Nothing Special   »   [go: up one dir, main page]

WO2022073710A1 - Heizvorrichtung zum aufheizen eines abgaskatalysators - Google Patents

Heizvorrichtung zum aufheizen eines abgaskatalysators Download PDF

Info

Publication number
WO2022073710A1
WO2022073710A1 PCT/EP2021/074652 EP2021074652W WO2022073710A1 WO 2022073710 A1 WO2022073710 A1 WO 2022073710A1 EP 2021074652 W EP2021074652 W EP 2021074652W WO 2022073710 A1 WO2022073710 A1 WO 2022073710A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas outlet
segments
combustion chamber
heating device
fuel
Prior art date
Application number
PCT/EP2021/074652
Other languages
English (en)
French (fr)
Inventor
Dietmar Uhlenbrock
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2022073710A1 publication Critical patent/WO2022073710A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/025Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using fuel burner or by adding fuel to exhaust
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2892Exhaust flow directors or the like, e.g. upstream of catalytic device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/14Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a fuel burner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/20Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a flow director or deflector
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2470/00Structure or shape of gas passages, pipes or tubes
    • F01N2470/08Gas passages being formed between the walls of an outer shell and an inner chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Heating device for heating up an exhaust gas catalytic converter
  • the invention relates to a heating device for heating up an exhaust gas catalytic converter which is arranged in an exhaust system of an internal combustion engine.
  • the invention also includes an exhaust line with a heating device according to the invention.
  • exhaust gas catalytic converters in particular three-way catalytic converters, are used, which are arranged in the exhaust system of the respective internal combustion engine.
  • the exhaust gas catalytic converters In order to efficiently reduce the pollutants in the exhaust gases, the exhaust gas catalytic converters must be operated at a certain operating temperature.
  • the operating temperature required for a high efficiency of the exhaust gas catalytic converter is not reached immediately in the cold start phase of the internal combustion engine, in particular in the first 20 s to 40 s after starting the internal combustion engine. Until the operating temperature is reached, the catalytic converters do not work at all or only with a low level of efficiency. It is therefore advantageous to heat up exhaust gas catalytic converters in the cold start phase using a heating device so that the operating temperature required for efficient pollutant reduction is reached as quickly as possible.
  • a heating device for heating up an exhaust gas catalytic converter is designed as a burner with a combustion chamber.
  • the heater includes an air supply configured to direct air into the combustion chamber; one Fuel injector configured to inject fuel into the combustion chamber; an ignition device configured to ignite a fuel-air mixture in the combustion chamber; and a gas outlet configured to exhaust from the combustion chamber hot combustion gases generated when the fuel-air mixture is combusted in the combustion chamber.
  • a screen is arranged in the gas outlet and comprises an outer, essentially closed area and an inner, essentially open area, which is arranged in the radial direction inside the outer area.
  • the inner, substantially open area allows combustion gases to flow out through a radially central portion of the outlet.
  • substantially closed in this context means that at least 80% of the area of the outer region is closed.
  • substantially open in this context means that at least 80% of the area of the inner region is open.
  • the outer portion of the screen extends along an outer perimeter of the outlet. Because the outer portion is closed or substantially closed, the outer portion of the orifice impedes or prevents unburned fuel from flowing out through a radially outer portion of the outlet. In this way, unburned fuel residing in an outer region of the combustion chamber is given additional time to continue to heat, vaporize and ignite, creating additional hot combustion gases. Due to the fact that in a heating device according to the invention, due to the described effect of the orifice, a larger part of the fuel introduced into the combustion chamber is burned than in a heating device that is not equipped with such an orifice, the efficiency of the heating device can be significantly improved.
  • the combustion chamber of a heating device according to the invention can be made relatively small.
  • the combustion chamber can be made smaller than the combustion chamber of a conventional one Heating device not having a screen according to the invention.
  • a heating device can be provided that requires only a small amount of space.
  • An orifice designed according to the invention causes only a small pressure loss in the gas outlet of the combustion chamber.
  • a small and inexpensive conveying device can therefore be used to convey the combustion air into the combustion chamber.
  • a screen designed according to the invention makes it possible to efficiently dissipate the intense heat of the hot combustion gases, which is transferred to the screen, to the (possibly cooled) wall of the combustion chamber and thus prevent the screen from overheating.
  • the life of the bezel can be extended and less heat-resistant and therefore less expensive materials can be used for the bezel.
  • the outer area of the screen is ring-shaped and extends along the circumference of a cylinder-shaped combustion chamber. This allows unburned fuel that is in the outer area of the combustion chamber to be retained in the combustion chamber.
  • the outer portion of the bezel has at least one off-center opening that allows combustion gases to flow through the outer portion of the bezel and exit the combustion chamber.
  • At least one decentralized opening formed in the outer region of the orifice allows the flow resistance of the orifice and thus the pressure loss in the gas outlet of the combustion chamber caused by the orifice to be kept low.
  • the outer portion of the orifice includes a plurality of segments extending radially inward from an outer perimeter of the outlet toward the center of the combustor.
  • the individual segments are separated from one another by open areas, in particular by gaps or slits, which also extend in the radial direction.
  • Such segments which are separated from one another by open areas, create an area of the diaphragm which - retains unburned fuel in the combustion chamber without causing excessive flow resistance and pressure loss in the gas outlet of the combustion chamber.
  • opposite edges of adjacent segments extend substantially parallel to one another.
  • the openings in the screen create a strong air turbulence behind the screen, so that unburned fuel residues can react well.
  • the open areas between adjacent segments are V-shaped with a narrower outer area and a wider inner area.
  • the openings in the screen produce a particularly strong air turbulence behind the screen, so that unburned fuel residues can react well.
  • the segments are each twisted helically, i.e., similar to the blades of a marine propeller, about an axis extending radially outward from the center of the outlet.
  • Such twisted segments create a swirl in the combustion gases flowing through the orifice.
  • Such a swirl results in better mixing of unburned or only partially burned fuel with unburned oxygen. Improved mixing results in more fuel being burned, so the efficiency of the heater can be improved even further.
  • the segments are oriented at a right angle to the perimeter of the outlet.
  • Such segments aligned at right angles to the outer boundary of the outlet can be produced in a particularly simple and cost-effective manner.
  • the segments are inclined at an angle of between 7.5° and 30° to the perimeter of the outlet.
  • the segments can be inclined in the flow direction of the combustion gases or against the flow direction. By tilting the segments of the iris, the efficiency of the iris can be further increased.
  • An inclination angle of at least 7.5° ensures that the hot exhaust gases, after passing the inner/front edge where the hot exhaust gases first meet the respective segment, detach from the segment and do not flow along the segment in a laminar manner . By stalling the flow, the transfer of heat from the hot exhaust gases to the segments is kept low, so that the segments are not overheated.
  • each of the segments has an outer portion oriented at a right angle to the perimeter of the outlet and a near-center portion oriented at an angle between 7.5° and 30° to the perimeter of the outlet is.
  • the inclined portions may be inclined in the direction of flow of the combustion gases or against the direction of flow.
  • the baffle is formed increasingly curved, starting from the outer wall of the combustion chamber, so that the end of the baffle near the center extends almost parallel to the axial direction of the outlet, without the baffle having a sharp bend.
  • a mechanically weak point (“predetermined breaking point”) such as that created by a sharp bend, can be avoided by means of a screen designed in this way.
  • Each of the segments has an inner end portion that faces the central portion of the outlet.
  • the inner end areas are formed with a smaller material thickness than the outer areas of the segments that border the perimeter of the outlet.
  • the inner end portions are formed with a sharp edge facing the flow of hot combustion gases. Since the hot combustion gases strike the inner end areas of the segments in particular, the transfer of heat from the hot combustion gases to the segments is further reduced by the inner end areas which are particularly thin, in particular sharp-edged.
  • the segments have inner end portions that are at most 0.5 mm thick. Outside the inner end areas, the segments can be 2 mm to 3 mm thick, for example. Thicker outer areas of the segments have a higher thermal capacity than thinner areas and can therefore better transfer the absorbed heat to the (possibly cooled) wall of the combustion chamber.
