Nothing Special   »   [go: up one dir, main page]

WO2022050368A1 - Pulse wave signal acquisition device - Google Patents

Pulse wave signal acquisition device Download PDF

Info

Publication number
WO2022050368A1
WO2022050368A1 PCT/JP2021/032377 JP2021032377W WO2022050368A1 WO 2022050368 A1 WO2022050368 A1 WO 2022050368A1 JP 2021032377 W JP2021032377 W JP 2021032377W WO 2022050368 A1 WO2022050368 A1 WO 2022050368A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse wave
signal
light
wave signal
signal acquisition
Prior art date
Application number
PCT/JP2021/032377
Other languages
French (fr)
Japanese (ja)
Inventor
央大 加藤
仁 大久保
Original Assignee
興和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 興和株式会社 filed Critical 興和株式会社
Priority to JP2022546977A priority Critical patent/JPWO2022050368A1/ja
Publication of WO2022050368A1 publication Critical patent/WO2022050368A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure

Definitions

  • the present invention relates to a pulse wave signal acquisition device.
  • Patent Document 1 describes that a living body is irradiated with light from a light emitting element, a transmitted light amount measurement value is detected by measuring the light transmitted through the living body with a photodetection element, and a pulse wave component is extracted from the transmitted light amount measurement value.
  • a blood component measuring device that detects a pulse wave measurement value. This blood component measuring device measures the blood oxygen saturation concentration of arterial blood using the pulse wave measurement value.
  • Patent Document 2 discloses a biological information measuring device that irradiates a finger with light, receives the reflected light, and detects a signal corresponding to the light receiving level as a pulse wave signal. This biological information measuring device applies arithmetic processing to the pulse wave signal to measure biological information such as oxygen saturation concentration in blood.
  • the blood component measuring device disclosed in Patent Document 1 amplifies the pulse wave measurement value by a variable amplifier circuit and uses it for calculating the oxygen saturation concentration in blood.
  • the biometric information measuring device disclosed in Patent Document 2 adjusts the amplification factor of the amplifier circuit based on the sampling data from which noise is excluded, and performs arithmetic processing on the pulse wave signal amplified by the amplifier circuit.
  • adjustment processing for determining the optimum amplification factor is required prior to this measurement, and a pulse wave signal suitable for measuring the concentration of blood components is acquired. There is a problem that it becomes complicated and a long adjustment time is required.
  • the present disclosure aims to provide a technique capable of shortening the time for acquiring a pulse wave signal suitable for measuring the concentration of blood components.
  • the pulse wave signal acquisition device disclosed in the present disclosure includes at least one light emitting element that irradiates a measurement site of a living body with light, a light receiving element that receives light that has passed through the measurement site, and an amplifier having a fixed amplification factor.
  • An amplification unit that includes one and generates a plurality of amplification signals having different amplification factors by amplifying an output signal from the light receiving element at each fixed amplification factor of each amplifier, and amplification of one of the plurality of amplification signals. It has a determination unit that determines a signal as a pulse wave signal.
  • the pulse wave signal acquisition device disclosed in the present disclosure determines one of a plurality of amplified signals generated almost simultaneously by the amplification unit as a pulse wave signal, it takes time to acquire a pulse wave signal suitable for measuring the concentration of blood components. Can be shortened.
  • the pulse wave signal acquisition device includes a plurality of the light emitting elements, the plurality of the light emitting elements emit light having different wavelengths, and irradiate the light in a predetermined order.
  • the one amplification signal may be determined for each output signal from the light receiving element based on the irradiation of light from each light emitting element.
  • the determination unit detects the signal strength of the amplified signal of one of the plurality of amplified signals, and the signal strength of the other amplified signal is used from the signal strength of the one amplified signal. May be estimated.
  • the determination unit may detect each signal strength of the plurality of amplified signals.
  • the determination unit preferentially detects the signal strength of one amplified signal designated in advance among the plurality of amplified signals, and the signal strength of the one amplified signal is determined. If it is within a predetermined allowable range, the one amplified signal may be determined as a pulse wave signal.
  • the pulse wave signal acquisition device further has an adjusting unit for adjusting the light emitting amount of the light emitting element, and the determining unit selects one combination from the combination of the light emitting amount and the amplification factor.
  • the amplified signal at the amplification factor in the one combination may be determined as the pulse wave signal.
  • the pulse wave signal acquisition device 1 irradiates a measurement site, which is a part of the body of a living body including blood, with near-infrared light by a Light-Emitting Diode (LED) to collect blood in the measurement site.
  • the passed near-infrared light is received by a Photodiode (PD) to acquire the received light data.
  • PD Photodiode Since the living body is not transparent with the exception of the eyeball, almost no light is transmitted. However, for example, the light that has penetrated into the inside of a human finger is scattered by tissues, blood, etc., and a small part of the penetrated light reaches the PD and is detected.
  • the component that fluctuates periodically is the pulse wave signal detected by the received data of the light that has passed through the blood.
  • the measurement site may be a site where pulsation can be easily detected by near-infrared light, and the finger, palm, wrist, inside of elbow, back of knee, sole of foot, and foot. Fingers, ear flaps, anterior sides of the ears, lips, grooves, neck, etc. are preferable, and thumbs, index fingers, and middle fingers that can clearly detect pulsation are more preferable.
  • the organism to be measured will be referred to as a human, and the measurement site will be referred to as a thumb.
  • the organism to be measured and the measurement site are not limited to these.
  • FIG. 1 is a diagram showing a schematic configuration of a pulse wave signal acquisition device 1 according to the present embodiment.
  • the pulse wave signal acquisition device 1 includes a control unit 10, a storage unit 20, an irradiation unit 30, a light receiving unit 40, an amplification unit 50, and a communication unit 60.
  • the control unit 10 includes a Central Processing Unit (CPU) and controls each unit in the pulse wave signal acquisition device 1.
  • the storage unit 20 includes a non-volatile memory such as a flash memory and an electrically Erasable Programmable Read-Only Memory (EEPROM), and a Random Access Memory (RAM).
  • the storage unit 20 stores the control program in the pulse wave signal acquisition device 1 and the data obtained when various processes are executed.
  • each functional unit of the determination unit 11 and the adjustment unit 12 is realized by the CPU executing the program stored in the storage unit 20.
  • the determination unit 11 determines the amplification signal of one of the plurality of amplification signals as a pulse wave signal.
  • the adjusting unit 12 adjusts the amount of light emitted from each LED of the irradiation unit 30.
  • the irradiation unit 30 irradiates the measurement site of the living body with near-infrared light.
  • the blood TG value and the HbA1c value are measured by irradiating the thumb of a human being to be measured with near-infrared light by the irradiation unit 30.
  • blood is measured by non-invasively measuring the absorbance of blood at a plurality of wavelengths by using a pulse wave signal which is a time-dependent change in light intensity passing through blood in a blood vessel of a human thumb.
  • the value of Triglyceride in blood hereinafter referred to as "blood TG value”
  • HbA1c value The ratio of glycated hemoglobin to the total hemoglobin concentration contained in blood as a percentage
  • the absorbance in near-infrared light near the wavelength of 1050 nm increases.
  • the blood TG value is measured using the absorbance of blood at a wavelength of 1050 nm, the absorbance of blood at a wavelength of 1300 nm, and the absorbance of blood at a wavelength of 1200 nm.
  • the absorbance in the vicinity of a wavelength of 1450 nm to 1600 nm changes significantly as compared with other wavelengths, depending on the HbA1c value. Further, since the absorbance in the vicinity of the wavelength of 900 nm to 1300 nm changes depending on the total hemoglobin concentration in the blood, in the present embodiment, the absorbance of the blood at the wavelength of 1450 nm, the absorbance of the blood at the wavelength of 1600 nm, and the absorbance of the blood at the wavelength of 1050 nm.
  • the HbA1c value is measured using.
  • the irradiation unit 30 of the pulse wave signal acquisition device 1 irradiates a human finger with near-infrared light of the above wavelength in order to non-invasively measure the blood TG value and the HbA1c value. It has a light emitting element.
  • the irradiation unit 30 includes an LED having a peak wavelength of 1050 nm, an LED having a peak wavelength of 1200 nm, an LED having a peak wavelength of 1300 nm, an LED having a peak wavelength of 1450 nm, and an LED having a peak wavelength of 1600 nm. Have. The details of these LEDs and the details of the method for measuring the blood TG value and the HbA1c value will be described later.
  • the light receiving unit 40 receives light that has passed through blood at the measurement site.
  • the near-infrared light irradiated by the irradiation unit 30 passes through the blood contained in the measurement site of the living body and is received by the light receiving unit 40.
  • the light receiving unit 40 has a PD (photodiode), detects light that has passed through blood by the PD, and outputs the intensity as a voltage signal.
  • the pulse wave signal acquisition device 1 has an AD (Analog Digital) converter (not shown), and after AD conversion of the output signal as the received light data from the PD of the light receiving unit 40, the control unit 10 is used. Output.
  • the control unit 10 stores the received light data in the storage unit 20. The positional relationship between the irradiation unit 30 and the light receiving unit 40 will be described later.
  • the amplification unit 50 includes a plurality of amplifiers having a fixed amplification factor, amplifies the output signal of the PD at each fixed amplification factor, and generates a plurality of amplification signals having different amplification factors. The details of the amplification unit 50 will be described later.
  • the communication unit 60 wirelessly communicates with the terminal device 100 owned by the user by known short-range wireless communication such as Bluetooth (registered trademark), Bluetooth Low Energy (BLE), Wi-Fi, etc., and transmits various data to the terminal device 100. can do.
  • Bluetooth registered trademark
  • BLE Bluetooth Low Energy
  • Wi-Fi Wi-Fi
  • Examples of the terminal device 100 include smartphones, feature phones, tablet-type personal computers, notebook-type personal computers, desktop-type personal computers, and various other electronic devices.
  • the terminal device 100 is composed of a liquid crystal display device, an organic EL display device, and the like, and includes a display unit 100A that displays a blood TG value and an HbA1c value as measured values. Further, the terminal device 100 stores a blood component measurement program and various data for executing various processes (see FIGS. 8 to 11) in the blood component measurement described below. In the present embodiment, the terminal device 100 calculates the blood TG value and the HbA1c value based on the pulse wave signal obtained by the pulse wave signal acquisition device 1.
  • FIG. 2 is an external perspective view of the pulse wave signal acquisition device 1.
  • the pulse wave signal acquisition device 1 includes a housing 61 and an upper cover 62 that covers the upper part of the housing 61. Further, in the pulse wave signal acquisition device 1, an opening 63 for inserting the finger of the subject to be measured is provided between the housing 61 and the upper cover 62. When the subject inserts a finger into the opening 63, the irradiation unit 30 and the light receiving unit 40 are provided on the contact surface 61a that comes into contact with the finger in the housing 61.
  • FIG. 3 is a diagram schematically showing a state in which the subject inserts the thumb 101 into the opening 63 in the pulse wave signal acquisition device 1 shown in FIG.
  • the irradiation unit 30 irradiates the ventral side of the thumb 101 with light, and the light that has passed through the blood is received by the light receiving unit 40 arranged on the ventral side of the finger.
  • a reflected light method that receives light is adopted.
  • FIG. 4 is a plan view showing a contact surface 61a in which the irradiation unit 30 and the light receiving unit 40 are arranged in the pulse wave signal acquisition device 1.
  • the irradiation unit 30 has a first LED 31, a second LED 32, a third LED 33, a fourth LED 34, and a fifth LED 35.
  • the first LED 31 irradiates light having a peak wavelength at a wavelength of 1050 nm.
  • the second LED 32 irradiates light having a peak wavelength at a wavelength of 1200 nm.
  • the third LED 33 irradiates light having a peak wavelength at a wavelength of 1300 nm.
  • the fourth LED 34 irradiates light having a peak wavelength at a wavelength of 1450 nm.
  • the fifth LED 35 irradiates light having a peak wavelength at a wavelength of 1600 nm.
  • the light receiving unit 40 has a PD 41 (an example of a "light receiving element").
  • the PD 41 receives light that is irradiated from the irradiation unit 30 to the finger and has passed through the blood.
  • the PD 41 receives light and outputs a voltage signal as light receiving data.
  • the voltage signal output by the PD 41 may be referred to as an “output signal”.
  • FIG. 5 is a circuit diagram of the irradiation unit 30 side of the pulse wave signal acquisition device 1 according to the present embodiment.
  • the pulse wave signal acquisition device 1 includes a microcomputer 70 that constitutes a control unit 10 and a storage unit 20.
  • the microcomputer 70 is operated by being supplied with electric power by a power source (for example, a secondary battery) (not shown) included in the pulse wave signal acquisition device 1.
  • a power source for example, a secondary battery
  • each anode terminal of the first LED 31, the second LED 32, the third LED 33, the fourth LED 34, and the fifth LED 35 (hereinafter, may be abbreviated as “the first LED 31 to the fifth LED 35") has a DC voltage of 3.3 V. It is connected to a power supply circuit (not shown) to be applied, and their cathode terminals are connected to each collector terminal of transistors 71 to 75 (NPN type) via a resistor (50 to 150 ⁇ ). Each emitter terminal of the transistors 71 to 75 is connected to the ground. Further, any base terminal of the transistors 71 to 75 is connected to the microcomputer 70 via a resistor.
  • the microcomputer 70 applies a voltage to each base terminal of the transistors 71 to 75 according to the light irradiation timing by the first LED 31 to the fifth LED 35, a DC voltage of 3.3 V is applied to each LED.
  • the pulse wave signal acquisition device 1 can execute light irradiation by the first LED 31, the second LED 32, the third LED 33, the fourth LED 34, and the fifth LED 35 at a predetermined timing.
  • the control program for executing this control is stored in the storage unit (storage unit 20 shown in FIG. 1) of the microcomputer 70.
  • the pulse wave signal acquisition device 1 has one cycle by irradiating light having different wavelengths in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31 within a predetermined time (100 milliseconds). Acquires the received light data for the minute.
  • FIG. 6 is a circuit diagram of the light receiving unit 40 side of the pulse wave signal acquisition device 1 according to the present embodiment.
  • one end side (output terminal) of the PD 41 of the light receiving unit 40 is connected to the amplification unit 50, and the other end side of the PD 41 is connected (grounded) to the ground.
  • the output terminal of the PD 41 is connected to the collector terminal of the transistor 76 (NPN type).
  • the emitter terminal of the transistor 76 is connected to the ground, and the base terminal thereof is connected to the microcomputer 70.
  • the transistor 76 is an example of a switching element that switches between a connected state in which the output terminal of the PD 41 is connected to the ground and a non-connected state in which the output terminal of the PD 41 is disconnected from the ground.
  • the transistor 76 connects the output terminal of the PD 41 to the ground after the light irradiation by the first LED 31 in a certain cycle, and disconnects the output terminal of the PD 41 from the ground before the light irradiation by the fifth LED 35 in the next cycle of the certain cycle.
  • the switching control of the transistor 76 is executed by the microcomputer 70.
  • the control program for executing this control is stored in the storage unit (storage unit 20 shown in FIG. 1) of the microcomputer 70.
  • the pulse wave signal acquisition device 1 may not be provided with the transistor 76, and may not be provided with a circuit that allows the output terminal of the PD 41 to be grounded via the transistor 76.
  • the output terminal of the PD 41 is connected to the current-voltage conversion unit 45.
  • the current-voltage conversion unit 45 includes an operational amplifier 45A, a resistor 45B, and a capacitor 45C.
  • the inverting input terminal of the operational amplifier 45A is connected to the output terminal of the PD 41.
  • the non-inverting input terminal of the operational amplifier 45A is connected (grounded) to the ground.
  • the current-voltage conversion unit 45 forms an inverting amplifier circuit with an operational amplifier 45A and a resistor 45B.
  • the current-voltage conversion unit 45 has a fixed amplification factor.
  • the resistor 45B is a feedback resistor, and the amplification factor of the current-voltage conversion unit 45 is determined by the resistance value of the resistor 45B.
  • a low-pass filter circuit is formed by connecting the resistor 45B and the capacitor 45C in parallel. The current-voltage conversion unit 45 converts the current input from the output terminal of the PD 41 into a voltage and outputs it as an output signal of the PD 41.
  • the pulse wave signal acquisition device 1 includes an amplification unit 50 connected to the output side of the current-voltage conversion unit 45.
  • the amplification unit 50 includes a first amplifier 51, a second amplifier 52, and a third amplifier 53 (hereinafter, may be abbreviated as “first amplifier 51 to third amplifier 53”).
  • the first amplifier 51, the second amplifier 52, and the third amplifier 53 are composed of a non-inverting amplifier circuit composed of an operational amplifier, an input resistance resistor, and a feedback resistance resistor.
  • the input resistance and feedback resistance resistors are not shown, and only the operational amplifier is shown.
  • Each of the first amplifier 51, the second amplifier 52, and the third amplifier 53 has a fixed amplification factor. Each fixed amplification factor of these amplifiers is determined by the constant ratio of the resistance values of the input resistance and the feedback resistance.
  • the first amplifier 51 to the third amplifier 53 are connected in series.
  • the microcomputer 70 amplifies the output signal of the PD 41 output from the current-voltage conversion unit 45 and the output signal obtained by amplifying the output signal of the PD 41 by the first amplifier 51 to the third amplifier 53 of the amplification unit 50. It is input as a signal.
  • the term "amplified signal” is amplified not only by the three signals obtained by amplifying the output signal of the PD 41 by the first amplifier 51 to the third amplifier 53, but also by the first amplifier 51.
  • the output signal itself of the previous PD41 is also included.
  • the output signal of the PD 41 output from the current-voltage conversion unit 45 is also an example of an amplified signal having an amplification factor of 1.0 times.
  • the output side of the current-voltage conversion unit 45 is connected to the input side of the first amplifier 51 and the signal acquisition pin A3 of the microcomputer 70.
  • An amplified signal having an amplification factor of 1.0 times converted into a voltage by the current-voltage conversion unit 45 is input to the signal acquisition pin A3.
  • the output side of the first amplifier 51 is connected to the signal acquisition pin A2 of the microcomputer 70 and the input side of the second amplifier 52.
  • the amplified signal amplified by the first amplifier 51 is input to the signal acquisition pin A2.
  • the output side of the second amplifier 52 is connected to the signal acquisition pin A1 of the microcomputer 70 and the input side of the third amplifier 53.
  • the amplified signal amplified by the first amplifier 51 and the second amplifier 52 is input to the signal acquisition pin A1.
  • the output side of the third amplifier 53 is connected to the signal acquisition pin A0 of the microcomputer 70.
  • the amplified signal amplified by the first amplifier 51 to the third amplifier 53 is input to the signal acquisition pin A0.
  • the amplification unit 50 includes the first amplifier 51 to the third amplifier 53, and generates four amplification signals having different amplification factors from the output signal of the PD 41. Each of these four amplified signals is input to the signal acquisition pins A3 to A0 of the microcomputer 70.
  • the first amplifier 51 has a fixed amplification factor of 1.2 times
  • the second amplifier 52 has a fixed amplification factor of 5.0 times
  • the third amplifier 53 has a fixed amplification factor of 3.0 times.
  • Amplified signal amplified by 0.0 times is input.
  • the pulse wave signal acquisition device 1 can change the acquireable signal intensity by adjusting the amount of light emitted from the first LED 31 to the fifth LED 35 by PWM control (pulse width modulation).
  • FIG. 7 is a graph illustrating the signal strength that can be acquired by the pulse wave signal acquisition device 1.
  • the horizontal axis of FIG. 7 represents the set value of the amplification factor of the amplification unit 50
  • the vertical axis of FIG. 7 represents the strength of the signal strength to be acquired (arbitrary unit)
  • the line L is acquired with respect to the set value of the amplification factor. It represents the signal strength that can be achieved.
  • the point P1 in the line L represents a point where the amplification factor input to the signal acquisition pin A3 is 1.0 times.
  • the signal strength in the range R1 can be obtained from the amplified signal having an amplification factor of 1.0 times.
  • the point P2 in the line L represents a point where the amplification factor input to the signal acquisition pin A2 is 1.2 times.
  • the signal strength in the range R2 can be obtained from the amplified signal having an amplification factor of 1.2 times.
  • the point P3 in the line L represents a point where the amplification factor input to the signal acquisition pin A1 is 6.0 times.
  • the signal strength in the range R3 can be obtained from the amplified signal having an amplification factor of 6.0 times.
