Nothing Special   »   [go: up one dir, main page]

WO2022050664A1 - 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지 - Google Patents

양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지 Download PDF

Info

Publication number
WO2022050664A1
WO2022050664A1 PCT/KR2021/011697 KR2021011697W WO2022050664A1 WO 2022050664 A1 WO2022050664 A1 WO 2022050664A1 KR 2021011697 W KR2021011697 W KR 2021011697W WO 2022050664 A1 WO2022050664 A1 WO 2022050664A1
Authority
WO
WIPO (PCT)
Prior art keywords
active material
carbon
positive electrode
based particles
particles
Prior art date
Application number
PCT/KR2021/011697
Other languages
English (en)
French (fr)
Inventor
김태곤
곽민
김정길
김명수
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to CN202180051373.XA priority Critical patent/CN115917795A/zh
Priority to JP2023512413A priority patent/JP2023539171A/ja
Priority to EP21864624.8A priority patent/EP4184611A4/en
Priority to US18/021,458 priority patent/US20230343936A1/en
Publication of WO2022050664A1 publication Critical patent/WO2022050664A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention includes a core and a coating layer disposed on the core, wherein the core includes Li 1+x M y O 2+z , M is Ni, Co, Mn, Fe, P, Al, Mg, Ca , Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, and at least one element selected from the group consisting of V, -0.2 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 2 , 0 ⁇ z ⁇ 2, the coating layer includes carbon-based particles, the carbon-based particles include a structure in which a plurality of graphene sheets are connected to each other, and an anode having a D/G peak ratio of 0.9 to 1.3 when measuring a Raman spectrum It relates to an active material, a positive electrode including the positive electrode active material, and a secondary battery including the positive electrode.
  • a lithium secondary battery includes a positive electrode including a positive electrode active material capable of insertion/desorption of lithium ions, a negative electrode including a negative electrode active material capable of insertion/deintercalation of lithium ions, and an electrode having a microporous separator interposed between the positive electrode and the negative electrode It means a battery in which a non-aqueous electrolyte containing lithium ions is included in the assembly.
  • a lithium transition metal oxide may be used as the positive electrode active material, and cobalt, nickel, manganese, etc. are used as the transition metal. Among them, in order to replace the use of expensive cobalt, a lithium transition metal oxide having a high content of inexpensive nickel or manganese is mainly used. In particular, lithium transition metal oxide having a high nickel content has advantages in that the energy density is high and the price is not high.
  • One problem to be solved by the present invention is to improve the electrical conductivity of the positive electrode active material, effectively block the contact of lithium transition metal oxide and moisture in the positive electrode active material to minimize the collapse of the surface structure of the lithium transition metal oxide,
  • An object of the present invention is to provide a cathode active material capable of minimizing the elution of a transition metal by minimizing the change in the metal oxidation number.
  • Another object to be solved by the present invention is to provide a positive electrode including the positive electrode active material, and a secondary battery including the positive electrode and having improved input/output characteristics and lifespan characteristics.
  • the present invention includes a core and a coating layer disposed on the core, wherein the core includes Li 1+x M y O 2+z , and M is Ni, Co, Mn, Fe, P , Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, and at least one element selected from the group consisting of V, -0.2 ⁇ x ⁇ 0.2 , 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2, the coating layer includes carbon-based particles, the carbon-based particles include a structure in which a plurality of graphene sheets are connected to each other, and D/G peak when measuring Raman spectrum A positive electrode active material having a ratio of 0.9 to 1.3 is provided.
  • a positive electrode including the positive electrode active material is provided.
  • a secondary battery including the positive electrode.
  • the contact between the core and external moisture is effectively blocked, the structural collapse of the core can be prevented, and thus the input/output characteristics and lifespan characteristics of the battery can be improved.
  • the coating layer including the carbon-based particles may be uniformly formed to have a thin thickness, the electrical conductivity of the positive electrode active material may be greatly improved, and thus the input/output characteristics of the battery may be improved.
  • the metal oxidation number of the transition metal in the core is prevented from changing excessively, the transition metal elution problem of the positive electrode active material is suppressed, and the input/output characteristics and lifespan characteristics of the battery are improved can be
  • FIG. 1 is a schematic diagram and a TEM photograph showing a process of forming a graphene sheet of preliminary carbon-based particles of Preparation Example 1.
  • Example 6 is a SEM photograph of Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 used in Example 1.
  • Example 7 is a SEM photograph of the positive active material of Example 1 of the present invention.
  • the average particle diameter (D 50 ) may be defined as a particle diameter corresponding to 50% of the cumulative volume in the particle size distribution curve of the particles.
  • the average particle diameter (D 50 ) may be measured using, for example, a laser diffraction method.
  • the laser diffraction method can measure a particle diameter of several mm from a submicron region, and can obtain high reproducibility and high resolution results.
  • the positive active material includes a core and a coating layer disposed on the core, wherein the core includes Li 1+x M y O 2+z , M is Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, and at least one element selected from the group consisting of V, -0.2 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2, the coating layer includes carbon-based particles, the carbon-based particles include a structure in which a plurality of graphene sheets are connected to each other, and D when measuring a Raman spectrum
  • the /G peak ratio may be between 0.9 and 1.3.
  • the core includes Li 1+x M y O 2+z , and M is Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si , may be at least one element selected from the group consisting of Na, K, Mo, and V, and may be -0.2 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2.
  • x may satisfy -0.1 ⁇ x ⁇ 0.1, more preferably 0 ⁇ x ⁇ 0.1.
  • the Li 1+x M y O 2+z may include Li 1+x [Ni a Co b M 1 c M 2 d ]O 2 or the Li 1+x [Ni a Co b M 1 c M 2 d ]O 2 .
  • M 1 may be at least one of Al and Mn, and M 2 is Fe, P, Mg, Ca, It may be at least one element selected from the group consisting of Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, and V, wherein a is 0 ⁇ a ⁇ 1, preferably may satisfy 0.3 ⁇ a ⁇ 1, more preferably 0.5 ⁇ a ⁇ 1, wherein b satisfies 0 ⁇ b ⁇ 1, preferably 0 ⁇ b ⁇ 0.7, more preferably 0 ⁇ b ⁇ 0.5 and c may satisfy 0 ⁇ c ⁇ 1, preferably 0 ⁇ c ⁇ 0.7, more preferably 0 ⁇ c ⁇ 0.5, wherein d is 0 ⁇ d ⁇ 0.2, preferably 0 ⁇ d ⁇ 0.1 may be satisfied.
  • the Li 1+x M y O 2+z is LiCoO 2 , LiNiO 2 , LiMnO 2 , Li[Ni 0.5 Co 0.3 Mn 0.2 ]O 2 , Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 , Li[Ni 0.7 Co 0.1 Mn 0.2 ]O 2 , Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 , Li[Ni 0.9 Co 0.05 Mn 0.05 ]O 2 , LiMn 2 O 4 , LiFePO 4 , 0.5Li 2 MnO 3 0.5Li[Mn 0.4 Ni 0.3 Co 0.3 ]O 2 It may include at least one selected from the group consisting of.
  • the Li 1+x M y O 2+z is the Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 , Li[Ni 0.7 Co 0.1 Mn 0.2 ]O 2 , Li[Ni 0.8 Co 0.1 Mn 0.1 ]O 2 , Li[Ni 0.9 Co 0.05 Mn 0.05 ]O 2 may include any one. Since the core contains Li 1+x M y O 2+z , lithium can be sufficiently supplied to the negative electrode, and after the first cycle, Li 1+x M y O 2+z does not cause deterioration of overall battery performance. Since it exhibits electrochemical activity, the loss of battery capacity due to the irreversible capacity of the negative electrode can be eliminated.
  • the Li 1+x M y O 2+z may be in the form of secondary particles formed by bonding or assembling primary particles, or alternatively, may be in the form of single particles.
  • the energy density of the positive electrode may be improved, and the contact area between the Li 1+x M y O 2+z and the electrolyte is wide and the Li 1 Since the movement distance of lithium ions in +x M y O 2+z is short, the capacity and output characteristics of the battery may be improved.
  • the coating layer to be described later is generally uniformly spread over the surface of the primary particles of Li 1+x M y O 2+z and the surfaces of secondary particles including the concave spaces between the primary particles. can be formed.
  • a coating layer to be described later may be formed on the surface of the Li 1+x M y O 2+z to have a uniform thickness and shape.
  • the coating layer may be disposed on the core. Specifically, the coating layer may cover at least a portion of the surface of the core.
  • the coating layer may include carbon-based particles.
  • the carbon-based particles may include a structure in which a plurality of graphene sheets are connected.
  • the graphene sheet means a carbonaceous structure having a thickness of 20 nm or less, flexibility, and a thin film form.
  • at least two or more graphene sheets may be directly connected to each other or indirectly connected to each other. Since the carbon-based particles include a structure in which a plurality of graphene sheets are connected, the surface of the core may be smoothly covered by the carbon-based particles. That is, since most of the surface of the core is covered by the carbon-based particles, contact between the core and external moisture is effectively blocked, thereby preventing structural collapse of the core.
  • the carbon-based particles may include graphene sheets having different plane directions.
  • the carbon-based particles may be in the form of secondary particles formed by connecting a plurality of graphene sheets.
  • the plurality of graphene sheets may be connected to each other to form long-chain secondary particles, and more specifically, the chain-shaped secondary particles partially form a region in which the plurality of graphene sheets are aggregated.
  • the secondary particles have a unique chain-like connection structure, the carbon-based particles have excellent electrical conductivity and thermal conductivity.
  • the carbon-based particles may further include a connection part connected to at least some of the graphene sheets among the plurality of graphene sheets.
  • a carbonaceous material such as carbon black is ruptured by continuous oxidation to form the graphene sheet, and there may be a portion that does not rupture and maintains its original shape. there is.
  • the part maintaining the shape may correspond to the connection part.
  • the connection part may be in a non-graphene form, and the non-graphene form may mean a lump form having a thickness greater than that of the graphene sheet, unlike the graphene sheet described above.
  • each of the plurality of graphene sheets may be directly connected to each other.
  • at least some of the graphene sheets among the plurality of graphene sheets may be connected to each other through the connection part, and specifically, at least a portion of each of the plurality of graphene sheets may be connected to the connection part.
  • the carbon-based particles may include both of the above-mentioned connecting methods.
  • the carbon-based particles are formed while the preliminary carbon-based particles are coated on the core.
  • the preliminary carbon-based particles include carbon black in the form of particles close to spherical, such as acetylene black, furnace black, thermal black, channel black, and lamps.
  • the black (lamp black) may be formed by deforming the shape by oxidation treatment.
  • the tissue structure of carbon black is modified by oxidation treatment to form preliminary carbon-based particles including a plurality of graphene sheets, and the preliminary carbon-based particles are coated on a core to form carbon It can be a system particle.
  • carbon black is in the form of secondary particles
  • carbon-based particles in the form of secondary particles in which particles including the plurality of graphene sheets are aggregated may be formed.
  • the average thickness of the graphene sheet may be 10 nm or less, specifically 0.34 nm to 10 nm, and more specifically 0.34 nm to 5 nm. When the above range is satisfied, flexibility specific to the graphene sheet may be expressed, and surface contact by the graphene sheet may be improved, and thus the carbon-based particles may have excellent electrical conductivity.
  • the graphene sheet may be in a form in which 10 or less graphene layers are stacked.
  • the average thickness of the graphene sheet may be confirmed through TEM analysis, and specifically, the average value may be obtained after confirming the thickness of 100 graphene sheets.
  • the longest length (lateral size) of the graphene sheet may be 10 nm to 500 nm, specifically 10 nm to 300 nm or less, more specifically 10 nm to 100 nm, for example, 50 nm to 90 nm.
  • the longest length of the graphene sheet may be controlled according to the degree of heat treatment, and for example, a separate heat treatment may be additionally performed in an inert atmosphere after the oxidation treatment process to control the longest length of the graphene sheet.
  • ions in the electrolyte may be smoothly diffused in the electrode. Accordingly, the fast charging characteristic of the battery may be improved, and the rate characteristic may also be improved.
  • the longest length of the graphene sheet means the average of the sizes of 100 graphene sheets observed through SEM or TEM, where the size is a line connecting one point to another point in one graphene sheet. represents the longest length.
  • the thickness of the coating layer may be 1 nm to 500 nm, specifically 10 nm to 300 nm, and more specifically 10 nm to 100 nm.
  • the transition metal elution is suppressed by minimizing the change in the metal oxidation number of the transition metal in the Li 1+x M y O 2+z without inhibiting the diffusion for insertion and desorption of lithium ions. can do. Accordingly, input/output characteristics and lifespan characteristics of the battery may be improved.
  • the weight ratio of the core and the coating layer may be 99.9:0.1 to 90:10, specifically 99.9:0.1 to 95:5, and more specifically 99.9:0.1 to 99:1.
  • the transition metal elution is suppressed by minimizing the change in the metal oxidation number of the transition metal in the Li 1+x M y O 2+z without inhibiting the diffusion for insertion and desorption of lithium ions. can do. Accordingly, input/output characteristics and lifespan characteristics of the battery may be improved.
  • the D/G peak ratio may be 0.9 to 1.3, specifically 0.9 to 1.1, and more specifically 0.9 to 1.0.
  • the G peak near 1590 cm ⁇ 1 is from the E 2g vibrational mode of the sp 2 bond of carbon, and the D peak near 1350 cm ⁇ 1 appears when there is a defect in the sp 2 bond of carbon.
