Nothing Special   »   [go: up one dir, main page]

WO2022088815A1 - 光学防伪元件及包含该光学防伪元件的防伪产品 - Google Patents

光学防伪元件及包含该光学防伪元件的防伪产品 Download PDF

Info

Publication number
WO2022088815A1
WO2022088815A1 PCT/CN2021/109844 CN2021109844W WO2022088815A1 WO 2022088815 A1 WO2022088815 A1 WO 2022088815A1 CN 2021109844 W CN2021109844 W CN 2021109844W WO 2022088815 A1 WO2022088815 A1 WO 2022088815A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
light
counterfeiting
optical anti
condensing
Prior art date
Application number
PCT/CN2021/109844
Other languages
English (en)
French (fr)
Inventor
崔海波
王晓利
Original Assignee
中钞特种防伪科技有限公司
中国印钞造币总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中钞特种防伪科技有限公司, 中国印钞造币总公司 filed Critical 中钞特种防伪科技有限公司
Publication of WO2022088815A1 publication Critical patent/WO2022088815A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B42BOOKBINDING; ALBUMS; FILES; SPECIAL PRINTED MATTER
    • B42DBOOKS; BOOK COVERS; LOOSE LEAVES; PRINTED MATTER CHARACTERISED BY IDENTIFICATION OR SECURITY FEATURES; PRINTED MATTER OF SPECIAL FORMAT OR STYLE NOT OTHERWISE PROVIDED FOR; DEVICES FOR USE THEREWITH AND NOT OTHERWISE PROVIDED FOR; MOVABLE-STRIP WRITING OR READING APPARATUS
    • B42D25/00Information-bearing cards or sheet-like structures characterised by identification or security features; Manufacture thereof
    • B42D25/30Identification or security features, e.g. for preventing forgery
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0028Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed refractive and reflective surfaces, e.g. non-imaging catadioptric systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/0006Arrays
    • G02B3/0037Arrays characterized by the distribution or form of lenses