  • the screen can be made of CrNi steel or Ni-based steel, for example.
  • the invention also includes an exhaust system for an internal combustion engine with at least one exhaust gas catalytic converter, in particular a three-way catalytic converter, and a heating device according to the invention, which is arranged upstream of the at least one exhaust gas catalytic converter on the exhaust gas system.
  • FIG. 1 shows a schematic view of an exhaust system of an internal combustion engine with a heating device according to the invention.
  • FIG. 2 shows a schematic sectional view of a heating device according to the invention.
  • FIGS. 3 to 8 show longitudinal sectional views of possible exemplary embodiments of a screen of a heating device according to the invention.
  • FIGS. 9 to 11 show cross-sectional views of possible exemplary embodiments of a screen of a heating device according to the invention. character description
  • Figure 1 shows a schematic view of an exhaust system 2 of an internal combustion engine 1. Downstream of the internal combustion engine 1 in the flow direction of the exhaust gases, the exhaust system 2 comprises a three-way catalytic converter 4, a particle filter 5 and a silencer 6.
  • a heating device 3 is located between the internal combustion engine 1 and the three-way catalytic converter 4. A gas outlet of the heating device 3 opens into the exhaust line 2.
  • the heating device 3 is designed as a burner 3 and is intended to feed hot combustion gases into the exhaust system 2 during operation, in particular during the cold start phase of the internal combustion engine 1, in order to heat the three-way catalytic converter 4 very quickly to the operating temperature required for efficient pollutant reduction .
  • Figure 2 shows a schematic longitudinal sectional view of a heating device 3 designed according to the invention.
  • the heating device 3 is designed as a burner 3 and has a combustion chamber 3a, which is designed in particular in the shape of a cylinder about a longitudinal axis A.
  • the combustion chamber 3a has, for example, a diameter Do of 40 mm to 70 mm, in particular a diameter Do of between 50 mm and 60 mm.
  • a gas outlet 3b shown in Figure 2 on the right side of the combustion chamber 3a is connected to the exhaust line 2, so that the combustion chamber 3a is in fluid communication with the exhaust line 2 and combustion gases 22 can flow from the combustion chamber 3a into the exhaust line 2.
  • a fuel injection device 10 with an injection valve 10a is provided on the end face of the combustion chamber 3a shown on the left in FIG.
  • the fuel injection device 10 is designed to inject fuel 11 into the combustion chamber 3a.
  • An air supply 8 is integrated into the burner casing 3d surrounding the combustion chamber 3a and is designed to guide fresh air 7 into the combustion chamber 3a.
  • the fresh air 7 conducted into the combustion chamber 3a is wired through swirl grids 9 arranged in the air supply 8 and introduced into the combustion chamber 3a through the end face of the combustion chamber 3a opposite the gas outlet 3b.
  • the burner 3 also includes an ignition device 12 enabling the fuel-air mixture in the combustion chamber 3a to be ignited.
  • the combustion of the fuel-air mixture in the combustion chamber 3a produces hot combustion gases 22, which are introduced into the exhaust system 2 through the gas outlet 3b in order to heat the three-way catalytic converter 4.
  • an aperture 13 in particular an aperture 13 formed in a circle around the longitudinal axis A, is provided.
  • the orifice 13 prevents unburned fuel 11, which is located in a radially outer area of the combustion chamber 3a outside of the particularly hot reaction zone in the center 3c of the combustion chamber 3a, from escaping through the gas outlet 3b from the combustion chamber 3a.
  • the screen 13 has a central opening 20, for example a circular opening 20 with a diameter Di of 25 mm to 50 mm, in particular with a diameter Di of 30 mm to 40 mm.
  • the orifice 13 may be inclined toward the fuel injector 10 such that the inner edge of the orifice 13 is closer to the fuel injector 10 than the outer portion of the orifice 13, as shown in FIG.
  • the panel 13 can in particular be inclined in such a way that the panel is aligned at an angle of at least 7.5°, preferably at an angle of between 7.5° and 30°, to the longitudinal axis A.
  • the hot combustion gas flow 22 is directed directly behind the front end region (the front edge) 23 of the orifice 13, which is the hot reaction zone in the center 3c of the combustion chamber 3a faces, tears off, so that the hot combustion gas flow 22 is not applied to the screen 13 and the screen 13 additionally heats up in this way.
  • the inner end region 23 of the screen 13 facing the combustion chamber 3a is preferably designed to be as thin and sharp-edged as possible.
  • the material of the screen 13 is preferably thicker, for example 2 mm to 3 mm thick, by the hot combustion gases 22 transferred to the screen 13 able to absorb and dissipate heat.
  • the panel 13 is preferably made of a particularly heat-resistant material, in particular a CrNi steel or a Ni-based steel.
  • FIGS. 1-10 Longitudinal sections through the combustion chamber 3a with alternative exemplary embodiments of the screen 13 are shown in FIGS.
  • the orifice 13 can, for example, be aligned orthogonally to the longitudinal axis A of the combustion chamber 3a (FIG. 3), or the orifice 13 can be inclined away from the fuel injector 10 towards the gas outlet 3b of the combustion chamber (FIG. 4).
  • the panel 13 can also be kinked.
  • the screen 13 can in particular have a first area 13a, which is aligned orthogonally to the longitudinal axis A of the combustion chamber 3a, and a second area 13b, which is inclined towards the fuel injection device 10 or away from the fuel injection device 10, as shown in Figures 5 and 6 is shown.
  • the angle a between the inclined area 13b of the diaphragm and the outer boundary 3d of the combustion chamber 3a is preferably at least 7.5°, in particular between 7.5° and 30°.
  • the diaphragm 13 can also be designed to be increasingly curved, starting from the outer boundary 3d of the combustion chamber 3a (see FIG. 7), without having a sharp kink.
  • the orifice plate 13 is designed as a thread-shaped spiral lying against the outer boundary 3d of the outlet 3b, as is shown in FIG.
  • a diaphragm 13 which is designed in the form of a spiral
  • the fluid flowing through the diaphragm 13 becomes Combustion gases 22 are provided with an additional twist about the longitudinal axis A of the combustion chamber 3a.
  • Such an additional mixing of the combustion gases 22, in particular of unburned fuel 11 contained in the combustion gases 22 and unburned oxygen, is achieved.
  • the unburned fuel 11 can react with the unburned oxygen, whereby the efficiency of the heating device 3 can be further increased.
  • the spiral formed by the diaphragm 13 can have Vi, 1, 2 or more turns.
  • FIGS. 9 to 11 show possible cross sections of screens 13 designed according to the invention.
  • Each exemplary embodiment of a screen 13 according to the invention has a closed or predominantly closed outer ring-shaped area ("outer ring") 14, which has a width d of 5 mm to 15 mm in the radial direction, for example, and with its outer circumference 14a on the outer boundary 3d of the (Not shown in Figures 9 to 11) combustion chamber 3a adjacent.
  • outer ring closed or predominantly closed outer ring-shaped area
  • “predominantly closed” means that the closed area makes up at least 80% of the area of the outer area 14 .
  • a central opening 20 for example a circular central opening 20 with a diameter D1 of 25 mm to 50 mm, in particular with a diameter D1 of 30 mm to 40 mm.
  • One or more decentralized openings 16 can be formed in the outer region 14, as is shown in FIG.
  • the decentralized openings 16 create additional flow paths for the hot combustion gases 22 and thus reduce the flow resistance of the screen 13.
  • one or more segments or vanes 15 are formed on the inside of the outer region 14 facing the longitudinal axis A of the burner 3, - 77 - which, starting from the outer area 14, extend radially inwards into the central opening 20 of the diaphragm 13.
  • the segments or vanes 15 are designed in such a way that an open area with a diameter Di of 20 mm to 40 mm, in particular an open area with a diameter Di of 20 mm to 30 mm, remains between their inner end areas 23 .
  • Open areas 18 are formed between segments/wings 15 which are adjacent to one another in the circumferential direction of the diaphragm 13 and which separate the segments/wings 15 which are adjacent to one another.
  • the mutually opposite edges 25 of adjacent segments or vanes 15 extend essentially parallel to one another in the radial direction.
  • the segments or wings 15 have a substantially rectangular shape.
  • the opposing edges 25 of adjacent segments or wings 15 are formed such that the spacing of the opposing edges 25 is greater at the inner end portions 23 of the segments or wings 15 than at theirs outer ends.
  • the open areas 18 between adjacent segments/wings 15 are thereby formed in a V-shape, and the segments/wings 15 have a trapezoidal shape.
  • the segments or vanes 15 may be helically twisted about axes B (see Figure 10) extending radially outward from the longitudinal axis A, similar to the vanes of a ship's propeller, to provide additional spin on the air flowing through the orifice 13 Apply combustion gases 22 and to achieve an even better mixing of the combustion gases 22 in this way.
  • the aperture shapes shown in Figures 9 to 11 have the common property that through the additional decentralized openings 16 in the outer area 14 or through the open areas 18, which are adjacent between - 72 - bold segments / vanes 15 are formed, additional flow paths are provided, which reduce the flow resistance of the orifice 13 and thus reduce the pressure loss caused by the orifice 13 in the outlet 3b of the combustion chamber 3a.
  • inert carbon monoxide which has been produced as a product of incomplete combustion of the fuel 11, is kept in the vicinity of the hot reaction zone in the center 3c of the combustion chamber 3a for as long as possible in order to withstand the high temperatures of 1100 °C prevailing there up to 1400 °C to oxidize as completely as possible to carbon dioxide (CO2).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Incineration Of Waste (AREA)

