Nothing Special   »   [go: up one dir, main page]

WO2022079850A1 - Ball mounting method and ball mounting device - Google Patents

Ball mounting method and ball mounting device Download PDF

Info

Publication number
WO2022079850A1
WO2022079850A1 PCT/JP2020/038885 JP2020038885W WO2022079850A1 WO 2022079850 A1 WO2022079850 A1 WO 2022079850A1 JP 2020038885 W JP2020038885 W JP 2020038885W WO 2022079850 A1 WO2022079850 A1 WO 2022079850A1
Authority
WO
WIPO (PCT)
Prior art keywords
ball
wafer
flux
ball mounting
transfer
Prior art date
Application number
PCT/JP2020/038885
Other languages
French (fr)
Japanese (ja)
Inventor
大介 小林
英生 玉本
秀樹 岩田
武志 上野
昭隆 山岸
Original Assignee
株式会社小森コーポレーション
アスリートFa株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社小森コーポレーション, アスリートFa株式会社 filed Critical 株式会社小森コーポレーション
Priority to CN202080106155.7A priority Critical patent/CN116508402A/en
Priority to PCT/JP2020/038885 priority patent/WO2022079850A1/en
Priority to KR1020237011341A priority patent/KR20230058520A/en
Publication of WO2022079850A1 publication Critical patent/WO2022079850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M1/00Inking and printing with a printer's forme
    • B41M1/10Intaglio printing ; Gravure printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/741Apparatus for manufacturing means for bonding, e.g. connectors
    • H01L24/742Apparatus for manufacturing bump connectors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7515Means for applying permanent coating, e.g. in-situ coating
    • H01L2224/7518Means for blanket deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/81009Pre-treatment of the bump connector or the bonding area
    • H01L2224/81024Applying flux to the bonding area