Definitions

  • This application relates to the field of anti-counterfeiting, in particular to an optical anti-counterfeiting element suitable for various high-security products and high-value-added products such as banknotes, credit cards, passports, and securities, as well as products using the optical anti-counterfeiting element, such as banknotes, Credit cards, passports and securities, etc.
  • Optical anti-counterfeiting technologies such as holography and dynamic photo-transformation can not only achieve easily identifiable dynamic, color and other effects, but also realize hidden features recognized by professionals, such as laser reproduction of symmetrical images, white light reproduction of symmetrical images, asymmetrical images, etc.
  • CN1323015 discloses a method for forming a diffractive device, which realizes the reconstructed hidden image with positive and negative first-order symmetry by changing the period and direction of the pixel diffraction grating.
  • CN103847289 discloses an optical anti-counterfeiting element for reproducing hidden images, wherein the azimuth angle and blaze angle of the blaze structure are arranged in a certain manner, which can reproduce hidden asymmetrically at a certain distance from the optical anti-counterfeiting element image.
  • the application of hidden image reproduction technology provides a solution for the weakening optical anti-counterfeiting ability.
  • the currently disclosed laser holography reconstructing hidden image technology or reflective prism reconstructing hidden technology realizes light refocusing by designing the inclination angle and rotation angle of the holographic grating or blazed grating.
  • the purpose of the embodiments of the present application is to provide an optical anti-counterfeiting element and an anti-counterfeiting product including the optical anti-counterfeiting element, which adopts a plurality of light-condensing element arrays to realize imaging on receiving screens of different focal lengths, thereby realizing hidden image reproduction .
  • an embodiment of the present application provides an optical anti-counterfeiting element
  • the optical anti-counterfeiting element includes: a substrate; a first light-condensing element array formed in a first area of a first surface of the substrate , the first light-gathering element array includes one or more light-gathering elements with a first focal length; and a second light-gathering element array, formed in the second area of the first surface of the substrate, the second light-gathering element array
  • the element array includes one or more light concentrating elements having a second focal length different from the first focal length.
  • another embodiment of the present application provides an optical anti-counterfeiting element, the optical anti-counterfeiting element comprising: a substrate having opposite first surfaces and second surfaces; a first light-condensing element array, Formed on the first surface of the substrate, the first light-gathering element array includes one or more light-gathering elements having a first focal length; and a second light-gathering element array, formed on the second Superficially, the second array of concentrating elements includes one or more concentrating elements having a second focal length that is the same as or different from the first focal length.
  • the light collecting element is selected from one or more of the following: a ball lens, a Fresnel ball lens, and a Fresnel cylinder lens.
  • the surface of the first light-concentrating element array and/or the second light-concentrating element array has a reflective coating.
  • the geometric shape of the base of the first light-concentrating element array and/or the second light-concentrating element array is a combination of one or more of the following: circle, rectangle, triangle, hexagon.
  • the first condensing element array and/or the second condensing element array is a microlens array.
  • the microlens array satisfies one or more of the following: the period of the microstructure of the microlens array is 100um-500um; the depth of the microstructure of the microlens array is 1um -15um; the focal length of the microstructure of the microlens array is 1mm-500mm; and the arrangement rule of the microlenses of the microlens array is periodic or aperiodic.
  • the first light condensing element array and the second light condensing element array on the first surface of the substrate when white light irradiates the first light condensing element array and the second light condensing element array on the first surface of the substrate, it can be displayed on the receiving screen at different focal lengths, respectively.
  • the projection array of the first light-gathering element array and the second light-gathering element array further forms a reproduction of a hidden image.
  • the hidden image is one or more of the following: a stereoscopic image, a planar image, a virtual image, or a real image.
  • the material of the substrate is one or more of the following: ethylene terephthalate (PET), polycarbonate (PC), polymethacrylate (PMMA) ), polyethylene (PE), or polypropylene (PP).
  • PET ethylene terephthalate
  • PC polycarbonate
  • PMMA polymethacrylate
  • PE polyethylene
  • PP polypropylene
  • another embodiment of the present application provides an anti-counterfeiting product, the anti-counterfeiting product includes the above-mentioned optical anti-counterfeiting element.
  • the light condensing element when white light irradiates the first light-condensing element array (which may represent an image) and the second light-concentrating element array (which may represent another image) on the first surface of the substrate, it is possible to The projection arrays of the first light-gathering element array and the second light-gathering element array are respectively presented on receiving screens at different focal lengths, thereby forming a reproduction of a hidden image.
  • the light condensing element compared with the blazed grating and the holographic grating, the light condensing element has the advantages of condensing and focusing, and increasing the brightness of the image, which is more conducive to the recognition of the public by the human eye.
  • FIG. 1 is a cross-sectional view of an optical anti-counterfeiting element provided according to an embodiment of the present application
  • Fig. 2a is a top view of an optical anti-counterfeiting element according to an embodiment of the present application
  • 2b is a cross-sectional view of an optical anti-counterfeiting element according to an embodiment of the present application
  • FIG. 3 is a cross-sectional view of an optical anti-counterfeiting element according to an embodiment of the present application.
  • FIG. 4 is a top view of an optical anti-counterfeiting element according to an embodiment of the present application.
  • FIG. 5 is a cross-sectional view of an optical anti-counterfeiting element according to an embodiment of the present application.
  • first and second are only used for description purposes, and cannot be understood as indicating relative importance, or implicitly indicating the number of indicated technical features.
  • features defined as “first” and “second” may expressly or implicitly include one or more of the features; “plurality” means two or more.
  • the term “comprising” and any variations thereof mean non-exclusive inclusion, possibly the presence or addition of one or more other features, integers, steps, operations, elements, components, and/or combinations thereof.
  • FIG. 1 is a cross-sectional view of an optical anti-counterfeiting element provided according to an embodiment of the present application.
  • the optical anti-counterfeiting element includes: a substrate 1 , the substrate 1 includes a first surface 11 and a second surface 12 opposite to each other; a first light-condensing element array, formed on the substrate 1
  • the first area of the first surface 11, the first light-condensing element array includes one or more light-condensing elements with a first focal length, such as the first Fresnel microlens 41 and the second Fresnel microlens in the figure 42 and so on can constitute the first light-condensing element array, the figure does not show all the light-condensing elements in the first light-concentrating element array, but only exemplarily shows the first Fresnel microlens 41 and the first light-converging element.
  • the second condensing element array comprising a One or more light-condensing elements of the second focal length, such as the third Fresnel microlens 51 and the fourth Fresnel microlens 52 in the figure, can constitute a second light-condensing element array, which is not shown in the figure All the condensing elements in the second condensing element array, but only the third Fresnel microlens 51 and the fourth Fresnel microlens 52 are exemplarily shown.
  • a first condensing element array including the first Fresnel microlens 41 and the second Fresnel microlens 42 can be formed on the first receiving screen 2
  • the lens projection array which includes the first lens projection 61 and the second lens projection 62, is of course only an example here, in fact, one or more projections in the first receiving screen 2 can be formed with the first light-condensing element array.
  • the lens projections of each condensing element correspond one-to-one to form a lens projection array, which also constitutes a certain pattern.
  • a second condensing element array including the third Fresnel microlens 51 and the fourth Fresnel microlens 52 can be formed on the second receiving screen 3
  • the lens projection array which includes the third lens projection 71 and the fourth lens projection 72, is of course only an example here.
  • the lens projections of the condensing elements correspond one-to-one to form a lens projection array, which also constitutes another pattern.
  • the characteristic size L of the first Fresnel microlens 41 and the second Fresnel microlens 42 may be 150 ⁇ m, the height H may be 2 ⁇ m, the number of Fresnel rings may be 7, and the focal length may be 10 cm.
  • the characteristic size L of the third Fresnel microlens 51 and the fourth Fresnel microlens 52 may be 150 ⁇ m, the height H may be 1.5 ⁇ m, the number of Fresnel rings may be 10, and the focal length may be 15 cm.
  • the first receiving screen 2 may be 10 cm below the substrate 1
  • the second receiving screen 3 may be 15 cm below the substrate 1 .
  • a lens projection array (including the first lens projection 61 and the second lens projection 62 ) is first formed on the first receiving screen 2 , and a lens projection array (including the third lens projection 71 ) is formed on the second receiving screen 3 and fourth lens projection 72).
  • the first light-condensing element array including the first Fresnel microlens 41 and the second Fresnel microlens 42 performs Moiré magnification on the lens projection array (including the first lens projection 61 and the second lens projection 62 ) to form an image ;
  • the second light-gathering element array including the third Fresnel microlens 51 and the fourth Fresnel microlens 52 performs Moiré magnification on the lens projection array (including the third lens projection 71 and the fourth lens projection 72) to form image. Both of these magnified images are magnified high-brightness lenses.
  • the second light collecting element array including the third Fresnel microlens 51 and the fourth Fresnel microlens 52 can be arranged in the macro image, including the first Fresnel microlens 41 and the second Fresnel microlens
  • the first light-concentrating element array of 42 is arranged in the background area outside the macroscopic image.
  • the first receiving screen 2 can receive the enlarged image of the lens projection array (including the first lens projection 61 and the second lens projection 62 ) from the first light-condensing element array, and the reproduced image is black.