  • the D/G peak ratio is satisfied, it means that the carbon-based particles having a high graphitization degree are coated on the surface of the core by a strong shear force. Accordingly, when the carbon-based particles are used, the capacity and electrical characteristics of the battery may be improved due to the high electrical conductivity of the carbon-based particles.
  • the specific surface area of the positive active material may be 2m 2 /g to 8m 2 /g, specifically, 2m 2 /g to 5m 2 /g.
  • the specific surface area of the positive electrode active material is less than 2 m 2 /g, the energy density of the positive electrode may decrease.
  • the specific surface area of the positive electrode active material exceeds 8 m 2 /g, an electrolyte side reaction may excessively occur. Accordingly, when the specific surface area of the positive electrode active material is 2m 2 /g to 8m 2 /g, the electrolyte side reaction may be suppressed while maintaining the energy density.
  • the powder electrical conductivity of the positive electrode active material may be 1.0 ⁇ 10 -3 s/cm to 1.0 ⁇ 10 s/cm, specifically 1.0 ⁇ 10 -3 s/cm to 1.0 ⁇ 10 -1 s/cm, and more Specifically, it may be 1.0 ⁇ 10 -2 s/cm to 1.0 ⁇ 10 -1 s/cm.
  • the carbon-based particles are disposed on the core through a mechanofusion method capable of applying a strong shear force. At this time, since a dense coating layer is formed to the extent that the rearrangement of the carbon structure in the carbon-based particles proceeds, the electrical conductivity of the powder may be derived.
  • the powder electrical conductivity may be measured by a 4-probe powder resistance measurement method.
  • the positive electrode according to another embodiment of the present invention may include the positive electrode active material of the above-described embodiment.
  • the description of the positive active material is the same as described above, and thus will be omitted.
  • the positive electrode may include a current collector and a positive electrode active material layer disposed on the current collector and including a positive electrode active material. Furthermore, each of the positive active material layers may further include a binder.
  • the current collector may have conductivity without causing a chemical change in the battery, and is not particularly limited.
  • the current collector copper, stainless steel, aluminum, nickel, titanium, sintered carbon, or a surface treated with carbon, nickel, titanium, silver, etc. on the surface of aluminum or stainless steel may be used.
  • a transition metal that adsorbs carbon well such as copper or nickel, may be used as the current collector.
  • the positive electrode active material layer may be disposed on one or both surfaces of the current collector, respectively.
  • the binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethylmethacrylate (polymethylmethacrylate), poly Vinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), alcohol It may include at least one selected from the group consisting of ponified EPDM, styrene butadiene rubber (SBR), fluororubber, polyacrylic acid, and a material in which hydrogen is substituted with Li, Na or Ca, etc., It may also include various copolymers thereof.
  • PVDF-co-HFP polyvinyliden
  • a secondary battery according to another embodiment of the present invention may include a negative electrode, a positive electrode, a separator interposed between the positive electrode and the negative electrode, and an electrolyte, wherein the positive electrode is the positive electrode of the above-described embodiment. Accordingly, a description of the anode will be omitted.
  • the negative electrode may include a negative electrode current collector and a negative electrode active material layer disposed on one or both surfaces of the negative electrode current collector.
  • the negative electrode current collector may have conductivity without causing chemical change in the battery, and is not particularly limited.
  • the negative electrode current collector copper, stainless steel, aluminum, nickel, titanium, calcined carbon, or a surface treated with carbon, nickel, titanium, silver, etc. on the surface of aluminum or stainless steel may be used.
  • a transition metal that adsorbs carbon well, such as copper or nickel may be used as the current collector.
  • the anode active material layer may include an anode active material, an anode conductive material, and an anode binder.
  • the negative active material may be graphite-based active material particles or silicon-based active material particles.
  • the graphite-based active material particles may use at least one selected from the group consisting of artificial graphite, natural graphite, graphitized carbon fiber and graphitized mesocarbon microbeads, and in particular, when artificial graphite is used, rate characteristics can be improved. .
  • the silicon-based active material particles are Si, SiO x (0 ⁇ x ⁇ 2), a Si-C composite, and a Si-Y alloy (where Y is an alkali metal, alkaline earth metal, transition metal, group 13 element, group 14 element, rare earth element) and one or more selected from the group consisting of) can be used, and in particular, when using Si and SiO x (0 ⁇ x ⁇ 2), a high capacity of the battery can be derived. there is.
  • the negative electrode binder is polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-co-HFP), polyvinylidene fluoride (polyvinylidenefluoride), polyacrylonitrile (polyacrylonitrile), polymethyl methacrylate (polymethylmethacrylate), Polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, polyacrylic acid, ethylene-propylene-diene monomer (EPDM), It may include at least one selected from the group consisting of sulfonated EPDM, styrene butadiene rubber (SBR), fluororubber, polyacrylic acid, and a material in which hydrogen is substituted with Li, Na or Ca, etc. , may also include various copolymers thereof.
  • the anode conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite
  • carbon black such as acetylene black, Ketjen black, channel black, farness black, lamp black, and thermal black
  • conductive fibers such as carbon fibers and metal fibers
  • conductive tubes such as carbon nanotubes
  • metal powders such as fluorocarbon, aluminum, and nickel powder
  • conductive whiskers such as zinc oxide and potassium titanate
  • conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the separator separates the anode and the anode and provides a passage for lithium ions to move, and it can be used without any particular limitation as long as it is normally used as a separator in a secondary battery. Excellent is preferred.
  • a porous polymer film for example, a porous polymer film made of a polyolefin-based polymer such as ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer, and ethylene/methacrylate copolymer, or these A laminate structure of two or more layers of may be used.
  • a conventional porous nonwoven fabric for example, a nonwoven fabric made of high melting point glass fiber, polyethylene terephthalate fiber, etc. may be used.
  • a coated separator including a ceramic component or a polymer material may be used, and may optionally be used in a single-layer or multi-layer structure.
  • the electrolyte may include, but is not limited to, an organic liquid electrolyte, an inorganic liquid electrolyte, a solid polymer electrolyte, a gel polymer electrolyte, a solid inorganic electrolyte, and a molten inorganic electrolyte, which can be used in manufacturing a lithium secondary battery.
  • the electrolyte may include a non-aqueous organic solvent and a metal salt.
  • non-aqueous organic solvent for example, N-methyl-2-pyrrolidinone, propylene carbonate, ethylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, gamma-butylolactone, 1,2-dime ethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, dimethylformamide, dioxolane, acetonitrile, nitromethane, methyl formate, methyl acetate, phosphoric acid Triester, trimethoxymethane, dioxolane derivative, sulfolane, methyl sulfolane, 1,3-dimethyl-2-imidazolidinone, propylene carbonate derivative, tetrahydrofuran derivative, ether, methyl pyropionate, propionic acid
  • An aprotic organic solvent such as ethyl may be
  • ethylene carbonate and propylene carbonate which are cyclic carbonates
  • an electrolyte having high electrical conductivity can be prepared, which can be more preferably used.
  • a lithium salt may be used as the metal salt, and the lithium salt is a material readily soluble in the non-aqueous electrolyte.
  • the lithium salt is a material readily soluble in the non-aqueous electrolyte.
  • haloalkylene carbonate-based compounds such as difluoroethylene carbonate, pyridine, tri Ethyl phosphite, triethanolamine, cyclic ether, ethylene diamine, n-glyme, hexaphosphoric acid triamide, nitrobenzene derivative, sulfur, quinone imine dye, N-substituted oxazolidinone, N,N-substituted imida
  • One or more additives such as taxdine, ethylene glycol dialkyl ether, ammonium salt, pyrrole, 2-methoxyethanol or aluminum trichloride may be further included.
  • a battery module including the secondary battery as a unit cell and a battery pack including the same. Since the battery module and the battery pack include the secondary battery having high capacity, high rate-rate characteristics and cycle characteristics, a medium-to-large device selected from the group consisting of electric vehicles, hybrid electric vehicles, plug-in hybrid electric vehicles, and power storage systems can be used as a power source for
  • a method of manufacturing a positive active material includes preparing preliminary carbon-based particles and coating the preliminary carbon-based particles on the core to form a coating layer,
  • the step of coating the preliminary carbon-based particles to form a coating layer including carbon-based particles includes mixing the preliminary carbon-based particles with the core and then applying a mechanofusion method, wherein the core is Li 1+ Including x M y O 2+z , M is Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo , and at least one element selected from the group consisting of V, 0 ⁇ x ⁇ 5, 0 ⁇ y ⁇ 2, 0 ⁇ z ⁇ 2, wherein the carbon-based particles have a structure in which a plurality of graphene sheets are connected to each other.
  • the positive active material of the above-described embodiment may be formed by the manufacturing method.
  • the core, the coating layer, the carbon-based particles, etc. finally included in the positive active material are the same as the core, the coating layer, the carbon-based particles, etc. of the above-described embodiment.
  • the preparing of the preliminary carbonaceous particles includes preparing a carbonaceous material and modifying the carbonaceous material by oxidation treatment, wherein the step of modifying the carbonaceous material by oxidation treatment includes: a) the carbonaceous material subjecting the material to a first heat treatment at a temperature of 200°C to 800°C in at least one of an oxygen atmosphere and an air atmosphere; and b) reacting the carbonaceous material with acidic vapor at a temperature of 120°C to 300°C.
  • the preparing of the preliminary carbon-based particles may include preparing a carbonaceous material and modifying the carbonaceous material by oxidation treatment.
  • the carbonaceous material may be carbon black.
  • the carbonaceous material may be at least one selected from the group consisting of acetylene black, furnace black, summer black, channel black, and lamp black. More specifically, the carbonaceous material may be acetylene black, which is manufactured at the highest temperature and has excellent graphitization degree.
  • the preparing of the carbonaceous material may include thermally decomposing acetylene gas, and carbon black, specifically acetylene black, may be formed through the thermal decomposition.
  • the acetylene gas may be a high-purity acetylene gas, specifically acetylene gas having a purity of 95% or more, and more specifically, an acetylene gas having a purity of 98% or more.
  • the thermal decomposition may be to pyrolyze the acetylene gas at a temperature of 1500 °C or higher, specifically 1500 °C to 2200 °C, and more specifically 1500 °C to 2000 °C.
  • the graphitization degree of the prepared carbonaceous material may be high, and thus the graphitization degree of the prepared preliminary carbonaceous particles may also be high. Accordingly, the electrical conductivity of the preliminary carbon-based particles may be improved.
  • the carbonaceous material may be carbon black, but among them, acetylene black may be preferable in terms of the following.
  • the graphene sheet including the carbon-based particles included in the coating layer of the positive electrode active material of the present invention may be formed by deforming the surface of the carbonaceous material by oxidation treatment.
  • Acetylene black formed by the thermal decomposition has a high surface graphitization degree. Therefore, compared to the oxidation treatment of other carbon blacks necessarily including some oxygen functional groups on the surface, the structure of the graphene sheet may be smoothly formed when the acetylene black is subjected to oxidation treatment.
  • the thermal decomposition may be to control the internal temperature of the reactor within the above temperature range, then inject acetylene gas into the reactor, and instantaneously thermally decompose.
  • air, oxygen, H 2 O, and the like may be additionally added to control the density of the preliminary carbon-based particles, an oxygen functional group, and the like, and a connection structure in the preliminary carbon-based particles may be controlled.
  • the step of transforming the carbonaceous material by oxidation treatment includes: a) performing a first heat treatment of the carbonaceous material at a heat treatment temperature of 200° C. to 800° C. in at least one of an oxygen atmosphere and an air atmosphere (step a) ; and b) reacting the carbonaceous material with an acidic vapor at 120° C. to 300° C. (step b).
  • At least one of the oxygen atmosphere and the air atmosphere may be formed by introducing oxygen and/or air into the reactor in which the carbonaceous material is accommodated.
  • the graphene sheet structure may be formed by the oxidation process in the reactor according to the setting of the appropriate inflow amount and rate of oxygen or air, the reaction temperature, and the reaction time during the first heat treatment.
  • the conditions of the oxidation process may vary based on differences in density, oxygen functional group content, and the like of the carbonaceous material.
  • the first heat treatment may be performed by controlling the temperature of the reactor in the reactor in which the carbonaceous material is accommodated.
  • the first heat treatment may be heat treatment at a heat treatment temperature of 200 °C to 800 °C, specifically, heat treatment at a heat treatment temperature of 200 °C to 450 °C.
  • the carbonaceous material may be prevented from being oxidized too rapidly, and a graphene sheet having a desirable size may be formed.
  • the first heat treatment may be performed for 1 hour to 50 hours.
  • the carbonaceous material may be oxidized by reacting with an acidic vapor to form graphene.
  • the acid vapor may be a vapor derived from an acid solution such as HCl, HNO 3 .
  • the temperature of the acid vapor reacting with the carbonaceous material may be 120 °C to 300 °C.
  • a second heat treatment process in an inert atmosphere may be additionally performed in order to increase the size of the formed graphene sheet.
  • the oxidation treatment is performed in an inert atmosphere before forming a coating layer including the carbon-based particles by coating the preliminary carbon-based particles on the core.
