WO2022099594A1 - 飞行时间量测电路及相关系统、电子装置及方法 - Google Patents
飞行时间量测电路及相关系统、电子装置及方法 Download PDFInfo
- Publication number
- WO2022099594A1 WO2022099594A1 PCT/CN2020/128617 CN2020128617W WO2022099594A1 WO 2022099594 A1 WO2022099594 A1 WO 2022099594A1 CN 2020128617 W CN2020128617 W CN 2020128617W WO 2022099594 A1 WO2022099594 A1 WO 2022099594A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- time
- light pulse
- measurement circuit
- flight
- row
- Prior art date
Links
- 238000005259 measurement Methods 0.000 title claims abstract description 80
- 238000000034 method Methods 0.000 title abstract description 4
- 238000006243 chemical reaction Methods 0.000 claims abstract description 25
- 238000000691 measurement method Methods 0.000 claims description 9
- 238000010586 diagram Methods 0.000 description 12
- 238000001514 detection method Methods 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 4
- 101100428617 Homo sapiens VMP1 gene Proteins 0.000 description 2
- 101150074162 TDC1 gene Proteins 0.000 description 2
- 102100038001 Vacuole membrane protein 1 Human genes 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000004075 alteration Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/02—Systems using the reflection of electromagnetic waves other than radio waves
- G01S17/06—Systems determining position data of a target
- G01S17/08—Systems determining position data of a target for measuring distance only
- G01S17/10—Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/495—Counter-measures or counter-counter-measures using electronic or electro-optical means
Definitions
- the present application relates to a measurement circuit, and in particular, to a time-of-flight measurement circuit and related time-of-flight measurement systems, electronic devices and time-of-flight measurement methods.
- the time-of-flight measurement technology includes direct time-of-flight measurement technology and indirect time-of-flight measurement technology.
- the direct time-of-flight measurement technology is to transmit a light pulse to the target, and then measure the reflected light pulse reflected from the target.
- the time interval between the reception time and the transmission time of the light pulse can be used to obtain the flight time of the light, and then use the measured flight time to calculate the depth information.
- One of the objectives of the present application is to disclose a time-of-flight measurement circuit, a related time-of-flight measurement system, an electronic device and a time-of-flight measurement method to solve the above problems.
- An embodiment of the present application discloses a time-of-flight measurement circuit, which is used to measure the time-of-flight measurement of a first light pulse and a second light pulse emitted by a pulse generating unit after they start to reach a target and are reflected back to the time-of-flight measurement
- the time interval of the circuit, the flight time measurement circuit includes: a pixel array, including m rows ⁇ n columns of pixel units, where m, n are positive integers, and each of the pixel units includes: a photosensitive sensor for receiving When the first light pulse is reflected back to the first reflected light pulse of the time-of-flight measurement circuit, a first trigger signal is generated, and when the second light pulse is received and reflected back to the time-of-flight measurement circuit When the second reflected light pulse occurs, a second trigger signal is generated; a controller, coupled to the pixel array and the pulse generating unit, is used to control the pulse generating unit to emit the first light pulse and the second light pulse , and the controller controls
- the first time-to-digital conversion unit to the n-th first time-to-digital conversion unit are correspondingly coupled to the n output terminals of the pixel units in the mth row and the nth column.
- the first time-to-digital conversion unit performs time-to-digital conversion based on the n first trigger signals and the n second trigger signals received from the output end of each of the pixel units in the mth row, to obtain Correspondingly, n first conversion results and n second conversion results are obtained.
- An embodiment of the present application discloses a time-of-flight measurement system, including: a pulse generating unit for transmitting a plurality of light pulses to a target; and the above-mentioned time-of-flight measurement circuit.
- An embodiment of the present application discloses an electronic device including the above-mentioned time-of-flight measurement system.
- An embodiment of the present application discloses the above-mentioned time-of-flight measurement method, which is used to measure the time-of-flight reflected from the first light pulse and the second light pulse emitted by the pulse generating unit from the departure to the target.
- the time interval of the measurement circuit, and the time-of-flight measurement method includes: controlling the pulse generating unit to emit the first light pulse; receiving the first reflected light pulse reflected from the first light pulse in a first time window and generate a first trigger signal; generate a first conversion result based on the first trigger signal; control the pulse generating unit to emit the second light pulse; receive the second light pulse reflected back from the second light pulse in the second time window two reflected light pulses to generate a second trigger signal, wherein the first time window and the time length of the first time window are different; and a second conversion result is generated based on the second trigger signal.
- the time-of-flight measurement circuit of the present application uses different time windows to receive reflected light pulses to reduce the probability of interference.
- FIG. 1 is a schematic diagram of a first embodiment of a time-of-flight measurement circuit of the present application.
- FIG. 2 is a circuit diagram of a pixel unit in a pixel array.
- FIG. 3 is a first embodiment of a timing diagram of time-of-flight measurement performed by the time-of-flight measurement circuit of the present application.
- FIG. 4 is a second embodiment of the timing diagram of the time-of-flight measurement of the time-of-flight measurement circuit of the present application.
- FIG. 5 is a third embodiment of a timing chart of the time-of-flight measurement circuit of the present application for time-of-flight measurement.
- FIG. 6 is a schematic diagram of a second embodiment of the time-of-flight measurement circuit of the present application.
- first and second features are in direct contact with each other; and may also include Certain embodiments may have additional components formed between the first and second features described above, such that the first and second features may not be in direct contact.
- present disclosure may reuse reference numerals and/or reference numerals in various embodiments. Such reuse is for brevity and clarity, and does not in itself represent a relationship between the different embodiments and/or configurations discussed.
- spatially relative terms such as “below”, “below”, “below”, “above”, “above” and the like, may be used to facilitate the description of the drawings. relationship between one component or feature shown with respect to another component or feature.
- These spatially relative terms are intended to encompass many different orientations of the device in use or operation in addition to the orientation depicted in the figures.
- the device may be positioned in other orientations (eg, rotated 90 degrees or at other orientations) and these spatially relative descriptors should be interpreted accordingly.
- FIG. 1 is a schematic diagram of a first embodiment of a time-of-flight measurement circuit of the present application.
- the time-of-flight measurement circuit 100 is used to measure a plurality of light pulses emitted by a pulse generating unit (not shown in the figure) from starting to After the target (not shown in the figure), it is reflected back to the time interval of the time-of-flight measurement circuit 100, and a direct time-of-flight measurement technique is used.
- the pulse generating unit may include (but is not limited to) a driving circuit and a light-emitting unit.
- the driving circuit is used for driving the light-emitting unit, so that the light-emitting unit emits light pulses LT intermittently.
- the light-emitting unit can be (but not limited to) a semiconductor laser (also known as a laser diode (LD)), a light-emitting diode (LED) or other light-emitting units that can generate light pulses, the semiconductor laser
- a semiconductor laser also known as a laser diode (LD)
- a light-emitting diode LED
- other light-emitting units that can generate light pulses
- the semiconductor laser also known as a laser diode (LD)
- LD laser diode
- LED light-emitting diode
- the time-of-flight measurement circuit 100 includes a pixel array 102 , a time-to-digital converter 104 and a controller 106 .