Abstract

Eine Heizvorrichtung (3) zum Aufheizen eines Abgaskatalysators (4) umfasst eine Brennkammer (3a); eine Luftzufuhr (8), die dazu ausgebildet ist, Luft (7) in die Brennkammer (3a) zu führen; eine Kraftstoffeinspritzvorrichtung (10), die dazu ausgebildet ist, Kraftstoff (11) in die Brennkammer (3a) einzuspritzen; eine Zündvorrichtung (12), die dazu ausgebildet ist, den in die Brennkammer (3a) eingebrachten Kraftstoff (11) zu entzünden; und einen Gasauslass (3b), der dazu ausgebildet ist, heiße Verbrennungsgase (22) aus der Brennkammer (3a) abzuführen. In dem Gasauslass (3b) ist eine Blende (13) angeordnet, die einen äußeren, im Wesentlichen geschlossenen Bereich (14) und einen inneren, im Wesentlichen offenen Bereich (20) umfasst, der innerhalb des äußeren Bereiches (14) angeordnet ist. Der äußere Bereich erstreckt sich entlang eines äußeren Umfangs des Gasauslasses (3b) und erschwert oder verhindert das Ausströmen von unverbranntem Kraftstoff (11) durch einen äußeren Bereich (14) des Gasauslasses (3b). Der offene innere Bereich (20) ermöglicht das Ausströmen von Verbrennungsgasen (22) aus der Brennkammer (3a).