  • the second receiving screen 3 can receive the enlarged image of the lens projection array (including the third lens projection 71 and the fourth lens projection 72 ) by the second light-condensing element array, and the reproduced image is a highlight color.
  • the pixels of the pattern have high brightness, and the high brightness pixels in the pattern form a periodic lens array, and the lens is an enlarged virtual image of the lens.
  • the condensing element may be a lens (for example, a refractive lens), which mainly includes a ball lens and a Fresnel lens (specifically, it may include a Fresnel ball lens and a Fresnel cylinder lens).
  • the Fresnel lens has the advantages of large physical size and large projected image, which makes it easier to achieve the optical anti-counterfeiting effect in the present application.
  • the terms "condensing element”, “lens”, “microlens”, “Fresnel lens” and the like are used interchangeably.
  • the lens array forms an enlarged moiré pattern on the lens projection array.
  • the lens focal length parameters designed in a local area of the substrate surface are different from the lens focal length parameters in the background area of the substrate surface, resulting in only a local area lens on a certain focal plane (that is, the plane where the receiving screen is located). projection of the array, while the projection of the background area lens array is in another focal plane.
  • a specific pattern can be presented on a specific focal plane. It should be noted that not all pixels of the pattern have high brightness, and the high brightness pixels in the pattern form a periodic lens array, and the lens is an enlarged virtual image of the lens.
  • the position of the receiving screen is moderately placed 10cm below the anti-counterfeiting element.
  • a projection micrographic and text array is formed on the receiving screen, and the focal length of the lens needs to reach about 10cm in order to perform moire magnification on the projection array. Therefore, using the ball lens design, under the condition of long focal length, the lens morphology is a spherical crown with a very low height, and its focusing ability is weak.
  • the present application adopts the design of the Fresnel lens, which can solve the problem that the spherical cap is too low and the focusing ability is not strong.
  • the traditional microlens imaging system is a combined magnification system composed of a microlens array and a micrographic and text array.
  • both a microlens array and a micrograph and text array are required, and the period between the microlens array and the period of the micrograph and text array is designed according to the physical sampling law.
  • the anti-counterfeiting element in this application is only a microlens array.
  • a lens projection array is formed on the receiving screen, and its function is the same as that of the micrographic array.
  • the microlens array and its projection array form a combined magnification system.
  • the lens projection array formed on the receiving screen by the light-gathering element array in the anti-counterfeiting element of this case may not be identical in physical size and distribution to the light-gathering element array on the substrate, that is, when observing, all
  • the plane where the anti-counterfeiting element is located is not absolutely parallel to the plane where the receiving screen is located, so that the parameters of the light-gathering element array on the substrate are not completely consistent with the lens projection array parameters on the receiving screen.
  • the difference in spatial distribution between the lens projection array and the condensing element array on the substrate can be used to form a moiré magnified image through the sampling principle.
  • the optical anti-counterfeiting element cannot strictly control the specific position of the anti-counterfeiting element in the spatial distribution during observation and detection, so that the Moiré magnified image has no strict shape and brightness, and is indescribable.
  • the size of the microlenses generally has certain requirements.
  • the longitudinal dimension/height of the microlens cannot be too high, otherwise, the thickness of the microlenses is too high, and it cannot be embedded in the paper or attached to the carrier, resulting in uneven results. Therefore, the height of the main microstructure is generally less than 100 ⁇ m, preferably less than 10 ⁇ m, which is beneficial for this feature to be applied to the window safety line, buried in the paper; or as a wide strip product, pasted on the paper or plastic substrate, and can Keep the substrate flat in both cases above.
  • Lenses can be one-dimensional, two-dimensional (ie, Fresnel spheres and Fresnel cylinders).
  • the height of the lens microstructure under the Fresnel law distribution will be greatly reduced.
  • the depth of the microstructure of the microlens array is 1 um-15 um.
  • the size of the lens unit should not be too small.
  • the period of the microstructure of the microlens array is 100um-500um.
  • the lens projection array can be used as a micro-graphics array, and it is only on the focal plane of the micro-lens array to generate magnified moire fringes, that is, the receiving screen needs to be placed on the focal plane.
  • the focal length of the microlens array is 100mm.
  • the moiré magnified image formed by the microlens array on its projection array is related to the inclination angle of the film (ie, the substrate), and the reproduced hidden image will have a geometrical change with the inclination angle of the film element.
  • the period of the projection lens array is smaller than the period of the lens array on the film, and a sunken magnifying Moiré fringe will be formed.
  • the projection lens array is larger than the period of the lens array on the film, and a floating magnifying Moiré fringe will be formed.
  • the size of the microlens sampling unit is consistent with the size of the projection unit, and the filling pattern in the reproduced pattern is an infinitely enlarged Moiré image.
  • the resulting magnification satisfies the following relationship:
  • the focal length f of the sampling unit in the microlens array is:
  • n is the refractive index of the lens unit
  • n pet is the refractive index of the substrate
  • h is the height of the lens unit
  • D is the diameter of the lens unit.
  • Fig. 2a shows a top view of an anti-counterfeiting element using a Fresnel microlens as a microstructure unit to reproduce a pattern in an embodiment
  • Fig. 2b shows an embodiment in which the reproduced pattern is hidden on a dynamic moiré text Sectional view of the security element.
  • small-sized micrographic arrays 23 are distributed on the second surface 12 of the substrate 1 , and correspondingly, they are filled in matching positions on the first surface 11 of the substrate 1 .
  • a short focal length microlens focusing element 5 (corresponding to 21a in Figure 2a) matched to its period parameter. Inside the first surface 11 of the substrate 1, and outside the area of the microlens focusing element 5, a first Fresnel microlens 41 and a second Fresnel microlens 42 (corresponding to 22a in FIG. 2a) are arranged and distributed, and their focal lengths longer, and a lens projection array (corresponding to 21b in FIG. 2a ) can be formed on the second receiving screen 3 .
  • the area of the microlens focusing element 5 on the anti-counterfeiting element will present an enlarged Moiré dynamic image (corresponding to 22b in Fig. 2a), while the first Fresnel microlens 41 and the second Fresnel microlens
  • the area formed by the lens 42 has no visible image.
  • the image A (corresponding to 21b in FIG. 2a ) is reproduced at the second receiving screen 3 just below the area formed by the first Fresnel microlens 41 and the second Fresnel microlens 42 .
  • Image A is composed of several enlarged lens projection images, and the lens projection images are displayed with high brightness.
  • the characteristic size L of the Fresnel lens is 150 ⁇ m, the height H is 2 ⁇ m, the number of Fresnel rings is 7, and the focal length is 10 cm.
  • the short focal length microlens focusing element 5 is a ball lens, its characteristic size L is 23 ⁇ m, the height H is 4 ⁇ m, and the focal length is 35 ⁇ m.
  • the thickness of the substrate 1 is 19 ⁇ m.
  • the Moiré image after sampling and synthesis that is, the macro-enlarged micrographic text "B" (corresponding to 22b in Figure 2a) can be directly observed.
  • the area formed by the first Fresnel microlens 41 and the second Fresnel microlens 42 can form a reproduced hidden magnified image (corresponding to 21b in FIG. 2a).
  • FIG. 3 shows a cross-sectional view of an anti-counterfeiting element of an embodiment of reflective reproduction pattern concealment.
  • the optical anti-counterfeiting element includes: a base material 1; a first light-gathering element array formed in the first area of the first surface 11 of the base material 1, the first light-gathering element array comprising one or A plurality of condensing elements, such as the first Fresnel microlens 41 and the second Fresnel microlens 42 in the figure, can form a first condensing element array, but the first condensing element array is not shown in the figure All the light-condensing elements inside, but only the first Fresnel micro-lens 41 and the second Fresnel micro-lens 42 are exemplarily shown; the second light-condensing element array is formed on the first A second region of a surface 11, the second array of concentrating elements comprising one or more condensing elements having a second focal length different from the first focal
  • FIG. 4 is a top view of an optical anti-counterfeiting element using a Fresnel cylinder lens as a light-condensing element according to an embodiment of the present application.
  • An optical anti-counterfeiting element includes the Fresnel cylinder lens array periodically arranged only in the x-direction, the top view of which can be referred to as 41a in FIG. shown in 41b.
  • the axial direction of the micro-cylindrical lens in the Fresnel cylindrical lens array is perpendicular to the x-direction, the micro-cylindrical lens array is simply extended in the direction perpendicular to the x-direction, and the extension length is determined by the size of the designed macro-enlarged image , the extension range is 1-200mm.
  • the characteristic size L of the Fresnel cylinder lens in its axial direction is 150 ⁇ m
  • the height H is 2 ⁇ m
  • the number of Fresnel rings is 7, and the focal length is 10 cm.
  • the optical anti-counterfeiting element includes: a base material 1, the base material includes a first surface 11 and a second surface 12 opposite to each other; a first light-condensing element array is formed on the first surface 11 of the base material 1, the first
  • the condensing element array includes one or more condensing elements with a first focal length, for example, the fifth Fresnel microlens 51a in the figure can constitute the first condensing element array, but the first condensing element is not shown in the figure.
  • the second condensing element array which is formed on the second surface 12 of the substrate 1 , the second light-gathering element array includes one or more light-gathering elements with a second focal length that is the same as or different from the first focal length.
  • the sixth Fresnel microlens 51b in the figure can constitute a second In the light condensing element array, the figure does not show all the light condensing elements in the second light condensing element array, but only exemplarily shows three sixth Fresnel microlenses 51b.
  • lens projections can be formed on the first receiving screen 2 and the second receiving screen 3 located on the upper and lower sides of the substrate 1 respectively. array.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Credit Cards Or The Like (AREA)
  • Inspection Of Paper Currency And Valuable Securities (AREA)