- the pixel array 102 includes m rows ⁇ n columns of pixel units, where m and n are positive integers.
- the pixel unit P11 represents the pixel unit in the first row and the first column in the pixel array 102
- the pixel unit Pmn represents the pixel unit
- the pixel units in the m-th row and the n-th column in the array 102 are the same for each pixel unit in the pixel array 102 in this embodiment.
- Each pixel unit in the pixel array 102 includes a photosensitive sensor for respectively generating a trigger signal when receiving the reflected light pulse LR reflected by the light pulse LT back to the time-of-flight measurement circuit 100 .
- the photosensitive sensor can be implemented by a single photon avalanche diode, but the present application is not limited to this.
- FIG. 2 is a circuit diagram of the pixel units P22 , P23 , P32 and P33 in the pixel array 102 . It should be noted that each pixel unit in the pixel array 102 is the same, so the pixel units P22, P23, P32 and P33 shown in FIG. 2 can also be used to describe other pixel units not shown.
- the pixel unit P22 in addition to the avalanche diode D22, it further includes a switch T22, a current source I22, a buffer B22 and an AND gate A22, wherein the anode of the avalanche diode D22 is coupled to the reference voltage V1, and the switch T22 is coupled to It is connected between the cathode of the avalanche diode D22 and the reference voltage V2.
- the reference voltage V2 is the ground voltage.
- the current source I22 is coupled to the cathode of the avalanche diode D22
- the buffer B22 is coupled to the cathode of the avalanche diode D22 and the first input terminal of the AND gate A22
- the second input terminal of the AND gate A22 is coupled to the row select line for receiving Signal RS2.
- the switch T22 is implemented using an N-type transistor, and the gate of the N-type transistor receives a control signal E2 from the controller 106 to control the switch T22 to be selectively turned on or off.
- the cathode of the avalanche diode D22 is limited to the reference voltage V2, that is, the avalanche diode D22 remains in the reset state, so the pixel unit P22 is disabled.
- the charge sensed by the avalanche diode D22 cannot be read out either; on the contrary, when the N-type transistor is not turned on, the avalanche diode realizes that the cathode of D22 is not limited to the reference voltage V2, that is, the pixel unit P22 is enabled, and the avalanche diode D22 senses The detected charge can be output as a trigger signal.
- the controller 106 is coupled to the pixel array 102 and the pulse generating unit for controlling the pulse generating unit to emit light pulses LT.
- the controller 106 correspondingly enables or disables the selection of the pixel units in the m rows through the m row selection lines. For example, the controller 106 sets RSa in the control signals RS1 to RSm to a high level, and sets the control signals RS1 to RSm to a high level. Signals other than RSa of , are set to a low potential to achieve the selection of the pixel units Pa1 to Pan in the a-th row, where a is any integer from 1 to m.
- the trigger signal of each pixel unit Pa1-Pan will be output from the output end of each pixel unit Pa1-Pan to the input end of the next row of pixel units, that is, in the case of FIG. , when a is less than m, the trigger signal will be output from the respective output terminals of the pixel units Pa1-Pan in the a-th row, and then pass through the pixel units in the (a+1)-th row to the m-th row in sequence and output as the trigger signal TDCI1 ⁇ TDCIn; when a is equal to m, the trigger signal will be directly output from the respective output ends of the pixel units Pm1 to Pmn in the mth row as the trigger signals TDCI1 to TDCIn.
- the above is for illustrative purposes only, and in fact, more than one row of pixel units can be selected at the same time.
- the controller 106 before the controller 106 outputs the trigger signal of the pixel unit in the a-th row through the row selection line, it also needs to control the time window during which the pixel unit in the a-th row is enabled. Specifically, each of the pixel units in row a is only enabled within a time window to receive the reflected light pulse LR to generate a trigger signal. Therefore, for each light pulse LT, there is a corresponding time window for each of the pixel units in row a to sense the reflected light pulse LR.
- the time windows for different optical pulses LT may have different specifications, and the variable specifications include the time length of the time window, or the time length between the starting point of the time window and the emission time point of the corresponding optical pulse LT, or the time The length of time between the end of the window and the emission time point of the corresponding light pulse LT. The details thereof are described later.
- the controller 106 controls the time window of each pixel unit in the pixel units Pa1-Pan in the a-th row through the control signal Ea.
- the controller 106 sets Ea in the control signals E1-Em to a low level, the pixel units Pa1-Pan in the a-th row are enabled; the controller 106 sets the control signals E1-Em in the When Ea is set to a high potential, the pixel units Pa1-Pan in the a-th row are disabled.
- the pixel units Pa1 ⁇ Pan in the a-th row are controlled to be enabled synchronously, that is, the timings of the time windows of the pixel units Pa1 ⁇ Pan in the a-th row are the same.
- the controller 106 only controls the time window of one row of pixel units for sensing to generate trigger signals for a plurality of pixel units in the row of pixel units, and selects the row through the row select line. Trigger signal output of a plurality of pixel units in the pixel unit.
- the time-to-digital converter 104 includes a counter 1040 and n registers L1-Ln.
- the counter 1040 counts according to the reference clock and the signal TX.
- the signal TX is used to indicate the point in time at which the light pulse LT is emitted.
- the n registers L1-Ln include registers L1-Ln.
- the registers L1-Ln are adjacent in the layout diagram and are correspondingly coupled to the n output terminals of the pixel units Pm1-Pmn.
- the devices L1 ⁇ Ln temporarily store the count values TDCO1 ⁇ TDCOn of the counter 1040 to represent the measured flight time based on the trigger signals TDCI1 ⁇ TDCIn received from the n output terminals of the pixel units Pm1 ⁇ Pmn, respectively. That is to say, when the pixel unit Pm1 outputs the trigger signal TDCI1 to the register L1, the register L1 temporarily stores the counting result of the counter 1040 as the count value TDCO1.
- the counter 1040 is coupled to the controller 106, and the controller 106 can transmit a signal TX to the counter 1040, and can reset the counter 1040 through other signals (not shown in the figure), that is, clear the counter 1040 zero.
- FIG. 3 is a first embodiment of a timing diagram of the time-of-flight measurement circuit of the present application for time-of-flight measurement.
- the controller 106 controls the pulse generating unit to emit light pulses LT1 and LT2 at time points T1 and T3, respectively, and controls the counter 1040 to count from zero at the same time.
- the pixel units Pa1-Pan in the a-th row receive the reflected light pulses LR1 and LR2 from the light pulses LT1 and LT2 reflected from the target at the time points T2 and T4, respectively, wherein the difference between the time point T2 and the time point T1 is equal to the time point in the The difference between T4 and time point T3, that is, the flight times of the reflected light pulses LR1 and LR2 reflected from the target are the same, that is, the flight distances of the reflected light pulses LR1 and LR2 from the target back to the flight time measurement circuit 100 are the same.
- FIG. 3 shows the inverted signal of the control signal Ea In order to make people more intuitive to distinguish the range of the time window (ie the inverted signal time period of 1).
- the control signals Ea given by the controller 106 for the light pulses LT1 and LT2 are different, so the time window W1 corresponding to the light pulse LT1 and the time window W2 corresponding to the light pulse LT2 have different specifications.
- the time length TS1 of the time window W1 is greater than the time length TS2 of the time window W2.
- the time length between the start point of the time window W1 and the emission time point of the light pulse LT1 is 0; the time length between the start point of the time window W2 and the emission time point of the light pulse LT2 is TS3.
- the time length between the end point of the time window W1 and the emission time point of the light pulse LT1 is TS1; the time length between the end point of the time window W2 and the emission time point of the light pulse LT2 is the same as TS1.
- the time window W1 has a relatively large detection range compared with the time window W2, because the time window W1 starts at the emission time point of the light pulse LT1.
- the reflected light pulses reflected back can be detected.
- LR1 can be detected at any time in the TS1 interval, and the closer LR1 is to the starting point of LT1, the closer LR1 is from the target. reflected back.
- the time window W2 does not start until TS3 after the emission time point of the light pulse LT2, that is to say, the difference between the time window W1 and the time window W2 is that the time window W2 cannot detect the time when TS3 starts at the emission time point of the light pulse LT2.
- the time window W1 is a time window used for global detection of far and short distances; the time window W2 is a time window used for long distance detection.
- the distance between the target and the time-of-flight measurement circuit 100 is relatively long, and the reflected light pulses LR1 and LR2 caused by the light pulse LT1 and the light pulse LT2 both fall within the range of the time windows W1 and W2.
- the count values TDCO1 obtained from the register L1 are D1 and D2 respectively. Since the flight times of the reflected light pulses LR1 and LR2 are the same, D1 and D2 are of course the same.
- the time-of-flight measurement system of the present application multiple reflected light pulses are continuously received for the same row of pixel units, and the results of multiple Do statistics to get statistical results.
- the pixel units Pa1-Pan in the a-th row will continuously receive one hundred reflected light pulses which are reflected back from the target by one hundred light pulses.
- the controller 106 can adjust the ratio of the corresponding time window W1 and the time window W2 for the one hundred reflected light pulses. 80 of them are allocated to the corresponding time window W2, and the remaining 20 are allocated to the corresponding time window W1.
- FIG. 4 is a second embodiment of a timing diagram of the time-of-flight measurement circuit of the present application for time-of-flight measurement.
- the controller 106 controls the pulse generating unit to emit light pulses LT1 and LT2 at time points T1 and T3, respectively, and controls the counter 1040 to count from zero at the same time.
- the pixel units Pa1-Pan in the a-th row receive the reflected light pulses LR1 and LR2 from the light pulses LT1 and LT2 reflected from the target at time points T2 and T4, respectively, where the difference between the time point T2 and the time point T1 is equal to the time point in the
- the difference between T4 and time point T3, that is, the flight times of the reflected light pulses LR1 and LR2 reflected from the target are the same, that is, the flight distances of the reflected light pulses LR1 and LR2 from the target back to the flight time measurement circuit 100 are the same.
- the specifications of the time windows W1 and W2 used in FIG. 4 are the same as the specifications of the time windows W1 and W2 used in FIG.
- the controller 106 can control the register to temporarily store the preset value (the control circuit is not 1), for example, the preset count value is the maximum value that can be stored in the register, so in FIG.
- the TDCO1 for the light pulse LT2 is the preset value DM, so that the subsequent operation circuit (not (shown in the figure) If it is found that the count value generated by the register is greater than a reasonable value, it can be known that the object to be tested is close.
- FIG. 5 is a third embodiment of a timing diagram of the time-of-flight measurement circuit of the present application for time-of-flight measurement.
- the controller 106 controls the pulse generating unit to emit light pulses LT1 and LT2 at time points T1 and T3, respectively, and controls the counter 1040 to count from zero at the same time.
- the pixel units Pa1-Pan in the a-th row receive the reflected light pulses LR1 and LR2 from the light pulses LT1 and LT2 reflected from the target at time points T2 and T4, respectively, where the difference between the time point T2 and the time point T1 is equal to the time point in the
- the difference between T4 and time point T3, that is, the flight times of the reflected light pulses LR1 and LR2 reflected from the target are the same, that is, the flight distances of the reflected light pulses LR1 and LR2 from the target back to the flight time measurement circuit 100 are the same.
- the specifications of the time windows W1 and W2 used in FIG. 5 are the same as the specifications of the time windows W1 and W2 used in FIG.
- the distance between the target in FIG. The distance between the object and the time-of-flight measurement circuit 100 is the same, the difference is that the target object in FIG. 5 and the time-of-flight measurement circuit 100 are disturbed by dust, so that the light pulse LT1 generates an interference light pulse LR1' and at time point T2
- the previous time point T2 ′ reaches the pixel units Pa1 ⁇ Pan in the a-th row; and the light pulse LT2 generates an interference light pulse LR2 ′ and reaches the pixel units Pa1 ⁇ Pan in the a-th row at the time point T4 ′ before the time point T4 .
- the interference light pulse LR1' falls within the range of the time window W1, thus causing the trigger signal TDC1 to be generated to the register L1, so that the register L1 temporarily stores the wrong count value D1' instead of D1 corresponding to the reflected light pulse LR1 .
- the interference light pulse LR2' falls outside the range of the time window W2, so the count value D2 temporarily stored in the temporary register L1 corresponds to the reflected light pulse LR2 correctly, avoiding interference.
- the controller 106 may use a time window for long-distance detection, such as time, for most of them. Window W2; and for a few of them, a time window for global detection of far and short distances, such as time window W1, is used. In some embodiments, the controller 106 dynamically adjusts the ratio of the two time windows. In some embodiments, the controller 106 further uses a time window for proximity detection.
- the time-to-digital converter 104 may be implemented using a delay line as shown in FIG. 6 .
- FIG. 6 is a schematic diagram of a second embodiment of the time-of-flight measurement circuit of the present application. The difference between the time-of-flight measurement circuit 600 of FIG. 6 and the time-of-flight measurement circuit 100 of FIG. 1 is that the time-to-digital converter 604 of the time-of-flight measurement circuit 600 of FIG.
- the pixel units Pm1-Pmn in the m-th row specifically, the n time-to-digital conversion units 1041-104n are adjacent and are correspondingly coupled to n of the pixel units Pm1-Pmn in the first-n-th column in the m-th row output.
- the n time-to-digital conversion units 1041 to 104n respectively perform time-to-digital conversion based on the signal TX obtained from the controller 106 and the trigger signals TDCI1 to TDCIn received from the output terminals of the pixel units Pm1 to Pmn in the mth row, so as to correspond to Obtain n conversion results TDCO1A ⁇ TDCOnA.
- the rest of the flight time measurement circuit 600 is the same as the flight time measurement circuit 100 .
- the implementation of the delay line as shown in FIG. 6 can obtain a resolution higher than that of the counter 1040, but the delay lines in the n time-to-digital conversion units 1041-104n may exist There are problems of mismatching with each other and signal coupling to each other.
- the present application also provides a time-of-flight measurement system, which includes the pulse generating unit and the time-of-flight measurement circuit 100/600.
- the present application also provides a chip, which includes the time-of-flight measurement circuit 100/600.
- the present application also provides an electronic device, which includes the chip or the time-of-flight measurement system.
- the electronic device may be any electronic device such as a smart phone, a personal digital assistant, a handheld computer system, a tablet computer or a digital camera.
- the time-of-flight measurement circuit 100/600 of the present application uses the change of the time window to adjust the desired range of distance measurement.
- the real reflected light is excluded by adjusting the time window.
- the interference signal before the arrival of the pulse can enhance the accuracy of long-distance ranging. Since the accuracy of short-range ranging is originally much higher than that of long-range ranging, even reducing the proportion of the time window for short-range ranging or global ranging will not have too much impact.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Electromagnetism (AREA)
- Optical Radar Systems And Details Thereof (AREA)
Abstract
一种飞行时间量测电路、系统、方法及电子装置。该飞行时间量测电路(100)包括像素阵列(102)、时间数字转换器(104)及控制器(106),该像素阵列(102)包括m行×n列像素单元(P11~Pmn),该时间数字转换器(104)包括n个时间数字转换单元(L1~Ln),该控制器(106)用来控制第a行像素单元(Pa1~Pan)在第一时间窗被使能以接收第一反射光脉冲,以及在第二时间窗被使能以接收第二反射光脉冲,且第一时间窗和第一时间窗的时间长度不相同。
Description
本申请涉及一种量测电路,尤其涉及一种飞行时间量测电路及相关飞行时间量测系统、电子装置及飞行时间量测方法。
飞行时间量测技术包含直接飞行时间量测技术以及非直接飞行时间量测技术,其中直接飞行时间量测技术是利用发射一个光脉冲至目标物,之后测量从目标物反射回来的反射光脉冲的接收时间和光脉冲的发射时间之间的时间间隔,就可以得到光的飞行时间,再用测得的飞行时间推算出深度信息。
然而,空气中的灰尘会反射和散射光脉冲造成干扰,待测物愈远,越容易受到干扰。因此如何降低干扰,提高准确度,已成为本领域亟需解决的问题之一。
发明内容
本申请的目的之一在于公开一种飞行时间量测电路及相关飞行时间量测系统、电子装置及飞行时间量测方法,来解决上述问题。
本申请的一实施例公开了一种飞行时间量测电路,用来量测脉冲产生单元所发射的第一光脉冲以及第二光脉冲从出发到目标物后,反射回所述飞行时间量测电路的时间间隔,所述飞行时间量测电路包括:像素阵列,包括m行×n列像素单元,其中m,n为正整数,且每一所述像素单元包括:光敏传感器,用来在接收到所述第一光脉冲反射回所述飞行时间量测电路的第一反射光脉冲时,产生第一触发信号, 以及在接收到所述第二光脉冲反射回所述飞行时间量测电路的第二反射光脉冲时,产生第二触发信号;控制器,耦接至所述像素阵列以及脉冲产生单元,用来控制所述脉冲产生单元发射所述第一光脉冲及所述第二光脉冲,且所述控制器控制第a行所述像素单元在第一时间窗被使能以接收所述第一反射光脉冲,以及控制第a行所述像素单元在第二时间窗被使能以接收所述第二反射光脉冲,并通过m条行选择线中的第a条行选择线控制第a行所述像素单元中的每一像素单元输出所述第一触发信号及所述第二触发信号,所述第一触发信号及所述第二触发信号从第a行所述像素单元中的每一像素单元的输出端依序通过第(a+1)行到第m行所述像素单元,其中a为1到m中任一整数,且所述第一时间窗和所述第一时间窗的时间长度不相同;以及时间数字转换器,包括:n个时间数字转换单元,包括第1所述第一时间数字转换单元到第n所述第一时间数字转换单元,对应地耦接至第m行的第1到第n列所述像素单元的n个输出端,所述n个第一时间数字转换单元分别基于从第m行所述像素单元中的每一个的输出端所接收到的n个所述第一触发信号及n个所述第二触发信号进行时间数字转换,以相对应地得到n个第一转换结果及n个第二转换结果。
本申请的一实施例公开了一种飞行时间量测系统,包括:脉冲产生单元,用来发射多个光脉冲至目标物;以及上述的飞行时间量测电路。
本申请的一实施例公开了一种电子装置,包括上述的飞行时间量测系统。
本申请的一实施例公开了一种上述的飞行时间量测方法,用来量测脉冲产生单元所发射的第一光脉冲以及第二光脉冲从出发到目标物后,反射回所述飞行时间量测电路的时间间隔,所述飞行时间量测方法包括:控制所述脉冲产生单元发射所述第一光脉冲;在第一时间窗接收所述第一光脉冲反射回来的第一反射光脉冲并产生第一触发 信号;基于所述第一触发信号产生第一转换结果;控制所述脉冲产生单元发射所述第二光脉冲;在第二时间窗接收所述第二光脉冲反射回来的第二反射光脉冲并产生第二触发信号,其中所述第一时间窗和所述第一时间窗的时间长度不相同;以及基于所述第二触发信号产生第二转换结果。
本申请的飞行时间量测电路利用不同的时间窗来接收反射光脉冲,以降低干扰的机率。
图1为本申请的飞行时间量测电路的第一实施例的示意图。
图2为像素阵列中的像素单元的电路图。
图3为本申请的飞行时间量测电路进行飞行时间量测的时序图的第一实施例。
图4为本申请的飞行时间量测电路进行飞行时间量测的时序图的第二实施例。
图5为本申请的飞行时间量测电路进行飞行时间量测的时序图的第三实施例。
图6为本申请的飞行时间量测电路的第二实施例的示意图。
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一 与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
图1为本申请的飞行时间量测电路的第一实施例的示意图,飞行时间量测电路100用来量测脉冲产生单元(未绘示于图中)所发射的多个光脉冲从出发到目标物(未绘示于图中)后,反射回飞行时间量测电路100的时间间隔,且使用直接飞行时间量测技术。举例来说, 所述脉冲产生单元可包括(但不限于)一驱动电路和一发光单元。所述驱动电路用以驱动所述发光单元,使所述发光单元间歇性地发出光脉冲LT。所述发光单元可以是(但不限于)半导体激光器(又可称作激光二极管(laser diode,LD))、发光二极管(light emitting diode,LED)或其他可以产生光脉冲的发光单元,其半导体激光器所产生的光脉冲是相干光(coherent light),而发光二极管所产生的光脉冲是非相干光(incoherent light)。
飞行时间量测电路100包含像素阵列102、时间数字转换器104以及控制器106。具体来说,像素阵列102包括m行×n列像素单元,其中m,n为正整数,举例来说,像素单元P11代表像素阵列102中第1行第1列像素单元,像素单元Pmn代表像素阵列102中第m行第n列像素单元,在本实施例中,像素阵列102中的每一像素单元皆相同。像素阵列102中每一像素单元包括光敏传感器,用来在接收到光脉冲LT反射回飞行时间量测电路100的反射光脉冲LR时,分别产生触发信号。一般来说,所述光敏传感器可用单光子雪崩二极管实现,但本申请不以此限。
请一并参考图1和图2,图2为像素阵列102中的像素单元P22、P23、P32及P33的电路图。应注意的是,像素阵列102中的每一像素单元皆相同,因此图2所绘示的像素单元P22、P23、P32及P33亦可用来说明其他未绘示的像素单元。以像素单元P22为例,可以看到除雪崩二极管D22以外,其进一步包括开关T22、电流源I22、缓冲器B22及与门A22,其中雪崩二极管D22的阳极耦接至参考电压V1,开关T22耦接于雪崩二极管D22的阴极与参考电压V2之间,在本实施例中,参考电压V2为接地电压。电流源I22耦接至雪崩二极管实现D22的阴极,缓冲器B22耦接于雪崩二极管D22的阴极和与门A22的第一输入端,与门A22的第二输入端耦接至行选择线以接收信号RS2。图2中,开关T22使用N型晶体管实现,N型晶体管的栅极接收来自控制器106的控制信号E2,以控制所述开关T22选择性地导通或不导通。当N型晶体管导通时,雪崩二极管D22的阴极限制在参考电压V2,即雪崩二极管D22保持在重置状态,因此 使像素单元P22被禁能,这时即使有反射光照射至像素单元P22,雪崩二极管D22感测到的电荷也无法被读出;反之当N型晶体管不导通时,雪崩二极管实现D22的阴极不被限制在参考电压V2,即像素单元P22被使能,雪崩二极管D22感测到的电荷可以输出输出为触发信号。
控制器106耦接至像素阵列102以及所述脉冲产生单元,用来控制所述脉冲产生单元发射光脉冲LT。控制器106通过m条行选择线来对应地使能或禁能m行所述像素单元选择,例如控制器106将控制信号RS1~RSm中的RSa设为高电位,将控制信号RS1~RSm中的RSa以外的信号设为低电位,以实现选择第a行像素单元Pa1~Pan,其中a为1到m中任一整数。此时各像素单元Pa1~Pan的触发信号会分别从各像素单元Pa1~Pan的输出端输出至下一行像素单元的输入端,即以图1来说,呈现向下的纵向传递,也就是说,当a小于m时,触发信号会从第a行像素单元Pa1~Pan各自的输出端输出后,再依序通过第(a+1)行到第m行像素单元并输出为触发信号TDCI1~TDCIn;当a等于m时,触发信号会直接从第m行像素单元Pm1~Pmn各自的输出端输出为触发信号TDCI1~TDCIn。以上仅为说明用途,实际上也可同时选择超过一行像素单元。
本申请和一般作法不同的是,控制器106通过行选择线将第a行所述像素单元的触发信号输出前,还需控制第a行所述像素单元被使能的时间窗,具体来说,第a行所述像素单元中的每一个都只会在时间窗内被使能以接收反射光脉冲LR来产生触发信号。因此,针对每个光脉冲LT,都会有对应的时间窗来让第a行所述像素单元中的每一个来感测反射光脉冲LR。而针对不同光脉冲LT的时间窗可以具有不同规格,可变化的规格包含时间窗的时间长度,或是时间窗的起点和对应的光脉冲LT的发射时间点之间的时间长度,或是时间窗的终点和对应的光脉冲LT的发射时间点之间的时间长度。其细节说明于后。
在本实施例中,控制器106通过控制信号Ea来控制第a行像素 单元Pa1~Pan中的每一个像素单元的时间窗。例如搭配图2的实施例时,控制器106将控制信号E1~Em中的Ea设为低电位时,使第a行像素单元Pa1~Pan被使能;控制器106将控制信号E1~Em中的Ea设为高电位时,使第a行像素单元Pa1~Pan被禁能。在本实施例中,第a行像素单元Pa1~Pan会同步地被控制以使能,也就是第a行像素单元Pa1~Pan的时间窗的时序相同。但在在某些实施例中也可以分开控制。此外应注意的是,控制器106一次仅会控制一行像素单元的时间窗来进行感测以产生所述行像素单元中的多个像素单元的触发信号,并通过行选择线来将所述行像素单元中的多个像素单元的触发信号输出。
时间数字转换器104包括计数器1040、n个暂存器L1~Ln。其中计数器1040依据参考时脉以及信号TX计数。信号TX用来指示光脉冲LT发射的时间点。n个暂存器L1~Ln包括暂存器L1到暂存器Ln,暂存器L1~Ln在布局图上相邻并对应地耦接至像素单元Pm1~Pmn的n个输出端,暂存器L1~Ln分别基于从像素单元Pm1~Pmn的n个输出端所接收到的触发信号TDCI1~TDCIn来暂存计数器1040的计数值TDCO1~TDCOn代表测得的飞行时间。也就是说,当像素单元Pm1输出触发信号TDCI1至暂存器L1时,暂存器L1会将计数器1040此时的计数结果暂存为计数值TDCO1。在本实施例中,计数器1040耦接至控制器106,控制器106可传送信号TX至计数器1040,并可通过其他信号(未绘示于图中)重置计数器1040,也就是使计数器1040清零。
请同时参考图1及图3,图3为本申请的飞行时间量测电路进行飞行时间量测的时序图的第一实施例。控制器106在时间点T1和T3分别控制所述脉冲产生单元发射光脉冲LT1和LT2,并同时控制计数器1040从零开始计数。第a行像素单元Pa1~Pan在时间点T2和T4分别收到光脉冲LT1和LT2从目标物反射回来的反射光脉冲LR1和LR2,其中时间点T2和时间点T1的差距相等于其中时间点T4和时间点T3的差距,也就是反射光脉冲LR1和LR2从目标物反射回来的飞行时间相同,即反射光脉冲LR1和LR2从目标物反射回飞行时间 量测电路100的飛行距离相同。由于当控制信号Ea为1时,第a行像素单元Pa1~Pan中的每一个像素单元被禁能;当控制信号Ea为0时,第a行像素单元Pa1~Pan中的每一个像素单元被使能,也就是说,当控制信号
为1时,第a行像素单元Pa1~Pan中的每一个像素单元被使能;当控制信号Ea为0时,第a行像素单元Pa1~Pan中的每一个像素单元被禁能。图3中绘示了控制信号Ea的反相信号
以使人更直觉地分辨出时间窗的范围(即反相信号
为1的时间段)。图3中针对光脉冲LT1和LT2,控制器106给出的控制信号Ea并不相同,因此对应光脉冲LT1的时间窗W1和对应光脉冲LT2的时间窗W2具有不同规格。
具体来说,时间窗W1的时间长度TS1大于时间窗W2的时间长度TS2。时间窗W1的起点和光脉冲LT1的发射时间点之间的时间长度为0;时间窗W2的起点和光脉冲LT2的发射时间点之间的时间长度为TS3。时间窗W1的终点和光脉冲LT1的发射时间点之间的时间长度为TS1;时间窗W2的终点和光脉冲LT2的发射时间点之间的时间长度一样为TS1。
在本实施例中,时间窗W1相比于时间窗W2,时间窗W1具有比较大的侦测范围,因为时间窗W1在光脉冲LT1的发射时间点即开始,对于近距离和远距离目标物反射回的反射光脉冲都可以侦测到,以图3为例就是无论LR1在TS1区间任何时刻出现都能被侦测到,而LR1越靠近LT1起始点,说明LR1是从越近的目标物反射回来的。而时间窗W2在光脉冲LT2的发射时间点之后TS3才开始,也就是说,时间窗W1和时间窗W2差异在于时间窗W2无法侦测到在光脉冲LT2的发射时间点开始TS3的时间内反射回来的任何信号,也就是说时间窗W2无法侦测较近距离的目标物反射回来的反射光脉冲。因此可以说时间窗W1为远近距离全局侦测用的时间窗;时间窗W2为远距侦测用的时间窗。在图3中,目标物和飞行时间量测电路100之间的距离较远,针对光脉冲LT1和光脉冲LT2造成的反射光脉冲LR1和LR2都落在时间窗W1和W2的范围之内,暂存器L1分别得到计数值TDCO1为D1和D2,由于反射光脉冲LR1和LR2的飞行时间 相同,因此D1和D2当然也相同。
由于在实际进行飞行时间量测时充满许多可能的误差与干扰,因此在本申请的飞行时间量测系统中,针对同一行像素单元会连续使其接收多笔反射光脉冲,并对多笔结果进行统计以得到统计结果。例如第a行像素单元Pa1~Pan会连续收到一百个光脉冲从目标物反射回来的一百个反射光脉冲。控制器106针对所述一百个反射光脉冲,可以调配其对应时间窗W1和时间窗W2的比例,例如若设定目标物的距离较远时,可以将所述一百个反射光脉冲中的80个分配为对应时间窗W2,其余20个分配为对应时间窗W1。
请同时参考图1及图4,图4为本申请的飞行时间量测电路进行飞行时间量测的时序图的第二实施例。控制器106在时间点T1和T3分别控制所述脉冲产生单元发射光脉冲LT1和LT2,并同时控制计数器1040从零开始计数。第a行像素单元Pa1~Pan在时间点T2和T4分别收到光脉冲LT1和LT2从目标物反射回来的反射光脉冲LR1和LR2,其中时间点T2和时间点T1的差距相等于其中时间点T4和时间点T3的差距,也就是反射光脉冲LR1和LR2从目标物反射回来的飞行时间相同,即反射光脉冲LR1和LR2从目标物反射回飞行时间量测电路100的飛行距离相同。图4使用的时间窗W1和W2的规格和图3使用的时间窗W1和W2的规格相同,但图4的目标物和飞行时间量测电路100之间的距离较图3的目标物和飞行时间量测电路100之间的距离来的近,因此可以看到图4中光脉冲LT2造成的反射光脉冲LR2到达第a行像素单元Pa1~Pan的时间早于时间窗W2的开始时间,造成时间窗W2的范围之内没有触发信号TDC1至暂存器L1,在本申请中,若时间窗结束还未收到触发信号,控制器106可控制暂存器暂存预设计数值(控制线路未标示于图1),例如所述预设计数值为暂存器可储存的最大值,所以在图4中,针对光脉冲LT2的TDCO1为预设计数值DM,这样一来,后续的运算电路(未绘示于图中)若发现暂存器产生的计数值大于合理的值,便可了解待测物为近距离。
请同时参考图1及图5,图5为本申请的飞行时间量测电路进行飞行时间量测的时序图的第三实施例。控制器106在时间点T1和T3分别控制所述脉冲产生单元发射光脉冲LT1和LT2,并同时控制计数器1040从零开始计数。第a行像素单元Pa1~Pan在时间点T2和T4分别收到光脉冲LT1和LT2从目标物反射回来的反射光脉冲LR1和LR2,其中时间点T2和时间点T1的差距相等于其中时间点T4和时间点T3的差距,也就是反射光脉冲LR1和LR2从目标物反射回来的飞行时间相同,即反射光脉冲LR1和LR2从目标物反射回飞行时间量测电路100的飛行距离相同。图5使用的时间窗W1和W2的规格和图3和图4使用的时间窗W1和W2的规格相同,且图5的目标物和飞行时间量测电路100之间的距离和图3的目标物和飞行时间量测电路100之间的距离一样近,差异在于图5的目标物和飞行时间量测电路100之间受到灰尘干扰,使光脉冲LT1产生干扰光脉冲LR1'并在时间点T2之前的时间点T2'就到达第a行像素单元Pa1~Pan;以及使光脉冲LT2产生干扰光脉冲LR2'并在时间点T4之前的时间点T4'就到达第a行像素单元Pa1~Pan。干扰光脉冲LR1'落在时间窗W1的范围之内,因此造成触发信号TDC1产生至暂存器L1,使暂存器L1暂存到错误的计数值D1'而非对应反射光脉冲LR1的D1。但干扰光脉冲LR2'落在时间窗W2的范围之外,因此暂存器L1暂存的计数值D2正确对应反射光脉冲LR2,避开了干扰。
在本实施例中,为了提升远距侦测的准确度以及远近信息的对比度,对于连续的多个光脉冲LT,控制器106可以针对其中的多数使用远距离侦测用的时间窗,如时间窗W2;并针对其中的少数使用远近距离全局侦测用的时间窗,如时间窗W1。在某些实施例中,控制器106动态地调整两种时间窗的比例。在某些实施例中,控制器106进一步使用近距离侦测用的时间窗。
在某些实施例中,时间数字转换器104可以采用延时线为实现方式如图6。图6为本申请的飞行时间量测电路的第二实施例的示意图。图6的飞行时间量测电路600和图1的飞行时间量测电路100的差异在于,图6的飞行时间量测电路600的时间数字转换器604包括n个 时间数字转换单元1041~104n相邻第m行像素单元Pm1~Pmn,具体来说,n个时间数字转换单元1041~104n相邻并对应地耦接至第m行的第1到第n列所述像素单元Pm1~Pmn的n个输出端。n个时间数字转换单元1041~104n分别基于从控制器106得到的信号TX以及从第m行像素单元Pm1~Pmn的输出端所接收到的触发信号TDCI1~TDCIn进行时间数字转换,以相对应地得到n个转换结果TDCO1A~TDCOnA。飞行时间量测电路600其余部分则和飞行时间量测电路100相同。
相较于使用计数器1040的图1的实施例,如图6采用延时线的实现方式可以得到高过于计数器1040的分辨率,但n个时间数字转换单元1041~104n中的延时线可能存在有彼此不匹配以及彼此信号耦合的问题。
本申请还提供了一种飞行时间量测系统,其包括所述脉冲产生单元及飞行时间量测电路100/600。本申请还提供了一种芯片,其包括飞行时间量测电路100/600。本申请还提供了一种电子装置,其包括所述芯片或所述飞行时间量测系统。其中,所述电子装置可为例如智能型手机、个人数字助理、手持式计算机系统、平板计算机或数码相机等任何电子装置。
本申请的飞行时间量测电路100/600利用时间窗的变化来调整所欲针对的测距范围,一般来说,远距测距的干扰较多,因此通过时间窗的调整来排除真正反射光脉冲到达之前的干扰信号,可以加强远距测距的准确度。由于近距离测距的准确度原本就远高于远距测距,因此即时降低近距离测距或全域测距的时间窗的比重,也不至于影响太大。
上文的叙述简要地提出了本申请某些实施例之特征,而使得本申请所属技术领域具有通常知识者能够更全面地理解本揭示内容的多种态样。本申请所属技术领域具有通常知识者当可明了,其可轻易地利用本揭示内容作为基础,来设计或更动其他工艺与结构,以实现与此处所述之实施方式相同的目的和/或达到相同的优点。本申请所属 技术领域具有通常知识者应当明白,这些均等的实施方式仍属于本揭示内容之精神与范围,且其可进行各种变更、替代与更动,而不会悖离本揭示内容之精神与范围。
Claims (11)
- 一种飞行时间量测电路,用来量测脉冲产生单元所发射的第一光脉冲以及第二光脉冲从出发到目标物后,反射回所述飞行时间量测电路的时间间隔,其特征在于,所述飞行时间量测电路包括:像素阵列,包括m行×n列像素单元,其中m,n为正整数,且每一所述像素单元包括:光敏传感器,用来在接收到所述第一光脉冲反射回所述飞行时间量测电路的第一反射光脉冲时,产生第一触发信号,以及在接收到所述第二光脉冲反射回所述飞行时间量测电路的第二反射光脉冲时,产生第二触发信号;控制器,耦接至所述像素阵列以及脉冲产生单元,用来控制所述脉冲产生单元发射所述第一光脉冲及所述第二光脉冲,且所述控制器控制第a行所述像素单元在第一时间窗被使能以接收所述第一反射光脉冲,以及控制第a行所述像素单元在第二时间窗被使能以接收所述第二反射光脉冲,并通过m条行选择线中的第a条行选择线控制第a行所述像素单元中的每一像素单元输出所述第一触发信号及所述第二触发信号,所述第一触发信号及所述第二触发信号从第a行所述像素单元中的每一像素单元的输出端依序通过第(a+1)行到第m行所述像素单元,其中a为1到m中任一整数,且所述第一时间窗和所述第一时间窗的时间长度不相同;以及时间数字转换器,包括:n个时间数字转换单元,包括第1所述第一时间数字转换单元到第n所述第一时间数字转换单元,对应地耦接至第m行的第1到第n列所述像素单元的n个输出端,所述n个第一时间数字转换单元分别基于从第m行所述像素单元中的每一个的输出端所接收到的n个所述第一触发信号及n个所述第二触发信号进行时间数字转换,以相对应地得到n个第一转换结果及n个第二转换结果。
- 如权利要求1所述的飞行时间量测电路,其特征在于,所述第一 时间窗的起点和所述第一光脉冲的发射时间点之间具有第一时间长度,所述第二时间窗的起点和所述第二光脉冲的发射时间点之间具有第二时间长度,其中所述第一时间长度小于所述第二时间长度。
- 如权利要求2所述的飞行时间量测电路,其特征在于,所述第一时间窗的终点和所述第一光脉冲的发射时间点之间具有第一三时间长度,所述第二时间窗的终点和所述第二光脉冲的发射时间点之间具有第四时间长度,其中所述第三时间长度等于所述第四时间长度。
- 如权利要求1所述的飞行时间量测电路,其特征在于,每一所述像素单元还包括:开关,耦接于所述光敏传感器的一端与第一参考电压之间,所述开关受所述控制器的控制来导通以禁能所述像素单元或不导通以使能所述像素单元。
- 如权利要求4所述的飞行时间量测电路,其特征在于,每一所述像素单元还包括:与门,具有第一输入端及第二输入端,所述第一输入端耦接至所述光敏传感器的所述一端,所述第二输入端耦接至所述m条行选择线的其中之一,所述与门的输出端产生输出结果并从所述像素单元的所述输出端输出。
- 如权利要求5所述的飞行时间量测电路,其特征在于,所述第一参考电压为接地电压,当所述开关导通时,所述与门的所述第一输入端为所述接地电压。
- 一种飞行时间量测系统,其特征在于,包括:脉冲产生单元,用来发射多个光脉冲至目标物;以及如权利要求1到6中任一项所述的飞行时间量测电路。
- 一种电子装置,其特征在于,包括:如权利要求7所述的飞行时间量测系统。
- 一种飞行时间量测方法,用来量测脉冲产生单元所发射的第一光脉冲以及第二光脉冲从出发到目标物后,反射回所述飞行时间量测电路的时间间隔,其特征在于,所述飞行时间量测方法包括:控制所述脉冲产生单元发射所述第一光脉冲;在第一时间窗接收所述第一光脉冲反射回来的第一反射光脉冲并产生第一触发信号;基于所述第一触发信号产生第一转换结果;控制所述脉冲产生单元发射所述第二光脉冲;在第二时间窗接收所述第二光脉冲反射回来的第二反射光脉冲并产生第二触发信号,其中所述第一时间窗和所述第一时间窗的时间长度不相同;以及基于所述第二触发信号产生第二转换结果。
- 如权利要求9所述的飞行时间量测方法,其特征在于,所述第一时间窗的起点和所述第一光脉冲的发射时间点之间具有第一时间长度,所述第二时间窗的起点和所述第二光脉冲的发射时间点之间具有第二时间长度,其中所述第一时间长度小于所述第二时间长度。
- 如权利要求10所述的飞行时间量测方法,其特征在于,所述第一时间窗的终点和所述第一光脉冲的发射时间点之间具有第一三时间长度,所述第二时间窗的终点和所述第二光脉冲的发射时间点之间具有第四时间长度,其中所述第三时间长度等于所述第四时间长度。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202080054073.2A CN114270208A (zh) | 2020-11-13 | 2020-11-13 | 飞行时间量测电路及相关系统、电子装置及方法 |
PCT/CN2020/128617 WO2022099594A1 (zh) | 2020-11-13 | 2020-11-13 | 飞行时间量测电路及相关系统、电子装置及方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2020/128617 WO2022099594A1 (zh) | 2020-11-13 | 2020-11-13 | 飞行时间量测电路及相关系统、电子装置及方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022099594A1 true WO2022099594A1 (zh) | 2022-05-19 |
Family
ID=80824420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/128617 WO2022099594A1 (zh) | 2020-11-13 | 2020-11-13 | 飞行时间量测电路及相关系统、电子装置及方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114270208A (zh) |
WO (1) | WO2022099594A1 (zh) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102844676A (zh) * | 2010-04-12 | 2012-12-26 | 罗伯特·博世有限公司 | 带有均匀化测量评估的测距装置 |
CN103533636A (zh) * | 2012-06-29 | 2014-01-22 | 三星电子株式会社 | 测量到对象的距离的方法和装置 |
US20150293226A1 (en) * | 2009-09-11 | 2015-10-15 | Robert Bosch Gmbh | Optical distance measuring device |
CN107272010A (zh) * | 2017-06-21 | 2017-10-20 | 昆山锐芯微电子有限公司 | 距离传感器及其距离测量方法、3d图像传感器 |
CN109313264A (zh) * | 2018-08-31 | 2019-02-05 | 深圳市汇顶科技股份有限公司 | 基于飞行时间的测距方法和测距系统 |
WO2019033303A1 (zh) * | 2017-08-16 | 2019-02-21 | 深圳市汇顶科技股份有限公司 | 图像传感电路及图像深度传感系统 |
CN109791207A (zh) * | 2016-10-03 | 2019-05-21 | 齐诺马蒂赛股份有限公司 | 用于确定到对象的距离的系统和方法 |
CN110546530A (zh) * | 2017-04-23 | 2019-12-06 | 齐诺马蒂赛股份有限公司 | 一种像素结构 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT511310B1 (de) * | 2011-04-07 | 2013-05-15 | Riegl Laser Measurement Sys | Verfahren zur entfernungsmessung |
US9874629B2 (en) * | 2013-12-23 | 2018-01-23 | Oulun Yliopisto | Distance measurement device, receiver thereof and method of distance measurement |
WO2019014494A1 (en) * | 2017-07-13 | 2019-01-17 | Apple Inc. | EARLY-DELAYED PULSE COUNTING FOR DEPTH SENSORS EMITTING LIGHT |
KR102700625B1 (ko) * | 2017-12-13 | 2024-08-28 | 매직 립, 인코포레이티드 | 컴퓨터 비전 애플리케이션들을 위한 글로벌 셔터 픽셀 회로 및 방법 |
CN110609293B (zh) * | 2019-09-19 | 2022-05-27 | 深圳奥锐达科技有限公司 | 一种基于飞行时间的距离探测系统和方法 |
CN111108411B (zh) * | 2019-10-10 | 2021-06-08 | 深圳市汇顶科技股份有限公司 | 光传感器、基于飞行时间的测距系统和电子装置 |
-
2020
- 2020-11-13 WO PCT/CN2020/128617 patent/WO2022099594A1/zh active Application Filing
- 2020-11-13 CN CN202080054073.2A patent/CN114270208A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150293226A1 (en) * | 2009-09-11 | 2015-10-15 | Robert Bosch Gmbh | Optical distance measuring device |
CN102844676A (zh) * | 2010-04-12 | 2012-12-26 | 罗伯特·博世有限公司 | 带有均匀化测量评估的测距装置 |
CN103533636A (zh) * | 2012-06-29 | 2014-01-22 | 三星电子株式会社 | 测量到对象的距离的方法和装置 |
CN109791207A (zh) * | 2016-10-03 | 2019-05-21 | 齐诺马蒂赛股份有限公司 | 用于确定到对象的距离的系统和方法 |
CN110546530A (zh) * | 2017-04-23 | 2019-12-06 | 齐诺马蒂赛股份有限公司 | 一种像素结构 |
CN107272010A (zh) * | 2017-06-21 | 2017-10-20 | 昆山锐芯微电子有限公司 | 距离传感器及其距离测量方法、3d图像传感器 |
WO2019033303A1 (zh) * | 2017-08-16 | 2019-02-21 | 深圳市汇顶科技股份有限公司 | 图像传感电路及图像深度传感系统 |
CN109313264A (zh) * | 2018-08-31 | 2019-02-05 | 深圳市汇顶科技股份有限公司 | 基于飞行时间的测距方法和测距系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114270208A (zh) | 2022-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6799690B2 (ja) | 変調感度を有するspad検出器 | |
TWI745998B (zh) | 用於感測之方法及設備 | |
US11585907B2 (en) | Optical measuring device comprising a measuring unit to generate time information representing an elapsed time in accordance with pulse signal output from a light receiving group | |
US20220082698A1 (en) | Depth camera and multi-frequency modulation and demodulation-based noise-reduction distance measurement method | |
US11454712B2 (en) | Time-of-flight distance measuring system and calibration method | |
EP3410147A1 (en) | Distance measurement device | |
CN111198382B (zh) | 飞时测距传感器以及飞时测距方法 | |
TWI455092B (zh) | 顯示器驅動方法、驅動模組及顯示裝置 | |
WO2022242348A1 (zh) | dTOF深度图像的采集方法、装置、电子设备及介质 | |
CN109901141B (zh) | 一种标定方法及装置 | |
US20150377964A1 (en) | Programmable test pattern for a pixel array | |
US20230358863A1 (en) | Range imaging device and range imaging method | |
CN112114323A (zh) | 飞时测距装置以及飞时测距方法 | |
WO2021213443A1 (zh) | 光电传感采集模组、光电传感测距方法以及测距装置 | |
JP2020148682A (ja) | 距離測定装置及びスキュー補正方法 | |
WO2022099594A1 (zh) | 飞行时间量测电路及相关系统、电子装置及方法 | |
TW591210B (en) | Method for testing rangefinders | |
CN112346076A (zh) | 电子装置的控制方法、电子装置及计算机可读存储介质 | |
CN112105944A (zh) | 具有使用短脉冲和长脉冲的多模式操作的光学测距系统 | |
TW202205245A (zh) | 顯示面板的行驅動方法及利用其之顯示面板和資訊處理裝置 | |
CN117873949A (zh) | 寄存器配置电路、方法、芯片、显示设备及电子设备 | |
CN112703422B (zh) | 飞行时间传感器和相关系统及方法 | |
WO2022087950A1 (zh) | 飞行时间量测电路及其控制方法及电子装置 | |
US20240222932A1 (en) | Drive circuit, light source device, and delay circuit | |
WO2022126358A1 (zh) | 飞行时间量测电路及相关芯片及电子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20961151 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20961151 Country of ref document: EP Kind code of ref document: A1 |