  • the method may further include performing a second heat treatment on the treated and deformed carbonaceous material at a temperature of 500° C. or higher.
  • the inert atmosphere may be formed of any one gas selected from the group consisting of vacuum, helium, argon, and nitrogen.
  • the second heat treatment temperature may be 500°C or higher, specifically 600°C to 1600°C.
  • a mechanism for forming the preliminary carbon-based particles described in the present invention by the step of preparing the preliminary carbon-based particles may be as follows.
  • the average size of spherical primary particles is 50 nm or less, and oxidation treatment under specific conditions for spherical or chain carbon black, specifically acetylene black, in which the primary particles share a structure is going on
  • penetration of an oxidizing agent such as oxygen and acid vapor and oxidation reaction occur from a defect portion such as a grain boundary or dislocation existing in the fine unit structure of the carbon black.
  • the oxidizing agent penetrates into the microstructure inside the carbon black and oxidation proceeds.
  • an oxidation reaction occurs rapidly inside.
  • the internal carbons are oxidized to gases such as CO, CO 2 , CH 4 , and the primary particles are changed to a hollow type.
  • the surface structure of the hollow primary particles is destroyed by the continuous oxidation treatment, most of the structural stress remaining in the spherical primary particles can also be resolved, and graphene sheets appear in this process.
  • step a is more preferable than step b in that it can further accelerate the transformation process.
  • the preliminary carbon-based particles may have a specific surface area (m 2 /g) of the preliminary carbon-based particles measured by the nitrogen adsorption BET method of 200 m 2 /g or more, specifically 300 m 2 /g to 1100 m 2 /g, and , more specifically 500m 2 /g to 900m 2 /g may be.
  • m 2 /g specific surface area of the preliminary carbon-based particles measured by the nitrogen adsorption BET method of 200 m 2 /g or more, specifically 300 m 2 /g to 1100 m 2 /g, and , more specifically 500m 2 /g to 900m 2 /g may be.
  • the specific surface area range it means that the area of the graphene sheet in the preliminary carbon-based particles is large, and accordingly, even if the content of the conductive material in the electrode is small, the conductivity of the electrode can be secured.
  • contact between the core and external moisture is effectively blocked, so that structural collapse of the core can be prevented. Accordingly, the
  • the oxygen content of the preliminary carbon-based particles may be 1 wt% or more in the preliminary carbon-based particles, specifically 1 wt% to 10 wt%, and more specifically 1 wt% to 5 wt%.
  • the preliminary carbon-based particles may be smoothly dispersed in the dispersion, and thus the coating layer may be more evenly formed.
  • the oxygen content may be measured by a method of C, H, O, and N elemental analysis.
  • the oxygen content may be achieved in the course of oxidizing carbon black.
  • an oxygen-containing functional group may be formed on the surface of the preliminary carbon-based particle by the oxidation treatment.
  • the oxygen-containing functional group may be at least one selected from the group consisting of a carboxyl group, a hydroxyl group, a carbonyl group, and the like.
  • the oxygen content may be further controlled by heat-treating the preliminary carbon-based particles in an inert atmosphere.
  • the preliminary carbon-based particles are different from general graphene. That is, in the case of general graphene, since it is manufactured by pulverizing particles such as artificial graphite, the oxygen content cannot be as high as 1% by weight or more, and the oxygen content is very low or only 0.
  • graphene is formed one by one (graphene sheet), but according to the present invention, preliminary carbon-based particles including a structure in which a plurality of graphene sheets are connected are formed. is formed
  • the preliminary carbon-based particles may have a higher degree of graphitization than carbon black before oxidation treatment. Specifically, the high structural stress caused by the surface tension of the carbon black may be partially resolved while the graphene sheets are formed, so that the graphitization degree of the prepared preliminary carbon-based particles may increase.
  • the preliminary carbon-based particles may have a value calculated by Equation 1 below 0.12, specifically 0 to 0.1, and more specifically 0 to 0.07.
  • Equation 1 a is the specific surface area (m 2 /g) of the preliminary carbon-based particles measured by the nitrogen adsorption BET method, and b is the iodine adsorption value (mg/g) of the preliminary carbon-based particles.
  • the preliminary carbon-based particles include a pore structure inside or between particles, a large number of small-sized nitrogen (N 2 ) molecules may be adsorbed in the pores.
  • iodine (I 2 ) which is a relatively large molecule, is difficult to enter into the pores compared to nitrogen, so the iodine adsorption value does not appear significantly. That is, when the pore structure is present, the value according to Equation 1 increases.
  • the preliminary carbon-based particles when the value according to Equation 1 is 0.12 or less, it means that the preliminary carbon-based particles do not include micropores. That is, when there are no pores, the degree of adsorption of iodine and the degree of adsorption of nitrogen are similar, and thus the value of Equation 1 becomes smaller.
  • the surface of the preliminary carbon-based particles is a smooth surface (free surface).
  • most carbon black is transformed into a hollow structure by oxidation treatment, and graphene sheets are formed as the structure is destroyed by continuous oxidation treatment. At this time, the graphene sheets may be formed in a shape that opens toward the outside without forming a pore structure.
  • the step of coating the preliminary carbon-based particles on the core to form a coating layer including carbon-based particles includes mixing the preliminary carbon-based particles with the core and then applying a mechanofusion method.
  • the mechanofusion method may be performed using Hosakawa Micron's Nobilta equipment. After the mixture of the preliminary carbon-based particles and the core is put into the container, the container is rotated to move the mixture to the inner wall of the container by centrifugal force. After that, a strong shearing force is applied by an arm head that is close to the inner wall of the container with a small gap, and the preliminary carbon-based particles are strongly coated on the core by interaction between the surfaces of the mixtures. A coating layer including particles is formed, and the preliminary carbon-based particles may be transformed into the aforementioned carbon-based particles.
  • the shear force may be 1 m/s to 500 m/s, specifically, 10 m/s to 100 m/s.
  • the acoustic mixer is a method using simple vibration, the preliminary carbon-based particles are relatively non-uniformly disposed on the surface of the core rather than a coating layer including carbon-based particles is formed, so the positive electrode of the present invention different from the active material.
  • the mechanofusion method corresponds to a method capable of applying a high mechanical shear force, in the present invention, the mechanofusion method is used when manufacturing the positive electrode active material to dramatically improve conductivity through uniform coating.
  • the mechanofusion method applies a strong shearing force by an armhead having a small gap, there is a problem in that it is difficult to control the cracking phenomenon of the particles.
  • the researchers of the present invention confirmed the fact that the cracking of the particles can be suppressed by using the preliminary carbon-based particles having a plurality of graphene sheets, and thus, the cracking of the particles is suppressed while , it is possible to form a uniform coating layer through the mechanostatic method.
  • acetylene gas having a purity of 98% was instantaneously sprayed into a reactor having an internal temperature of 2000° C. for thermal decomposition, thereby forming acetylene black.
  • the Raman spectrum D/G ratio of the preliminary carbon-based particles was 1.42.
  • Raman spectrum D/G ratio Raman spectrum was analyzed and measured with an Ar-ion laser of 514.5 nm wavelength through a Raman spectrometer (NRS-2000B, Jasco).
  • the Raman spectrum D/G ratio of the preliminary carbon-based particles was 1.27.
  • Carbon black (acetylene black) in the form of secondary particles in which primary particles were aggregated was prepared.
  • the average particle diameter of the prepared carbon black primary particles was 12 nm. (Denka, SAB (Small Acetylene Black)) (See FIG. 5)
  • the Raman spectrum D/G ratio of the carbon black was 1.68.
  • Graphene having an average thickness of 100 nm and an average size of 7 ⁇ m was prepared (Graphene Powder from KNANO).
  • the Raman spectrum D/G ratio of the graphene was 0.22.
  • a is the specific surface area (m 2 /g) of the carbon-based particles measured by the nitrogen adsorption BET method
  • b is the iodine adsorption value (mg/g) of the carbon-based particles.
  • Nitrogen adsorption specific surface area (m 2 /g): using BET measuring equipment (BEL-SORP-MAX, Nippon Bell), degassing at 200° C. for 8 hours, and adsorbing N 2 at 77K/ Desorption (absorption/desorption) was carried out and measured.
  • Iodine adsorption value (mg/g): It was measured according to ASTM D1510 method.
  • Oxygen content (wt%): Measure the C, H, N element content through elemental analysis equipment (CHN-coder MT-5, Yanako), and reflect the amount of residual ash to determine the oxygen content (Oxygen) (differential ) was calculated.
  • Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (average particle diameter (D 50 ) of 9.0 ⁇ m, see FIG. 6 ) and preliminary carbon-based particles of Preparation Example 1 in the form of secondary particles formed by bonding or granulating primary particles After mixing in a weight ratio of 99:1, using mechanofusion equipment (Nobilta NOB-130, Hosokawa Micron) at 3,000 rpm for 10 minutes, Li[Ni 0.6 Co 0.2 Mn 0.2 ]O in the form of secondary particles A coating layer including the carbon-based particles was formed on the second layer to prepare a cathode active material (see FIG. 7 ).
  • a cathode active material was prepared by forming a coating layer in the same manner as in Example 1, except that the preliminary carbon-based particles of Preparation Example 2 were used instead of the preliminary carbon-based particles used in Example 1.
  • Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 (average particle diameter (D 50 ) of 9.0 ⁇ m) in the form of secondary particles formed by bonding or granulating primary particles and the preliminary carbon-based particles of Preparation Example 1 99:1 After mixing at a weight ratio of , using an acoustic mixer (Lab RAM-II, Resodyn), the mixture was mixed three times (6 minutes in total) at 1,500 rpm and 2 minutes. Through this, the preliminary carbon-based particles were disposed on the surface of Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 to form a positive electrode active material (see FIG. 8 ).
  • a cathode active material was prepared by forming a coating layer in the same manner as in Example 1, except that the carbon black of Sample 1 was used instead of the preliminary carbon-based particles used in Example 1 (see FIG. 9 ).
  • a cathode active material was prepared by forming a coating layer in the same manner as in Comparative Example 1, except that the carbon black of Sample 1 was used instead of the preliminary carbon-based particles used in Comparative Example 1.
  • a cathode active material was prepared by forming a coating layer in the same manner as in Comparative Example 1, except that graphene of Sample 2 was used instead of the preliminary carbon-based particles used in Comparative Example 1.
  • the longest lateral size (nm) of the graphene sheet was determined by measuring the size of 100 graphene sheets in the coating layer by TEM (JEOL, JEM-2010F), and then using the average thereof.
  • Specific surface area of the positive electrode active material ( m 2 /g) was measured by the BET method, and was specifically calculated from the amount of nitrogen gas adsorbed at a liquid nitrogen temperature (77 K) using BELSORP-mini II manufactured by BEL Japan.
  • the D/G peak ratio of the positive active material was measured with an Ar-ion laser with a wavelength of 514.5 nm using Raman spectroscopy (NRS-2000B, Jasco).
  • the powder electrical conductivity (s/cm) of the positive electrode active material is measured by putting 5 g of the prepared positive active material in a dedicated holder, applying a force of 30 kN and rolling it, and then using a powder-only 4-probe powder resistance measuring electrode (powder resistance system (MCP-PD51) ), Mitsubishi Chemical) was used.
  • carbon-based particles are uniformly disposed over the entire surface of Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 as well as the interface between the primary particles of Li[Ni 0.6 Co 0.2 Mn 0.2 ]O 2 . It can be seen that a coating layer is formed. Specifically, in the case of Example 1, as the graphene sheet shape of the carbon-based particles is completely collapsed and the graphene sheet is re-stacked and rearranged, it is observed that the carbon-based particles are smoothly coated on the surface. .
  • the prepared secondary battery was CC/CV charged at 0.1C to 4.3V, charged at 0.005C until cut-off, and CC-discharged at 0.1C to 3.0V, 1
  • the single charge capacity was measured, and the results are shown in Table 2 below.
  • a positive electrode including each of the positive active materials of Examples 1 and 2 and Comparative Examples 1 to 4 was prepared. PVdF was used as a binder, and carbon black was used as a conductive material.
  • a positive electrode slurry was prepared by mixing the positive electrode active material, the binder, and the conductive material in NMP as a solvent in a weight ratio of 97.5:1.5:1.
  • the positive electrode slurry was applied to a positive electrode current collector (Al) having a thickness of 20 ⁇ m, and dried at 130° C. to prepare a positive electrode.
  • Al positive electrode current collector
  • An anode active material mixed with SiO and artificial graphite in a 1:9 weight ratio, carbon black as an anode conductive material, styrene-butadiene rubber (SBR) as a negative electrode binder, and carboxymethyl cellulose (CMC) were mixed with distilled water in a weight ratio of 96.5:2:1:0.5, respectively. was mixed to prepare a negative electrode slurry.
  • the prepared slurry was applied to a negative electrode current collector (Cu) having a thickness of 10 ⁇ m, and dried at 100° C. to prepare a negative electrode.
  • Cu negative electrode current collector
  • EC ethylene carbonate
  • EMC ethylmethyl carbonate
  • 0.05C cut-off charging was performed to 4.25V with a constant current of 0.2C at 25°C with respect to the prepared battery. Then, discharging was performed at a constant current of 0.2C until it became 2.5V to measure initial charging and discharging capacities.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Composite Materials (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 코어 및 상기 코어 상에 배치된 코팅층을 포함하며, 상기 코어는 Li1+xMyO2+z를 포함하며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소이며, -0.2≤x≤0.2, 0<y≤2, 0≤z≤2이고, 상기 코팅층은 탄소계 입자를 포함하며, 상기 탄소계 입자는 복수의 그래핀 시트들이 서로 연결된 구조를 포함하며, 라만 스펙트럼 측정 시 D/G 피크 비가 0.9 내지 1.3인 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지에 관한 것이다.