Description

- 7 -
Beschreibung
Titel
Heizvorrichtung zum Aufheizen eines Abgaskatalysators
Die Erfindung betrifft eine Heizvorrichtung zum Aufheizen eines Abgaskatalysators, der in einem Abgasstrang eines Verbrennungsmotors angeordnet ist. Die Erfindung umfasst auch einen Abgasstrang mit einer erfindungsgemäßen Heizvorrichtung.
Stand der Technik
Um die Schadstoffe in den Abgasen von Verbrennungsmotoren zu reduzieren, werden Abgaskatalysatoren, insbesondere Drei-Wege-Katalysatoren, eingesetzt, die im Abgasstrang des jeweiligen Verbrennungsmotors angeordnet sind.
Um die Schadstoffe in den Abgasen effizient zu reduzieren, müssen die Abgaskatalysatoren bei einer gewissen Betriebstemperatur betrieben werden. Die für einen hohen Wirkungsgrad des Abgaskatalysators erforderliche Betriebstemperatur wird in der Kaltstartphase des Verbrennungsmotors, insbesondere in den ersten 20 s bis 40 s nach dem Starten des Verbrennungsmotors, nicht sofort erreicht. Bis zum Erreichen der Betriebstemperatur arbeiten die Abgaskatalysatoren gar nicht oder nur mit einem geringen Wirkungsgrad. Es daher vorteilhaft, Abgaskatalysatoren in der Kaltstartphase mit Hilfe einer Heizvorrichtung aufzuheizen, damit die für eine effiziente Schadstoffreduktion erforderliche Betriebstemperatur möglichst schnell erreicht wird.
Es ist eine Aufgabe der Erfindung, eine effiziente Heizvorrichtung zum Aufheizen eines Abgaskatalysators bereitzustellen.
Offenbarung der Erfindung
Eine erfindungsgemäße Heizvorrichtung zum Aufheizen eines Abgaskatalysators ist als Brenner mit einer Brennkammer ausgebildet. Die Heizvorrichtung umfasst eine Luftzufuhr, die dazu ausgebildet ist, Luft in die Brennkammer zu führen; eine Kraftstoffeinspritzvorrichtung, die dazu ausgebildet ist, Kraftstoff in die Brennkammer einzuspritzen; eine Zündvorrichtung, die dazu ausgebildet ist, ein Kraftstoff-Luft-Gemisch in der Brennkammer zu entzünden; und einen Gasauslass, der dazu ausgebildet ist, heiße Verbrennungsgase, die beim Verbrennen des Kraftstoff-Luft-Gemischs in der Brennkammer erzeugt werden, aus der Brennkammer abzuführen.
In dem Gasauslass ist eine Blende angeordnet, die einen äußeren, im Wesentlichen geschlossenen Bereich und einen inneren, im Wesentlichen offenen Bereich umfasst, der in radialer Richtung innerhalb des äußeren Bereiches angeordnet ist. Der innere, im Wesentlichen offene Bereich ermöglicht das Ausströmen von Verbrennungsgasen durch einen in radialer Richtung zentralen Bereich des Auslasses.
„Im Wesentlichen geschlossen“ bedeutet in diesem Zusammenhang, dass wenigstens 80 % der Fläche des äußeren Bereichs geschlossen sind.
„Im Wesentlichen offen“ bedeutet in diesem Zusammenhang, dass wenigstens 80 % der Fläche des inneren Bereichs offen sind.
Der äußere Bereich der Blende erstreckt sich entlang eines äußeren Umfangs des Auslasses. Da der äußere Bereich geschlossen oder im Wesentlichen geschlossen ist, erschwert oder verhindert der äußere Bereich der Blende das Ausströmen von unverbranntem Kraftstoff durch einen in radialer Richtung äußeren Bereich des Auslasses. Auf diese Weise erhält unverbrannter Kraftstoff, der sich in einem äußeren Bereich der Brennkammer befindet, zusätzliche Zeit, um sich weiter aufzuheizen, zu verdampfen und zu entzünden, wodurch zusätzliche heiße Verbrennungsgase erzeugt werden. Dadurch, dass in einer erfindungsgemäßem Heizvorrichtung aufgrund der beschriebenen Wirkung der Blende ein größerer Teil des in die Brennkammer eingebrachten Kraftstoffs verbrannt wird als in einer Heizvorrichtung, die nicht mit einer solchen Blende ausgestattet ist, kann die Effizienz der Heizvorrichtung erheblich verbessert werden.
Aufgrund der verbesserten Effizienz kann die Brennkammer einer erfindungsgemäßen Heizvorrichtung relativ klein ausgebildet sein. Die Brennkammer kann insbesondere kleiner ausgebildet sein als die Brennkammer einer herkömmlichen Heizvorrichtung, die keine erfindungsgemäße Blende aufweist. Im Ergebnis kann eine Heizvorrichtung zu Verfügung gestellt werden, die nur einen geringen Bauraum benötigt.
Eine erfindungsgemäße ausgebildete Blende bewirkt nur einen geringen Druckverlust im Gasauslass der Brennkammer. Zur Förderung der Verbrennungsluft in die Brennkammer kann daher eine kleine und kostengünstige Fördervorrichtung (Pumpe) zum Einsatz kommen.
Eine erfindungsgemäß ausgebildete Blende ermöglicht es, die starke Hitze der heißen Verbrennungsgase, die auf die Blende übertragen wird, effizient an die (ggf. gekühlte) Wand der Brennkammer abzuführen und so ein Überhitzen der Blende vermeiden. Dadurch kann die Lebensdauer der Blende verlängert werden, und für die Blende können weniger hitzebeständige und daher kostengünstigere Materialien verwendet werden.
In einer Ausführungsform ist der äußere Bereich der Blende ringförmig ausgebildet und erstreckt sich entlang des Umfangs einer zylinderförmig ausgebildeten Brennkammer. Dies ermöglicht es, unverbrannten Kraftstoff, der sich im äußeren Bereich der Brennkammer befindet, in der Brennkammer zurückzuhalten.
In einer Ausführungsform weist der äußere Bereich der Blende wenigstens eine dezentrale Öffnung auf, die es Verbrennungsgasen ermöglicht, durch den äußeren Bereich der Blende zu strömen und die Brennkammer zu verlassen. Durch wenigstens eine im äußeren Bereich der Blende ausgebildete dezentrale Öffnung kann der Strömungswiderstand der Blende und damit der von der Blende verursachte Druckverlust im Gasauslass der Brennkammer gering gehalten werden.
In einer Ausführungsform umfasst der äußere Bereich der Blende mehrere Segmente, die sich ausgehende von einer äußeren Begrenzung des Auslasses in radialer Richtung nach innen in Richtung des Zentrums der Brennkammer erstrecken. Die einzelnen Segmente sind durch offene Bereiche, insbesondere durch Lücken oder Schlitze, die sich ebenfalls in radialer Richtung erstrecken, voneinander getrennt. Durch solche Segmente, die durch offene Bereiche voneinander getrennt sind, wird ein Bereich der Blende geschaffen, der - unverbrannten Kraftstoff in der Brennkammer zurückhält, ohne einen zu hohen Strömungswiderstand und Druckverlust im Gasauslass der Brennkammer zu bewirken.
In einer Ausführungsform erstrecken sich einander gegenüberliegende Ränder benachbarter Segmente im Wesentlichen parallel zueinander. In einer solchen Ausführungsform erzeugen die Öffnungen in der Blende eine starke Luftverwirbelung hinter der Blende, so dass unverbrannte Kraftstoffreste gut abreagieren können.
In einer anderen Ausführungsform sind die offenen Bereiche zwischen benachbarten Segmenten V-förmig mit einem engeren äußerem Bereich und einem weiteren inneren Bereich ausgebildet. Auch in einer solchen Ausführungsform erzeugen die Öffnungen in der Blende eine besonders starke Luftverwirbelung hinter der Blende, so dass unverbrannte Kraftstoffreste gut abreagieren können.
In einer Ausführungsform sind die Segmente jeweils um eine Achse, die sich vom Zentrum des Auslasses in radialer Richtung nach außen erstreckt, schraubenförmig, d.h. ähnlich den Flügeln einer Schiffsschraube, verdrillt. Derart verdrillte Segmente erzeugen einen Drall in den durch die Blende strömenden Verbrennungsgasen. Ein solcher Drall hat eine bessere Vermischung von unverbranntem oder nur teilweise verbranntem Kraftstoff mit unverbranntem Sauerstoff zur Folge. Durch eine verbesserte Vermischung wird mehr Kraftstoff verbrannt, so dass die Effizienz der Heizvorrichtung noch weiter verbessert werden kann.
