WO2022070786A1 - Dust core - Google Patents
Dust core Download PDFInfo
- Publication number
- WO2022070786A1 WO2022070786A1 PCT/JP2021/032619 JP2021032619W WO2022070786A1 WO 2022070786 A1 WO2022070786 A1 WO 2022070786A1 JP 2021032619 W JP2021032619 W JP 2021032619W WO 2022070786 A1 WO2022070786 A1 WO 2022070786A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- soft magnetic
- dust core
- powder
- insulating layer
- core
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/16—Metallic particles coated with a non-metal
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/147—Alloys characterised by their composition
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/12—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
- H01F1/14—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
- H01F1/20—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
- H01F1/22—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
- H01F1/24—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together the particles being insulated
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
Definitions
- the present invention relates to a dust core.
- the dust core is manufactured by covering the surface of the soft magnetic powder with an insulating film and compression-molding the soft magnetic powder with the insulating film.
- Typical examples of dust core applications include DC-DC converters, inverters, transformers used in switching power supplies, and noise-cutting choke coils.
- the inductor (chip inductor) mounted on the board of the power supply circuit is often used in the high frequency range of several hundred kHz to several MHz. Therefore, the powder magnetic core also needs a material composition suitable for use in a high frequency range. The higher the frequency, the greater the loss (iron loss) that is absorbed by the dust core and becomes heat. Since most of this loss is caused by the eddy current loss, how to reduce the eddy current loss is an important issue in examining the material and composition of the dust core.
- the dust core for chip inductors is required to have high volume resistivity and high magnetic permeability.
- a dust core for a chip inductor As described in Patent Document 1, a molded body of Fe—Cr—Al-based soft magnetic powder is heat-treated in an oxidizing atmosphere.
- a magnetic field is generated by applying a high frequency current to the induction heating coil, and the work is heated by generating an induced current.
- the iron core in the central portion or the peripheral portion of the exciting coil, the generated magnetic flux density can be increased and the heating efficiency can be improved.
- Laminated steel sheets, ferrite, etc. are generally used as the iron core material, but in recent years, in order to suppress iron loss and improve efficiency, it has been considered to use a dust core using soft magnetic powder as the iron core. Has been done.
- high-frequency induction heating devices are often used in the high-frequency range of 100 kHz or higher, so how to avoid eddy current loss in the high-frequency range even with a dust core for high-frequency induction heating devices.
- a dust core for high-frequency induction heating devices It has become an important issue in examining the material and composition of the dust core.
- a powder magnetic core for a high-frequency induction heating device is required to have high volume resistivity and high strength.
- Patent Document 2 As a dust core for a high-frequency induction heating device, as described in Patent Document 2, an iron-based soft magnetic material powder integrated with an insulating film made of an epoxy resin is known.
- the insulating layer inside the dust core for a relatively thick powder core of 10 mm or more. There is also the problem that it is difficult to form.
- the magnetic core for the induction hardening device described in Patent Document 2 uses a mixture of epoxy resin and iron powder, there is a problem that the powder magnetic core tends to deteriorate during continuous use.
- an object of the present invention is to provide a dust core with improved frequency characteristics while ensuring the necessary insulation.
- the dust core according to the present invention has soft magnetic particles and an insulating layer formed on the surface of the soft magnetic particles.
- the soft magnetic particles contain an alloy element containing either or both of Si and Cr, and the total content of the alloy element in the soft magnetic particles is 2.0 mass% or more. , 7.0 mass% or less (preferably 6.5 mass% or less), the insulating layer contains SiO 2 as a main component, and the thickness of the insulating layer is 0.05 ⁇ m to 0.6 ⁇ m. ..
- the soft magnetic particles contain an alloy element containing either one or both of Si and Cr, and the total content of the alloy elements in the soft magnetic particles is 2.0 mass% or more and 7.0 mass% or less.
- the content of the alloying element is reduced, so that it is possible to avoid a decrease in the relative magnetic permeability due to a decrease in compressibility.
- SiO 2 as a main component of the insulating layer and setting the thickness of the insulating layer to 0.05 ⁇ m to 0.6 ⁇ m, it is possible to obtain high insulating properties while suppressing a decrease in the specific magnetic permeability.
- the insulating layer containing SiO 2 as a main component is obtained by heating a substance containing Si and O (silane coupling agent, silicone oligomer, silicone resin, etc.) with magnetic annealing, it relies on atmospheric gas. It is possible to form an insulating layer without the need for silicon. Therefore, oxygen does not need to enter when forming the insulating layer, and it is possible to form the insulating layer even inside a thick dust core.
- Si and O silane coupling agent, silicone oligomer, silicone resin, etc.
- the volume resistivity of the dust core is preferably 1 ⁇ 10 6 ⁇ cm or more. As a result, the specific resistance of the dust core becomes large, so that the eddy current loss can be reduced.
- the volume average particle size of the soft magnetic powder forming the soft magnetic particles is preferably 10 to 30 ⁇ m. If the volume average particle size is smaller than 10 ⁇ m, cracks (lamination or the like) are likely to occur in the molded body, and if the volume average particle size exceeds 30 ⁇ m, the eddy current loss increases and the frequency characteristics deteriorate.
- the density (meaning the relative density) of the dust core described above is preferably 5.4 g / cm 3 or more and 6.5 g / cm 3 or less.
- the powder magnetic core described above can be used for a chip inductor or an induction heating device.
- the dust core according to the present embodiment can be used as a core for winding a winding in an inductor (particularly a chip inductor) or as a core in a high frequency coil of an induction heating device.
- the powder magnetic core has a preparation step of preparing a powder for a powder magnetic core, a molding process of compressing the prepared material for a powder magnetic core to obtain a green compact, and a magnetic bleaching step of magnetically annealing the powder. It is manufactured by going through the steps in sequence.
- the material for the dust core includes a soft magnetic powder and an insulating film covering the surface of the soft magnetic powder.
- a material for a dust core is prepared by coating the soft magnetic powder with an insulating film.
- the soft magnetic powder a soft magnetic alloy powder containing Fe as a main component (generally 80 mass% or more), an alloy element, and the balance as an unavoidable impurity is used.
- the soft magnetic powder contains either or both of Si and Cr as essential alloying elements.
- Si silicon
- Cr Cr
- the soft magnetic powder includes any one or more of other alloying elements (for example, Al, Ni, Co, Cu, B, Nb, Zr, etc.) as required. ) May be contained.
- Fe-based amorphous alloys and Fe-based nanocrystalline alloys can also be used as the soft magnetic powder.
- Fe—Si, Fe—Cr, Fe—Si—Cr, Fe—Si—Al, Fe—Al—Cr, Fe—Si—Cr—Al and the like can be used. Can be mentioned.
- the total content of alloying elements in the soft magnetic powder shall be 2.0 mass% or more and 7.0 mass% or less.
- the content of the essential alloy element is less than 2.0 mass%, the relative permeability, the Q value, and the volume resistivity decrease as described later because it is close to pure iron. Further, when the content of the essential alloy element exceeds 7.0 mass%, the powder becomes hard and is less likely to be plastically deformed during compression molding, and it is difficult to increase the density of the green compact. Therefore, the relative permeability of the dust core decreases.
- soft magnetic powder those produced by the gas atomizing method are preferable because they have high purity.
- soft magnetic powder produced by the water atomization method or other processes can also be used.
- the volume average particle size of the soft magnetic powder is preferably 10 ⁇ m or more and 30 ⁇ m or less. If the volume average particle size is smaller than 10 ⁇ m, cracks (lamination or the like) are likely to occur in the molded body, and if the volume average particle size exceeds 30 ⁇ m, the eddy current loss increases and the frequency characteristics deteriorate.
- the soft magnetic powder is a sphere with a uniform diameter, even if the powder is densely packed, gaps are created between the particles, and it is not possible to achieve a high density of the dust core. It is preferable to prepare the soft magnetic powder so as to have a particle size distribution in the range of, for example, about 1 ⁇ m to 100 ⁇ m so that the gap can be filled with the fine powder. At this time, the particle size distribution may have a single peak, or the particle size distribution may include a plurality of peaks. Further, two or more different kinds of soft magnetic powders can be mixed and used.
- the soft magnetic powder contains a large amount of fine powder, the fluidity of the powder will decrease, causing problems such as segregation and intrusion of the powder into the clearance of the mold.
- granulated powder in which fine powders are bound to each other with a binder can also be used as the soft magnetic powder.
- Various organic binders and inorganic binders can be used as the binder for granulation.
- the granulation method general methods such as rolling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, crushing granulation, melt granulation, and spray granulation can be used.
- the granulation method may be wet or dry.
- the volume average particle size can be measured by using a laser diffraction / scattering type particle size distribution measuring device.
- the insulating film that coats the soft magnetic powder is formed of a material that changes to SiO 2 regardless of the components of the atmospheric gas, which is transformed during heating due to magnetic annealing.
- the insulating film since the material for the dust core is heated by magnetic annealing after the insulating film is formed, the insulating film is required to have heat resistance to the heating temperature (700 ° C. in this embodiment) at the time of magnetic annealing. Further, it is preferable to form an insulating film with a material having a small heat shrinkage during magnetic annealing. This is because if the heat shrinkage is too large, the insulation between the soft magnetic particles may be destroyed during magnetic annealing, and the soft magnetic particles may be energized.
- a material containing Si and O for example, various silane coupling agents, various silicone oligomers, various silicone resins (for example, methyl silicone resin) and the like can be used. These materials may be used alone or in combination of two or more. Further, these materials can also be used in combination with a material containing Si but not O (for example, various silanes).
- an insulating film covering the surface of the soft magnetic powder By adhering the material of the insulating film to the entire surface of the soft magnetic powder, an insulating film covering the surface of the soft magnetic powder can be formed.