Definitions

  • the present invention relates to a ball mounting method and a ball mounting device for mounting a conductive ball on a substrate.
  • Patent Document 1 and Patent Document 2 disclose a ball mounting device including a screen printing unit that prints a flux on an electrode of a substrate using a mask and a ball mounting unit that mounts a ball on the flux.
  • Patent Document 3 discloses a gravure offset printing method in which ink as a wiring material is transferred from a gravure offset plate to a substrate via a blanket cylinder.
  • Patent Document 4 discloses a printing method of a fine wiring pattern by a gravure offset printing method to which the technique of Patent Document 3 is applied.
  • the wiring printing method a flexographic printing method, an inkjet printing method, a gravure printing method, a screen printing method and the like are used according to the wiring pattern, production speed and the like.
  • the gravure offset printing method is adopted.
  • the electrodes have become smaller and the intervals (pitch) between the electrodes have become shorter.
  • the screen printing method it is not possible to print the flux so that a fine ball can be placed in such a narrow pitch range. The reason for this is that there is a limit to improving the printing accuracy in the screen printing method. For this reason, the ball-mounted device that prints the flux by the screen printing method has a problem that it hinders the manufacture of electronic parts that are miniaturized and have a high density.
  • An object of the present invention is to provide a ball mounting method and a ball mounting device capable of mounting a high-definition ball.
  • the ball mounting method according to the present invention is a ball mounting method in which a conductive ball is mounted on a predetermined electrode of a substrate, and a flux is applied onto the electrode by a gravure offset printing method. It is a ball mounting method including a flux printing step for printing and a ball mounting step for mounting the ball on the flux.
  • the ball-mounting device is a ball-mounting device for mounting a conductive ball on a predetermined electrode of a substrate, and the electrode is used by using a rotary transfer body in which flux is transferred from a gravure offset indentation plate. It is a ball mounting device having a gravure offset printing unit for printing flux and a ball mounting unit for mounting the ball on the flux.
  • the flux is printed on the electrodes of the substrate with high accuracy by the gravure offset printing method. Therefore, according to the present invention, it is possible to provide a ball mounting method and a ball mounting device capable of mounting a high-definition ball.
  • FIG. 1 is a block diagram showing a configuration of a ball mounting device that implements the ball mounting method according to the present invention.
  • FIG. 2 is a plan view showing the configuration of the ball mounting device.
  • FIG. 3 is a cross-sectional view showing the configuration of the ball mounting portion.
  • FIG. 4 is an enlarged cross-sectional view showing a part of the ball mounting portion.
  • FIG. 5A is a cross-sectional view for explaining the operation of the gravure offset printing unit.
  • FIG. 5B is a cross-sectional view for explaining the operation of the gravure offset printing unit.
  • FIG. 5C is a cross-sectional view for explaining the operation of the gravure offset printing unit.
  • FIG. 6 is a flowchart for explaining the ball mounting method according to the present invention.
  • FIG. 7 is an enlarged plan view showing the flux after printing.
  • the ball mounting device 1 shown in FIG. 1 is a device for carrying out the ball mounting method according to the present invention, and mainly has three functional units. These functional units are a load & unload unit 2 located in the center of FIG. 1, a gravure offset printing unit 3 located on the left side in FIG. 1, and a ball mounting unit 4 located on the right side in FIG. Further, the ball mounting device 1 is installed in a clean room or an environment equivalent to that of a clean room.
  • the load & unload unit 2 has a function of taking out a board on which balls are not mounted as a work from the work storage container 6 and storing a board on which balls are mounted in the work storage container 6, and a gravure offset printing unit 3 and a ball mounting unit. It has a function of delivering and delivering a substrate to 4.
  • the substrate is, for example, a silicon wafer or a printed wiring board.
  • the ball mounting device 1 uses a silicon wafer (hereinafter, simply referred to as a wafer) as a substrate.
  • a closed cassette called FOUP Front Opening Unify Pod
  • the work storage container 6 has a wafer inlet / outlet (not shown) in the vicinity of the load & unload section 2.
  • the wafer entrance / exit is arranged so as to face the load & unload section 2.
  • a first work storage container 6A in which a plurality of wafers 8 not loaded with balls are stored and a second work in which a plurality of wafers 9 loaded with balls are stored are stored.
  • a storage container 6B is used.
  • the flux 11 (see FIGS. 5A to 5C) is printed on the electrode forming region 8a of the wafer 8 on which the balls are not mounted by the gravure offset printing method, and the flux 11 is printed.
  • the ball 12 (see FIG. 4) is mounted on the top.
  • the load & unload unit 2 includes a transfer robot 13 made of an articulated robot and a pre-aligner 14.
  • the transfer robot 13 includes a first transfer arm 15 that attracts the lower surface of the wafer 8 to hold the wafer 8, and moves the first transfer arm 15 in the horizontal direction and the vertical direction to transfer the wafer 8. do.
  • the pre-aligner 14 is for aligning the position of a flat notch (not shown) formed on the outer peripheral portion of the wafer 8 with a predetermined position, and is a rotary table 14a on which the wafer 8 is placed and rotated, and a flat cut. It is equipped with a sensor 14b for detecting a notch.
  • the first wafer table 16 provided near the boundary with the load & unload unit 2 and the first wafer table 16 are located within the operating range.
  • the first wafer stand 16 has three suction pins 16a. These suction pins 16a have a function of sucking the lower surface of the wafer 8 to hold the wafer 8 and a function of raising and lowering the wafer 8.
  • the first wafer transfer device 17 has a second transfer arm 17a that attracts the lower surface of the wafer 8 to hold the wafer 8, and an X slider 17b that moves the second transfer arm 17a in two horizontal directions. And a Y slider 17c.
  • the two horizontal directions referred to here are the X direction, which is the direction in which the gravure offset printing unit 3 and the ball mounting unit 4 are lined up (the left-right direction in FIG. 1), and the Y direction, which is orthogonal to the X direction in the horizontal direction. Is.
  • the X slider 17b moves the Y slider 17c and the second transfer arm 17a in the X direction.
  • the Y slider 17c moves the second transfer arm 17a in the Y direction.
  • the work table slider 18 has a flat support surface 18a for sucking and holding the wafer 8 and three elevating suction pins 18b, and is configured to move in the X direction and the Y direction.
  • a plurality of alignment cameras 23 that image the wafer 8 on the work table slider 18 from above are installed.
  • the work table slider 18 moves in the X direction and the Y direction so that the wafer 8 is arranged at a predetermined print position based on the image of the wafer 8 captured by the alignment camera 23.
  • the blanket roll 19 is a roll in which a rubber blanket 19a is wound around the outer peripheral portion, and has a function of rotating around an axis C1 extending in the X direction, a function of moving in the Y direction, and a predetermined lowering position. It has a function to move up and down to and from the ascending position.
  • the blanket roll 19 corresponds to the "rotary transfer body" in the present invention.
  • the lowering position of the blanket roll 19 is a position where the blanket roll 19 comes into contact with the wafer 8 on the work table slider 18 and the intaglio 24 for gravure offset printing on the plate slider 21, which will be described later.
  • the ascending position is a position where the blanket roll 19 is separated above the wafer 8 and the intaglio 24 for gravure offset printing.
  • the blanket roll 19 according to this embodiment is arranged between the work table slider 18 and the plate slider 21 described later.
  • the scraper 20 includes a blade 20a made of a strip-shaped plate extending in the X direction.
  • the blade 20a can swing about the axis C2 extending in the X direction.
  • the scraper 20 has a function of swinging the blade 20a, and is configured to move in the Y direction integrally with the blanket roll 19.
  • the scraper 20 according to this embodiment moves in one direction in the Y direction (upper side in FIG. 2) with the lower end of the blade 20a in contact with the upper surface of the intaglio 24 for gravure offset printing described later, and the lower end of the blade 20a is gravure. It moves to the other side in the Y direction (lower side in FIG. 2) while being separated from the offset printing intaglio 24. It was
  • the plate slider 21 positions and holds the intaglio 24 for gravure offset printing (hereinafter, simply referred to as the intaglio 24) at a predetermined position.
  • the intaglio 24 is a lithographic plate formed in a flat plate shape, and recesses 25 are provided on the upper surface thereof at positions corresponding to a large number of electrodes 8b of the wafer 8.
  • the recess 25 is formed in the print area 24a (see FIG. 2) of the intaglio 24.
  • the material forming the intaglio 24 is glass, synthetic resin, metal, or the like.
  • a dispenser 22 that supplies the flux 11 to the intaglio 24 is arranged above the plate slider 21, a dispenser 22 that supplies the flux 11 to the intaglio 24 is arranged.
  • the ball mounting portion 4 has a second wafer pedestal 31 provided near the boundary with the load & unloading portion 2 and a second wafer pedestal 31 within the operating range.
  • the second wafer stand 31 has the same configuration as the first wafer stand 16 and has three elevating suction pins 31a.
  • the second wafer transfer device 32 has the same configuration as the first wafer transfer device 17, and includes a third transfer arm 32a, an X slider 32b, and a Y slider 32c.
  • the third transfer arm 32a attracts the lower surface of the wafer 8 to hold the wafer 8.
  • the X slider 32b moves the Y slider 32c and the third transfer arm 32a in the X direction.
  • the Y slider 32c moves the third transfer arm 32a in the Y direction.
  • the wafer stage 33 has a flat upper surface 33a and also has a plurality of air holes 41 that open in the upper surface 33a.
  • the air hole 41 communicates the suction chamber 42 provided at the lower part of the wafer stage 33 with the space above the wafer stage 33.
  • An air suction device (not shown) is connected to the suction chamber 42.
  • the wafer stage 33 receives a plurality of elevating suction pins (in order to receive the wafer 8 on which the balls are not mounted from the third transfer arm 32a and to transfer the wafer 9 on which the balls are mounted to the third transfer arm 32a). (Not shown).
  • the ball arrangement mask 34 is formed in a shape that covers the wafer stage 33 from above, is arranged above the wafer stage 33, and is configured to be movable in the vertical direction.
  • the ball arrangement mask 34 has a plurality of through holes 43 into which the balls 12 are transferred.
  • the through holes 43 are provided at positions corresponding to a large number of electrodes 8b of the wafer 8, respectively.
  • the hole diameter of the through hole 43 is a hole diameter into which only one ball 12 can be inserted.
  • the thickness of the ball arrangement mask 34 is such that the upper end of the ball 12 transferred into the through hole 43 is located near the upper surface of the ball arrangement mask 34.
  • a ball suction device for sucking and removing the surplus balls 12 on the ball arrangement mask 34 can be provided in the vicinity of the ball arrangement mask 34.
  • the ball transfer unit 35 is formed in a tubular shape and is connected to a ball supply device (not shown).
  • the ball 12 is supplied from above into the ball transfer unit 35 from the ball supply device.
  • the ball 12 is a conductive ball having conductivity such as a solder ball.
  • the ball transfer unit 35 has a function of rotating around the axis C3 extending in the vertical direction and a function of moving in the X direction, the Y direction, and the vertical direction.
  • a brush squeegee 36 is provided at the lower end of the ball transfer portion 35.
  • the brush squeegee 36 is a cylindrical brush whose outer diameter gradually increases toward the bottom.
  • step S1 the wafer 8 is carried into the gravure offset printing unit 3 (step S1).
  • the wafer 8 is pulled out from the first work storage container 6A by the transfer robot 13 and transferred to the pre-aligner 14.
  • the wafer 8 is transferred from the pre-aligner 14 to the first wafer stand 16 by the transfer robot 13. This transfer is performed by retracting the first transfer arm 15 of the transfer robot 13 with respect to the wafer 8 while the wafer 8 is held by the three suction pins 16a.
  • the wafer 8 is transferred from the first wafer pedestal 16 to the second transfer arm 17a of the first wafer transfer device 17, and further, the second transfer arm 17a is moved above the work table slider 18. Then, the wafer 8 is transferred to the work table slider 18.
  • the second transfer arm 17a is inserted under the wafer 8 and the three suction pins 16a are released from suction in this state. Lower it while it is still in place.
  • the three suction pins 18b of the work table slider 18 are raised to push the wafer 8 up from the second transfer arm 17a, and in this state, the second transfer arm 8 is used.
  • the transfer arm 17a of 2 is retracted from the wafer 8. Then, the suction pin 18b is lowered so that the wafer 8 is placed on the upper surface of the work table slider 18 in a state where the wafer 8 is sucked by the suction pin 18b.
  • the flux 11 is supplied to the intaglio plate 24 (step S2).
  • a predetermined amount of flux 11 is dropped onto the intaglio 24 by the dispenser 22.
  • the blade 20a of the scraper 20 is tilted so that the lower end contacts the intaglio 24, and the scraper 20 and the blanket roll 19 in the raised position are placed on one side of the Y direction (work table in the Y direction). Move in the direction away from the slider 18.
  • the blade 20a is tilted so that the downstream side in the moving direction is located downward.
  • the recess 25 is filled with the flux 11.
  • the blade 20a is swung to separate the lower end from the intaglio 24, and the blanket roll 19 is positioned in the descending position and pressed against the intaglio 24 while pressing them against the intaglio 24.
  • the blanket roll 19 rotates by moving in the Y direction while in contact with the intaglio plate 24.
  • the flux 11 in the recess 25 is transferred to the blanket roll 19 as the blanket roll 19 rotates (step S3).
  • Step S4 When the blanket roll 19 rolls on the intaglio 24 to the other end in the Y direction, the flux 11 is transferred from all the recesses 25 to the blanket 19a of the blanket roll 19. Then, the blanket roll 19 continuously moves in the Y direction and rolls on the wafer 8 as shown in FIG. 5C. The flux 11 on the blanket roll 19 is transferred from the blanket 19a to the electrode 8b of the wafer 8 by moving the blanket roll 19 toward the other side in the Y direction while rotating on the wafer 8 while being pressed against the wafer 8. (Step S4). In this embodiment, the steps shown in steps S1 to S4 correspond to the "flux printing step" of the ball mounting method of the present invention.
  • the wafer 8 is conveyed to the ball mounting unit 4 (step S5).
  • the wafer 8 on the work table slider 18 is transferred to the first wafer stand 16 by the first wafer transfer device 17, and the wafer 8 is transferred to the first wafer stand 16 by the transfer robot 13.
  • Reprinted from to pre-aligner 14 the wafer 8 after flux printing is rotated to correct the position of the wafer 8 in the circumferential direction. After that, the wafer 8 is transferred from the pre-aligner 14 to the ball mounting portion 4 by the transfer robot 13 (step S5).
  • the wafer 8 is transferred from the pre-aligner 14 to the second wafer stand 31 by the transfer robot 13, and the wafer 8 is further moved below the ball arrangement mask 34 by the second wafer transfer device 32.
  • the wafer is transferred to the wafer stage 33.
  • the wafer 8 is attracted to the upper surface 33a of the wafer stage 33 by setting the inside of the suction chamber 42 of the wafer stage 33 to have a negative pressure so that air is sucked from the air holes 41.
  • the ball arrangement mask 34 is lowered onto the upper surface of the wafer 8 and mounted (step S6).
  • the ball transfer unit 35 is moved onto the ball arrangement mask 34, and the ball 12 is supplied into the ball transfer unit 35. Then, the ball transfer unit 35 is rotated, and the ball transfer unit 35 is moved in the X direction and the Y direction along the ball arrangement mask 34 while the brush squeegee 36 sweeps the ball 12.
  • the ball transfer unit 35 By operating the ball transfer unit 35 in this way, as shown in FIG. 4, the ball 12 is transferred into the through hole 43 of the ball arrangement mask 34 (step S7). After being swung into the through hole 43, the ball 12 is pushed by another ball 12 from above, and adheres to the flux 11 in a state of being slightly pushed into the flux 11 printed on the electrode 8b.
  • the ball transfer portion 35 is moved out of the ball arrangement mask 34, and the excess balls 12 remaining on the ball arrangement mask 34 are removed by, for example, a suction device. .. Then, the ball arrangement mask 34 is pulled upward from the wafer 8 (step S8).
  • steps S5 to S8 correspond to the "ball mounting step" of the ball mounting method according to the present invention.
  • the dot diameter D of the flux 11 could be reduced to 60 ⁇ m or less as shown in FIG.
  • the inter-pitch L could be 100 ⁇ m or less.
  • the flux 11 is printed on the electrode 8b of the wafer 8 with high accuracy by the gravure offset printing method. Therefore, it is possible to provide a ball mounting method and a ball mounting device capable of mounting a high-definition ball.
  • the intaglio 24 for gravure offset is a planographic plate. Therefore, the flux 11 is transferred from the intaglio 24 to the blanket roll 19 with high accuracy without being distorted. Therefore, according to this embodiment, the flux 11 can be printed on the wafer 8 so that the printing accuracy is further improved.
  • the outer diameter ⁇ of the electrode of the wafer 8 is 30 ⁇ m
  • the pitch is 50 ⁇ m
  • the total pitch is 295 mm (in the effective area of the ⁇ 12 inch wafer)
  • the dot diameter is ⁇ 20 ⁇ m
  • the printing position accuracy is ⁇ 5 ⁇ m.
  • the flux 11 can be printed. That is, according to this embodiment, it is possible to realize printing with a dot diameter of 60 ⁇ m or less and a pitch of 100 ⁇ m or less, which is the maximum accuracy of conventional screen printing.
  • the gravure offset printing unit 3 performs gravure offset printing using the intaglio 24 for gravure offset printing made of lithographic plates.
  • the gravure offset printing unit 3 may be another gravure offset printing method using an intaglio plate other than a lithographic plate. Even in such a case, a step of transferring the ink material (flux 11) to the surface of the transfer body while contacting and rotating the transfer body (blanket roll 19) with the printed pattern portion of the intaglio plate which is not a lithographic plate, and the transfer body.
  • the ball mounting method of the present invention can be carried out by a step of crimping a printed matter (for example, a wafer 8) to transfer a printed pattern to the printed matter and a step of mounting the ball 12 on the printed matter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Printing Methods (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