Abstract

一种光学防伪元件及包含光学防伪元件的防伪产品,光学防伪元件包括:基材(1);第一聚光元件阵列,形成于基材(1)的第一表面(11)的第一区域,第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件;以及第二聚光元件阵列,形成于基材(1)的第一表面(11)的第二区域,第二聚光元件阵列包含具有不同于第一焦距的第二焦距的一个或多个聚光元件。光学防伪元件采用了多个聚光元件阵列来实现在不同焦距的接收屏(2,3)上的成像,从而实现了隐藏图像再现。

Description

光学防伪元件及包含该光学防伪元件的防伪产品 技术领域
本申请涉及防伪领域,尤其涉及一种适用于钞票、信用卡、护照和有价证券等各类高安全产品和高附加值产品的光学防伪元件,还涉及使用该光学防伪元件的产品,诸如钞票、信用卡、护照和有价证券等。
背景技术
全息、动感光变等光学防伪技术,其既能实现易识别的动感、颜色等效果,又能实现专业人员识别的隐藏特征,如激光再现对称图像,白光再现对称图像、非对称图像等。
CN1323015公开了一种形成衍射器件的方法,其通过改变像素衍射光栅的周期和方向来实现正负一级对称的再现隐藏图像。CN103847289公开了一种再现隐藏图像的光学防伪元件,其所述的闪耀结构的方位角、闪耀角按照一定的方式排布,可在距离所述光学防伪元件一定距离的位置上非对称的再现隐藏图像。
隐藏图像再现技术的应用,为日益衰弱的光学防伪能力中提供了一种解决途径。目前已经公开的激光全息再现隐藏图像技术,或者反射棱镜再现隐藏技术,均是通过设计全息光栅或者闪耀光栅的倾斜角度和转角来实现光线重聚。
发明内容
本申请实施例的目的是提供一种光学防伪元件及包含该光学防伪元件的防伪产品,其采用了多个聚光元件阵列来实现在不同焦距的接收屏上的成像,从而实现了隐藏图像再现。
在本申请的一个实施例中,本申请实施例提供一种光学防伪元件,该光学防伪元件包括:基材;第一聚光元件阵列,形成于所述基材的第一表面的第一区域,该第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件;以及第二聚光元件阵列,形成于所述基材的第一表面的第二区域,该第二聚光元件阵列包含具有不同于所述第一焦距的第二焦距的一个或多个聚光元件。
在本申请的另一个实施例中,本申请另一实施例提供一种光学防伪元件,该光学防伪元件包括:基材,具有相对的第一表面和第二表面;第一聚光元件阵列,形成于所述基材的第一表面上,该第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件;以及第二聚光元件阵列,形成于所述基材的第二表面上,该第二聚光元件阵列包含具有与所述第一焦距相同或不同的第二焦距的一个或多个聚光元件。
在本申请的一个优选实施例中,所述聚光元件选自以下一者或多者:球透镜、菲涅尔球透镜、以及菲涅尔柱透镜。
在本申请的一个优选实施例中,所述第一聚光元件阵列和/或所述第二聚光元件阵列的表面具有反射镀层。
在本申请的一个优选实施例中,所述第一聚光元件阵列和/或所述第二聚光元件阵列的基底几何形状为以下一者或多者的组合:圆形、矩形、三角形、正六边形。
在本申请的一个优选实施例中,所述第一聚光元件阵列和/或所述第二聚光元件阵列为微透镜阵列。
在本申请的一个优选实施例中,所述微透镜阵列满足以下一者或多者:所述微透镜阵列的微结构的周期为100um-500um;所述微透镜阵列的微结构的深度为1um-15um;所述微透镜阵列的微结构的焦距为1mm-500mm;以及所述微透镜阵列的微透镜排列规律是周期性的,或者非周期性的。
在本申请的一个优选实施例中,当白光照射所述基材的所述第一表面的第一聚光元件阵列和第二聚光元件阵列时,能够在处于不同焦距的接收屏上分别呈现所述第一聚光元件阵列和所述第二聚光元件阵列的投影阵列,进而形成隐藏图像的再现。
在本申请的一个优选实施例中,所述隐藏图像为以下中的一者或多者:立体图像、平面图像、虚像、或实像。
在本申请的一个优选实施例中,所述基材的材料为以下一者或多者:对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚甲基丙烯酸酯(PMMA)、聚乙烯(PE)、或聚丙烯(PP)。
为了实现上述目的,本申请另一实施例提供一种防伪产品,该防伪产品包含上述光学防伪元件。
通过上述技术方案,当白光照射所述基材的所述第一表面的第一聚光元件阵列(其可代表一图像)和第二聚光元件阵列(其可代表另一图像)时,能够在处于不同焦距的接收屏上分别呈现所述第一聚光元件阵列和所述第二聚光元件阵列的投影阵列,进而形成隐藏图像的再现。而且,本申请相比于闪耀光栅和全息光栅,聚光元件具有聚光聚焦,增加图像亮度的优点,更有利于大众人眼识别。
本申请实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图说明
附图是用来提供对本申请实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本申请实施例,但并不构成对本申请实施例的限制。在附图中:
图1为根据本申请一实施例提供的光学防伪元件的剖面图;
图2a为根据本申请一个实施方式的光学防伪元件俯视图;
图2b为根据本申请一个实施方式的光学防伪元件剖面图;
图3为根据本申请一个实施方式的光学防伪元件剖面图;
图4为根据本申请一个实施方式的光学防伪元件俯视图;以及
图5为根据本申请一个实施方式的光学防伪元件剖面图。
附图标记说明:
1、基材;2、第一接收屏;3、第二接收屏;5、微透镜聚焦元件;11、第一表面;12、第二表面;23、微图文阵列;31、第三接收屏;32、第四接收屏;41、第一菲涅尔微透镜;42、第二菲涅尔微透镜;51、第三菲涅尔微透镜;51a、第五菲涅尔微透镜;51b、第六菲涅尔微透镜;52、第四菲涅尔微透镜;61、第一透镜投影;62、第二透镜投影;71、第三透镜投影;72、第四透镜投影。
具体实施方式
下面将结合附图来详细说明根据本申请的光学防伪元件及使用该光学防伪元件的光学防伪产品。应当理解,所述附图和详细描述只是对本申请优选实施方式的描述,并非以任何方式来限制本申请的保护范围。并且,本领域技术人员应当理解,所有附图中的灰度以及尺寸比例仅为示意性的,不代表实际的颜色和尺寸比例。
在本申请的描述中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示相对重要性,或者隐含指明所指示的技术特征的数量。由此,除非另有说明,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征;“多个”的含义是两个或两个以上。术语“包括”及其任何变形,意为不排他的包含,可能存在或添加一个或更多其他特征、整数、步骤、操作、单元、组件和/或其组合。