  • the point P4 in the line L represents a point where the amplification factor input to the signal acquisition pin A0 is 18.0 times.
  • the signal strength in the range R4 can be obtained from the amplified signal having an amplification factor of 18.0 times.
  • the pulse wave signal acquisition device 1 can be acquired by combining the first amplifier 51 to the third amplifier 53 having fixed amplification factors and the adjustment of the light emission amount of the first LED 31 to the fifth LED 35 by PWM control. The signal strength can be changed linearly, and signals of any strength can be obtained.
  • FIG. 8 is a flowchart relating to the blood component measurement process.
  • the pulse wave signal acquisition device 1 executes the measurement preparation process (OP101).
  • the measurement preparation process executed by the pulse wave signal acquisition device 1 according to the present embodiment will be described.
  • FIG. 9 is a flowchart relating to the measurement preparation process executed by the pulse wave signal acquisition device 1.
  • the pulse wave signal acquisition device 1 sequentially executes the processes of OP301 to OP308 for the five LEDs of the first LED31 to the fifth LED35, and determines the amplification factor and the amount of light emitted from the LEDs to obtain an appropriate pulse wave signal. It is determined for each LED, and the amplified signal at the amplification factor is determined as a pulse wave signal.
  • the control unit 10 of the pulse wave signal acquisition device 1 causes the five LEDs of the first LED 31 to the fifth LED 35 to emit light in order within 100 milliseconds. Specifically, the control unit 10 causes the five LEDs to emit light in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31.
  • the light emission time of each LED may be different from each other or may be the same. At this time, the control unit 10 controls each LED to emit light at a duty ratio of a predetermined applied voltage.
  • the control unit 10 acquires the amplified signal of the PD 41 from one of the signal acquisition pins A3 to A0. Which signal acquisition pin the signal is acquired from is specified in advance for each of the LEDs of the first LED 31 to the fifth LED 35.
  • the control unit 10 continues to calculate (update) the average value of the amplified signal acquired by the OP 302 while the first LED 31 to the fifth LED 35 irradiate the light, and the average value for 5 seconds is accumulated. At that point, the process shifts to OP304 processing.
  • the average value of the calculated amplified signal is not limited to the signal for 5 seconds, and may be a signal for less than 5 seconds or a signal longer than 5 seconds.
  • the determination unit 11 of the control unit 10 determines whether or not the signal strength (average value for 5 seconds) of one acquired amplified signal is within a predetermined allowable range.
  • the predetermined allowable range is set in which the signal strength is 40% or more and 80% or less (40% to 80%) of the signal acquisition range.
  • the signal acquisition range is determined, for example, based on the saturation signal amount and the noise signal amount.
  • An amplified signal within a predetermined allowable range can be said to be a pulse wave signal suitable for measuring the concentration of blood components.
  • the processing of the OP 305 is executed.
  • the determination unit 11 of the control unit 10 determines the amplification factor and the light emission amount of the LED for obtaining an appropriate pulse wave signal used for measuring the concentration of blood components for each LED, and the amplification signal at the amplification factor is pulse wave. Determined as a signal.
  • the processing of OP 306 is executed.
  • the determination unit 11 of the control unit 10 estimates the signal strengths of the remaining three amplified signals from the signal strength of one acquired amplified signal. Since each of the first amplifier 51 to the third amplifier 53 of the amplification unit 50 has a fixed amplification factor, the determination unit 11 of the control unit 10 changes the signal strength of one amplification signal to the signal of the remaining three amplification signals. The strength can be estimated.
  • the determination unit 11 of the control unit 10 detects an amplified signal within a predetermined allowable range among the signal intensities of the three estimated amplified signals.
  • the processing of OP305 is executed.
  • the determination unit 11 of the control unit 10 determines the amplification factor and the light emission amount of the LED for obtaining an appropriate pulse wave signal used for measuring the concentration of blood components for each LED, and pulses the amplification signal at the amplification factor. Determined as a wave signal.
  • the processing of OP308 is executed.
  • the adjusting unit 12 of the control unit 10 adjusts the amount of light emitted from the first LED 31 to the fifth LED 35.
  • the signal strength of the output signal of the PD 41 changes according to the amount of light emitted from each of the first LED 31 to the fifth LED 35. Therefore, when the signal intensities of the three amplified signals estimated in OP306 are less than 40% of the signal acquisition range, the adjusting unit 12 emits light from the LED because the signal intensities of all the amplified signals are weak as pulse wave signals.
  • the adjusting unit 12 determines the amount of light emitted from the LED because each amplified signal has a strong signal intensity as a pulse wave signal. Make adjustments to weaken.
  • the amount of light emitted from the LED is adjusted by PWM control. More specifically, the amount of light emitted from the LED is adjusted by changing the duty ratio of the applied voltage in the light emission control of each LED.
  • the adjusting unit 12 can adjust the duty ratio of the applied voltage with 255 gradations.
  • the processing of OP302 is executed again after the processing of OP308.
  • the combination of the amplification factor and the light emission amount of the LED to obtain an appropriate amplified signal by repeatedly executing the processes of OP302 to OP308 until the amplified signal falls within a predetermined allowable range in OP304. Is determined.
  • the determination unit 11 of the control unit 10 selects one combination for each LED from the combination of the light emission amount of the LED and the amplification factor of the amplified signal by the amplification unit 50 for the first LED 31 to the fifth LED 35.
  • the amplification signal at the amplification factor in the combination of is determined as an appropriate pulse wave signal of each LED.
  • the pulse wave signal acquisition device 1 can shorten the time for acquiring a pulse wave signal suitable for measuring the concentration of blood components.
  • the pulse wave signal acquisition device 1 shifts to the process of OP102.
  • the pulse wave signal acquisition device 1 irradiates the thumb of the subject with light in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31, and emits the light that has passed through the blood in the finger. Receive light with PD41 and acquire light reception data. More specifically, the pulse wave signal acquisition device 1 emits light from each LED with the emission intensity determined for each LED in the above-mentioned measurement preparation process, and amplifies the amplification factor determined for each LED in the above-mentioned measurement preparation process. The signal is acquired as pulse wave signal data. The pulse wave signal acquisition device 1 acquires, for example, pulse wave signal data for 20 seconds (200 cycles). Further, in OP 102, the pulse wave signal acquisition device 1 transmits the pulse wave signal data to the terminal device 100.
  • the terminal device 100 receives the pulse wave signal data from the pulse wave signal acquisition device 1.
  • the pulse wave signal acquisition device 1 acquires the pulse wave signal data
  • the terminal device 100 analyzes the pulse wave data signal to calculate the blood TG value and the HbA1c value. Therefore, the pulse wave signal acquisition device 1 Transmits the pulse wave signal data acquired to the terminal device 100, and the terminal device 100 receives the pulse wave signal data from the pulse wave signal acquisition device 1.
  • the terminal device 100 calculates the absorbance corresponding to each wavelength from the pulse wave signal data. For example, the change width of the pulsating signal corresponding to each wavelength can be appropriately converted into absorbance.
  • the terminal device 100 determines the absorbance of blood corresponding to light irradiation at a wavelength of 1050 nm (hereinafter referred to as “first absorbance”) and light irradiation at a wavelength of 1200 nm from the change width of the pulse wave signal corresponding to the irradiation at each wavelength.
  • the absorbance of the corresponding blood corresponds to the absorbance of the corresponding blood (hereinafter referred to as "second absorbance"), the absorbance of blood corresponding to light irradiation having a wavelength of 1300 nm (hereinafter referred to as “third absorbance”), and the light irradiation having a wavelength of 1450 nm.
  • the absorbance of blood hereinafter referred to as “fourth absorbance” and the absorbance of blood corresponding to light irradiation having a wavelength of 1600 nm (hereinafter referred to as “fifth absorbance") are calculated.
  • the first to fifth absorbances corresponding to each wavelength are used for measuring the concentration of blood components. Can be done.
  • the terminal device 100 calculates the blood TG value using the first absorbance, the second absorbance, and the third absorbance. Specifically, the terminal device 100 first normalizes the first absorbance by subtracting the third absorbance from the first absorbance, and then subtracts the third absorbance from the second absorbance to normalize the second absorbance. Then, the terminal device 100 calculates the ratio of the normalized first absorbance and the second absorbance, and converts the ratio into a blood TG value using a predetermined conversion table (for example, a calibration curve). As a result, the blood TG value is calculated.
  • a predetermined conversion table for example, a calibration curve
  • the terminal device 100 calculates, for example, a difference value by subtracting the second absorbance from the first absorbance, and converts the difference value into a blood TG value using a predetermined conversion table. You may.
  • the terminal device 100 may, for example, subtract the third absorbance from the first absorbance to calculate the difference value, and convert the difference value into the blood TG value using a predetermined conversion table.
  • the terminal device 100 calculates the HbA1c value using the first absorbance, the fourth absorbance, and the fifth absorbance. Specifically, the terminal device 100 first subtracts the first absorbance from the fourth absorbance to normalize the fourth absorbance, and then subtracts the first absorbance from the fifth absorbance to normalize the fifth absorbance. Then, the terminal device 100 calculates the ratio of the normalized fourth absorbance and the fifth absorbance, and converts the ratio into the HbA1c value using a predetermined conversion table. As a result, the HbA1c value is calculated.
  • the terminal device 100 calculates the ratio of the fourth absorbance and the fifth absorbance without standardizing the fourth absorbance and the fifth absorbance, and calculates a predetermined conversion table (for example, a calibration curve). ) May be used to convert the ratio into an HbA1c value.
  • a predetermined conversion table for example, a calibration curve
  • the terminal device 100 displays the blood TG value and the HbA1c value as measured values on the display unit 100A. This allows the subject to know the blood TG value and the HbA1c value. According to the present embodiment, since a pulse wave signal suitable for measuring the concentration of the blood component can be acquired, the accuracy of measuring the concentration of the blood component can be improved.
  • the configuration of the pulse wave signal acquisition device 1, the calculation process of the blood TG value and the HbA1c value, etc. are not limited to the above embodiment, and the present invention is not limited to the above embodiment.
  • Various changes can be made within the range that does not lose its identity with the technical idea.
  • the blood TG value is calculated first, and then the HbA1c value is calculated, but the present invention is not limited to this, and the HbA1c value is calculated first, and then the blood TG value is calculated. You may.
  • the terminal device 100 calculates and displays the blood TG value and the HbA1c value based on the pulse wave signal data obtained by the pulse wave signal acquisition device 1, but the present invention is not limited to this.
  • the pulse wave signal acquisition device 1 calculates the blood TG value and the HbA1c value based on the pulse wave signal data, and the display unit included in the pulse wave signal acquisition device 1 displays the blood TG value and the HbA1c value. May be good.
  • the pulse wave signal acquisition device 1 may calculate the blood TG value and the HbA1c value based on the pulse wave signal data, and the terminal device 100 may display the blood TG value and the HbA1c value.
  • the pulse wave signal acquisition device 1 has a blood component measurement program stored in the storage unit 20, and the control unit 10 expands and executes the blood component measurement program in the RAM in the storage unit 20.
  • the various processes shown in 8 (for example, the processes of OP202 to OP205) are executed.
  • the pulse wave signal acquisition device 1 may select one LED from the first LEDs 31 to the fifth LED 35, make the LED emit light, and execute the processes of OP302 to OP308. good. In this case, the pulse wave signal acquisition device 1 sequentially executes the processes of OP302 to OP308 for each LED, determines the amplification factor at which an appropriate pulse wave signal can be obtained and the light emission amount of the LED for each LED, and the amplification factor. The amplified signal in is determined as a pulse wave signal.
  • the pulse wave signal acquisition device 1 is shown in FIG.
  • OP306 of the measurement preparation process shown in 9 not only the signal strength of the remaining amplified signal is estimated by using the fixed amplification factor of another amplifier, but also each amplification when the duty ratio is increased or decreased by a predetermined amount. The signal strength of the signal may also be estimated.
  • the pulse wave signal acquisition device 1 sets the duty ratio by a predetermined amount in OP306 of the measurement preparation process shown in FIG. 9 without estimating the signal strength of the remaining amplified signal by using the fixed amplification factor of another amplifier. Only the signal strength of each amplified signal when increased or decreased may be estimated.
  • FIG. 10 is a flowchart relating to the measurement preparation process of the modified example.
  • the control unit 10 of the pulse wave signal acquisition device 1 causes the five LEDs of the first LED 31 to the fifth LED 35 to emit light in order within 100 milliseconds. Specifically, the control unit 10 causes the five LEDs to emit light in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31.
  • the light emission time of each LED may be different from each other or may be the same. At this time, the control unit 10 controls each LED to emit light at a duty ratio of a predetermined applied voltage.
  • control unit 10 simultaneously acquires the amplified signal of the PD41 from the four signal acquisition pins A3 to A0.
  • the control unit 10 receives the amplification signal acquired by the OP402 while the first LED31 to the fifth LED35 are irradiating light, that is, a plurality of amplification signals of the PD 41 input to the signal acquisition pins A3 to A0, respectively.
  • the calculation (update) of each average value is continued, and when the average value for 5 seconds is accumulated, the process shifts to OP404 processing.
  • the calculated average value of the amplified signal is not limited to the signal for 5 seconds, but may be a signal for less than 5 seconds or a signal longer than 5 seconds.
  • the determination unit 11 of the control unit 10 determines whether or not the signal strength (average value for 5 seconds) of the four amplified signals simultaneously acquired from the signal acquisition pins A3 to A0 is within a predetermined allowable range. To judge.
  • the predetermined allowable range is the same as the range in OP304 of FIG. 9 (the range in which the signal strength is 40% or more and 80% or less (40% to 80%) of the signal acquisition range).
  • FIG. 11 is a flowchart showing the processing of OP404 in detail.
  • the determination of OP404 is composed of four determinations of OP4013 to OP4043.
  • OP4013 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A3 is within the permissible range.
  • OP4023 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A2 is within the allowable range.
  • OP4033 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A1 is within the allowable range.
  • OP4043 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A0 is within the allowable range. In this way, it is determined step by step whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from each signal acquisition pin is within the permissible range, but it is acquired by the signal acquisition pins A3 to A0. When the signal strength (average value for 5 seconds) of the amplified signal is within a predetermined allowable range, the processing of OP404 is terminated.
  • the determination unit 11 of the control unit 10 determines that any one of the signal intensities (average value for 5 seconds) of the four amplified signals calculated in OP403 is within a predetermined allowable range. In the case (Yes in OP404), the processing of OP405 is executed. In OP405, the determination unit 11 of the control unit 10 uses a pulse wave signal using any one of the signal acquisition pins A3 to A0 for inputting an amplified signal to obtain an appropriate pulse wave signal for measuring the concentration of blood components. Determined as the signal acquisition pin to be acquired.
  • the determination unit 11 of the control unit 10 calculates the average value of each signal intensity of the plurality of amplified signals (OP403), and the average value of each amplified signal is within a predetermined allowable range. It is determined in order whether it is within or for each amplified signal, and this determination is terminated when an amplified signal whose average value is within a predetermined allowable range is detected.
  • the pulse wave signal acquisition device 1 can shorten the time for acquiring a pulse wave signal suitable for measuring the concentration of blood components.
  • the order in which the signal strength is determined is not limited to this order, and may be, for example, the order of the signal acquisition pin A0, the signal acquisition pin A1, the signal acquisition pin A2, and the signal acquisition pin A3. Alternatively, the order may be changed for each LED according to a predetermined priority.
  • the terminal device 100 transmits the pulse wave signal data obtained by the pulse wave signal acquisition device 1 to an external server via a communication line, and the external server determines the blood TG value and the HbA1c value based on the pulse wave signal data.
  • the calculated information including the blood TG value and the HbA1c value may be transmitted to the terminal device 100 via the communication line, and the terminal device 100 may display the blood TG value and the HbA1c value on the display unit 100A.
  • the transmitted light method may be adopted.
  • the irradiation unit 30 is arranged on the upper cover 62 so that the irradiation unit 30 and the light receiving unit 40 sandwich the thumb 101 of the subject inserted from the opening 63.
  • the irradiation unit 30 may irradiate light from the dorsal side (nail side) or the ventral side of the thumb 101, and the light receiving unit 40 may receive the light that has passed through the thumb.
  • the number of LEDs included in the irradiation unit 30, the peak wavelength of the irradiation light of each LED, and the arrangement pattern are not limited to the above embodiment.
  • the irradiation unit 30 may have at least one of the first LED 31 and the second LED 32 and the third LED 33.
  • the irradiation unit 30 may have at least the 4th LED 34 and the 5th LED 35.
  • the pulse wave signal acquisition device 1 may have at least one of the first LED 31 to the fifth LED 35.
  • the blood TG value is calculated numerically and displayed on the display unit 100A, but the blood TG value may be converted into an index format having 3 to 5 stages and displayed.
  • the predetermined allowable range of the signal strength of the amplified signal may be set to a plurality of levels.
  • the first allowable range is set to the range of 50 to 70% of the signal acquisition range, and when the signal strength deviates from the first allowable range, the allowable range is set to the second allowable range of 40 to 80% of the signal acquisition range. It may be expanded to judge the quality of the signal strength.
  • the amplification unit 50 may be configured to connect amplifiers in parallel and connect an adder circuit to the subsequent stage. Further, the number of amplifiers included in the amplification unit 50 is not limited to three, and the amplification unit 50 may have at least one amplifier. The fixed amplification factors of the first amplifier 51 to the third amplifier are not limited to the above-described embodiment.
  • the PWM control used for adjusting the light emission amount of the first LED 31 to the fifth LED 35 is not limited to 255 gradations, may be 10 gradations, may be 20 gradations, and may be gradations depending on each LED (for each emission wavelength). May be changed. Further, the pulse wave signal acquisition device 1 may not have a function of adjusting the amount of light emitted from the first LED 31 to the fifth LED 35.
  • the user of the pulse wave signal acquisition device 1 may visually check the measurement result displayed on the terminal device 100 or the like, and manually select the signal and adjust the light emission amount. For example, the user changes the signal acquisition pins A3 to A0 for acquiring the signal on the spot while checking the pulse wave signal of the subject on the display unit 100A of the terminal device 100, and adjusts the light emission amount of each LED. May be performed to confirm that the pulse wave signal is in an appropriate state.
  • the living body to be measured in the above embodiment was a human, but the living body to be measured is not limited to humans. Mammals and birds are examples of specific living organisms to be measured. Of these, it is more preferable to measure humans who may be diagnosed with a disease due to hyperglycemia (for example, diabetes), and mammals and birds which can be pets and livestock.
  • hyperglycemia for example, diabetes
  • the blood TG value and the HbA1c value are measured as the blood component concentration, but the concentration of another blood component may be measured.
  • hemoglobin, glucose, cholesterol (total cholesterol, HDL- or LDL-cholesterol, free cholesterol), urea, bilirubin, lipoprotein, phospholipid, ethyl alcohol, etc. in blood may be measured.
  • the living body is irradiated with light having a wavelength whose absorbance changes depending on the concentration of each blood component, and the concentration of each blood component is calculated from the absorbance.
  • the pulse wave signal acquisition device of the present invention by mounting a large number of LEDs having different wavelengths, it is possible to simulate the spectral measurement of blood components without using a spectroscope, so that the concentrations of various blood components can be measured. It will be possible to do.
  • Pulse wave signal acquisition device 10 Control unit 11 Determination unit 12 Adjustment unit 20 Storage unit 30 Irradiation unit 40 Light receiving unit 50 Amplification unit 60 Communication unit 100 Terminal device

