdrawn, and the heating part 221 can be separated from the aerosol generating substrate 3 , the bottom wall 112 can scrape off the residual substances on the heating part 221 by friction, such as the heated gas adhering to the heating part 221. The sol is formed into a matrix, and the heating part 221 is cleaned. In this embodiment, the heating element 22 is in the shape of a sheet, and the socket 111 is a rectangle whose cross-sectional dimension is slightly larger than that of the heating portion 221 . It can be understood that, in other embodiments, the heating element 22 can also be disposed on the host 2 in a detachable and detachable manner.
该提取器1具有与主机2对接的第一位置以及与主机2分离的第二位置。当提取器1和主机2对接时,第一壳体11、第二壳体21相互对接并抵靠在一起,第一壳体11底部的第一磁体13与第二壳体21顶部的第二磁体23相互靠近并吸附,通过第一磁体13、第二磁体23之间的吸力将提取器1和主机2相互固定,加热件22从提取器1底部的插口111伸入,使得加热部221完全伸入到收容空间110中。气溶胶产生基质3从提取器1顶部装入,主机2中的电池为加热件22供电,加热件22在通电发热后对气溶胶产生基质3进行烘烤加热(此时提取器1与主机2位于对接的第一位置)。The extractor 1 has a first position docked with the host 2 and a second position separated from the host 2 . When the extractor 1 and the host 2 are docked, the first housing 11 and the second housing 21 are butted against each other and abut together, the first magnet 13 at the bottom of the first housing 11 and the second housing 21 at the top The magnets 23 are close to each other and attract each other. The extractor 1 and the host 2 are fixed to each other by the suction force between the first magnet 13 and the second magnet 23. Extend into the receiving space 110 . The aerosol generating substrate 3 is loaded from the top of the extractor 1, and the battery in the host 2 supplies power to the heating element 22. in the first position of the docking).
当气溶胶产生基质3被加热完后,通过向上拉动提取器1,第一磁体13即与第二磁体23相远离,提取器1与主机2即刻分离(此时提取器1与主机2位于分离的第二位置),此时,提取器1与主机2之间无连接,提取器1经由收容空间110的底壁112带动气溶胶产生基质3向上运动,使得加热部221从气溶胶产生基质3中退出,同时通过底壁112刮擦加热部221外部粘结的残余物质。When the aerosol-generating substrate 3 is heated, by pulling the extractor 1 upward, the first magnet 13 is separated from the second magnet 23, and the extractor 1 and the host 2 are immediately separated (at this time, the extractor 1 and the host 2 are separated The second position), at this time, there is no connection between the extractor 1 and the host 2, and the extractor 1 drives the aerosol-generating substrate 3 to move upward through the bottom wall 112 of the accommodation space 110, so that the heating part 221 generates the aerosol from the aerosol-generating substrate 3. At the same time, the residual substances adhered to the outside of the heating part 221 are scraped through the bottom wall 112 .
图3-4所示为本发明第二实施例中的气溶胶产生装置,该实施例与第一实施例的主要区别在于,在本实施例中,第一壳体11的顶壁向下延伸形成有一圆管状提取管12,提取管12的内侧壁界定出用于收容气溶胶产生基质3的收容空间110。此外,在本实施例中,座体24可包括嵌置于第二壳体21中的基部241以及由基部241的顶壁2412向上延伸形成的圆筒状的罩体243。罩体243罩设于加热件22外,可以在提取器1和主机2对接时防止因第一壳体11横向移动而抵压破坏加热件22。罩体243设置于第一壳体11和提取管12之间,并分别与第一壳体11的内壁面、提取管12的外壁面之间具有间隔。在一些实施例中,罩体243与第一壳体11的内壁面、提取管12的外壁面之间的间隔的距离分别可以为0.5~5mm,优选为3~5mm。3-4 show the aerosol generating device in the second embodiment of the present invention. The main difference between this embodiment and the first embodiment is that, in this embodiment, the top wall of the first housing 11 extends downward. A circular tubular extraction pipe 12 is formed, and the inner side wall of the extraction pipe 12 defines a receiving space 110 for receiving the aerosol generating substrate 3 . In addition, in this embodiment, the base body 24 may include a base portion 241 embedded in the second housing 21 and a cylindrical cover body 243 formed by extending upward from the top wall 2412 of the base portion 241 . The cover body 243 is disposed outside the heating element 22 to prevent the heating element 22 from being pressed and damaged due to the lateral movement of the first casing 11 when the extractor 1 and the host 2 are docked. The cover body 243 is disposed between the first casing 11 and the extraction pipe 12 , and has a space between the inner wall surface of the first casing 11 and the outer wall surface of the extraction pipe 12 , respectively. In some embodiments, the distance between the cover body 243 and the inner wall surface of the first housing 11 and the outer wall surface of the extraction pipe 12 may be respectively 0.5-5 mm, preferably 3-5 mm.