另外,“中心”、“横向”、“上”、“下”、“左”、“右”、“竖 直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系的术语,是基于附图所示的方位或相对位置关系描述的,仅是为了便于描述本申请的简化描述,而不是指示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
图1为根据本申请一实施例提供的光学防伪元件的剖面图。如图1所示,所述光学防伪元件包括:基材1,该基材1包括相互对立的第一表面11和第二表面12;第一聚光元件阵列,形成于所述基材1的第一表面11的第一区域,该第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件,例如图中的第一菲涅尔微透镜41和第二菲涅尔微透镜42等等可构成第一聚光元件阵列,图中未能示出第一聚光元件阵列内的所有聚光元件,而仅仅是示例性地示出了第一菲涅尔微透镜41和第二菲涅尔微透镜42;以及第二聚光元件阵列,形成于所述基材1的第一表面11的第二区域,该第二聚光元件阵列包含具有不同于所述第一焦距的第二焦距的一个或多个聚光元件,例如图中的第三菲涅尔微透镜51和第四菲涅尔微透镜52等等可构成第二聚光元件阵列,图中未能示出第二聚光元件阵列内的所有聚光元件,而仅仅是示例性地示出了第三菲涅尔微透镜51和第四菲涅尔微透镜52。
当白光照射到所述基材1的第一表面11时,包含第一菲涅尔微透镜41和第二菲涅尔微透镜42的第一聚光元件阵列可在第一接收屏2上形成透镜投影阵列,其包含第一透镜投影61和第二透镜投影62,当然这里仅为示例性的,实际上,在第一接收屏2上可形成与第一聚光元件阵列内的一个或多个聚光元件一一对应的透镜投影,从而构成透镜投影阵列,也就构成了某一图案。
当白光照射到所述基材1的第一表面11时,包含第三菲涅尔微透镜51和第四菲涅尔微透镜52的第二聚光元件阵列可在第二接收屏3上形成透镜投影阵列,其包含第三透镜投影71和第四透镜投影72,当然这里仅为示例 性的,实际上,在第二接收屏3上可形成与第二聚光元件阵列内的一个或多个聚光元件一一对应的透镜投影,从而构成透镜投影阵列,也就构成了另一图案。
所述第一菲涅尔微透镜41和第二菲涅尔微透镜42的特征尺寸L可为150μm,高度H可为2μm,菲涅尔环数可为7,焦距可为10cm。第三菲涅尔微透镜51和第四菲涅尔微透镜52的特征尺寸L可为150μm,高度H可为1.5μm,菲涅尔环数可为10,焦距可为15cm。所述第一接收屏2可为在在基材1下方10cm处,所述第二接收屏3可为在在基材1下方15cm处。
经过入射光照射,首先在第一接收屏2上形成透镜投影阵列(包含第一透镜投影61和第二透镜投影62),在第二接收屏3上形成透镜投影阵列(包含第三透镜投影71和第四透镜投影72)。包含第一菲涅尔微透镜41和第二菲涅尔微透镜42的第一聚光元件阵列对透镜投影阵列(包含第一透镜投影61和第二透镜投影62)进行莫尔放大,形成图像;包含第三菲涅尔微透镜51和第四菲涅尔微透镜52的第二聚光元件阵列对透镜投影阵列(包含第三透镜投影71和第四透镜投影72)进行莫尔放大,形成图像。这两种放大图像都是放大化的高亮度透镜。
可将包含第三菲涅尔微透镜51和第四菲涅尔微透镜52的第二聚光元件阵列排列在宏观图像内,包含第一菲涅尔微透镜41和第二菲涅尔微透镜42的第一聚光元件阵列排列在宏观图像外的背景区域。第一接收屏2可以接收到第一聚光元件阵列对透镜投影阵列(包含第一透镜投影61和第二透镜投影62)的放大图像,而再现图像为黑色。第二接收屏3可以接收到第二聚光元件阵列对透镜投影阵列(包含第三透镜投影71和第四透镜投影72)的放大图像,而再现图像为高亮色。其中,并不是该图案的所有像素都呈现高亮度,图案内的高亮像素组成了周期性的透镜阵列,该透镜是放大后的透镜虚像。
需要说明的是,所述聚光元件可以是透镜(例如,折射型透镜),主要包 括球透镜和菲涅尔透镜(具体可包含菲涅尔球透镜和菲涅尔柱透镜)。菲涅尔透镜具备物理尺寸大和投影图像大的优势,更容易实现本申请中的光学防伪效果。在本文的描述中,“聚光元件”、“透镜”、“微透镜”、“菲涅尔透镜”等术语可互换使用。
当透镜焦距条件匹配时,透镜阵列会对透镜投影阵列形成放大的莫尔图案。通过设计不同透镜参数的空间分布,可实现隐藏图像的再现。透镜阵列对透镜投影阵列放大只能形成放大的透镜,且是周期性排列的,并不能形成特定的图案。本申请通过在基材表面的局部区域内设计的透镜焦距参数和基材表面的背景区域的透镜焦距参数不同,造成在某一焦平面(即,接收屏所处于的平面)上只有局部区域透镜阵列的投影,而背景区域透镜阵列的投影在另一焦平面上。通过该设计,可使某一特定的图案呈现在特定的焦平面上。需要说明的是,并不是该图案的所有像素都呈现高亮度,图案内的高亮像素组成了周期性的透镜阵列,该透镜是放大后的透镜虚像。
为了能够实现隐藏图像再现,接收屏的位置放置在防伪元件下方10cm处较为适中。接收屏上形成投影微图文阵列,透镜的焦距长度需达到10cm左右,才能对投影阵列进行莫尔放大。所以,使用球透镜设计,在满足长焦距的条件下,透镜形貌是一个高度很低的球冠,其聚焦能力较弱。本申请采用菲涅尔透镜设计,可以解决球冠过低而导致聚焦能力不强的问题。
传统的微透镜成像系统是微透镜阵列和微图文阵列组成联合放大系统,该系统是微透镜阵列对微图文阵列进行抽样放大,产生动态的放大图文。上述联合放大系统中,需同时具备微透镜阵列和微图文阵列,且微透镜阵列周期与微图文阵列周期之间按物理采样规律设计。而本申请中的防伪元件,只有微透镜阵列。当白光照射微透镜阵列时,在接收屏上形成透镜投影阵列,其作用与微图文阵列相同。微透镜阵列及其投影阵列形成联合放大系统。
需要说明的是,本案的防伪元件中的聚光元件阵列在接收屏上形成的透 镜投影阵列与基材上的聚光元件阵列可能不能在物理尺寸和分布上完全相同,即在观察时,所述的防伪元件所处的平面与接收屏所处的平面非绝对平行,使得基材上的聚光元件阵列参数与接收屏上的透镜投影阵列参数不完全一致。可利用透镜投影阵列与基材上聚光元件阵列的空间分布不同,通过采样原理,从而形成莫尔放大图像。
在实际应用中,光学防伪元件在观察检测时,并不能严格控制防伪元件在空间分布中的具体位置,使得莫尔放大图像没有严格的形状和亮度,具有不可描述性。为了能够严格描述其再现放大图像,需要借助工具来放置光学防伪元件,例如倾斜机台、或可形变机台,保证光学防伪元件的观察条件,即可实现可描述的莫尔放大图像。