Description

양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
관련출원과의 상호인용
본 출원은 2020년 09월 01일자 출원된 한국 특허 출원 제10-2020-0111333호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술 분야
본 발명은 코어 및 상기 코어 상에 배치된 코팅층을 포함하며, 상기 코어는 Li1+xMyO2+z를 포함하며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소이며, -0.2≤x≤0.2, 0<y≤2, 0≤z≤2이고, 상기 코팅층은 탄소계 입자를 포함하며, 상기 탄소계 입자는 복수의 그래핀 시트들이 서로 연결된 구조를 포함하며, 라만 스펙트럼 측정 시 D/G 피크 비가 0.9 내지 1.3인 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지에 관한 것이다.
최근 모바일 기기에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 전지의 수요가 급격히 증가하고 있고, 그에 따라 다양한 요구에 부응할 수 있는 전지에 대한 연구가 다양하게 행해지고 있다. 특히, 이러한 장치의 전원으로 높은 에너지 밀도를 가지면서 우수한 수명 및 사이클 특성을 가지는 리튬 이차전지에 대한 연구가 활발히 진행되고 있다.
리튬 이차전지는 리튬 이온의 삽입/탈리가 가능한 양극 활물질을 포함하고 있는 양극과, 리튬 이온의 삽입/탈리가 가능한 음극 활물질을 포함하고 있는 음극, 상기 양극과 음극 사이에 미세 다공성 분리막이 개재된 전극 조립체에 리튬 이온을 함유한 비수 전해질이 포함되어 있는 전지를 의미한다.
양극 활물질로는 리튬 전이금속 산화물이 사용될 수 있으며, 상기 전이금속으로는 코발트, 니켈, 망간 등이 사용된다. 이 중에서도 고가인 코발트 사용을 대체하기 위해, 저가의 니켈 또는 망간의 함량이 높은 리튬 전이금속 산화물이 주로 사용되고 있는 추세이다. 특히 니켈 함량이 높은 리튬 전이금속 산화물의 경우, 에너지 밀도가 높고, 가격이 높지 않다는 이점이 있다.
다만, 니켈 함량이 높은 리튬 전이금속 산화물의 경우, 코발트 함량이 높은 리튬 전이금속 산화물에 비해, 전기 전도도가 낮다. 또한, 니켈의 층상 구조에 기하여, 니켈 함량이 높을 시에는 리튬의 함량도 높아져야 한다. 이에 따라, 양극 활물질의 표면에 잔류하는 리튬 성분이 많아지며, 양극 활물질이 수분과 쉽게 반응하게 되고, 대기 중에서 양극 활물질의 표면의 구조가 붕괴되는 문제가 있다. 또한, 표면에 잔류하는 리튬은 대기 중의 이산화탄소와 쉽게 반응하여 탄산 리튬의 형태로 변하기 때문에, 양극 활물질의 표면 저항이 크게 증가하는 문제가 있다. 나아가, LiOH의 형태로 리튬이 잔류하는 경우, 바인더와 LiOH의 OH-가 반응하여 양극 슬러리의 겔화가 발생하므로, 양극 제조 공정성이 크게 저하될 수 있다.
이러한 문제를 해결하기 위해, 폴리머, 피치 등을 이용하여 상기 니켈 함량이 높은 리튬 전이금속 산화물의 표면에 탄소 코팅층을 형성하는 방법이 적극 검토되고 있다. 그러나, 상술한 방식의 경우, 탄화를 위한 고온 열처리 공정이 반드시 필요하며, 이 때 니켈 함량이 높은 리튬 전이금속 산화물의 표면의 산소 원자와 탄소 원자가 반응하여, 상기 니켈 함량이 높은 리튬 전이금속 산화물 내 금속 산화수가 크게 변화하게 된다. 이에 따라 전지 구동 시 전이금속이 용출될 수 있으며, 리튬 전이금속 산화물의 표면 구조 붕괴가 가속화되어, 전지의 입/출력 특성 및 수명 특성이 크게 저하된다.
따라서, 수분과의 접촉을 효과적으로 차단할 수 있으며, 전이금속의 용출이 억제될 수 있고, 리튬 전이금속 산화물의 표면 구조 붕괴가 최소화될 수 있으며, 리튬 전이금속 산화물 내 금속 산화수의 변화가 최소화될 수 있고, 전기 전도도가 높은 양극 활물질이 요구된다.
본 발명이 해결하고자 하는 일 과제는 양극 활물질의 전기 전도도를 개선하고, 양극 활물질 내 리튬 전이금속 산화물과 수분의 접촉을 효과적으로 차단하여 리튬 전이금속 산화물의 표면 구조 붕괴를 최소화하며, 리튬 전이금속 산화물 내 금속 산화수의 변화를 최소화하여 전이금속의 용출을 최소화할 수 있는 양극 활물질을 제공하는 것이다.
본 발명의 해결하고자 하는 다른 과제는 상기 양극 활물질을 포함하는 양극, 상기 양극을 포함하며 입/출력 특성 및 수명 특성이 개선된 이차전지를 제공하는 것이다.
본 발명의 일 실시예에 따르면, 코어 및 상기 코어 상에 배치된 코팅층을 포함하며, 상기 코어는 Li1+xMyO2+z를 포함하며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소이며, -0.2≤x≤0.2, 0<y≤2, 0≤z≤2이고, 상기 코팅층은 탄소계 입자를 포함하며, 상기 탄소계 입자는 복수의 그래핀 시트들이 서로 연결된 구조를 포함하며, 라만 스펙트럼 측정 시 D/G 피크 비가 0.9 내지 1.3인 양극 활물질이 제공된다.
또한, 본 발명의 다른 실시예에 따르면, 상기 양극 활물질을 포함하는 양극이 제공된다.
또한, 본 발명의 또 다른 실시예에 따르면, 상기 양극을 포함하는 이차 전지가 제공된다.
본 발명에 따르면, 코어와 외부의 수분과의 접촉이 효과적으로 차단되어, 상기 코어의 구조 붕괴가 방지될 수 있으며, 이에 따라 전지의 입/출력 특성 및 수명 특성이 개선될 수 있다. 또한, 탄소계 입자를 포함하는 코팅층이 균일하게 얇은 두께로 형성될 수 있으므로, 상기 양극 활물질의 전기 전도도가 크게 개선될 수 있어서, 전지의 입/출력 특성이 개선될 수 있다. 또한, 코팅층 형성 시 별도의 열처리 공정이 없으므로, 상기 코어 내 전이금속의 금속 산화수가 지나치게 변화하는 것이 방지되어, 상기 양극 활물질의 전이금속 용출 문제가 억제되고 전지의 입/출력 특성 및 수명 특성이 개선될 수 있다.
도 1은 제조예 1의 예비 탄소계 입자의 그래핀 시트가 형성되는 과정을 보이는 모식도 및 TEM 사진이다.
도 2는 제조예 1의 예비 탄소계 입자의 TEM 및 STEM(scanning TEM)사진이다.
도 3은 제조예 1의 예비 탄소계 입자의 SEM 사진이다.
도 4는 제조예 1의 예비 탄소계 입자의 TEM 사진(a) 및 제조예 2의 예비 탄소계 입자의 TEM 사진(b)이다.
도 5는 샘플 1의 카본 블랙의 SEM 사진이다.
도 6은 실시예 1에서 사용된 Li[Ni0.6Co0.2Mn0.2]O2의 SEM 사진이다.
도 7은 본 발명의 실시예 1의 양극 활물질의 SEM 사진이다.
도 8은 본 발명의 비교예 1의 양극 활물질의 SEM 사진이다.
도 9는 본 발명의 비교예 2의 양극 활물질의 SEM 사진이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다. 이때, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 평균 입경(D50)은 입자의 입경 분포 곡선에 있어서, 체적 누적량의 50%에 해당하는 입경으로 정의할 수 있다. 상기 평균 입경(D50)은 예를 들어, 레이저 회절법(laser diffraction method)을 이용하여 측정할 수 있다. 상기 레이저 회절법은 일반적으로 서브미크론(submicron) 영역에서부터 수 mm 정도의 입경의 측정이 가능하며, 고 재현성 및 고 분해성의 결과를 얻을 수 있다.
<양극 활물질>
본 발명의 일 실시예에 따른 양극 활물질은, 코어 및 상기 코어 상에 배치된 코팅층을 포함하며, 상기 코어는 Li1+xMyO2+z를 포함하며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소이며, -0.2≤x≤0.2, 0<y≤2, 0≤z≤2이고, 상기 코팅층은 탄소계 입자를 포함하며, 상기 탄소계 입자는 복수의 그래핀 시트들이 서로 연결된 구조를 포함하며, 라만 스펙트럼 측정 시 D/G 피크 비가 0.9 내지 1.3일 수 있다.
상기 코어는 Li1+xMyO2+z를 포함하며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소일 수 있으며, -0.2≤x≤0.2, 0<y≤2, 0≤z≤2일 수 있다. 상기 x는 바람직하게는 -0.1≤x≤0.1, 더욱 바람직하게는 0≤x≤0.1를 만족할 수 있다. 구체적으로, 상기 Li1+xMyO2+z는 Li1+x[NiaCobM1 cM2 d]O2를 포함하거나 상기 Li1+x[NiaCobM1 cM2 d]O2일 수 있다. 상기 Li1+x[NiaCobM1 cM2 d]O2에 있어서, 상기 M1는 Al 및 Mn 중 적어도 어느 하나의 원소일 수 있으며, M2는 Fe, P, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소일 수 있고, 상기 a는 0<a<1, 바람직하게는 0.3≤a<1, 더욱 바람직하게는 0.5≤a<1를 만족할 수 있으며, 상기 b는 0<b<1, 바람직하게는 0<b<0.7, 더욱 바람직하게는 0<b<0.5를 만족할 수 있으며, 상기 c는 0<c<1, 바람직하게는 0<c<0.7, 더욱 바람직하게는 0<c<0.5를 만족할 수 있으며, 상기 d는 0≤d≤0.2, 바람직하게는 0≤d≤0.1을 만족할 수 있다. 상기 Li1+xMyO2+z는 LiCoO2, LiNiO2, LiMnO2, Li[Ni0.5Co0.3Mn0.2]O2, Li[Ni0.6Co0.2Mn0.2]O2, Li[Ni0.7Co0.1Mn0.2]O2, Li[Ni0.8Co0.1Mn0.1]O2, Li[Ni0.9Co0.05Mn0.05]O2, LiMn2O4, LiFePO4, 0.5Li2MnO3·0.5Li[Mn0.4Ni0.3Co0.3]O2로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있다. 바람직하게, 상기 Li1+xMyO2+z는 상기 Li[Ni0.6Co0.2Mn0.2]O2, Li[Ni0.7Co0.1Mn0.2]O2, Li[Ni0.8Co0.1Mn0.1]O2, Li[Ni0.9Co0.05Mn0.05]O2 중 어느 하나를 포함할 수 있다. 상기 코어가 Li1+xMyO2+z를 포함하므로, 음극에 리튬이 충분히 공급될 수 있으며, Li1+xMyO2+z가 전지 전체 성능의 저하를 야기하지 않으면서 최초 사이클 후 전기 화학적으로 활성을 나타내므로, 음극의 비가역 용량에 의한 전지 용량 손실이 해소될 수 있다.
상기 Li1+xMyO2+z는 1차 입자들이 결합 또는 조립되어 형성된 2차 입자 형태일 수 있으며, 이와 달리 단일 입자 형태일 수도 있다.
상기 Li1+xMyO2+z가 2차 입자 형태인 경우, 양극의 에너지 밀도가 개선될 수 있으며, 상기 Li1+xMyO2+z와 전해액의 접촉 면적이 넓고 상기 Li1+xMyO2+z 내 리튬 이온의 이동 거리가 짧아서, 전지의 용량 및 출력 특성이 개선될 수 있다. 또한, 2차 입자 형태인 경우, 후술할 코팅층이 상기 Li1+xMyO2+z의 1차 입자 표면 및 1차 입자들 사이의 오목한 공간을 포함한 2차 입자 표면에 걸쳐 전반적으로 균일하게 형성될 수 있다. 상기 Li1+xMyO2+z가 단일 입자 형태인 경우, 후술할 코팅층이 상기 Li1+xMyO2+z의 표면에 균일한 두께 및 형상으로 형성될 수 있다.
상기 코팅층은 상기 코어 상에 배치될 수 있다. 구체적으로, 상기 코팅층은 상기 코어의 표면의 적어도 일부를 덮을 수 있다.
상기 코팅층은 탄소계 입자를 포함할 수 있다.
상기 탄소계 입자는 복수의 그래핀 시트들이 연결된 구조를 포함할 수 있다. 본 발명에서 그래핀 시트란, 두께가 20nm 이하이며, 유연성을 가지고, 박막 형태인 탄소질 구조체를 의미한다. 구체적으로, 상기 탄소계 입자는 적어도 2이상의 그래핀 시트들이 서로 직접적으로 연결되어 있거나, 간접적으로 연결되어 있을 수 있다. 상기 탄소계 입자들이 복수의 그래핀 시트들이 연결된 구조를 포함하므로, 상기 코어의 표면이 상기 탄소계 입자에 의해 원활하게 덮일 수 있다. 즉, 상기 코어의 표면의 대부분이 상기 탄소계 입자에 의해 덮이므로, 상기 코어와 외부의 수분과의 접촉이 효과적으로 차단되어, 상기 코어의 구조 붕괴가 방지될 수 있다. 상기 탄소계 입자는 서로 다른 면방향을 가진 그래핀 시트들을 포함할 수 있다.
상기 탄소계 입자는 복수의 그래핀 시트들이 연결되어 형성된 2차 입자 형태일 수 있다. 구체적으로, 상기 복수의 그래핀 시트들은 서로 연결되어 긴 사슬 형태의 2차 입자를 형성할 수 있으며, 보다 구체적으로 상기 사슬 형태의 2차 입자는 부분적으로 상기 복수의 그래핀 시트들이 응집된 영역을 포함할 수 있다. 상기 2차 입자가 특유의 사슬 형태의 연결 구조를 가지므로 상기 탄소계 입자의 전기 전도성 및 열 전도성이 우수하다.
상기 탄소계 입자는 복수의 그래핀 시트들 중 적어도 일부의 그래핀 시트와 연결된 연결부를 더 포함할 수 있다. 본 발명에 있어서, 상기 탄소계 입자를 제조할 시, 카본 블랙 등의 탄소질 재료가 지속적인 산화에 의해 파열되어 상기 그래핀 시트를 형성하며, 미처 파열되지 않고 본래의 형태를 유지하는 부분도 존재할 수 있다. 이 때, 상기 형태를 유지하는 부분이 상기 연결부에 해당할 수 있다. 따라서, 상기 연결부는 비-그래핀 형태일 수 있고, 상기 비-그래핀 형태란 상술한 그래핀 시트와 달리 그래핀 시트보다 큰 두께를 가지는 덩어리 형태를 의미할 수 있다.
복수의 그래핀 시트들 각각의 일부분은 서로 직접적으로 연결되어 있을 수 있다. 또는 이와 달리, 상기 복수의 그래핀 시트들 중 적어도 일부의 그래핀 시트는 상기 연결부를 통해 서로 연결될 수 있으며, 구체적으로 상기 복수의 그래핀 시트들 각각의 적어도 일부분은 상기 연결부에 연결될 수 있다. 상기 탄소계 입자는 상기 두 가지 연결 방법을 모두 포함할 수 있다.