- the method for forming the insulating film is not particularly limited, and for example, mixing using a mixer, kneading using a pressurized kneader, coating using a fluidized bed, various chemical conversion treatments, and the like can be used.
- the coating method may be either dry or wet.
- the soft magnetic powder obtained in the preparation process is compression-molded with a mold having a predetermined shape to form a green compact.
- a solid lubricant may be added to the powder magnetic core material.
- solid lubricants include zinc stearate, calcium stearate, magnesium stearate, barium stearate, lithium stearate, iron stearate, aluminum stearate, stearic acid amide, ethylene bisstearate amide, oleic acid amide, and ethylene bisolein.
- the solid lubricant may be used alone or in combination of several types.
- the fixed lubricant may be blended with the soft magnetic powder as the raw material powder before the compression molding, or may be adhered to the wall surface of the mold.
- the blending amount (or adhesion amount) at this time is preferably, for example, about 0.3 to 2.0 mass% with respect to the material for total dust core. Excessive blending of solid lubricants leads to a decrease in the density of the green compact, which leads to a decrease in magnetic properties and strength.
- the green compact is subjected to magnetic annealing treatment for the purpose of removing the magnetostriction of the green compact obtained in the molding step.
- the type of atmosphere gas for this annealing treatment is not particularly limited, but it is desirable to use an inert or reducing atmosphere gas so that the soft magnetic powder does not oxidize and the magnetic properties do not deteriorate.
- these atmospheric gases include inert gases such as nitrogen and argon, and reducing gases such as hydrogen.
- the type of atmospheric gas that can be used is not limited to the oxidizing one, which is different from Patent Document 1 described above.
- the heating temperature (magnetic annealing temperature) during the magnetic annealing treatment should be set in consideration of the material of the target soft magnetic powder, for example, Fe-Si type, Fe-Cr type, Fe-Si-Cr type. When used, it is better to set it to 700 ° C. or higher and 850 ° C. or lower. This is because at temperatures below 700 ° C., magnetostriction cannot be sufficiently removed and iron loss cannot be sufficiently suppressed. Further, if the temperature exceeds 850 ° C., the eddy current loss increases due to the deterioration of the insulating film. When the methyl silicone resin is used as the material for the insulating coating, it is preferable to set the magnetic annealing temperature to 800 ° C. or higher and 850 ° C. or lower from the viewpoint of increasing the strength of the dust core.
- the dust core after magnetic annealing is composed of the soft magnetic particles 10 derived from the soft magnetic powder, the insulating layer 11 derived from the insulating coating and covering the soft magnetic particles 10, and the insulating layer 11. It is formed in a porous form having a large number of pores 12 formed between them.
- the insulating layer 11 is formed by the transformation of the insulating film by heating during magnetic annealing, and the main component is SiO 2 . Na, K, Mg, Al, and Ca may be contained as other elements constituting the insulating film.
- the thickness of the insulating coating varies depending on the observation field of view, but if the thickness is adjusted to 0.05 to 0.6 ⁇ m on average, a dust core having desired characteristics can be obtained.
- the type and content of the alloying element contained in the soft magnetic particles 10 are substantially the same as the type and content of the alloying element contained in the soft magnetic powder before magnetic annealing. Therefore, the total content of the alloying elements in the soft magnetic particles 10 is 2.0 mass% or more and 7.0 mass% or less. Since the total content of the alloying elements contained in the soft magnetic particles 10 (soft magnetic powder) is reduced in this way, it is possible to avoid a decrease in compressibility due to the hardening of the powder, and thereby a decrease in relative magnetic permeability. Can be avoided.
- the insulating layer containing SiO 2 as a main component is obtained by heating a substance containing Si and O (silane coupling agent, silicone oligomer, silicone resin, etc.) with magnetic annealing, it relies on atmospheric gas. It is possible to form an insulating layer without the need for silicon. Therefore, oxygen does not need to enter when forming the insulating layer, and it is possible to form the insulating layer even inside a thick dust core.
- Si and O silane coupling agent, silicone oligomer, silicone resin, etc.
- the thickness of the insulating layer 11 is set to 0.05 ⁇ m to 0.6 ⁇ m.
- the thickness of the insulating layer 11 is measured from a cross-sectional SEM photograph (about 10,000 times) taken by cutting the dust core. Specifically, the thickness of the insulating layer 11 existing between the Fe soft magnetic particles 10 can be measured in different 30 fields of view on the SEM photograph, and the average value thereof can be used as the thickness.
- the thickness of the insulating layer 11 can be changed by adjusting the amount of the binder mixed with the soft magnetic powder in the preparation step.
- the volume resistivity of the dust core manufactured by the above procedure is preferably 1 ⁇ 10 6 ⁇ cm or more. If the volume resistivity is less than 1 ⁇ 10 6 ⁇ cm, the specific resistance becomes small and the eddy current loss becomes large.
- the "volume resistivity” here means the electrical resistance between both sides when a 1 m 3 cube is considered inside the magnetic core and a voltage is applied between the two sides thereof (JIS C2560-1).
- An insulating film was formed on the surface of the soft magnetic powder using a silane coupling agent, and the soft magnetic powder with the insulating film was granulated using a silicone resin.
- a ring-shaped test piece without an air gap (solid lubricant) is mixed with the powder after granulation, compression-molded at a predetermined pressure at room temperature, and magnetically annealed at a nitrogen temperature of 750 ° C. Powder magnetic core) was manufactured.
- a high-density product (Examples 1 to 4 and Comparative Examples 1 to 4) having a density (relative density) of 5.8 to 6.5 g / cm 3 after heat treatment and a density after heat treatment (relative density)
- Two types of low-density products (Example 5 and Comparative Example 5) having a relative density of 5.1 to 5.4 g / cm 3 were produced.
- Fe-4.5Si-2.0Cr was used in Examples 1, 2 and 4 and Fe-2Si was used in Example 3 as the soft magnetic powder, and Example 5 was used. Fe-2.0Cr is used in. Further, as the soft magnetic powder, Fe-3.5Si-4.5Cr is used in Comparative Example 1, Fe-2Si is used in Comparative Example 2, and Fe-4.5Si-2.0Cr is used in Comparative Example 4. In Comparative Example 5, Fe-6.0Cr is used.
- the evaluation items were relative permeability, Q value, and volume resistivity, assuming use in chip inductors.
- a winding was wound around each test piece so as to have an inductance of 10 ⁇ H.
- Q value two windings were wound around each test piece.
- the relative magnetic permeability was measured using an LCR meter (5 kHz, 10 mA, constant current mode) in accordance with the method for measuring the initial magnetic permeability specified in JIS C2560-2: 2006.
- the volume resistivity was measured according to the measuring method specified in JIS C2139-3-1: 2018.
- the relative magnetic permeability was 60 or more
- the Q value was 45 or more
- the volume resistivity was 1 ⁇ 10 6 ⁇ cm or more.
- FIG. 2 shows the measurement results of the above evaluation items when Fe-4.5Si-2.0Cr was used as the soft magnetic powder (Example 1).
- Example 1 each evaluation item was measured for the test piece in which the type of soft magnetic powder and the average particle size were changed. The results are shown in FIG. 3 together with Example 1.
- FIG. 2 and FIG. 3 the density and the relative magnetic permeability of Example 1 are slightly different, but this is due to the variation in quality due to the use of different test pieces.
- Example 2 in FIG. 3 Fe-4.5Si-2.0Cr was used as the soft magnetic powder as in Example 1, while the volume average particle size of the soft magnetic powder was larger than that in Example 1.
- Fe-2.0Si is used as the soft magnetic powder, while the volume average particle size of the soft magnetic powder is smaller than that of Example 1.
- Comparative Example 1 uses Fe-3.5Si-4.5Cr as the soft magnetic powder, and Comparative Example 2 uses Fe-2.0Si as the soft magnetic powder (the volume average particle size is the same as that of Example 1). (Same as above), Comparative Example 3 uses pure iron powder instead of soft magnetic powder.
- Example 1 in which the total content of the alloying elements in the soft magnetic powder was 7.0 mass%, and Comparative Example 1 in which the total content of the alloying elements was 8.0 mass (3.5 mass% + 4.5 mass%). From the comparison, it was clarified that the specific magnetic permeability was lower than the target value in Comparative Example 1 in which the amount of alloying elements contained in the soft magnetic powder was large. Further, from the comparison between Example 3 and Comparative Example 3, if the content of the alloying element of the soft magnetic powder is 2.0 mass% or more, the relative permeability, the Q value, and the volume resistivity all exceed the target values. It can be understood that
- the particle size of the soft magnetic powder also affects the magnetic properties. Specifically, from the comparison between Example 1 and Example 2, it can be understood that even if the volume average particle size of the soft magnetic powder is coarsened to 30 ⁇ m, all the evaluation items exceed the target values. Further, from the comparison between Example 3 and Comparative Example 2, if the volume average particle size is reduced to 10 ⁇ m, the Q value and the volume resistivity can be improved even if the content of the alloying element is the lower limit. Therefore, if the volume average particle size of the soft magnetic powder is within the range of 10 ⁇ m or more and 30 ⁇ m or less, it is possible to secure the target value for all the evaluation items.
- the thickness of the insulating layer is preferably 0.05 ⁇ m or more and 0.6 ⁇ m or less.
- the quenching depth is adjusted by adjusting the frequency of the applied current and the powder core.
- the magnetic permeability of the dust core is also adjusted, so a powder magnetic core with a low specific magnetic permeability (specific magnetic permeability less than 60), which is not used in chip inductors, may be required. Therefore, as long as it has the minimum relative permeability (specific permeability of 15 or more), even a low-density dust core may be used for an induction heating device.
- the evaluation items were Q value, volume resistivity, and annular strength.
- the pressure ring strength was measured according to JIS Z2507: 2000. Other measurement methods are the same as described above.