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

The present invention provides a technology for enabling shortening of the time required to acquire a pulse wave signal that is suitable for measuring the concentration of a blood component. This pulse wave signal acquisition device comprises: at least one light-emitting element which irradiates a measurement site of a living body with light; a light-receiving element which receives the light that has passed through the measurement site; an amplification unit which includes at least one amplifier having a fixed amplification factor and which generates a plurality of amplified signals having different amplification factors by amplifying an output signal from the light-receiving element at the fixed amplification factors of the respective amplifiers; and a determination unit which determines one of the amplified signals as a pulse wave signal.

Description

脈波信号取得装置Pulse wave signal acquisition device
 本発明は、脈波信号取得装置に関する。 The present invention relates to a pulse wave signal acquisition device.
 光を生体の測定部位に照射して当該測定部位から受光した光に基づいて脈波信号を取得し、脈波信号から血液成分の濃度を測定する技術が知られている。特許文献1には、発光素子から光を生体に照射し、生体を透過した光を光検出素子で計測することで透過光量計測値を検出し、透過光量計測値から脈波成分を抽出することで脈波計測値を検出する血液成分測定装置が開示されている。この血液成分測定装置は、脈波計測値を用いて動脈血の血中酸素飽和濃度を測定する。また、特許文献2には、光を指に照射して反射した光を受光し、その受光レベルに応じた信号を脈波信号として検出する生体情報計測装置が開示されている。この生体情報計測装置は、脈波信号に演算処理を施して血液中の酸素飽和濃度等の生体情報を計測する。 There is known a technique of irradiating a measurement site of a living body with light, acquiring a pulse wave signal based on the light received from the measurement site, and measuring the concentration of a blood component from the pulse wave signal. Patent Document 1 describes that a living body is irradiated with light from a light emitting element, a transmitted light amount measurement value is detected by measuring the light transmitted through the living body with a photodetection element, and a pulse wave component is extracted from the transmitted light amount measurement value. Discloses a blood component measuring device that detects a pulse wave measurement value. This blood component measuring device measures the blood oxygen saturation concentration of arterial blood using the pulse wave measurement value. Further, Patent Document 2 discloses a biological information measuring device that irradiates a finger with light, receives the reflected light, and detects a signal corresponding to the light receiving level as a pulse wave signal. This biological information measuring device applies arithmetic processing to the pulse wave signal to measure biological information such as oxygen saturation concentration in blood.
特許第3858678号公報Japanese Patent No. 3858678 特開2006-061173号公報Japanese Unexamined Patent Publication No. 2006-06173
 脈波信号の振幅は非常に小さいため、脈波信号を解析して血液成分の濃度を測定する場合には、脈波信号を増幅することが好ましい。例えば、特許文献1に開示された血液成分測定装置は、脈波計測値を可変増幅回路で増幅して血液中の酸素飽和濃度の算出に用いている。また、特許文献2に開示された生体情報計測装置は、ノイズが除外されたサンプリングデータに基づいて増幅回路の増幅率を調整し、増幅回路で増幅した脈波信号に演算処理を施している。しかしながら、可変増幅器を用いて脈波信号を増幅する場合には、本測定に先立って最適な増幅率を決定するための調整処理が必要となり、血液成分の濃度測定に適した脈波信号を取得するまでに煩雑となり、かつ、長時間の調整時間が必要となる問題点がある。 Since the amplitude of the pulse wave signal is very small, it is preferable to amplify the pulse wave signal when analyzing the pulse wave signal to measure the concentration of blood components. For example, the blood component measuring device disclosed in Patent Document 1 amplifies the pulse wave measurement value by a variable amplifier circuit and uses it for calculating the oxygen saturation concentration in blood. Further, the biometric information measuring device disclosed in Patent Document 2 adjusts the amplification factor of the amplifier circuit based on the sampling data from which noise is excluded, and performs arithmetic processing on the pulse wave signal amplified by the amplifier circuit. However, when amplifying the pulse wave signal using a variable amplifier, adjustment processing for determining the optimum amplification factor is required prior to this measurement, and a pulse wave signal suitable for measuring the concentration of blood components is acquired. There is a problem that it becomes complicated and a long adjustment time is required.
 上記の実情に鑑み、本件開示は、血液成分の濃度測定に適した脈波信号を取得する時間を短縮し得る技術を提供することを目的とする。 In view of the above circumstances, the present disclosure aims to provide a technique capable of shortening the time for acquiring a pulse wave signal suitable for measuring the concentration of blood components.
 本件開示の脈波信号取得装置は、生体の測定部位に対して光を照射する少なくとも一つの発光素子と、前記測定部位を通過した光を受光する受光素子と、固定増幅率を有する増幅器を少なくとも一つ含み、各増幅器の各固定増幅率で前記受光素子からの出力信号を増幅することによって増幅率の異なる複数の増幅信号を生成する増幅部と、前記複数の増幅信号のうちの一の増幅信号を脈波信号として決定する決定部と、を有する。本件開示の脈波信号取得装置は、増幅部によってほぼ同時に生成される複数の増幅信号の一つを脈波信号に決定するため、血液成分の濃度測定に適した脈波信号を取得する時間を短縮できる。 The pulse wave signal acquisition device disclosed in the present disclosure includes at least one light emitting element that irradiates a measurement site of a living body with light, a light receiving element that receives light that has passed through the measurement site, and an amplifier having a fixed amplification factor. An amplification unit that includes one and generates a plurality of amplification signals having different amplification factors by amplifying an output signal from the light receiving element at each fixed amplification factor of each amplifier, and amplification of one of the plurality of amplification signals. It has a determination unit that determines a signal as a pulse wave signal. Since the pulse wave signal acquisition device disclosed in the present disclosure determines one of a plurality of amplified signals generated almost simultaneously by the amplification unit as a pulse wave signal, it takes time to acquire a pulse wave signal suitable for measuring the concentration of blood components. Can be shortened.
 また、上記脈波信号取得装置は、前記発光素子を複数備え、複数の前記発光素子は、波長の異なる光をそれぞれ発光し、かつ、所定の順序で光を照射し、前記決定部は、前記各発光素子からの光の照射に基づく前記受光素子からの出力信号毎に前記一の増幅信号を決定してもよい。 Further, the pulse wave signal acquisition device includes a plurality of the light emitting elements, the plurality of the light emitting elements emit light having different wavelengths, and irradiate the light in a predetermined order. The one amplification signal may be determined for each output signal from the light receiving element based on the irradiation of light from each light emitting element.
 また、上記脈波信号取得装置において、前記決定部は、前記複数の増幅信号のうちの一の増幅信号の信号強度を検出し、当該一の増幅信号の信号強度から他の増幅信号の信号強度を推定してもよい。 Further, in the pulse wave signal acquisition device, the determination unit detects the signal strength of the amplified signal of one of the plurality of amplified signals, and the signal strength of the other amplified signal is used from the signal strength of the one amplified signal. May be estimated.
 また、上記脈波信号取得装置において、前記決定部は、前記複数の増幅信号の各信号強度を検出してもよい。 Further, in the pulse wave signal acquisition device, the determination unit may detect each signal strength of the plurality of amplified signals.
 また、上記脈波信号取得装置において、前記決定部は、前記複数の増幅信号のうち、予め指定された一の増幅信号の信号強度を優先的に検出し、当該一の増幅信号の信号強度が所定の許容範囲内にある場合、当該一の増幅信号を脈波信号として決定してもよい。 Further, in the pulse wave signal acquisition device, the determination unit preferentially detects the signal strength of one amplified signal designated in advance among the plurality of amplified signals, and the signal strength of the one amplified signal is determined. If it is within a predetermined allowable range, the one amplified signal may be determined as a pulse wave signal.
 また、上記脈波信号取得装置は、前記発光素子の発光量を調整する調整部をさらに有し、前記決定部は、前記発光量と前記増幅率との組み合わせの中から一の組み合わせを選択し、当該一の組み合わせにおける前記増幅率での前記増幅信号を前記脈波信号として決定してもよい。 Further, the pulse wave signal acquisition device further has an adjusting unit for adjusting the light emitting amount of the light emitting element, and the determining unit selects one combination from the combination of the light emitting amount and the amplification factor. , The amplified signal at the amplification factor in the one combination may be determined as the pulse wave signal.
 本件開示の技術によれば、血液成分の濃度測定に適した脈波信号を取得する時間を短縮し得る。 According to the technology disclosed in the present case, it is possible to shorten the time for acquiring a pulse wave signal suitable for measuring the concentration of blood components.
一実施形態に係る脈波信号取得装置の構成の一例を示す図である。It is a figure which shows an example of the structure of the pulse wave signal acquisition apparatus which concerns on one Embodiment. 一実施形態に係る脈波信号取得装置を模式的に示す図である。It is a figure which shows typically the pulse wave signal acquisition apparatus which concerns on one Embodiment. 一実施形態に係る脈波信号取得装置の一部を模式的に示す図である。It is a figure which shows a part of the pulse wave signal acquisition apparatus which concerns on one Embodiment schematically. 一実施形態に係る脈波信号取得装置の一部を模式的に示す図である。It is a figure which shows a part of the pulse wave signal acquisition apparatus which concerns on one Embodiment schematically. 一実施形態に係る脈波信号取得装置の照射部側の回路図である。It is a circuit diagram of the irradiation part side of the pulse wave signal acquisition apparatus which concerns on one Embodiment. 一実施形態に係る脈波信号取得装置の受光部側の回路図である。It is a circuit diagram of the light receiving part side of the pulse wave signal acquisition apparatus which concerns on one Embodiment. 一実施形態に係る脈波信号取得装置が取得可能な信号強度について説明するグラフである。It is a graph explaining the signal strength which can be acquired by the pulse wave signal acquisition apparatus which concerns on one Embodiment. 一実施形態に係る脈波信号取得装置を用いた血液成分測定処理に関するフローチャートである。It is a flowchart about blood component measurement processing using the pulse wave signal acquisition apparatus which concerns on one Embodiment. 一実施形態に係る脈波信号取得装置が実行する測定準備処理に関するフローチャートである。It is a flowchart regarding the measurement preparation process executed by the pulse wave signal acquisition apparatus which concerns on one Embodiment. 一実施形態の変形例に係る脈波信号取得装置が実行する測定準備処理に関するフローチャートである(その1)。It is a flowchart regarding the measurement preparation process executed by the pulse wave signal acquisition apparatus which concerns on the modification of one Embodiment (the 1). 一実施形態の変形例に係る脈波信号取得装置が実行する測定準備処理に関するフローチャートである(その2)。It is a flowchart regarding the measurement preparation process executed by the pulse wave signal acquisition apparatus which concerns on the modification of one Embodiment (the 2).
 以下に、図面を参照して本発明の実施形態について説明する。なお、以下の実施形態の構成は例示であり、本発明はこれらの実施形態の構成に限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The configurations of the following embodiments are examples, and the present invention is not limited to the configurations of these embodiments.
 まず、本実施形態に係る脈波信号取得装置について説明する。本実施形態に係る脈波信号取得装置1は、血液を含む生体の身体の一部である測定部位にLight-Emitting Diode(LED)によって近赤外光を照射して、測定部位内の血液を通過した近赤外光をPhotodiode(PD)で受光して受光データを取得する。生体は眼球などの例外を除いて透明ではないので光はほとんど透過しない。しかしながら、例えば、ヒトの指の内部に侵入した光は組織、血液などで散乱し、侵入した光のごく一部がPDに到達して検出される。この検出された光の強度のうち、周期的に変動する成分は血液を通過してきた光の受光データによって検出される脈波信号である。 First, the pulse wave signal acquisition device according to this embodiment will be described. The pulse wave signal acquisition device 1 according to the present embodiment irradiates a measurement site, which is a part of the body of a living body including blood, with near-infrared light by a Light-Emitting Diode (LED) to collect blood in the measurement site. The passed near-infrared light is received by a Photodiode (PD) to acquire the received light data. Since the living body is not transparent with the exception of the eyeball, almost no light is transmitted. However, for example, the light that has penetrated into the inside of a human finger is scattered by tissues, blood, etc., and a small part of the penetrated light reaches the PD and is detected. Of the detected light intensities, the component that fluctuates periodically is the pulse wave signal detected by the received data of the light that has passed through the blood.
 ここで、脈波信号取得装置1による測定対象の生体としては、ヒトが挙げられる。測定対象がヒトである場合、測定部位は、近赤外光により容易に脈動を検出できる部位であればよく、手の指、手のひら、手首、肘の内側、膝の裏側、足の裏、足の指、耳たぶ、耳の前側、唇、みぞおち、首などが好ましく、脈動を明瞭に検出できる親指、人差し指、中指がより好ましい。以下では、測定対象の生物をヒトとし、測定部位を親指として説明する。なお、測定対象の生物および測定部位はこれらに限られない。 Here, a human being can be mentioned as a living body to be measured by the pulse wave signal acquisition device 1. When the measurement target is a human, the measurement site may be a site where pulsation can be easily detected by near-infrared light, and the finger, palm, wrist, inside of elbow, back of knee, sole of foot, and foot. Fingers, ear flaps, anterior sides of the ears, lips, grooves, neck, etc. are preferable, and thumbs, index fingers, and middle fingers that can clearly detect pulsation are more preferable. In the following, the organism to be measured will be referred to as a human, and the measurement site will be referred to as a thumb. The organism to be measured and the measurement site are not limited to these.
 図1は、本実施形態に係る脈波信号取得装置1の概略構成を示す図である。図1に示すように、脈波信号取得装置1は、制御部10、記憶部20、照射部30、受光部40、増幅部50、通信部60を備える。 FIG. 1 is a diagram showing a schematic configuration of a pulse wave signal acquisition device 1 according to the present embodiment. As shown in FIG. 1, the pulse wave signal acquisition device 1 includes a control unit 10, a storage unit 20, an irradiation unit 30, a light receiving unit 40, an amplification unit 50, and a communication unit 60.
 制御部10は、Central Processing Unit(CPU)を含み、脈波信号取得装置1内の各部を制御する。記憶部20は、フラッシュメモリやElectrically Erasable Programmable Read-Only Memory(EEPROM)などの不揮発性メモリとRandom Access Memory(RAM)を含む。記憶部20は、脈波信号取得装置1における制御プログラム、および種々の処理を実行した際に得られるデータを記憶する。制御部10では、記憶部20に記憶されているプログラムをCPUが実行することにより、決定部11および調整部12の各機能部が実現される。決定部11は、複数の増幅信号のうちの一の増幅信号を脈波信号として決定する。調整部12は、照射部30の各LEDの発光量を調整する。 The control unit 10 includes a Central Processing Unit (CPU) and controls each unit in the pulse wave signal acquisition device 1. The storage unit 20 includes a non-volatile memory such as a flash memory and an electrically Erasable Programmable Read-Only Memory (EEPROM), and a Random Access Memory (RAM). The storage unit 20 stores the control program in the pulse wave signal acquisition device 1 and the data obtained when various processes are executed. In the control unit 10, each functional unit of the determination unit 11 and the adjustment unit 12 is realized by the CPU executing the program stored in the storage unit 20. The determination unit 11 determines the amplification signal of one of the plurality of amplification signals as a pulse wave signal. The adjusting unit 12 adjusts the amount of light emitted from each LED of the irradiation unit 30.
 照射部30は、生体の測定部位に近赤外光を照射する。本実施形態では、測定対象であるヒトの親指に照射部30によって近赤外光を照射することにより、血中TG値およびHbA1c値を測定する。 The irradiation unit 30 irradiates the measurement site of the living body with near-infrared light. In the present embodiment, the blood TG value and the HbA1c value are measured by irradiating the thumb of a human being to be measured with near-infrared light by the irradiation unit 30.
 ヒトの指の血管内における血液を通過した光の強度は、血液の脈動によって周期的に変動する。本実施形態においては、ヒトの親指の血管内における血液を通過した光強度の経時変化である脈波信号を利用して、複数の波長における血液の吸光度を非侵襲的に測定することによって、血液中のトリグリセライド(Triglyceride)の値(以下、「血中TG値」と称する)、および血液中に含まれる総ヘモグロビン濃度に占める糖化ヘモグロビンの割合をパーセントで表した値(以下、「HbA1c値」と称する)を測定する。 The intensity of light that has passed through blood in the blood vessels of human fingers fluctuates periodically due to the pulsation of blood. In the present embodiment, blood is measured by non-invasively measuring the absorbance of blood at a plurality of wavelengths by using a pulse wave signal which is a time-dependent change in light intensity passing through blood in a blood vessel of a human thumb. The value of Triglyceride in blood (hereinafter referred to as "blood TG value") and the ratio of glycated hemoglobin to the total hemoglobin concentration contained in blood as a percentage (hereinafter referred to as "HbA1c value"). To measure).
 血中TG値の濃度が上昇して血液の濁度が大きくなると、波長1050nm付近の近赤外光における吸光度が大きくなる。本実施形態では、波長1050nmにおける血液の吸光度、波長1300nmにおける血液の吸光度、および波長1200nmにおける血液の吸光度を用いて血中TG値を測定する。 When the concentration of blood TG value increases and the turbidity of blood increases, the absorbance in near-infrared light near the wavelength of 1050 nm increases. In this embodiment, the blood TG value is measured using the absorbance of blood at a wavelength of 1050 nm, the absorbance of blood at a wavelength of 1300 nm, and the absorbance of blood at a wavelength of 1200 nm.
 また、本願発明の発明者達によって、HbA1c値に応じて波長1450nm~1600nm付近の吸光度が他波長に比べて大きく変化することが見出されている。更に、血液中の総ヘモグロビン濃度に応じて波長900nm~1300nm付近の吸光度が変化することから、本実施形態では、波長1450nmにおける血液の吸光度、波長1600nmにおける血液の吸光度、および波長1050nmにおける血液の吸光度を用いてHbA1c値を測定する。 Further, it has been found by the inventors of the present invention that the absorbance in the vicinity of a wavelength of 1450 nm to 1600 nm changes significantly as compared with other wavelengths, depending on the HbA1c value. Further, since the absorbance in the vicinity of the wavelength of 900 nm to 1300 nm changes depending on the total hemoglobin concentration in the blood, in the present embodiment, the absorbance of the blood at the wavelength of 1450 nm, the absorbance of the blood at the wavelength of 1600 nm, and the absorbance of the blood at the wavelength of 1050 nm. The HbA1c value is measured using.
 本実施形態に係る脈波信号取得装置1の照射部30は、非侵襲的に血中TG値およびHbA1c値を測定するために、上記波長の近赤外光をヒトの指に照射する複数の発光素子を有する。具体的には、照射部30は、ピーク波長が1050nmであるLED、ピーク波長が1200nmであるLED、ピーク波長が1300nmであるLED、ピーク波長が1450nmであるLED、およびピーク波長が1600nmであるLEDを有する。なお、これらのLEDの詳細、および血中TG値、HbA1c値の測定方法の詳細については後述する。 The irradiation unit 30 of the pulse wave signal acquisition device 1 according to the present embodiment irradiates a human finger with near-infrared light of the above wavelength in order to non-invasively measure the blood TG value and the HbA1c value. It has a light emitting element. Specifically, the irradiation unit 30 includes an LED having a peak wavelength of 1050 nm, an LED having a peak wavelength of 1200 nm, an LED having a peak wavelength of 1300 nm, an LED having a peak wavelength of 1450 nm, and an LED having a peak wavelength of 1600 nm. Have. The details of these LEDs and the details of the method for measuring the blood TG value and the HbA1c value will be described later.
 受光部40は、測定部位における血液を通過した光を受光する。照射部30によって照射された近赤外光は、生体の測定部位に含まれる血液を通過し、受光部40によって受光される。受光部40は、PD(フォトダイオード)を有しており、血液を通過した光をPDによって検出してその強さを電圧信号として出力する。また、脈波信号取得装置1は、AD(Analog Digital)変換器(不図示)を有しており、受光部40のPDからの受光データとしての出力信号をAD変換した後、制御部10に出力する。制御部10は、受光データを記憶部20に記憶する。なお、照射部30と受光部40の位置関係については後述する。 The light receiving unit 40 receives light that has passed through blood at the measurement site. The near-infrared light irradiated by the irradiation unit 30 passes through the blood contained in the measurement site of the living body and is received by the light receiving unit 40. The light receiving unit 40 has a PD (photodiode), detects light that has passed through blood by the PD, and outputs the intensity as a voltage signal. Further, the pulse wave signal acquisition device 1 has an AD (Analog Digital) converter (not shown), and after AD conversion of the output signal as the received light data from the PD of the light receiving unit 40, the control unit 10 is used. Output. The control unit 10 stores the received light data in the storage unit 20. The positional relationship between the irradiation unit 30 and the light receiving unit 40 will be described later.