In einer Ausführungsform sind die Segmente in einem rechten Winkel zu der äußeren Begrenzung des Auslasses ausgerichtet. Solche rechtwinklig zur äußeren Begrenzung des Auslasses ausgerichteten Segmente sind besonders einfach und kostengünstig herstellbar.
In einer Ausführungsform wobei sind die Segmente in einem Winkel zwischen 7,5° und 30° gegenüber der äußeren Begrenzung des Auslasses geneigt. Die Segmente können in der Strömungsrichtung der Verbrennungsgase oder gegen die Strömungsrichtung geneigt sein. Durch Neigen der Segmente der Blende kann die Effizienz der Blende noch weiter gesteigert werden. Durch einen Neigungswinkel von wenigstens 7,5° wird erreicht, dass sich die heißen Abgase nach dem Passieren der inneren / vorderen Kante, an der die heißen Abgase zuerst auf das jeweilige Segment treffen, von dem Segment lösen und nicht laminar an dem Segment entlang strömen. Durch das Abreißen der Strömung wird die Übertragung von Wärme von den heißen Abgasen auf die Segmente gering gehalten, so dass die Segmente nicht übermäßig aufgeheizt werden.
In einer Ausführungsform weist jedes der Segmente einen äußeren Teilbereich, der in einem rechten Winkel zu der äußeren Begrenzung des Auslasses ausgerichtet ist, und einen zentrumsnahen Teilbereich auf, der in einem Winkel zwischen 7,5° und 30° zu der äußeren Begrenzung des Auslasses ausgerichtet ist.
Die geneigten Bereiche können in der Strömungsrichtung der Verbrennungsgase oder gegen die Strömungsrichtung geneigt sein.
In einer Ausführungsform ist die Blende ausgehend von der äußeren Wand der Brennkammer zunehmend gebogen ausgebildet, so dass sich das zentrumsnahe Ende der Blende nahezu parallel zur Axialrichtung des Auslasses erstreckt, ohne dass die Blende einen scharfen Knick aufweist. Durch eine derart ausgebildete Blende kann eine mechanisch schwache Stelle („Sollbruchstelle“), wie sie durch einen scharfen Knick geschaffen wird, vermieden werden.
Jedes der Segmente weist einen inneren Endbereich auf, der dem zentralen Bereich des Auslasses zugewandt ist. In einer Ausführungsform sind die inneren Endbereiche mit einer geringen Materialdicke als die äußeren Bereiche der Segmente, die an die äußere Begrenzung des Auslasses angrenzen, ausgebildet. Die inneren Endbereiche sind insbesondere mit einer scharfen Kante ausgebildet, die der Strömung der heißen Verbrennungsgase zugewandt ist. Da die heißen Verbrennungsgase insbesondere auf die inneren Endbereiche der Segmente treffen, wird die Übertragung von Wärme von den heißen Verbrennungsgasen auf die Segmente durch besonders dünn, insbesondere scharfkantig, ausgebildete innere Endbereich weiter verringert. ln einer Ausführungsform weisen die Segmente innere Endbereiche auf, die höchstens 0,5 mm dick sind. Außerhalb der inneren Endbereiche können die Segmente z.B. 2 mm bis 3 mm dick sein. Dickere äußere Bereiche der Segmente weisen eine höhere Wärmekapazität auf als dünnere Bereiche und können daher die aufgenommene Wärme besser an die (ggf. gekühlte) Wand der Brennkammer übertragen.
Durch eine reduzierte Wärmeübertragung auf die Blende und eine gute Wärmeabfuhr von der Blende wird deren Lebensdauer erhöht und/oder zur Herstellung der Blende können weniger hitzebeständige und daher kostengünstigere Materialien verwendet werden.
Die Blende kann beispielsweise aus einem CrNi-Stahl oder einem Ni-Basisstahl hergestellt sein.
Die Erfindung umfasst auch einen Abgasstrang für einen Verbrennungsmotor mit wenigstens einem Abgaskatalysator, insbesondere einem Drei- Wege- Katalysator, und einer erfindungsgemäßen Heizvorrichtung, die stromaufwärts des wenigstens einen Abgaskatalysators an dem Abgasstrang angeordnet ist.
Kurze Beschreibung der Figuren
Ausführungsbeispiele einer erfindungsgemäßen Heizvorrichtung werden im Folgenden unter Bezugnahme auf die beigefügten Figuren beschrieben.
Figur 1 zeigt eine schematische Ansicht eines Abgasstrangs eines Verbrennungsmotors mit einer erfindungsgemäßen Heizvorrichtung.
Figur 2 zeigt eine schematische Schnittansicht einer erfindungsgemäßen Heizvorrichtung.
Figuren 3 bis 8 zeigen Längsschnittansichten möglicher Ausführungsbeispiele einer Blende einer erfindungsgemäßen Heizvorrichtung.
Figuren 9 bis 11 zeigen Querschnittansichten möglicher Ausführungsbeispiele einer Blende einer erfindungsgemäßen Heizvorrichtung. Figurenbeschreibung
Figur 1 zeigt in einer schematischen Ansicht einen Abgasstrang 2 eines Verbrennungsmotors 1. Der Abgasstrang 2 umfasst stromabwärts des Verbrennungsmotors 1 in der Strömungsrichtung der Abgase einen Drei- Wege- Katalysator 4, ein Partikelfilter 5 und einen Schalldämpfer 6.
Zwischen dem Verbrennungsmotor 1 und dem Drei- Wege- Katalysator 4 befindet sich eine Heizvorrichtung 3. Ein Gasauslass der Heizvorrichtung 3 mündet in den Abgasstrang 2.
Die Heizvorrichtung 3 ist als Brenner 3 ausgebildet und dazu vorgesehen, im Betrieb, insbesondere während der Kaltstartphase des Verbrennungsmotors 1, heiße Verbrennungsgase in den Abgasstrang 2 einzuspeisen, um den Drei- Wege- Katalysator 4 sehr schnell auf seine für eine effiziente Schadstoffreduktion notwendige Betriebstemperatur aufzuheizen.
Figur 2 zeigt eine schematische Längsschnittansicht einer erfindungsgemäß ausgebildeten Heizvorrichtung 3.
Die Heizvorrichtung 3 ist als Brenner 3 ausgebildet und hat eine Brennkammer 3a, die insbesondere zylinderförmig um eine Längsachse A ausgebildet ist. Die Brennkammer 3a hat beispielsweise einen Durchmesser Do von 40 mm bis 70 mm, insbesondere einen Durchmesser Do zwischen 50 mm und 60 mm.
Ein in der Figur 2 auf der rechten Seite der Brennkammer 3a dargestellter Gasauslass 3b ist mit dem Abgasstrang 2 verbunden, so dass die Brennkammer 3a in Fluidverbindung mit dem Abgasstrang 2 steht und Verbrennungsgase 22 aus der Brennkammer 3a in den Abgasstrang 2 strömen können.
An der in der Figur 2 links dargestellten Stirnseite der Brennkammer 3a ist eine Kraftstoffeinspritzvorrichtung 10 mit einem Einspritzventil 10a vorgesehen. Die Kraftstoffeinspritzvorrichtung 10 ist dazu ausgebildet, Kraftstoff 11 in die Brennkammer 3a einzuspritzen.
In den die Brennkammer 3a umgebenden Brennermantel 3d ist eine Luftzufuhr 8 integriert, die dazu ausgebildet ist, Frischluft 7 in die Brennkammer 3a zu führen. Die in die Brennkammer 3a geführte Frischluft 7 wird durch in der Luftzufuhr 8 angeordnete Drallgitter 9 verdraht und durch die dem Gasauslass 3b gegenüberliegende Stirnseite der Brennkammer 3a in die Brennkammer 3a eingebracht.
Der Brenner 3 umfasst auch eine Zündvorrichtung 12, die es ermöglicht, das Kraftstoff-Luft-Gemisch in der Brennkammer 3a zu entzünden.
Die Verbrennung des Kraftstoff-Luft-Gemisches in der Brennkammer 3a erzeugt heiße Verbrennungsgase 22, die durch den Gasauslass 3b in den Abgasstrang 2 eingebracht werden, um den Drei- Wege- Katalysator 4 aufzuheizen.
In dem Gasauslass 3b der Brennkammer 3a ist eine Blende 13, insbesondere eine kreisförmig um die Längsachse A ausgebildete Blende 13, vorgesehen. Die Blende 13 verhindert, dass unverbrannter Kraftstoff 11, der sich in einem in radialer Richtung äußeren Bereich der Brennkammer 3a außerhalb der besonders heißen Reaktionszone im Zentrum 3c der Brennkammer 3a befindet, durch den Gasauslass 3b aus der Brennkammer 3a entweicht.
Die Blende 13 hat eine zentrale Öffnung 20, beispielsweise eine kreisförmige Öffnung 20 mit einem Durchmesser Di von 25 mm bis 50 mm, insbesondere mit einem Durchmesser Di von 30 mm bis 40 mm.
Die Blende 13 kann auf die Kraftstoffeinspritzvorrichtung 10 zu geneigt sein, so dass sich der innere Rand der Blende 13 näher an der Kraftstoffeinspritzvorrichtung 10 befindet als der äußere Bereich der Blende 13, wie es in der Figur 2 gezeigt ist. Die Blende 13 kann insbesondere so geneigt sein, dass die Blende in einem Winkel > von mindesten 7,5°, vorzugsweise in einem Winkel > zwischen 7,5° und 30°, zur Längsachse A ausgerichtet ist.
Durch eine Neigung der Blende 13 von mindestens 7,5° zur Längsachse A der Brennkammer 3a wird erreicht, dass die heiße Verbrennungsgasströmung 22 unmittelbar hinter dem vorderen Endbereich (der vorderen Kante) 23 der Blende 13, die der heißen Reaktionszone im Zentrum 3c der Brennkammer 3a zugewandt ist, abreißt, so dass die heiße Verbrennungsgasströmung 22 nicht an der Blende 13 anliegt und die Blende 13 auf diese Weise zusätzlich aufheizt. Um die Wärmeübertragung von den heißen Verbrennungsgasen 22 auf die Blende 13 noch weiter zu reduzieren, ist der der Brennkammer 3a zugewandte innere Endbereich 23 der Blende 13 vorzugsweise möglichst dünn und scharfkantig ausgebildet. Im Anschluss an den dünnen inneren Endbereich 23 der Blende 13, der der heißen Verbrennungsgasströmung 22 unmittelbar ausgesetzt ist, wird das Material der Blende 13 vorzugsweise dicker, z.B. 2 mm bis 3 mm dick, um die von den heißen Verbrennungsgasen 22 auf die Blende 13 übertragene Wärme aufnehmen und abführen zu können.
Die Blende 13 ist vorzugsweise aus einem besonders hitzebeständigen Material, insbesondere aus einem CrNi-Stahl oder einem Ni-Basisstahl, ausgebildet.
In den Figuren 3 bis 8 sind Längsschnitte durch die Brennkammer 3a mit alternativen Ausführungsbeispielen der Blende 13 gezeigt.
Die Blende 13 kann beispielsweise orthogonal zur Längsachse A der Brennkammer 3a ausgerichtet (Figur 3) sein, oder die Blende 13 kann von der Kraftstoffeinspritzvorrichtung 10 weg zum Gasauslass 3b der Brennkammer geneigt sein (Figur 4).
Die Blende 13 kann auch geknickt ausgebildet sein. Die Blende 13 kann insbesondere einen ersten Bereich 13a, der orthogonal zur Längsachse A der Brennkammer 3a ausgerichtet ist, und einen zweiten Bereich 13b, der zur Kraftstoffeinspritzvorrichtung 10 oder von der Kraftstoffeinspritzvorrichtung 10 weg geneigt ist, aufweisen, wie es in den Figuren 5 und 6 gezeigt ist. Auch in diesem Fall beträgt der Winkel a zwischen dem geneigten Bereich 13b der Blende und der äußeren Begrenzung 3d der Brennkammer 3a vorzugsweise wenigstens 7,5°, insbesondere zwischen 7,5° und 30°.
Die Blende 13 kann auch ausgehende von der äußeren Begrenzung 3d der Brennkammer 3a zunehmend gebogen ausgebildet sein (siehe Figur 7), ohne einen scharfen Knick aufzuweisen.
In einem weiteren Ausführungsbeispiel ist die Blende 13 als eine an der äußeren Begrenzung 3d des Auslasses 3b anliegende gewindeförmige Spirale ausgebildet, wie es in der Figur 8 gezeigt ist. Durch eine spiralförmig ausgebildete Blende 13 werden die durch die Blende 13 strömenden Verbrennungsgase 22 mit einem zusätzlichen Drall um die Längsachse A der Brennkammer 3a versehen. Durch einen solchen wird eine zusätzliche Vermischung der Verbrennungsgase 22, insbesondere von in den Verbrennungsgasen 22 enthaltenem unverbrannten Kraftstoff 11 und unverbranntem Sauerstoff, erreicht. Der unverbrannte Kraftstoff 11 kann auf diese Weise mit dem unverbrannten Sauerstoff reagieren, wodurch die Effizienz der Heizvorrichtung 3 noch weiter gesteigert werden kann. Die von der Blende 13 ausgebildete Spirale kann Vi, 1, 2 oder mehr Gänge aufweisen.
In den Figuren 9 bis 11 sind mögliche Querschnitte erfindungsgemäß ausgebildeter Blenden 13 gezeigt.
Jedes Ausführungsbeispiel einer erfindungsgemäßen Blende 13 hat einen geschlossenen oder überwiegend geschlossenen äußeren ringförmigen Bereich („äußeren Ring“) 14, der in radialer Richtung beispielsweise eine Breite d von 5 mm bis 15 mm hat und mit seinem äußeren Umfang 14a an die äußere Begrenzung 3d der (in den Figuren 9 bis 11 nicht gezeigten) Brennkammer 3a angrenzt.
„Überwiegend geschlossen“ bedeutet in diesem Zusammenhang, dass der geschlossene Bereich wenigstens 80 % der Fläche des äußeren Bereiches 14 ausmacht.
Innerhalb des äußeren Bereiches 14 ist eine zentrale Öffnung 20, beispielsweise eine kreisförmige zentrale Öffnung 20 mit einem Durchmesser Dl von 25 mm bis 50 mm, insbesondere mit einem Durchmesser Dl von 30 mm bis 40 mm, ausgebildet.
In dem äußeren Bereich 14 können eine oder mehrere dezentrale Öffnungen 16 ausgebildet sein, wie es in der Figur 9 gezeigt ist. Die dezentralen Öffnungen 16 schaffen zusätzliche Strömungswege für die heißen Verbrennungsgase 22 und verringern so den Strömungswiderstand der Blende 13.
In alternativen Ausführungsbeispielen, wie sie in den Figuren 10 und 11 gezeigt sind, sind an der der Längsachse A des Brenners 3 zugewandten Innenseite des äußeren Bereiches 14 ein oder mehrere Segmente oder Flügel 15 ausgebildet, - 77 - die sich ausgehend von dem äußeren Bereich 14 in radialer Richtung nach innen in die zentrale Öffnung 20 der Blende 13 erstrecken.
Die Segmente oder Flügel 15 sind so ausgebildet, dass zwischen ihren inneren Endbereichen 23 ein offener Bereich mit einem Durchmesser Di von 20 mm bis 40 mm, insbesondere ein offener Bereich mit einem Durchmesser Di von 20 mm bis 30 mm verbleibt.
Zwischen in Umfangsrichtung der Blende 13 einander benachbarten Segmenten / Flügeln 15 sind offene Bereiche 18, insbesondere Lücken oder Schlitze, ausgebildet, welche die einander benachbarten Segmente / Flügel 15 voneinander trennen.
In dem in der Figur 10 gezeigten Ausführungsbeispiel erstrecken sich die einander gegenüberliegenden Ränder 25 benachbarter Segmente oder Flügel 15 im Wesentlichen parallel zueinander in radialer Richtung. In diesem Ausführungsbeispiel haben die Segmente oder Flügel 15 eine im Wesentlichen rechteckige Form.
In einem anderen Ausführungsbeispiel, das in der Figur 11 gezeigt ist, sind die einander gegenüberliegenden Ränder 25 benachbarter Segmente oder Flügeln 15 so ausgebildet, dass der Abstand der einander gegenüberliegenden Ränder 25 an den inneren Endbereichen 23 der Segmente oder Flügel 15 größer ist als an ihren äußeren Enden. Die offenen Bereiche 18 zwischen benachbarten Segmenten / Flügeln 15 sind dadurch v-förmig ausgebildet, und die Segmente/ Flügel 15 haben eine trapezförmige Form.
Die Segmente oder Flügel 15 können um Achsen B (siehe Figur 10), die sich in radialer Richtung von der Längsachse A nach außen erstrecken, ähnlich den Flügeln einer Schiffsschraube, schraubenförmig verdrillt sein, um so einen zusätzlichen Drall auf die durch die Blende 13 strömenden Verbrennungsgase 22 aufzubringen und auf diese Weise eine noch bessere Vermischung der Verbrennungsgase 22 zu erreichen.
Die in den Figuren 9 bis 11 gezeigten Blendenformen haben die gemeinsame Eigenschaft, dass durch die zusätzlichen dezentralen Öffnungen 16 im äußeren Bereich 14 bzw. durch die offenen Bereiche 18, die zwischen einander benach- - 72 - barten Segmenten / Flügeln 15 ausgebildet sind, zusätzliche Strömungswege bereitgestellt werden, die den Strömungswiderstand der Blende 13 verringern und so den durch die Blende 13 im Auslass 3b der Brennkammer 3a bewirkten Druckverlust reduzieren.
Darüber hinaus wird durch die beschriebenen Blendengeometrien die Strömungsgeschwindigkeit im äußeren, blendennahen Bereich des Auslasses 3b verringert. Auf diese Weise wird reaktionsträges Kohlenmonoxid (CO), das als Produkt einer unvollständigen Verbrennung des Kraftstoffs 11 erzeugt worden ist, möglichst lange in der Nähe der heißen Reaktionszone im Zentrum 3c der Brennkammer 3a gehalten, um bei den dort herrschenden hohen Temperaturen von 1100 °C bis 1400 °C möglichst vollständig zu Kohlendioxid (CO2) zu oxidieren.

Claims

Patentansprüche
1. Heizvorrichtung (3) zum Aufheizen eines Abgaskatalysators (4), wobei die Heizvorrichtung (3) umfasst: eine Brennkammer (3a); eine Luftzufuhr (8), die dazu ausgebildet ist, Luft (7) in die Brennkammer (3a) zu führen; eine Kraftstoffeinspritzvorrichtung (10), die dazu ausgebildet ist, Kraftstoff (11) in die Brennkammer (3a) einzuspritzen; eine Zündvorrichtung (12), die dazu ausgebildet ist, ein Kraftstoff-Luft- Gemisch in der Brennkammer (3a) zu entzünden; einen Gasauslass (3b), der dazu ausgebildet ist, heiße Verbrennungsgase (22) aus der Brennkammer (3a) abzuführen; dadurch gekennzeichnet, dass in dem Gasauslass (3b) eine Blende (13) angeordnet ist, die einen äußeren, im Wesentlichen geschlossenen Bereich (14) und einen inneren, im Wesentlichen offenen Bereich (20) umfasst, der innerhalb des äußeren Bereiches (14) angeordnet ist; wobei sich der äußere Bereich entlang eines äußeren Umfangs des Gasauslasses (3b) erstreckt und das Ausströmen von unverbranntem Kraftstoff (11) durch einen äußeren Bereich (14) des Gasauslasses (3b) erschwert oder verhindert; und wobei der innere Bereich (20) das Ausströmen von Verbrennungsgasen (22) durch einen zentralen Bereich des Gasauslasses (3b) ermöglicht. - - Heizvorrichtung (3) nach Anspruch 1, wobei der äußere Bereich (14) der Blende (13) ringförmig ausgebildet ist und wenigstens eine dezentrale Öffnung (16) aufweist, die es den Verbrennungsgasen (22) ermöglicht, durch den äußeren Bereich der Blende (13) zu strömen. Heizvorrichtung (3) nach Anspruch 1 oder 2, wobei der äußere Bereich (14) mehrere Segmente (15) umfasst, die sich ausgehend von einer äußeren Begrenzung (3d) des Gasauslasses (3b) in radialer Richtung nach innen erstrecken und durch offene Bereiche (18), insbesondere durch Lücken oder Schlitze, voneinander getrennt sind. Heizvorrichtung (3) nach Anspruch 3, wobei sich einander gegenüberliegende Ränder (25) benachbarter Segmente (15) im Wesentlichen parallel zueinander erstrecken oder wobei die offenen Bereiche (18) zwischen benachbarten Segmenten (15) V-förmig mit einem engeren äußerem Bereich und einem weiteren inneren Bereich ausgebildet sind. Heizvorrichtung (3) nach einem der Ansprüche 3 oder 4, wobei die Segmente (15) jeweils um eine Achse (B), die sich vom Zentrum des Gasauslasses (3b) in radialer Richtung nach außen erstreckt, schraubenförmig verdrillt sind. Heizvorrichtung (3) nach einem der Ansprüche 3 bis 5, wobei die Segmente (15) in einem rechten Winkel zu der äußeren Begrenzung (3d) des Gasauslasses (3b) ausgerichtet sind. Heizvorrichtung (3) nach einem der Ansprüche 3 bis 5, wobei die Segmente (15) oder wenigstens zentrumsnahe Teilbereiche (13b) der Segmente (15) in einem Winkel (□) zwischen 7,5° und 30° zu der äußeren Begrenzung (3d) des Gasauslasses (3b) ausgerichtet sind, wobei jedes der Segmente (15) insbesondere einen äußeren Teilbereich (13a), der in einem rechten Winkel zu der äußeren Begrenzung (3d) des Gasauslasses (3b) ausgerichtet ist, und einen zentrumsnahen Teilbereich (13b), der in einem Winkel (□) zwischen 7,5° und 30° zu der äußeren Begrenzung (3d) des Gasauslasses (3b) ausgerichtet ist, aufweist. - 75 - Heizvorrichtung (3) nach einem der Ansprüche 3 bis 7, wobei jedes der Segmente (15) einen inneren Endbereich (23) aufweist, der dem zentralen Bereich des Gasauslasses (3b) zugewandt ist, wobei die inneren Endbereiche (23) mit einer geringen Materialdicke als äußere Bereiche der Segmente (15) ausgebildet sind, wobei die inneren Endbereiche (23) insbesondere scharfkantig ausgebildet sind. Heizvorrichtung (3) nach einem der vorangehenden Ansprüche, wobei die Blende (13) als an der äußeren Begrenzung (3d) des Gasauslasses (3b) anliegende Spirale ausgebildet ist. Abgasstrang (2) für einen Verbrennungsmotor (1) mit wenigstens einem Abgaskatalysator (4), insbesondere einem Drei- Wege- Katalysator (4), und einer Heizvorrichtung (3) nach einem der vorangehenden Patentansprüche, wobei die Heizvorrichtung (3) stromaufwärts des wenigstens einen
Abgaskatalysators (4) an dem Abgasstrang (2) angeordnet ist.
PCT/EP2021/074652 2020-10-08 2021-09-08 Heizvorrichtung zum aufheizen eines abgaskatalysators WO2022073710A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020212715.8A DE102020212715A1 (de) 2020-10-08 2020-10-08 Heizvorrichtung zum Aufheizen eines Abgaskatalysators
DE102020212715.8 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022073710A1 true WO2022073710A1 (de) 2022-04-14

Family

ID=77897616

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/074652 WO2022073710A1 (de) 2020-10-08 2021-09-08 Heizvorrichtung zum aufheizen eines abgaskatalysators

Country Status (2)

Country Link
DE (1) DE102020212715A1 (de)
WO (1) WO2022073710A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022133091B3 (de) * 2022-12-13 2024-04-04 Tenneco Gmbh Abgasmischer mit Ringblende

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571484A (en) * 1995-04-25 1996-11-05 General Motors Corporation Catalytic converter heater
WO2006001855A2 (en) * 2004-06-15 2006-01-05 Cummings Craig D Gas flow enhancer for combustion engines
WO2009126487A2 (en) * 2008-04-09 2009-10-15 Woodward Governor Company Low pressure drop mixer for radial mixing of internal combustion engine exhaust flows
US20110061369A1 (en) * 2009-09-15 2011-03-17 Yetkin Dervis A Burner for a Diesel Aftertreatment System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5571484A (en) * 1995-04-25 1996-11-05 General Motors Corporation Catalytic converter heater
WO2006001855A2 (en) * 2004-06-15 2006-01-05 Cummings Craig D Gas flow enhancer for combustion engines
WO2009126487A2 (en) * 2008-04-09 2009-10-15 Woodward Governor Company Low pressure drop mixer for radial mixing of internal combustion engine exhaust flows
US20110061369A1 (en) * 2009-09-15 2011-03-17 Yetkin Dervis A Burner for a Diesel Aftertreatment System

Also Published As

Publication number Publication date
DE102020212715A1 (de) 2022-04-14

Similar Documents

Publication Publication Date Title
DE102012218740B4 (de) Anordnung zum Mischen einer Flüssigkeit in einer Gasströmung
EP0438682B1 (de) Abgassystem mit einem Partikelfilter und einem Regenerierungsbrenner
DE60120754T2 (de) Gasturbine
DE1957147A1 (de) Flammrohr fuer Verbrennungsanlagen von Gasturbinentriebwerken
DE102009003453A1 (de) Brennrohr-Vormischer und Verfahren zur Gas/Luft-Gemischbildung in einer Gasturbine
WO2022200321A1 (de) Brenner für ein kraftfahrzeug sowie kraftfahrzeug mit wenigstens einem solchen brenner
DE2545234C2 (de) Mischeinrichtung für Brenner
DE69507971T2 (de) Brenner zur Verbrennung von Brennstoff
WO2022073710A1 (de) Heizvorrichtung zum aufheizen eines abgaskatalysators
WO2021094112A1 (de) Brennkraftmaschine mit sekundärluftsystem
DE10200524C5 (de) Brennkammerbaugruppe, insbesondere für ein Fahrzeugheizgerät
DE102021001585B4 (de) Brenner für einen Abgastrakt eines Kraftfahrzeugs sowie Kraftfahrzeug
DE102020129001B4 (de) Abgasanlage mit Abgasturbolader, Ejektor und Abgaskatalysator
DE1476475C3 (de) Vorrichtung zum Nachbrennen von Abgasen
DE102021001584B4 (de) Brenner für ein Kraftfahrzeug
DE102019106238B4 (de) Abgasbehandlungssystem und Verfahren zum Aufheizen eines Abgaskatalysators
DE102006027188A1 (de) Verdampferbaugruppe für einen Verdampferbrenner, insbesondere für eine Fahrzeugheizung oder eine Gebäudeheizung
DE102021001581B4 (de) Brenner für ein Kraftfahrzeug sowie Kraftfahrzeug
DE2147113B2 (de) Flammrohr für Gasturbinenstrahltriebwerke
DE102021101418B4 (de) Brenner für gasförmige Gemische mit niedrigem Heizwert
DE102017215563B4 (de) Partikelfilter für die Abgasnachbehandlung eines Verbrennungsmotors
EP3483503B1 (de) Brennerdichtung einer gasturbine und verfahren zu deren herstellung
EP0867659A1 (de) Verfahren und Vorrichtung zur Verbrennung von gasförmigem Brennstoff
WO2023242029A1 (de) Brenner für ein kraftfahrzeug sowie kraftfahrzeug mit wenigstens einem solchen brenner
DE102022212014A1 (de) Brennereinheit im Abgastrakt einer Verbrennungskraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21773747

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21773747

Country of ref document: EP

Kind code of ref document: A1