- a Q value of 45 or more, a volume resistivity of 1 ⁇ 10 6 ⁇ cm or more, and a ring strength of 40 MPa or more were accepted.
- Example 5 From the comparison between Example 5 and Comparative Example 5 in FIG. 5, if the density is 5.4 g / cm 3 or more, the magnetic characteristics (Q value, volume resistivity, required as the dust core for the induction heating device, It became clear that the pressure ring strength) was satisfied. Further, it was also found that the relative magnetic permeability is smaller than that of the high-density products (Examples 1 to 4), but the specific magnetic permeability that is not particularly problematic for the induction heating device can be obtained. Therefore, the density of the dust core after magnetic annealing is preferably 5.4 g / cm 3 or more.
- the density of the powder magnetic core after magnetic quenching Is preferably 6.5 g / cm 3 or less.
- the density is 6.0 g / cm 3 or more from the measurement results of Comparative Example 1 in FIG. 3, Example 4 in FIG. 4, and Comparative Example 4. Is preferable.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Dispersion Chemistry (AREA)
- Metallurgy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Powder Metallurgy (AREA)
- Soft Magnetic Materials (AREA)
Abstract
This dust core comprises a soft magnetic particle 10 and an insulating layer 11 that is formed on the surface of the soft magnetic particle 10. The soft magnetic particle 10 contains an alloy element that contains one or both of Si and Cr. The total content of the alloy element in the soft magnetic particle 10 is from 2.0 mass% to 7.0 mass%. The insulating layer 11 is mainly composed of SiO2. In addition, the insulating layer 11 has a thickness of from 0.05 μm to 0.6 μm.
Description
本発明は、圧粉磁心に関する。
The present invention relates to a dust core.
圧粉磁心は、軟磁性粉の表面を絶縁被膜で被覆し、絶縁被膜付きの軟磁性粉を圧縮成形することで製造される。圧粉磁心の用途として、DC-DCコンバータ、インバータ、スイッチング電源等に使用される変成器、さらにはノイズカット用チョークコイルなどが代表例として挙げられる。
The dust core is manufactured by covering the surface of the soft magnetic powder with an insulating film and compression-molding the soft magnetic powder with the insulating film. Typical examples of dust core applications include DC-DC converters, inverters, transformers used in switching power supplies, and noise-cutting choke coils.
変成器のうち、特に電源回路の基板に実装されるインダクタ(チップインダクタ)は、数100kHz~数MHzの高周波域で使用される場合が多い。そのため、その圧粉磁心にも高周波域での使用に対応した材料組成が必要とされる。高周波になるほど圧粉磁心に吸収され、熱になる損失(鉄損)が大きくなる。この損失の大部分は渦電流損失に起因するため、渦電流損失を如何に低減するかが圧粉磁心の材料や組成を検討する上で重要な課題となる。この他、チップインダクタ用圧粉磁心には、高い体積抵抗率と高透磁率が求められる。
Of the transformants, the inductor (chip inductor) mounted on the board of the power supply circuit is often used in the high frequency range of several hundred kHz to several MHz. Therefore, the powder magnetic core also needs a material composition suitable for use in a high frequency range. The higher the frequency, the greater the loss (iron loss) that is absorbed by the dust core and becomes heat. Since most of this loss is caused by the eddy current loss, how to reduce the eddy current loss is an important issue in examining the material and composition of the dust core. In addition, the dust core for chip inductors is required to have high volume resistivity and high magnetic permeability.
チップインダクタ用圧粉磁心として、特許文献1に記載のように、Fe-Cr-Al系軟磁性粉の成形体を酸化性雰囲気で熱処理したものが知られている。
As a dust core for a chip inductor, as described in Patent Document 1, a molded body of Fe—Cr—Al-based soft magnetic powder is heat-treated in an oxidizing atmosphere.
高周波誘導加熱装置では、誘導加熱コイルに高周波電流を印加することにより磁界を発生させ、ワークに誘導電流を発生させることにより加熱する。この際、励磁コイルの中心部又は周辺部に鉄心を配置することにより、発生磁束密度を高め、加熱効率を向上させることができる。鉄心材料としては、積層鋼板、フェライト等が一般的であるが、近年では、鉄損を抑制して効率改善を図るため、鉄心として、軟磁性粉を用いた圧粉磁心を使用することが検討されている。近年、高周波誘導加熱装置も100kHz以上の高周波域で使用される場合が多くなっているため、高周波誘導加熱装置用の圧粉磁心でも、高周波域での渦電流損失を如何にして回避するかが、圧粉磁心の材料や組成を検討する上で重要な課題となっている。また、高周波誘導加熱装置用の圧粉磁心には、高い体積抵抗率と高強度が求められる。
In the high frequency induction heating device, a magnetic field is generated by applying a high frequency current to the induction heating coil, and the work is heated by generating an induced current. At this time, by arranging the iron core in the central portion or the peripheral portion of the exciting coil, the generated magnetic flux density can be increased and the heating efficiency can be improved. Laminated steel sheets, ferrite, etc. are generally used as the iron core material, but in recent years, in order to suppress iron loss and improve efficiency, it has been considered to use a dust core using soft magnetic powder as the iron core. Has been done. In recent years, high-frequency induction heating devices are often used in the high-frequency range of 100 kHz or higher, so how to avoid eddy current loss in the high-frequency range even with a dust core for high-frequency induction heating devices. , It has become an important issue in examining the material and composition of the dust core. Further, a powder magnetic core for a high-frequency induction heating device is required to have high volume resistivity and high strength.
高周波誘導加熱装置用の圧粉磁心として、特許文献2に記載のように、鉄系軟磁性体粉末をエポキシ樹脂による絶縁被膜を介して一体化したものが知られている。
As a dust core for a high-frequency induction heating device, as described in Patent Document 2, an iron-based soft magnetic material powder integrated with an insulating film made of an epoxy resin is known.
特許文献1のように、軟磁性粉を酸化雰囲気で磁気焼鈍すると、軟磁性粉の周囲に絶縁層が形成される。しかしながら、特許文献1に記載の圧粉磁心において、安定的な特性(周波数特性、体積抵抗率)を発現させるためには、Al、Crといった合金元素を多量に含ませる必要がある。合金成分が多くなるほど、軟磁性粉が硬くなって圧縮性が低下する。圧縮性の低下は、重要特性である比透磁率の低下を招く。
As in Patent Document 1, when the soft magnetic powder is magnetically annealed in an oxidizing atmosphere, an insulating layer is formed around the soft magnetic powder. However, in order to develop stable characteristics (frequency characteristics, volume resistivity) in the dust core described in Patent Document 1, it is necessary to contain a large amount of alloying elements such as Al and Cr. As the alloy component increases, the soft magnetic powder becomes harder and the compressibility decreases. The decrease in compressibility leads to a decrease in relative magnetic permeability, which is an important characteristic.
また、酸化雰囲気での焼結時に圧粉磁心の表面から侵入する酸素により絶縁層の形成が進むため、10mm以上といった比較的厚みのある圧粉磁心については、圧粉磁心の内部での絶縁層の形成が難しいという問題もある。
In addition, since the formation of the insulating layer progresses due to oxygen entering from the surface of the dust core during sintering in an oxidizing atmosphere, the insulating layer inside the dust core for a relatively thick powder core of 10 mm or more. There is also the problem that it is difficult to form.
また、特許文献2に記載の高周波焼入れ装置用の磁性コアは、エポキシ樹脂と鉄粉の混合物を使用するため、連続使用時に圧粉磁心の劣化が生じやすくなる問題がある。
Further, since the magnetic core for the induction hardening device described in Patent Document 2 uses a mixture of epoxy resin and iron powder, there is a problem that the powder magnetic core tends to deteriorate during continuous use.
以上の実情に鑑み、本発明は、必要な絶縁性を確保しつつ周波数特性を改善した圧粉磁心を提供することを目的とする。
In view of the above circumstances, an object of the present invention is to provide a dust core with improved frequency characteristics while ensuring the necessary insulation.
本発明に係る圧粉磁心は、軟磁性粒子と、軟磁性粒子の表面に形成された絶縁層とを有する。
The dust core according to the present invention has soft magnetic particles and an insulating layer formed on the surface of the soft magnetic particles.
本発明に係る圧粉磁心は、前記軟磁性粒子が、SiおよびCrの何れか一方又は双方を含む合金元素を含有し、前記軟磁性粒子における前記合金元素の総含有量が2.0mass%以上、7.0mass%以下(好ましくは6.5mass%以下)であり、前記絶縁層はSiO2を主成分とし、前記絶縁層の厚さが0.05μm~0.6μmであることを特徴とする。
In the powder magnetic core according to the present invention, the soft magnetic particles contain an alloy element containing either or both of Si and Cr, and the total content of the alloy element in the soft magnetic particles is 2.0 mass% or more. , 7.0 mass% or less (preferably 6.5 mass% or less), the insulating layer contains SiO 2 as a main component, and the thickness of the insulating layer is 0.05 μm to 0.6 μm. ..