This ball mounting method is for mounting a conductive ball on a prescribed electrode of a wafer (substrate). A flux printing process (steps S1-S4) is included which is for printing flux on the electrode by means of gravure-offset printing. A ball mounting process (steps S5-S8) is included which is for mounting a ball on the flux. It is possible to provide a ball mounting method that enables highly precise ball mounting.

Description

ボール搭載方法およびボール搭載装置Ball mounting method and ball mounting device
 本発明は、導電性のボールを基板に搭載するボール搭載方法およびボール搭載装置に関する。 The present invention relates to a ball mounting method and a ball mounting device for mounting a conductive ball on a substrate.
 シリコンウエハやプリント配線基板などの基板の電極に設けられるバンプは、半田ボール等の導電性のボールを電極に搭載し、このボールを溶融して形成されている。導電性のボールを搭載するにあたっては、特許文献1および特許文献2に記載されているように、電極にスクリーン印刷法によってフラックスを塗布し、このフラックスの上にボールを載せて行っている。特許文献1および特許文献2には、マスクを用いてフラックスを基板の電極上に印刷するスクリーン印刷部と、ボールをフラックスに載せるボール搭載部とを備えたボール搭載装置が開示されている。 Bumps provided on the electrodes of substrates such as silicon wafers and printed wiring boards are formed by mounting conductive balls such as solder balls on the electrodes and melting the balls. In mounting the conductive ball, as described in Patent Document 1 and Patent Document 2, a flux is applied to the electrodes by a screen printing method, and the ball is placed on the flux. Patent Document 1 and Patent Document 2 disclose a ball mounting device including a screen printing unit that prints a flux on an electrode of a substrate using a mask and a ball mounting unit that mounts a ball on the flux.
 一方、特許文献3および特許文献4に記載されているように、基板上に配線パターンを形成する技術として、配線材料をグラビアオフセット印刷法によって基板に印刷して行う技術が知られている。特許文献3には、配線材料となるインキをグラビアオフセット版からブランケット胴を介して基板に転写するグラビアオフセット印刷法が開示されている。特許文献4には、特許文献3の技術を応用したグラビアオフセット印刷法による微細配線パターンの印刷方法が示されている。配線の印刷方法には、フレキソ印刷法、インクジェット印刷法、グラビア印刷法、スクリーン印刷法などが配線のパターンや生産速度等に応じて利用されている。微細な配線を印刷できるように印刷精度を重視する場合は、グラビアオフセット印刷法が採用される。 On the other hand, as described in Patent Document 3 and Patent Document 4, as a technique for forming a wiring pattern on a substrate, a technique for printing a wiring material on a substrate by a gravure offset printing method is known. Patent Document 3 discloses a gravure offset printing method in which ink as a wiring material is transferred from a gravure offset plate to a substrate via a blanket cylinder. Patent Document 4 discloses a printing method of a fine wiring pattern by a gravure offset printing method to which the technique of Patent Document 3 is applied. As the wiring printing method, a flexographic printing method, an inkjet printing method, a gravure printing method, a screen printing method and the like are used according to the wiring pattern, production speed and the like. When printing accuracy is important so that fine wiring can be printed, the gravure offset printing method is adopted.
特開2019-67991号公報JP-A-2019-67991 特開2008-288515号公報Japanese Unexamined Patent Publication No. 2008-288515 特開2014-73653号公報Japanese Unexamined Patent Publication No. 2014-73653 国際公開WO2014/112557号公報International Publication WO2014 / 112557 Gazette
 近年、電子部品の小型化、高密度化が進むにしたがって、電極が更に小さく形成され、かつ電極どうしの間隔(ピッチ)が更に短くなってきている。しかし、スクリーン印刷法では、このような狭いピッチ範囲に微細なボールを載せることができるようにフラックスを印刷することはできない。この理由は、スクリーン印刷法においては印刷の精度を高くするにも限界があるからである。このため、スクリーン印刷法によってフラックスを印刷するボール搭載装置では、小型化、高密度化が図られた電子部品を製造するにあたって支障をきたすという問題があった。 In recent years, as electronic components have become smaller and more dense, the electrodes have become smaller and the intervals (pitch) between the electrodes have become shorter. However, in the screen printing method, it is not possible to print the flux so that a fine ball can be placed in such a narrow pitch range. The reason for this is that there is a limit to improving the printing accuracy in the screen printing method. For this reason, the ball-mounted device that prints the flux by the screen printing method has a problem that it hinders the manufacture of electronic parts that are miniaturized and have a high density.
 本発明の目的は、高精細なボールの搭載が可能なボール搭載方法およびボール搭載装置を提供することである。 An object of the present invention is to provide a ball mounting method and a ball mounting device capable of mounting a high-definition ball.
 この目的を達成するために本発明に係るボール搭載方法は、基板の所定の電極の上に導電性のボールを搭載するボール搭載方法であって、前記電極の上にグラビアオフセット印刷法によってフラックスを印刷するフラックス印刷工程と、前記ボールを前記フラックスの上に搭載するボール搭載工程とを有するボール搭載方法である。 In order to achieve this object, the ball mounting method according to the present invention is a ball mounting method in which a conductive ball is mounted on a predetermined electrode of a substrate, and a flux is applied onto the electrode by a gravure offset printing method. It is a ball mounting method including a flux printing step for printing and a ball mounting step for mounting the ball on the flux.
 本発明に係るボール搭載装置は、基板の所定の電極の上に導電性のボールを搭載するボール搭載装置であって、グラビアオフセット用凹版からフラックスが転移される回転式転写体を用いて前記電極にフラックスを印刷するグラビアオフセット印刷部と、前記ボールを前記フラックスの上に搭載するボール搭載部とを有しているボール搭載装置である。 The ball-mounting device according to the present invention is a ball-mounting device for mounting a conductive ball on a predetermined electrode of a substrate, and the electrode is used by using a rotary transfer body in which flux is transferred from a gravure offset indentation plate. It is a ball mounting device having a gravure offset printing unit for printing flux and a ball mounting unit for mounting the ball on the flux.
 本発明においては、フラックスが基板の電極にグラビアオフセット印刷法によって高い精度で印刷される。したがって、本発明によれば、高精細なボールの搭載が可能なボール搭載方法およびボール搭載装置を提供することができる。 In the present invention, the flux is printed on the electrodes of the substrate with high accuracy by the gravure offset printing method. Therefore, according to the present invention, it is possible to provide a ball mounting method and a ball mounting device capable of mounting a high-definition ball.
図1は、本発明に係るボール搭載方法を実施するボール搭載装置の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of a ball mounting device that implements the ball mounting method according to the present invention. 図2は、ボール搭載装置の構成を示す平面図である。FIG. 2 is a plan view showing the configuration of the ball mounting device. 図3は、ボール搭載部の構成を示す断面図である。FIG. 3 is a cross-sectional view showing the configuration of the ball mounting portion. 図4は、ボール搭載部の一部を拡大して示す断面図である。FIG. 4 is an enlarged cross-sectional view showing a part of the ball mounting portion. 図5Aは、グラビアオフセット印刷部の動作を説明するための断面図である。FIG. 5A is a cross-sectional view for explaining the operation of the gravure offset printing unit. 図5Bは、グラビアオフセット印刷部の動作を説明するための断面図である。FIG. 5B is a cross-sectional view for explaining the operation of the gravure offset printing unit. 図5Cは、グラビアオフセット印刷部の動作を説明するための断面図である。FIG. 5C is a cross-sectional view for explaining the operation of the gravure offset printing unit. 図6は、本発明に係るボール搭載方法を説明するためのフローチャートである。FIG. 6 is a flowchart for explaining the ball mounting method according to the present invention. 図7は、印刷後のフラックスを拡大して示す平面図である。FIG. 7 is an enlarged plan view showing the flux after printing.
 以下、本発明に係るボール搭載方法およびボール搭載装置の一実施の形態を図1~図7を参照して詳細に説明する。
(ボール搭載装置の説明)
 図1に示すボール搭載装置1は、本発明に係るボール搭載方法を実施するための装置であって、主に3つの機能部を有している。これらの機能部は、図1の中央部に位置するロード&アンロード部2と、図1において左側に位置するグラビアオフセット印刷部3と、図1において右側に位置するボール搭載部4である。また、このボール搭載装置1は、クリーンルームもしくはクリーンルームと同等の環境下に設置されている。
Hereinafter, an embodiment of the ball mounting method and the ball mounting device according to the present invention will be described in detail with reference to FIGS. 1 to 7.
(Explanation of ball mounting device)
The ball mounting device 1 shown in FIG. 1 is a device for carrying out the ball mounting method according to the present invention, and mainly has three functional units. These functional units are a load & unload unit 2 located in the center of FIG. 1, a gravure offset printing unit 3 located on the left side in FIG. 1, and a ball mounting unit 4 located on the right side in FIG. Further, the ball mounting device 1 is installed in a clean room or an environment equivalent to that of a clean room.
 ロード&アンロード部2は、ワーク収納容器6からワークとしてのボール未搭載の基板を取り出したり、ワーク収納容器6にボール搭載済みの基板を収納する機能と、グラビアオフセット印刷部3およびボール搭載部4に対する基板の受渡しを行う機能とを有している。基板は、例えばシリコンウエハやプリント配線基板などである。この実施の形態によるボール搭載装置1は、基板としてシリコンウエハ(以下、単にウエハという)を用いるものである。ウエハを収納するワーク収納容器6は、いわゆるFOUP(Front Opening Unify Pod)と呼称される密閉型カセットを用いることができる。このワーク収納容器6は、ロード&アンロード部2の近傍にウエハ出入口(図示せず)を有している。ウエハ出入り口は、ロード&アンロード部2を指向するように配置されている。この実施の形態においては、図2に示すように、複数のボール未搭載のウエハ8が収納された第1のワーク収納容器6Aと、複数のボール搭載済みのウエハ9を収納する第2のワーク収納容器6Bとが用いられている。 The load & unload unit 2 has a function of taking out a board on which balls are not mounted as a work from the work storage container 6 and storing a board on which balls are mounted in the work storage container 6, and a gravure offset printing unit 3 and a ball mounting unit. It has a function of delivering and delivering a substrate to 4. The substrate is, for example, a silicon wafer or a printed wiring board. The ball mounting device 1 according to this embodiment uses a silicon wafer (hereinafter, simply referred to as a wafer) as a substrate. As the work storage container 6 for storing the wafer, a closed cassette called FOUP (Front Opening Unify Pod) can be used. The work storage container 6 has a wafer inlet / outlet (not shown) in the vicinity of the load & unload section 2. The wafer entrance / exit is arranged so as to face the load & unload section 2. In this embodiment, as shown in FIG. 2, a first work storage container 6A in which a plurality of wafers 8 not loaded with balls are stored and a second work in which a plurality of wafers 9 loaded with balls are stored are stored. A storage container 6B is used.