图5-7所示为本发明第三实施例中的气溶胶产生装置,该实施例与第二实施例的主要区别在于,在本实施例中,提取管12包括相互套接并可沿轴向相互滑动的固定管121和活动管122,固定管121和活动管122的内壁面共同界定出用于收容气溶胶产生基质3的收容空间110。5-7 show the aerosol generating device in the third embodiment of the present invention. The main difference between this embodiment and the second embodiment is that, in this embodiment, the extraction pipes 12 are sleeved with each other and can be along the axis. The fixed tube 121 and the movable tube 122 sliding toward each other, and the inner wall surfaces of the fixed tube 121 and the movable tube 122 together define a receiving space 110 for receiving the aerosol generating substrate 3 .
具体地,在本实施例中,固定管121以上端紧密地嵌置于第一壳体11的顶壁上,并可通过螺纹连接、卡扣连接等方式固定于第一壳体11上。活动管122可沿轴向上下滑动地套接于固定管121的下端外,活动管122的底壁形成收容空间110的底壁112。活动管122的顶部向内延伸形成有凸缘1221,固定管121的下端外圈向外延伸形成有凸台1211,凸缘1221、凸台1211相配合,可避免固定管121和活动管122在相互滑动时相脱离。在一些实施例中,活动管122相对于固定管121可滑动的行程为2.5~5.5mm,例如4.5mm左右。Specifically, in this embodiment, the upper end of the fixing tube 121 is tightly embedded on the top wall of the first housing 11 and can be fixed on the first housing 11 by means of screw connection, snap connection, or the like. The movable tube 122 is sleeved outside the lower end of the fixed tube 121 so as to slide up and down in the axial direction, and the bottom wall of the movable tube 122 forms the bottom wall 112 of the accommodating space 110 . The top of the movable tube 122 extends inward to form a flange 1221, and the outer ring of the lower end of the fixed tube 121 extends outward to form a boss 1211. The flange 1221 and the boss 1211 cooperate to avoid the fixed tube 121 and the movable tube 122 disengage as they slide against each other. In some embodiments, the slidable stroke of the movable tube 122 relative to the fixed tube 121 is 2.5-5.5 mm, for example, about 4.5 mm.
主机2的上端外部可形成有第一卡接部,提取器1的底端内部形成有与第一卡接部相互卡接配合的第二卡接部,其中,第一卡接部的轴向长度小于等于活动管122相对于固定管121的滑动行程。具体地,在本实施例中,座体24可包括嵌置于第二壳体21中的基部241、由基部241的顶壁向上延伸形成的套接部242以及由套接部242的顶壁向上延伸形成的罩体243,基部241、套接部242、罩体243的内径和外径均依次递减。套接部242的外壁面形成第一卡接部,第一磁体13形成第二卡接部,当提取器1和主机2组装后,第一磁体13紧密地套接于套接部242外,从而可提高提取器1和主机2之间结合的稳固性。套接部242的轴向长度小于活动管122相对于固定管121的滑动行程。在一些实施例中,套接部242的轴向长度可以为1~2.5mm,优选为2mm左右。在其他实施例中,提取器1和主机2之间也可不设置有第一磁体13、第二磁体23,通过提取器1和主机2相套接形成两者之间的连接,例如可将第一壳体11的底部直接套接于套接部242外,此时,第二卡接部可由第一壳体11底端的内壁面向内延伸形成。A first clamping portion may be formed on the outside of the upper end of the host 2, and a second clamping portion is formed inside the bottom end of the extractor 1 to engage with the first clamping portion. The axial direction of the first clamping portion is The length is less than or equal to the sliding stroke of the movable tube 122 relative to the fixed tube 121 . Specifically, in this embodiment, the base body 24 may include a base portion 241 embedded in the second housing 21 , a socket portion 242 formed by extending upward from a top wall of the base portion 241 , and a top wall of the socket portion 242 . For the cover body 243 formed by extending upward, the inner diameter and the outer diameter of the base portion 241 , the socket portion 242 , and the cover body 243 decrease in sequence. The outer wall surface of the socket part 242 forms the first clamping part, and the first magnet 13 forms the second clamping part. After the extractor 1 and the host 2 are assembled, the first magnet 13 is tightly socketed outside the socket part 242, Thus, the stability of the combination between the extractor 1 and the host 2 can be improved. The axial length of the socket portion 242 is smaller than the sliding stroke of the movable tube 122 relative to the fixed tube 121 . In some embodiments, the axial length of the socket portion 242 may be 1 to 2.5 mm, preferably about 2 mm. In other embodiments, the first magnet 13 and the second magnet 23 may not be provided between the extractor 1 and the host 2, and the connection between the extractor 1 and the host 2 may be formed by socketing the two. The bottom of a housing 11 is directly sleeved outside the sleeve portion 242 , and at this time, the second engaging portion can be formed by extending inward from the inner wall of the bottom end of the first housing 11 .