このように軟磁性粒子がSiおよびCrの何れか一方又は双方を含む合金元素を含有し、この軟磁性粒子における合金元素の総含有量が2.0mass%以上、7.0mass%以下である圧粉磁心であれば、合金元素の含有量が少なくなるため、圧縮性の低下による比透磁率の低下を回避することができる。また、絶縁層はSiO2を主成分とし、前記絶縁層の厚さを0.05μm~0.6μmとすることで、比透磁率の低下を抑制しつつ、高い絶縁性を得ることができる。SiO2を主成分とする絶縁層は、SiとOを含有する物質(シランカップリング剤、シリコーンオリゴマー、シリコーン樹脂等)を磁気焼鈍に伴って加熱することで得られるため、雰囲気ガスに頼ることなく絶縁層を形成することが可能となる。そのため、絶縁層の形成に際して酸素の侵入が必要とされず、厚みの大きい圧粉磁心の内部にも絶縁層を形成することが可能となる。
As described above, the soft magnetic particles contain an alloy element containing either one or both of Si and Cr, and the total content of the alloy elements in the soft magnetic particles is 2.0 mass% or more and 7.0 mass% or less. In the case of a powder magnetic core, the content of the alloying element is reduced, so that it is possible to avoid a decrease in the relative magnetic permeability due to a decrease in compressibility. Further, by using SiO 2 as a main component of the insulating layer and setting the thickness of the insulating layer to 0.05 μm to 0.6 μm, it is possible to obtain high insulating properties while suppressing a decrease in the specific magnetic permeability. Since the insulating layer containing SiO 2 as a main component is obtained by heating a substance containing Si and O (silane coupling agent, silicone oligomer, silicone resin, etc.) with magnetic annealing, it relies on atmospheric gas. It is possible to form an insulating layer without the need for silicon. Therefore, oxygen does not need to enter when forming the insulating layer, and it is possible to form the insulating layer even inside a thick dust core.
圧粉磁心の体積抵抗率は1×106Ωcm以上とするのが好ましい。これにより、圧粉磁心の比抵抗が大きくなるために渦電流損失を小さくすることができる。
The volume resistivity of the dust core is preferably 1 × 10 6 Ωcm or more. As a result, the specific resistance of the dust core becomes large, so that the eddy current loss can be reduced.
軟磁性粒子を形成する軟磁性粉の体積平均粒径は、10~30μmが好ましい。体積平均粒径が10μmよりも小さいと、成形体にクラック(ラミネーション等)が生じやすくなり、体積平均粒径が30μmを超えると、渦電流損失が増大して周波数特性が悪化する要因となる。
The volume average particle size of the soft magnetic powder forming the soft magnetic particles is preferably 10 to 30 μm. If the volume average particle size is smaller than 10 μm, cracks (lamination or the like) are likely to occur in the molded body, and if the volume average particle size exceeds 30 μm, the eddy current loss increases and the frequency characteristics deteriorate.
以上に述べた圧粉磁心の密度(相対密度を意味する)は5.4g/cm3以上、6.5g/cm3以下が好ましい。
The density (meaning the relative density) of the dust core described above is preferably 5.4 g / cm 3 or more and 6.5 g / cm 3 or less.
以上に述べた圧粉磁心は、チップインダクタあるいは誘導加熱装置に用いることができる。
The powder magnetic core described above can be used for a chip inductor or an induction heating device.
以上述べたように、本発明によれば、必要な絶縁性を確保しつつ周波数特性を改善した圧粉磁心を得ることができる。
As described above, according to the present invention, it is possible to obtain a dust core having improved frequency characteristics while ensuring the necessary insulating properties.
以下、本発明の一実施形態を説明する。
Hereinafter, an embodiment of the present invention will be described.
本実施形態に係る圧粉磁心は、インダクタ(特にチップインダクタ)における、巻線を巻回するためのコアとして、あるいは、誘導加熱装置の高周波コイルにおけるコアとして使用することができる。
The dust core according to the present embodiment can be used as a core for winding a winding in an inductor (particularly a chip inductor) or as a core in a high frequency coil of an induction heating device.
圧粉磁心は、圧粉磁心用粉末を調製する調製工程と、調製した圧粉磁心用材料を圧縮成形して圧粉体を得る成形工程と、圧粉体に磁気焼鈍を施す磁気焼鈍工程とを順次経ることで製作される。
The powder magnetic core has a preparation step of preparing a powder for a powder magnetic core, a molding process of compressing the prepared material for a powder magnetic core to obtain a green compact, and a magnetic bleaching step of magnetically annealing the powder. It is manufactured by going through the steps in sequence.
圧粉磁心用材料は、軟磁性粉と、軟磁性粉粉の表面を覆う絶縁被膜とを備える。調製工程では、軟磁性粉を絶縁被膜で被覆することによって圧粉磁心用材料が調製される。
The material for the dust core includes a soft magnetic powder and an insulating film covering the surface of the soft magnetic powder. In the preparation step, a material for a dust core is prepared by coating the soft magnetic powder with an insulating film.
軟磁性粉として、Feを主成分(概ね80mass%以上)とし、合金元素を含有し、残部を不可避的不純物とする軟磁性の合金粉が使用される。軟磁性粉には、必須の合金元素として、SiおよびCrの何れか一方または双方を含有させる。Siを含有させることで、磁化され易く(高透磁率)、保磁力が小さく、磁界の変化に追従し易い圧粉磁心を得ることができる。また、Crを含有させることで、比抵抗が増加し、渦電流損失が低減できる。軟磁性粉には、以上に述べた必須の合金元素の他、必要に応じて、他の合金元素(例えばAl、Ni、Co、Cu、B、Nb、Zr等の何れか一種または二種以上)を含有させてもよい。軟磁性粉としてFe基アモルファス合金やFe基ナノ結晶合金を使用することもできる。
As the soft magnetic powder, a soft magnetic alloy powder containing Fe as a main component (generally 80 mass% or more), an alloy element, and the balance as an unavoidable impurity is used. The soft magnetic powder contains either or both of Si and Cr as essential alloying elements. By containing Si, it is possible to obtain a dust core that is easily magnetized (high magnetic permeability), has a small coercive force, and easily follows changes in the magnetic field. Further, by containing Cr, the specific resistance can be increased and the eddy current loss can be reduced. In addition to the essential alloying elements described above, the soft magnetic powder includes any one or more of other alloying elements (for example, Al, Ni, Co, Cu, B, Nb, Zr, etc.) as required. ) May be contained. Fe-based amorphous alloys and Fe-based nanocrystalline alloys can also be used as the soft magnetic powder.
本実施形態で使用可能な代表的な軟磁性粉として、Fe-Si、Fe-Cr、Fe-Si―Cr、Fe-Si-Al、Fe-Al-Cr、Fe-Si-Cr-Al等を挙げることができる。
As typical soft magnetic powders that can be used in this embodiment, Fe—Si, Fe—Cr, Fe—Si—Cr, Fe—Si—Al, Fe—Al—Cr, Fe—Si—Cr—Al and the like can be used. Can be mentioned.
軟磁性粉における合金元素の総含有量は,2.0mass%以上、7.0mass%以下とする。必須合金元素の含有量が2.0mass%を下回ると、純鉄に近くなるために後述のように比透磁率、Q値、および体積抵抗率が低下する。また、必須合金元素の含有量が7.0mass%を超えると、粉末が固くなって圧縮成形時に塑性変形しにくくなり、圧粉体の密度を高めることが困難となる。そのため、圧粉磁心の比透磁率が低下する。
The total content of alloying elements in the soft magnetic powder shall be 2.0 mass% or more and 7.0 mass% or less. When the content of the essential alloy element is less than 2.0 mass%, the relative permeability, the Q value, and the volume resistivity decrease as described later because it is close to pure iron. Further, when the content of the essential alloy element exceeds 7.0 mass%, the powder becomes hard and is less likely to be plastically deformed during compression molding, and it is difficult to increase the density of the green compact. Therefore, the relative permeability of the dust core decreases.
軟磁性粉としては、ガスアトマイズ法で製造したものが高純度となるので好ましい。但し、水アトマイズ法やその他のプロセスで製造された軟磁性粉を使用することもできる。
As the soft magnetic powder, those produced by the gas atomizing method are preferable because they have high purity. However, soft magnetic powder produced by the water atomization method or other processes can also be used.
軟磁性粉の粒径が小さいほど高周波域(例えば1MHz以上)での渦電流損失を抑制することができ、これにより効率の悪化や周波数特性の低下等の問題を回避することができる。この観点から、軟磁性粉の体積平均粒径は、10μm以上、30μm以下が好ましい。体積平均粒径が10μmよりも小さいと、成形体にクラック(ラミネーション等)が生じやすくなり、体積平均粒径が30μmを超えると、渦電流損失が増大して周波数特性が悪化する。
The smaller the particle size of the soft magnetic powder, the more the eddy current loss in the high frequency range (for example, 1 MHz or more) can be suppressed, which can avoid problems such as deterioration of efficiency and deterioration of frequency characteristics. From this viewpoint, the volume average particle size of the soft magnetic powder is preferably 10 μm or more and 30 μm or less. If the volume average particle size is smaller than 10 μm, cracks (lamination or the like) are likely to occur in the molded body, and if the volume average particle size exceeds 30 μm, the eddy current loss increases and the frequency characteristics deteriorate.
軟磁性粉が均一径の球だと仮定すると、粉末を密充填しても粒子間に隙間を生じ、圧粉磁心の高密度化を達成することができない。微粉で隙間を埋められるように、例えば1μm~100μm程度の範囲の粒度分布を有するように軟磁性粉を調製するのが好ましい。この時、ピークが単一となる粒度分布でもよいし、ピークが複数含まれる粒度分布としてもよい。また、異なる二種以上の軟磁性粉を混合して使用することもできる。
Assuming that the soft magnetic powder is a sphere with a uniform diameter, even if the powder is densely packed, gaps are created between the particles, and it is not possible to achieve a high density of the dust core. It is preferable to prepare the soft magnetic powder so as to have a particle size distribution in the range of, for example, about 1 μm to 100 μm so that the gap can be filled with the fine powder. At this time, the particle size distribution may have a single peak, or the particle size distribution may include a plurality of peaks. Further, two or more different kinds of soft magnetic powders can be mixed and used.