 この実施形態によるボール搭載装置1は、詳細は後述するが、ボール未搭載のウエハ8の電極形成領域8aにグラビアオフセット印刷法によってフラックス11(図5A~図5C参照)を印刷し、このフラックス11の上にボール12(図4参照)を搭載する。
 ロード&アンロード部2は、図2に示すように、多関節ロボットからなる搬送ロボット13と、プレアライナ14とを備えている。
Although the details of the ball mounting device 1 according to this embodiment will be described later, the flux 11 (see FIGS. 5A to 5C) is printed on the electrode forming region 8a of the wafer 8 on which the balls are not mounted by the gravure offset printing method, and the flux 11 is printed. The ball 12 (see FIG. 4) is mounted on the top.
As shown in FIG. 2, the load & unload unit 2 includes a transfer robot 13 made of an articulated robot and a pre-aligner 14.
 搬送ロボット13は、ウエハ8の下面を吸着してウエハ8を保持する第1の搬送アーム15を備えており、第1の搬送アーム15を水平方向と上下方向とに移動させてウエハ8を搬送する。
 プレアライナ14は、ウエハ8の外周部に形成された平坦な切欠き(図示せず)の位置を所定の位置に合わせるためのもので、ウエハ8を載せて回転する回転テーブル14aと、平坦な切欠きを検出するセンサ14bとを備えている。
The transfer robot 13 includes a first transfer arm 15 that attracts the lower surface of the wafer 8 to hold the wafer 8, and moves the first transfer arm 15 in the horizontal direction and the vertical direction to transfer the wafer 8. do.
The pre-aligner 14 is for aligning the position of a flat notch (not shown) formed on the outer peripheral portion of the wafer 8 with a predetermined position, and is a rotary table 14a on which the wafer 8 is placed and rotated, and a flat cut. It is equipped with a sensor 14b for detecting a notch.
(グラビアオフセット印刷部の説明)
 グラビアオフセット印刷部3は、図2に示すように、ロード&アンロード部2との境界の近傍に設けられた第1のウエハ置台16と、第1のウエハ置台16が動作範囲の中に位置する第1のウエハ移載装置17と、第1のウエハ移載装置17の近傍に設けられてウエハ8を印刷位置に保持するワークテーブルスライダ18と、ブランケットロール19、スクレイパ20、版スライダ21、ディスペンサ22などを備えている。第1のウエハ置台16は、3本の吸着ピン16aを有している。これらの吸着ピン16aは、ウエハ8の下面を吸着してウエハ8を保持する機能と、昇降する機能とを有している。
(Explanation of gravure offset printing section)
As shown in FIG. 2, in the gravure offset printing unit 3, the first wafer table 16 provided near the boundary with the load & unload unit 2 and the first wafer table 16 are located within the operating range. A first wafer transfer device 17, a work table slider 18 provided in the vicinity of the first wafer transfer device 17 to hold the wafer 8 at the printing position, a blanket roll 19, a scraper 20, and a plate slider 21. It is equipped with a dispenser 22 and the like. The first wafer stand 16 has three suction pins 16a. These suction pins 16a have a function of sucking the lower surface of the wafer 8 to hold the wafer 8 and a function of raising and lowering the wafer 8.
 第1のウエハ移載装置17は、ウエハ8の下面を吸着してウエハ8を保持する第2の搬送アーム17aと、この第2の搬送アーム17aを水平方向の2方向に移動させるXスライダ17bおよびYスライダ17cとを備えている。ここでいう水平方向の2方向とは、グラビアオフセット印刷部3とボール搭載部4とが並ぶ方向(図1においては左右方向)であるX方向と、水平方向においてX方向とは直交するY方向である。Xスライダ17bは、Yスライダ17cおよび第2の搬送アーム17aをX方向に移動させる。Yスライダ17cは、第2の搬送アーム17aをY方向に移動させる。 The first wafer transfer device 17 has a second transfer arm 17a that attracts the lower surface of the wafer 8 to hold the wafer 8, and an X slider 17b that moves the second transfer arm 17a in two horizontal directions. And a Y slider 17c. The two horizontal directions referred to here are the X direction, which is the direction in which the gravure offset printing unit 3 and the ball mounting unit 4 are lined up (the left-right direction in FIG. 1), and the Y direction, which is orthogonal to the X direction in the horizontal direction. Is. The X slider 17b moves the Y slider 17c and the second transfer arm 17a in the X direction. The Y slider 17c moves the second transfer arm 17a in the Y direction.
 ワークテーブルスライダ18は、ウエハ8を吸着して保持する平坦な支持面18aと、3本の昇降式の吸着ピン18bとを有し、X方向とY方向に移動するように構成されている。ワークテーブルスライダ18の上方には、ワークテーブルスライダ18上のウエハ8を上方から撮像する複数のアライメントカメラ23が設置されている。ワークテーブルスライダ18は、アライメントカメラ23によって撮像されたウエハ8の画像に基づいて、ウエハ8が所定の印刷位置に配置されるようにX方向およびY方向に移動する。 The work table slider 18 has a flat support surface 18a for sucking and holding the wafer 8 and three elevating suction pins 18b, and is configured to move in the X direction and the Y direction. Above the work table slider 18, a plurality of alignment cameras 23 that image the wafer 8 on the work table slider 18 from above are installed. The work table slider 18 moves in the X direction and the Y direction so that the wafer 8 is arranged at a predetermined print position based on the image of the wafer 8 captured by the alignment camera 23.
 ブランケットロール19は、外周部にゴム製のブランケット19aが巻き付けられたロールであり、X方向に延びる軸線C1を中心にして回転する機能と、Y方向に移動する機能と、予め定めた下降位置と上昇位置との間で昇降する機能とを有している。この実施の形態においては、ブランケットロール19が本発明でいう「回転式転写体」に相当する。ブランケットロール19の下降位置は、ワークテーブルスライダ18上のウエハ8と、後述する版スライダ21上のグラビアオフセット印刷用凹版24とにブランケットロール19が接触する位置である。上昇位置は、ブランケットロール19がウエハ8およびグラビアオフセット印刷用凹版24より上方に離間する位置である。この実施の形態によるブランケットロール19は、ワークテーブルスライダ18と後述する版スライダ21との間に配置されている。 The blanket roll 19 is a roll in which a rubber blanket 19a is wound around the outer peripheral portion, and has a function of rotating around an axis C1 extending in the X direction, a function of moving in the Y direction, and a predetermined lowering position. It has a function to move up and down to and from the ascending position. In this embodiment, the blanket roll 19 corresponds to the "rotary transfer body" in the present invention. The lowering position of the blanket roll 19 is a position where the blanket roll 19 comes into contact with the wafer 8 on the work table slider 18 and the intaglio 24 for gravure offset printing on the plate slider 21, which will be described later. The ascending position is a position where the blanket roll 19 is separated above the wafer 8 and the intaglio 24 for gravure offset printing. The blanket roll 19 according to this embodiment is arranged between the work table slider 18 and the plate slider 21 described later.
 スクレイパ20は、X方向に延びる帯状の板からなるブレード20aを備えている。ブレード20aは、X方向に延びる軸線C2を中心にして揺動可能である。このスクレイパ20は、このブレード20aを揺動させる機能を有し、ブランケットロール19と一体にY方向に移動するように構成されている。この実施の形態によるスクレイパ20は、ブレード20aの下端が後述するグラビアオフセット印刷用凹版24の上面に接触する状態でY方向の一方(図2においては上側)に移動し、ブレード20aの下端がグラビアオフセット印刷用凹版24から離間する状態でY方向の他方(図2においては下側)に移動する。  The scraper 20 includes a blade 20a made of a strip-shaped plate extending in the X direction. The blade 20a can swing about the axis C2 extending in the X direction. The scraper 20 has a function of swinging the blade 20a, and is configured to move in the Y direction integrally with the blanket roll 19. The scraper 20 according to this embodiment moves in one direction in the Y direction (upper side in FIG. 2) with the lower end of the blade 20a in contact with the upper surface of the intaglio 24 for gravure offset printing described later, and the lower end of the blade 20a is gravure. It moves to the other side in the Y direction (lower side in FIG. 2) while being separated from the offset printing intaglio 24. It was
 版スライダ21は、グラビアオフセット印刷用凹版24(以下、単に凹版24という)を所定の位置に位置決めして保持するものである。凹版24は、図5Aに示すように、平板状に形成された平版で、その上面であってウエハ8の多数の電極8bと対応する位置にそれぞれ凹部25が設けられている。凹部25は、凹版24の印刷領域24a(図2参照)に形成されている。凹版24を形成する材料は、ガラス、合成樹脂、金属などである。
 版スライダ21の上方には、フラックス11を凹版24に供給するディスペンサ22が配置されている。
The plate slider 21 positions and holds the intaglio 24 for gravure offset printing (hereinafter, simply referred to as the intaglio 24) at a predetermined position. As shown in FIG. 5A, the intaglio 24 is a lithographic plate formed in a flat plate shape, and recesses 25 are provided on the upper surface thereof at positions corresponding to a large number of electrodes 8b of the wafer 8. The recess 25 is formed in the print area 24a (see FIG. 2) of the intaglio 24. The material forming the intaglio 24 is glass, synthetic resin, metal, or the like.
Above the plate slider 21, a dispenser 22 that supplies the flux 11 to the intaglio 24 is arranged.
(ボール搭載部の説明)
 ボール搭載部4は、図2および図3に示すように、ロード&アンロード部2との境界の近傍に設けられた第2のウエハ置台31と、第2のウエハ置台31が動作範囲の中に位置する第2のウエハ移載装置32と、第2のウエハ移載装置32の近傍に設けられてウエハ8をボール搭載位置に保持するウエハステージ33と、ボール配列用マスク34、ボール振込部35およびブラシスキージ36などを備えている。第2のウエハ置台31は、第1のウエハ置台16と同一の構成のもので、3本の昇降式の吸着ピン31aを有している。
(Explanation of ball mounting part)
As shown in FIGS. 2 and 3, the ball mounting portion 4 has a second wafer pedestal 31 provided near the boundary with the load & unloading portion 2 and a second wafer pedestal 31 within the operating range. A second wafer transfer device 32 located in, a wafer stage 33 provided in the vicinity of the second wafer transfer device 32 to hold the wafer 8 at the ball mounting position, a ball arrangement mask 34, and a ball transfer unit. It is equipped with a 35 and a brush squeegee 36 and the like. The second wafer stand 31 has the same configuration as the first wafer stand 16 and has three elevating suction pins 31a.