상기 탄소계 입자는 예비 탄소계 입자가 상기 코어 상에 코팅되면서 형성된다. 상기 예비 탄소계 입자는 구형에 가까운 입자 형태의 카본 블랙(carbon black), 예컨대 아세틸렌 블랙(acetylene black), 퍼니스 블랙(furnace black), 서머 블랙(thermal black), 채널 블랙(channel black), 및 램프 블랙(lamp black)이 산화 처리에 의해 형태가 변형되어 형성된 것일 수 있다. 도 1의 모식도를 참조하면, 카본 블랙의 조직 구조가 산화 처리에 의해 변형되어 복수개의 그래핀 시트들을 포함하는 예비 탄소계 입자가 형성될 수 있으며, 상기 예비 탄소계 입자가 코어 상에 코팅되어 탄소계 입자가 될 수 있다. 상기 카본 블랙이 2차 입자 형태인 경우, 상기 복수의 그래핀 시트들을 포함하는 입자들이 응집된 2차 입자 형태의 탄소계 입자가 형성될 수 있다.
상기 그래핀 시트의 평균 두께는 10nm 이하일 수 있으며, 구체적으로 0.34nm 내지 10nm일 수 있고, 보다 구체적으로 0.34nm 내지 5nm일 수 있다. 상기 범위를 만족하는 경우, 그래핀 시트 특유의 유연성이 발현될 수 있고, 그래핀 시트에 의한 면 접촉이 개선되어 탄소계 입자의 전기 전도성이 우수할 수 있다. 상기 그래핀 시트는 10개 이하의 그래핀층(layer)이 적층된 형태일 수 있다. 상기 그래핀 시트의 평균 두께는 TEM 분석을 통해 확인할 수 있으며, 구체적으로 상기 그래핀 시트 100개의 두께를 확인한 뒤 평균값을 구한 것일 수 있다.
상기 그래핀 시트의 최장 길이(lateral size)는 10nm 내지 500nm일 수 있으며, 구체적으로 10nm 내지 300nm 이하일 수 있고, 보다 구체적으로 10nm 내지 100nm일 수 있고, 예를 들어 50nm 내지 90nm일 수 있다. 상기 그래핀 시트의 최장 길이는 열처리 정도에 따라 제어될 수 있으며, 예를 들어 산화 처리 공정 후 비활성 분위기에서 별도의 열처리를 추가적으로 진행하여 그래핀 시트의 최장 길이를 제어할 수 있다. 상기 범위를 만족하는 경우, 전해액 내 이온들이 전극 내에서 원활하게 확산될 수 있다. 따라서, 전지의 급속 충전 특성이 개선될 수 있으며, 율속 특성도 개선될 수 있다. 또한, 상기 그래핀 시트들이 상기 코어의 표면을 효과적으로 덮을 수 있으므로, 상기 코어와 외부의 수분과의 접촉이 효과적으로 차단되어, 상기 코어의 구조 붕괴가 방지될 수 있다. 또한, 코어 표면의 리튬에 의한 부반응들이 억제될 수 있다. 이에 따라, 전지의 입/출력 특성 및 수명 특성이 개선될 수 있다. 상기 그래핀 시트의 최장 길이는 SEM 또는 TEM을 통해 관찰된 100개의 그래핀 시트의 크기의 평균을 의미하며, 여기서 상기 크기란 일 그래핀 시트 내 어느 한 지점에서 다른 한 지점을 이은 선을 가정했을 때 가장 긴 길이를 나타낸다.
상기 코팅층의 두께는 1nm 내지 500nm일 수 있고, 구체적으로 10nm 내지 300nm일 수 있으며, 보다 구체적으로 10nm 내지 100nm일 수 있다. 상기 범위를 만족하는 경우, 리튬 이온의 삽입과 탈리에 대한 확산을 저해하지 않으면서도, 상기 Li1+xMyO2+z 내의 전이금속의 금속 산화수 변화를 최소화하여, 전이금속의 용출을 억제할 수 있다. 이에 따라, 전지의 입/출력 특성 및 수명 특성이 개선될 수 있다.
상기 코어 및 상기 코팅층의 중량비는 99.9:0.1 내지 90:10일 수 있고, 구체적으로 99.9:0.1 내지 95:5일 수 있고, 보다 구체적으로 99.9:0.1 내지 99:1 일 수 있다. 상기 범위를 만족하는 경우, 리튬 이온의 삽입과 탈리에 대한 확산을 저해하지 않으면서도, 상기 Li1+xMyO2+z 내의 전이금속의 금속 산화수 변화를 최소화하여, 전이금속의 용출을 억제할 수 있다. 이에 따라, 전지의 입/출력 특성 및 수명 특성이 개선될 수 있다.
상기 양극 활물질의 라만 스펙트럼 측정 시 D/G 피크 비가 0.9 내지 1.3일 수 있으며, 구체적으로 0.9 내지 1.1일 수 있고, 보다 구체적으로 0.9 내지 1.0일 수 있다. 라만 스펙트럼에 있어서, 1590cm-1 근처의 G 피크는 탄소의 sp2 결합의 E2g 진동모드로부터 기인한 것이며, 1350cm-1 부근의 D 피크는 탄소의 sp2 결합에 결함이 존재할 때 나타난다. 상기 D/G 피크 비를 만족하는 경우, 높은 흑연화도를 가진 탄소계 입자가 강한 전단력에 의해 코어 표면에 코팅된다는 것을 의미한다. 이에 따라, 상기 탄소계 입자를 이용할 시, 탄소계 입자의 높은 전기 전도성에 기하여 전지의 용량 및 전기적 특성이 향상될 수 있다.
상기 양극 활물질의 비표면적은 2m2/g 내지 8m2/g일 수 있으며, 구체적으로 2m2/g 내지 5m2/g일 수 있다. 상기 양극 활물질의 비표면적이 2m2/g 미만인 경우, 양극의 에너지 밀도가 저하될 수 있다. 상기 양극 활물질의 비표면적이 8m2/g 초과인 경우, 전해액 부반응이 지나치게 발생할 수 있다. 따라서, 상기 양극 활물질의 비표면적이 2m2/g 내지 8m2/g일 시 에너지 밀도가 유지되면서도 전해액 부반응이 억제될 수 있다.
상기 코팅층 형성 시 단순 혼합 방식(예컨대, 어쿠스틱 믹서, 페인트 쉐이커, 블레이드 믹서 등을 사용)을 사용하는 경우에는 코팅층 내 탄소가 재배열될 만큼의 충분한 전단력이 제공될 수 없으며, 상기 코팅층이 상기 코어를 균일하게 코팅하지 못하므로, 상기 D/G 피크 비 범위 및 상기 비표면적 범위가 도출될 수 없다. 본 발명에서는 메카노퓨전(mechanofusion) 방식으로 강한 전단력을 인가하여 탄소 조직 구조의 재배열이 진행될 정도의 코팅층 형성이 가능하므로, 낮은 수준의 D/G 피크 비(높은 흑연화도) 범위 및 비표면적 범위가 도출될 수 있으며, 코팅 전/후로 D/G 피크 비가 크게 변할 수 있다.
상기 양극 활물질의 분체 전기 전도도는 1.0×10-3s/cm 내지 1.0×10s/cm일 수 있으며, 구체적으로 1.0×10-3s/cm 내지 1.0×10-1s/cm일 수 있으며, 보다 구체적으로 1.0×10-2s/cm 내지 1.0×10-1s/cm일 수 있다. 본 발명의 양극 활물질 제조 시, 강한 전단력을 인가할 수 있는 메카노퓨전 방식을 통해 상기 탄소계 입자가 상기 코어 상에 배치된다. 이 때, 상기 탄소계 입자들 내의 탄소 조직 구조의 재배열이 진행될 정도로 밀집된 코팅층이 형성되므로, 상기 분체 전기 전도도가 도출될 수 있다. 상기 범위를 만족하는 경우, 상기 범위를 만족하는 경우, 리튬 이온의 삽입과 탈리에 대한 확산을 저해하지 않으면서도, 상기 Li1+xMyO2+z 내의 전이금속의 금속 산화수 변화를 최소화하여, 전이금속의 용출을 억제할 수 있다. 이에 따라, 전지의 입/출력 특성 및 수명 특성이 개선될 수 있다. 상기 분체 전기 전도도는 4 Probe 분체 저항 측정 방법으로 측정될 수 있다.
<양극>
본 발명의 다른 실시예에 따른 양극은 상술한 일 실시예의 양극 활물질을 포함할 수 있다. 상기 양극 활물질에 대한 설명은 상술한 바와 동일하니 생략한다.
상기 양극은 집전체 및 상기 집전체 상에 배치되며 양극 활물질을 포함하는 양극 활물질층을 포함할 수 있다. 나아가, 상기 양극 활물질층은 각각 바인더를 더 포함할 수 있다.
상기 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다. 상기 양극 활물질층은 각각 상기 집전체의 일면 또는 양면에 배치될 수 있다.
상기 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
<이차 전지>
본 발명의 또 다른 실시예에 따른 이차 전지는 음극, 양극, 상기 양극 및 음극 사이에 개재된 분리막, 및 전해질을 포함할 수 있으며, 상기 양극은 상술한 실시예의 양극이다. 이에, 양극에 대한 설명은 생략한다.
상기 음극은 음극 집전체 및 상기 음극 집전체의 일면 또는 양면 상에 배치된 음극 활물질층을 포함할 수 있다.
상기 음극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 되고, 특별히 제한되는 것은 아니다. 예를 들어, 상기 음극 집전체로는 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다. 구체적으로는, 구리, 니켈과 같은 탄소를 잘 흡착하는 전이 금속을 집전체로 사용할 수 있다.
상기 음극 활물질층은 음극 활물질, 음극 도전재, 및 음극 바인더를 포함할 수 있다.
상기 음극 활물질은 흑연계 활물질 입자 또는 실리콘계 활물질 입자일 수 있다. 상기 흑연계 활물질 입자는 인조흑연, 천연흑연, 흑연화탄소 섬유 및 흑연화 메조카본마이크로비드로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으며, 특히 인조흑연을 사용하는 경우 율 특성을 개선할 수 있다. 상기 실리콘계 활물질 입자는 Si, SiOx(0<x<2), Si-C 복합체 및 Si-Y 합금(여기서, Y는 알칼리 금속, 알칼리 토금속, 전이금속, 13족 원소, 14족 원소, 희토류 원소 및 이들의 조합으로 이루어진 군에서 선택되는 원소임)으로 이루어진 군에서 선택되는 1종 이상을 사용할 수 있으며, 특히 Si, SiOx(0<x<2)를 사용하는 경우 전지의 고용량을 도출할 수 있다.
상기 음극 바인더는 폴리비닐리덴플루오라이드-헥사플루오로프로필렌 코폴리머(PVDF-co-HFP), 폴리비닐리덴플루오라이드(polyvinylidenefluoride), 폴리아크릴로니트릴(polyacrylonitrile), 폴리메틸메타크릴레이트(polymethylmethacrylate), 폴리비닐알코올, 카르복시메틸셀룰로오스(CMC), 전분, 히드록시프로필셀룰로오스, 재생 셀룰로오스, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 폴리아크릴산, 에틸렌-프로필렌-디엔 모노머(EPDM), 술폰화 EPDM, 스티렌 부타디엔 고무(SBR), 불소 고무, 폴리 아크릴산 (poly acrylic acid) 및 이들의 수소를 Li, Na 또는 Ca 등으로 치환된 물질로 이루어진 군에서 선택되는 적어도 어느 하나를 포함할 수 있으며, 또한 이들의 다양한 공중합체를 포함할 수 있다.
상기 음극 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 파네스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 탄소 나노 튜브 등의 도전성 튜브; 플루오로카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스커; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 분리막으로는 음극과 양극을 분리하고 리튬 이온의 이동 통로를 제공하는 것으로, 통상 이차 전지에서 분리막으로 사용되는 것이라면 특별한 제한 없이 사용가능하며, 특히 전해질의 이온 이동에 대하여 저저항이면서 전해액 함습 능력이 우수한 것이 바람직하다. 구체적으로는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름 또는 이들의 2층 이상의 적층 구조체가 사용될 수 있다. 또 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포가 사용될 수도 있다. 또, 내열성 또는 기계적 강도 확보를 위해 세라믹 성분 또는 고분자 물질이 포함된 코팅된 분리막이 사용될 수도 있으며, 선택적으로 단층 또는 다층 구조로 사용될 수 있다.
상기 전해질은 전해질로는 리튬 이차전지 제조시 사용 가능한 유기계 액체 전해질, 무기계 액체 전해질, 고체 고분자 전해질, 겔형 고분자 전해질, 고체 무기 전해질, 용융형 무기 전해질 등을 들 수 있으며, 이들로 한정되는 것은 아니다.
구체적으로, 상기 전해질은 비수계 유기용매와 금속염을 포함할 수 있다.
상기 비수계 유기용매로는, 예를 들어, N-메틸-2-피롤리디논, 프로필렌 카보네이트, 에틸렌 카보네이트, 부틸렌 카보네이트, 디메틸 카보네이트, 디에틸 카보네이트, 감마-부틸로 락톤, 1,2-디메톡시 에탄, 테트라하이드로푸란, 2-메틸 테트라하이드로푸란, 디메틸술폭시드, 1,3-디옥소런, 포름아미드, 디메틸포름아미드, 디옥소런, 아세토니트릴, 니트로메탄, 포름산 메틸, 초산메틸, 인산 트리에스테르, 트리메톡시 메탄, 디옥소런 유도체, 설포란, 메틸 설포란, 1,3-디메틸-2-이미다졸리디논, 프로필렌 카보네이트 유도체, 테트라하이드로푸란 유도체, 에테르, 피로피온산 메틸, 프로피온산 에틸 등의 비양자성 유기용매가 사용될 수 있다.
특히, 상기 카보네이트계 유기 용매 중 고리형 카보네이트인 에틸렌 카보네이트 및 프로필렌 카보네이트는 고점도의 유기 용매로서 유전율이 높아 리튬염을 잘 해리시키므로 바람직하게 사용될 수 있으며, 이러한 고리형 카보네이트에 디메틸카보네이트 및 디에틸카보네이트와 같은 저점도, 저유전율 선형 카보네이트를 적당한 비율로 혼합하여 사용하면 높은 전기 전도율을 갖는 전해질을 만들 수 있어 더욱 바람직하게 사용될 수 있다.
상기 금속염은 리튬염을 사용할 수 있고, 상기 리튬염은 상기 비수 전해액에 용해되기 좋은 물질로서, 예를 들어, 상기 리튬염의 음이온으로는 F-, Cl-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, PF6 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택되는 1종을 사용할 수 있다.