 増幅部50は、固定増幅率を有する増幅器を複数含み、各固定増幅率でPDの出力信号を増幅し、増幅率の異なる複数の増幅信号を生成する。増幅部50の詳細については後述する。 The amplification unit 50 includes a plurality of amplifiers having a fixed amplification factor, amplifies the output signal of the PD at each fixed amplification factor, and generates a plurality of amplification signals having different amplification factors. The details of the amplification unit 50 will be described later.
 通信部60は、Bluetooth(登録商標)、Bluetooth Low Energy(BLE)、Wi-Fiなどの公知の近距離無線通信によってユーザーが有する端末装置100と無線通信を行い、各種データを端末装置100に送信することができる。 The communication unit 60 wirelessly communicates with the terminal device 100 owned by the user by known short-range wireless communication such as Bluetooth (registered trademark), Bluetooth Low Energy (BLE), Wi-Fi, etc., and transmits various data to the terminal device 100. can do.
 端末装置100としては、スマートフォン、フィーチャーフォン、タブレット型パーソナルコンピュータ、ノート型パーソナルコンピュータ、デスクトップ型パーソナルコンピュータ、その他の各種電子機器が挙げられる。端末装置100は、液晶表示装置や有機EL表示装置などで構成され、血中TG値およびHbA1c値を測定値として表示する表示部100Aを備える。また、端末装置100には、以下に説明する血液成分測定における種々の処理(図8~図11参照)を実行するための血液成分測定プログラムや各種データが格納されている。本実施形態では、脈波信号取得装置1によって得られた脈波信号に基づいて端末装置100が血中TG値およびHbA1c値を算出する。 Examples of the terminal device 100 include smartphones, feature phones, tablet-type personal computers, notebook-type personal computers, desktop-type personal computers, and various other electronic devices. The terminal device 100 is composed of a liquid crystal display device, an organic EL display device, and the like, and includes a display unit 100A that displays a blood TG value and an HbA1c value as measured values. Further, the terminal device 100 stores a blood component measurement program and various data for executing various processes (see FIGS. 8 to 11) in the blood component measurement described below. In the present embodiment, the terminal device 100 calculates the blood TG value and the HbA1c value based on the pulse wave signal obtained by the pulse wave signal acquisition device 1.
 次に図2を用いて、本実施形態に係る脈波信号取得装置1の構成例について更に詳細に説明する。図2は、脈波信号取得装置1の外観斜視図である。脈波信号取得装置1は、筐体61と、筐体61の上部を覆う上部カバー62とを備える。また、脈波信号取得装置1において筐体61と上部カバー62との間には測定対象である被検者の指を挿入するための開口部63が設けられている。開口部63内に被検者が指を挿入した場合に、筐体61において当該指と当接する当接面61aには照射部30と受光部40が設けられている。 Next, a configuration example of the pulse wave signal acquisition device 1 according to the present embodiment will be described in more detail with reference to FIG. FIG. 2 is an external perspective view of the pulse wave signal acquisition device 1. The pulse wave signal acquisition device 1 includes a housing 61 and an upper cover 62 that covers the upper part of the housing 61. Further, in the pulse wave signal acquisition device 1, an opening 63 for inserting the finger of the subject to be measured is provided between the housing 61 and the upper cover 62. When the subject inserts a finger into the opening 63, the irradiation unit 30 and the light receiving unit 40 are provided on the contact surface 61a that comes into contact with the finger in the housing 61.
 図3は、図2に示す脈波信号取得装置1において、被検者が親指101を開口部63に挿入した状態を模式的に示す図である。本実施形態に係る脈波信号取得装置1には、照射部30が親指101の腹側に光を照射し、血液を通過した当該光を当該指の腹側に配置されている受光部40で受光する反射光方式が採用されている。 FIG. 3 is a diagram schematically showing a state in which the subject inserts the thumb 101 into the opening 63 in the pulse wave signal acquisition device 1 shown in FIG. In the pulse wave signal acquisition device 1 according to the present embodiment, the irradiation unit 30 irradiates the ventral side of the thumb 101 with light, and the light that has passed through the blood is received by the light receiving unit 40 arranged on the ventral side of the finger. A reflected light method that receives light is adopted.
 図4は、脈波信号取得装置1において照射部30および受光部40が配置される当接面61aを示す平面図である。照射部30は、第1LED31と、第2LED32と、第3LED33と、第4LED34と、第5LED35と、を有する。第1LED31は、波長1050nmにピーク波長を有する光を照射する。第2LED32は、波長1200nmにピーク波長を有する光を照射する。第3LED33は、波長1300nmにピーク波長を有する光を照射する。第4LED34は、波長1450nmにピーク波長を有する光を照射する。第5LED35は、波長1600nmにピーク波長を有する光を照射する。 FIG. 4 is a plan view showing a contact surface 61a in which the irradiation unit 30 and the light receiving unit 40 are arranged in the pulse wave signal acquisition device 1. The irradiation unit 30 has a first LED 31, a second LED 32, a third LED 33, a fourth LED 34, and a fifth LED 35. The first LED 31 irradiates light having a peak wavelength at a wavelength of 1050 nm. The second LED 32 irradiates light having a peak wavelength at a wavelength of 1200 nm. The third LED 33 irradiates light having a peak wavelength at a wavelength of 1300 nm. The fourth LED 34 irradiates light having a peak wavelength at a wavelength of 1450 nm. The fifth LED 35 irradiates light having a peak wavelength at a wavelength of 1600 nm.
 また、受光部40は、PD41(「受光素子」の一例)を有する。PD41は、照射部30から指に照射されて血液を通過した光を受光する。PD41は光を受光することによって受光データとしての電圧信号を出力する。以下、PD41が出力する電圧信号を「出力信号」と称する場合がある。 Further, the light receiving unit 40 has a PD 41 (an example of a "light receiving element"). The PD 41 receives light that is irradiated from the irradiation unit 30 to the finger and has passed through the blood. The PD 41 receives light and outputs a voltage signal as light receiving data. Hereinafter, the voltage signal output by the PD 41 may be referred to as an “output signal”.
 図5は、本実施形態に係る脈波信号取得装置1の照射部30側の回路図である。脈波信号取得装置1は、制御部10および記憶部20を構成するマイコン70を備える。マイコン70は、脈波信号取得装置1が備える不図示の電源(例えば、二次電池)によって電力が供給されることによって作動する。 FIG. 5 is a circuit diagram of the irradiation unit 30 side of the pulse wave signal acquisition device 1 according to the present embodiment. The pulse wave signal acquisition device 1 includes a microcomputer 70 that constitutes a control unit 10 and a storage unit 20. The microcomputer 70 is operated by being supplied with electric power by a power source (for example, a secondary battery) (not shown) included in the pulse wave signal acquisition device 1.
 図5に示すように、第1LED31、第2LED32、第3LED33、第4LED34、および第5LED35(以下「第1LED31~第5LED35」と略記する場合がある)の各アノード端子は3.3Vの直流電圧を印加する電源回路(不図示)に接続されており、それらのカソード端子は抵抗器(50~150Ω)を介してトランジスタ71~75(NPN型)の各コレクタ端子に接続されている。トランジスタ71~75のいずれのエミッタ端子もグランドに接続されている。また、トランジスタ71~75のいずれのベース端子も抵抗器を介してマイコン70に接続されている。マイコン70が第1LED31~第5LED35による光照射タイミングに応じてトランジスタ71~75の各ベース端子に電圧を印加することによって、3.3Vの直流電圧が各LEDに印加される。これにより、脈波信号取得装置1は、所定のタイミングで第1LED31、第2LED32、第3LED33、第4LED34、第5LED35による光照射を実行することができる。なお、この制御を実行するための制御プログラムは、マイコン70の記憶部(図1に示す記憶部20)に格納されている。 As shown in FIG. 5, each anode terminal of the first LED 31, the second LED 32, the third LED 33, the fourth LED 34, and the fifth LED 35 (hereinafter, may be abbreviated as "the first LED 31 to the fifth LED 35") has a DC voltage of 3.3 V. It is connected to a power supply circuit (not shown) to be applied, and their cathode terminals are connected to each collector terminal of transistors 71 to 75 (NPN type) via a resistor (50 to 150Ω). Each emitter terminal of the transistors 71 to 75 is connected to the ground. Further, any base terminal of the transistors 71 to 75 is connected to the microcomputer 70 via a resistor. When the microcomputer 70 applies a voltage to each base terminal of the transistors 71 to 75 according to the light irradiation timing by the first LED 31 to the fifth LED 35, a DC voltage of 3.3 V is applied to each LED. As a result, the pulse wave signal acquisition device 1 can execute light irradiation by the first LED 31, the second LED 32, the third LED 33, the fourth LED 34, and the fifth LED 35 at a predetermined timing. The control program for executing this control is stored in the storage unit (storage unit 20 shown in FIG. 1) of the microcomputer 70.
 本実施形態に係る脈波信号取得装置1は、所定時間(100ミリ秒)内で第5LED35、第4LED34、第3LED33、第2LED32、第1LED31の順で異なる波長の光を照射することによって1サイクル分の受光データを取得する。 The pulse wave signal acquisition device 1 according to the present embodiment has one cycle by irradiating light having different wavelengths in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31 within a predetermined time (100 milliseconds). Acquires the received light data for the minute.
 図6は、本実施形態に係る脈波信号取得装置1の受光部40側の回路図である。図6に示すように、受光部40のPD41の一端側(出力端子)は、増幅部50に接続され、PD41の他端側はグランドに接続(接地)されている。また、PD41の出力端子は、トランジスタ76(NPN型)のコレクタ端子に接続されている。トランジスタ76のエミッタ端子はグランドに接続され、そのベース端子はマイコン70に接続されている。トランジスタ76は、PD41の出力端子がグランドに接続された接続状態と、PD41の出力端子がグランドから切り離された非接続状態とを切り替えるスイッチング素子の一例である。トランジスタ76によって、あるサイクルにおける第1LED31による光照射後にPD41の出力端子がグランドに接続され、あるサイクルの次のサイクルにおける第5LED35による光照射前にPD41の出力端子がグランドから切り離される。トランジスタ76のスイッチング制御は、マイコン70によって実行される。この制御を実行するための制御プログラムは、マイコン70の記憶部(図1に示す記憶部20)に格納されている。なお、本実施形態とは異なり、脈波信号取得装置1には、トランジスタ76が設けられず、PD41の出力端子がトランジスタ76を介して接地可能とする回路が設けられていなくてもよい。 FIG. 6 is a circuit diagram of the light receiving unit 40 side of the pulse wave signal acquisition device 1 according to the present embodiment. As shown in FIG. 6, one end side (output terminal) of the PD 41 of the light receiving unit 40 is connected to the amplification unit 50, and the other end side of the PD 41 is connected (grounded) to the ground. Further, the output terminal of the PD 41 is connected to the collector terminal of the transistor 76 (NPN type). The emitter terminal of the transistor 76 is connected to the ground, and the base terminal thereof is connected to the microcomputer 70. The transistor 76 is an example of a switching element that switches between a connected state in which the output terminal of the PD 41 is connected to the ground and a non-connected state in which the output terminal of the PD 41 is disconnected from the ground. The transistor 76 connects the output terminal of the PD 41 to the ground after the light irradiation by the first LED 31 in a certain cycle, and disconnects the output terminal of the PD 41 from the ground before the light irradiation by the fifth LED 35 in the next cycle of the certain cycle. The switching control of the transistor 76 is executed by the microcomputer 70. The control program for executing this control is stored in the storage unit (storage unit 20 shown in FIG. 1) of the microcomputer 70. Unlike the present embodiment, the pulse wave signal acquisition device 1 may not be provided with the transistor 76, and may not be provided with a circuit that allows the output terminal of the PD 41 to be grounded via the transistor 76.
 また、PD41の出力端子は、電流電圧変換部45に接続されている。電流電圧変換部45は、オペアンプ45Aと、抵抗器45Bと、コンデンサ45Cとを有する。オペアンプ45Aの反転入力端子は、PD41の出力端子に接続されている。また、オペアンプ45Aの反転入力端子と出力端子には、抵抗器45Bとコンデンサ45C(R=680kΩ、C=3nF)が並列に接続されている。オペアンプ45Aの非反転入力端子はグランドに接続(接地)されている。電流電圧変換部45は、オペアンプ45Aおよび抵抗器45Bによって反転増幅回路を形成する。また、電流電圧変換部45は、固定増幅率を有する。抵抗器45Bは帰還抵抗であり、抵抗器45Bの抵抗値によって電流電圧変換部45の増幅率が決定される。また、抵抗器45Bおよびコンデンサ45Cが並列に接続されることによってローパスフィルタ回路が形成されている。電流電圧変換部45は、PD41の出力端子から入力された電流を電圧に変換し、PD41の出力信号として出力する。 Further, the output terminal of the PD 41 is connected to the current-voltage conversion unit 45. The current-voltage conversion unit 45 includes an operational amplifier 45A, a resistor 45B, and a capacitor 45C. The inverting input terminal of the operational amplifier 45A is connected to the output terminal of the PD 41. Further, a resistor 45B and a capacitor 45C (R = 680 kΩ, C = 3nF) are connected in parallel to the inverting input terminal and the output terminal of the operational amplifier 45A. The non-inverting input terminal of the operational amplifier 45A is connected (grounded) to the ground. The current-voltage conversion unit 45 forms an inverting amplifier circuit with an operational amplifier 45A and a resistor 45B. Further, the current-voltage conversion unit 45 has a fixed amplification factor. The resistor 45B is a feedback resistor, and the amplification factor of the current-voltage conversion unit 45 is determined by the resistance value of the resistor 45B. Further, a low-pass filter circuit is formed by connecting the resistor 45B and the capacitor 45C in parallel. The current-voltage conversion unit 45 converts the current input from the output terminal of the PD 41 into a voltage and outputs it as an output signal of the PD 41.
 また、本実施形態に係る脈波信号取得装置1は、電流電圧変換部45の出力側に接続された増幅部50を備える。増幅部50は、第1増幅器51、第2増幅器52、および第3増幅器53(以下、「第1増幅器51~第3増幅器53」と略記する場合がある)を有する。第1増幅器51、第2増幅器52、および第3増幅器53は、オペアンプと入力抵抗の抵抗器及び帰還抵抗の抵抗器で構成された非反転増幅回路によって構成されている。図6では、第1増幅器51、第2増幅器52、第3増幅器53を構成する非反転増幅回路のうち入力抵抗および帰還抵抗の各抵抗器の図示は省略し、オペアンプのみが図示されている。第1増幅器51、第2増幅器52、および第3増幅器53のそれぞれは、固定増幅率を有する。これらの増幅器の各固定増幅率は、入力抵抗および帰還抵抗の各抵抗値の定数比によって決定される。 Further, the pulse wave signal acquisition device 1 according to the present embodiment includes an amplification unit 50 connected to the output side of the current-voltage conversion unit 45. The amplification unit 50 includes a first amplifier 51, a second amplifier 52, and a third amplifier 53 (hereinafter, may be abbreviated as “first amplifier 51 to third amplifier 53”). The first amplifier 51, the second amplifier 52, and the third amplifier 53 are composed of a non-inverting amplifier circuit composed of an operational amplifier, an input resistance resistor, and a feedback resistance resistor. In FIG. 6, among the non-inverting amplifier circuits constituting the first amplifier 51, the second amplifier 52, and the third amplifier 53, the input resistance and feedback resistance resistors are not shown, and only the operational amplifier is shown. Each of the first amplifier 51, the second amplifier 52, and the third amplifier 53 has a fixed amplification factor. Each fixed amplification factor of these amplifiers is determined by the constant ratio of the resistance values of the input resistance and the feedback resistance.
 第1増幅器51~第3増幅器53は、直列に接続されている。マイコン70には、電流電圧変換部45から出力されるPD41の出力信号と、増幅部50の第1増幅器51~第3増幅器53によりPD41の出力信号を増幅して得られる出力信号とが、増幅信号として入力される。なお、本明細書において、用語「増幅信号」には、第1増幅器51~第3増幅器53によりPD41の出力信号を増幅して得られる3つの信号だけではなく、第1増幅器51により増幅される前のPD41の出力信号自体も含まれる。つまり、電流電圧変換部45から出力されるPD41の出力信号も、増幅率が1.0倍の増幅信号の一例である。電流電圧変換部45の出力側は、第1増幅器51の入力側と、マイコン70の信号取得ピンA3に接続されている。信号取得ピンA3には電流電圧変換部45によって電圧に変換された増幅率が1.0倍の増幅信号が入力される。第1増幅器51の出力側は、マイコン70の信号取得ピンA2と第2増幅器52の入力側に接続されている。信号取得ピンA2には第1増幅器51によって増幅された増幅信号が入力される。第2増幅器52の出力側は、マイコン70の信号取得ピンA1と第3増幅器53の入力側に接続されている。信号取得ピンA1には第1増幅器51および第2増幅器52によって増幅された増幅信号が入力される。第3増幅器53の出力側は、マイコン70の信号取得ピンA0に接続されている。信号取得ピンA0には第1増幅器51~第3増幅器53によって増幅された増幅信号が入力される。このように、増幅部50は、第1増幅器51~第3増幅器53を含み、PD41の出力信号から増幅率の異なる4つの増幅信号を生成する。これら4つの増幅信号のそれぞれは、マイコン70の信号取得ピンA3~A0に入力される。なお、本実施形態では、第1増幅器51は1.2倍の固定増幅率を有し、第2増幅器52は5.0倍の固定増幅率を有し、第3増幅器53は3.0倍の固定増幅率を有する。このため、信号取得ピンA2には1.2倍に増幅された増幅信号が入力され、信号取得ピンA1には6.0倍に増幅された増幅信号が入力され、信号取得ピンA0には18.0倍に増幅された増幅信号が入力される。 The first amplifier 51 to the third amplifier 53 are connected in series. The microcomputer 70 amplifies the output signal of the PD 41 output from the current-voltage conversion unit 45 and the output signal obtained by amplifying the output signal of the PD 41 by the first amplifier 51 to the third amplifier 53 of the amplification unit 50. It is input as a signal. In the present specification, the term "amplified signal" is amplified not only by the three signals obtained by amplifying the output signal of the PD 41 by the first amplifier 51 to the third amplifier 53, but also by the first amplifier 51. The output signal itself of the previous PD41 is also included. That is, the output signal of the PD 41 output from the current-voltage conversion unit 45 is also an example of an amplified signal having an amplification factor of 1.0 times. The output side of the current-voltage conversion unit 45 is connected to the input side of the first amplifier 51 and the signal acquisition pin A3 of the microcomputer 70. An amplified signal having an amplification factor of 1.0 times converted into a voltage by the current-voltage conversion unit 45 is input to the signal acquisition pin A3. The output side of the first amplifier 51 is connected to the signal acquisition pin A2 of the microcomputer 70 and the input side of the second amplifier 52. The amplified signal amplified by the first amplifier 51 is input to the signal acquisition pin A2. The output side of the second amplifier 52 is connected to the signal acquisition pin A1 of the microcomputer 70 and the input side of the third amplifier 53. The amplified signal amplified by the first amplifier 51 and the second amplifier 52 is input to the signal acquisition pin A1. The output side of the third amplifier 53 is connected to the signal acquisition pin A0 of the microcomputer 70. The amplified signal amplified by the first amplifier 51 to the third amplifier 53 is input to the signal acquisition pin A0. As described above, the amplification unit 50 includes the first amplifier 51 to the third amplifier 53, and generates four amplification signals having different amplification factors from the output signal of the PD 41. Each of these four amplified signals is input to the signal acquisition pins A3 to A0 of the microcomputer 70. In the present embodiment, the first amplifier 51 has a fixed amplification factor of 1.2 times, the second amplifier 52 has a fixed amplification factor of 5.0 times, and the third amplifier 53 has a fixed amplification factor of 3.0 times. Has a fixed amplification factor of. Therefore, an amplified signal amplified 1.2 times is input to the signal acquisition pin A2, an amplified signal amplified 6.0 times is input to the signal acquisition pin A1, and 18 is input to the signal acquisition pin A0. Amplified signal amplified by 0.0 times is input.
 本実施形態に係る脈波信号取得装置1は、PWM制御(パルス幅変調)により第1LED31~第5LED35の発光量を調整することで、取得可能な信号強度を変化させることができる。図7は、脈波信号取得装置1が取得可能な信号強度について説明するグラフである。図7の横軸は増幅部50の増幅率の設定値を表し、図7の縦軸は取得する信号強度の強さ(任意単位)を表し、線Lは増幅率の設定値に対して取得できる信号強度を表している。線L中の点P1は、信号取得ピンA3に入力される増幅率が1.0倍の点を表している。PWM制御により第1LED31~第5LED35の発光量を調整することによって、増幅率が1.0倍の増幅信号から範囲R1の信号強度を取得することができる。また、線L中の点P2は、信号取得ピンA2に入力される増幅率が1.2倍の点を表している。PWM制御により第1LED31~第5LED35の発光量を調整することによって、増幅率が1.2倍の増幅信号から範囲R2の信号強度を取得することができる。線L中の点P3は、信号取得ピンA1に入力される増幅率が6.0倍の点を表している。PWM制御により第1LED31~第5LED35の発光量を調整することによって、増幅率が6.0倍の増幅信号から範囲R3の信号強度を取得することができる。線L中の点P4は、信号取得ピンA0に入力される増幅率が18.0倍の点を表している。PWM制御により第1LED31~第5LED35の発光量を調整することによって、増幅率が18.0倍の増幅信号から範囲R4の信号強度を取得することができる。このように、脈波信号取得装置1は、固定増幅率をそれぞれ有する第1増幅器51~第3増幅器53と、PWM制御による第1LED31~第5LED35の発光量を調整とを組み合わせることによって、取得可能な信号強度を線形に変化させることができ、あらゆる強度の信号を取得することができる。 The pulse wave signal acquisition device 1 according to the present embodiment can change the acquireable signal intensity by adjusting the amount of light emitted from the first LED 31 to the fifth LED 35 by PWM control (pulse width modulation). FIG. 7 is a graph illustrating the signal strength that can be acquired by the pulse wave signal acquisition device 1. The horizontal axis of FIG. 7 represents the set value of the amplification factor of the amplification unit 50, the vertical axis of FIG. 7 represents the strength of the signal strength to be acquired (arbitrary unit), and the line L is acquired with respect to the set value of the amplification factor. It represents the signal strength that can be achieved. The point P1 in the line L represents a point where the amplification factor input to the signal acquisition pin A3 is 1.0 times. By adjusting the amount of light emitted from the first LED 31 to the fifth LED 35 by PWM control, the signal strength in the range R1 can be obtained from the amplified signal having an amplification factor of 1.0 times. Further, the point P2 in the line L represents a point where the amplification factor input to the signal acquisition pin A2 is 1.2 times. By adjusting the amount of light emitted from the first LED 31 to the fifth LED 35 by PWM control, the signal strength in the range R2 can be obtained from the amplified signal having an amplification factor of 1.2 times. The point P3 in the line L represents a point where the amplification factor input to the signal acquisition pin A1 is 6.0 times. By adjusting the amount of light emitted from the first LED 31 to the fifth LED 35 by PWM control, the signal strength in the range R3 can be obtained from the amplified signal having an amplification factor of 6.0 times. The point P4 in the line L represents a point where the amplification factor input to the signal acquisition pin A0 is 18.0 times. By adjusting the amount of light emitted from the first LED 31 to the fifth LED 35 by PWM control, the signal strength in the range R4 can be obtained from the amplified signal having an amplification factor of 18.0 times. As described above, the pulse wave signal acquisition device 1 can be acquired by combining the first amplifier 51 to the third amplifier 53 having fixed amplification factors and the adjustment of the light emission amount of the first LED 31 to the fifth LED 35 by PWM control. The signal strength can be changed linearly, and signals of any strength can be obtained.