 第2のウエハ移載装置32は、第1のウエハ移載装置17と同一の構成のもので、第3の搬送アーム32aと、Xスライダ32bおよびYスライダ32cとを備えている。第3の搬送アーム32aは、ウエハ8の下面を吸着してウエハ8を保持する。Xスライダ32bは、Yスライダ32cおよび第3の搬送アーム32aをX方向に移動させる。Yスライダ32cは、第3の搬送アーム32aをY方向に移動させる。 The second wafer transfer device 32 has the same configuration as the first wafer transfer device 17, and includes a third transfer arm 32a, an X slider 32b, and a Y slider 32c. The third transfer arm 32a attracts the lower surface of the wafer 8 to hold the wafer 8. The X slider 32b moves the Y slider 32c and the third transfer arm 32a in the X direction. The Y slider 32c moves the third transfer arm 32a in the Y direction.
 ウエハステージ33は、図3に示すように、平坦な上面33aを有しているとともに、この上面33aに開口する複数の空気孔41を有している。空気孔41は、ウエハステージ33の下部に設けられている吸引室42と、ウエハステージ33の上方の空間とを連通している。吸引室42には、図示していない空気吸引装置が接続されている。また、ウエハステージ33は、ボール未搭載のウエハ8を第3の搬送アーム32aから受け取ったり、ボール搭載済みのウエハ9を第3の搬送アーム32aに渡すために、複数の昇降式の吸着ピン(図示せず)を備えている。 As shown in FIG. 3, the wafer stage 33 has a flat upper surface 33a and also has a plurality of air holes 41 that open in the upper surface 33a. The air hole 41 communicates the suction chamber 42 provided at the lower part of the wafer stage 33 with the space above the wafer stage 33. An air suction device (not shown) is connected to the suction chamber 42. Further, the wafer stage 33 receives a plurality of elevating suction pins (in order to receive the wafer 8 on which the balls are not mounted from the third transfer arm 32a and to transfer the wafer 9 on which the balls are mounted to the third transfer arm 32a). (Not shown).
 ボール配列用マスク34は、図3に示すように、ウエハステージ33を上方から覆う形状に形成されてウエハステージ33の上方に配置されており、上下方向に移動可能に構成されている。ボール配列用マスク34は、図4に示すように、ボール12が振り込まれる複数の貫通孔43を有している。貫通孔43は、ウエハ8の多数の電極8bと対応する位置にそれぞれ設けられている。
 貫通孔43の孔径は、ボール12を1個だけ挿入可能な孔径である。ボール配列用マスク34の厚みは、貫通孔43に振り込まれたボール12の上端がボール配列用マスク34の上面の近傍に位置するような厚みである。なお、ボール配列用マスク34の近傍には、図示してはいないが、ボール配列用マスク34の上の余剰のボール12を吸引して取り除くボール吸引装置を設けることができる。
As shown in FIG. 3, the ball arrangement mask 34 is formed in a shape that covers the wafer stage 33 from above, is arranged above the wafer stage 33, and is configured to be movable in the vertical direction. As shown in FIG. 4, the ball arrangement mask 34 has a plurality of through holes 43 into which the balls 12 are transferred. The through holes 43 are provided at positions corresponding to a large number of electrodes 8b of the wafer 8, respectively.
The hole diameter of the through hole 43 is a hole diameter into which only one ball 12 can be inserted. The thickness of the ball arrangement mask 34 is such that the upper end of the ball 12 transferred into the through hole 43 is located near the upper surface of the ball arrangement mask 34. Although not shown, a ball suction device for sucking and removing the surplus balls 12 on the ball arrangement mask 34 can be provided in the vicinity of the ball arrangement mask 34.
 ボール振込部35は、筒状に形成され、図示していないボール供給装置に接続されている。ボール12は、ボール供給装置からボール振込部35の中に上方から供給される。ボール12は、半田ボールなどの導電性を有する導電性ボールである。また、ボール振込部35は、上下方向に延びる軸線C3を中心にして回転する機能と、X方向、Y方向および上下方向に移動する機能を有している。ボール振込部35の下端にはブラシスキージ36が設けられている。ブラシスキージ36は、下方に向かうにしたがって次第に外径が大きくなる円筒状のブラシである。 The ball transfer unit 35 is formed in a tubular shape and is connected to a ball supply device (not shown). The ball 12 is supplied from above into the ball transfer unit 35 from the ball supply device. The ball 12 is a conductive ball having conductivity such as a solder ball. Further, the ball transfer unit 35 has a function of rotating around the axis C3 extending in the vertical direction and a function of moving in the X direction, the Y direction, and the vertical direction. A brush squeegee 36 is provided at the lower end of the ball transfer portion 35. The brush squeegee 36 is a cylindrical brush whose outer diameter gradually increases toward the bottom.
(ボール搭載方法の説明)
 次に、本発明に係るボール搭載方法を上述したボール搭載装置1の動作の説明と併せて図6に示すフローチャートを使用して説明する。
 本発明に係るボール搭載方法を実施するためは、先ず、ウエハ8をグラビアオフセット印刷部3に搬入する(ステップS1)。この工程においては、先ず、ウエハ8を搬送ロボット13によって第1のワーク収納容器6Aから引出してプレアライナ14に移載する。プレアライナ14によってウエハ8の周方向の位置が修正された後、このウエハ8を搬送ロボット13によってプレアライナ14から第1のウエハ置台16に移載する。この移載は、3本の吸着ピン16aでウエハ8を保持した状態で搬送ロボット13の第1の搬送アーム15をウエハ8に対して後退させて行う。
(Explanation of ball mounting method)
Next, the ball mounting method according to the present invention will be described by using the flowchart shown in FIG. 6 together with the description of the operation of the ball mounting device 1 described above.
In order to carry out the ball mounting method according to the present invention, first, the wafer 8 is carried into the gravure offset printing unit 3 (step S1). In this step, first, the wafer 8 is pulled out from the first work storage container 6A by the transfer robot 13 and transferred to the pre-aligner 14. After the position of the wafer 8 in the circumferential direction is corrected by the pre-aligner 14, the wafer 8 is transferred from the pre-aligner 14 to the first wafer stand 16 by the transfer robot 13. This transfer is performed by retracting the first transfer arm 15 of the transfer robot 13 with respect to the wafer 8 while the wafer 8 is held by the three suction pins 16a.
 次に、ウエハ8を第1のウエハ置台16から第1のウエハ移載装置17の第2の搬送アーム17aに移載し、さらに、第2の搬送アーム17aをワークテーブルスライダ18の上方に移動させてウエハ8をワークテーブルスライダ18に移載する。ウエハ8を第1のウエハ置台16から第2の搬送アーム17aに移すときは、ウエハ8の下に第2の搬送アーム17aを挿入し、この状態で3本の吸着ピン16aを吸着が解除された状態で下降させる。ウエハ8を第2の搬送アーム17aからワークテーブルスライダ18に移すときは、ワークテーブルスライダ18の3本の吸着ピン18bを上昇させてウエハ8を第2の搬送アーム17aから押し上げ、この状態で第2の搬送アーム17aをウエハ8から後退させる。そして、ウエハ8を吸着ピン18bに吸着させた状態でウエハ8がワークテーブルスライダ18の上面に載置されるように吸着ピン18bを下げる。 Next, the wafer 8 is transferred from the first wafer pedestal 16 to the second transfer arm 17a of the first wafer transfer device 17, and further, the second transfer arm 17a is moved above the work table slider 18. Then, the wafer 8 is transferred to the work table slider 18. When the wafer 8 is transferred from the first wafer pedestal 16 to the second transfer arm 17a, the second transfer arm 17a is inserted under the wafer 8 and the three suction pins 16a are released from suction in this state. Lower it while it is still in place. When the wafer 8 is transferred from the second transfer arm 17a to the work table slider 18, the three suction pins 18b of the work table slider 18 are raised to push the wafer 8 up from the second transfer arm 17a, and in this state, the second transfer arm 8 is used. The transfer arm 17a of 2 is retracted from the wafer 8. Then, the suction pin 18b is lowered so that the wafer 8 is placed on the upper surface of the work table slider 18 in a state where the wafer 8 is sucked by the suction pin 18b.
 このようにウエハ8がグラビアオフセット印刷部3に搬入された後、凹版24にフラックス11を供給する(ステップS2)。この工程においては、先ず、ディスペンサ22によってフラックス11を所定量だけ凹版24に滴下する。そして、図5Aに示すように、スクレイパ20のブレード20aを下端が凹版24に接触するように傾斜させ、スクレイパ20と、上昇位置にあるブランケットロール19とをY方向の一方 (Y方向においてワークテーブルスライダ18から離間する方向)に移動させる。このとき、ブレード20aは、移動方向の下流側が下に位置するように傾斜させる。ブレード20aが凹版24上をY方向に横切ることにより、凹部25にフラックス11が充填される。 After the wafer 8 is carried into the gravure offset printing unit 3 in this way, the flux 11 is supplied to the intaglio plate 24 (step S2). In this step, first, a predetermined amount of flux 11 is dropped onto the intaglio 24 by the dispenser 22. Then, as shown in FIG. 5A, the blade 20a of the scraper 20 is tilted so that the lower end contacts the intaglio 24, and the scraper 20 and the blanket roll 19 in the raised position are placed on one side of the Y direction (work table in the Y direction). Move in the direction away from the slider 18. At this time, the blade 20a is tilted so that the downstream side in the moving direction is located downward. As the blade 20a crosses the intaglio 24 in the Y direction, the recess 25 is filled with the flux 11.
 スクレイパ20がY方向の一方の端部まで移動した後、ブレード20aを揺動させてその下端を凹版24から離間させるとともに、ブランケットロール19を下降位置に位置付けて凹版24に押し付けながら、これらをY方向の他方(ワークテーブルスライダ18に向かう方向)に移動させる。このとき、ブランケットロール19は、凹版24と接触しながらY方向に移動することにより回転する。そして、図5Bに示すように、凹部25内のフラックス11がブランケットロール19の回転に伴ってブランケットロール19に転移する(ステップS3)。 After the scraper 20 has moved to one end in the Y direction, the blade 20a is swung to separate the lower end from the intaglio 24, and the blanket roll 19 is positioned in the descending position and pressed against the intaglio 24 while pressing them against the intaglio 24. Move in the other direction (direction toward the work table slider 18). At this time, the blanket roll 19 rotates by moving in the Y direction while in contact with the intaglio plate 24. Then, as shown in FIG. 5B, the flux 11 in the recess 25 is transferred to the blanket roll 19 as the blanket roll 19 rotates (step S3).
