Nothing Special   »   [go: up one dir, main page]

WO2022004170A1 - 物品の製造装置、物品の製造方法、プログラム、記録媒体 - Google Patents

物品の製造装置、物品の製造方法、プログラム、記録媒体 Download PDF

Info

Publication number
WO2022004170A1
WO2022004170A1 PCT/JP2021/018997 JP2021018997W WO2022004170A1 WO 2022004170 A1 WO2022004170 A1 WO 2022004170A1 JP 2021018997 W JP2021018997 W JP 2021018997W WO 2022004170 A1 WO2022004170 A1 WO 2022004170A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
bonding
bonding stage
substrate
unit
Prior art date
Application number
PCT/JP2021/018997
Other languages
English (en)
French (fr)
Inventor
智史 塩田
亮太 岡崎
昭宏 林
Original Assignee
キヤノン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021066270A external-priority patent/JP2022013676A/ja
Application filed by キヤノン株式会社 filed Critical キヤノン株式会社
Publication of WO2022004170A1 publication Critical patent/WO2022004170A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the groups H01L21/18 - H01L21/326 or H10D48/04 - H10D48/07 e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers

Definitions

  • the present invention relates to an apparatus and a method for mounting, for example, a semiconductor chip or the like on a substrate or the like.
  • the present invention relates to a method for heating a work when a work such as a substrate is conveyed, set on a bonding stage, and die-bonded.
  • a semiconductor package or a circuit package is manufactured by the following procedure, for example. First, a large number of integrated circuits are formed on a semiconductor wafer, and the semiconductor wafer is cut and divided into semiconductor chips (dies) in a dicing process. Then, in the bonding process, electronic components such as semiconductor chips (dies) are bonded to workpieces such as lead frames and circuit boards.
  • the device used in this bonding process is a so-called die bonder die bonding device.
  • a die bonder is a device that places electronic components on a lead frame or substrate and bonds them using a bonding material such as solder, gold, or resin. In some cases, it is placed on an electronic component that has already been bonded to the substrate. It can also be used to mount and bond other electronic components.
  • the substrate, etc. When bonding electronic components to the surface of a substrate, etc. using a die bonder, the substrate, etc. is transported to the bonding stage and set. Then, the electronic component is picked up by using a suction nozzle called a collet and placed at a predetermined position to be bonded. Depending on the type of bonding material, the substrate or the like on the bonding stage is heated for bonding.
  • a heating method for heating a substrate or the like on a bonding stage is important in order to improve the throughput of the bonding work and the bonding quality such as the accuracy of the bonding position and the bonding strength.
  • the bonding stage when sequentially bonding dies to a plurality of positions on a substrate, the bonding stage is first lowered to separate it from the substrate, and the first die is bonded. Transport the board to the working position. When the transfer is complete, the bonding stage is raised to heat the substrate and bond the first die. After the bonding of the first die is completed, the bonding stage is lowered to stop the heating of the substrate, and the substrate is transferred to the work position where the next die is bonded while dissipating heat. When the transfer is complete, the bonding stage is raised to reheat the substrate and bond the next die. Hereinafter, this procedure is repeated until the bonding of all the dies is completed.
  • the substrate mounting apparatus disclosed in Patent Document 2 includes a carrier that has a heat capacity of a predetermined value or more and holds a substrate supplied from the substrate supply means, and a carrier heating transfer means that heats the carrier while transporting the carrier. ing. Then, the carrier heating transfer means transports the carrier while heating it from the substrate transport start position, and stops heating at a predetermined position. However, since the heat is stored in the carrier having a large heat capacity, the substrate is still transported. Continues to be heated. Electronic components are dropped onto a substrate that has moved to a predetermined working position and fused by ultrasonic vibration.
  • a carrier having a large heat capacity is heated in a predetermined period at the initial stage of transportation, and thereafter, the substrate is heated by the residual heat accumulated in the carrier, but the temperature of the substrate is high during the bonding operation. It was difficult to control with precision. In addition, since the temperature of carriers having a large heat capacity is raised, energy consumption may increase. Therefore, there has been a demand for a device that can keep the throughput of bonding work high and precisely control the temperature of the substrate.
  • a first aspect of the present invention is a supply unit that supplies a work, a work that can be held and moved from a work receiving position to a bonding work position, and a range corresponding to the position and / or size of the work can be heated.
  • a mounting unit for mounting mounting components is provided, and while the work is moved from the supply unit to the bonding work position, preheating of the work is started before the work reaches the bonding work position. However, during the bonding work at the bonding work position, the bonding stage that holds the work controls the heating of the work, which is an article manufacturing apparatus.
  • a second aspect of the present invention is to heat a supply unit that supplies the work, a range that can hold the work and move from the work receiving position to the bonding work position, and a range corresponding to the position and / or size of the work.
  • a heating start step of starting preheating of the work before reaching the position, and a heating control in which the bonding stage holding the work controls heating of the work during the bonding work at the bonding work position.
  • a method of manufacturing an article comprising a process.
  • FIG. A side view of the substrate transfer portion and the bonding stage according to the embodiment as viewed along the + X direction.
  • the plan view of the bonding stage and the moving mechanism thereof which concerns on embodiment.
  • the front view of the bonding stage and the moving mechanism thereof which concerns on embodiment.
  • the schematic plan view for demonstrating the temperature control mechanism of the bonding stage which concerns on embodiment.
  • the schematic front view for demonstrating the temperature control mechanism of the bonding stage which concerns on embodiment.
  • the schematic plan view for demonstrating the adsorption mechanism of the bonding stage which concerns on embodiment.
  • the schematic plan view which shows the operation position of the die mounting part at the time of bonding to a plurality of die mounting areas.
  • An operation time chart showing the operation of each part when the substrate after the bonding is completed is housed in the board housing part.
  • the schematic perspective view of the die bonder which concerns on Embodiment 2.
  • FIG. 1 is a schematic perspective view for explaining a die bonder according to the present embodiment.
  • the XYZ coordinate system which is a Cartesian coordinate system, may be referred to, but the X axis is the direction in which the substrate is horizontally conveyed (from left to right in FIG. 1), and the Y axis is a horizontal plane.
  • the Z-axis is the vertical direction (direction opposite to gravity).
  • the direction parallel to the X axis may be referred to as the X direction, the same direction as the substrate transport direction (arrow of the X axis) in the X direction may be referred to as the + X direction, and the direction opposite to the + X direction may be referred to as the ⁇ X direction.
  • the direction parallel to the Y axis may be referred to as the Y direction, the same direction as the arrow on the Y axis in the Y direction may be referred to as the + Y direction, and the direction opposite to the + Y direction may be referred to as the ⁇ Y direction.
  • the direction parallel to the Z axis is the Z direction
  • the vertically upward direction (arrow on the Y axis) opposite to gravity is the + Z direction
  • the direction opposite to the + Z direction is called the -Z direction.
  • the die bonder 100 includes a gantry 01, a substrate supply unit 70 for supplying a substrate 110 as a work, a bonding stage 20, a die supply unit 90, a die mounting unit 10, a substrate accommodating unit 80, and a control unit 200.
  • a substrate transfer unit 50 work transfer unit
  • a preheating unit 22 are provided between the substrate supply unit 70 and the bonding stage 20, and a substrate discharge unit is provided between the bonding stage 20 and the substrate accommodating unit 80.
  • a unit 60 is provided.
  • a stage moving track 41 is installed on the gantry 01 along the X direction, which is the substrate transport direction, and the moving table 42 is movably placed on the stage moving track 41.
  • the bonding stage 20 is supported on the moving table 42, and moves on the stage moving track 41 together with the moving table.
  • the board supply unit 70 includes a board storage unit 72 capable of storing a plurality of boards 110 on which a die (mounting component) is not mounted.
  • the substrate supply unit 70 includes two substrate storage units 72, but the substrate storage unit 72 may be a single unit or three or more units.
  • the board storage unit 72 can be moved in the Y direction by the Y direction drive mechanism 70Y, and can be moved in the Z direction by the Z direction drive mechanism 70Z. By driving these drive mechanisms, any board in the board stored in the board storage unit 72 can be set in the carry-out port.
  • the carry-out port is provided with a board extrusion mechanism 71 for pushing out the board in the + X direction and sending the board to the board transfer unit 50.
  • the board transfer unit 50 includes an X-direction moving mechanism 50X for moving in the X direction and a Z-direction moving mechanism 50Z for moving in the Z direction.
  • the substrate transfer unit 50 can receive the substrate from the substrate supply unit 70 and place it in a predetermined position where the temperature of the preheating unit 22 is controlled. It is also possible to pick up the substrate placed on the preheating unit 22, transfer it onto the bonding stage 20, and place it at a predetermined position where the temperature of the bonding stage 20 is controlled.
  • FIG. 2 is a side view of the substrate transfer portion 50 and the bonding stage 20 as viewed along the ⁇ X direction.
  • the substrate transfer portion 50 includes a grip portion 54a and a grip portion 54b for gripping two sides of the substrate 110 extending in the X direction (board transport direction).
  • the grip portion 54a includes a fixed claw 51a that supports the substrate from below along one side of the substrate 110 extending along the substrate transport direction, and a movable claw 52a that presses the substrate from above along the one side.
  • the fixed claw 51a and the movable claw 52a can be integrally moved in the Y direction by the Y direction moving mechanism 53a, and the movable claw 52a can be moved up and down in the Z direction by the Z direction moving mechanism 55a.
  • the grip portion 54a sandwiches or releases the substrate 110 from above and below along one side of the substrate 110 extending along the substrate transport direction. It is possible to do it.
  • the grip portion 54b has a fixed claw 51b that supports the substrate from below along the other side of the substrate 110 extending along the substrate transport direction, and a movable claw that presses the substrate from above along the other side. 52b is provided.