 次に、本実施形態に係る脈波信号取得装置1と端末装置100が実行する血液成分測定処理について説明する。なお、測定処理に先立って、被検者は、脈波信号取得装置1の所定箇所に指先を押し当てる。図8は、血液成分測定処理に関するフローチャートである。 Next, the blood component measurement process executed by the pulse wave signal acquisition device 1 and the terminal device 100 according to the present embodiment will be described. Prior to the measurement process, the subject presses his / her fingertip against a predetermined position of the pulse wave signal acquisition device 1. FIG. 8 is a flowchart relating to the blood component measurement process.
 まず、脈波信号取得装置1は、測定準備処理(OP101)を実行する。ここで、本実施形態に係る脈波信号取得装置1が実行する測定準備処理について説明する。図9は、脈波信号取得装置1が実行する測定準備処理に関するフローチャートである。測定準備処理では、脈波信号取得装置1は、第1LED31~第5LED35の5つのLEDについてOP301~OP308の処理を順番に実行し、適切な脈波信号が得られる増幅率およびLEDの発光量をLED毎に決定し、当該増幅率での増幅信号を脈波信号として決定する。 First, the pulse wave signal acquisition device 1 executes the measurement preparation process (OP101). Here, the measurement preparation process executed by the pulse wave signal acquisition device 1 according to the present embodiment will be described. FIG. 9 is a flowchart relating to the measurement preparation process executed by the pulse wave signal acquisition device 1. In the measurement preparation process, the pulse wave signal acquisition device 1 sequentially executes the processes of OP301 to OP308 for the five LEDs of the first LED31 to the fifth LED35, and determines the amplification factor and the amount of light emitted from the LEDs to obtain an appropriate pulse wave signal. It is determined for each LED, and the amplified signal at the amplification factor is determined as a pulse wave signal.
 まず、OP301において、脈波信号取得装置1の制御部10は、100ミリ秒の間に第1LED31~第5LED35の5つのLEDを順番に発光させる。具体的には、制御部10は、第5LED35、第4LED34、第3LED33、第2LED32、第1LED31の順で5つのLEDを順番に発光させる。なお、各LEDの発光時間は、互いに異なっていてもよいし、同じであってもよい。また、この際、制御部10は、各LEDを所定の印加電圧のDuty比で発光制御させる。 First, in OP301, the control unit 10 of the pulse wave signal acquisition device 1 causes the five LEDs of the first LED 31 to the fifth LED 35 to emit light in order within 100 milliseconds. Specifically, the control unit 10 causes the five LEDs to emit light in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31. The light emission time of each LED may be different from each other or may be the same. At this time, the control unit 10 controls each LED to emit light at a duty ratio of a predetermined applied voltage.
 次のOP302において、制御部10は、PD41の増幅信号を信号取得ピンA3~A0のうちの1つの信号取得ピンから取得する。いずれの信号取得ピンから信号を取得するかについては、第1LED31~第5LED35のLED毎に予め指定されている。 In the next OP 302, the control unit 10 acquires the amplified signal of the PD 41 from one of the signal acquisition pins A3 to A0. Which signal acquisition pin the signal is acquired from is specified in advance for each of the LEDs of the first LED 31 to the fifth LED 35.
 次のOP303において、制御部10は、第1LED31~第5LED35が光を照射している間、OP302で取得した増幅信号の平均値を計算(更新)し続け、5秒分の平均値が蓄積された時点でOP304の処理に移行する。なお、OP303においては、計算される増幅信号の平均値は、5秒分の信号に限られず、5秒未満分または5秒より長い分の信号であってもよい。 In the next OP 303, the control unit 10 continues to calculate (update) the average value of the amplified signal acquired by the OP 302 while the first LED 31 to the fifth LED 35 irradiate the light, and the average value for 5 seconds is accumulated. At that point, the process shifts to OP304 processing. In OP303, the average value of the calculated amplified signal is not limited to the signal for 5 seconds, and may be a signal for less than 5 seconds or a signal longer than 5 seconds.
 次の、OP304において、制御部10の決定部11は、取得した1つの増幅信号の信号強度(5秒分の平均値)が所定の許容範囲内にあるか否かを判定する。所定の許容範囲は、信号強度が信号取得範囲の40%以上80%以下(40%~80%)の範囲が設定されている。信号取得範囲は、例えば、飽和信号量やノイズ信号量に基づき決定される。所定の許容範囲内にある増幅信号は、血液成分の濃度測定に適した脈波信号といえる。 Next, in OP304, the determination unit 11 of the control unit 10 determines whether or not the signal strength (average value for 5 seconds) of one acquired amplified signal is within a predetermined allowable range. The predetermined allowable range is set in which the signal strength is 40% or more and 80% or less (40% to 80%) of the signal acquisition range. The signal acquisition range is determined, for example, based on the saturation signal amount and the noise signal amount. An amplified signal within a predetermined allowable range can be said to be a pulse wave signal suitable for measuring the concentration of blood components.
 制御部10の決定部11がOP303において取得した増幅信号の信号強度が所定の許容範囲内にあると判定した場合(OP304におけるYes)には、OP305の処理が実行される。OP305において制御部10の決定部11は、血液成分の濃度測定に用いる適切な脈波信号が得られる増幅率およびLEDの発光量をLED毎に決定し、当該増幅率での増幅信号を脈波信号として決定する。 When the determination unit 11 of the control unit 10 determines that the signal strength of the amplified signal acquired in the OP 303 is within a predetermined allowable range (Yes in the OP 304), the processing of the OP 305 is executed. In OP305, the determination unit 11 of the control unit 10 determines the amplification factor and the light emission amount of the LED for obtaining an appropriate pulse wave signal used for measuring the concentration of blood components for each LED, and the amplification signal at the amplification factor is pulse wave. Determined as a signal.
 一方、制御部10がOP303において取得した信号強度が所定の許容範囲内にないと判定した場合(OP304におけるNo)には、OP306の処理が実行される。OP306において制御部10の決定部11は、取得した1つの増幅信号の信号強度から、残りの3つの増幅信号の信号強度を推測する。増幅部50の第1増幅器51~第3増幅器53のそれぞれが固定増幅率を有しているため、制御部10の決定部11は1つの増幅信号の信号強度から残りの3つの増幅信号の信号強度を推測することができる。 On the other hand, when the control unit 10 determines that the signal strength acquired in OP 303 is not within a predetermined allowable range (No in OP 304), the processing of OP 306 is executed. In OP306, the determination unit 11 of the control unit 10 estimates the signal strengths of the remaining three amplified signals from the signal strength of one acquired amplified signal. Since each of the first amplifier 51 to the third amplifier 53 of the amplification unit 50 has a fixed amplification factor, the determination unit 11 of the control unit 10 changes the signal strength of one amplification signal to the signal of the remaining three amplification signals. The strength can be estimated.
 次のOP307において、制御部10の決定部11は、推測した3つの増幅信号の信号強度のうち所定の許容範囲内にある増幅信号を検出する。制御部10の決定部11が3つの増幅信号のうち少なくとも1つの増幅信号が所定の許容範囲にあると判定した場合(OP307におけるYes)には、OP305の処理が実行される。OP305において、制御部10の決定部11は、血液成分の濃度測定に用いる適切な脈波信号が得られる増幅率およびLEDの発光量をLED毎に決定し、当該増幅率での増幅信号を脈波信号として決定する。 In the next OP307, the determination unit 11 of the control unit 10 detects an amplified signal within a predetermined allowable range among the signal intensities of the three estimated amplified signals. When the determination unit 11 of the control unit 10 determines that at least one of the three amplification signals is within a predetermined allowable range (Yes in OP307), the processing of OP305 is executed. In OP305, the determination unit 11 of the control unit 10 determines the amplification factor and the light emission amount of the LED for obtaining an appropriate pulse wave signal used for measuring the concentration of blood components for each LED, and pulses the amplification signal at the amplification factor. Determined as a wave signal.
 一方、制御部10の決定部11がOP306において推測した増幅信号の信号強度が所定の許容範囲内にないと判定した場合(OP307におけるNo)には、OP308の処理が実行される。OP308において、制御部10の調整部12は、第1LED31~第5LED35の発光量を調整する。PD41の出力信号の信号強度は、第1LED31~第5LED35のそれぞれの発光量に応じて変化する。このため、調整部12は、OP306において推測した3つの増幅信号の信号強度が信号取得範囲の40%未満である場合にはいずれの増幅信号も脈波信号としては信号強度が弱いのでLEDの発光量を強くする調整を行う。また、調整部12は、OP306において推測した3つの増幅信号の信号強度が信号取得範囲の80%より大きい場合にはいずれの増幅信号も脈波信号としては信号強度が強いのでLEDの発光量を弱くする調整を行う。なお、LEDの発光量は、PWM制御により調整される。より具体的には各LEDの発光制御における印加電圧のDuty比を変更することによりLEDの発光量が調整される。なお、調整部12は、印加電圧のDuty比を255階調で調整可能である。 On the other hand, when the determination unit 11 of the control unit 10 determines that the signal strength of the amplified signal estimated in OP306 is not within a predetermined allowable range (No in OP307), the processing of OP308 is executed. In OP308, the adjusting unit 12 of the control unit 10 adjusts the amount of light emitted from the first LED 31 to the fifth LED 35. The signal strength of the output signal of the PD 41 changes according to the amount of light emitted from each of the first LED 31 to the fifth LED 35. Therefore, when the signal intensities of the three amplified signals estimated in OP306 are less than 40% of the signal acquisition range, the adjusting unit 12 emits light from the LED because the signal intensities of all the amplified signals are weak as pulse wave signals. Make adjustments to increase the amount. Further, when the signal intensities of the three amplified signals estimated in OP306 are larger than 80% of the signal acquisition range, the adjusting unit 12 determines the amount of light emitted from the LED because each amplified signal has a strong signal intensity as a pulse wave signal. Make adjustments to weaken. The amount of light emitted from the LED is adjusted by PWM control. More specifically, the amount of light emitted from the LED is adjusted by changing the duty ratio of the applied voltage in the light emission control of each LED. The adjusting unit 12 can adjust the duty ratio of the applied voltage with 255 gradations.
 OP308の処理の次にOP302の処理が再度実行される。このように、本実施形態では、OP304において増幅信号が所定の許容範囲内となるまでOP302~OP308の処理を繰り返し実行することで、適切な増幅信号が得られる増幅率およびLEDの発光量の組み合わせが決定される。そして、制御部10の決定部11は、第1LED31~第5LED35について、LEDの発光量と増幅部50による増幅信号の増幅率との組み合わせの中から一の組み合わせをLED毎に選択し、当該一の組み合わせにおける増幅率での増幅信号を各LEDの適切な脈波信号として決定する。これにより、本実施形態に係る脈波信号取得装置1は、血液成分の濃度測定に適した脈波信号を取得する時間を短縮できる。 The processing of OP302 is executed again after the processing of OP308. As described above, in the present embodiment, the combination of the amplification factor and the light emission amount of the LED to obtain an appropriate amplified signal by repeatedly executing the processes of OP302 to OP308 until the amplified signal falls within a predetermined allowable range in OP304. Is determined. Then, the determination unit 11 of the control unit 10 selects one combination for each LED from the combination of the light emission amount of the LED and the amplification factor of the amplified signal by the amplification unit 50 for the first LED 31 to the fifth LED 35. The amplification signal at the amplification factor in the combination of is determined as an appropriate pulse wave signal of each LED. As a result, the pulse wave signal acquisition device 1 according to the present embodiment can shorten the time for acquiring a pulse wave signal suitable for measuring the concentration of blood components.
 次に、図8に戻り、血液成分測定処理についてさらに説明する。脈波信号取得装置1は、測定準備処理(OP101)が終了したら、OP102の処理に移行する。 Next, returning to FIG. 8, the blood component measurement process will be further described. When the measurement preparation process (OP101) is completed, the pulse wave signal acquisition device 1 shifts to the process of OP102.
 OP102において、脈波信号取得装置1は、第5LED35、第4LED34、第3LED33、第2LED32、第1LED31の順で光を被検者の親指に照射して、当該指内の血液を通過した光をPD41で受光して受光データを取得する。より具体的には、脈波信号取得装置1は、上述の測定準備処理でLED毎に決定した発光強度で各LEDを発光させつつ、上述の測定準備処理でLED毎に決定した増幅率の増幅信号を脈波信号データとして取得する。脈波信号取得装置1は、例えば、20秒分(200サイクル分)の脈波信号データを取得する。さらに、OP102において、脈波信号取得装置1は、脈波信号データを端末装置100に送信する。 In OP102, the pulse wave signal acquisition device 1 irradiates the thumb of the subject with light in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31, and emits the light that has passed through the blood in the finger. Receive light with PD41 and acquire light reception data. More specifically, the pulse wave signal acquisition device 1 emits light from each LED with the emission intensity determined for each LED in the above-mentioned measurement preparation process, and amplifies the amplification factor determined for each LED in the above-mentioned measurement preparation process. The signal is acquired as pulse wave signal data. The pulse wave signal acquisition device 1 acquires, for example, pulse wave signal data for 20 seconds (200 cycles). Further, in OP 102, the pulse wave signal acquisition device 1 transmits the pulse wave signal data to the terminal device 100.
 OP201において、端末装置100は、脈波信号取得装置1から脈波信号データを受信する。本実施形態では、脈波信号取得装置1が脈波信号データを取得し、端末装置100が脈波データ信号を解析して血中TG値およびHbA1c値を算出するので、脈波信号取得装置1は、端末装置100に取得した脈波信号データを送信し、端末装置100は、脈波信号取得装置1から脈波信号データを受信する。 In OP201, the terminal device 100 receives the pulse wave signal data from the pulse wave signal acquisition device 1. In the present embodiment, the pulse wave signal acquisition device 1 acquires the pulse wave signal data, and the terminal device 100 analyzes the pulse wave data signal to calculate the blood TG value and the HbA1c value. Therefore, the pulse wave signal acquisition device 1 Transmits the pulse wave signal data acquired to the terminal device 100, and the terminal device 100 receives the pulse wave signal data from the pulse wave signal acquisition device 1.
 次のOP202において、端末装置100は、脈波信号データから各波長に対応する吸光度を算出する。例えば、各波長に対応する脈動信号の変化幅は適宜吸光度に変換できる。端末装置100は、各波長の照射時に対応する脈波信号の変化幅から、波長1050nmの光照射に対応する血液の吸光度(以下、「第1吸光度」と称する)と、波長1200nmの光照射に対応する血液の吸光度(以下、「第2吸光度」を称する)と、波長1300nmの光照射に対応する血液の吸光度(以下、「第3吸光度」を称する)と、波長1450nmの光照射に対応する血液の吸光度(以下、「第4吸光度」を称する)と、波長1600nmの光照射に対応する血液の吸光度(以下、「第5吸光度」を称する)を算出する。本実施形態によれば、測定準備処理によって血液成分の濃度測定に適した脈波信号を取得することができるので、各波長に対応する第1~第5吸光度を血液成分の濃度測定に用いることができる。 In the next OP202, the terminal device 100 calculates the absorbance corresponding to each wavelength from the pulse wave signal data. For example, the change width of the pulsating signal corresponding to each wavelength can be appropriately converted into absorbance. The terminal device 100 determines the absorbance of blood corresponding to light irradiation at a wavelength of 1050 nm (hereinafter referred to as “first absorbance”) and light irradiation at a wavelength of 1200 nm from the change width of the pulse wave signal corresponding to the irradiation at each wavelength. Corresponds to the absorbance of the corresponding blood (hereinafter referred to as "second absorbance"), the absorbance of blood corresponding to light irradiation having a wavelength of 1300 nm (hereinafter referred to as "third absorbance"), and the light irradiation having a wavelength of 1450 nm. The absorbance of blood (hereinafter referred to as "fourth absorbance") and the absorbance of blood corresponding to light irradiation having a wavelength of 1600 nm (hereinafter referred to as "fifth absorbance") are calculated. According to the present embodiment, since a pulse wave signal suitable for measuring the concentration of blood components can be obtained by the measurement preparation process, the first to fifth absorbances corresponding to each wavelength are used for measuring the concentration of blood components. Can be done.
 次のOP203において、端末装置100は、第1吸光度、第2吸光度、および第3吸光度を用いて、血中TG値を算出する。具体的には、端末装置100は、まず、第1吸光度から第3吸光度を減算して第1吸光度を規格化し、第2吸光度から第3吸光度を減算して第2吸光度を規格化する。そして、端末装置100は、規格化された第1吸光度と第2吸光度との比を算出し、所定の変換テーブル(例えば、検量線)を用いて当該比を血中TG値に変換する。これにより血中TG値が算出される。なお、本実施形態とは異なり、端末装置100は、例えば、第1吸光度から第2吸光度を減算して差分値を算出し、所定の変換テーブルを用いて当該差分値を血中TG値に変換してもよい。あるいは、端末装置100は、例えば、第1吸光度から第3吸光度を減算して差分値を算出し、所定の変換テーブルを用いて当該差分値を血中TG値に変換してもよい。 In the next OP203, the terminal device 100 calculates the blood TG value using the first absorbance, the second absorbance, and the third absorbance. Specifically, the terminal device 100 first normalizes the first absorbance by subtracting the third absorbance from the first absorbance, and then subtracts the third absorbance from the second absorbance to normalize the second absorbance. Then, the terminal device 100 calculates the ratio of the normalized first absorbance and the second absorbance, and converts the ratio into a blood TG value using a predetermined conversion table (for example, a calibration curve). As a result, the blood TG value is calculated. In addition, unlike the present embodiment, the terminal device 100 calculates, for example, a difference value by subtracting the second absorbance from the first absorbance, and converts the difference value into a blood TG value using a predetermined conversion table. You may. Alternatively, the terminal device 100 may, for example, subtract the third absorbance from the first absorbance to calculate the difference value, and convert the difference value into the blood TG value using a predetermined conversion table.
 次のOP204において、端末装置100は、第1吸光度、第4吸光度、および第5吸光度を用いて、HbA1c値を算出する。具体的には、端末装置100は、まず、第4吸光度から第1吸光度を減算して第4吸光度を規格化し、第5吸光度から第1吸光度を減算して第5吸光度を規格化する。そして、端末装置100は、規格化された第4吸光度と第5吸光度の比を算出し、所定の変換テーブルを用いて当該比をHbA1c値に変換する。これによりHbA1c値が算出される。なお、本実施形態とは異なり、端末装置100は、第4吸光度および第5吸光度を規格化することなく、第4吸光度および第5吸光度の比を算出し、所定の変換テーブル(例えば、検量線)を用いて当該比をHbA1c値に変換してもよい。 In the next OP204, the terminal device 100 calculates the HbA1c value using the first absorbance, the fourth absorbance, and the fifth absorbance. Specifically, the terminal device 100 first subtracts the first absorbance from the fourth absorbance to normalize the fourth absorbance, and then subtracts the first absorbance from the fifth absorbance to normalize the fifth absorbance. Then, the terminal device 100 calculates the ratio of the normalized fourth absorbance and the fifth absorbance, and converts the ratio into the HbA1c value using a predetermined conversion table. As a result, the HbA1c value is calculated. In addition, unlike the present embodiment, the terminal device 100 calculates the ratio of the fourth absorbance and the fifth absorbance without standardizing the fourth absorbance and the fifth absorbance, and calculates a predetermined conversion table (for example, a calibration curve). ) May be used to convert the ratio into an HbA1c value.
 次のOP205において、端末装置100は、血中TG値およびHbA1c値を測定値として表示部100Aに表示する。これにより、被検者は血中TG値およびHbA1c値を知ることができる。本実施形態によれば、血液成分の濃度測定に適した脈波信号を取得することができるので、血液成分の濃度の測定精度を向上できる。 In the next OP205, the terminal device 100 displays the blood TG value and the HbA1c value as measured values on the display unit 100A. This allows the subject to know the blood TG value and the HbA1c value. According to the present embodiment, since a pulse wave signal suitable for measuring the concentration of the blood component can be acquired, the accuracy of measuring the concentration of the blood component can be improved.
 以上が本実施形態に関する説明であるが、上記の脈波信号取得装置1の構成、血中TG値およびHbA1c値の算出処理などは、上記の実施形態に限定されるものではなく、本発明の技術的思想と同一性を失わない範囲内において種々の変更が可能である。例えば、上記実施形態では、先に血中TG値を算出し、その次にHbA1c値を算出しているがこれに限られず、先にHbA1c値を算出し、その次に血中TG値を算出してもよい。 The above is the description of the present embodiment, but the configuration of the pulse wave signal acquisition device 1, the calculation process of the blood TG value and the HbA1c value, etc. are not limited to the above embodiment, and the present invention is not limited to the above embodiment. Various changes can be made within the range that does not lose its identity with the technical idea. For example, in the above embodiment, the blood TG value is calculated first, and then the HbA1c value is calculated, but the present invention is not limited to this, and the HbA1c value is calculated first, and then the blood TG value is calculated. You may.
 また、上記実施形態では、脈波信号取得装置1によって得た脈波信号データに基づいて端末装置100が血中TG値およびHbA1c値を算出して表示しているがこれに限られない。例えば、脈波信号データに基づいて脈波信号取得装置1が血中TG値およびHbA1c値を算出して、脈波信号取得装置1が備える表示部が血中TG値およびHbA1c値を表示してもよい。また、脈波信号データに基づいて脈波信号取得装置1が血中TG値およびHbA1c値を算出して、端末装置100が血中TG値およびHbA1c値を表示してもよい。この場合において、脈波信号取得装置1は、記憶部20に血液成分測定プログラムが格納されており、制御部10が血液成分測定プログラムを記憶部20内のRAMに展開して実行することで図8に示す種々の処理(例えば、OP202~OP205の処理)を実行する。 Further, in the above embodiment, the terminal device 100 calculates and displays the blood TG value and the HbA1c value based on the pulse wave signal data obtained by the pulse wave signal acquisition device 1, but the present invention is not limited to this. For example, the pulse wave signal acquisition device 1 calculates the blood TG value and the HbA1c value based on the pulse wave signal data, and the display unit included in the pulse wave signal acquisition device 1 displays the blood TG value and the HbA1c value. May be good. Further, the pulse wave signal acquisition device 1 may calculate the blood TG value and the HbA1c value based on the pulse wave signal data, and the terminal device 100 may display the blood TG value and the HbA1c value. In this case, the pulse wave signal acquisition device 1 has a blood component measurement program stored in the storage unit 20, and the control unit 10 expands and executes the blood component measurement program in the RAM in the storage unit 20. The various processes shown in 8 (for example, the processes of OP202 to OP205) are executed.
 また、脈波信号取得装置1は、図9に示す測定準備処理において、第1LED31~第5LED35の中から1つのLEDを選択し、そのLEDを発光させ、OP302~OP308の処理を実行してもよい。この場合、脈波信号取得装置1は、各LEDについてOP302~OP308の処理を順番に実行し、適切な脈波信号が得られる増幅率とLEDの発光量をLED毎に決定し、当該増幅率での増幅信号を脈波信号として決定する。 Further, in the measurement preparation process shown in FIG. 9, the pulse wave signal acquisition device 1 may select one LED from the first LEDs 31 to the fifth LED 35, make the LED emit light, and execute the processes of OP302 to OP308. good. In this case, the pulse wave signal acquisition device 1 sequentially executes the processes of OP302 to OP308 for each LED, determines the amplification factor at which an appropriate pulse wave signal can be obtained and the light emission amount of the LED for each LED, and the amplification factor. The amplified signal in is determined as a pulse wave signal.
 また、第1LED31~第5LED35の各LEDの発光量と、PD41を介して取得される信号強度とは、図7に示すように線形の関係性を有するので、脈波信号取得装置1は、図9に示す測定準備処理のOP306において、他の増幅器の固定増幅率を利用して残りの増幅信号の信号強度を推定するのみならず、Duty比を所定量だけ増加または減少させた場合の各増幅信号の信号強度も一緒に推定してもよい。 Further, since the light emission amount of each LED of the first LED 31 to the fifth LED 35 and the signal intensity acquired via the PD 41 have a linear relationship as shown in FIG. 7, the pulse wave signal acquisition device 1 is shown in FIG. In OP306 of the measurement preparation process shown in 9, not only the signal strength of the remaining amplified signal is estimated by using the fixed amplification factor of another amplifier, but also each amplification when the duty ratio is increased or decreased by a predetermined amount. The signal strength of the signal may also be estimated.
 また、脈波信号取得装置1は、図9に示す測定準備処理のOP306において、他の増幅器の固定増幅率を利用して残りの増幅信号の信号強度を推定することなく、Duty比を所定量だけ増加または減少させた場合の各増幅信号の信号強度のみを推定してもよい。 Further, the pulse wave signal acquisition device 1 sets the duty ratio by a predetermined amount in OP306 of the measurement preparation process shown in FIG. 9 without estimating the signal strength of the remaining amplified signal by using the fixed amplification factor of another amplifier. Only the signal strength of each amplified signal when increased or decreased may be estimated.
(変形例)
 次に、脈波信号取得装置1が実行する測定準備処理の変形例について図10および図11に基づいて説明する。図10は、変形例の測定準備処理に関するフローチャートである。
(Modification example)
Next, a modified example of the measurement preparation process executed by the pulse wave signal acquisition device 1 will be described with reference to FIGS. 10 and 11. FIG. 10 is a flowchart relating to the measurement preparation process of the modified example.
 まず、OP401において、脈波信号取得装置1の制御部10は、100ミリ秒の間に第1LED31~第5LED35の5つのLEDを順番に発光させる。具体的には、制御部10は、第5LED35、第4LED34、第3LED33、第2LED32、第1LED31の順で5つのLEDを順番に発光させる。なお、各LEDの発光時間は、互いに異なっていてもよいし、同じであってもよい。また、この際、制御部10は、各LEDを所定の印加電圧のDuty比で発光制御させる。 First, in OP401, the control unit 10 of the pulse wave signal acquisition device 1 causes the five LEDs of the first LED 31 to the fifth LED 35 to emit light in order within 100 milliseconds. Specifically, the control unit 10 causes the five LEDs to emit light in the order of the fifth LED35, the fourth LED34, the third LED33, the second LED32, and the first LED31. The light emission time of each LED may be different from each other or may be the same. At this time, the control unit 10 controls each LED to emit light at a duty ratio of a predetermined applied voltage.
 次のOP402において、制御部10は、PD41の増幅信号を4つの信号取得ピンA3~A0から同時に取得する。 In the next OP402, the control unit 10 simultaneously acquires the amplified signal of the PD41 from the four signal acquisition pins A3 to A0.
 次のOP403において、制御部10は、第1LED31~第5LED35が光を照射している間、OP402で取得した増幅信号、すなわち信号取得ピンA3~A0にそれぞれ入力されるPD41の複数の増幅信号のそれぞれの平均値を計算(更新)し続け、5秒分の平均値が蓄積された時点でOP404の処理に移行する。なお、OP403においては、計算される増幅信号の平均値は、5秒分の信号に限られず、5秒未満分または5秒より長い分の信号であってもよい。 In the next OP403, the control unit 10 receives the amplification signal acquired by the OP402 while the first LED31 to the fifth LED35 are irradiating light, that is, a plurality of amplification signals of the PD 41 input to the signal acquisition pins A3 to A0, respectively. The calculation (update) of each average value is continued, and when the average value for 5 seconds is accumulated, the process shifts to OP404 processing. In OP403, the calculated average value of the amplified signal is not limited to the signal for 5 seconds, but may be a signal for less than 5 seconds or a signal longer than 5 seconds.
 次のOP404において、制御部10の決定部11は、信号取得ピンA3~A0から同時に取得した4つの増幅信号の信号強度(5秒分の平均値)が所定の許容範囲内にあるか否かを判定する。なお、所定の許容範囲は、図9のOP304における範囲(信号強度が信号取得範囲の40%以上80%以下(40%~80%)の範囲)と同じである。 In the next OP404, the determination unit 11 of the control unit 10 determines whether or not the signal strength (average value for 5 seconds) of the four amplified signals simultaneously acquired from the signal acquisition pins A3 to A0 is within a predetermined allowable range. To judge. The predetermined allowable range is the same as the range in OP304 of FIG. 9 (the range in which the signal strength is 40% or more and 80% or less (40% to 80%) of the signal acquisition range).
 図11は、OP404の処理について詳細に示すフローチャートである。OP404の判定は、OP4013~OP4043の4回の判定によって構成されている。OP4013は、信号取得ピンA3から取得した増幅信号の信号強度(5秒分の平均値)が許容範囲内にあるか否かを判定する。OP4023は、信号取得ピンA2から取得した増幅信号の信号強度(5秒分の平均値)が許容範囲内にあるか否かを判定する。OP4033は、信号取得ピンA1から取得した増幅信号の信号強度(5秒分の平均値)が許容範囲内にあるか否かを判定する。OP4043は、信号取得ピンA0から取得した増幅信号の信号強度(5秒分の平均値)が許容範囲内にあるか否かを判定する。このように、各信号取得ピンから取得した増幅信号の信号強度(5秒分の平均値)が許容範囲内にあるか否かを1段階ずつ判定するが、信号取得ピンA3~A0で取得した増幅信号の信号強度(5秒分の平均値)が所定の許容範囲内である場合にはOP404の処理は終了される。 FIG. 11 is a flowchart showing the processing of OP404 in detail. The determination of OP404 is composed of four determinations of OP4013 to OP4043. OP4013 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A3 is within the permissible range. OP4023 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A2 is within the allowable range. OP4033 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A1 is within the allowable range. OP4043 determines whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from the signal acquisition pin A0 is within the allowable range. In this way, it is determined step by step whether or not the signal strength (average value for 5 seconds) of the amplified signal acquired from each signal acquisition pin is within the permissible range, but it is acquired by the signal acquisition pins A3 to A0. When the signal strength (average value for 5 seconds) of the amplified signal is within a predetermined allowable range, the processing of OP404 is terminated.
 図10に示すように、制御部10の決定部11がOP403において計算した4つの増幅信号の各信号強度(5秒分の平均値)のいずれか1つが所定の許容範囲内にあると判定した場合(OP404におけるYes)には、OP405の処理が実行される。OP405において制御部10の決定部11は、適切な脈波信号が得られる増幅信号が入力される信号取得ピンA3~A0のうちいずれか1つのピンを血液成分の濃度測定に用いる脈波信号を取得する信号取得ピンとして決定する。 As shown in FIG. 10, the determination unit 11 of the control unit 10 determines that any one of the signal intensities (average value for 5 seconds) of the four amplified signals calculated in OP403 is within a predetermined allowable range. In the case (Yes in OP404), the processing of OP405 is executed. In OP405, the determination unit 11 of the control unit 10 uses a pulse wave signal using any one of the signal acquisition pins A3 to A0 for inputting an amplified signal to obtain an appropriate pulse wave signal for measuring the concentration of blood components. Determined as the signal acquisition pin to be acquired.
 一方、制御部10がOP403において取得した4つの増幅信号の信号強度(5秒分の平均値)の全てが所定の許容範囲内にないと判定した場合(OP404におけるNo)には、OP406の処理が実行される。OP406において制御部10の決定部11は、第1LED31~第5LED35の発光量を調整する。OP406の処理の次にOP402の処理が再度実行される。 On the other hand, when it is determined that all of the signal intensities (average value for 5 seconds) of the four amplified signals acquired by the control unit 10 in OP403 are not within the predetermined allowable range (No in OP404), the processing of OP406 is performed. Is executed. In OP406, the determination unit 11 of the control unit 10 adjusts the amount of light emitted from the first LED 31 to the fifth LED 35. After the processing of OP406, the processing of OP402 is executed again.
 このように本変形例の測定準備処理では、制御部10の決定部11は、複数の増幅信号の各信号強度の平均値を計算し(OP403)、各増幅信号の平均値が所定の許容範囲内にあるか1つの増幅信号毎に順に判定し、その平均値が所定の許容範囲内にある増幅信号が検出された時点でこの判定を終了する。これにより、脈波信号取得装置1は、血液成分の濃度測定に適した脈波信号を取得する時間を短縮できる。 As described above, in the measurement preparation process of this modification, the determination unit 11 of the control unit 10 calculates the average value of each signal intensity of the plurality of amplified signals (OP403), and the average value of each amplified signal is within a predetermined allowable range. It is determined in order whether it is within or for each amplified signal, and this determination is terminated when an amplified signal whose average value is within a predetermined allowable range is detected. As a result, the pulse wave signal acquisition device 1 can shorten the time for acquiring a pulse wave signal suitable for measuring the concentration of blood components.
 なお、図11に示すフローチャートでは、信号取得ピンA3、信号取得ピンA2、信号取得ピンA1、および信号取得ピンA0の順番で各信号の信号強度が所定範囲内にあるか否かが判断された。しかしながら、信号強度を判定する順番は、この順番に限定されるものではなく、例えば、信号取得ピンA0、信号取得ピンA1、信号取得ピンA2、および信号取得ピンA3の順番でもよい。あるいは、予め指定された優先順位にしたがって、LED毎に順番が変更されてもよい。 In the flowchart shown in FIG. 11, it is determined whether or not the signal strength of each signal is within a predetermined range in the order of the signal acquisition pin A3, the signal acquisition pin A2, the signal acquisition pin A1, and the signal acquisition pin A0. .. However, the order in which the signal strength is determined is not limited to this order, and may be, for example, the order of the signal acquisition pin A0, the signal acquisition pin A1, the signal acquisition pin A2, and the signal acquisition pin A3. Alternatively, the order may be changed for each LED according to a predetermined priority.
 また、脈波信号取得装置1によって得た脈波信号データを端末装置100が通信回線を介して外部サーバに送信し、この外部サーバが脈波信号データに基づいて血中TG値およびHbA1c値を算出して血中TG値およびHbA1c値を含む情報を通信回線を介して端末装置100に送信し、端末装置100が血中TG値およびHbA1c値を表示部100Aに表示してもよい。 Further, the terminal device 100 transmits the pulse wave signal data obtained by the pulse wave signal acquisition device 1 to an external server via a communication line, and the external server determines the blood TG value and the HbA1c value based on the pulse wave signal data. The calculated information including the blood TG value and the HbA1c value may be transmitted to the terminal device 100 via the communication line, and the terminal device 100 may display the blood TG value and the HbA1c value on the display unit 100A.
 また、上記実施形態では脈波信号取得装置1には、反射光方式が採用されているが、透過光方式が採用されてもよい。透過光方式の脈波信号取得装置1は、照射部30と受光部40が開口部63から挿入された被検者の親指101を挟むように例えば照射部30が上部カバー62に配置されており、親指101の背側(爪側)または腹側から照射部30が光を照射し、親指を通過した光を受光部40が受光する構成であってもよい。 Further, although the reflected light method is adopted for the pulse wave signal acquisition device 1 in the above embodiment, the transmitted light method may be adopted. In the transmitted light type pulse wave signal acquisition device 1, for example, the irradiation unit 30 is arranged on the upper cover 62 so that the irradiation unit 30 and the light receiving unit 40 sandwich the thumb 101 of the subject inserted from the opening 63. The irradiation unit 30 may irradiate light from the dorsal side (nail side) or the ventral side of the thumb 101, and the light receiving unit 40 may receive the light that has passed through the thumb.
 なお、照射部30が有するLEDの個数、各LEDの照射光のピーク波長および配置パターンは上記実施形態に限られない。例えば、血中TG値のみを測定する場合には、照射部30は第1LED31と、第2LED32および第3LED33の少なくとも一方を有していればよい。また、HbA1c値のみを測定する場合には、照射部30は、少なくとも第4LED34と第5LED35を有していればよい。また、脈波信号のみを取得すればいい場合には、脈波信号取得装置1は、第1LED31~第5LED35のいずれかの少なくとも1つを有していればよい。 The number of LEDs included in the irradiation unit 30, the peak wavelength of the irradiation light of each LED, and the arrangement pattern are not limited to the above embodiment. For example, when measuring only the blood TG value, the irradiation unit 30 may have at least one of the first LED 31 and the second LED 32 and the third LED 33. Further, when measuring only the HbA1c value, the irradiation unit 30 may have at least the 4th LED 34 and the 5th LED 35. Further, when it is sufficient to acquire only the pulse wave signal, the pulse wave signal acquisition device 1 may have at least one of the first LED 31 to the fifth LED 35.
 なお、本実施形態では、血中TG値は数値で算出され表示部100Aに表示されているが、血中TG値は3~5段階のインデックス形式に変換して表示されてもよい。 In the present embodiment, the blood TG value is calculated numerically and displayed on the display unit 100A, but the blood TG value may be converted into an index format having 3 to 5 stages and displayed.
 また、増幅信号の信号強度の所定の許容範囲は、複数レベルに設定されていてもよい。例えば、第1許容範囲を信号取得範囲の50~70%の範囲とし、第1許容範囲から信号強度が外れる場合には信号取得範囲の40~80%の範囲の第2許容範囲に許容範囲を広げて信号強度の良否を判定してもよい。 Further, the predetermined allowable range of the signal strength of the amplified signal may be set to a plurality of levels. For example, the first allowable range is set to the range of 50 to 70% of the signal acquisition range, and when the signal strength deviates from the first allowable range, the allowable range is set to the second allowable range of 40 to 80% of the signal acquisition range. It may be expanded to judge the quality of the signal strength.
 また、増幅部50は、増幅器を並列接続し、その後段に加算回路を接続する構成であってもよい。さらに、増幅部50が有する増幅器の個数は3個に限定されるものではなく、増幅部50は、少なくとも1つの増幅器を有していればよい。なお、第1増幅器51~第3増幅器の各固定増幅率は、上述の実施形態に限定されない。 Further, the amplification unit 50 may be configured to connect amplifiers in parallel and connect an adder circuit to the subsequent stage. Further, the number of amplifiers included in the amplification unit 50 is not limited to three, and the amplification unit 50 may have at least one amplifier. The fixed amplification factors of the first amplifier 51 to the third amplifier are not limited to the above-described embodiment.
 また、第1LED31~第5LED35の発光量調整に用いられるPWM制御は、255階調に限定されず、10階調でもよいし、20階調でもよいし、各LED(発光波長毎)によって階調を変更してもよい。さらに、脈波信号取得装置1は、第1LED31~第5LED35の発光量を調整する機能を有していなくてもよい。 Further, the PWM control used for adjusting the light emission amount of the first LED 31 to the fifth LED 35 is not limited to 255 gradations, may be 10 gradations, may be 20 gradations, and may be gradations depending on each LED (for each emission wavelength). May be changed. Further, the pulse wave signal acquisition device 1 may not have a function of adjusting the amount of light emitted from the first LED 31 to the fifth LED 35.
 なお、脈波信号取得装置1の使用者が端末装置100などに表示される測定結果を目視確認し、信号の選択や発光量の調整を手動により行ってもよい。例えば、使用者は、被検者の脈波信号を端末装置100の表示部100Aで確認しながら、その場で信号を取得する信号取得ピンA3~A0の変更や、各LEDの発光量の調整を行い脈波信号が適切な状態になるか確認してもよい。 The user of the pulse wave signal acquisition device 1 may visually check the measurement result displayed on the terminal device 100 or the like, and manually select the signal and adjust the light emission amount. For example, the user changes the signal acquisition pins A3 to A0 for acquiring the signal on the spot while checking the pulse wave signal of the subject on the display unit 100A of the terminal device 100, and adjusts the light emission amount of each LED. May be performed to confirm that the pulse wave signal is in an appropriate state.
 また、上記実施形態における測定対象の生体はヒトであったが、測定対象の生体はヒトに限られない。具体的な測定対象の生体の一例としては、哺乳類、鳥類が挙げられる。このうち、高血糖による病気(例えば、糖尿病)の診断の可能性があるヒトや、ペットや家畜になり得る哺乳類や鳥類を測定対象とするのがより好ましい。 Further, the living body to be measured in the above embodiment was a human, but the living body to be measured is not limited to humans. Mammals and birds are examples of specific living organisms to be measured. Of these, it is more preferable to measure humans who may be diagnosed with a disease due to hyperglycemia (for example, diabetes), and mammals and birds which can be pets and livestock.
 また、上記実施形態においては血液成分の濃度として血中TG値およびHbA1c値が測定されているが、他の血液成分の濃度を測定してもよい。例えば、血液中のヘモグロビン、グルコース、コレステロール類(総コレステロール、HDL-またはLDL-コレステロール、遊離コレステロール)、尿素、ビリルビン、リポ蛋白質、リン脂質、エチルアルコール等を測定してもよい。この場合には、各血液成分の濃度によって吸光度が変化する波長の光を生体に対して照射して、当該吸光度から各血液成分の濃度を算出する。 Further, in the above embodiment, the blood TG value and the HbA1c value are measured as the blood component concentration, but the concentration of another blood component may be measured. For example, hemoglobin, glucose, cholesterol (total cholesterol, HDL- or LDL-cholesterol, free cholesterol), urea, bilirubin, lipoprotein, phospholipid, ethyl alcohol, etc. in blood may be measured. In this case, the living body is irradiated with light having a wavelength whose absorbance changes depending on the concentration of each blood component, and the concentration of each blood component is calculated from the absorbance.
 また、上記実施形態では、発光波長の異なる5つのLEDを使用した例を示したが、測定対象の血液成分を変更したり、増加させたりすることで、必要なLEDの個数や、LEDの発光波長の種類は適宜変更される。本発明の脈波信号取得装置によれば、異なる波長のLEDを多数搭載することで、分光器を用いずに血液成分のスペクトル測定を疑似的に再現できるため、種々の血液成分の濃度を測定することが可能になる。 Further, in the above embodiment, an example in which five LEDs having different emission wavelengths are used has been shown, but by changing or increasing the blood component to be measured, the required number of LEDs and the light emission of the LEDs are shown. The type of wavelength is changed as appropriate. According to the pulse wave signal acquisition device of the present invention, by mounting a large number of LEDs having different wavelengths, it is possible to simulate the spectral measurement of blood components without using a spectroscope, so that the concentrations of various blood components can be measured. It will be possible to do.
1   脈波信号取得装置
10  制御部
11  決定部
12  調整部
20  記憶部
30  照射部
40  受光部
50  増幅部
60  通信部
100 端末装置
1 Pulse wave signal acquisition device 10 Control unit 11 Determination unit 12 Adjustment unit 20 Storage unit 30 Irradiation unit 40 Light receiving unit 50 Amplification unit 60 Communication unit 100 Terminal device