 ブランケットロール19が凹版24上をY方向の他端まで転動することにより、全ての凹部25からフラックス11がブランケットロール19のブランケット19aに転移する。そして、ブランケットロール19は、継続してY方向に移動し、図5Cに示すようにウエハ8の上で転がるようになる。ブランケットロール19がウエハ8に押し付けられた状態でウエハ8上で回転しながらY方向の他方に向けて移動することにより、ブランケットロール19上のフラックス11がブランケット19aからウエハ8の電極8bに転写される(ステップS4)。この実施の形態においては、ステップS1~ステップS4に示す工程が本発明のボール搭載方法の「フラックス印刷工程」に相当する。 When the blanket roll 19 rolls on the intaglio 24 to the other end in the Y direction, the flux 11 is transferred from all the recesses 25 to the blanket 19a of the blanket roll 19. Then, the blanket roll 19 continuously moves in the Y direction and rolls on the wafer 8 as shown in FIG. 5C. The flux 11 on the blanket roll 19 is transferred from the blanket 19a to the electrode 8b of the wafer 8 by moving the blanket roll 19 toward the other side in the Y direction while rotating on the wafer 8 while being pressed against the wafer 8. (Step S4). In this embodiment, the steps shown in steps S1 to S4 correspond to the "flux printing step" of the ball mounting method of the present invention.
 このようにグラビアオフセット印刷部3でウエハ8にフラックス11を印刷した後、ウエハ8をボール搭載部4に搬送する(ステップS5)。この工程においては、先ず、ワークテーブルスライダ18上のウエハ8を第1のウエハ移載装置17によって第1のウエハ置台16に移載し、このウエハ8を搬送ロボット13によって第1のウエハ置台16からプレアライナ14に移載する。プレアライナ14においては、フラックス印刷後のウエハ8を回転させ、ウエハ8の周方向の位置を修正する。その後、このウエハ8をプレアライナ14から搬送ロボット13によってボール搭載部4に搬送する(ステップS5)。 After the flux 11 is printed on the wafer 8 by the gravure offset printing unit 3 in this way, the wafer 8 is conveyed to the ball mounting unit 4 (step S5). In this step, first, the wafer 8 on the work table slider 18 is transferred to the first wafer stand 16 by the first wafer transfer device 17, and the wafer 8 is transferred to the first wafer stand 16 by the transfer robot 13. Reprinted from to pre-aligner 14. In the pre-aligner 14, the wafer 8 after flux printing is rotated to correct the position of the wafer 8 in the circumferential direction. After that, the wafer 8 is transferred from the pre-aligner 14 to the ball mounting portion 4 by the transfer robot 13 (step S5).
 この搬送は、搬送ロボット13によってウエハ8をプレアライナ14から第2のウエハ置台31に移載し、さらに、このウエハ8を第2のウエハ移載装置32によってボール配列用マスク34の下方に進入させてウエハステージ33に移載して行う。このとき、ウエハステージ33の吸引室42内を負圧にして空気孔41から空気が吸引される状態としておくことにより、ウエハ8がウエハステージ33の上面33aに吸着される。このようにウエハ8がウエハステージ33に載せられた後、ボール配列用マスク34をウエハ8の上面に下降させ、装着する(ステップS6)。 In this transfer, the wafer 8 is transferred from the pre-aligner 14 to the second wafer stand 31 by the transfer robot 13, and the wafer 8 is further moved below the ball arrangement mask 34 by the second wafer transfer device 32. The wafer is transferred to the wafer stage 33. At this time, the wafer 8 is attracted to the upper surface 33a of the wafer stage 33 by setting the inside of the suction chamber 42 of the wafer stage 33 to have a negative pressure so that air is sucked from the air holes 41. After the wafer 8 is mounted on the wafer stage 33 in this way, the ball arrangement mask 34 is lowered onto the upper surface of the wafer 8 and mounted (step S6).
 次に、ボール振込部35をボール配列用マスク34の上に移動させ、ボール12をボール振込部35内に供給する。そして、ボール振込部35を回転させ、ブラシスキージ36がボール12を掃く状態でボール振込部35をボール配列用マスク34に沿ってX方向とY方向とに移動させる。このようにボール振込部35が動作することにより、図4に示すように、ボール配列用マスク34の貫通孔43にボール12が振り込まれる(ステップS7)。ボール12は、貫通孔43に振り込まれた後に上方から他のボール12で押されるようになり、電極8bの上に印刷されているフラックス11に僅かに押し込まれた状態でフラックス11に付着する。全ての貫通孔43にボール12が振り込まれた後、ボール振込部35をボール配列用マスク34の外に移動させ、ボール配列用マスク34の上に残存した余剰のボール12を例えば吸引装置によって取り除く。そして、ボール配列用マスク34をウエハ8から上方に引き上げる(ステップS8)。 Next, the ball transfer unit 35 is moved onto the ball arrangement mask 34, and the ball 12 is supplied into the ball transfer unit 35. Then, the ball transfer unit 35 is rotated, and the ball transfer unit 35 is moved in the X direction and the Y direction along the ball arrangement mask 34 while the brush squeegee 36 sweeps the ball 12. By operating the ball transfer unit 35 in this way, as shown in FIG. 4, the ball 12 is transferred into the through hole 43 of the ball arrangement mask 34 (step S7). After being swung into the through hole 43, the ball 12 is pushed by another ball 12 from above, and adheres to the flux 11 in a state of being slightly pushed into the flux 11 printed on the electrode 8b. After the balls 12 are transferred to all the through holes 43, the ball transfer portion 35 is moved out of the ball arrangement mask 34, and the excess balls 12 remaining on the ball arrangement mask 34 are removed by, for example, a suction device. .. Then, the ball arrangement mask 34 is pulled upward from the wafer 8 (step S8).
 その後、ウエハステージ33上のボール搭載済みとなったウエハ9を第2のウエハ移載装置32の第3の搬送アーム32aに載せ替え、第2のウエハ移載装置32によって第2のウエハ置台31に移載する。そして、このウエハ8を搬送ロボット13によってボール搭載部4から搬出し(ステップS9)、第2のワーク収納容器6Bに収納することにより、1枚のウエハ8についてボール12の搭載が完了する。第2のワーク収納容器6B内のウエハ9は、ボール12が搭載されている領域にハッチングを施してある。
 この実施の形態においては、ステップS5~ステップS8が本発明に係るボール搭載方法の「ボール搭載工程」に相当する。
After that, the wafer 9 on which the balls have been mounted on the wafer stage 33 is replaced with the third transfer arm 32a of the second wafer transfer device 32, and the second wafer transfer device 32 mounts the second wafer stand 31. Reprinted in. Then, the wafer 8 is carried out from the ball mounting portion 4 by the transfer robot 13 (step S9) and stored in the second work storage container 6B, whereby the mounting of the balls 12 on one wafer 8 is completed. The wafer 9 in the second work storage container 6B is hatched in the area where the balls 12 are mounted.
In this embodiment, steps S5 to S8 correspond to the "ball mounting step" of the ball mounting method according to the present invention.
 この実施の形態によるボール搭載方法およびボール搭載装置1によってウエハ8の電極8bにフラックス11を印刷したところ、図7に示すように、フラックス11のドット径Dを60μm以下にすることができ、ドット間ピッチLを100μm以下にすることができた。 When the flux 11 was printed on the electrode 8b of the wafer 8 by the ball mounting method according to this embodiment and the ball mounting device 1, the dot diameter D of the flux 11 could be reduced to 60 μm or less as shown in FIG. The inter-pitch L could be 100 μm or less.
 この実施の形態によるボール搭載方法およびボール搭載装置1によれば、フラックス11がウエハ8の電極8bにグラビアオフセット印刷法によって高い精度で印刷される。したがって、高精細なボールの搭載が可能なボール搭載方法およびボール搭載装置を提供することができる。 According to the ball mounting method and the ball mounting device 1 according to this embodiment, the flux 11 is printed on the electrode 8b of the wafer 8 with high accuracy by the gravure offset printing method. Therefore, it is possible to provide a ball mounting method and a ball mounting device capable of mounting a high-definition ball.
 この実施の形態によるグラビアオフセット用凹版24は平版である。このため、フラックス11が凹版24からブランケットロール19に歪むことなく高い精度で移行する。したがって、この実施の形態によれば、印刷の精度がより一層高くなるようにフラックス11をウエハ8に印刷することができる。この実施の形態によれば、ウエハ8の電極の外径φが30μm、ピッチ50μm、トータルピッチ295mm(φ12インチウエハの有効エリアにおいて)のワークに対して、ドット径φ20μm、印刷位置精度±5μmのフラックス11を印刷できる。すなわち、この実施の形態によれば、従来のスクリーン印刷の最大精度となるドット径60μm以下、ピッチ100μm以下の印刷を実現することができる。 The intaglio 24 for gravure offset according to this embodiment is a planographic plate. Therefore, the flux 11 is transferred from the intaglio 24 to the blanket roll 19 with high accuracy without being distorted. Therefore, according to this embodiment, the flux 11 can be printed on the wafer 8 so that the printing accuracy is further improved. According to this embodiment, the outer diameter φ of the electrode of the wafer 8 is 30 μm, the pitch is 50 μm, and the total pitch is 295 mm (in the effective area of the φ12 inch wafer), the dot diameter is φ20 μm, and the printing position accuracy is ± 5 μm. The flux 11 can be printed. That is, according to this embodiment, it is possible to realize printing with a dot diameter of 60 μm or less and a pitch of 100 μm or less, which is the maximum accuracy of conventional screen printing.
 上述した実施の形態によるグラビアオフセット印刷部3は、平版からなるグラビアオフセット印刷用凹版24を使用してグラビアオフセット印刷を行うものである。しかし、本発明は、このような限定にとらわれることはない。すなわち、グラビアオフセット印刷部3は、平版ではない凹版を使用した他のグラビアオフセット印刷方式でもよい。このような場合であっても、平版ではない凹版の印刷パターン部に転写体(ブランケットロール19)を接触、回転させつつ転写体表面にインキ材(フラックス11)を転移させる工程と、この転写体を被印刷物(例えばウエハ8)に圧着させ、印刷パターンを被印刷物に転写する工程と、この被印刷物にボール12を搭載する工程とによって本発明のボール搭載方法を実施することができる。 The gravure offset printing unit 3 according to the above-described embodiment performs gravure offset printing using the intaglio 24 for gravure offset printing made of lithographic plates. However, the present invention is not bound by such limitations. That is, the gravure offset printing unit 3 may be another gravure offset printing method using an intaglio plate other than a lithographic plate. Even in such a case, a step of transferring the ink material (flux 11) to the surface of the transfer body while contacting and rotating the transfer body (blanket roll 19) with the printed pattern portion of the intaglio plate which is not a lithographic plate, and the transfer body. The ball mounting method of the present invention can be carried out by a step of crimping a printed matter (for example, a wafer 8) to transfer a printed pattern to the printed matter and a step of mounting the ball 12 on the printed matter.
 1…ボール搭載装置、3…グラビアオフセット印刷部、4…ボール搭載部、8…ウエハ(基板)、8b…電極、11…フラックス、12…ボール、19…ブランケットロール(回転式転写体)、24…グラビアオフセット用凹版、S1~S4…フラックス印刷工程、S5~S8…ボール搭載工程。 1 ... Ball mounting device, 3 ... Gravure offset printing unit, 4 ... Ball mounting unit, 8 ... Wafer (board), 8b ... Electrode, 11 ... Flux, 12 ... Ball, 19 ... Blanket roll (rotary transfer body), 24 ... Intaglio for gravure offset, S1 to S4 ... Flux printing process, S5 to S8 ... Ball mounting process.