軟磁性粉に微粉が多く含まれる場合、粉末の流動性が低下し、偏析や金型のクリアランスへの粉末の侵入などの問題を招く。これを防止するため、軟磁性粉として、バインダーで微粉同士を結着した造粒粉を使用することもできる。造粒用バインダーとして、各種有機バインダーおよび無機バインダーを利用することができる。特に磁気焼鈍時に熱分解する量が少ないシリコーン樹脂を使用するのが好ましい。造粒法として、転動造粒、流動層造粒、攪拌造粒、圧縮造粒、押出造粒、破砕造粒、溶融造粒、噴霧造粒等の一般的手法を用いることができる。造粒法は、湿式でも乾式でも構わない。
If the soft magnetic powder contains a large amount of fine powder, the fluidity of the powder will decrease, causing problems such as segregation and intrusion of the powder into the clearance of the mold. In order to prevent this, as the soft magnetic powder, granulated powder in which fine powders are bound to each other with a binder can also be used. Various organic binders and inorganic binders can be used as the binder for granulation. In particular, it is preferable to use a silicone resin having a small amount of thermal decomposition during magnetic annealing. As the granulation method, general methods such as rolling granulation, fluidized bed granulation, stirring granulation, compression granulation, extrusion granulation, crushing granulation, melt granulation, and spray granulation can be used. The granulation method may be wet or dry.
なお、体積平均粒径MVは、体積で重みづけされた平均径であり、粒子の集団中に、粒子径の小さい順から、d1,d2,・・・di,・・・dkの粒子径を持つ粒子がそれぞれn1,n2,・・・ni,・・・nk個あるとし、粒子1個あたりの体積をViとした時に、
MV=(V1×d1+V2×d2+・・・Vi×di+・・・Vk×dk)/(V1+V2+・・・Vi+・・・Vk)
MV=Σ(Vi×di)/Σ(Vi)
で表される。体積平均粒径は、レーザー回析/散乱式の粒度分布測定装置を用いることで、測定することができる。 The volume average particle size MV is an average diameter weighted by volume, and the particle size of d1, d2, ... di, ... Dk is set in the group of particles in ascending order of particle size. Assuming that there are n1, n2, ... ni, ... nk particles, respectively, and the volume per particle is Vi,
MV = (V1 x d1 + V2 x d2 + ... Vi x di + ... Vk x dk) / (V1 + V2 + ... Vi + ... Vk)
MV = Σ (Vi × di) / Σ (Vi)
It is represented by. The volume average particle size can be measured by using a laser diffraction / scattering type particle size distribution measuring device.
MV=(V1×d1+V2×d2+・・・Vi×di+・・・Vk×dk)/(V1+V2+・・・Vi+・・・Vk)
MV=Σ(Vi×di)/Σ(Vi)
で表される。体積平均粒径は、レーザー回析/散乱式の粒度分布測定装置を用いることで、測定することができる。 The volume average particle size MV is an average diameter weighted by volume, and the particle size of d1, d2, ... di, ... Dk is set in the group of particles in ascending order of particle size. Assuming that there are n1, n2, ... ni, ... nk particles, respectively, and the volume per particle is Vi,
MV = (V1 x d1 + V2 x d2 + ... Vi x di + ... Vk x dk) / (V1 + V2 + ... Vi + ... Vk)
MV = Σ (Vi × di) / Σ (Vi)
It is represented by. The volume average particle size can be measured by using a laser diffraction / scattering type particle size distribution measuring device.
軟磁性粉を被覆する絶縁被膜は、磁気焼鈍に伴う加熱中に変成し、雰囲気ガスの成分と無関係にSiO2に変化する材料で形成される。本実施形態では、絶縁被膜の形成後、磁気焼鈍により圧粉磁心用材料を加熱するので、絶縁被膜には、磁気焼鈍時の加熱温度(本実施形態では700℃)に対する耐熱性が求められる。また、磁気焼鈍時の熱収縮が小さい材料で絶縁被膜を形成するのが好ましい。熱収縮が大きすぎると、磁気焼鈍時に軟磁性粒子間の絶縁が破壊され、軟磁性粒子同士が通電状態となるおそれがあるためである。以上の要求特性を満たす材料として、SiおよびOを含有する材料、例えば各種シランカップリング剤、各種シリコーンオリゴマー、各種シリコーン樹脂(例えばメチル系シリコーン樹脂)等を使用することができる。これらの材料は単独で用いてもよいし、複数種を組み合わせて使用してもよい。また、これらの材料を、Siを含有するがOを含有しない材料(例えば各種シラン)と併用することもできる。
The insulating film that coats the soft magnetic powder is formed of a material that changes to SiO 2 regardless of the components of the atmospheric gas, which is transformed during heating due to magnetic annealing. In the present embodiment, since the material for the dust core is heated by magnetic annealing after the insulating film is formed, the insulating film is required to have heat resistance to the heating temperature (700 ° C. in this embodiment) at the time of magnetic annealing. Further, it is preferable to form an insulating film with a material having a small heat shrinkage during magnetic annealing. This is because if the heat shrinkage is too large, the insulation between the soft magnetic particles may be destroyed during magnetic annealing, and the soft magnetic particles may be energized. As a material satisfying the above-mentioned required characteristics, a material containing Si and O, for example, various silane coupling agents, various silicone oligomers, various silicone resins (for example, methyl silicone resin) and the like can be used. These materials may be used alone or in combination of two or more. Further, these materials can also be used in combination with a material containing Si but not O (for example, various silanes).
上記絶縁被膜の材料を軟磁性粉の全表面に付着させることで、軟磁性粉の表面を覆う絶縁被膜を形成することができる。絶縁被膜の形成方法は特に限定されず、例えばミキサーを使用した混合、加圧ニーダを使用した混錬、流動層を用いたコーティング、各種化成処理等を用いることができる。被覆方法は乾式および湿式の何れでもよい。
By adhering the material of the insulating film to the entire surface of the soft magnetic powder, an insulating film covering the surface of the soft magnetic powder can be formed. The method for forming the insulating film is not particularly limited, and for example, mixing using a mixer, kneading using a pressurized kneader, coating using a fluidized bed, various chemical conversion treatments, and the like can be used. The coating method may be either dry or wet.
成形工程では、調製工程で得た軟磁性粉を所定形状の金型で圧縮成形することにより、圧粉体を成形する。圧縮成形で使用する金型の長寿命化又は軟磁性粉末の流動性を確保する観点から、圧粉磁心材に固体潤滑剤を配合してもよい。
In the molding process, the soft magnetic powder obtained in the preparation process is compression-molded with a mold having a predetermined shape to form a green compact. From the viewpoint of extending the life of the mold used in compression molding or ensuring the fluidity of the soft magnetic powder, a solid lubricant may be added to the powder magnetic core material.
固体潤滑剤として、例えばステアリン酸亜鉛、ステアリン酸カルシウム、ステアリン酸マグネシウム、ステアリン酸バリウム、ステアリン酸リチウム、ステアリン酸鉄、ステアリン酸アルミニウム、ステアリン酸アミド、エチレンビスステアリン酸アミド、オレイン酸アミド、エチレンビスオレイン酸アミド、エルカ酸アミド、エチレンビスエルカ酸アミド、ラウリン酸アミド、パルチミン酸アミド、ベヘン酸アミド、エチレンビスカプリン酸アミド、エチレンビスヒドロキシステアリン酸アミド、モンタン酸アミド、ポリエチレン、酸化ポリエチレン、スターチ、二硫化モリブデン、二硫化タングステン、グラファイト、窒化ホウ素、ポリテトラフルオロエチレン、ラウロイルリシン、シアヌル酸メラミン等を使用することが可能である。上記固体潤滑剤は単独で使用してもよいし、数種類を組み合わせて使用してもよい。また、上記固定潤滑剤は、圧縮成形の前に原料粉末となる軟磁性粉末に配合しておいてもよいし、金型の壁面に付着させておいてもよい。この際の配合量(又は付着量)は、例えば全圧粉磁心用材料に対して0.3~2.0mass%程度が好ましい。固体潤滑剤を過剰に配合すると、圧粉体の低密度化を招き、磁気特性や強度の低下を招く。
Examples of solid lubricants include zinc stearate, calcium stearate, magnesium stearate, barium stearate, lithium stearate, iron stearate, aluminum stearate, stearic acid amide, ethylene bisstearate amide, oleic acid amide, and ethylene bisolein. Acid amide, erucic acid amide, ethylene bis-erucate amide, lauric acid amide, partimic acid amide, behenic acid amide, ethylene biscapric acid amide, ethylene bishydroxystearic acid amide, montanic acid amide, polyethylene, polyethylene oxide, starch, di It is possible to use molybdenum sulfide, tungsten disulfide, graphite, boron nitride, polytetrafluoroethylene, lauroyl lysine, melamine cyanurate, and the like. The solid lubricant may be used alone or in combination of several types. Further, the fixed lubricant may be blended with the soft magnetic powder as the raw material powder before the compression molding, or may be adhered to the wall surface of the mold. The blending amount (or adhesion amount) at this time is preferably, for example, about 0.3 to 2.0 mass% with respect to the material for total dust core. Excessive blending of solid lubricants leads to a decrease in the density of the green compact, which leads to a decrease in magnetic properties and strength.
磁気焼鈍工程では、成形工程で得た圧粉体の磁気ひずみを除去する目的で、当該圧粉体に磁気焼鈍処理を施す。この焼鈍処理の雰囲気ガスの種類は特に問わないが、軟磁性粉が酸化して磁気特性が劣化しないように、不活性または還元雰囲気ガスを使用することが望ましい。これらの雰囲気ガスには、例えば窒素、アルゴンなどの不活性ガス、水素などの還元性ガスが挙げられる。このように使用可能な雰囲気ガスの種類が酸化性のものに限定されない点が、先に述べた特許文献1と異なる。
In the magnetic annealing step, the green compact is subjected to magnetic annealing treatment for the purpose of removing the magnetostriction of the green compact obtained in the molding step. The type of atmosphere gas for this annealing treatment is not particularly limited, but it is desirable to use an inert or reducing atmosphere gas so that the soft magnetic powder does not oxidize and the magnetic properties do not deteriorate. Examples of these atmospheric gases include inert gases such as nitrogen and argon, and reducing gases such as hydrogen. As described above, the type of atmospheric gas that can be used is not limited to the oxidizing one, which is different from Patent Document 1 described above.