套接部242上开设有可供加热部221穿过的穿孔2421,加热部221可依次穿过穿孔2421、插口111向上插入到气溶胶产生基质3中。在本实施例中,穿孔2421的横截面形状和尺寸与插口111的横截面形状和尺寸一致,在加热部221与气溶胶产生基质3分离时,穿孔2421的孔壁也可通过摩擦作用刮去加热部221上的残余物质。在其他实施例中,穿孔2421的横截面尺寸也可大于插口111的横截面尺寸。在另一些实施例中,穿孔2421的横截面形状也可与插口111的横截面形状不同。The socket part 242 is provided with a through hole 2421 through which the heating part 221 can pass, and the heating part 221 can be inserted into the aerosol generating substrate 3 upward through the through hole 2421 and the socket 111 in sequence. In this embodiment, the cross-sectional shape and size of the perforation 2421 are consistent with the cross-sectional shape and size of the socket 111. When the heating part 221 is separated from the aerosol-generating substrate 3, the hole wall of the perforation 2421 can also be scraped off by friction. Residual substances on the heating part 221 . In other embodiments, the cross-sectional size of the through hole 2421 may also be larger than the cross-sectional size of the socket 111 . In other embodiments, the cross-sectional shape of the through hole 2421 may also be different from the cross-sectional shape of the socket 111 .
以活动管122相对于固定管121的滑动行程为4.5mm、套接部242的轴向长度为2mm为例,如图5所示,当提取器1处于第一位置时,提取器1和主机2相互对接,此时,提取器1的第一磁体13套接于主机2的套接部242外并与第二磁体23相吸,活动管122的下端面抵靠于套接部242的顶壁上,固定管121的下端面抵靠于活动管122的底壁112上,气溶胶产生基质3从固定管121的顶部装入至抵靠于活动管122的底壁112上,加热件22的加热部221从活动管122底部的插口111伸入并插入到气溶胶产生基质3中,在通电发热后对气溶胶产生基质3进行烘烤加热。Taking the sliding stroke of the movable tube 122 relative to the fixed tube 121 as 4.5 mm and the axial length of the socket portion 242 as 2 mm as an example, as shown in FIG. 5 , when the extractor 1 is in the first position, the extractor 1 and the host 2 are butted against each other, at this time, the first magnet 13 of the extractor 1 is sleeved outside the sleeve part 242 of the host 2 and attracts the second magnet 23, and the lower end surface of the movable tube 122 abuts against the top of the sleeve part 242 On the wall, the lower end face of the fixed tube 121 abuts on the bottom wall 112 of the movable tube 122, the aerosol generating substrate 3 is loaded from the top of the fixed tube 121 to the bottom wall 112 against the movable tube 122, the heating element 22 The heating part 221 extends from the socket 111 at the bottom of the movable tube 122 and is inserted into the aerosol-generating substrate 3 to bake and heat the aerosol-generating substrate 3 after being electrified and heated.
当气溶胶产生基质3加热完后,先向上拉动第一壳体11,第一壳体11带动固定管121、第一磁体13向上运动,当向上运动的位移超过2mm时,第一磁体13与套接部242分离,从而使提取器1与主机2分离,此时,由于固定管121上的凸台1211还未上移至与活动管122上的凸缘1221接触,活动管122、气溶胶产生基质3、加热件22相对保持静止;如图6所示,继续向上拉动第一壳体11至位移达到4.5mm时,凸台1211向上移动至抵靠于凸缘1221上,此时,继续拉动第一壳体11,固定管121将带动活动管122一起向上运动,进而经由活动管122的底壁112带动气溶胶产生基质3向上运动;然后,继续向上拉动第一壳体11,使得气溶胶产生基质3与加热部221分离,如图7所示,同时还可通过底壁112刮擦加热部221外部粘结的残余物质。After the aerosol-generating substrate 3 is heated, the first housing 11 is first pulled upward, and the first housing 11 drives the fixing tube 121 and the first magnet 13 to move upward. When the upward displacement exceeds 2 mm, the first magnet 13 and the first magnet 13 move upward. The socket part 242 is separated, so that the extractor 1 is separated from the host 2. At this time, since the boss 1211 on the fixed tube 121 has not moved up to contact the flange 1221 on the movable tube 122, the movable tube 122, aerosol The substrate 3 and the heating element 22 remain relatively stationary; as shown in FIG. 6 , continue to pull the first housing 11 upward until the displacement reaches 4.5 mm, the boss 1211 moves upward to abut on the flange 1221, and at this time, continue to Pull the first shell 11, the fixed tube 121 will drive the movable tube 122 to move upward together, and then drive the aerosol generating substrate 3 to move upward through the bottom wall 112 of the movable tube 122; then, continue to pull the first shell 11 upward, so that the gas The sol-generating substrate 3 is separated from the heating part 221 , as shown in FIG. 7 , and at the same time, the bottom wall 112 can scrape the residual substances adhered outside the heating part 221 .