Claims (4)

  1.  基板の所定の電極の上に導電性のボールを搭載するボール搭載方法であって、
     前記電極の上にグラビアオフセット印刷法によってフラックスを印刷するフラックス印刷工程と、
     前記ボールを前記フラックスの上に搭載するボール搭載工程とを有することを特徴とするボール搭載方法。
    A ball mounting method in which a conductive ball is mounted on a predetermined electrode on a substrate.
    A flux printing process in which flux is printed on the electrodes by a gravure offset printing method,
    A ball mounting method comprising a ball mounting step of mounting the ball on the flux.
  2.  基板の所定の電極の上に導電性のボールを搭載するボール搭載装置であって、
     グラビアオフセット用凹版からフラックスが転移される回転式転写体を用いて前記電極にフラックスを印刷するグラビアオフセット印刷部と、
     前記ボールを前記フラックスの上に搭載するボール搭載部とを有することを特徴とするボール搭載装置。
    A ball-mounting device that mounts a conductive ball on a predetermined electrode on a substrate.
    A gravure offset printing unit that prints flux on the electrodes using a rotary transfer body to which flux is transferred from the gravure offset intaglio.
    A ball mounting device comprising a ball mounting portion for mounting the ball on the flux.
  3.  請求項2記載のボール搭載装置において、
     前記グラビアオフセット用凹版は平版であることを特徴とするボール搭載装置。
    In the ball mounting device according to claim 2,
    The ball mounting device, characterized in that the intaglio for gravure offset is a lithographic plate.
  4.  請求項2または請求項3記載のボール搭載装置において、
     前記電極に印刷された前記フラックスのドット径が60μm以下、ピッチが100μm以下であることを特徴とするボール搭載装置。
    In the ball mounting device according to claim 2 or 3.
    A ball mounting device having a dot diameter of 60 μm or less and a pitch of 100 μm or less printed on the electrodes.
PCT/JP2020/038885 2020-10-15 2020-10-15 Ball mounting method and ball mounting device WO2022079850A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202080106155.7A CN116508402A (en) 2020-10-15 2020-10-15 Ball mounting method and ball mounting device
PCT/JP2020/038885 WO2022079850A1 (en) 2020-10-15 2020-10-15 Ball mounting method and ball mounting device
KR1020237011341A KR20230058520A (en) 2020-10-15 2020-10-15 Ball mounting method and ball mounting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/038885 WO2022079850A1 (en) 2020-10-15 2020-10-15 Ball mounting method and ball mounting device