为了能够使上述光学防伪元件适应现有常用的产品承载物,一般为微透镜的尺寸具有一定的要求。例如微透镜纵向尺寸/高度不能过高,否则其厚度较高,不能将其埋入纸张之中或贴在承载物之上,造成凹凸不平的后果。因此,主微结构高度一般小于100μm,优选小于10μm,这样有利于该特征应用于开窗安全线,埋于纸张之中;或者作为宽条产品,贴于纸张或塑料基材之上,并能够保持上述两种情况下基材的平整。本申请采用菲涅尔设计,以降低球透镜的高度。透镜可以是一维、二维的(即,菲涅尔球透镜和菲涅尔柱透镜)。菲涅尔规律分布下的透镜微结构高度会大大降低。优选地,所述微透镜阵列的微结构的深度为1um-15um。
白光照射透镜阵列时,会在接收屏上形成投影。为了满足形成可观察的投影像,要求透镜单元尺寸不能过小。优选地,微透镜阵列的微结构的周期为100um-500um。当透镜尺寸小于100微米时,不能形成可见的投影阵列,也不会产生放大的图像。
透镜投影阵列可作为微图文阵列,且处于微透镜阵列的焦平面上,才能产生放大的莫尔条纹,即,接收屏需放置在焦平面上。为了方便人眼观察, 接收屏与防伪产品元件之间的距离控制在1mm-500mm左右为宜。优选地,微透镜阵列的焦距为100mm。
微透镜阵列对其投影阵列形成的莫尔放大图像,与薄膜(即,基材)的倾斜角度有关,再现隐藏图像随着薄膜元件的倾角会有几何形状的变化。薄膜倾斜时,投影透镜阵列周期小于薄膜上的透镜阵列周期,会形成下沉的放大莫尔条纹。接收屏倾斜时,投影透镜阵列大于薄膜上的透镜阵列周期,会形成上浮的放大莫尔条纹。当薄膜元件平行于接收屏时,其微透镜采样单元大小与投影单元大小一致,其再现图案内的填充图案为无限放大莫尔图像。当微透镜阵列的采样方向与投影阵列之间存在特定的角度α时,所产生的放大倍率满足以下关系:
Figure PCTCN2021109844-appb-000001
所述微透镜阵列中采样单元的焦距f为:
Figure PCTCN2021109844-appb-000002
其中:n为透镜单元的折射率,n pet为基材的折射率,h为透镜单元的高度,D为透镜单元的直径。
图2a示出了利用菲涅尔微透镜作为微结构单元再现图案的实施例的一种防伪元件的俯视图,图2b示出了将再现图案隐藏在动态莫尔图文上的实施例的一种防伪元件的剖面图。
如图2b所示,基材1的第二表面12内分布小尺寸微图文阵列23(文字“B”),相对应的,在基材1的第一表面11内上的匹配位置内填充与之周期参数匹配的短焦距微透镜聚焦元件5(对应于图2a中的21a)。基材1的第一表面11内,微透镜聚焦元件5的区域外,排列分布第一菲涅尔微透镜41和第二菲涅尔微透镜42(对应于图2a中的22a),其焦距较长,并且可在第二接收屏3上形成透镜投影阵列(对应于图2a中的21b)。
自然光照射下,该防伪元件上的微透镜聚焦元件5区域会呈现出放大的莫尔动态图像(对应于图2a中的22b),而第一菲涅尔微透镜41和第二菲涅尔微透镜42构成的区域则无可视图像。当白光照射时,在第一菲涅尔微透镜41和第二菲涅尔微透镜42构成的区域的正下方,第二接收屏3处再现出图像A(对应于图2a中的21b)。图像A是由数个放大后的透镜投影图像组成,该透镜投影图像呈现高亮度显示。
优选地,菲涅尔透镜的特征尺寸L为150μm,高度H为2μm,菲涅尔环数为7,焦距为10cm。所述短焦距微透镜聚焦元件5为球透镜,其特征尺寸L为23μm,高度H为4μm,焦距为35μm。所述基材1的厚度为19μm。在球透镜5所处的区域,无白光照射条件下,可直接观察到采样合成后的莫尔图像,即宏观放大后的微图文“B”(对应于图2a中的22b)。当白光照射时,可在第二接收屏3上,第一菲涅尔微透镜41和第二菲涅尔微透镜42构成的区域可形成再现隐藏放大图像(对应于图2a中的21b)。
图3给出了反射型再现图案隐藏的实施例的一种防伪元件的剖面图。所述光学防伪元件包括:基材1;第一聚光元件阵列,形成于所述基材1的第一表面11的第一区域,该第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件,例如图中的第一菲涅尔微透镜41和第二菲涅尔微透镜42等等可构成第一聚光元件阵列,图中未能示出第一聚光元件阵列内的所有聚光元件,而仅仅是示例性地示出了第一菲涅尔微透镜41和第二菲涅尔微透镜42;第二聚光元件阵列,形成于所述基材1的第一表面11的第二区域,该第二聚光元件阵列包含具有不同于所述第一焦距的第二焦距的一个或多个聚光元件,例如图中的第三菲涅尔微透镜51和第四菲涅尔微透镜52等等可构成第二聚光元件阵列,图中未能示出第二聚光元件阵列内的所有聚光元件,而仅仅是示例性地示出了第三菲涅尔微透镜51和第四菲涅尔微透镜52;以及位于所述第一聚光元件阵列和第二聚光元件阵列的表面的反射镀层。
当用白光源照射所述第一聚光元件阵列和第二聚光元件阵列,光经由所述反射镀层反射,可在第三接收屏31和第四接收屏32上会形成透镜投影阵列。通过该方案,可实现反射型再现图案隐藏。关于该图3所示的光学防伪元件的其他细节,可参照图1所示的光学防伪元件的描述,于此不再赘述,其旨在增设一反射镀层,从而实现反射型再现图案隐藏。
图4是根据本申请一种实施方式的菲涅尔柱透镜作为聚光元件的光学防伪元件的俯视图。
根据本申请一种实施方式的光学防伪元件包括所述只在x方向周期排列的菲涅尔柱透镜阵列,其俯视图可参见图4中的41a所示,其所形成的图案可参见图4中的41b所示。所述菲涅尔柱透镜阵列中的微柱透镜的轴向与所述x方向垂直,微柱透镜阵列在与x方向垂直的方向简单的延伸,延伸长度由所设计的宏观放大图像的尺寸决定,延伸范围为1-200mm。
优选地,所述菲涅尔柱透镜在其轴向方向上的特征尺寸L为150μm,高度H为2μm,菲涅尔环数为7,焦距为10cm。
图5是根据本申请一种实施方式的微结构分双面布排列的光学防伪元件的剖面图。所述光学防伪元件包括:基材1,该基材包含相对的第一表面11和第二表面12;第一聚光元件阵列,形成于所述基材1的第一表面11,该第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件,例如图中的第五菲涅尔微透镜51a等等可构成第一聚光元件阵列,图中未能示出第一聚光元件阵列内的所有聚光元件,而仅仅是示例性地示出了3个第五菲涅尔微透镜51a;以及第二聚光元件阵列,形成于所述基材1的第二表面12,该第二聚光元件阵列包含具有相同或不同于所述第一焦距的第二焦距的一个或多个聚光元件,例如图中的第六菲涅尔微透镜51b等等可构成第二聚光元件阵列,图中未能示出第二聚光元件阵列内的所有聚光元件,而仅仅是示例性地示出了3个第六菲涅尔微透镜51b。
当用白光源照射所述第一聚光元件阵列和第二聚光元件阵列时,可分别在位于基材1的上下两侧的第一接收屏2和第二接收屏3上会形成透镜投影阵列。通过该方案,可实现双面再现图案隐藏。关于该图5所示的光学防伪元件的其他细节,可参照图1所示的光学防伪元件的描述,于此不再赘述,其旨通过在基材的两个对立面上分别形成聚光元件阵列,从而实现双面再现图案隐藏。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (11)

  1. 一种光学防伪元件,该光学防伪元件包括:
    基材(1);
    第一聚光元件阵列,形成于所述基材(1)的第一表面(11)的第一区域,该第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件;以及
    第二聚光元件阵列,形成于所述基材(1)的第一表面(11)的第二区域,该第二聚光元件阵列包含具有不同于所述第一焦距的第二焦距的一个或多个聚光元件。
  2. 一种光学防伪元件,该光学防伪元件包括:
    基材(1),具有相对的第一表面(11)和第二表面(12);
    第一聚光元件阵列,形成于所述基材(1)的第一表面(11)上,该第一聚光元件阵列包含具有第一焦距的一个或多个聚光元件;以及
    第二聚光元件阵列,形成于所述基材(1)的第二表面(12)上,该第二聚光元件阵列包含具有与所述第一焦距相同或不同的第二焦距的一个或多个聚光元件。
  3. 根据权利要求1或2所述的光学防伪元件,其特征在于,所述聚光元件选自以下一者或多者:球透镜、菲涅尔球透镜、以及菲涅尔柱透镜。
  4. 根据权利要求1或2所述的光学防伪元件,其特征在于,
    所述第一聚光元件阵列和所述第二聚光元件阵列的表面具有反射镀层;或者
    所述第一聚光元件阵列的表面具有反射镀层;或者
    所述第二聚光元件阵列的表面具有反射镀层。
  5. 根据权利要求1或2所述的光学防伪元件,其特征在于,所述第一聚光元件阵列和所述第二聚光元件阵列的基底几何形状为以下一者或多者的组合:圆形、矩形、三角形、正六边形;或者
    所述第一聚光元件阵列的基底几何形状为以下一者或多者的组合:圆形、矩形、三角形、正六边形;或者
    所述第二聚光元件阵列的基底几何形状为以下一者或多者的组合:圆形、矩形、三角形、正六边形。
  6. 根据权利要求1或2所述的光学防伪元件,其特征在于,所述第一聚光元件阵列和所述第二聚光元件阵列为微透镜阵列;或者
    所述第一聚光元件阵列为微透镜阵列;或者
    所述第二聚光元件阵列为微透镜阵列。
  7. 根据权利要求6所述的光学防伪元件,其特征在于,所述微透镜阵列满足以下一者或多者:
    所述微透镜阵列的微结构的周期为100um-500um;
    所述微透镜阵列的微结构的深度为1um-15um;
    所述微透镜阵列的微结构的焦距为1mm-500mm;以及
    所述微透镜阵列的微透镜排列规律是周期性的,或者非周期性的。
  8. 根据权利要求1或2所述的光学防伪元件,其特征在于,当白光照射所述基材(1)的所述第一表面(11)的第一聚光元件阵列和第二聚光元件阵列时,能够在处于不同焦距的接收屏上分别呈现所述第一聚光元件阵列和所述第二聚光元件阵列的投影阵列,进而形成隐藏图像的再现。
  9. 根据权利要求8所述的光学防伪元件,其特征在于,所述隐藏图像为以下中的一者或多者:立体图像、平面图像、虚像、或实像。
  10. 根据权利要求1或2所述的光学防伪元件,其特征在于,所述基材(1)的材料为以下一者或多者:对苯二甲酸乙二醇酯(PET)、聚碳酸酯(PC)、聚甲基丙烯酸酯(PMMA)、聚乙烯(PE)、或聚丙烯(PP)。
  11. 一种防伪产品,其特征在于,该防伪产品包含根据权利要求1-10中任一项权利要求所述的光学防伪元件。
PCT/CN2021/109844 2020-10-29 2021-07-30 光学防伪元件及包含该光学防伪元件的防伪产品 WO2022088815A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011183476.5A CN114428391B (zh) 2020-10-29 2020-10-29 光学防伪元件及包含该光学防伪元件的防伪产品
CN202011183476.5 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022088815A1 true WO2022088815A1 (zh) 2022-05-05

