Nothing Special   »   [go: up one dir, main page]

WO2022050149A1 - Soldering system - Google Patents

Soldering system Download PDF

Info

Publication number
WO2022050149A1
WO2022050149A1 PCT/JP2021/031180 JP2021031180W WO2022050149A1 WO 2022050149 A1 WO2022050149 A1 WO 2022050149A1 JP 2021031180 W JP2021031180 W JP 2021031180W WO 2022050149 A1 WO2022050149 A1 WO 2022050149A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
control parameter
temperature
temperature distribution
soldering
Prior art date
Application number
PCT/JP2021/031180
Other languages
French (fr)
Japanese (ja)
Inventor
徹也 川添
典也 南
浩儀 山下
俊介 佐々木
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180052031.XA priority Critical patent/CN115996809A/en
Priority to JP2022546265A priority patent/JPWO2022050149A1/ja
Publication of WO2022050149A1 publication Critical patent/WO2022050149A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/04Heating appliances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/48Thermography; Techniques using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/72Investigating presence of flaws
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering

Definitions

  • This disclosure relates to a soldering system.
  • a soldering system equipped with a means for automatically checking the quality of soldering is known.
  • the temperature distribution of the substrate immediately after soldering is detected by a non-contact temperature sensor and image processing is performed, and this processing signal is compared and calculated with the optimum temperature data recorded in advance by a computer. Detects the presence or absence of abnormal soldering temperature.
  • the system controls the transfer speed of the substrate, the temperature of the preheater, and the temperature of the molten solder based on the detection results.
  • Patent Document 1 it is not possible to sequentially grasp the change in the contact state between the substrate and the jetted molten solder. As a result, the soldering quality of the board is not stable.
  • an object of the present disclosure is to provide a soldering system capable of soldering a substrate with stable quality.
  • the soldering system of the present disclosure includes a flux coating machine that applies flux to a substrate, a preheater that preheats the substrate, a solder bath that stores molten solder, a solder tank heater that melts the solder in the solder tank, and a substrate.
  • a jet nozzle that ejects molten solder in the solder bath toward the solder tank, a transport mechanism that sequentially transports the substrate above the flux coating machine, above the preheater, and above the solder tank, and temperature measurement located above the jet nozzle. Equipped with a device.
  • the substrate can be soldered with stable quality.
  • FIG. It is a schematic diagram which shows the soldering system 1 of Embodiment 1.
  • FIG. It is a figure which shows the structure of the control device 9. It is a figure which shows the structure of the 1st learning apparatus 22.
  • (A) is a diagram showing an example of temperature distribution data on the surface of the substrate 10.
  • (B) is a diagram showing an example of target temperature distribution data on the surface of the substrate 10.
  • (C) is a diagram showing an example of temperature difference distribution data on the surface of the substrate 10.
  • FIG. 2nd inference device 25 It is a figure which shows the structure of the 2nd inference device 25. It is a flowchart which shows the learning procedure by the 1st learning apparatus 22 and the 2nd learning apparatus 23 in Embodiment 1.
  • FIG. It is a flowchart which shows the inference procedure by the 1st inference apparatus 24 and the 2nd inference apparatus 25 in Embodiment 1.
  • FIG. It is a flowchart which shows the learning procedure by the 1st learning apparatus 22 and the 2nd learning apparatus 23 in Embodiment 2.
  • FIG. 1 is a schematic view showing the soldering system 1 of the first embodiment.
  • the soldering system 1 includes a transfer mechanism 2, a flux coating machine 3, a preheater 4, a solder tank 5, a fluxer control unit 18, a jet motor 15, a solder tank heater 14, a temperature measuring device 17, a control device 9, and a soldering inspection device. 16 is provided.
  • the flux coating machine 3 applies the flux 11 to the lower surface (soldered surface) of the substrate 10 on which the electronic component 201 to be soldered is mounted.
  • a method of applying the flux 11 there are a spray type, a foaming type, and a dipping type.
  • the fluxer control unit 18 controls the coating amount of the flux 11.
  • the amount of the flux 11 applied is determined by the flow rate of the flux liquid, the pressure of the compressed air, and the moving speed of the two nozzles.
  • the coating amount of the flux 11 varies depending on the degree of clogging of the nozzle in the flux coating machine 3, the variation in the operation of the flux coating machine 3, the variation in the displacement of the exhaust fan in the flux coating machine 3, and the like. If the amount of the flux 11 applied is large, the time required for the solvent to evaporate in the preheating step of the preheater 4 becomes long, so that the temperature of the substrate 10 does not rise sufficiently. When the amount of the flux 11 applied is small, the solvent is immediately volatilized in the preheating step of the preheater 4, so that the temperature of the substrate 10 becomes too high.
  • the preheater 4 preheats the substrate 10.
  • the purpose of preheating is to volatilize the solvent of the flux 11 and to heat the substrate 10 before soldering. As a result, the effect of removing the oxide film of the flux 11 can be exhibited, so that the ratio of successful soldering is improved.
  • the heating method of the preheater 4 includes infrared rays, far infrared rays, and hot air. In some cases, only the lower surface (soldered surface) of the substrate 10 is heated, and in other cases, the upper surface (non-soldered surface, component surface) of the substrate 10 is also heated.