상기 전해질에는 상기 전해질 구성 성분들 외에도 전지의 수명특성 향상, 전지 용량 감소 억제, 전지의 방전 용량 향상 등을 목적으로 예를 들어, 디플루오로 에틸렌카보네이트 등과 같은 할로알킬렌카보네이트계 화합물, 피리딘, 트리에틸포스파이트, 트리에탄올아민, 환상 에테르, 에틸렌 디아민, n-글라임(glyme), 헥사인산 트리아미드, 니트로벤젠 유도체, 유황, 퀴논 이민 염료, N-치환옥사졸리디논, N,N-치환 이미다졸리딘, 에틸렌 글리콜 디알킬 에테르, 암모늄염, 피롤, 2-메톡시 에탄올 또는 삼염화 알루미늄 등의 첨가제가 1종 이상 더 포함될 수도 있다.
본 발명의 또 다른 일 실시예에 따르면, 상기 이차 전지를 단위 셀로 포함하는 전지 모듈 및 이를 포함하는 전지 팩을 제공한다. 상기 전지 모듈 및 전지 팩은 고용량, 높은 율속 특성 및 사이틀 특성을 갖는 상기 이차 전지를 포함하므로, 전기자동차, 하이브리드 전기자동차, 플러그-인 하이브리드 전기자동차 및 전력 저장용 시스템으로 이루어진 군에서 선택되는 중대형 디바이스의 전원으로 이용될 수 있다.
<양극 활물질의 제조 방법>
본 발명의 또 다른 일 실시예에 따른 양극 활물질의 제조 방법은, 예비 탄소계 입자를 준비하는 단계 및 상기 코어 상에 상기 예비 탄소계 입자를 코팅하여 코팅층을 형성하는 단계를 포함하며, 상기 코어 상에 상기 예비 탄소계 입자를 코팅하여 탄소계 입자를 포함하는 코팅층을 형성하는 단계는 상기 예비 탄소계 입자와 상기 코어를 혼합한 뒤 메카노퓨전 방식을 적용하는 것을 포함하며, 상기 코어는 Li1+xMyO2+z를 포함하며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소이며, 0≤x≤5, 0<y≤2, 0≤z≤2이고, 상기 탄소계 입자는 복수의 그래핀 시트들이 서로 연결된 구조를 포함할 수 있다. 상기 제조 방법에 의해 상술한 실시예의 양극 활물질이 형성될 수 있다. 상기 양극 활물질에 최종적으로 포함되는 코어, 코팅층, 탄소계 입자 등은 상술한 실시예의 코어, 코팅층, 탄소계 입자 등과 동일하다.
상기 예비 탄소계 입자를 준비하는 단계는 탄소질 재료를 준비하는 단계 및 탄소질 재료를 산화 처리하여 변형시키는 단계를 포함하며, 상기 탄소질 재료를 산화 처리하여 변형시키는 단계는, a) 상기 탄소질 재료를 산소 분위기 및 공기 분위기 중 적어도 어느 하나의 분위기에서 200℃ 내지 800℃의 온도로 제1 열처리하는 것; 및 b) 상기 탄소질 재료를 120℃ 내지 300℃의 산성 증기와 반응시키는 것 중 적어도 어느 하나를 포함할 수 있다.
상기 예비 탄소계 입자를 준비하는 단계는 탄소질 재료를 준비하는 단계 및 상기 탄소질 재료를 산화 처리하여 변형시키는 단계를 포함할 수 있다.
상기 탄소질 재료를 준비하는 단계에 있어서, 상기 탄소질 재료는 카본 블랙일 수 있다. 구체적으로, 상기 탄소질 재료는 아세틸렌 블랙, 퍼니스 블랙, 서머 블랙, 채널 블랙, 및 램프 블랙으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 보다 구체적으로 상기 탄소질 재료는 가장 고온에서 제조되어 기본적으로 흑연화도가 우수한 아세틸렌 블랙일 수 있다.
상기 탄소질 재료를 준비하는 단계는, 아세틸렌 가스를 열분해시키는 것을 포함할 수 있으며, 상기 열분해를 통해 카본 블랙, 구체적으로 아세틸렌 블랙이 형성될 수 있다. 상기 아세틸렌 가스는 고순도의 아세틸렌 가스일 수 있으며, 구체적으로 순도 95% 이상, 보다 구체적으로 순도 98% 이상의 아세틸렌 가스일 수 있다.
상기 열분해는 1500℃이상, 구체적으로 1500℃ 내지 2200℃, 보다 구체적으로 1500℃ 내지 2000℃의 온도에서 상기 아세틸렌 가스를 열분해하는 것일 수 있다. 상기 범위를 만족하는 경우, 제조된 탄소질 재료의 흑연화도가 높을 수 있으며, 이에 따라 제조되는 예비 탄소계 입자의 흑연화도 역시 높을 수 있다. 따라서, 예비 탄소계 입자의 전기 전도성이 향상될 수 있다.
상기 탄소질 재료는 카본 블랙일 수 있으나, 그 중에서도 다음과 같은 점에서 아세틸렌 블랙이 바람직할 수 있다. 본 발명의 양극 활물질의 코팅층에 포함된 탄소계 입자가 포함하는 그래핀 시트는 탄소질 재료의 표면이 산화 처리에 의해 변형되어 형성될 수 있다. 상기 열분해에 의해 형성되는 아세틸렌 블랙은 표면의 흑연화도가 높다. 따라서, 표면에 산소 관능기를 필연적으로 일부 포함하는 다른 카본 블랙을 산화 처리하는 것에 비해, 상기 아세틸렌 블랙을 산화 처리할 시 그래핀 시트의 구조가 원활하게 형성될 수 있다.
상기 열분해는 상기 온도 범위로 반응로 내부 온도를 조절한 뒤, 반응로에 아세틸렌 가스를 투입하고, 순간적으로 열분해하는 것일 수 있다. 또한, 이 과정에서 공기, 산소, H2O 등을 추가로 투입하여 예비 탄소계 입자의 밀도, 산소 관능기 등을 제어할 수 있으며, 예비 탄소계 입자 내 연결 구조를 제어할 수 있다.
상기 탄소질 재료를 산화 처리하여 변형시키는 단계는, a) 상기 탄소질 재료를 산소 분위기 및 공기 분위기 중 적어도 어느 하나의 분위기에서 200℃ 내지 800℃의 열처리 온도로 제1 열처리하는 것(단계 a); 및 b) 상기 탄소질 재료를 120℃ 내지 300℃의 산성 증기와 반응시키는 것(단계 b) 중 적어도 어느 하나를 포함할 수 있다.
상기 단계 a에 있어서, 상기 산소 분위기 및 상기 공기 분위기 중 적어도 어느 하나는 산소 및/또는 공기를 상기 탄소질 재료가 수용된 반응로에 투입하는 것으로 형성될 수 있다. 구체적으로, 상기 제1 열처리 시 산소 또는 공기의 적절한 유입량과 속도, 반응 온도 및 반응 시간의 설정에 따라 상기 반응로에서 산화 공정에 의해 그래핀 시트 구조를 형성할 수 있다. 또한, 상기 탄소질 재료의 밀도, 산소 관능기 함량 등의 차이에 기하여 상기 산화 공정의 조건은 달라질 수 있다.
상기 단계 a에 있어서, 상기 제1 열처리는 상기 탄소질 재료가 수용된 반응로에서 상기 반응로의 온도를 조절하여 수행될 수 있다. 상기 제1 열처리는 200℃ 내지 800℃의 열처리 온도로 열처리하는 것일 수 있으며, 구체적으로 200℃ 내지 450℃의 열처리 온도로 열처리하는 것일 수 있다. 상기 온도 범위를 만족하는 경우, 탄소질 재료가 지나치게 급격하게 산화되는 것이 방지될 수 있으며, 바람직한 크기의 그래핀 시트가 형성될 수 있다. 상기 제1 열처리는 1시간 내지 50시간 동안 수행될 수 있다.
상기 단계 b에 있어서, 상기 탄소질 재료는 산성 증기와 반응하여 산화되어 그래핀을 형성할 수 있다. 구체적으로, 상기 산성 증기는 HCl, HNO3 등의 산성 용액으로부터 유래된 증기일 수 있다. 상기 탄소질 재료와 반응하는 산성 증기의 온도는 120℃ 내지 300℃일 수 있다.
상기 탄소질 재료를 산화 처리하여 변형시키는 단계 이후, 형성된 그래핀 시트의 크기를 증가시키기 위해 비활성 분위기에서 제2 열처리하는 공정을 추가적으로 진행할 수 있다. 구체적으로, 상기 양극 활물질의 제조 방법은 상기 탄소질 재료를 산화 처리하여 변형시키는 단계 이후, 코어 상에 예비 탄소계 입자를 코팅하여 탄소계 입자를 포함하는 코팅층을 형성하기 전, 비활성 분위기에서 상기 산화 처리되어 변형된 탄소질 재료를 500℃℃ 이상의 온도로 제2 열처리하는 단계를 더 포함할 수 있다. 이 때, 상기 비활성 분위기는 진공, 헬륨, 아르곤, 및 질소로 이루어진 군에서 선택되는 어느 하나의 가스로 형성될 수 있다. 상기 제2 열처리 온도는 500℃℃ 이상, 구체적으로 600℃℃ 내지 1600℃℃일 수 있다.
상기 예비 탄소계 입자를 준비하는 단계에 의해 본 발명에서 설명하는 예비 탄소계 입자가 형성되는 메커니즘은 다음과 같을 수 있다. 상기 예비 탄소계 입자 제조 시, 구형의 1차 입자의 평균 크기가 50nm 이하이고, 상기 1차 입자들이 조직을 공유하는 구형 내지 사슬형의 카본 블랙, 구체적으로는 아세틸렌 블랙에 대해 특정 조건으로 산화 처리가 진행된다. 이 경우, 상기 카본 블랙의 미세 단위 조직에 존재하는 결정립계(grain boundary)나 전위(dislocation) 등의 결함(defect) 부분에서부터 산소, 산성 증기 등의 산화제의 침투 및 산화 반응이 발생한다. 상기 제조방법에서 언급한 온도 범위에서 일정 시간 산화 처리를 진행할 시, 카본 블랙의 내부의 미세 조직까지 산화제가 침투하여 산화가 진행되게 된다. 이 때, 구형의 1차 입자 표면의 곡률 반경보다 큰 곡률 반경을 가지는 1차 입자 내부의 미세 조직의 구조 응력을 해소하기 위해, 내부에서 산화 반응이 빠르게 일어난다. 이에 따라 내부의 탄소들은 CO, CO2, CH4 등의 가스로 산화되며, 상기 1차 입자는 중공형(hollow type)으로 변하게 된다. 지속적인 산화 처리에 의해 중공형의 1차 입자의 표면 구조도 파괴되면서 구형의 1차 입자에 남아 있던 구조 응력도 대부분 해소가 될 수 있으며, 이 과정에서 그래핀 시트들이 나타나게 된다. 따라서, 1차 입자인 카본 블랙의 평균 크기가 작을수록, 입자의 내부 밀도가 작을수록, 1차 입자의 표면보다 내부에 산소 관능기 함량이 높을 수록 상기 변형 공정이 가속화될 수 있다. 또한, 단계 b보다는 단계 a가 상기 변형 공정을 더욱 가속화시킬 수 있다는 점에서 좀 더 바람직하다.
상기 예비 탄소계 입자는 상술한 실시예의 탄소계 입자와 마찬가지로 복수의 그래핀 시트들이 서로 연결된 구조를 가지며, 상술한 실시예의 탄소계 입자 내의 그래핀 시트의 최장 길이, 두께 등의 물성을 동일하게 가진다.
상기 예비 탄소계 입자는 질소 흡착 BET법으로 측정된 상기 예비 탄소계 입자의 비표면적(m2/g)이 200m2/g 이상일 수 있으며, 구체적으로 300m2/g 내지 1100m2/g 일 수 있고, 보다 구체적으로 500m2/g 내지 900m2/g 일 수 있다. 상기 비표면적 범위를 만족하는 경우, 예비 탄소계 입자 내 그래핀 시트의 면적이 넓은 것을 의미하며, 이에 따라 전극 내 도전재 함량이 작더라도, 전극의 도전성이 확보될 수 있다. 또한, 상기 코어와 외부의 수분과의 접촉이 효과적으로 차단되어, 상기 코어의 구조 붕괴가 방지될 수 있다. 이에 따라, 전지의 초기 충전 용량이 개선될 수 있다.
상기 예비 탄소계 입자의 산소 함량은 상기 예비 탄소계 입자 내에서 1중량% 이상일 수 있으며, 구체적으로 1중량% 내지 10중량%일 수 있으며, 보다 구체적으로 1중량% 내지 5중량%일 수 있다. 상기 범위를 만족하는 경우, 습식 공정을 통해 코팅층을 형성할 때, 분산액 내에서 상기 예비 탄소계 입자들의 분산이 원활하게 이루어질 수 있으므로, 코팅층이 더욱 고르게 형성될 수 있다. 상기 산소 함량은 C, H, O, N 원소 분석(elemental Analysis)의 방법으로 측정될 수 있다.
상기 산소 함량은 카본 블랙을 산화 처리하는 과정에서 달성될 수 있다. 구체적으로, 상기 산화 처리에 의해 예비 탄소계 입자 표면에 산소 함유 관능기가 형성될 수 있다. 상기 산소 함유 관능기는 카르복실기, 히드록시기, 카보닐기 등으로 이루어진 군에서 선택되는 적어도 어느 하나일 수 있다. 산화 처리 공정 이후, 상기 산소 함량은 상기 예비 탄소계 입자를 비활성 분위기에서 열처리 하는 것을 통해 추가적으로 제어될 수 있다.
이러한 관점에서, 상기 예비 탄소계 입자는 일반적인 그래핀과 차이가 있다. 즉, 일반적인 그래핀의 경우, 인조흑연 등의 입자를 분쇄하여 제조되므로 산소함량이 1중량% 이상으로 높을 수 없고, 산소함량이 매우 낮거나 0에 불과하다. 또한, 분쇄를 통해 형성되는 일반적인 그래핀의 제조방법에 따르면, 그래핀이 한장 씩(그래핀 시트) 형성되나, 본 발명에 따를 시 복수의 그래핀 시트들이 연결된 구조를 포함하는 예비 탄소계 입자가 형성된다.
상기 예비 탄소계 입자는 산화 처리를 진행하기 전의 카본 블랙에 비해 높은 흑연화도를 가질 수 있다. 구체적으로, 상기 카본 블랙의 표면 장력에 의해 발생하는 높은 구조 응력이 그래핀 시트들이 형성되면서 일부 해소되어, 제조된 예비 탄소계 입자의 흑연화도가 증가할 수 있다.
상기 예비 탄소계 입자는 하기 식 1에 의해 계산된 값이 0.12이하일 수 있으며, 구체적으로 0 내지 0.1일 수 있고, 보다 구체적으로 0 내지 0.07일 수 있다.
[식 1]
Figure PCTKR2021011697-appb-I000001
상기 식 1에서 a는 질소 흡착 BET법으로 측정된 상기 예비 탄소계 입자의 비표면적(m2/g)이고, b는 상기 예비 탄소계 입자의 요오드 흡착가(mg/g)이다. 예비 탄소계 입자가 내부 또는 입자 간에 공극(pore) 구조를 포함하고 있는 경우, 작은 크기의 질소(N2) 분자는 공극 내에 다수 흡착될 수 있다. 반면, 상대적으로 큰 분자인 요오드(I2)는 질소에 비해 공극 내에 들어가기 어려워 요오드 흡착가가 크게 나타나지 않는다. 즉, 공극 구조가 존재할 시, 상기 식 1에 따른 값이 커진다. 다시 말해, 상기 예비 탄소계 입자에 있어서, 상기 식 1에 따른 값이 0.12 이하인 것은 상기 예비 탄소계 입자가 미세 기공을 포함하지 않는 것을 의미한다. 즉, 공극이 존재하지 않는 경우, 요오드가 흡착되는 정도와 질소가 흡착 되는 정도가 유사하므로, 상기 식 1의 값이 작아지게 된다. 이는, 상기 예비 탄소계 입자의 표면이 매끄러운 상태(free surface)인 것을 의미한다. 구체적으로, 대부분의 카본 블랙이 산화 처리에 의해 중공형 구조로 변형되고, 지속적인 산화 처리에 의해 구조가 파괴되면서 그래핀 시트들이 형성된다. 이 때, 공극 구조가 형성되지 않으면서 그래핀 시트들이 외부를 향해 열리는 모양으로 형성될 수 있다.