  • the fixed claw 51b and the movable claw 52b can be integrally moved in the Y direction by the Y direction moving mechanism 53b, and the movable claw 52b can be moved up and down in the Z direction by the Z direction moving mechanism 55b.
  • the grip portion 54b can hold the substrate 110 from above and below along the other side of the substrate 110 extending along the substrate transport direction. It is possible to release it.
  • the preheating unit 22 includes a heat generation source such as a heater (not shown in FIG. 1), a temperature sensor such as a thermocouple, and a temperature control unit, and the position and / or position of the substrate 110 mounted on the upper surface thereof.
  • a heat generation source such as a heater (not shown in FIG. 1)
  • a temperature sensor such as a thermocouple
  • a temperature control unit and the position and / or position of the substrate 110 mounted on the upper surface thereof.
  • the range according to the dimensions can be heated to a predetermined temperature.
  • the preheating unit 22 can be configured to be able to adsorb and stably hold the substrate 110 by providing an adsorption means (not shown) or the like.
  • the bonding stage 20 is a stage that holds the substrate as a work when the work of bonding the die to the substrate is performed.
  • the bonding stage 20 fixed on the moving table 42 can move along the X direction in a horizontal plane together with the moving table 42.
  • the substrate supplied from the substrate supply unit 70 via the preheating unit 22 can be received and horizontally moved to the bonding work position. Then, during the bonding work, the substrate can be held at the bonding work position and the range corresponding to the position and / or size of the substrate 110 can be heated, and after the bonding work, the substrate can be conveyed to the substrate accommodating portion 80 side.
  • FIG. 2 is a side view of the bonding stage 20 and its moving mechanism seen along the ⁇ X direction
  • FIG. 3 is a plan view seen along the ⁇ Z direction
  • FIG. 4 is a front view seen along the + Y direction.
  • .. 5 is a schematic plan view for explaining the temperature control mechanism included in the bonding stage 20
  • FIG. 6 is a schematic front view
  • FIG. 7 is for explaining the adsorption mechanism included in the bonding stage 20. It is a schematic plan view.
  • the bonding stage 20 is supported on a moving table 42 movably mounted in the X direction on the stage moving track 41, and is supported by the moving table and the stage moving track. It can move freely in the X direction on 41.
  • a drive mechanism using a motor and a ball screw may be used, but when the distance between the stage moving tracks 41 is long, a drive mechanism using a linear motor is preferable.
  • the bonding stage 20 is provided with a suction mechanism for sucking the substrate 110 on its upper surface, and the suction mechanism has a suction path 30 and a suction hole 31 (suction portion). As shown in FIG. 7, a large number of suction holes 31 two-dimensionally arranged in a plan view are connected to the suction control unit 32 by an airtight path via a suction path 30.
  • the suction control unit 32 includes, for example, a negative pressure generator 33 such as a vacuum pump, a flow path switching valve 34, and a leak path 35 such as an atmospheric communication path, and operates under the control of the control unit 200.
  • the control unit 200 sends an instruction to the suction control unit 32, sucks the substrate from the suction hole 31 (suction portion) via the suction path 30, and bonds the substrate 110.
  • the substrate can be fixed on the stage.
  • the substrate can be released from adsorption by leaking a negative pressure through the suction path 30.
  • the bonding stage 20 is provided with a heating mechanism for controlling the temperature in a range according to the position and / or size of the substrate 110 mounted on the upper surface thereof, and the heating mechanism is provided with the heater 24.
  • the heater 24 is arranged at a position farther from the substrate 110 than the suction mechanism when viewed in the Z direction as shown in FIG. 2, and is arranged in a direction intersecting the suction path 30 in a plan view as shown in FIG.
  • the layout of the heater 24 is not limited to this example.
  • the heating mechanism in order to detect the temperature in the vicinity of the substrate 110, the heating mechanism includes a temperature sensor 23 such as a thermocouple as a temperature detecting unit, and the temperature sensor 23 is a temperature control unit 21. Is connected to.
  • the temperature control unit 21 operates under the control of the control unit 200, and when the substrate 110 is transferred onto the bonding stage 20, the control unit 200 adjusts the temperature of the place where the substrate 110 of the bonding stage 20 is placed. The temperature of the substrate 110 is controlled.
  • the method and arrangement of the temperature sensors 23 are not limited to this example, and for example, a plurality of temperature sensors may be arranged two-dimensionally in a plan view.
  • the temperature sensor may measure the temperature of the portion of the bonding stage close to the substrate, but may also measure the temperature of the substrate itself by a contact type or non-contact type sensor (for example, an infrared sensor).
  • the place where the board 110 is placed in the bonding stage 20, that is, the place where the temperature of the board 110 is controlled may be set by the user, or the position and / or the dimension of the board 110 is detected by a board detection sensor (not shown).
  • the position information may be output to the control unit 200 and set.
  • the substrate detection sensor is, for example, an image pickup device such as a digital camera.
  • the die supply unit 90 is a device for supplying a die (mounting component) for die bonding.
  • a die mounting component
  • the die mounting unit 10 includes a collet capable of adsorbing the die and a collet drive unit for moving the collet in each direction of XYZ.
  • FIG. 8 is a schematic plan view of the die supply unit 90 and the die mounting unit 10 (mounting unit) in a plan view, and the die 111 as a large number of diced mounting components is placed on the die supply unit 90. It shows the situation that was done.
  • the die mounting unit 10 (mounting unit) includes a collet 13, a Y moving unit 11 that moves the collet 13 in the Y direction, and a Z moving unit 12 that moves the collet 13 in the Z direction.
  • the die mounting unit 10 attracts the die 111 by using the collet 13 in the die supply unit 90, conveys the die 111 to the bonding work position, and places the die 111 at a predetermined position of the substrate 110 held on the bonding stage 20.
  • the die mounting portion may be configured such that two Z moving portions are arranged on the Y moving portion 11 and a collet is provided for each, and an intermediate stand is provided between the bonding stage 20 and the die supply portion 90.
  • the collet on the die supply section 90 picks up the die 111 from the die supply section 90 and places it on the intermediate stand, and the collet on the bonding stage 20 side takes out the die 111 from the intermediate stand and places it on the substrate on the bonding stage 20. It is mounted on 110.
  • a substrate discharging unit 60 is provided between the bonding stage 20 and the substrate accommodating unit 80.
  • the substrate discharge unit 60 includes an X-direction moving mechanism 60X for moving in the X direction and a Z-direction moving mechanism 60Z for moving in the Z direction. Further, the substrate discharge unit 60 includes a gripping mechanism having the same configuration as the substrate transfer unit 50 described with reference to FIG. The substrate discharge unit 60 can pick up the substrate mounted on the bonding stage 20 and carry it out to the substrate accommodating unit 80.
  • the board accommodating unit 80 includes a substrate accommodating unit 82 capable of accommodating a substrate on which a die is mounted after the bonding work is completed.
  • the substrate accommodating portion 80 includes two substrate accommodating portions 82, but the substrate accommodating portion 82 may be a single number or three or more.
  • the board accommodating portion 82 can be moved in the Y direction by the Y direction drive mechanism 80Y, and can be moved in the Z direction by the Z direction drive mechanism 80Z. By driving these drive mechanisms, the substrate can be accommodated at an arbitrary position of the substrate accommodating portion 82.
  • the control unit 200 is a computer for controlling the operation of the die bonder 100, and internally includes a CPU, a ROM, a RAM, an I / O port, and the like.
  • a program for executing various processes according to the present embodiment can be stored in a ROM, which is a computer-readable recording medium, together with other programs.
  • the program may be recorded on any recording medium that can be read by a computer. Further, the program may be loaded into the RAM from the outside via the network, or may be loaded into the RAM via the recording medium in which the program is recorded.
  • the I / O port is connected to an external device or network, and for example, data required for bonding can be input / output to / from an external computer. Further, the I / O port is connected to a monitor or an input device (not shown), and can display the operation status information of the die bonder to the operator and can receive a command from the operator.
  • the control unit 200 includes a substrate supply unit 70, a substrate extrusion mechanism 71, a substrate transfer unit 50, a preheating unit 22, a moving table 42, a bonding stage 20, a die mounting unit 10, a substrate discharge unit 60, and a substrate accommodating unit 80. It controls the drive of each part.
  • the control unit 200 is electrically connected to the drive mechanism and the sensor of each unit so as to be able to exchange control signals, and controls these.
  • a die 111 for example, a semiconductor chip
  • a thermosetting adhesive film is attached to the lower surface of the die 111, that is, the surface that comes into contact with the substrate during bonding.
  • the substrate 110 as a mounted member (work) is set at a predetermined position of the substrate accommodating portion 72 of the substrate supply unit 70.
  • the control unit 200 moves the substrate transfer unit 50 in the ⁇ X direction and comes into contact with the substrate supply unit 70. Or move it to a nearby board delivery position.
  • FIG. 9 is an operation time chart for explaining the operation of each part thereafter.
  • the control unit 200 drives the board extrusion mechanism 71 to push the rear end of the board 110 and starts feeding the board 110 in the + X direction (901). ).
  • the control unit 200 When the two sides of the substrate 110 extending along the X direction (the substrate transport direction) are placed on the fixed claws 51a and the fixed claws 51b of the substrate transfer portion 50, the control unit 200 has the movable claws 52a of the substrate transfer portion 50 and the movable claws 52a. The movable claw 52b is driven to grip (pinch) the substrate 110 (902).
  • control unit 200 moves the substrate transfer unit 50 gripping the substrate 110 in the ⁇ Z direction (904), and further moves the substrate transfer unit 50 directly above the preheating unit 22 in the + X direction (903). Then, the substrate transfer portion 50 is released from gripping the substrate 110 (902), and the substrate 110 is placed on the preheating portion 22.
  • the control unit 200 drives the adsorption control unit 25 of the preheating unit 22 to adsorb the substrate 110 (905), and operates the heater to heat a range corresponding to the position and / or the dimension of the substrate 110 to prepare the substrate 110.
  • the temperature of the heating unit 22 is raised to preheat the substrate.