  • the solder bath 5 stores molten solder.
  • the jet nozzle 13 jets the molten solder 12 stored in the solder bath 5. As a result, the lower surface of the substrate 10 comes into contact with the molten solder 12, and soldering is performed.
  • the jet nozzle 13 includes a primary nozzle 13a and a secondary nozzle 13b.
  • the primary nozzle 13a forms a rough wave and supplies molten solder to every corner of the soldered surface of the substrate 10.
  • the secondary nozzle 13b forms a well-ordered wave so that an appropriate amount of solder adheres to the substrate 10.
  • the solder bath heater 14 melts the solder.
  • the jet motor 15 rotates the impeller and feeds the molten solder 12 to the jet nozzle 13. As a result, the molten solder 12 is jetted from the jet nozzle 13.
  • the control device 9 controls each component of the soldering system 1. For example, the control device 9 controls the temperature of the solder bath heater 14, the rotation speed of the jet motor 15, the angle of the jet nozzle 13, and the like.
  • the temperature measuring device 17 is arranged above the secondary nozzle 13b constituting the jet nozzle 13.
  • the temperature measuring device 17 measures the surface temperature of the substrate 10.
  • the temperature measuring device 17 includes an infrared camera.
  • the temperature measuring device 17 photographs the substrate 10 with an infrared camera.
  • the temperature measuring device 17 measures the temperature distribution on the surface of the substrate 10 based on the captured infrared image.
  • the temperature measuring device 17 outputs the measured information on the temperature distribution on the surface of the substrate 10 to the control device 9.
  • the infrared camera may be provided with a swing mechanism capable of changing the direction of the optical axis of the infrared camera.
  • the optical axis is not obstructed by the large component when the temperature of the surface of the substrate 10 cannot be measured due to the obstruction by the large component in the normal orientation of the optical axis.
  • the temperature of the surface of the substrate 10 can be measured by changing the direction of.
  • the temperature measuring device 17 can measure the temperature of the substrate 10 immediately after the substrate 10 is separated from the jetted molten solder. This stabilizes the quality of soldering to the substrate 10.
  • the control device 9 is connected to the soldering inspection device 16.
  • the soldering inspection device 16 inspects the quality of soldering of the substrate 10. Specifically, the soldering inspection device 16 has an image analysis function.
  • the soldering inspection device 16 analyzes the soldering state based on the captured image of the substrate 10 and the like. Specifically, the soldering inspection device 16 detects the presence / absence of an image corresponding to the "icicle-shaped" solder adhering to the terminal of the electronic component 201 and the presence / absence of an image corresponding to the solder bridge. Further, the soldering inspection device 16 determines the area to which the solder is attached, and evaluates the excess or deficiency of this area with respect to the predetermined area.
  • the soldering inspection device 16 evaluates the gloss of the solder and evaluates whether or not the gloss standard is satisfied.
  • the soldering inspection device 16 evaluates a plurality of items as described above.
  • the soldering inspection device 16 inspects the quality of soldering based on the evaluation of each item.
  • the control device 9 obtains a control parameter for making the temperature distribution on the surface of the substrate 10 within the allowable range.
  • the control device 9 controls each part of the soldering system 1 based on the obtained control parameters.
  • FIG. 2 is a diagram showing the configuration of the control device 9.
  • the control device 9 includes an identification and setting unit 21, a storage device 27, and a drive control unit 26.
  • the identification and setting unit 21 includes a first learning device 22, a second learning device 23, a first inference device 24, and a second inference device 25.
  • the storage device 27 includes a target temperature distribution storage unit 76, an allowable temperature difference distribution storage unit 73, a first learning data storage unit 71, a second learning data storage unit 74, and a first trained model storage unit. 72 and a second trained model storage unit 75 are provided.
  • the target temperature distribution storage unit 76 stores the target temperature distribution data on the surface of the substrate 10. It is desirable that the temperature distribution on the surface of the substrate 10 on which the molten solder is sprayed is uniform. The surface temperature distribution measured from above the substrate 10 is not uniform because the electronic component 201 is mounted on the substrate 10. Therefore, the target temperature distribution storage unit 76 stores in advance the target temperature distribution data on the surface of the substrate 10 in consideration of the mounted electronic component 201.
  • the target temperature distribution data on the surface of the substrate 10 has been obtained in advance by an experiment. Specifically, the target temperature distribution data on the surface of the substrate 10 is created by statistically processing a plurality of temperature distribution data that did not result in soldering defects.
  • the permissible temperature difference distribution storage unit 73 stores the permissible temperature difference distribution data.
  • the permissible temperature difference distribution data determines the permissible range of the temperature difference at each position of the temperature difference distribution data on the surface of the substrate.