상기 예비 탄소계 입자를 상기 코어 상에 코팅하여 탄소계 입자를 포함하는 코팅층을 형성하는 단계는 상기 예비 탄소계 입자와 상기 코어를 혼합한 뒤 메카노퓨전 방식을 적용하는 것을 포함한다.
구체적으로, 상기 메카노퓨전 방식은 Hosakawa Micron 사의 Nobilta 장비를 사용하여 수행될 수 있다. 상기 예비 탄소계 입자와 상기 코어의 혼합물을 용기 내에 투입한 뒤, 용기를 회전시켜 원심력으로 상기 혼합물을 용기의 내벽으로 이동시킨다. 이 후, 용기 내벽과 근소한 간격을 가지며 근접하는 암헤드(arm head)에 의해 강력한 전단력이 인가되어, 상기 혼합물들 표면 간의 상호 작용에 의해 상기 예비 탄소계 입자가 상기 코어 상에 강하게 코팅되어 탄소계 입자를 포함하는 코팅층이 형성되며, 상기 예비 탄소계 입자는 상술한 탄소계 입자로 변형될 수 있다.
상기 전단력은 1 m/s 내지 500 m/s 일 수 있으며, 구체적으로 10 m/s 내지 100 m/s 일 수 있다.
본 발명과 달리 어쿠스틱 믹서를 사용하는 경우, 어쿠스틱 믹서는 단순 진동을 이용하는 방식이므로, 탄소계 입자를 포함하는 코팅층이 형성된다기 보다는 예비 탄소계 입자가 비교적 불균일하게 코어 표면에 배치되므로, 본 발명의 양극 활물질과 다르다. 반면, 메카노퓨전 방식은 높은 기계적 전단력을 가할 수 있는 방식에 해당하므로, 본 발명에서는 균일한 코팅을 통해 도전성을 획기적으로 개선하기 위해 양극 활물질 제조 시 메카노퓨전 방식을 사용한다.
한편, 메카노퓨전 방식은 근소한 간격을 가지는 암헤드에 의해 강력한 전단력을 가하는 것이므로, 입자의 깨짐 현상을 제어하기 어려운 문제가 있다. 그러나, 본 발명의 연구자들은, 복수의 그래핀 시트를 가지는 예비 탄소계 입자를 사용하기 때문에 입자의 깨짐 현상이 억제될 수 있다는 사실을 각고의 노력 끝에 확인하였으며, 이에 따라 입자의 깨짐 현상이 억제되면서도, 메카노표전 방식을 통해 균일한 코팅층을 형성할 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
제조예 1: 예비 탄소계 입자의 제조
(1) 탄소질 재료(아세틸렌 블랙)의 형성
내부 온도가 2000℃인 반응로에 순도 98%의 아세틸렌 가스를 순간적으로 분사하여 열분해시켜, 아세틸렌 블랙을 형성하였다.
(2) 예비 탄소계 입자의 제조
이어서, 상기 아세틸렌 블랙이 수용된 상기 반응로의 내부 온도를 250℃로 한 뒤, 산소를 유입시키면서 30시간 동안 산화 처리를 진행하였다. 이를 통해, 최장 길이(lateral size)가 41nm 수준인 다수의 그래핀 시트이 서로 연결된 형태를 포함하는 2차 입자 구조의 예비 탄소계 입자를 수득하였다. (도 2, 3 참조)
상기 예비 탄소계 입자의 라만 스펙트럼 D/G ratio는 1.42였다. 라만 스펙트럼 D/G ratio: 라만 분광 분석 장비(NRS-2000B, Jasco)를 통해 514.5nm 파장의 Ar-ion laser로 라만 스펙트럼을 분석하여 측정하였다.
제조예 2: 예비 탄소계 입자의 제조
제조예 1의 예비 탄소계 입자의 준비 단계에서 수득된 예비 탄소계 입자에 대해, 비활성 분위기에서 900℃로 1시간동안 추가 열처리를 진행하여, 최장 길이(lateral size)가 65nm 수준인 다수의 그래핀 시트이 서로 연결된 형태를 포함하는 2차 입자 구조의 예비 탄소계 입자를 수득하였다. 도 4를 참조하면, 제조예 1의 예비 탄소계 입자(도 4(a))가 열처리에 의해 제조예 2의 예비 탄소계 입자(도 4(b))로 변형된 것을 알 수 있다.
상기 예비 탄소계 입자의 라만 스펙트럼 D/G ratio는 1.27였다.
샘플 1: 카본 블랙의 준비
1차 입자가 응집된 2차 입자 형태의 카본 블랙(아세틸렌 블랙)을 준비하였다. 준비된 카본 블랙 1차 입자의 평균 입경은 12nm였다. (Denka社, SAB(Small Acetylene Black)) (도 5 참조)
상기 카본 블랙의 라만 스펙트럼 D/G ratio는 1.68이었다.
샘플 2: 그래핀의 준비
평균 두께가 100nm이며, 평균 크기가 7㎛인 그래핀을 준비하였다 (KNANO社의 Graphene Powder). 상기 그래핀의 라만 스펙트럼 D/G ratio는 0.22였다.
예비 탄소계 입자 또는 카본 블랙 질소 흡착 비표면적(m2/g) 요오드 흡착가(mg/g)
Figure PCTKR2021011697-appb-I000002
산소 함량(중량%)
제조예 1 825 849 0.029 8.9
제조예 2 712 736 0.034 3.2
샘플 1 376 456 0.213 4.7
샘플 2 51 143 1.803 2.1
a는 질소 흡착 BET법으로 측정된 상기 탄소계 입자의 비표면적(m2/g)이고, b는 상기 탄소계 입자의 요오드 흡착가(mg/g)이다.
1) 질소 흡착 비표면적(m2/g): BET 측정 장비(BEL-SORP-MAX, Nippon Bell)를 이용하여, 200℃에서 8시간 동안 가스를 제거(degassing)하고, 77K에서 N2 흡착/탈착(absorption/desorption)을 진행하여 측정하였다.
2) 요오드 흡착가(mg/g): ASTM D1510 방법에 의거하여 측정하였다.
3) 산소 함량(중량%): 원소 분석 장비(CHN-coder MT-5, Yanako)를 통해, C, H, N 원소 함량을 측정하고, 잔존 회분의 양을 반영하여 산소 함량(Oxygen) (differential)을 계산하였다.
실시예 1: 양극 활물질의 제조
1차 입자가 결합 내지 조립되어 형성된 2차 입자 형태의 Li[Ni0.6Co0.2Mn0.2]O2 (평균 입경(D50)이 9.0㎛, 도 6 참조)와 상기 제조예 1의 예비 탄소계 입자를 99:1의 중량비로 혼합한 뒤, 3,000rpm, 10분 조건으로 메카노퓨전 장비(Nobilta NOB-130, Hosokawa Micron)를 사용하여 상기 2차 입자 형태의 Li[Ni0.6Co0.2Mn0.2]O2 상에 상기 탄소계 입자를 포함하는 코팅층을 형성하여, 양극 활물질을 제조하였다(도 7 참조).
실시예 2: 양극 활물질의 제조
실시예 1에서 사용한 예비 탄소계 입자 대신 제조예 2의 예비 탄소계 입자를 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 코팅층을 형성하여 양극 활물질을 제조하였다.
비교예 1: 양극 활물질의 준비
1차 입자가 결합 내지 조립되어 형성된 2차 입자 형태의 Li[Ni0.6Co0.2Mn0.2]O2 (평균 입경(D50)이 9.0㎛)와 상기 제조예 1의 예비 탄소계 입자를 99:1의 중량비로 혼합한 뒤 어쿠스틱 믹서(Lab RAM-Ⅱ, Resodyn)를 사용하여 1,500rpm, 2분 조건으로 3회(총 6분) 혼합하였다. 이를 통해 Li[Ni0.6Co0.2Mn0.2]O2 표면 상에 예비 탄소계 입자를 배치하여 양극 활물질을 형성하였다(도 8 참조).
비교예 2: 양극 활물질의 준비
실시예 1에서 사용한 예비 탄소계 입자 대신 샘플 1의 카본 블랙을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 코팅층을 형성하여 양극 활물질을 제조하였다(도 9 참조).
비교예 3: 양극 활물질의 준비
비교예 1에서 사용한 예비 탄소계 입자 대신 샘플 1의 카본 블랙을 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 코팅층을 형성하여 양극 활물질을 제조하였다.
비교예 4: 양극 활물질의 준비
비교예 1에서 사용한 예비 탄소계 입자 대신 샘플 2의 그래핀을 사용한 것을 제외하고는, 비교예 1과 동일한 방법으로 코팅층을 형성하여 양극 활물질을 제조하였다.
그래핀 시트의 최장 길이 또는 카본 블랙 1차 입자의 평균 크기(nm) 양극 활물질의 비표면적(m2/g) 양극 활물질의 D/G 피크 비 양극 활물질의 분체 전기 전도도(s/cm)
실시예 1 41(그래핀 시트) 5.68 1.03 2.01×10-2
실시예 2 65(그래핀 시트) 4.22 0.93 3.56×10-2
비교예 1 41(그래핀 시트) 8.59 1.39 6.83×10-3
비교예 2 12(카본 블랙 1차 입자) 1.59 1.05 2.15×10-3
비교예 3 12(카본 블랙 1차 입자) 1.84 1.08 4.62×10-3
비교예 4 7000(그래핀) 0.81 0.22 2.07×10-3
그래핀 시트의 최장 길이(lateral size)(nm)는 TEM(JEOL, JEM-2010F)으로 코팅층 내 100개의 그래핀 시트의 크기를 측정한 뒤, 이들의 평균으로 확인하였다.양극 활물질의 비표면적(m2/g)은 BET 법에 의해 측정한 것으로서, 구체적으로 BEL Japan 사의 BELSORP-mini Ⅱ를 사용하여 액체 질소 온도(77K)에서의 질소 가스 흡착량으로부터 산출되었다. 양극 활물질의 D/G 피크 비는 라만 분광 분석 장비(NRS-2000B, Jasco)를 사용하여 514.5nm 파장의 Ar-ion laser로 측정하였다.
양극 활물질의 분체 전기 전도도(s/cm)는 제조된 양극 활물질 5g을 전용 홀더에 넣은 후, 30kN의 힘을 가하여 압연한 뒤, 파우더 전용 4-Probe 분체 저항 측정 전극(분체 저항 시스템(MCP-PD51), 미쯔비시케미칼)을 이용하여 측정되었다.
실험예 1: SEM 사진 평가
도 7, 도 8, 도 9는 각각 실시예 1, 비교예 1, 비교예 2의 양극 활물질의 SEM 사진이다.
도 7을 참조하면, Li[Ni0.6Co0.2Mn0.2]O2의 1차 입자들 간의 경계면 뿐만 아니라 Li[Ni0.6Co0.2Mn0.2]O2의 표면 전체에 걸쳐 탄소계 입자가 균일하게 배치되어 코팅층을 형성하고 있음을 알 수 있다. 구체적으로, 실시예 1의 경우, 탄소계 입자의 그래핀 시트 형상이 완전히 붕괴되어 그래핀 시트가 재 적층(Re-stacking)되어 재배열되면서, 표면에 탄소계 입자가 매끄럽게 코팅된 형태로 관찰된다.
반면, 도 8을 참조하면, 비교예 1의 양극 활물질에 있어서 예비 탄소계 입자가 Li[Ni0.6Co0.2Mn0.2]O2 표면의 일부분에만 국소적으로 존재하고 있는 점에서 실시예 1의 양극 활물질과 다르다. 또한, 도 9를 참조하면, 비교예 1의 양극 활물질에 있어서 카본 블랙이 Li[Ni0.6Co0.2Mn0.2]O2 의 1차 입자들 간의 경계면에서 탄소 조직의 구조 변화 없이 상호 응집되어 존재하는 것을 알 수 있다.
실험예 2: 전지 성능 평가(출력/방전 특성 평가)
다음과 같은 방법으로 전지를 제조한 뒤, 제조한 이차전지를 0.1C로 4.3V까지 CC/CV 충전하고, 0.005C로 cut-off시까지 충전하였으며, 0.1C로 3.0V까지 CC방전하여, 1회 충전 용량을 측정하고, 그 결과를 하기 표 2에 나타내었다.
전지의 제조 방법:
(1) 양극의 제조
실시예 1, 2 및 비교예 1 내지 4의 양극 활물질 각각을 포함하는 양극을 제조하였다. 바인더는 PVdF를 사용하고, 도전재는 카본블랙을 사용하였다.
상기 양극 활물질, 바인더, 도전재가 97.5:1.5:1의 중량비가 되도록 용매인 NMP에 혼합하여 양극 슬러리를 제조하였다. 상기 양극 슬러리를 두께가 20㎛인 양극 집전체(Al)에 도포하고, 130℃℃에서 건조시켜서 양극을 제조하였다.
(2) 전지 제조
SiO와 인조흑연을 1:9 중량비로 혼합한 음극 활물질, 음극 도전재인 카본 블랙, 음극 바인더인 스티렌-부타디엔 고무(SBR), 카르복시 메틸 셀룰로오스(CMC)를 각각 96.5:2:1:0.5 중량비로 증류수에 혼합하여 음극 슬러리를 제조하였다. 제조된 슬러리를 두께가 10㎛인 음극 집전체(Cu)에 도포하고, 100℃℃에서 건조시켜 음극을 제조하였다.
이 후, 상기 제조된 음극 및 양극과 그 사이에 개재시키는 15㎛ 두께의 폴리에틸렌계 분리막을 조합하여 모노셀을 제조한 뒤, 상기 모노셀에 전해액 (에틸렌카보네이트(EC)/에틸메틸카보네이트(EMC)=1/2 (부피비), 리튬 헥사 플로로 포스페이트 (LiPF6 1몰))을 주입하여 리튬 이차전지를 제조하였다.
상기 제조된 전지에 대하여 25℃에서 0.2C 정전류로 4.25V까지 0.05C cut off 충전을 실시하였다. 이어서 0.2C 정전류로 2.5V가 될 때까지 방전을 실시하여 초기 충전 및 방전 용량을 측정하였다.
이 후, 0.2C 정전류로 4.25V까지 0.05C cut off로 충전을 실시하고, 2.0C 정전류로 2.5V가 될 때까지 방전을 실시하였다. 상기 충전 및 방전을 1사이클로 하여, 두번의 사이클을 실시하였다. 그 후, 상기 전지에 대해 0.2C 방전 용량 대비 2.0C에서의 방전 용량을 측정하였고, 이를 하기 표 3에 나타내었다.
실험예 3: 전지 성능 평가(수명 특성 평가)
상기 제조된 전지를 각각 45℃에서 4.25V ~ 2.8V의 전압 번위에서 0.33C/0.33C 충전/방전하는 것을 1 사이클로 하였다. 총 100 사이클을 진행한 뒤, 1 사이클 후의 방전 용량을 100% 기준으로 할 때의 100 사이클 후의 방전 용량을 평가하였고, 이를 하기 표 3에 나타내었다.
2.0C 방전 방전 용량 / 0.2C 방전 용량 용량 유지율(%)
실시예 1 92.9 94.8
실시예 2 93.7 96.2
비교예 1 84.5 90.4
비교예 2 75.3 82.1
비교예 3 74.9 79.6
비교예 4 71.4 75.3
상기 표 3을 참조하면, 실시예 1, 2의 양극 활물질 사용 시, 비교예 1 내지 4의 양극 활물질을 사용하는 경우에 비해, 출력/방전 특성이 양호하며, 수명 특성이 개선될 수 있음을 확인하였다.