  • the temperature of the preheating unit 22 is lower than this by a predetermined temperature (for example, 60). ° C). This is because the temperature of the substrate is raised by preheating so that the substrate can reach the curing temperature in a short time after being transferred onto the bonding stage, and the preheating temperature is excessively raised. This is to prevent the substrate from deteriorating.
  • the control unit 200 drives the substrate transfer unit 50 again to grip the substrate 110 for which preheating has been completed, and moves it in the + X direction to move it to the work receiving position.
  • the bonding stage 20 supported by the moving table 42 stands by, but the control unit 200 moves the heater 24 of the bonding stage 20 to the position of the substrate 110 and the position of the substrate 110 together with the movement of the substrate transfer unit 50. / Or driven to heat a range according to the dimensions to start the temperature rise of the bonding stage.
  • the control unit 200 moves the substrate transfer unit 50 in the ⁇ Z direction (904). Then, the substrate transfer portion 50 is made to release the grip of the substrate 110 (902), and the substrate 110 is placed on the bonding stage 20. At this time, a part or the entire surface of the portion where the substrate of the bonding stage is not placed is not heated. Further, the control unit 200 drives the suction control unit 32 of the bonding stage 20 to suck the substrate 110, and fixes the substrate 110 at a predetermined position on the bonding stage 20. Then, with the substrate fixed at a predetermined position, the control unit 200 drives the moving table 42 to move the bonding stage 20 to the bonding work position in the + X direction.
  • the temperature of the substrate 110 rises to the preheating temperature (for example, 60 ° C.) by the preheating unit 22, and further rises to the curing temperature of the adhesive or higher by the heater 24 of the bonding stage 20. do.
  • the preheating temperature for example, 60 ° C.
  • the control unit 200 moves the collet of the die mounting unit 10 to a predetermined position of the die supply unit 90, adsorbs the die (semiconductor chip), and picks it up. Then, the collet is moved onto the substrate 110 at the bonding work position, the collet is lowered to bring the die 111 into contact with or close to the substrate 110, and the suction is stopped, so that the die is placed at a predetermined position on the substrate. do.
  • the control unit 200 may control the bonding arm of the die mounting unit 10 so that the collet presses the die 111 against the substrate 110 during bonding. When the bonding material is cured, the bonding of the die is completed.
  • the die bonder 100 of the present embodiment may be used for bonding one die to one substrate, but may also be used for bonding a plurality of dies to one substrate.
  • the dies can be sequentially bonded to the substrate 110 in which the die mounting regions 112 are provided at m ⁇ n positions in a plan view.
  • FIG. 11 is a schematic plan view showing the drive position of the Y moving portion 11 of the die mounting portion 10 and the driving position of the moving table 42 for moving the bonding stage 20 in the X direction when the dies 111 are sequentially bonded.
  • FIG. 12 is an operation time chart showing the operation of each part when the dies are sequentially bonded.
  • FIG. 13 is an operation time chart showing the operation of each part when the base plate is housed in the board housing part 80.
  • the control unit 200 drives the moving table 42 to move the bonding stage 20 to the storage delivery position in the + X direction, and drives the substrate discharging unit 60 to grip the substrate on the bonding stage 20. Then, the substrate discharging portion 60 is moved in the + X direction, and the substrate is accommodated in a slot of an appropriate substrate accommodating portion 82 of the substrate accommodating portion 80. At that time, a substrate extrusion mechanism (not shown) may be used.
  • the die bonder 100 of the present embodiment can continuously perform die bonding processing on a large number of substrates.
  • the mounted component can be mounted in a state where the substrate is fixed at a predetermined position on the bonding stage. It is not necessary to perform the positioning operation of the mounted component. Therefore, it is possible to shorten the time from transporting the mounted component to mounting. Further, since the mounted component does not rub against the transport lane or the heating stage, there is an advantage that the mounted component is prevented from being scratched or worn.
  • the preheating of the substrate is started before the substrate reaches the bonding work position (heating start step). Moreover, the temperature of the substrate is actively controlled during the work at the bonding work position (heat control process).
  • the preheating unit 22 is used to preheat the substrate to be bonded next, so that the time from the transfer of the substrate to the bonding stage to the completion of the bonding of the die is completed. Can be shortened.
  • the bonding stage When bonding to new boards one after another in succession, while the bonding work of one board and the delivery work to the board discharge part are performed on the bonding stage, the next bonding work is performed in the preheating part.
  • the substrate to be used can be preheated. Therefore, the time required to complete the bonding of the dies can be significantly shortened as compared with the case where the substrate at room temperature is transferred onto the bonding stage at the bonding work position and then heating is started.
  • the bonding stage since the bonding stage performs feedback control using the detection results of the temperature detection unit until the bonding of all the dies is completed, the temperature of the substrate can be precisely controlled. That is, it is possible to improve the throughput of the bonding work, reduce the manufacturing cost, and achieve high bonding quality.
  • the preheating unit 22 and the bonding stage 20 heat the work by setting a range for uniformly heating according to the position and / or the size of the work. Therefore, it does not waste energy.
  • Embodiment 2 of the present invention will be described with reference to the drawings. However, common reference numbers will be assigned to the parts common to the first embodiment, and detailed explanations will be omitted as much as possible.
  • the die bonder according to the second embodiment also starts preheating of the substrate before the substrate reaches the bonding work position when the unmounted substrate is moved from the substrate supply unit to the bonding work position (heating start step). Then, the temperature of the substrate is actively controlled at the bonding work position until the bonding work of all the dies is completed (heat control step).
  • the substrate supplied from the substrate supply unit was preheated via the preheating unit 22 and transferred to the bonding stage.
  • the substrate is transferred from the substrate supply unit to the bonding stage without passing through the preheating unit, but the bonding stage is transferred to the bonding stage after the transfer until the bonding stage is moved to the bonding work position. Starts preheating the substrate. Then, the bonding stage arriving at the bonding work position continues to actively continue the temperature control operation until the bonding work of all the dies is completed.
  • FIG. 14 is a schematic perspective view for explaining the die bonder according to the second embodiment. Further, FIG. 15 is an operation time chart showing the operation of each part when the unmounted substrate is moved from the board supply part to the bonding work position. As shown in FIG. 14, in the present embodiment, the stage moving track 41 extends to the board receiving position on the board supply unit 70 side, and the bonding stage 20 can be moved to the board receiving position by the moving table 42. ..
  • the substrate extrusion mechanism 71 operates to extrude the substrate in the + X direction (941).
  • the substrate reaches the substrate transfer portion 50, and the substrate is gripped by the substrate gripping mechanism 54 (942).
  • the heating unit is already turned on and the heating control of the bonding stage 20 is started.
  • the substrate transfer portion 50 that grips the substrate moves in the + Z direction (944), and further moves in the + X direction to directly above the bonding stage 20 (943). Then, the substrate transfer unit 50 moves in the ⁇ Z direction (944), and the substrate is placed on the bonding stage 20.
  • the suction control unit 32 of the bonding stage 20 operates to suck the substrate (946), and the substrate transfer unit 50 releases the substrate from gripping (942).
  • the control unit 200 controls the heater 24 of the bonding stage 20 to preheat the substrate 110, moves the moving table 42 in the + X direction, and moves the bonding stage 20 from the substrate receiving position to the bonding work position (945).
  • the operation after moving the bonding stage 20 to the bonding work position is the same as that of the first embodiment.
  • the preheating of the substrate is started before the substrate reaches the bonding work position, and the work is performed at the bonding work position.
  • the temperature of the substrate is actively controlled even inside. Therefore, the time required to complete the bonding of the dies can be significantly shortened as compared with the case where the substrate at room temperature is transferred onto the bonding stage at the bonding work position and then heating is started.
  • the bonding stage performs feedback control using the temperature sensor until the bonding of all the dies is completed, the temperature of the substrate can be precisely controlled. That is, it is possible to improve the throughput of the bonding work, reduce the manufacturing cost, and achieve high bonding quality.
  • the bonding stage 20 heats the work by setting a range for uniformly heating according to the position and / or the size of the work. Therefore, it does not waste energy.
  • the die is not limited to a semiconductor element (semiconductor chip), and may be an electronic component such as a resistance element or a capacitor.
  • various mounted members such as a printed circuit board, a flexible board, and a lead frame can be used.
  • the bonding material in addition to the thermosetting adhesive, various materials can be used as long as they require a heating step in the bonding process.
  • the present invention can be widely used not only as a method for manufacturing a semiconductor for die-bonding a semiconductor chip, but also as a method for manufacturing an article for mounting a component such as an electronic component.
  • An embodiment of the present invention also includes a control program capable of executing the control operation according to the die bonding method described above, and a computer-readable recording medium in which the control program is stored.
  • the present invention supplies a program that realizes one or more functions of an embodiment to a system or device via a network or storage medium, and one or more processors in the computer of the system or device reads and executes the program. But it is feasible. It can also be realized by a circuit (for example, ASIC) that realizes one or more functions.
  • the present invention can be widely implemented in a device for die-bonding a semiconductor chip, a device for mounting an electronic component or the like on a circuit board or the like, and the like.
  • the present invention is not limited to the above embodiments, and various modifications and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to publicize the scope of the present invention, the following claims are attached.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Die Bonding (AREA)
  • Wire Bonding (AREA)

Abstract

ダイボンダ(100)は、ワーク(110)を供給する供給部(70)と、ワーク(110)を保持してワーク受取り位置からボンディング作業位置に移動可能かつワークの位置および/または寸法に応じた範囲を加熱可能なボンディングステージ(20)と、ボンディング作業位置にて、ボンディングステージに保持されたワークに実装部品を載置する実装部(10)と、を備える。ワーク(110)がボンディング作業位置に到達する前からワーク(110)への予備加熱を開始し、ボンディング作業位置にてボンディング作業中は、ワーク(110)を保持する前記ボンディングステージ(20)がワーク(110)への加熱を制御する。

Description

物品の製造装置、物品の製造方法、プログラム、記録媒体
 本発明は、例えば半導体チップ等を基板等に実装するための装置や方法に関する。特に、基板等のワークを搬送してボンディングステージにセットしてダイボンディングする際の、ワークの加熱方法に関する。
 電子装置には種々の形態があるが、例えばリードフレームに半導体チップが実装された半導体パッケージや、回路基板に半導体チップ等の電子部品が実装された回路パッケージを備えるものが多い。半導体パッケージや回路パッケージは、例えば以下のような手順で製造される。まず、多数の集積回路を半導体ウエハ上に形成し、ダイシング工程にて半導体ウエハを切断して半導体チップ(ダイ)に分割する。そして、ボンディング工程にて、半導体チップ(ダイ)等の電子部品を、リードフレームや回路基板等のワークにボンディングする。このボンディング工程に使用される装置が、いわゆるダイボンダと呼ばれるダイボンディング装置である。ダイボンダは、電子部品をリードフレームや基板に載置して、はんだ、金、樹脂等の接合材を用いて接着する装置であるが、場合によっては、基板にすでにボンディングされた電子部品の上に更に別の電子部品を搭載して接着する用途にも使用され得る。
 ダイボンダにより電子部品を基板等の表面にボンディングする場合には、ボンディングステージに基板等を搬送してセットする。そして、コレットと呼ばれる吸着ノズルを用いて電子部品をピックアップし、ボンディングをするべき所定の位置に載置する。接合材の種類によっては、ボンディングステージ上の基板等を加熱してボンディングを行う。基盤等を加熱する場合、ボンディング作業のスループットや、接合位置の精度や接合強度といったボンディング品質を高めるためには、ボンディングステージ上の基板等を加熱する加熱方法が重要となる。
 例えば、特許文献1に開示された装置では、基板上の複数の位置に順次にダイをボンディングしてゆく際に、まずボンディングステージを下降させて基板から離間させておき、最初のダイをボンディングする作業位置に基板を搬送する。搬送が完了すると、ボンディングステージを上昇させて基板を加熱し、最初のダイのボンディングを行う。最初のダイのボンディングを完了したら、ボンディングステージを下降させて基板の加熱を停止し、次のダイをボンディングする作業位置に、基板を放熱させながら搬送する。搬送が完了すると、ボンディングステージを上昇させて基板を再加熱し、次のダイのボンディングを行う。以下、全てのダイのボンディングが完了するまで、この手順を繰り返す。
 また、特許文献2に開示された基板実装装置は、所定値以上の熱容量を有し、基板供給手段から供給された基板を保持するキャリアと、キャリアを搬送しながら加熱するキャリア加熱移動手段を備えている。そして、キャリア加熱移動手段は、基板搬送開始位置からキャリアを加熱しながら搬送し、所定の位置にて加熱を中止するが、熱容量が大きいキャリアに蓄熱されているため、基板は以後も搬送されながら加熱され続ける。所定の作業位置まで移動した基板に電子部品を降下させ、超音波振動によって融着する。
特開2019-62034号公報 特開2006-128476号公報
 しかしながら、従来の方法では、ボンディング作業のスループットと、ボンディング位置精度や接合強度といったボンディング品質とを両立させることが困難であった。
 例えば、特許文献1に開示された装置では、ボンディング作業位置を変えるたびにボンディングステージの上昇、下降、水平移動、および加熱と冷却を繰り返す。このため、加熱と冷却のヒートサイクルに時間を要するうえに、基板の位置や温度を制御する精度を高められない可能性がある。また、加熱と冷却を繰り返し行うため、エネルギー消費が増大する可能性があった。
 また、特許文献2に開示された装置では、熱容量が大きいキャリアを搬送初期の所定期間で加熱し、以後はキャリアに蓄積された余熱で基板を加熱するが、ボンディング作業中に基板の温度を高い精度で制御することが困難であった。また、熱容量が大きいキャリアを昇温させるため、エネルギー消費が増大する可能性があった。
 そこで、ボンディング作業のスループットを高く保つとともに、基板の温度制御を精密に行える装置が求められていた。
 本発明の第1の態様は、ワークを供給する供給部と、前記ワークを保持してワーク受取り位置からボンディング作業位置に移動可能かつ前記ワークの位置および/または寸法に応じた範囲を加熱可能なボンディングステージと、前記供給部が供給する前記ワークを、前記ワーク受取り位置にて前記ボンディングステージに移載するワーク移載部と、前記ボンディング作業位置にて、前記ボンディングステージに保持された前記ワークに実装部品を載置する実装部と、を備え、前記ワークを前記供給部から前記ボンディング作業位置に移動させる間に、前記ワークが前記ボンディング作業位置に到達する前から前記ワークへの予備加熱を開始し、前記ボンディング作業位置にてボンディング作業中は、前記ワークを保持する前記ボンディングステージが前記ワークへの加熱を制御する、物品の製造装置である。
 また、本発明の第2の態様は、ワークを供給する供給部と、前記ワークを保持してワーク受取り位置からボンディング作業位置に移動可能かつ前記ワークの位置および/または寸法に応じた範囲を加熱可能なボンディングステージと、前記供給部が供給する前記ワークを、前記ワーク受取り位置にて前記ボンディングステージに移載するワーク移載部と、前記ボンディング作業位置にて、前記ボンディングステージに保持された前記ワークに実装部品を載置する実装部と、を備えた装置を用いた物品の製造方法であって、前記ワークを前記供給部から前記ボンディング作業位置に移動させる間に、前記ワークが前記ボンディング作業位置に到達する前から前記ワークへの予備加熱を開始する加熱開始工程と、前記ボンディング作業位置にてボンディング作業中に、前記ワークを保持する前記ボンディングステージが前記ワークへの加熱を制御する加熱制御工程と、を備える物品の製造方法である。
 本発明によれば、ボンディング作業のスループットを高く保つとともに、低エネルギーで基板の温度制御を精密に行える装置を提供することができる。
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。尚、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。
実施形態1に係るダイボンダの模式的な斜視図。 実施形態に係る基板移載部およびボンディングステージを+X方向に沿って見た側面図。 実施形態に係るボンディングステージおよびその移動機構の平面図。 実施形態に係るボンディングステージおよびその移動機構の正面図。 実施形態に係るボンディングステージの温度制御機構を説明するための模式的な平面図。 実施形態に係るボンディングステージの温度制御機構を説明するための模式的な正面図。 実施形態に係るボンディングステージの吸着機構を説明するための模式的な平面図。 実施形態に係るダイ供給部およびダイ実装部を平面視した模式的な平面図。 実施形態に係る各部の動作を説明するための動作タイムチャート。 基板上に設けられた複数のダイ実装領域を示す模式的な平面図。 複数のダイ実装領域にボンディングする際のダイ実装部の動作位置を示す模式的な平面図。 複数のダイ実装領域にボンディングする際の各部の動作を説明するための動作タイムチャート。 ボンディング完了後の基板を基板収容部に収容する際の各部の動作を示す動作タイムチャート。 実施形態2に係るダイボンダの模式的な斜視図。 実施形態2に係るダイボンダの各部の動作を説明するための動作タイムチャート。
 図面を参照して、本発明の実施形態に係る物品の製造装置、物品の製造方法、等について説明する。尚、以下の実施形態の説明において参照する図面では、特に但し書きがない限り、同一の参照番号を付して示す要素は、同一又は類似の機能を有するものとする。
[実施形態1]
 図1は、本実施形態に係るダイボンダを説明するための、模式的な斜視図である。
 尚、以下の説明においては、直交座標系であるXYZ座標系を参照する場合があるが、X軸は基板が水平に搬送される方向(図1の左から右)であり、Y軸は水平面内でX軸と直交する方向で、Z軸は鉛直方向(重力と反対方向)である。X軸と平行な方向をX方向とし、X方向のうち基板の搬送方向(X軸の矢印)と同方向を+X方向、+X方向とは逆方向を-X方向と呼ぶ場合がある。また、Y軸と平行な方向をY方向とし、Y方向のうちY軸の矢印と同方向を+Y方向とし、+Y方向とは逆方向を-Y方向と呼ぶ場合がある。また、Z軸と平行な方向をZ方向とし、Z方向のうち重力とは反対の鉛直上向き(Y軸の矢印)方向を+Z方向とし、+Z方向とは逆方向を-Z方向と呼ぶ場合がある。
 本実施形態の最も特徴的な部分は、基板を加熱する機構や手順にあるが、まずダイボンダの全体構成から説明してゆく。
(ダイボンダの構成)
 図1に示すように、ダイボンダ100は、架台01、ワークとしての基板110を供給する基板供給部70、ボンディングステージ20、ダイ供給部90、ダイ実装部10、基板収容部80、制御部200を備えている。また、基板供給部70とボンディングステージ20の間には、基板移載部50(ワーク移載部)と予備加熱部22が設けられ、ボンディングステージ20と基板収容部80の間には、基板排出部60が設けられている。
 架台01上には、基板搬送方向であるX方向に沿ってステージ移動用軌道41が設置されており、ステージ移動用軌道41の上には移動台42が移動可能に載置されている。ボンディングステージ20は、移動台42上に支持されており、移動台とともにステージ移動用軌道41上を移動する。
 基板供給部70は、ダイ(実装部品)が実装されていない複数の基板110を格納可能な基板格納部72を備えている。図1の例では、基板供給部70は2つの基板格納部72を備えているが、基板格納部72は単数でもよいし、3つ以上でもよい。基板格納部72は、Y方向駆動機構70YによりY方向に移動可能であるとともに、Z方向駆動機構70ZによりZ方向に移動可能である。これらの駆動機構を駆動することにより、基板格納部72に格納されている基板の中の任意の基板を搬出ポートにセットすることができる。搬出ポートには、基板を+X方向に押し出して、基板移載部50に基板を送り出すための基板押出し機構71が設けられている。
 基板移載部50は、X方向に移動するためのX方向移動機構50Xと、Z方向に移動するためのZ方向移動機構50Zを備えている。基板移載部50は、基板供給部70から基板を受取り、予備加熱部22の温度制御されている所定の位置に載置することが可能である。また、予備加熱部22に載置された基板を取り上げて、ボンディングステージ20の上に移送してボンディングステージ20の温度制御されている所定の位置に載置することも可能である。
 図2を参照して、基板移載部50が基板を把持する把持機構について説明する。図2は、基板移載部50およびボンディングステージ20を-X方向に沿って見た側面図である。基板移載部50は、X方向(基板搬送方向)に沿って伸びる基板110の2辺を把持するための把持部54aと把持部54bとを備える。
 把持部54aは、基板搬送方向に沿って伸びる基板110の1辺に沿って基板を下から支える固定爪51aと、該1辺に沿って基板を上から押し付ける可動爪52aを備える。固定爪51a及び可動爪52aは、Y方向移動機構53aにより一体的にY方向に移動可能であり、可動爪52aはZ方向移動機構55aによりZ方向に上下動可能である。これらの機構を用いて、固定爪51aと可動爪52aを駆動することにより、把持部54aは基板搬送方向に沿って伸びる基板110の1辺に沿って、基板110を上下から挟持したり解放したりすることが可能である。
 同様に、把持部54bは、基板搬送方向に沿って伸びる基板110の他の1辺に沿って基板を下から支える固定爪51bと、該他の1辺に沿って基板を上から押し付ける可動爪52bを備える。固定爪51b及び可動爪52bは、Y方向移動機構53bにより一体的にY方向に移動可能であり、可動爪52bはZ方向移動機構55bによりZ方向に上下動可能である。これらの機構を用いて、固定爪51bと可動爪52bを駆動することにより、把持部54bは基板搬送方向に沿って伸びる基板110の他の1辺に沿って、基板110を上下から挟持したり解放したりすることが可能である。
 図1に戻り、予備加熱部22は、図1では図示されないヒーターなどの熱発生源、熱電対などの温度センサ、温度制御部を備え、その上面に載置された基板110の位置および/または寸法に応じた範囲を所定の温度まで温めることができる。予備加熱部22は、不図示の吸着手段などを設けることにより、基板110を吸着して安定的に保持可能な構成とすることができる。
 ボンディングステージ20は、ダイを基板にボンディングする作業を行う際に、ワークとしての基板を保持するステージである。移動台42上に固定されたボンディングステージ20は、移動台42とともに水平面内において所定範囲をX方向に沿って移動可能である。基板供給部70から予備加熱部22を経由して供給される基板を受取り、ボンディング作業位置まで水平移動させることができる。そして、ボンディング作業中はボンディング作業位置にて基板を保持するとともに基板110の位置および/または寸法に応じた範囲を加熱し、ボンディング作業後は基板を基板収容部80側に搬送することができる。
 図2~図7を参照して、ボンディングステージ20について詳細に説明する。図2はボンディングステージ20およびその移動機構を-X方向に沿って見た側面図、図3は-Z方向に沿って見た平面図、図4は+Y方向に沿って見た正面図である。また、図5はボンディングステージ20が備える温度制御機構を説明するための模式的な平面図、図6は模式的な正面図であり、図7はボンディングステージ20が備える吸着機構を説明するための模式的な平面図である。
 図2~図4に示すように、ボンディングステージ20は、ステージ移動用軌道41の上にX方向に移動可能に載置された移動台42上に支持されており、移動台とともにステージ移動用軌道41上をX方向に自在に移動可能である。移動台42の駆動部には、例えばモータとボールねじによる駆動機構を使用してもよいが、ステージ移動用軌道41の距離が長い場合にはリニアモータによる駆動機構が好ましい。
 ボンディングステージ20は、その上面に基板110を吸着するための吸着機構を備えており、吸着機構は吸引経路30と吸着孔31(吸着部)とを有している。
 図7に示すように、平面視で2次元的に配置された多数の吸着孔31は、吸引経路30を介して吸着制御部32と気密経路で接続されている。吸着制御部32は、例えば真空ポンプ等の負圧発生器33、流路切替弁34、例えば大気連絡路等のリーク経路35を備え、制御部200の制御の下に動作する。基板110をボンディングステージ20の上に移載したら、制御部200は、吸着制御部32に指示を送り、吸引経路30を介して吸着孔31(吸着部)から基板を吸引させ、基板110をボンディングステージ上に固定することができる。あるいは、吸引経路30を介して負圧をリークさせて基板を吸着から解放することができる。
 また、ボンディングステージ20は、その上面に載置された基板110の位置および/または寸法に応じた範囲の温度を制御するための加熱機構を備え、加熱機構はヒーター24を備えている。本実施形態では、ヒーター24は、図2に示すようにZ方向に見て吸着機構よりも基板110から遠い位置に配置され、図3に示すように平面視では吸引経路30と交差する方向に延在しているが、ヒーター24のレイアウトはこの例には限られない。
 図5、図6に示すように、加熱機構は、基板110の近傍の温度を検知するため、温度検知部として例えば熱電対などの温度センサ23を備えており、温度センサ23は温度制御部21と接続されている。温度制御部21は、制御部200の制御の下に動作し、基板110をボンディングステージ20の上に移載したら、制御部200はボンディングステージ20の基板110が載置された箇所の温度を調整して基板110の温度を制御する。尚、温度センサ23の方式や配置は、この例に限られるわけではなく、例えば複数の温度センサを平面視において2次元的に配置してもよい。温度センサは、ボンディングステージにおいて基板に近い部分の温度を計測するものでもよいが、接触式あるいは非接触式センサー(例えば赤外センサー)により基板自体の温度を計測するものでもよい。ボンディングステージ20における基板110が載置される箇所すなわち基板110の温度を制御する箇所は、ユーザーが設定しても良いし、不図示の基板検出センサによって基板110の位置および/または寸法を検出し、その位置情報を制御部200に出力して設定しても良い。基板検出センサは例えば、デジタルカメラ等の撮像装置である。
 図1に戻り、ダイ供給部90は、ダイボンディング用のダイ(実装部品)を供給する装置である。例えば、多数の半導体チップ(ダイ)にダイシングされた半導体ウエハを保持することができる。
 ダイ実装部10は、ダイを吸着可能なコレットと、コレットをXYZの各方向に移動させるコレット駆動部を備えている。
 図8は、ダイ供給部90およびダイ実装部10(実装部)を平面視した模式的な平面図であり、ダイ供給部90の上にダイシングされた多数の実装部品としてのダイ111が載置された状況を示している。ダイ実装部10(実装部)は、コレット13と、コレット13をY方向に移動させるY移動部11、コレット13をZ方向に移動させるZ移動部12を備える。ダイ実装部10は、ダイ供給部90においてコレット13を用いてダイ111を吸着し、ボンディング作業位置まで搬送し、ボンディングステージ20上に保持された基板110の所定位置にダイ111を載置する。更に、ダイ111を基板110に向けて-Z方向に押付け力を付与することもできる。尚、ダイ実装部は、Y移動部11上に2個のZ移動部を配置して各々にコレットを設け、ボンディングステージ20とダイ供給部90の間に中間置台を備える構成としても良い。この場合は、ダイ供給部90側のコレットがダイ供給部90からダイ111をピックアップして中間置台に載置し、ボンディングステージ20側のコレットが中間置台からダイ111を取り出しボンディングステージ20上の基板110に実装する。
 図1に戻り、ボンディングステージ20と基板収容部80の間には、基板排出部60が設けられている。基板排出部60は、X方向に移動するためのX方向移動機構60Xと、Z方向に移動するためのZ方向移動機構60Zを備えている。また、基板排出部60は、図2を参照して説明した基板移載部50と同様な構成の把持機構を備えている。基板排出部60は、ボンディングステージ20に載置された基板を取り上げて基板収容部80に搬出することが可能である。
 基板収容部80は、ボンディング作業が完了してダイが実装された基板を収納可能な基板収納部82を備えている。図1の例では、基板収容部80は2つの基板収納部82を備えているが、基板収納部82は単数でもよいし、3つ以上でもよい。基板収納部82は、Y方向駆動機構80YによりY方向に移動可能であるとともに、Z方向駆動機構80ZによりZ方向に移動可能である。これらの駆動機構を駆動することにより、基板収納部82の任意の位置に基板を収容することができる。
 制御部200は、ダイボンダ100の動作を制御するためのコンピュータであり、内部には、CPU、ROM、RAM、I/Oポート等を備えている。
 本実施形態にかかる各種処理を実行するためのプログラムは、他のプログラムとともにコンピュータ読み取り可能な記録媒体であるROMに記憶させておくことができる。プログラムは、コンピュータ読み取り可能な記録媒体であれば、いかなる記録媒体に記録されていてもよい。また、ネットワークを介してプログラムを外部からRAMにロードしてもよいし、プログラムを記録した記録媒体を介してRAMにロードしてもよい。
 I/Oポートは、外部機器やネットワークと接続され、たとえばボンディングに必要なデータの入出力を、外部のコンピュータとの間で行うことができる。また、I/Oポートは、不図示のモニターや入力装置と接続され、ダイボンダの動作状態情報を操作者に表示したり、操作者からの命令を受け付けたりすることができる。
 制御部200は、基板供給部70、基板押出し機構71、基板移載部50、予備加熱部22、移動台42、ボンディングステージ20、ダイ実装部10、基板排出部60、基板収容部80をはじめとする各部の駆動を制御する。制御部200は、各部の駆動機構やセンサと制御信号の授受が可能に電気的に接続されており、これらを制御する。
(ダイボンディング方法)
 次に、本実施形態に係るダイボンディング方法について説明する。
 まずダイボンディングを開始する準備として、装着部材としてのダイ111(例えば半導体チップ)を、ダイ供給部90にセットする。ダイ111の下面、すなわちボンディング時に基板と当接する面には、例えば熱硬化型接着剤フィルムが取り付けられている。また、被装着部材(ワーク)としての基板110を、基板供給部70の基板格納部72の所定位置にセットする。ダイ供給部90へのダイのセットと、基板供給部70への基板の収納が完了すると、制御部200は、基板移載部50を-X方向に移動させて、基板供給部70と当接または近接する基板受渡し位置まで移動させる。
 図9は、以後の各部の動作を説明するための動作タイムチャートである。
 基板移載部50を基板受取り位置まで移動させたら、制御部200は、基板押出し機構71を駆動して基板110の後端を押させて、基板110の+X方向への送り出しを開始する(901)。
 X方向(基板搬送方向)に沿って伸びる基板110の2辺が基板移載部50の固定爪51a及び固定爪51bの上に載ったら、制御部200は基板移載部50の可動爪52a及び可動爪52bを駆動して基板110を把持(挟持)させる(902)。
 次に、制御部200は、基板110を把持した基板移載部50を-Z方向に移動させ(904)、さらに予備加熱部22の直上まで+X方向に移動させ(903)。そして、基板移載部50に基板110の把持を解除させ(902)、基板110を予備加熱部22の上に載置する。
 制御部200は、予備加熱部22の吸着制御部25を駆動して基板110を吸着し(905)、基板110の位置および/または寸法に応じた範囲を加熱するようにヒーターを動作させて予備加熱部22の温度を上昇させ、基板を予備加熱する。ダイ111の下面に取付けられた熱硬化型接着剤フィルムの硬化温度が例えば80°C~160°Cの場合には、予備加熱部22の温度は、これよりも所定温度だけ低い温度(例えば60°C)とする。これは、予備加熱で基板の温度を上昇させることにより、ボンディングステージ上に移載した後に基板を短時間で硬化温度に到達させることができるようにするためと、予備加熱温度を過度に高くすることにより基板が劣化してしまうのを防止するためである。
 次に、制御部200は、再び基板移載部50を駆動して予備加熱が完了した基板110を把持させ、+X方向に移動させてワーク受取り位置まで移動させる。ワーク受取り位置には、移動台42に支持されたボンディングステージ20が待機しているが、制御部200は、基板移載部50の移動と合わせてボンディングステージ20のヒーター24を基板110の位置および/または寸法に応じた範囲を加熱するように駆動して、ボンディングステージの昇温を開始する。
 基板移載部50がボンディングステージ20の直上に到達すると、制御部200は基板移載部50を-Z方向に移動させる(904)。そして、基板移載部50に基板110の把持を解除させ(902)、基板110をボンディングステージ20の上に載置する。このとき、ボンディングステージの基板が載置していない箇所の一部または全面は、加熱されていない。さらに、制御部200は、ボンディングステージ20の吸着制御部32を駆動して基板110を吸着し、基板110をボンディングステージ20上の所定の位置に固定する。
 そして、基板が所定の位置に固定された状態で、制御部200は移動台42を駆動して、ボンディングステージ20を+X方向にボンディング作業位置まで移動させる。
 図9の908に示すように、基板110の温度は、予備加熱部22により予備加熱温度(例えば60°C)まで上昇し、さらにボンディングステージ20のヒーター24により、接着剤の硬化温度以上まで上昇する。
 ボンディングステージ20をボンディング作業位置まで移動させたら、制御部200は、ダイ実装部10のコレットをダイ供給部90の所定位置に移動させ、ダイ(半導体チップ)を吸着させてピックアップする。そして、コレットをボンディング作業位置の基板110の上に移動させ、コレットを下降させてダイ111を基板110に当接あるいは近接させ、吸引を停止することにより、ダイを基板上の所定位置に載置する。尚、制御部200は、ボンディング中にコレットがダイ111を基板110に押し付けるように、ダイ実装部10のボンディングアームを制御してもよい。接合材が硬化したら、当該ダイのボンディングが完了する。
 本実施形態のダイボンダ100は、一つの基板に一つのダイをボンディングする用途に用いてもよいが、一つの基板に複数のダイをボンディングする用途にも用いることもできる。例えば、図10に示すように、平面視でダイ実装領域112がm×n箇所設けられた基板110にダイを順次ボンディングしてゆくこともできる。図10では、m=7、n=10の例を示したが、ダイ実装領域112の数や配置は、この例に限られるわけではない。
 ボンディングステージ20をボンディング作業位置まで移動させたら、制御部200は、ダイ実装部10のコレットをダイ供給部90と基板110の間を往復させ、順次にダイ111をボンディングさせてゆく。図11は、順次にダイ111をボンディングする際に、ダイ実装部10のY移動部11の駆動位置と、ボンディングステージ20をX方向に移動させる移動台42の駆動位置を示す模式的な平面図である。また、図12は、ダイを順次にボンディングしてゆく際の各部の動作を示す動作タイムチャートである。
 制御部200は、基板110に実装すべき全てのダイのボンディングが完了したら、基板排出部60を駆動して、ボンディング済の基板を基板収容部80の適宜の基板収納部82に収容する。図13は、基版を基板収容部80に収容する際の各部の動作を示す動作タイムチャートである。
 制御部200は、移動台42を駆動してボンディングステージ20を+X方向に収納受渡位置まで移動させ、基板排出部60を駆動してボンディングステージ20上の基板を把持させる。そして、基板排出部60を+X方向に移動させ、基板収容部80の適宜の基板収納部82のスロットに基板を収容させる。その際、不図示の基板押出機構を用いてもよい。
 以上説明した動作を繰り返し行うことにより、本実施形態のダイボンダ100は、多数の基板に対して連続してダイボンディング加工を実施することができる。
 本実施形態によれば、基板をボンディングステージ上の所定の位置に固定する手段を有し、基板をボンディングステージ上の所定の位置に固定した状態で実装部品を実装することができるので、実装位置にて被実装部品の位置決め動作をする必要がない。そのため被実装部品を搬送してから実装をするまでの時間を短縮することができる。さらに、被実装部品が搬送レーンや加熱ステージと擦れることがないため、被実装部品の傷や摩耗を防ぐという利点も有する。
 また、本実施形態によれば、未実装の基板を基板供給部からボンディング作業位置に移動させる際に、基板がボンディング作業位置に到達する前から基板の予備加熱を開始する(加熱開始工程)。しかもボンディング作業位置にて作業中も能動的に基板の温度を制御する(加熱制御工程)。
 特に、本実施形態では、予備加熱部22を用いて、次にボンディング作業を行う基板を予備加熱しておくことで、ボンディングステージに基板を移載してからダイの接着が完了するまでの時間を短縮することができる。
 連続的に次々と新しい基板にボンディング作業を行う際に、ボンディングステージ上で一つの基板のボンディング作業や基板排出部への受渡作業を行っている間に、予備加熱部にて次にボンディング作業を行う基板を予備加熱しておくことができる。このため、ボンディング作業位置にてボンディングステージ上に室温の基板を移載してから加熱を開始する場合に比べて、ダイの接着が完了するまでに要する時間を大幅に短縮することができる。しかも、ボンディングステージは、全てのダイのボンディングが完了するまで温度検知部の検知結果を用いてフィードバック制御を行うため、基板の温度制御を精密に行うことができる。すなわち、ボンディング作業のスループットを向上させて製造コストを低減させるとともに、高いボンディング品質を達成することができる。
 また、ボンディングステージのワークを保持する面よりワークの寸法が小さい場合、ボンディングステージのワークを保持する面全体を均一に加熱すると、ワークと接していない面まで加熱してエネルギーを浪費することになる。しかし、本実施形態では、予備加熱部22およびボンディングステージ20は、ワークの位置および/または寸法に応じて均一に加熱する範囲を設定してワークを加熱する。そのため、エネルギーを浪費しない。
[実施形態2]
 本発明の実施形態2について、図面を参照して説明する。ただし、実施形態1と共通する部分については共通の参照番号を付すとともに、詳細な説明をなるべく省略するものとする。
 実施形態2に係るダイボンダも、未実装の基板を基板供給部からボンディング作業位置に移動させる際に、基板がボンディング作業位置に到達する前から基板の予備加熱を開始する(加熱開始工程)。そして、ボンディング作業位置にて全てのダイのボンディング作業が完了するまで能動的に基板の温度を制御する(加熱制御工程)。
 実施形態1では、基板供給部から供給される基板を予備加熱部22を経由させて予備加熱し、ボンディングステージに移載した。これに対し、実施形態2では、予備加熱部を経由させずに、基板を基板供給部からボンディングステージに移載するが、移載後にボンディングステージをボンディング作業位置に移動させるまでの間にボンディングステージは基板の予備加熱を開始する。そして、ボンディング作業位置に到着したボンディングステージは、全てのダイのボンディング作業が完了するまで引き続き能動的に温度制御動作を継続する。
 図14は、実施形態2に係るダイボンダを説明するための、模式的な斜視図である。また、図15は、未実装の基板を基板供給部からボンディング作業位置に移動させる際の各部の動作を示す動作タイムチャートである。
 図14に示すように、本実施形態ではステージ移動用軌道41は基板供給部70側の基板受取り位置まで延在しており、ボンディングステージ20は、移動台42により基板受取り位置まで移動可能である。
 図15に示すように、基板の供給が開始されると、基板押出し機構71が動作して、基板を+X方向に押し出してゆく(941)。基板移載部50に基板が到達し、基板把持機構54にて基板が把持される(942)。この時、ボンディングステージ20は、基板受取り位置に存するが、早くも加熱部がオンされ、ボンディングステージ20の加熱制御が開始される。
 基板を把持した基板移載部50は、+Z方向に移動し(944)、さらに+X方向にボンディングステージ20の直上まで移動する(943)。そして、基板移載部50は、-Z方向に移動し(944)、基板をボンディングステージ20の上に載置する。ボンディングステージ20の吸着制御部32が動作して基板を吸着するとともに(946)、基板移載部50は基板を把持から解放する(942)。
 制御部200はボンディングステージ20のヒーター24を制御して基板110を予備加熱させながら、移動台42を+X方向に移動させ、ボンディングステージ20を基板受取り位置からボンディング作業位置まで移動させる(945)。
 ボンディングステージ20をボンディング作業位置まで移動させた後の動作は、実施形態1と同様である。
 本実施形態によれば、未実装の基板を基板供給部からボンディング作業位置に移動させる際に、基板がボンディング作業位置に到達する前から基板の予備加熱を開始し、しかもボンディング作業位置にて作業中も能動的に基板の温度を制御する。このため、ボンディング作業位置にてボンディングステージ上に室温の基板を移載してから加熱を開始する場合に比べて、ダイの接着が完了するまでに要する時間を大幅に短縮することができる。しかも、ボンディングステージは、全てのダイのボンディングが完了するまで温度センサを用いてフィードバック制御を行うため、基板の温度制御を精密に行うことができる。すなわち、ボンディング作業のスループットを向上させて製造コストを低減させるとともに、高いボンディング品質を達成することができる。
 また、ボンディングステージのワークを保持する面よりワークの寸法が小さい場合、ボンディングステージのワークを保持する面全体を均一に加熱すると、ワークと接していない面まで加熱してエネルギーを浪費することになる。しかし、本実施形態では、ボンディングステージ20は、ワークの位置および/または寸法に応じて均一に加熱する範囲を設定してワークを加熱する。そのため、エネルギーを浪費しない。
[他の実施形態]
 なお、本発明は、以上説明した実施形態に限定されるものではなく、本発明の技術的思想内で多くの変形が可能である。
 例えば、ダイは、半導体素子(半導体チップ)には限られず、例えば抵抗素子、コンデンサ等の電子部品であってもよい。ワークは、プリント基板、フレキシブル基板、リードフレーム等の種々の被装着部材を用いることができる。接合材は、熱硬化型接着剤の他に、接着プロセスの中で加熱工程を要するものであれば種々のものを用いることができる。このように、本発明は、半導体チップをダイボンディングする半導体の製造方法の他に、電子部品等の部品を実装する物品の製造方法に広く用いることができる。
 上述したダイボンディング方法に係る制御動作を実行可能な制御プログラム、制御プログラムを格納したコンピュータで読み取り可能な記録媒体も、本発明の実施形態に含まれる。
 本発明は、実施形態の1以上の機能を実現するプログラムを、ネットワーク又は記憶媒体を介してシステム又は装置に供給し、そのシステム又は装置のコンピュータにおける1つ以上のプロセッサーがプログラムを読出し実行する処理でも実現可能である。また、1以上の機能を実現する回路(例えば、ASIC)によっても実現可能である。
 本発明は、半導体チップをダイボンディングする装置や、電子部品等を回路基板等に実装する装置、等において広く実施することができる。
 本発明は、上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。したがって、本発明の範囲を公にするために、以下の請求項を添付する。
01・・・架台/10・・・ダイ実装部/20・・・ボンディングステージ/21・・・温度制御部/22・・・予備加熱部/23・・・温度センサ/24・・・ヒーター/30・・・吸引経路/31・・・吸着孔/32・・・吸着制御部/41・・・ステージ移動用軌道/42・・・移動台/50・・・基板移載部/60・・・基板排出部/70・・・基板供給部/71・・・基板押出し機構/72・・・基板格納部/80・・・基板収容部/82・・・基板収納部/90・・・ダイ供給部/100・・・ダイボンダ/110・・・基板/111・・・ダイ/200・・・制御部

Claims (20)

  1.  ワークを供給する供給部と、
     前記ワークを保持してワーク受取り位置からボンディング作業位置に移動可能かつ前記ワークの位置および/または寸法に応じた範囲を加熱可能なボンディングステージと、
     前記供給部が供給する前記ワークを、前記ワーク受取り位置にて前記ボンディングステージに移載するワーク移載部と、
     前記ボンディング作業位置にて、前記ボンディングステージに保持された前記ワークに実装部品を載置する実装部と、を備え、
     前記ワークを前記供給部から前記ボンディング作業位置に移動させる間に、前記ワークが前記ボンディング作業位置に到達する前から前記ワークへの予備加熱を開始し、
     前記ボンディング作業位置にてボンディング作業中は、前記ワークを保持する前記ボンディングステージが前記ワークへの加熱を制御する、
     物品の製造装置。
  2.  前記ワーク移載部が、前記供給部より供給された前記ワークを前記ボンディングステージに移載する際に、前記ワークの前記ワークを移載する方向に沿って伸びる2辺を挟持する、
     請求項1に記載の物品の製造装置。
  3.  前記ワーク移載部は固定爪及び可動爪を有し、
     前記可動爪の駆動により前記固定爪及び前記可動爪にて前記ワークを挟持する、
     請求項2に記載の物品の製造装置。
  4.  前記ボンディングステージが、前記ワークを前記ボンディングステージの所定の位置に固定する手段を有し、前記ワークを前記ボンディングステージの前記所定の位置に固定した状態で前記ワーク受取り位置から前記ボンディング作業位置に移動する、
     請求項1乃至3のいずれか1項に記載の物品の製造装置。
  5.  前記ワーク移載部が前記ボンディングステージに前記ワークを移載すると、
     前記ボンディングステージは、前記ボンディング作業位置に到達する前から前記ワークへの予備加熱を開始する、
     請求項1乃至4のいずれか1項に記載の物品の製造装置。
  6.  前記供給部と前記ボンディングステージの間に、前記ワークの位置および/または寸法に応じた範囲を加熱することが可能な予備加熱部を備え、
     前記ワーク移載部は、前記ワークを前記予備加熱部を経由させてから前記ボンディングステージに移載する、
     請求項1乃至5のいずれか1項に記載の物品の製造装置。
  7.  前記実装部は、前記ボンディング作業位置にて、複数の前記実装部品を前記ワークに順次に載置し、前記ボンディングステージは、複数の前記実装部品の全てのボンディング作業が完了するまで前記ワークへの加熱を制御する、
     請求項1乃至6のいずれか1項に記載の物品の製造装置。
  8.  前記ボンディングステージは、前記ワークを吸着し前記ワークを前記ボンディングステージの所定の位置に固定するための吸着部を有し、前記ワークの位置および/または寸法に応じた範囲を加熱可能な加熱部と、前記ボンディングステージもしくは前記ワークの温度を検知するための温度検知部と、を備え
     前記加熱部は、前記吸着部が前記ワークを吸着する前に加熱を開始する、
     請求項1乃至7のいずれか1項に記載の物品の製造装置。
  9.  前記ワークは基板で、前記実装部品は半導体チップである、
     請求項1乃至8のいずれか1項に記載の物品の製造装置。
  10.  ワークを供給する供給部と、
     前記ワークを保持してワーク受取り位置からボンディング作業位置に移動可能かつ前記ワークの位置および/または寸法に応じた範囲を加熱可能なボンディングステージと、
     前記供給部が供給する前記ワークを、前記ワーク受取り位置にて前記ボンディングステージに移載するワーク移載部と、
     前記ボンディング作業位置にて、前記ボンディングステージに保持された前記ワークに実装部品を載置する実装部と、を備えた装置を用いた物品の製造方法であって、
     前記ワークを前記供給部から前記ボンディング作業位置に移動させる間に、前記ワークが前記ボンディング作業位置に到達する前から前記ワークへの予備加熱を開始する加熱開始工程と、
     前記ボンディング作業位置にてボンディング作業中に、前記ワークを保持する前記ボンディングステージが前記ワークへの加熱を制御する加熱制御工程と、を備える、
     物品の製造方法。
  11.  前記ワーク移載部が、前記供給部より供給された前記ワークを前記ボンディングステージに移載する際に、前記ワークの前記ワークを移載する方向に沿って伸びる2辺を挟持する、
     請求項10に記載の物品の製造方法。
  12.  前記ワーク移載部は固定爪及び可動爪を有し、
     前記可動爪の駆動により前記固定爪及び前記可動爪にて前記ワークを挟持する、
     請求項11に記載の物品の製造方法。
  13.  前記ボンディングステージが、前記ワークを前記ボンディングステージの所定の位置に固定する手段を有し、前記ワークを前記ボンディングステージの前記所定の位置に固定した状態で前記ワーク受取り位置から前記ボンディング作業位置に移動する、
     請求項10乃至12のいずれか1項に記載の物品の製造方法。
  14.  前記ワーク移載部が前記ボンディングステージに前記ワークを移載すると、
     前記加熱開始工程において、前記ボンディングステージが、前記ボンディング作業位置に到達する前から前記ワークへの予備加熱を開始する、
     請求項10乃至13のいずれか1項に記載の物品の製造方法。
  15.  前記装置は、前記供給部と前記ボンディングステージの間に、前記ワークを加熱することが可能な予備加熱部を備え、
     前記加熱開始工程において、前記ワーク移載部は、前記ワークを前記予備加熱部に載置し、
     その後、前記ワーク移載部は、前記ワークを前記予備加熱部から前記ボンディングステージに移載する、
     請求項10乃至14のいずれか1項に記載の物品の製造方法。
  16.  前記加熱制御工程において、
     前記実装部は、前記ボンディング作業位置にて、複数の前記実装部品を前記ワークに順次に載置し、前記ボンディングステージは、複数の前記実装部品の全てのボンディング作業が完了するまで前記ワークへの加熱を制御する、
     請求項10乃至15のいずれか1項に記載の物品の製造方法。
  17.  前記ボンディングステージは、前記ワークを吸着し前記ワークを前記ボンディングステージの所定の位置に固定するための吸着部を有し、前記ワークの位置および/または寸法に応じた範囲を加熱可能な加熱部と、前記ボンディングステージもしくは前記ワークの温度を検知するための温度検知部と、を備え、
     前記加熱部は、前記吸着部が前記ワークを吸着する前に加熱を開始する、
     請求項10乃至16のいずれか1項に記載の物品の製造方法。
  18.  前記ワークは基板で、前記実装部品は半導体チップである、
     請求項10乃至17のいずれか1項に記載の物品の製造方法。
  19.  前記装置が備えるコンピュータに、請求項10乃至18のいずれか1項に記載の物品の製造方法の各工程を実行させるためのプログラム。
  20.  請求項19に記載のプログラムを記録したコンピュータにより読み取りが可能な記録媒体。
PCT/JP2021/018997 2020-07-03 2021-05-19 物品の製造装置、物品の製造方法、プログラム、記録媒体 WO2022004170A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020115371 2020-07-03
JP2020-115371 2020-07-03
JP2021-066270 2021-04-09
JP2021066270A JP2022013676A (ja) 2020-07-03 2021-04-09 物品の製造装置、物品の製造方法、プログラム、記録媒体