磁気焼鈍処理時の加熱温度(磁気焼鈍温度)は、対象となる軟磁性粉末の材質を考慮して設定するのがよく、例えばFe-Si系、Fe-Cr系、Fe-Si-Cr系を使用する場合、700℃以上かつ850℃以下に設定するのがよい。700℃を下回る温度では、磁気ひずみが十分に除去できず鉄損失を十分に抑制することができないためである。また、850℃を超えると、絶縁被膜の劣化により渦電流損失が増加するためである。なお、メチル系シリコーン樹脂を絶縁被膜の材料として用いる場合、圧粉磁心の高強度化の観点からは、磁気焼鈍温度を800℃以上かつ850℃以下に設定するのが好ましい。
The heating temperature (magnetic annealing temperature) during the magnetic annealing treatment should be set in consideration of the material of the target soft magnetic powder, for example, Fe-Si type, Fe-Cr type, Fe-Si-Cr type. When used, it is better to set it to 700 ° C. or higher and 850 ° C. or lower. This is because at temperatures below 700 ° C., magnetostriction cannot be sufficiently removed and iron loss cannot be sufficiently suppressed. Further, if the temperature exceeds 850 ° C., the eddy current loss increases due to the deterioration of the insulating film. When the methyl silicone resin is used as the material for the insulating coating, it is preferable to set the magnetic annealing temperature to 800 ° C. or higher and 850 ° C. or lower from the viewpoint of increasing the strength of the dust core.
磁気焼鈍の処理時間(磁気焼鈍温度の保持時間)は、圧粉磁心の内部まで十分に加熱できるように、圧粉磁心の大きさ、材料等を考慮して設定することが肝要である。
It is important to set the magnetic annealing processing time (holding time of the magnetic annealing temperature) in consideration of the size, material, etc. of the dust core so that the inside of the dust core can be sufficiently heated.
以上に述べた磁気焼鈍処理を施すことで、圧粉成形体内の磁気ひずみが除去され、ヒステリシス損失の低減を図ることができる。磁気焼鈍後の圧粉磁心は、図1に示すように、軟磁性粉に由来する軟磁性粒子10と、絶縁被膜に由来し、軟磁性粒子10を被覆する絶縁層11と、絶縁層11の間に形成された多数の空孔12とを有する多孔質状に形成される。絶縁層11は、磁気焼鈍時の加熱による絶縁被膜の変成によって形成され、主成分をSiO2としている。絶縁被膜を構成するその他の元素として、Na、K、Mg、Al、Caが含まれていてもよい。絶縁被膜の厚さは観察視野によってばらつきがあるが、平均的に0.05~0.6μmの厚さに調整すると、所望の特性を有する圧粉磁心を得ることができる。
By performing the magnetic annealing treatment described above, the magnetostriction in the powder compact is removed, and the hysteresis loss can be reduced. As shown in FIG. 1, the dust core after magnetic annealing is composed of the soft magnetic particles 10 derived from the soft magnetic powder, the insulating layer 11 derived from the insulating coating and covering the soft magnetic particles 10, and the insulating layer 11. It is formed in a porous form having a large number of pores 12 formed between them. The insulating layer 11 is formed by the transformation of the insulating film by heating during magnetic annealing, and the main component is SiO 2 . Na, K, Mg, Al, and Ca may be contained as other elements constituting the insulating film. The thickness of the insulating coating varies depending on the observation field of view, but if the thickness is adjusted to 0.05 to 0.6 μm on average, a dust core having desired characteristics can be obtained.
軟磁性粒子10に含まれる合金元素の種類および含有量は、磁気焼鈍前の軟磁性粉に含まれる合金元素の種類および含有量と実質的に同じとなる。従って軟磁性粒子10における合金元素の総含有量も2.0mass%以上、7.0mass%以下となる。このように軟磁性粒子10(軟磁性粉)に含まれる合金元素の総含有量が少なくなるため、粉末が硬くなることによる圧縮性の低下を回避することができ、これにより比透磁率の低下を回避することができる。また、絶縁層はSiO2を主成分とし、前記絶縁層の厚さを0.05μm~0.6μmとすることで、比透磁率の低下を抑制しつつ、高い絶縁性を得ることができる。SiO2を主成分とする絶縁層は、SiとOを含有する物質(シランカップリング剤、シリコーンオリゴマー、シリコーン樹脂等)を磁気焼鈍に伴って加熱することで得られるため、雰囲気ガスに頼ることなく絶縁層を形成することが可能となる。そのため、絶縁層の形成に際して酸素の侵入が必要とされず、厚みの大きい圧粉磁心の内部にも絶縁層を形成することが可能となる。
The type and content of the alloying element contained in the soft magnetic particles 10 are substantially the same as the type and content of the alloying element contained in the soft magnetic powder before magnetic annealing. Therefore, the total content of the alloying elements in the soft magnetic particles 10 is 2.0 mass% or more and 7.0 mass% or less. Since the total content of the alloying elements contained in the soft magnetic particles 10 (soft magnetic powder) is reduced in this way, it is possible to avoid a decrease in compressibility due to the hardening of the powder, and thereby a decrease in relative magnetic permeability. Can be avoided. Further, by using SiO 2 as a main component of the insulating layer and setting the thickness of the insulating layer to 0.05 μm to 0.6 μm, high insulating properties can be obtained while suppressing a decrease in relative magnetic permeability. Since the insulating layer containing SiO 2 as a main component is obtained by heating a substance containing Si and O (silane coupling agent, silicone oligomer, silicone resin, etc.) with magnetic annealing, it relies on atmospheric gas. It is possible to form an insulating layer without the need for silicon. Therefore, oxygen does not need to enter when forming the insulating layer, and it is possible to form the insulating layer even inside a thick dust core.
絶縁層11の厚さ(膜厚)が0.05μmを下回ると絶縁性が不十分となるおそれがあり、0.6μmを超えると圧粉磁心の比透磁率が低下する。この観点から、絶縁層の厚さは0.05μm~0.6μmとする。なお、絶縁層11の厚さは、圧粉磁心を切断して撮影した断面SEM写真(×10,000倍程度)から測定される。具体的には、SEM写真上で、Fe軟磁性粒子10間に存在する絶縁層11の厚さを異なる30視野で測定し、その平均値を厚さとすることができる。絶縁層11の厚さは、調製工程で軟磁性粉と混合するバインダーの量を調整することで変更することができる。
If the thickness (thickness) of the insulating layer 11 is less than 0.05 μm, the insulating property may be insufficient, and if it exceeds 0.6 μm, the relative magnetic permeability of the dust core decreases. From this point of view, the thickness of the insulating layer is set to 0.05 μm to 0.6 μm. The thickness of the insulating layer 11 is measured from a cross-sectional SEM photograph (about 10,000 times) taken by cutting the dust core. Specifically, the thickness of the insulating layer 11 existing between the Fe soft magnetic particles 10 can be measured in different 30 fields of view on the SEM photograph, and the average value thereof can be used as the thickness. The thickness of the insulating layer 11 can be changed by adjusting the amount of the binder mixed with the soft magnetic powder in the preparation step.
以上の手順で製作した圧粉磁心の体積抵抗率は1×106Ωcm以上であるのが好ましい。体積抵抗率が1×106Ωcmを下回ると、比抵抗が小さくなるために渦電流損失が大きくなる等の不具合を招く。なお、ここでいう「体積抵抗率」は、磁心の内部に1m3の立方体を考え、その相対する両面間に電圧を加えた場合の両面間の電気抵抗を意味する(JIS C2560-1)。
The volume resistivity of the dust core manufactured by the above procedure is preferably 1 × 10 6 Ωcm or more. If the volume resistivity is less than 1 × 10 6 Ωcm, the specific resistance becomes small and the eddy current loss becomes large. The "volume resistivity" here means the electrical resistance between both sides when a 1 m 3 cube is considered inside the magnetic core and a voltage is applied between the two sides thereof (JIS C2560-1).
[実施例]
以下、本発明の有用性を確認するために行った試験について説明する。 [Example]
Hereinafter, the tests conducted to confirm the usefulness of the present invention will be described.
以下、本発明の有用性を確認するために行った試験について説明する。 [Example]
Hereinafter, the tests conducted to confirm the usefulness of the present invention will be described.
<試験片の作製条件>
軟磁性粉の表面にシランカップリング剤を用いて絶縁被膜を形成し、この絶縁被膜付き軟磁性粉を、シリコーン樹脂を用いて造粒した。造粒後の粉末に適量の滑剤(固体潤滑剤)を配合し、室温下で所定の圧力で圧縮成形し、750℃の窒素温度で磁気焼鈍を施してエアギャップのないリング状の試験片(圧粉磁心)を製作した。なお、圧縮成形に際しては、熱処理後の密度(相対密度)が5.8~6.5g/cm3の高密度品(実施例1~4、比較例1~4)と、熱処理後の密度(相対密度)が5.1~5.4g/cm3の低密度品(実施例5、比較例5)の二種類を製作した。 <Conditions for preparing test pieces>
An insulating film was formed on the surface of the soft magnetic powder using a silane coupling agent, and the soft magnetic powder with the insulating film was granulated using a silicone resin. A ring-shaped test piece without an air gap (solid lubricant) is mixed with the powder after granulation, compression-molded at a predetermined pressure at room temperature, and magnetically annealed at a nitrogen temperature of 750 ° C. Powder magnetic core) was manufactured. In the case of compression molding, a high-density product (Examples 1 to 4 and Comparative Examples 1 to 4) having a density (relative density) of 5.8 to 6.5 g / cm 3 after heat treatment and a density after heat treatment (relative density) Two types of low-density products (Example 5 and Comparative Example 5) having a relative density of 5.1 to 5.4 g / cm 3 were produced.