Family

ID=81310006

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109844 WO2022088815A1 (zh) 2020-10-29 2021-07-30 光学防伪元件及包含该光学防伪元件的防伪产品

Country Status (2)

Country Link
CN (1) CN114428391B (zh)
WO (1) WO2022088815A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614790A (zh) * 2015-03-03 2015-05-13 苏州苏大维格光电科技股份有限公司 平面菲涅尔透镜阵列动态放大光学膜
CN109074024A (zh) * 2016-04-13 2018-12-21 Ccl证券私人有限公司 具有集成的聚焦元件和图像元件结构的微光学器件
WO2019006497A1 (en) * 2017-07-03 2019-01-10 Ccl Secure Pty Ltd MICRO-OPTICAL DEVICE PROJECTING PROJECTED IMAGING WITH MULTIPLE CHANNELS
CN109789721A (zh) * 2016-09-30 2019-05-21 德拉鲁国际有限公司 安全装置
CN110415602A (zh) * 2019-06-13 2019-11-05 武汉华工图像技术开发有限公司 一种双色动态防伪膜及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001023943A1 (en) * 1999-09-30 2001-04-05 Koninklijke Philips Electronics N.V. Lenticular device
DE102010048262A1 (de) * 2010-10-12 2012-04-12 Giesecke & Devrient Gmbh Darstellungselement
FR2979734B1 (fr) * 2011-09-02 2014-05-23 Arjowiggins Security Structure de securite comportant une structure optique reflechissante, et procede associe.
CN103576216B (zh) * 2012-08-02 2016-03-23 中钞特种防伪科技有限公司 一种光学防伪元件及采用该光学防伪元件的防伪产品
CN104834029B (zh) * 2015-04-16 2016-09-28 上海天臣包装材料有限公司 双面成像的微光学器件及其制备方法和应用
CN108254937B (zh) * 2017-12-19 2021-03-23 浙江理工大学 一种双成像方法、装置及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104614790A (zh) * 2015-03-03 2015-05-13 苏州苏大维格光电科技股份有限公司 平面菲涅尔透镜阵列动态放大光学膜
CN109074024A (zh) * 2016-04-13 2018-12-21 Ccl证券私人有限公司 具有集成的聚焦元件和图像元件结构的微光学器件
CN109789721A (zh) * 2016-09-30 2019-05-21 德拉鲁国际有限公司 安全装置
WO2019006497A1 (en) * 2017-07-03 2019-01-10 Ccl Secure Pty Ltd MICRO-OPTICAL DEVICE PROJECTING PROJECTED IMAGING WITH MULTIPLE CHANNELS
CN110415602A (zh) * 2019-06-13 2019-11-05 武汉华工图像技术开发有限公司 一种双色动态防伪膜及其制备方法

Also Published As

Publication number Publication date
CN114428391B (zh) 2023-06-02
CN114428391A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
US11529822B2 (en) Micro-optic device with integrated focusing element and image element structure
KR102630381B1 (ko) 광학 제품, 광학 제품을 제작하기 위한 마스터, 그리고 마스터 및 광학 제품을 제조하기 위한 방법
JP4994556B2 (ja) 高明瞭度レンズシステム
RU2602486C2 (ru) Микрооптическая система безопасности и воспроизведения изображения
US9104033B2 (en) Image foils providing a synthetic integral image
RU2466030C2 (ru) Защитный элемент
CN106324726A (zh) 一种3d成像光学薄膜
CN106338786A (zh) 一种微光学成像薄膜
JP6410793B2 (ja) オプティカルセキュリティデバイス
US20110233918A1 (en) Time integrated integral image device
WO2022088815A1 (zh) 光学防伪元件及包含该光学防伪元件的防伪产品
US20220326540A1 (en) Micro-Optic Device
AU2018100185B4 (en) Optically variable device having tonal effect
CN110333606A (zh) 一种基于微聚焦元件的光学成像薄膜
WO2022110878A1 (zh) 一种光学防伪元件及其产品
CN115230363B (zh) 光学防伪元件及其设计方法、防伪产品
AU2018295788A1 (en) Micro-optic device projecting multi channel projected imagery
EP3929001A1 (en) Micro-optical system for forming visual images
CN113406734A (zh) 一种反射微透镜阵列成像装置及制造方法
WO2021103671A1 (zh) 光学防伪元件及防伪产品
RU140190U1 (ru) Микрооптическая система формирования изображений для визуального и инструментального контроля
KR20230154070A (ko) 다중-위상 아이콘 구조의 마이크로-광학 보안 디바이스
CN117485048A (zh) 一种光学防伪元件和光学防伪产品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884550

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884550

Country of ref document: EP

Kind code of ref document: A1