Claims (6)

  1.  生体の測定部位に対して光を照射する少なくとも一つの発光素子と、
     前記測定部位を通過した光を受光する受光素子と、
     固定増幅率を有する増幅器を少なくとも一つ含み、各増幅器の各固定増幅率で前記受光素子からの出力信号を増幅することによって増幅率の異なる複数の増幅信号を生成する増幅部と、
     前記複数の増幅信号のうちの一の増幅信号を脈波信号として決定する決定部と、
     を有する脈波信号取得装置。
    At least one light emitting element that irradiates the measurement site of the living body with light,
    A light receiving element that receives light that has passed through the measurement site, and
    An amplification unit that includes at least one amplifier having a fixed amplification factor and generates a plurality of amplification signals having different amplification factors by amplifying an output signal from the light receiving element at each fixed amplification factor of each amplifier.
    A determination unit that determines the amplified signal of one of the plurality of amplified signals as a pulse wave signal, and
    A pulse wave signal acquisition device having.
  2.  前記発光素子を複数備え、
     複数の前記発光素子は、波長の異なる光をそれぞれ発光し、かつ、所定の順序で光を照射し、
     前記決定部は、前記各発光素子からの光の照射に基づく前記受光素子からの出力信号毎に前記一の増幅信号を決定する、
     請求項1に記載の脈波信号取得装置。
    It is equipped with a plurality of the light emitting elements.
    The plurality of light emitting elements emit light having different wavelengths, and irradiate the light in a predetermined order.
    The determination unit determines the one amplification signal for each output signal from the light receiving element based on the irradiation of light from each light emitting element.
    The pulse wave signal acquisition device according to claim 1.
  3.  前記決定部は、前記複数の増幅信号のうちの一の増幅信号の信号強度を検出し、当該一の増幅信号の信号強度から他の増幅信号の信号強度を推定する、
     請求項1または2に記載の脈波信号取得装置。
    The determination unit detects the signal strength of one of the plurality of amplified signals and estimates the signal strength of the other amplified signal from the signal strength of the one amplified signal.
    The pulse wave signal acquisition device according to claim 1 or 2.
  4.  前記決定部は、前記複数の増幅信号の各信号強度を検出する、
     請求項1または2に記載の脈波信号取得装置。
    The determination unit detects each signal strength of the plurality of amplified signals.
    The pulse wave signal acquisition device according to claim 1 or 2.
  5.  前記決定部は、前記複数の増幅信号のうち、予め指定された一の増幅信号の信号強度を優先的に検出し、当該一の増幅信号の信号強度が所定の許容範囲内にある場合、当該一の増幅信号を脈波信号として決定する、
     請求項1から4のいずれか一項に記載の脈波信号取得装置。
    The determination unit preferentially detects the signal strength of one amplified signal specified in advance among the plurality of amplified signals, and when the signal strength of the one amplified signal is within a predetermined allowable range, the determination unit concerned. Determine one amplified signal as a pulse wave signal,
    The pulse wave signal acquisition device according to any one of claims 1 to 4.
  6.  前記発光素子の発光量を調整する調整部をさらに有し、
     前記決定部は、前記発光量と前記増幅率との組み合わせの中から一の組み合わせを選択し、当該一の組み合わせにおける前記増幅率での前記増幅信号を前記脈波信号として決定する、
     請求項1から5のいずれか一項に記載の脈波信号取得装置。
    Further, it has an adjusting unit for adjusting the amount of light emitted from the light emitting element.
    The determination unit selects one combination from the combination of the light emission amount and the amplification factor, and determines the amplification signal at the amplification factor in the one combination as the pulse wave signal.
    The pulse wave signal acquisition device according to any one of claims 1 to 5.
PCT/JP2021/032377 2020-09-04 2021-09-03 Pulse wave signal acquisition device WO2022050368A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022546977A JPWO2022050368A1 (en) 2020-09-04 2021-09-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020149146 2020-09-04
JP2020-149146 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050368A1 true WO2022050368A1 (en) 2022-03-10

Family

ID=80491043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032377 WO2022050368A1 (en) 2020-09-04 2021-09-03 Pulse wave signal acquisition device

Country Status (2)

Country Link
JP (1) JPWO2022050368A1 (en)
WO (1) WO2022050368A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034312A1 (en) * 2022-08-09 2024-02-15 バイオニクス株式会社 Vital information measurement device, vital information measurement method, living body management system, and living body management method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398680A (en) * 1989-11-01 1995-03-21 Polson; Michael J. R. Pulse oximeter with improved accuracy and response time
JP2004173830A (en) * 2002-11-26 2004-06-24 Seiko Instruments Inc Pulse wave detecting device and intermittently driven electronic equipment
JP2015173979A (en) * 2014-03-12 2015-10-05 三星電子株式会社Samsung Electronics Co.,Ltd. Parallel biometric signal processor, method of controlling the same, and application processor therefor
US20170309670A1 (en) * 2016-04-21 2017-10-26 Silergy Semiconductor Technology (Hangzhou) Ltd Photo detector and associated integrated circuit
JP2017209413A (en) * 2016-05-27 2017-11-30 ソニーモバイルコミュニケーションズ株式会社 Control device, detection device, and control method
US20190021637A1 (en) * 2017-07-24 2019-01-24 Boston Scientific Scimed, Inc. Systems and methods for rapid calibration of optical medical sensors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5398680A (en) * 1989-11-01 1995-03-21 Polson; Michael J. R. Pulse oximeter with improved accuracy and response time
JP2004173830A (en) * 2002-11-26 2004-06-24 Seiko Instruments Inc Pulse wave detecting device and intermittently driven electronic equipment
JP2015173979A (en) * 2014-03-12 2015-10-05 三星電子株式会社Samsung Electronics Co.,Ltd. Parallel biometric signal processor, method of controlling the same, and application processor therefor
US20170309670A1 (en) * 2016-04-21 2017-10-26 Silergy Semiconductor Technology (Hangzhou) Ltd Photo detector and associated integrated circuit
JP2017209413A (en) * 2016-05-27 2017-11-30 ソニーモバイルコミュニケーションズ株式会社 Control device, detection device, and control method
US20190021637A1 (en) * 2017-07-24 2019-01-24 Boston Scientific Scimed, Inc. Systems and methods for rapid calibration of optical medical sensors

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024034312A1 (en) * 2022-08-09 2024-02-15 バイオニクス株式会社 Vital information measurement device, vital information measurement method, living body management system, and living body management method

Also Published As

Publication number Publication date
JPWO2022050368A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
DK2615972T3 (en) Apparatus for automated measurement of conduction velocity and amplitude of the sural nerve
US10278622B2 (en) Device for non-invasive measurement of blood sugar level
KR102033914B1 (en) method for measuring blood glucose and wearable type apparatus for the same
RU2552025C2 (en) Assessing individual's circulation
US20100004517A1 (en) Non-invasive method and apparatus for determining a physiological parameter
US20120016245A1 (en) Plethysmogram sensor
US12082945B2 (en) Systems and methods for low power pulse oximetry
US20130296665A1 (en) Photoplethysmographic device and methods therefore
KR20090098800A (en) Medical measuring device
US10582887B2 (en) Blood oxygenation sensor with LED current modulation
US20070123760A1 (en) Signal transmitter and control circuit for a physiological variable
US20150196239A1 (en) Method and apparatus for driving an emitter in a medical sensor
JP4385677B2 (en) Biological information measuring device
US20170049344A1 (en) Pulse wave sensor and pulse wave measurement module
WO2022050368A1 (en) Pulse wave signal acquisition device
JP6373511B2 (en) Optical analysis system and method
KR20200022412A (en) Non invasive glucose meter using nir spectroscopy and method of measuring glucose meter using the same
JP2014057717A (en) Biological information measurement apparatus and parameter setting method therein
JP3815119B2 (en) Biological signal detector
WO2020262431A1 (en) Blood component measurement system, blood component measurement method, and blood component measurement program
JP2019505275A (en) Apparatus and method for measuring the concentration of a compound present in blood
US20210330223A1 (en) Sensor verification through forward voltage measurements
US20140187884A1 (en) Systems and methods for ensemble averaging in pulse oximetry
KR20170064906A (en) Apparatus and method for measuring bio-signal
US20090270699A1 (en) Device for Determining Physiological Variables

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864420

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546977

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864420

Country of ref document: EP

Kind code of ref document: A1