Publications (1)

Publication Number Publication Date
WO2022079850A1 true WO2022079850A1 (en) 2022-04-21

Family

ID=81209004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038885 WO2022079850A1 (en) 2020-10-15 2020-10-15 Ball mounting method and ball mounting device

Country Status (3)

Country Link
KR (1) KR20230058520A (en)
CN (1) CN116508402A (en)
WO (1) WO2022079850A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324426A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Pattern forming method, and conductor interconnection pattern
JP2014073653A (en) * 2012-10-05 2014-04-24 Komori Corp Gravure offset printing method
JP2019067991A (en) * 2017-10-04 2019-04-25 アスリートFa株式会社 Ball arranging mask, ball mounting device, and ball mounting method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5098434B2 (en) 2007-05-21 2012-12-12 株式会社日立プラントテクノロジー Solder ball printing device
JP5574209B1 (en) 2013-01-17 2014-08-20 Dic株式会社 Gravure offset printing method, gravure offset printing apparatus and gravure plate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007324426A (en) * 2006-06-02 2007-12-13 Hitachi Ltd Pattern forming method, and conductor interconnection pattern
JP2014073653A (en) * 2012-10-05 2014-04-24 Komori Corp Gravure offset printing method
JP2019067991A (en) * 2017-10-04 2019-04-25 アスリートFa株式会社 Ball arranging mask, ball mounting device, and ball mounting method

Also Published As

Publication number Publication date
KR20230058520A (en) 2023-05-03
CN116508402A (en) 2023-07-28

Similar Documents

Publication Publication Date Title
JP4560682B2 (en) Conductive ball mounting device
TWI357381B (en)
KR101470996B1 (en) Solder ball printing mounted apparatus
JP4848162B2 (en) Apparatus and method for mounting conductive balls
JP4760940B2 (en) Electronic component mounting equipment
JP4560683B2 (en) Conductive ball array device
WO2022079850A1 (en) Ball mounting method and ball mounting device
JP5273428B2 (en) Conductive ball mounting device
JP2006108200A (en) Solder printing system
JP7399414B2 (en) Ball mounting method and ball mounting device
JP2006303341A (en) Conductive ball arranging device
JP4766242B2 (en) Conductive ball array device
TWI805953B (en) Ball loading method and ball loading device
JP4385807B2 (en) Screen printing machine
JP2006302921A (en) Conductive ball-mounting apparatus
JP4896778B2 (en) On-board device and control method thereof
JP4822105B2 (en) Conductive ball array device
JP2019067991A (en) Ball arranging mask, ball mounting device, and ball mounting method
JP2006103073A (en) Screen printing machine
JP2008091948A (en) Stage, and method of transferring substrate using the same
JP2004050434A (en) Printing equipment and printing method
JP6546835B2 (en) Printing apparatus and printing method
JP4346174B2 (en) Electronic component mounting equipment
JP2006351932A (en) Conductive ball arrangement device
JP2010056382A (en) Flux-coating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957679

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237011341

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202080106155.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957679

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP