Nothing Special   »   [go: up one dir, main page]

WO2022000891A1 - 一种水合物评价实验系统及方法 - Google Patents

一种水合物评价实验系统及方法 Download PDF

Info

Publication number
WO2022000891A1
WO2022000891A1 PCT/CN2020/124916 CN2020124916W WO2022000891A1 WO 2022000891 A1 WO2022000891 A1 WO 2022000891A1 CN 2020124916 W CN2020124916 W CN 2020124916W WO 2022000891 A1 WO2022000891 A1 WO 2022000891A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
gas
hydrate
twenty
outlet
Prior art date
Application number
PCT/CN2020/124916
Other languages
English (en)
French (fr)
Inventor
张健
王金意
荆铁亚
赵文韬
张国祥
Original Assignee
中国华能集团有限公司
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团有限公司, 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团有限公司
Publication of WO2022000891A1 publication Critical patent/WO2022000891A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/22Fuels; Explosives
    • G01N33/222Solid fuels, e.g. coal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J10/00Chemical processes in general for reacting liquid with gaseous media other than in the presence of solid particles, or apparatus specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/008Feed or outlet control devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/02Feed or outlet devices; Feed or outlet control devices for feeding measured, i.e. prescribed quantities of reagents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates

Definitions

  • the invention relates to the field of hydrate development, in particular to a hydrate evaluation experiment system and method.
  • Natural gas hydrate is a naturally occurring compound with a cage-like structure. It is an efficient and clean energy source with high combustion calorific value. Its combustion produces dozens of times more energy than ordinary fossil fuels of the same quality. Natural gas hydrate is a clathrate crystalline compound formed by small molecules of light hydrocarbon gases such as methane and water molecules in natural gas under certain temperature and pressure conditions, which is similar in appearance to loose ice or dense snow.
  • the existing experimental systems for the synthesis and exploitation of hydrates have the following shortcomings: (1) The research objects are mainly aimed at natural gas hydrates, and few are aimed at CO 2 hydrates. (2) There are no studies on the properties of hydrate inhibitors and accelerators. (3) When the corresponding gas and liquid are output, the design of the pressure control is relatively simple, especially in the decompression decomposition experiment, the output pressure is not stable enough, and there may be pulses, which affects the accuracy of measurement and the experimental effect. (4) After the formation of combustible ice, the measurement of the specific distribution of internal temperature and pressure is not accurate enough, and the precision is not enough, which brings inconvenience to experimental research. (5) Some equipment still has hidden safety hazards or inconvenient operation, which cannot better control the experimental process, which brings great inconvenience to the development of experimental research. (6) The embolism of natural gas hydrate in the pipeline and the corresponding preventive measures are not studied.
  • the purpose of the present invention is to provide a hydrate evaluation experiment system and method, which solves the above-mentioned defects in the existing hydrate synthesis and mining research experiments.
  • a hydrate evaluation experimental system includes a first gas cylinder, a second gas cylinder, a flow control device, a flow controller, a magnetic stirring vessel, a chemical reagent injection device and a closed loop, wherein,
  • the magnetic stirring vessel is provided with a chemical reagent injection port, and the chemical reagent injection port is connected to the outlet of the chemical reagent injection device;
  • the closed loop is respectively connected with the first gas cylinder, the second gas cylinder and the chemical reagent injection device through the twentieth valve.
  • the closed circuit includes a third pressure gauge, a first thermometer, a window, a twenty-second valve, a differential pressure sensor, a twenty-third valve, a twenty-fourth valve, a twenty-fifth valve, a circulation pump, and The twenty-sixth valve, wherein the outlet of the twentieth valve is connected to the inlet of the window, the outlet of the window is respectively connected to the twenty-second valve and the twenty-fourth valve, and the outlets of the twenty-second valve are sequentially After the differential pressure sensor and the twenty-third valve are combined with the outlet of the twenty-fourth valve, they are respectively connected to the twenty-fifth valve and the inlet of the circulating pump, the outlet of the circulating pump is connected to the second through the twenty-sixth valve. The outlets of the fifteen valves are merged and then connected to the inlets of the windows.
  • the outlets of the first gas cylinder and the second gas cylinder are connected to a high-pressure storage tank through a gas booster pump, and the outlets of the high-pressure storage tank are respectively connected to a flow controller and a flow control device.
  • the air inlet of the gas booster pump is connected to a low-pressure storage tank through a tenth valve, and the low-pressure storage tank is connected to an air compressor.
  • the low-pressure storage tank is also connected with a chemical reagent injection device.
  • the flow control device includes a first liquid pool, a first piston and a second piston, wherein the liquid outlet of the first liquid pool passes through the constant pressure pump and the liquid inlet of the first piston and the second piston respectively.
  • the ports are connected; the gas outlets of the first piston and the second piston are respectively connected to the magnetic stirring vessel through the seventh valve and the eighth valve.
  • the chemical reagent injection device includes a second liquid pool, a third piston and a fourth piston, wherein the liquid outlet of the second liquid pool is connected to the liquid inlets of the third piston and the fourth piston respectively through a constant flow pump Connection; the chemical reagent outlets of the third piston and the fourth piston are connected to the twentieth valve through the sixteenth valve and the eighteenth valve, respectively.
  • the experimental system further includes an exhaust device for evacuation, the exhaust device includes a twenty-seventh valve, the twenty-seventh valve is arranged on the closed circuit, and the twenty-seventh valve is The outlet is respectively connected to a buffer tank and a vacuum pump, and the buffer tank is provided with a fourth pressure gauge and a twenty-eighth valve.
  • the experimental system further includes a gas-liquid separation structure
  • the gas-liquid separation structure includes a gas-liquid separator
  • the inlet of the gas-liquid separator is connected to the outlet of the magnetic stirring vessel through the back pressure valve and the twenty-ninth valve in sequence.
  • the gas outlet of the gas-liquid separator is connected to a wet flow meter
  • the liquid outlet of the gas-liquid separator is connected to a metering container.
  • a hydrate evaluation experimental method based on the hydrate evaluation experimental system, comprises the following steps:
  • the chemical reagent is injected into the closed loop through the chemical reagent injection device, the flow speed of the liquid is set, and the circulating pump is started to make the chemical reagent flow in the closed loop; Difference;
  • the CO 2 gas or CH 4 is sent into the closed loop through the twentieth valve, and the experimental temperature is set by the temperature control device set on the closed loop to simulate the CO 2 gas or CH 4 in the pipeline transportation process, due to cooling. Hydrate is formed, and when the temperature rises, whether a hydrate plug is formed in the valve and the narrow and long pipeline; and it is used to simulate the chemical removal of the hydrate plug in the circulation pipeline.
  • the research object can be either natural gas or CO 2 hydrate.
  • the present invention can conduct research on properties such as friction of hydrate inhibitors and accelerators.
  • the system is designed with a back pressure valve, which can stabilize the output pressure during the depressurization experiment.
  • the invention is suitable for the relevant experimental tests of natural gas hydrate and CO 2 hydrate, and introduces relevant experimental operation methods.
  • This experimental system can simulate the formation of hydrate, and simulate the extraction of combustible ice by depressurization method, heating method and chemical method, and evaluate the influence of temperature, pressure, type and concentration of chemical reagents, reaction time and other related factors on the extraction of combustible ice.
  • the test system can be used to test the properties of hydrate inhibitor samples under different temperature, pressure, flow rate and other test conditions; at the same time, its influence on the formation and decomposition of hydrate can be analyzed, which is convenient for further detailed analysis and research, so as to guide Production.
  • FIG. 1 is a schematic structural diagram of the experimental system involved in the present invention.
  • a hydrate evaluation experimental system includes a first gas cylinder 1, a second gas cylinder 2, a first valve 3, a second valve 4, a gas booster pump 5, a first safety Valve 6, high pressure storage tank 7, first pressure gauge 8, pressure regulating valve 9, second pressure gauge 10, third valve 11, flow controller 12, fourth valve 13, fifth valve 14, first liquid pool 15 , constant pressure pump 16, sixth valve 17, first piston 18, seventh valve 19, eighth valve 20, second piston 21, ninth valve 22, back pressure valve 23, tenth valve 24, air compressor 25 , low pressure storage tank 26, second safety valve 27, eleventh valve 28, twelfth valve 29, thirteenth valve 30, cleaning container 31, fourteenth valve 32, second liquid pool 33, constant flow pump 34 , the fifteenth valve 35, the third piston 36, the sixteenth valve 37, the seventeenth valve 38, the fourth piston 39, the eighteenth valve 40, the nineteenth valve 41, the twentieth valve 42, the third pressure Gauge 43, first thermometer 44, first camera 45, window 46, first cold light source 47, twenty-first valve 48, twenty-second valve 49, differential pressure
  • Back pressure valve 70 back pressure container 71, back pressure pump 72, fifth pressure gauge 73, wet flow meter 74, gas-liquid separator 75, thirty-first valve 77 and measuring container 78, wherein the first gas
  • the gas outlets of the bottle 1 and the second gas bottle 2 are connected to the air inlets of the gas booster pump 5, and the gas outlets of the gas booster pump 5 are respectively connected to the high pressure storage tank 7 and the low pressure storage tank 26.
  • a first valve 3 is arranged between the first gas cylinder 1 and the gas booster pump 5 .
  • a second valve 4 is arranged between the second gas cylinder 2 and the gas booster pump 5 .
  • a tenth valve 24 is provided between the gas booster pump 5 and the low-pressure storage tank 26 , and power is provided to the gas booster pump 5 through the tenth valve 24 .
  • the high-pressure storage tank 7 is provided with a first safety valve 6 and a first pressure gauge 8 .
  • the high-pressure storage tank 7 passes through the pressure regulating valve 9 , the fifth valve 14 and the back pressure valve 23 in sequence.
  • a second pressure gauge 10 is arranged between the pressure regulating valve 9 and the fifth valve 14 .
  • a flow controller 12 is arranged between the air inlet of the fifth valve 14 and the air inlet of the back pressure valve 23 , and a third valve 11 is arranged at the inlet of the flow controller 12 .
  • a fourth valve 13 is provided at the air outlet of 12 .
  • the outlet of the fifth valve 14 is provided with a seventh valve 19 and a ninth valve 22 in sequence, wherein the outlet of the seventh valve 19 is connected to the first piston 18 and the sixth valve 17 in sequence; the outlet of the ninth valve 22 The second piston 21 and the eighth valve 20 are connected in sequence.
  • the outlets of the sixth valve 17 and the eighth valve 20 are both connected with a constant pressure pump 16 , and the constant pressure pump 16 is connected with the first liquid pool 15 .
  • the outlet of the back pressure valve 23 is connected to the inlet of the magnetic stirring vessel 63 through the thirty-second valve 62 .
  • the magnetic stirring vessel 63 is arranged in a high and low temperature bath 64 , and a second cold light source 65 and a second camera 66 are arranged on the high and low temperature bath 64 .
  • the outlet of the magnetic stirring vessel 63 is connected to the back pressure valve 70 through the second thermometer 67 , the twenty-ninth valve 68 and the thirtieth valve 69 in sequence.
  • the outlets of the back pressure valve 70 are respectively connected to the back pressure container 71 and the gas-liquid separator 75 .
  • a wet flow meter 74 is provided at the gas outlet of the gas-liquid separator 75 .
  • the liquid outlet of the gas-liquid separator 75 is connected to the metering container 77 through the low thirty-one valve 76 .
  • An air compressor 25 is connected to the air inlet provided on the low-pressure storage tank 26 .
  • the low pressure storage tank 26 is provided with a second safety valve 27 and an eleventh valve 28 .
  • the gas outlets on the low-pressure storage tank 26 are respectively connected to the twelfth valve 29 and the thirteenth valve 30, wherein the outlet of the thirteenth valve 30 is connected to the cleaning container 31 and the fourteenth valve 32 in turn; the The outlets of the fourteenth valve 32 and the twelfth valve 29 are both connected to the inlet of the nineteenth valve 41 .
  • the cleaning liquid in the cleaning container 31 is pressed into the subsequent pipeline system by the air pressure in the low-pressure storage tank 26, and the solid particles in the pipeline are displaced by the gas at the same time.
  • the sixteenth valve 37 and the eighteenth valve 40 are provided at the inlet of the nineteenth valve 41, wherein the outlet of the sixteenth valve 37 is connected to the third piston 36 and the fifteenth valve 35 in sequence;
  • the outlet of the eighth valve 40 is connected to the fourth piston 40 and the seventeenth valve 38 in turn;
  • the outlets of the fifteenth valve 35 and the seventeenth valve 35 are connected to the constant flow pump 34, and the outlet of the constant flow pump 34 is connected to the seventh valve.
  • Two-liquid pool 33 Two-liquid pool 33 .
  • the outlet of the nineteenth valve 41 is connected to the inlet of the twentieth valve 42,
  • the outlet of the twentieth valve 42 is connected to a closed circuit, and the closed circuit includes a window 46 , a twenty-second valve 49 , a differential pressure sensor 50 , a twenty-third valve 51 , a twenty-fourth valve 52 , and a twenty-fourth valve 52 .
  • the five valves 54, the circulating pump 55, the twenty-sixth valve 56 and the thirtieth valve 69, the outlet of the chemical reagent injection device is connected to the inlet of the window 46, and the outlet of the window 46 is connected to the twenty-second valve 49 and the thirtieth valve 69, respectively.
  • the twenty-fourth valve 52, the outlet of the twenty-second valve 49 passes through the differential pressure sensor 50 and the twenty-third valve 51 in turn and merges with the outlet of the twenty-fourth valve 52, and then is respectively combined with the twenty-fifth valve 54 It is connected to the inlet of the circulation pump 55 , the outlet of the circulation pump 55 is merged with the outlet of the twenty-fifth valve 54 through the twenty-sixth valve 56 , and then connected to the inlet of the window 46 .
  • a third pressure gauge 43 and a first thermometer 44 are sequentially arranged between the outlet of the twentieth valve 42 and the viewing window 46 .
  • the viewing window 46 is provided with a first camera 45 and a first cold light source 47 ; the first cold light source 47 can emit light to illuminate the viewing window 46 , so that the first camera 45 can capture internal experimental phenomena.
  • the closed loop is also provided with a twenty-first valve 48, which is used for venting when cleaning the experimental pipeline to remove residual liquid and the like.
  • a third safety valve 53 is designed between the twenty-fourth valve 52 and the twenty-fifth valve 54 .
  • the thirtieth valve 69 is connected between the closed circuit and the back pressure valve 70 .
  • the closed circuit is also provided with an exhaust device for evacuation, the exhaust device includes a twenty-seventh valve 60, and the outlet of the twenty-seventh valve 60 is connected to the buffer tank 58 and the vacuum pump 57 respectively.
  • the buffer tank 58 is provided with a fourth pressure gauge 59 and a twenty-eighth valve 61 .
  • the magnetic stirring vessel 63 and the high and low temperature bath 64 are made of transparent materials.
  • a second cold light source 65 and a second camera 66 are arranged on the outside of the high and low temperature bath 64.
  • the second cold light source 65 can illuminate the interior of the high and low temperature bath 64, which is convenient for the second camera 66 to capture internal experimental phenomena.
  • the inner reservoir of the first gas cylinder 1 has enough CH 4 or natural gas mixed gas; the inner reservoir of the second gas cylinder 2 has enough CO 2 gas.
  • the pressure regulating valve 9 can adjust the output gas pressure; the flow controller 12 can adjust the flow rate of the output gas, and this branch is selected when natural gas is output.
  • Both the first liquid pool 15 and the second liquid pool 33 have sufficient fresh water reservoirs.
  • the first piston 18 is replaced by the constant pressure pump 16 to deliver clean water, and the CO 2 gas inhaled by the second piston 21 is output through the back pressure valve 23 .
  • the cleaning container 31 can be opened for storing clean water or cleaning agent for synthesizing hydrate or cleaning equipment pipelines.
  • the tops of the third piston 36 and the fourth piston 39 are used to store chemical reagent test samples.
  • the rotating speed of the magnetic stirring vessel 63 can be adjusted, and the wet flow meter 74 can measure the quality of the gas flowing through.
  • the gas-liquid separator 75 can separate the passing gas-liquid fluid.
  • the measuring container 77 can measure the weight of the liquid separated inside.
  • All the connecting pipelines of the system are 316L pipelines to prevent the corrosion of the pipelines by the internal fluid, and the pipelines are wrapped with thermal insulation materials to prevent the local temperature from decreasing, which may cause the secondary generation of hydrates or the generation of ice, which may block the pipelines. This will affect the effect of the experiment and cause potential safety hazards to the experiment.
  • the parameters such as displacement, temperature and pressure can all be collected through the data collection control card for real-time monitoring and data collection of the flow, temperature and pressure in the experimental system.
  • the chemical reagents of the present invention include hydrate inhibitors or hydrate accelerators.
  • the test method is as follows:
  • Boosting Turn on the air compressor to provide sufficient power for the gas booster pump 5 .
  • the twentieth valve 42 and the twenty-ninth valve 68 are closed.
  • the CH 4 or natural gas stored in the gas mixture in the first cylinder 1 through a gas booster pump 5 for pressurizing, It is sent into the high-pressure storage tank 7 for storage, and the pressure of the high-pressure storage tank 7 is collected by the first pressure gauge 8, and the pressure is released through the first safety valve 6 to ensure safety.
  • the high-pressure gas in the high-pressure storage tank 7 is pressure-regulated by the pressure-regulating valve 9, its pressure is measured by the second pressure gauge 10, and sent to the back pressure valve through the third valve 11, the flow controller 12 and the fourth valve 13 23 to adjust the pressure, and then send it into the magnetic stirring vessel 63, set the experimental process parameters according to the experimental process requirements, and carry out the synthesis of combustible ice.
  • the mixed gas is passed through the magnetic stirring vessel 63 , and the experimental process parameters are set according to the experimental process requirements to synthesize the hydrate; the remaining gas is passed through the gas-liquid separator 75 .
  • the wet flow meter 74 is used to measure the quality of the gas separated by the gas-liquid separator 75 .
  • the mass of the separated liquid is metered by the metering container 77 .
  • the high-pressure gas in the high-pressure storage tank 7 is pressure-regulated by the pressure-regulating valve 9, the pressure is measured by the second pressure gauge 10, and then sent to the fifth valve 14, the constant-pressure pump 16 is turned on, and the gas in the first liquid pool 15 is regulated.
  • the clean water is sent to the first piston 18 and the second piston 21 to measure CO 2 gas while ensuring the quantitative injection of CO 2 special phase gas; then it is sent to the back pressure valve 23 to adjust the pressure, and then sent to the magnetic stirring
  • the experimental process parameters are set according to the experimental process requirements, and the synthesis of CO 2 hydrate is carried out. Same as above, and finally the separation effect under different experimental conditions was tested with the gas-liquid separation structure.
  • the CO 2 is fed into the magnetic stirring vessel 63 ; meanwhile, the chemical reagent is injected into the magnetic stirring vessel 63 by the chemical reagent injection device, and the experimental process parameters are set according to the experimental process requirements, and the synthesis of CO 2 hydrate is carried out.
  • the chemical reagent is injected into the window 46 through the chemical reagent injection device, the twentieth valve 42, the twenty-fifth valve 54 and the thirtieth valve 69 are closed; the twenty-second valve 49, the twenty-third valve 51 and the twentieth valve are opened.
  • valves 52 set the flow rate of the liquid, start the circulation pump 55, so that the chemical reagent passes through the window 46, the twenty-fourth valve 52, the circulation pump 55, and then returns to the window 46, and flows in the closed loop formed to carry out Experimental evaluation of thermodynamic chemical reagents, kinetic chemical reagents, polymerization inhibitors or composite chemical reagents; at the same time, the differential pressure at the inlet and outlet of the twenty-fourth valve 52 is collected by the differential pressure sensor 50 .
  • the CO 2 gas or CH 4 is sent into the closed loop through the twentieth valve 42, and the experimental temperature is set by the temperature control device set on the closed loop to simulate the CO 2 gas or CH 4 in the pipeline transportation process.
  • the temperature control device set on the closed loop to simulate the CO 2 gas or CH 4 in the pipeline transportation process.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种水合物评价实验系统及方法,评价实验系统包括第一气瓶(1)、第二气瓶(2)、流量控制装置、流量控制器(12)、磁搅拌容器(63)、化学试剂注入装置和封闭回路,其中,第一气瓶(1)用于储存CH 4或者天然气混合气体;第一气瓶(1)的气体出口经过流量控制器(12)连接磁搅拌容器(63);第二气瓶(2)用于储存CO 2气体;第二气瓶(2)的气体出口经过流量控制装置连接磁搅拌容器(63);磁搅拌容器(63)上设置有化学试剂注入口,化学试剂注入口连接化学试剂注入装置的出口;封闭回路通过第二十阀(42)分别连接第一气瓶(1)、第二气瓶(2)和化学试剂注入装置;能够实现模拟水合物形成,同时分析对水合物的形成及分解规律的影响,便于开展进一步详细分析研究,从而指导生产。

Description

一种水合物评价实验系统及方法 技术领域
本发明涉及水合物开发领域,具体涉及一种水合物评价实验系统及方法。
背景技术
天然气水合物是一种自然存在的微观结构为笼型的化合物,是一种高效清洁能源,燃烧热值高的能源,它燃烧产生的能量比相同质量的普通化石燃料要多出数十倍。天然气水合物是在一定的温度和压力条件下,由天然气中的甲烷等轻烃气体小分子与水分子形成的外观上类似于松散的冰或致密的雪的笼型结晶化合物。
随着人们对它研究的进一步深入,许多开采方法被提出来,其主要原理为改变可燃冰储层的温度、压力,打破其相平衡,使可燃冰分解得到甲烷气体。天然气开采及储运过程中,天然气水合物常常造成管道、阀门和设备的堵塞,虽然防止天然气水合物的方法很多,目前主要有5种方法来防治管道内天然气水合物栓塞:脱水法、降压法、加热法、机械法、化学法。
研究表明化学法一般是在地层中注入化学试剂(例如甲醇等),是最常用和最有效的方法,它可以提高水合物形成的相平衡条件,使得地层的孔隙压力和温度条件不能满足水合物的相平衡,从而水合物分解相变产生甲烷气体而收集的方法。化学法既能抑制天然气水合物的形成,也可以溶解已形成的天然气水合物。
现有的水合物的合成及开采研究的实验系统具有以下几个方面缺点:(1)研究对象主要针对天然气合物,很少有针对CO 2水合物的。(2)没有针对水合物抑制剂和促进剂的性质的研究。(3)相应的气体、液体输出时,对压力的控制方面设计的比较简单,特别是降压分解实验时,导致输出压力不够稳定,可能有脉冲,影响计量的准确性和实验效果。(4)可燃冰形成后,内部温度、压力的具体分布情况测量不够准确,精度不够,给实验研究带来不便。(5)有的设备还存在安全隐患或者操作不方便,不能对实验过程进行更好地控制,给试验研究的开展带来极 大不便。(6)没有研究管道内天然气水合物栓塞和相应的防止措施。
发明内容
本发明的目的在于提供一种水合物评价实验系统及方法,解决了现有的水合物的合成及开采研究实验存在的上述缺陷。
为了达到上述目的,本发明采用的技术方案是:
本发明提供的一种水合物评价实验系统,包括第一气瓶、第二气瓶、流量控制装置、流量控制器、磁搅拌容器、化学试剂注入装置和封闭回路,其中,
第一气瓶用于储存CH 4或者天然气混合气体;所述第一气瓶的气体出口经过流量控制器连接磁搅拌容器;
第二气瓶用于储存CO 2气体;所述第二气瓶的气体出口经过流量控制装置连接磁搅拌容器;
所述磁搅拌容器上设置有化学试剂注入口,所述化学试剂注入口连接化学试剂注入装置的出口;
所述封闭回路通过第二十阀分别连接第一气瓶、第二气瓶和化学试剂注入装置。
优选地,所述封闭回路包括第三压力计、第一温度计、视窗、第二十二阀、压差传感器、第二十三阀、第二十四阀、第二十五阀、循环泵和第二十六阀,其中,所述第二十阀的出口连接视窗的入口,所述视窗的出口分别连接第二十二阀和第二十四阀,所述第二十二阀的出口依次经过压差传感器和第二十三阀与第二十四阀的出口合并,之后分别与第二十五阀和循环泵的进口连接,所述循环泵的出口经过第二十六阀与第二十五阀的出口合并,之后连接视窗的入口。
优选地,所述第一气瓶和第二气瓶的出口处均通过气体增压泵连接高压储罐,所述高压储罐的出口分别连接流量控制器和流量控制装置连接。
优选地,所述气体增压泵的进气口经过第十阀连接低压储罐,所述低压储罐连接有空气压缩机。
优选地,所述低压储罐还连接有化学试剂注入装置。
优选地,所述流量控制装置包括第一液池、第一活塞和第二活塞,其中,所述第一液池的出液口经过恒压泵分别与第一活塞和第二活塞的进液口连接;所述第一活塞和第二活塞的气体出口分别通过第七阀和第八阀连接磁搅拌容器。
优选地,化学试剂注入装置包括第二液池、第三活塞和第四活塞,其中,所述第二液池的出液口经过恒流泵分别连接第三活塞和第四活塞的进液口连接;第三活塞和第四活塞的化学试剂出口分别通过第十六阀和第十八阀连接第二十阀。
优选地,该实验系统还包括有用于抽真空的排气装置,所述排气装置包括第二十七阀,所述第二十七阀设置在封闭回路上,所述第二十七阀的出口分别连接缓冲罐和真空泵,所述缓冲罐上设置有第四压力计和第二十八阀。
优选地,该实验系统还包括气液分离结构,所述气液分离结构包括气液分离器,所述气液分离器的进口依次经过回压阀和第二十九阀连接磁搅拌容器的出口;所述气液分离器的气体出口连接湿式流量计;所述气液分离器的液体出口连接计量容器。
一种水合物评价实验方法,基于所述的一种水合物评价实验系统,包括以下步骤:
根据实验目的,以A、B、C、D四种情况择一选择开展实验:
A:无化学试剂进行水合物的合成时,其中,合成可燃冰:
将储存在第一气瓶内的CH 4或者天然气混合气体增压后,经过流量控制器送入磁搅拌容器内,按照实验工艺要求设定实验工艺参数,进行可燃冰的合成;
合成CO 2水合物:
将储存在第二气瓶内的CO 2气体增压后,直接送入磁搅拌容器内,按照实验工艺要求设定实验工艺参数,进行CO 2水合物的合成;
B:利用化学试剂进行水合物的合成时,其中,合成可燃冰:
将储存在第一气瓶内的CH 4或者天然气混合气体增压后,经过流量控制器送入磁搅拌容器内;同时,利用化学试剂注入装置将化学试剂注入磁搅拌容器内,按照实验工艺要求设定实验工艺参数,进行可燃冰的合成;
合成CO 2水合物:
将储存在第二气瓶内的CO 2气体增压后直接送入磁搅拌容器内;同时,利用化学试剂注入装置将化学试剂注入磁搅拌容器内,按照实验工艺要求设定实验工艺参数,进行CO 2水合物的合成;
C:对化学试剂进行测试:
通过化学试剂注入装置将化学试剂注入封闭回路,设置液体的流动速度,启动循环泵,使得化学试剂在封闭回路内流动;通过压差传感器测第二十四阀52进出口处的化学试剂的压差;
D:观测水合物的合成或分解
将CO 2气体或CH 4经过第二十阀送入封闭回路中,利用设置在封闭回路上的温控装置设置实验温度,用以模拟CO 2气体或CH 4在管路运输过程中,由于降温形成水合物,并在升温时,阀门和窄长管路中是否形成有水合物柱塞;以及用以模拟在循环管路中,利用化学法清除水合物柱塞。
与现有技术相比,本发明的有益效果是:
本发明提供的一种水合物评价实验系统,相对于现有同类实验设备,本发明具有以下优点:
(1)研究对象既可以针对天然气合物,也可以针对CO 2水合物的。
(2)本发明可以针对水合物抑制剂和促进剂的摩阻等性质开展研究。
(3)相应的气体、液体输出时,对压力的控制比较稳定,没有脉冲,使得计量的准确性和实验效果有保证。
(4)天然气通过管道运输时,容易形成水合物常常造成管道、阀门和设备的堵塞,本系 统可以用来研究管道内天然气水合物栓塞,和防止措施,包括注入化学试剂的解决办法。
进一步的,本系统设计有回压阀,在开展降压实验时,可以稳定输出压力。
本发明适用于天然气水合物和CO 2水合物的相关试验测试,并且介绍有关实验操作方法。可以通过本实验系统模拟水合物形成,并且模拟降压法,加热法,化学法开采可燃冰,评价温度、压力、化学试剂的种类和浓度、反应时间等有关因素对可燃冰开采的影响。同时可以利用该试验系统测试水合物抑制剂样品,在不同温度、压力,流速等试验条件下的性质;同时分析他对水合物的形成及分解规律的影响,便于开展进一步详细分析研究,从而指导生产。
附图说明
图1是本发明涉及的实验系统结构示意图。
具体实施方式
下面结合附图,对本发明进一步详细说明。
如图1所示,本发明提供的一种水合物评价实验系统,包括第一气瓶1、第二气瓶2、第一阀3、第二阀4、气体增压泵5、第一安全阀6、高压储罐7、第一压力计8、调压阀9、第二压力计10、第三阀11、流量控制器12、第四阀13、第五阀14、第一液池15、恒压泵16、第六阀17、第一活塞18、第七阀19、第八阀20、第二活塞21、第九阀22、背压阀23、第十阀24、空气压缩机25、低压储罐26、第二安全阀27、第十一阀28、第十二阀29、第十三阀30、清洗容器31、第十四阀32、第二液池33、恒流泵34、第十五阀35、第三活塞36、第十六阀37、第十七阀38、第四活塞39、第十八阀40、第十九阀41、第二十阀42、第三压力计43、第一温度计44、第一摄像头45、视窗46、第一冷光源47、第二十一阀48、第二十二阀49、压差传感器50、第二十三阀51、第二十四阀52、第三安全阀53、第二十五阀54、循环泵55、第二十六阀56、真空泵57、缓冲罐58、第四压力计59、第二十七阀60、第二十八阀61、第三十二阀62、磁搅拌容器63、高低温浴槽64、第二冷光源65、第二摄像头66、第二 温度计67、第二十九阀68、第三十阀69、回压阀70、回压容器71、回压泵72、第五压力计73、湿式流量计74、气液分离器75、第三十一阀77和计量容器78,其中,第一气瓶1和第二气瓶2的出气口连接气体增压泵5的进气口,所述气体增压泵5的出气口分别连接高压储罐7和低压储罐26。
所述第一气瓶1和气体增压泵5之间设置有第一阀3。
所述第二气瓶2和气体增压泵5之间设置有第二阀4。
所述气体增压泵5和低压储罐26之间设置有第十阀24,通过第十阀24向气体增压泵5提供动力。
所述高压储罐7上设置有第一安全阀6和第一压力计8。
所述高压储罐7依次通过调压阀9、第五阀14和背压阀23。
所述调压阀9和第五阀14之间设置有第二压力计10。
所述第五阀14的进气口和背压阀23的进气口处之间设置有流量控制器12,所述流量控制器12的进口处设置有第三阀11,所述流量控制器12的出气口处设置有第四阀13。
所述第五阀14的出气口依次设置有第七阀19和第九阀22,其中,第七阀19的出口依次连接第一活塞18和第六阀17;所述第九阀22的出口依次连接第二活塞21和第八阀20。
所述第六阀17和第八阀20的出口均连接有恒压泵16,所述恒压泵16连接有第一液池15。
所述背压阀23的出口通过第三十二阀62连接磁搅拌容器63的进气入口。
所述磁搅拌容器63设置在高低温浴槽64内,所述高低温浴槽64上设置有第二冷光源65和第二摄像头66。
所述磁搅拌容器63的出口依次通过第二温度计67、第二十九阀68、第三十阀69连接回压阀70。
所述回压阀70的出口分别连接回压容器71和气液分离器75。
所述气液分离器75气体出口处设置有湿式流量计74。
所述气液分离器75的液体出口通过低三十一阀76连接计量容器77。
所述低压储罐26上设置的空气入口连接有空气压缩机25。
所述低压储罐26上设置有第二安全阀27和第十一阀28。
所述低压储罐26上的气体出口分别连接第十二阀29和第十三阀30,其中,所述第十三阀30的出口依次连接清洗容器31和第十四阀32,;所述第十四阀32和第十二阀29的出口均连接第十九阀41的入口。通过低压储罐26中的气压将清洗容器31中清洗液体压入后面管路系统,同时通过气体驱替管路固体颗粒。
所述第十九阀41的入口处设置有第十六阀37和第十八阀40,其中,第十六阀37的出口依次连接第三活塞36和第十五阀35;所述第十八阀40的出口依次连接第四活塞40和第十七阀38;所述第十五阀35和第十七阀35的出口进连接恒流泵34,所述恒流泵34的出口连接第二液池33。
所述第十九阀41的出口连接第二十阀42的入口,
所述第二十阀42的出口连接封闭回路,所述封闭回路包括视窗46、第二十二阀49、压差传感器50、第二十三阀51、第二十四阀52、第二十五阀54、循环泵55、第二十六阀56和第三十阀69,所述化学试剂注入装置的出口连接视窗46的入口,所述视窗46的出口分别连接第二十二阀49和第二十四阀52,所述第二十二阀49的出口依次经过压差传感器50和第二十三阀51与第二十四阀52的出口合并,之后分别与第二十五阀54和循环泵55的进口连接,所述循环泵55的出口经过第二十六阀56与第二十五阀54的出口合并,之后连接视窗46的入口。
所述第二十阀42的出口和视窗46之间依次设置有第三压力计43和第一温度计44。
所述视窗46上设置有第一摄像头45和第一冷光源47;所述第一冷光源47可以发光照射视窗46,便于第一摄像头45拍摄内部实验现象。
所述封闭回路上还设置有第二十一阀48,用于清洗实验管路时候放空,排除残余液体等。
所述第二十四阀52与第二十五阀54之间设计有第三安全阀53。
所述封闭回路与回压阀70之间通过第三十阀69连接。
所述封闭回路上还设置有用于抽真空的排气装置,所述排气装置包括第二十七阀60,所述第二十七阀60的出口分别连接缓冲罐58和真空泵57,所述缓冲罐58上设置有第四压力计59和第二十八阀61。
所述磁搅拌容器63和高低温浴槽64均采用透明材质。
所述高低温浴槽64的外侧设置有第二冷光源65和第二摄像头66,通过第二冷光源65可以发光照射高低温浴槽64内部,便于第二摄像头66拍摄内部实验现象。
所述第一气瓶1的内部储层足够的CH 4或者天然气混合气体;所述第二气瓶2内部储层足够的CO 2气体。
所述调压阀9可以调节输出气体压力;所述流量控制器12可以调节输出气体的流量,当输出天然气时,选用这个支路。
所述第一液池15和第二液池33内部均储层足够的清水。
当从第二气瓶2中输出CO 2气体时,通过恒压泵16恒压输清水顶替第一活塞18,第二活塞21吸入的CO 2气体经过背压阀23输出。
所述清洗容器31可以打开,用于储存清水或者清洁剂用于合成水合物或者清洗设备管路。第三活塞36,第四活塞39的顶部用于存储化学试剂实验样品。
所述磁搅拌容器63可以调节转速,湿式流量计74可以计量流过的气体质量。所述气液分离器75可以分离流过的气液流体。所述计量容器77可以计量内部分离出的液体重量。
所述系统所有连接管线均采用316L管线,以防内部流体对管线的腐蚀,且管线均用保温材料缠绕包裹,防止局部温度降低,从而可能引起水合物的二次生成或者冰的生成,堵塞管路, 影响实验开展效果,给实验造成安全隐患。所述排量、温度、压力等参数均可以通过数据采集控制卡采集数据,用于对实验系统内的流量、温度、压力进行实时监控和数据采集。
本发明所述化学试剂包括水合物抑制剂或者水合物促进剂。
所述测试方法具体如下:
(1)如图,清洗好设备,检查系统气密性,调节相关阀门,
(2)然后打开真空泵57,排空实验系统和管线内部空气,从而排出空气对实验的干扰,为实验做好准备。
(3)增压:打开空气压缩机为气体增压泵5提供充足动力。
(4)开始实验:分以下A、B、C、D四种情况开始实验
A、无化学试剂进行合成水合物
关闭第二十阀42和第二十九阀68。
合成可燃冰:
打开第一阀3、第三阀11和第四阀13,关闭第五阀14,将储存在第一气瓶1内的CH 4或者天然气混合气体,经过气体增压泵5进行增压,之后送入高压储罐7内进行储存,并通过第一压力计8采集高压储罐7的压力,通过第一安全阀6进行放压,确保安全。
通过调压阀9将高压储罐7内的高压气体进行调压,通过第二压力计10测量其压力,经过第三阀11、流量控制器12和第四阀13,送入至背压阀23进行压力的调节,之后送入磁搅拌容器63内,按照实验工艺要求设定实验工艺参数,进行可燃冰的合成。
混合气体的分离:
将混合气体通过磁搅拌容器63,按照实验工艺要求设定实验工艺参数,进行水合物的合成;剩余气体通过气液分离器75。
通过湿式流量计74用于计量气液分离器75分离出来的气体质量。
通过计量容器77计量分离出来的液体质量。
合成CO 2水合物:
打开第二阀4、第五阀14、第六阀17、第七阀19、第八阀20和第九阀22,关闭第三阀11和第四阀1,将储存在第二气瓶2内的CO 2气体,经过气体增压泵5进行增压,之后送入高压储罐7内进行储存,并通过第一压力计8采集高压储罐7的压力,通过第一安全阀6进行放压,确保安全。
通过调压阀9将高压储罐7内的高压气体进行调压,通过第二压力计10测量其压力,之后送入第五阀14,打开恒压泵16,将第一液池15内的清水送入第一活塞18和第二活塞21,用于计量CO 2气体,同时保证CO 2特殊相态气的定量注入;之后送入至背压阀23进行压力的调节,接着送入磁搅拌容器63内,按照实验工艺要求设定实验工艺参数,进行CO 2水合物的合成。同上,最后用气液分离结构测试在不同实验条件的分离效果。
B、利用化学试剂进行水合物的合成时,其中,合成可燃冰:
将CH 4送入磁搅拌容器63内;同时,利用化学试剂注入装置将化学试剂注入磁搅拌容器63内,按照实验工艺要求设定实验工艺参数,进行可燃冰的合成;同上,最后用气液分离结构测试在不同实验条件的分离效果。
合成CO 2水合物:
将CO 2送入磁搅拌容器63内;同时,利用化学试剂注入装置将化学试剂注入磁搅拌容器63内,按照实验工艺要求设定实验工艺参数,进行CO 2水合物的合成。
化学试剂注入装置的使用:打开第二恒压泵34,请第二液池33内的清水注入第三活塞36和第四活塞39内,通过活塞将存储在活塞顶部的化学试剂注入磁搅拌容器63内。
同上,最后用气液分离结构测试在不同实验条件的分离效果。
C、对化学试剂进行测试:
通过化学试剂注入装置将化学试剂注入视窗46,关闭第二十阀42、第二十五阀54和第三十阀69;打开第二十二阀49、第二十三阀51和第二十四阀52,设置液体的流动速度,启动循环泵55,使得化学试剂经过视窗46、第二十四阀52、循环泵55,再回到视窗46,在形成的封闭回路中流动,用以进行热力学化学试剂、动力学化学试剂、阻聚剂或复合型化学试剂的实验评价;同时,通过压差传感器50采集第二十四阀52进出口处的压差。
D、观测水合物的合成或分解
将CO 2气体或CH 4经过第二十阀42送入封闭回路中,利用设置在封闭回路上的温控装置设置实验温度,用以模拟CO 2气体或CH 4在管路运输过程中,由于降温形成水合物,并在升温时,阀门和窄长管路中是否形成有水合物柱塞;还可以用以模拟在循环管路中,利用化学法清除水合物柱塞。最后用气液混合物经过第三十阀69经过气液分离结构测试在不同实验条件的分离效果。

Claims (10)

  1. 一种水合物评价实验系统,其特征在于,包括第一气瓶(1)、第二气瓶(2)、流量控制装置、流量控制器(12)、磁搅拌容器(63)、化学试剂注入装置和封闭回路,其中,
    第一气瓶(1)用于储存CH 4或者天然气混合气体;所述第一气瓶(1)的气体出口经过流量控制器(12)连接磁搅拌容器(63);
    第二气瓶(2)用于储存CO 2气体;所述第二气瓶(2)的气体出口经过流量控制装置连接磁搅拌容器(63);
    所述磁搅拌容器(63)上设置有化学试剂注入口,所述化学试剂注入口连接化学试剂注入装置的出口;
    所述封闭回路通过第二十阀(42)分别连接第一气瓶(1)、第二气瓶(2)和化学试剂注入装置。
  2. 根据权利要求1所述的一种水合物评价实验系统,其特征在于,所述封闭回路包括第三压力计(43)、第一温度计(44)、视窗(46)、第二十二阀(49)、压差传感器(50)、第二十三阀(51)、第二十四阀(52)、第二十五阀(54)、循环泵(55)和第二十六阀(56),其中,所述第二十阀(42)的出口连接视窗(46)的入口,所述视窗(46)的出口分别连接第二十二阀(49)和第二十四阀(52),所述第二十二阀(49)的出口依次经过压差传感器(50)和第二十三阀(51)与第二十四阀(52)的出口合并,之后分别与第二十五阀(54)和循环泵(55)的进口连接,所述循环泵(55)的出口经过第二十六阀(56)与第二十五阀(54)的出口合并,之后连接视窗(46)的入口。
  3. 根据权利要求1所述的一种水合物评价实验系统,其特征在于,所述第一气瓶(1)和第二气瓶(2)的出口处均通过气体增压泵(5)连接高压储罐(7),所述高压储罐(7)的出口分别连接流量控制器(12)和流量控制装置连接。
  4. 根据权利要求3所述的一种水合物评价实验系统,其特征在于,所述气体增压泵的进 气口经过第十阀(24)连接低压储罐(26),所述低压储罐(26)连接有空气压缩机(25)。
  5. 根据权利要求4所述的一种水合物评价实验系统,其特征在于,所述低压储罐(26)还连接有化学试剂注入装置。
  6. 根据权利要求1所述的一种水合物评价实验系统,其特征在于,所述流量控制装置包括第一液池(15)、第一活塞(18)和第二活塞(21),其中,所述第一液池(15)的出液口经过恒压泵(16)分别与第一活塞(18)和第二活塞(21)的进液口连接;所述第一活塞(18)和第二活塞(21)的气体出口分别通过第七阀(19)和第九阀(22)经过背压阀(23)连接磁搅拌容器(63)。
  7. 根据权利要求1所述的一种水合物评价实验系统,其特征在于,化学试剂注入装置包括第二液池(33)、第三活塞(36)和第四活塞(39),其中,所述第二液池(33)的出液口经过恒流泵(34)分别连接第三活塞(36)和第四活塞(39)的进液口连接;第三活塞(36)和第四活塞(39)的化学试剂出口分别通过第十六阀(37)和第十八阀(40)经过第十九阀(41)连接第二十阀(42)。
  8. 根据权利要求1所述的一种水合物评价实验系统,其特征在于,该实验系统还包括有用于抽真空的排气装置,所述排气装置包括第二十七阀(60),所述第二十七阀(60)设置在封闭回路上,所述第二十七阀(60)的出口分别连接缓冲罐(58)和真空泵(57),所述缓冲罐(58)上设置有第四压力计(59)和第二十八阀(61)。
  9. 根据权利要求1所述的一种水合物评价实验系统,其特征在于,该实验系统还包括气液分离结构,所述气液分离结构包括气液分离器(75),所述气液分离器(75)的进口依次经过回压阀(70)和第二十九阀(68)连接磁搅拌容器(63)的出口;所述气液分离器(75)的顶部气体出口连接湿式流量计(74);所述气液分离器(75)的底部液体出口连接计量容器(77)。
  10. 一种水合物评价实验方法,其特征在于,基于权利要求1-9中任一项所述的一种水合 物评价实验系统,包括以下步骤:
    根据实验目的,以A、B、C、D四种情况择一选择开展实验:
    A:无化学试剂进行水合物的合成时,其中,合成可燃冰:
    将储存在第一气瓶(1)内的CH 4或者天然气混合气体增压后,经过流量控制器(12)送入磁搅拌容器(63)内,按照实验工艺要求设定实验工艺参数,进行可燃冰的合成;
    合成CO 2水合物:
    将储存在第二气瓶(2)内的CO 2气体增压后,直接送入磁搅拌容器(63)内,按照实验工艺要求设定实验工艺参数,进行CO 2水合物的合成;
    B:利用化学试剂进行水合物的合成时,其中,合成可燃冰:
    将储存在第一气瓶(1)内的CH 4或者天然气混合气体增压后,经过流量控制器(12)送入磁搅拌容器(63)内;同时,利用化学试剂注入装置将化学试剂注入磁搅拌容器(63)内,按照实验工艺要求设定实验工艺参数,进行可燃冰的合成;
    合成CO 2水合物:
    将储存在第二气瓶(2)内的CO 2气体增压后直接送入磁搅拌容器(63)内;同时,利用化学试剂注入装置将化学试剂注入磁搅拌容器(63)内,按照实验工艺要求设定实验工艺参数,进行CO 2水合物的合成;
    C:对化学试剂进行测试:
    通过化学试剂注入装置将实验所需的化学试剂注入封闭回路,设置液体的流动速度,启动循环泵,使得化学试剂在封闭回路内流动;通过压差传感器测第二十四阀(52)进出口处的化学试剂的压差;
    D:观测水合物的合成或分解
    将CO 2气体或CH 4经过第二十阀(42)送入封闭回路中,利用设置在封闭回路上的温控装 置设置实验温度,用以模拟CO 2气体或CH 4在管路运输过程中,由于降温或者增压形成水合物,并在升温或者增压时,阀门和窄长管路中是否形成有水合物柱塞;以及用以模拟在循环管路中,利用化学法清除水合物柱塞。
PCT/CN2020/124916 2020-06-28 2020-10-29 一种水合物评价实验系统及方法 WO2022000891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010599557.7A CN111650354B (zh) 2020-06-28 2020-06-28 一种水合物评价实验系统及方法
CN202010599557.7 2020-06-28

Publications (1)

Publication Number Publication Date
WO2022000891A1 true WO2022000891A1 (zh) 2022-01-06

Family

ID=72352424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/124916 WO2022000891A1 (zh) 2020-06-28 2020-10-29 一种水合物评价实验系统及方法

Country Status (2)

Country Link
CN (1) CN111650354B (zh)
WO (1) WO2022000891A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023173909A1 (zh) * 2022-03-15 2023-09-21 广东石油化工学院 一种水合物可视化开发模拟装置及实验方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111650354B (zh) * 2020-06-28 2023-11-03 中国华能集团有限公司 一种水合物评价实验系统及方法
CN112108096A (zh) * 2020-10-26 2020-12-22 河南理工大学 集多种强化方法于一体的天然气水合物合成装置及方法
CN112461837A (zh) * 2020-11-05 2021-03-09 东北石油大学 一种水合物合成及分解可视化实验装置
CN112557624B (zh) * 2020-12-24 2024-07-09 广州海洋地质调查局 一种天然气水合物逆相变形成演化规律实验方法及装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2909239Y (zh) * 2006-06-14 2007-06-06 中国石油天然气股份有限公司 水合物抑制剂评价实验装置
CN101532936A (zh) * 2009-04-14 2009-09-16 中国地质大学(武汉) 评价钻井液对水合物形成和分解抑制能力的方法及装置
CN102094610A (zh) * 2010-12-24 2011-06-15 中国科学院广州能源研究所 一种co2开采天然气水合物的实验模拟系统
CN102169112A (zh) * 2010-12-29 2011-08-31 中国科学院广州能源研究所 一种用于天然气水合物低剂量抑制剂研究的装置和方法
CN105486805A (zh) * 2015-11-24 2016-04-13 西南石油大学 天然气水合物多功能测试系统及方法
CN105510529A (zh) * 2015-12-04 2016-04-20 中国石油大学(华东) 油气混输管道装置及水合物生成、堵塞及消融的模拟方法
KR101621504B1 (ko) * 2015-11-10 2016-05-16 한국지질자원연구원 가스 하이드레이트 생산에 의한 사질생산 모사장치 및 모사방법
CN110658329A (zh) * 2019-11-15 2020-01-07 中国华能集团有限公司 一种实验室模拟气体水合物生成的装置
CN111650354A (zh) * 2020-06-28 2020-09-11 中国华能集团有限公司 一种水合物评价实验系统及方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103645285A (zh) * 2013-12-17 2014-03-19 中国海洋石油总公司 一种可视化天然气水合物模拟试验装置及方法
CN105277660B (zh) * 2015-10-12 2016-09-07 中国石油大学(华东) 监测不同钻采方法下水合物分解区域的装置及方法
CN105699247B (zh) * 2016-03-04 2019-01-29 西南石油大学 一种天然气水合物合成与分解实验方法及实验系统
CN105717271B (zh) * 2016-03-11 2018-01-16 西南石油大学 一种海洋天然气水合物固态流化开采实验回路系统
CN205538950U (zh) * 2016-03-11 2016-08-31 西南石油大学 一种海洋天然气水合物固态流化开采实验回路系统
CN106010698A (zh) * 2016-05-06 2016-10-12 西南石油大学 一种天然气水合物快速合成装置
CN109341760B (zh) * 2018-09-21 2020-08-07 大连理工大学 一种应用于研究水合物堵塞的全可视化循环管路系统
CN209173895U (zh) * 2018-10-23 2019-07-30 山西晋城无烟煤矿业集团有限责任公司 一种甲烷水合物合成装置
CN109557253B (zh) * 2018-11-02 2019-07-23 广州海洋地质调查局 一种综合性水合物模拟系统及其实验方法
CN109401801A (zh) * 2018-11-16 2019-03-01 西南石油大学 一种压力波动下天然气水合物合成实验回路系统
CN110066696A (zh) * 2019-06-05 2019-07-30 国家地质实验测试中心 天然气水合物原位模拟和压模成型一体化系统及方法
CN110389126B (zh) * 2019-06-27 2022-02-25 青岛海洋科学与技术国家实验室发展中心 水合物生成分解可视化反应系统及记忆效应评价方法
CN110586013A (zh) * 2019-10-15 2019-12-20 中国地质大学(北京) 二氧化碳水合物可视化实验装置及其实验方法
CN110761749B (zh) * 2019-11-19 2024-04-02 中国华能集团有限公司 一种天然气水合物的合成及开采模拟实验系统及实验方法
CN110865153B (zh) * 2019-12-02 2022-04-29 东北石油大学 一种水合物多相流环路实验装置及实验方法
CN212622573U (zh) * 2020-06-28 2021-02-26 中国华能集团有限公司 一种水合物评价实验系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2909239Y (zh) * 2006-06-14 2007-06-06 中国石油天然气股份有限公司 水合物抑制剂评价实验装置
CN101532936A (zh) * 2009-04-14 2009-09-16 中国地质大学(武汉) 评价钻井液对水合物形成和分解抑制能力的方法及装置
CN102094610A (zh) * 2010-12-24 2011-06-15 中国科学院广州能源研究所 一种co2开采天然气水合物的实验模拟系统
CN102169112A (zh) * 2010-12-29 2011-08-31 中国科学院广州能源研究所 一种用于天然气水合物低剂量抑制剂研究的装置和方法
KR101621504B1 (ko) * 2015-11-10 2016-05-16 한국지질자원연구원 가스 하이드레이트 생산에 의한 사질생산 모사장치 및 모사방법
CN105486805A (zh) * 2015-11-24 2016-04-13 西南石油大学 天然气水合物多功能测试系统及方法
CN105510529A (zh) * 2015-12-04 2016-04-20 中国石油大学(华东) 油气混输管道装置及水合物生成、堵塞及消融的模拟方法
CN110658329A (zh) * 2019-11-15 2020-01-07 中国华能集团有限公司 一种实验室模拟气体水合物生成的装置
CN111650354A (zh) * 2020-06-28 2020-09-11 中国华能集团有限公司 一种水合物评价实验系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023173909A1 (zh) * 2022-03-15 2023-09-21 广东石油化工学院 一种水合物可视化开发模拟装置及实验方法

Also Published As

Publication number Publication date
CN111650354A (zh) 2020-09-11
CN111650354B (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
WO2022000891A1 (zh) 一种水合物评价实验系统及方法
CN101477086B (zh) 气体水合物生成取样分析方法及装置
CN110887776B (zh) 一种测定含水合物储层的水平/垂向渗透率的装置及方法
CN110761749B (zh) 一种天然气水合物的合成及开采模拟实验系统及实验方法
EP2596346B1 (en) Automated analysis of pressurized reservoir fluids
CN105301205A (zh) 一种可视化的气体水合物动力学实验装置
CN104318845B (zh) 一种模拟深水区水下溢油的装置与方法
CN110630228B (zh) 评价co2/n2置换法开采水合物时井筒出砂与防砂的装置及方法
CN104634770A (zh) 用于拉曼光谱仪的气体在线定量混合增压系统及操作方法
CN107746735A (zh) 一种用于水合物制备实验装置的混合供气系统
WO2023279859A1 (zh) 分子层面上在线红外光谱仪原位监测气体水合物生成与分解过程的装置及其使用方法
CN113218843A (zh) 一种声电渗等多功能三轴实验系统及方法
CN111239361A (zh) 一种水合物生成诱导时间的准确测量装置及其应用
CN116735835A (zh) 一种致密砂岩凝析气藏衰竭开发模拟装置及方法
CN116879109A (zh) 基于预加压和碳分馏技术的煤层含气性实验系统和方法
CN212622573U (zh) 一种水合物评价实验系统
CN112485282B (zh) 含气体水合物沉积物土水特征曲线的测量系统及其方法
CN108318100B (zh) 测量液氮冷冻水合物样品分解释放气体体积的系统及方法
CN116591647A (zh) 一种新型co2驱替与吞吐系统及方法
CN204204304U (zh) 一种模拟深水区水下溢油的装置
CN212301544U (zh) 一种多功能水合物合成及分解模拟的实验系统
CN202255828U (zh) 一种检测水合物浆液在管道中流动规律的装置
CN209416733U (zh) 一种输气管道流动保障的评价装置
CN208255182U (zh) 一种测试天然气水合物钻井液性能的实验装置
CN114278274B (zh) 一种天然气水合物开采模拟装置和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943377

Country of ref document: EP

Kind code of ref document: A1