Publications (1)

Publication Number Publication Date
WO2022004170A1 true WO2022004170A1 (ja) 2022-01-06

Family

ID=79315904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018997 WO2022004170A1 (ja) 2020-07-03 2021-05-19 物品の製造装置、物品の製造方法、プログラム、記録媒体

Country Status (2)

Country Link
TW (1) TW202203334A (ja)
WO (1) WO2022004170A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504710A (zh) * 2023-06-25 2023-07-28 广东芯乐光光电科技有限公司 Mini-LED固晶装置及固晶方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI841032B (zh) * 2022-11-02 2024-05-01 亞克先進科技股份有限公司 測試系統

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121994A (ja) * 1997-10-20 1999-04-30 Matsushita Electric Ind Co Ltd 部品搭載装置及びその方法
JP2000150546A (ja) * 1998-11-16 2000-05-30 Toshiba Corp 電子部品の実装装置及び実装方法
JP2000195905A (ja) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd 部品実装方法と装置
JP2017092313A (ja) * 2015-11-12 2017-05-25 株式会社東芝 半導体製造装置。
JP2017175059A (ja) * 2016-03-25 2017-09-28 ファスフォードテクノロジ株式会社 ダイボンダ
WO2019026916A1 (ja) * 2017-08-01 2019-02-07 株式会社新川 フレームフィーダ
JP2019062034A (ja) * 2017-09-26 2019-04-18 ファスフォードテクノロジ株式会社 ダイボンディング装置および半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11121994A (ja) * 1997-10-20 1999-04-30 Matsushita Electric Ind Co Ltd 部品搭載装置及びその方法
JP2000150546A (ja) * 1998-11-16 2000-05-30 Toshiba Corp 電子部品の実装装置及び実装方法
JP2000195905A (ja) * 1998-12-25 2000-07-14 Matsushita Electric Ind Co Ltd 部品実装方法と装置
JP2017092313A (ja) * 2015-11-12 2017-05-25 株式会社東芝 半導体製造装置。
JP2017175059A (ja) * 2016-03-25 2017-09-28 ファスフォードテクノロジ株式会社 ダイボンダ
WO2019026916A1 (ja) * 2017-08-01 2019-02-07 株式会社新川 フレームフィーダ
JP2019062034A (ja) * 2017-09-26 2019-04-18 ファスフォードテクノロジ株式会社 ダイボンディング装置および半導体装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116504710A (zh) * 2023-06-25 2023-07-28 广东芯乐光光电科技有限公司 Mini-LED固晶装置及固晶方法
CN116504710B (zh) * 2023-06-25 2023-12-29 广东芯乐光光电科技有限公司 Mini-LED固晶装置及固晶方法

Also Published As

Publication number Publication date
TW202203334A (zh) 2022-01-16

Similar Documents

Publication Publication Date Title
US20050045914A1 (en) Flip chip device assembly machine
KR101624004B1 (ko) 실장 장치 및 실장 방법
KR102037948B1 (ko) 다이 본딩 방법 및 장치
WO2022004171A1 (ja) 物品の製造装置、物品の製造方法、プログラム、記録媒体
WO2022004170A1 (ja) 物品の製造装置、物品の製造方法、プログラム、記録媒体
JP4372605B2 (ja) 電子部品搭載装置および電子部品搭載方法
WO1998012908A1 (fr) Procede et appareil pour la mise sous boitier des puces a circuit integre, et support en forme de bande conçu pour etre utilise a cet effet
JP5185739B2 (ja) 部品実装装置
TWI804856B (zh) 樹脂模塑裝置
KR102708943B1 (ko) 본딩 장치
JP2022013676A (ja) 物品の製造装置、物品の製造方法、プログラム、記録媒体
JP2002261492A (ja) Ic部品実装方法及び装置
JP3592924B2 (ja) Icチップの供給方法、供給装置、及びそれに使用する短冊テープ状支持体
JP7312452B2 (ja) 樹脂モールド装置及び樹脂モールド方法
TW202249128A (zh) 樹脂密封裝置以及樹脂密封方法
JP2012069730A (ja) ダイボンディング装置及びボンディング方法
WO2022004151A1 (ja) 物品の製造装置、物品の製造方法
KR102529668B1 (ko) 대상체 라미네이팅 장치
JP7468906B2 (ja) 樹脂封止装置
JP2004047927A (ja) 電子部品実装装置
WO2023105840A1 (ja) 樹脂封止装置及び封止金型
KR102284943B1 (ko) 본딩 장치 및 본딩 방법
JP2003303838A (ja) 半導体パッケージ製造装置および製造方法
JP2023106688A (ja) 圧縮成形装置及び圧縮成形方法
JPH07135228A (ja) 基板に対する電子部品実装用ダイボンディング装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833774

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833774

Country of ref document: EP

Kind code of ref document: A1