軟磁性粉の表面にシランカップリング剤を用いて絶縁被膜を形成し、この絶縁被膜付き軟磁性粉を、シリコーン樹脂を用いて造粒した。造粒後の粉末に適量の滑剤(固体潤滑剤)を配合し、室温下で所定の圧力で圧縮成形し、750℃の窒素温度で磁気焼鈍を施してエアギャップのないリング状の試験片(圧粉磁心)を製作した。なお、圧縮成形に際しては、熱処理後の密度(相対密度)が5.8~6.5g/cm3の高密度品(実施例1~4、比較例1~4)と、熱処理後の密度(相対密度)が5.1~5.4g/cm3の低密度品(実施例5、比較例5)の二種類を製作した。 <Conditions for preparing test pieces>
An insulating film was formed on the surface of the soft magnetic powder using a silane coupling agent, and the soft magnetic powder with the insulating film was granulated using a silicone resin. A ring-shaped test piece without an air gap (solid lubricant) is mixed with the powder after granulation, compression-molded at a predetermined pressure at room temperature, and magnetically annealed at a nitrogen temperature of 750 ° C. Powder magnetic core) was manufactured. In the case of compression molding, a high-density product (Examples 1 to 4 and Comparative Examples 1 to 4) having a density (relative density) of 5.8 to 6.5 g / cm 3 after heat treatment and a density after heat treatment (relative density) Two types of low-density products (Example 5 and Comparative Example 5) having a relative density of 5.1 to 5.4 g / cm 3 were produced.
図2~図5に示すように、軟磁性粉として、実施例1,2,4ではFe-4.5Si-2.0Crが使用され、実施例3ではFe-2Siが使用され、実施例5ではFe-2.0Crが使用されている。また、軟磁性粉として、比較例1ではFe-3.5Si-4.5Crが使用され、比較例2ではFe-2Siが使用され、比較例4ではFe-4.5Si-2.0Crが使用され、比較例5ではFe-6.0Crが使用されている。
As shown in FIGS. 2 to 5, Fe-4.5Si-2.0Cr was used in Examples 1, 2 and 4 and Fe-2Si was used in Example 3 as the soft magnetic powder, and Example 5 was used. Fe-2.0Cr is used in. Further, as the soft magnetic powder, Fe-3.5Si-4.5Cr is used in Comparative Example 1, Fe-2Si is used in Comparative Example 2, and Fe-4.5Si-2.0Cr is used in Comparative Example 4. In Comparative Example 5, Fe-6.0Cr is used.
上記高密度品については、チップインダクタへの使用を想定して、評価項目を比透磁率、Q値、および体積抵抗率とした。比透磁率の測定に際しては、各試験片に10μHのインダクタンスとなるよう巻線を巻回した。Q値の測定に際しては、各試験片に二つの巻線を巻回した。
For the above high-density products, the evaluation items were relative permeability, Q value, and volume resistivity, assuming use in chip inductors. When measuring the relative permeability, a winding was wound around each test piece so as to have an inductance of 10 μH. When measuring the Q value, two windings were wound around each test piece.
比透磁率の測定は、JIS C2560-2:2006に規定の初透磁率の測定方法に則り、LCRメータ(5kHz、10mA、定電流モード)を用いて行った。
The relative magnetic permeability was measured using an LCR meter (5 kHz, 10 mA, constant current mode) in accordance with the method for measuring the initial magnetic permeability specified in JIS C2560-2: 2006.
Q値は、Q=2πfL/Rで求められる値である(fは周波数、Lは自己インダクタンス、Rは抵抗成分)。Q値が大きいほど周波数特性が良好である(損失が少ない)ことを意味する。Q値は、B-Hアナライザ(1MHz、20mA)を用いて測定した。
The Q value is a value obtained by Q = 2πfL / R (f is frequency, L is self-inductance, R is resistance component). The larger the Q value, the better the frequency characteristics (less loss). The Q value was measured using a BH analyzer (1 MHz, 20 mA).
体積抵抗率は、JIS C2139-3-1:2018に規定の測定方法に則って測定した。
The volume resistivity was measured according to the measuring method specified in JIS C2139-3-1: 2018.
測定結果を図2~図5に基づいて説明する。なお、比透磁率は60以上、Q値は45以上、体積抵抗率は1×106Ωcm以上を合格(〇)とした。
The measurement results will be described with reference to FIGS. 2 to 5. In addition, the relative magnetic permeability was 60 or more, the Q value was 45 or more, and the volume resistivity was 1 × 10 6 Ωcm or more.
図2に、軟磁性粉としてFe-4.5Si-2.0Crを使用した場合(実施例1)についての上記評価項目の測定結果を示す。
FIG. 2 shows the measurement results of the above evaluation items when Fe-4.5Si-2.0Cr was used as the soft magnetic powder (Example 1).
次に、実施例1に対して、軟磁性粉の種類、および平均粒径を変更した試験片について、各評価項目を測定した。その結果を実施例1と併せて図3に示す。なお、図2と図3では、実施例1の密度や比透磁率が僅かに異なっているが、これは別の試験片を使用したことによる品質のばらつきに起因する。
Next, for Example 1, each evaluation item was measured for the test piece in which the type of soft magnetic powder and the average particle size were changed. The results are shown in FIG. 3 together with Example 1. In addition, in FIG. 2 and FIG. 3, the density and the relative magnetic permeability of Example 1 are slightly different, but this is due to the variation in quality due to the use of different test pieces.
図3における実施例2は、軟磁性粉として、実施例1と同様にFe-4.5Si-2.0Crを使用する一方で、軟磁性粉の体積平均粒径を実施例1よりも大きくしたもの、実施例3は、軟磁性粉としてFe-2.0Siを使用する一方で、軟磁性粉の体積平均粒径を実施例1よりも小さくしたものである。比較例1は、軟磁性粉としてFe-3.5Si-4.5Crを使用したもの、比較例2は軟磁性粉としてFe-2.0Siを使用したもの(体積平均粒径は実施例1と同じ)、比較例3は軟磁性粉に代えて純鉄粉を使用したものである。
In Example 2 in FIG. 3, Fe-4.5Si-2.0Cr was used as the soft magnetic powder as in Example 1, while the volume average particle size of the soft magnetic powder was larger than that in Example 1. However, in Example 3, Fe-2.0Si is used as the soft magnetic powder, while the volume average particle size of the soft magnetic powder is smaller than that of Example 1. Comparative Example 1 uses Fe-3.5Si-4.5Cr as the soft magnetic powder, and Comparative Example 2 uses Fe-2.0Si as the soft magnetic powder (the volume average particle size is the same as that of Example 1). (Same as above), Comparative Example 3 uses pure iron powder instead of soft magnetic powder.
軟磁性粉における合金元素の総含有量を7.0mass%とした実施例1と、当該合金元素の総含有量を8.0mass(3.5mass%+4.5mass%)とした比較例1との対比から、軟磁性粉に含まれる合金元素量の多い比較例1では、比透磁率が目標値を下回ることが明らかとなった。また、実施例3と比較例3の対比から、軟磁性粉の合金元素の含有量が2.0mass%以上であれば、比透磁率、Q値、および体積抵抗率が全て目標値を超える値となることが理解できる。
Example 1 in which the total content of the alloying elements in the soft magnetic powder was 7.0 mass%, and Comparative Example 1 in which the total content of the alloying elements was 8.0 mass (3.5 mass% + 4.5 mass%). From the comparison, it was clarified that the specific magnetic permeability was lower than the target value in Comparative Example 1 in which the amount of alloying elements contained in the soft magnetic powder was large. Further, from the comparison between Example 3 and Comparative Example 3, if the content of the alloying element of the soft magnetic powder is 2.0 mass% or more, the relative permeability, the Q value, and the volume resistivity all exceed the target values. It can be understood that
また、図3から、軟磁性粉の粒径も磁気特性に影響を与えることが理解できる。具体的には、実施例1と実施例2の対比から、軟磁性粉の体積平均粒径を30μmまで粗大化しても評価項目は何れも目標値を超えることが理解できる。また、実施例3と比較例2の対比から、体積平均粒径を10μmまで小さくすれば、たとえ合金元素の含有量が下限値であってもQ値や体積抵抗率を改善できることもできる。従って、軟磁性粉の体積平均粒径が10μm以上、30μm以下の範囲内にあれば、全ての評価項目について目標値を確保することが可能となる。
Also, from FIG. 3, it can be understood that the particle size of the soft magnetic powder also affects the magnetic properties. Specifically, from the comparison between Example 1 and Example 2, it can be understood that even if the volume average particle size of the soft magnetic powder is coarsened to 30 μm, all the evaluation items exceed the target values. Further, from the comparison between Example 3 and Comparative Example 2, if the volume average particle size is reduced to 10 μm, the Q value and the volume resistivity can be improved even if the content of the alloying element is the lower limit. Therefore, if the volume average particle size of the soft magnetic powder is within the range of 10 μm or more and 30 μm or less, it is possible to secure the target value for all the evaluation items.
次に絶縁被膜の膜厚を変更した場合の評価項目の変化を測定した。その結果を図4に示す。
Next, the change in the evaluation items when the film thickness of the insulating film was changed was measured. The results are shown in FIG.
図4から明らかなように、絶縁層の膜厚が0.7μmでは、比透磁率が目標値を下回ることが明らかとなった。また、図3の実施例2からも明らかなように、膜厚が0.07μmでも比透磁率、Q値および体積抵抗率は目標値を超える。従って、絶縁層の厚さは0.05μm以上、0.6μm以下が好ましい。
As is clear from FIG. 4, it was clarified that the relative magnetic permeability was lower than the target value when the film thickness of the insulating layer was 0.7 μm. Further, as is clear from Example 2 of FIG. 3, even if the film thickness is 0.07 μm, the relative magnetic permeability, the Q value, and the volume resistivity exceed the target values. Therefore, the thickness of the insulating layer is preferably 0.05 μm or more and 0.6 μm or less.
以上の測定結果は高密度の圧粉磁心についてのものであるが、低密度の圧粉磁心についても同様の評価項目について測定を行った。
The above measurement results are for high-density dust cores, but the same evaluation items were also measured for low-density powder cores.
比透磁率の向上には、高密度化が有効であるが、例えば誘導加熱装置用の圧粉磁心(例えば高周波焼入れ用コア)では、焼入れ深さの調整を印加電流の周波数や圧粉磁心の比抵抗のほか、圧粉磁心の透磁率でも調整するため、チップインダクタでは採用されない低い比透磁率(比透磁率60未満)の圧粉磁心が必要とされる場合もある。従って、最低限の比透磁率(比透磁率15以上)を有する限り、低密度の圧粉磁心でも誘導加熱装置用として使用できる場合がある。以上を踏まえて、低密度品については、誘導加熱装置への使用を想定し、評価項目をQ値、体積抵抗率、圧環強さとした。圧環強さの測定は、JIS Z2507:2000の規定に則って行った。これ以外の測定方法は、上記と同様である。Q値は45以上、体積抵抗率は1×106Ωcm以上、圧環強さは40MPa以上を合格とした。
Higher density is effective for improving the relative permeability. For example, in a dust core for an induction heating device (for example, an induction hardening core), the quenching depth is adjusted by adjusting the frequency of the applied current and the powder core. In addition to the specific resistance, the magnetic permeability of the dust core is also adjusted, so a powder magnetic core with a low specific magnetic permeability (specific magnetic permeability less than 60), which is not used in chip inductors, may be required. Therefore, as long as it has the minimum relative permeability (specific permeability of 15 or more), even a low-density dust core may be used for an induction heating device. Based on the above, for low-density products, assuming use in induction heating equipment, the evaluation items were Q value, volume resistivity, and annular strength. The pressure ring strength was measured according to JIS Z2507: 2000. Other measurement methods are the same as described above. A Q value of 45 or more, a volume resistivity of 1 × 10 6 Ωcm or more, and a ring strength of 40 MPa or more were accepted.
図5の実施例5と比較例5の対比から、密度が5.4g/cm3以上であれば、誘導加熱装置用の圧粉磁心として必要とされる磁気特性(Q値、体積抵抗率、圧環強さ)を満たすことが明らかとなった。また、比透磁率は高密度品(実施例1~4)に比べれば小さくなるが、誘導加熱装置用として特に問題ない比透磁率が得られることも判明した。従って、磁気焼鈍後の圧粉磁心の密度は5.4g/cm3以上が好ましい。なお、圧粉成形時の金型との摩擦による金型寿命の低下を防止し、さらには圧粉磁心材同士の摩擦による絶縁被膜の劣化を防止するため、磁気焼鈍後の圧粉磁心の密度は6.5g/cm3以下が好ましい。
From the comparison between Example 5 and Comparative Example 5 in FIG. 5, if the density is 5.4 g / cm 3 or more, the magnetic characteristics (Q value, volume resistivity, required as the dust core for the induction heating device, It became clear that the pressure ring strength) was satisfied. Further, it was also found that the relative magnetic permeability is smaller than that of the high-density products (Examples 1 to 4), but the specific magnetic permeability that is not particularly problematic for the induction heating device can be obtained. Therefore, the density of the dust core after magnetic annealing is preferably 5.4 g / cm 3 or more. In addition, in order to prevent the mold life from being shortened due to friction with the mold during dust molding, and to prevent deterioration of the insulating film due to friction between the dust core materials, the density of the powder magnetic core after magnetic quenching. Is preferably 6.5 g / cm 3 or less.
なお、高い比透磁率が求められるチップインダクタ用の圧粉磁心では、図3の比較例1、図4の実施例4および比較例4の各測定結果から、6.0g/cm3以上の密度とするのが好ましい。
In the powder magnetic core for chip inductors, which requires high relative permeability, the density is 6.0 g / cm 3 or more from the measurement results of Comparative Example 1 in FIG. 3, Example 4 in FIG. 4, and Comparative Example 4. Is preferable.
10 軟磁性粒子
11 絶縁層
12 空孔 10 Softmagnetic particles 11 Insulation layer 12 Vents
11 絶縁層
12 空孔 10 Soft
Claims (6)
- 軟磁性粒子と、軟磁性粒子の表面に形成された絶縁層とを有する圧粉磁心において、
前記軟磁性粒子が、SiおよびCrの何れか一方又は双方を含む合金元素を含有し、前記軟磁性粒子における前記合金元素の総含有量が2.0mass%以上、7.0mass%以下であり、
前記絶縁層はSiO2を主成分とし、前記絶縁層の厚さが0.05μm~0.6μmであることを特徴とする圧粉磁心。 In a dust core having a soft magnetic particle and an insulating layer formed on the surface of the soft magnetic particle,
The soft magnetic particles contain an alloy element containing either one or both of Si and Cr, and the total content of the alloy element in the soft magnetic particles is 2.0 mass% or more and 7.0 mass% or less.
The insulating layer contains SiO 2 as a main component, and the thickness of the insulating layer is 0.05 μm to 0.6 μm. - 体積抵抗率が1×106Ωcm以上である請求項1に記載の圧粉磁心。 The dust core according to claim 1, wherein the volume resistivity is 1 × 10 6 Ωcm or more.
- 前記軟磁性粒子を形成する軟磁性粉の体積平均粒径が10~30μmである請求項1または2に記載の圧粉磁心。 The dust core according to claim 1 or 2, wherein the soft magnetic powder forming the soft magnetic particles has a volume average particle size of 10 to 30 μm.
- 5.4g/cm3以上、6.5g/cm3以下の密度を有する請求項1~3何れか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 3, which has a density of 5.4 g / cm 3 or more and 6.5 g / cm 3 or less.
- チップインダクタに用いられた請求項1~4何れか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 4 used for the chip inductor.
- 誘導加熱装置に用いられた請求項1~4何れか1項に記載の圧粉磁心。 The dust core according to any one of claims 1 to 4 used in the induction heating device.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-163707 | 2020-09-29 | ||
JP2020163707A JP2022055966A (en) | 2020-09-29 | 2020-09-29 | Powder magnetic core |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022070786A1 true WO2022070786A1 (en) | 2022-04-07 |
Family
ID=80950197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/032619 WO2022070786A1 (en) | 2020-09-29 | 2021-09-06 | Dust core |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2022055966A (en) |
WO (1) | WO2022070786A1 (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003297624A (en) * | 2002-04-02 | 2003-10-17 | Toyota Central Res & Dev Lab Inc | Dust core and its manufacturing method |
JP2020027812A (en) * | 2018-08-09 | 2020-02-20 | 太陽誘電株式会社 | Magnetic substrate including metal magnetic particles and electronic component including magnetic substrate |
-
2020
- 2020-09-29 JP JP2020163707A patent/JP2022055966A/en active Pending
-
2021
- 2021-09-06 WO PCT/JP2021/032619 patent/WO2022070786A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003297624A (en) * | 2002-04-02 | 2003-10-17 | Toyota Central Res & Dev Lab Inc | Dust core and its manufacturing method |
JP2020027812A (en) * | 2018-08-09 | 2020-02-20 | 太陽誘電株式会社 | Magnetic substrate including metal magnetic particles and electronic component including magnetic substrate |
Also Published As
Publication number | Publication date |
---|---|
JP2022055966A (en) | 2022-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5501970B2 (en) | Powder magnetic core and manufacturing method thereof | |
WO2010084812A1 (en) | Process for producing metallurgical powder, process for producing powder magnetic core, powder magnetic core, and coil component | |
CN107658090B (en) | Soft magnetic metal powder magnetic core and reactor provided with same | |
JP6601389B2 (en) | Magnetic core, coil component, and manufacturing method of magnetic core | |
US20120092106A1 (en) | Composite magnetic body and method for producing the same | |
JP5470683B2 (en) | Metal powder for dust core and method for producing dust core | |
EP2963659B1 (en) | Soft magnetic member and reactor | |
JP2003217919A (en) | Dust core and high-frequency reactor using the same | |
JP2013098384A (en) | Dust core | |
JP2010272604A (en) | Soft magnetic powder and dust core using the same, and inductor and method of manufacturing the same | |
KR101639960B1 (en) | Iron powder for powder magnetic core and process for producing powder magnetic core | |
JP2007231330A (en) | Methods for manufacturing metal powder for dust core and the dust core | |
JP6229166B2 (en) | Composite magnetic material for inductor and manufacturing method thereof | |
JP6519418B2 (en) | Soft magnetic metal dust core | |
JP7430041B2 (en) | Powder core and inductor | |
JP2003160847A (en) | Composite magnetic material, magnetic element using the same, and manufacture method therefor | |
WO2003060930A1 (en) | Powder magnetic core and high frequency reactor using the same | |
JP2011017057A (en) | Composite sintered compact of aluminum oxide and iron and method for producing the same | |
WO2022070786A1 (en) | Dust core | |
JP2023144594A (en) | powder magnetic core | |
JP2010238930A (en) | Composite soft magnetic material, method of manufacturing the composite soft magnetic material, and electromagnetic circuit component | |
JP7418194B2 (en) | Manufacturing method of powder magnetic core | |
JP2011211026A (en) | Composite magnetic material | |
WO2023079945A1 (en) | Powder magnetic core | |
JP7194098B2 (en) | Method for manufacturing dust core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21875088 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21875088 Country of ref document: EP Kind code of ref document: A1 |