Claims (12)

  1. 코어 및 상기 코어 상에 배치된 코팅층을 포함하며,
    상기 코어는 Li1+xMyO2+z를 포함하며, M은 Ni, Co, Mn, Fe, P, Al, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소이며, -0.2≤x≤0.2, 0<y≤2, 0≤z≤2이고,
    상기 코팅층은 탄소계 입자를 포함하며,
    상기 탄소계 입자는 복수의 그래핀 시트들이 서로 연결된 구조를 포함하며,
    라만 스펙트럼 측정 시 D/G 피크 비가 0.9 내지 1.3인 양극 활물질.
  2. 청구항 1에 있어서,
    상기 Li1+xMyO2+z는 Li1+x[NiaCobM1 cM2 d]O2를 포함하며,
    상기 M1는 Al 및 Mn 중 적어도 어느 하나의 원소이고,
    상기 M2는 Fe, P, Mg, Ca, Zr, Zn, Ti, Ru, Nb, W, B, Si, Na, K, Mo, 및 V로 이루어진 군에서 선택되는 적어도 어느 하나의 원소이고,
    0<a<1, 0<b<1, 0<c<1, 0≤d≤0.2인 양극 활물질.
  3. 청구항 1에 있어서,
    상기 그래핀 시트의 최장 길이는 10nm 내지 500nm인 양극 활물질.
  4. 청구항 1에 있어서,
    상기 복수의 그래핀 시트들 중 적어도 일부의 그래핀 시트와 연결된 연결부를 더 포함하며,
    상기 연결부는 비-그래핀 형태인 양극 활물질.
  5. 청구항 4에 있어서,
    상기 복수의 그래핀 시트들 각각의 적어도 일부분은 상기 연결부에 연결된 양극 활물질.
  6. 청구항 1에 있어서,
    상기 그래핀 시트의 평균 두께는 0.34nm 내지 10nm인 양극 활물질.
  7. 청구항 1에 있어서,
    상기 코팅층의 두께는 1nm 내지 500nm인 양극 활물질.
  8. 청구항 1에 있어서,
    상기 양극 활물질의 분체 전기 전도도는 1.0×10-3s/cm 내지 1.0×10s/cm인 양극 활물질.
  9. 청구항 1에 있어서,
    상기 코어 및 상기 코팅층의 중량비는 99.9:0.1 내지 90:10인 양극 활물질.
  10. 청구항 1에 있어서,
    비표면적이 2m2/g 내지 8m2/g인 양극 활물질.
  11. 청구항 1의 양극 활물질을 포함하는 양극.
  12. 청구항 11의 양극을 포함하는 이차 전지.
PCT/KR2021/011697 2020-09-01 2021-08-31 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지 WO2022050664A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180051373.XA CN115917795A (zh) 2020-09-01 2021-08-31 正极活性材料、包括该正极活性材料的正极、包括该正极的二次电池
JP2023512413A JP2023539171A (ja) 2020-09-01 2021-08-31 正極活物質、前記正極活物質を含む正極、および前記正極を含む二次電池
EP21864624.8A EP4184611A4 (en) 2020-09-01 2021-08-31 POSITIVE ELECTRODE ACTIVE MATERIAL, POSITIVE ELECTRODE COMPRISING THE POSITIVE ELECTRODE ACTIVE MATERIAL, AND SECONDARY BATTERY COMPRISING THE POSITIVE ELECTRODE
US18/021,458 US20230343936A1 (en) 2020-09-01 2021-08-31 Positive Electrode Active Material, Positive Electrode Including the Positive Electrode Active Material, and Secondary Battery Including the Positive Electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0111333 2020-09-01
KR20200111333 2020-09-01

Publications (1)

Publication Number Publication Date
WO2022050664A1 true WO2022050664A1 (ko) 2022-03-10

Family

ID=80491785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011697 WO2022050664A1 (ko) 2020-09-01 2021-08-31 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지

Country Status (6)

Country Link
US (1) US20230343936A1 (ko)
EP (1) EP4184611A4 (ko)
JP (1) JP2023539171A (ko)
KR (1) KR20220029521A (ko)
CN (1) CN115917795A (ko)
WO (1) WO2022050664A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133002A (zh) * 2022-07-29 2022-09-30 湖北万润新能源科技股份有限公司 一种钠电池正极材料及其制备方法以及应用
WO2024139201A1 (zh) * 2022-12-29 2024-07-04 比亚迪股份有限公司 钠电池正极材料及其制备方法、正极极片、以及钠电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062089A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp リチウムイオン二次電池
KR20140126585A (ko) * 2013-04-23 2014-10-31 삼성에스디아이 주식회사 양극 활물질 및 이의 제조 방법, 그리고 상기 양극 활물질을 포함하는 리튬 이차 전지
KR20160044513A (ko) * 2013-08-21 2016-04-25 하이드로-퀘벡 리튬 2차 전지용 양극 물질
JP2016189321A (ja) * 2015-03-27 2016-11-04 Tdk株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
KR20190117279A (ko) * 2018-04-06 2019-10-16 주식회사 엘지화학 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101937900B1 (ko) * 2018-02-07 2019-01-14 주식회사 엘지화학 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013062089A (ja) * 2011-09-12 2013-04-04 Toyota Motor Corp リチウムイオン二次電池
KR20140126585A (ko) * 2013-04-23 2014-10-31 삼성에스디아이 주식회사 양극 활물질 및 이의 제조 방법, 그리고 상기 양극 활물질을 포함하는 리튬 이차 전지
KR20160044513A (ko) * 2013-08-21 2016-04-25 하이드로-퀘벡 리튬 2차 전지용 양극 물질
JP2016189321A (ja) * 2015-03-27 2016-11-04 Tdk株式会社 リチウムイオン二次電池用正極活物質、リチウムイオン二次電池用正極およびこれを用いたリチウムイオン二次電池
KR20190117279A (ko) * 2018-04-06 2019-10-16 주식회사 엘지화학 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4184611A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115133002A (zh) * 2022-07-29 2022-09-30 湖北万润新能源科技股份有限公司 一种钠电池正极材料及其制备方法以及应用
CN115133002B (zh) * 2022-07-29 2023-05-16 湖北万润新能源科技股份有限公司 一种钠电池正极材料及其制备方法以及应用
WO2024139201A1 (zh) * 2022-12-29 2024-07-04 比亚迪股份有限公司 钠电池正极材料及其制备方法、正极极片、以及钠电池

Also Published As

Publication number Publication date
EP4184611A4 (en) 2024-09-04
JP2023539171A (ja) 2023-09-13
CN115917795A (zh) 2023-04-04
EP4184611A1 (en) 2023-05-24
US20230343936A1 (en) 2023-10-26
KR20220029521A (ko) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2019107936A1 (ko) 음극 활물질, 이를 포함하는 음극 및 리튬 이차전지
WO2019194510A1 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2015084036A1 (ko) 다공성 실리콘계 음극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2019194613A1 (ko) 양극 활물질, 상기 양극 활물질의 제조 방법, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2019168352A1 (ko) 음극 활물질 및 이의 제조 방법, 상기 음극 활물질을 포함하는 음극 및 리튬 이차전지
WO2022260383A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2019156462A1 (ko) 신규한 도전재, 상기 도전재를 포함하는 전극, 상기 전극을 포함하는 이차 전지, 및 상기 도전재의 제조 방법
WO2022191639A1 (ko) 복합양극활물질, 이를 채용한 양극과 리튬전지 및 그 제조방법
WO2022050664A1 (ko) 양극 활물질, 상기 양극 활물질을 포함하는 양극, 및 상기 양극을 포함하는 이차 전지
WO2022060138A1 (ko) 음극 및 이를 포함하는 이차전지
WO2022092477A1 (ko) 리튬 이차전지용 양극 활물질의 제조 방법
WO2021096265A1 (ko) 리튬 이차전지용 양극 활물질 및 상기 양극 활물질의 제조 방법
WO2020141953A1 (ko) 이차전지용 음극 활물질, 이를 포함하는 전극 및 이의 제조방법
WO2022060181A1 (ko) 음극 및 이를 포함하는 리튬 이차전지
WO2020149683A1 (ko) 이차전지용 음극 활물질, 이의 제조방법, 이를 포함하는 이차전지용 음극 및 리튬 이차전지
WO2020231150A1 (ko) 도전재, 상기 도전재를 포함하는 전극, 및 상기 전극을 포함하는 이차 전지
WO2019078626A1 (ko) 이차전지용 양극활물질의 제조방법 및 이를 이용하는 이차전지
WO2019078685A2 (ko) 리튬 이차전지용 양극 활물질, 이의 제조방법, 이를 포함하는 리튬 이차전지용 양극 및 리튬 이차전지
WO2020256440A1 (ko) 복합 음극, 및 상기 복합 음극을 포함한 리튬 이차 전지
WO2016167591A1 (ko) 음극 활물질 및 이의 제조방법
WO2020180125A1 (ko) 리튬 이차전지
WO2022149913A1 (ko) 황-탄소 복합체, 이의 제조방법, 및 이를 포함하는 리튬-황 전지
WO2022103095A1 (ko) 리튬 이차전지용 복합 전극 활물질, 이의 제조방법 및 이를 포함하는 리튬 이차전지
WO2022019605A1 (ko) 다공성 복합체, 이를 포함하는 음극과 리튬전지, 및 그 제조방법
WO2022060104A1 (ko) 음극 활물질, 이를 포함하는 음극 및 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864624

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023512413

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317011350

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2021864624

Country of ref document: EP

Effective date: 20230214

NENP Non-entry into the national phase

Ref country code: DE