如图8所示,该气溶胶产生装置在本实施例中还可包括嵌置于座体24中的内座25,内座25与座体24共同形成用于供加热件22插装并支撑提取器1的基座组件。第二磁体23可紧密地嵌置于内座25中,第一磁体13套设于套接部242外并与基部241的顶面之间形成有通气间隙130。内座25的上端面与套接部242的下端面之间形成有一围绕加热件22的气流通道240,套接部242的底部侧壁的两相对侧上分别开设有一与气流通道240相连通的通气孔2420。第一壳体11的侧壁底部的两相对侧分别形成有一进气孔120,外部空气可依次经由进气孔120、通气间隙130、通气孔2420进入到气流通道240中给基座组件降温,然后将带有热量的空气依次经由穿孔2421、插口111带入到收容空间110中的气溶胶产生基质3内,预加热后的空气还可提高雾化效率,还可使得气溶胶产生基质3内的温度分布更加均匀。As shown in FIG. 8 , in this embodiment, the aerosol generating device may further include an inner seat 25 embedded in the seat body 24 , and the inner seat 25 and the seat body 24 are jointly formed for inserting and supporting the heating element 22 Base assembly for extractor 1. The second magnet 23 can be tightly embedded in the inner seat 25 , and the first magnet 13 is sleeved outside the socket portion 242 and forms a ventilation gap 130 with the top surface of the base portion 241 . An air flow channel 240 surrounding the heating element 22 is formed between the upper end surface of the inner seat 25 and the lower end surface of the socket part 242 , and two opposite sides of the bottom side wall of the socket part 242 are respectively provided with a channel 240 communicating with the air flow channel 240 . Vent 2420. Two opposite sides of the bottom of the side wall of the first housing 11 are respectively formed with an air inlet 120, and external air can enter the air passage 240 through the air inlet 120, the ventilation gap 130, and the ventilation hole 2420 in sequence to cool the base assembly. Then, the air with heat is brought into the aerosol generating matrix 3 in the receiving space 110 through the perforation 2421 and the socket 111 in turn. The preheated air can also improve the atomization efficiency, and can also make the aerosol generating matrix 3 The temperature distribution is more uniform.
可以理解地,在其他实施例中,进气孔120也可开设于第二壳体21的侧壁或底壁上。第一磁体13的底面与基部241的顶面之间也可不形成有通气间隙130,只要气流可以从基座组件的表面流过给基座组件降温即可,例如,进气孔120也可开设于第二壳体21上并位于座体24和内座25之间,然后经由座体24和内座25之间的间隙进入到气流通道240中。气流通道240也可不围绕加热件22,例如,进气孔120也可开设于第二壳体21的底部,气流通道240沿纵向延伸且与加热件22的纵向平行。It can be understood that, in other embodiments, the air inlet hole 120 can also be opened on the side wall or the bottom wall of the second housing 21 . The ventilation gap 130 may not be formed between the bottom surface of the first magnet 13 and the top surface of the base 241 , as long as the air flow can flow through the surface of the base assembly to cool the base assembly, for example, the air intake hole 120 can also be opened It is placed on the second housing 21 between the seat body 24 and the inner seat 25 , and then enters the airflow channel 240 through the gap between the seat body 24 and the inner seat 25 . The airflow channel 240 may not surround the heating element 22 , for example, the air inlet hole 120 may also be opened at the bottom of the second housing 21 , and the airflow channel 240 extends longitudinally and is parallel to the longitudinal direction of the heating element 22 .
可以理解地,上述各技术特征可以任意组合使用而不受限制。It can be understood that the above technical features can be used in any combination without limitation.
以上实施例仅表达了本发明的优选实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制;应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,可以对上述技术特点进行自由组合,还可以做出若干变形和改进,这些都属于本发明的保护范围;因此,凡跟本发明权利要求范围所做的等同变换与修饰,均应属于本发明权利要求的涵盖范围。The above examples only represent the preferred embodiments of the present invention, and their descriptions are more specific and detailed, but they should not be construed as limitations on the scope of the present invention; it should be pointed out that for those of ordinary skill in the art, Under the premise of not departing from the concept of the present invention, the above-mentioned technical features can be freely combined, and some deformations and improvements can also be made, and these all belong to the protection scope of the present invention; therefore, all equivalent transformations made with the scope of the claims of the present invention All modifications and modifications shall fall within the scope of the claims of the present invention.