  • FIG. 3 is a diagram showing the configuration of the first learning device 22.
  • the first learning device 22 includes a temperature distribution data creation unit 51, a temperature difference distribution data creation unit 52, a feature amount extraction unit 53, a first learning data creation unit 54, and a first trained model generation unit. It is equipped with 55.
  • the temperature distribution data creation unit 51 acquires information on the temperature distribution on the surface of the substrate 10 from the temperature measuring device 17.
  • the temperature distribution data creation unit 51 divides the surface of the substrate 10 into, for example, a two-dimensional matrix having a region of 1000 ⁇ 1000.
  • the temperature distribution data creation unit 51 sets the coordinates of 1 to 1000 in the vertical direction and 1 to 1000 in the horizontal direction with respect to the matrix. By this processing, it is possible to process the temperature of each position on the surface of the substrate 10 in association with the coordinates.
  • the temperature distribution data creation unit 51 specifies the temperature at each position of the matrix from the acquired temperature distribution information, and creates the temperature distribution data on the surface of the substrate 10.
  • the temperature difference distribution data creation unit 52 is the temperature of the surface of the substrate 10 representing the difference between the temperature distribution data on the surface of the substrate 10 and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. Create difference distribution data.
  • FIG. 4A is a diagram showing an example of temperature distribution data on the surface of the substrate 10.
  • FIG. 4B is a diagram showing an example of target temperature distribution data on the surface of the substrate 10.
  • FIG. 4C is a diagram showing an example of temperature difference distribution data on the surface of the substrate 10.
  • the range surrounded by the outer frame represents the range of the surface of the substrate 10.
  • the lines in the frame represent isotherms. For example, isotherms are shown every 5 ° C.
  • the feature amount extraction unit 53 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10.
  • the feature quantity is obtained, for example, the absolute value of the temperature, the density of the isotherm, the shape of the isotherm, the amount of change of the isotherm with respect to the temperature distribution on the surface of the substrate 10 measured last time, or the time before the set time.
  • This is data such as the amount of change in the isotherm with respect to the temperature distribution on the surface of the substrate 10.
  • the set time can be, for example, one hour.
  • the feature amount may be data obtained by performing principal component analysis or independent component analysis of these data.
  • the first learning data creation unit 54 receives the feature amount of the temperature difference distribution data on the surface of the substrate 10 output from the feature amount extraction unit 53, and the soldering quality of the substrate 10 output from the soldering inspection device 16 is good or bad. Receive the inspection result of.
  • the first learning data creation unit 54 is a first set including a feature amount of temperature difference distribution data on the surface of the substrate 10 and a label (correct answer) of whether or not the soldering of the substrate 10 is good or bad for a plurality of substrates 10.
  • the learning data is created and stored in the first learning data storage unit 71.
  • the first learning data storage unit 71 stores the first learning data.
  • the first trained model generation unit 55 uses the first training data stored in the first training data storage unit 71 to solder the substrate 10 from the feature amount of the temperature difference distribution data on the surface of the substrate 10. Generate a first trained model that estimates the quality of the soldering.
  • the first trained model generation unit 55 stores the generated first trained model in the first trained model storage unit 72.
  • the first trained model storage unit 72 stores the first trained model.
  • the first trained model generation unit 55 generates the first trained model by so-called supervised learning according to, for example, a support vector machine.
  • supervised learning by giving the first learning data consisting of a set of input and result (label) data to the first trained model generation unit 55, the features of the first learning data can be obtained. A method of learning and inferring results from input.
  • FIG. 5 is a diagram showing an identification image in the support vector machine. In FIG. 5, for convenience of explanation, it is represented in two dimensions.
  • the black circles represent the feature amounts of the temperature difference distribution data of the substrate 10 included in the first learning data, which is determined to be defective in soldering.
  • the triangular mark represents the feature amount of the temperature difference distribution data on the surface of the substrate 10 which is included in the first learning data and is judged to be good for soldering.
  • the feature amount of the temperature difference distribution data on the surface of the substrate 10 determined to be defective in soldering and the substrate 10 determined to be good in soldering are used.
  • the support vector machine identifies which of the two spaces divided by the identification surface belongs to the feature amount of the temperature difference distribution data on the surface of the substrate 10 to be identified.
  • the quality of soldering of the substrate 10 is determined.
  • the asterisk represents an example of the feature amount vector of the temperature difference distribution data of the substrate 10 to be identified. In this example, the substrate 10 to be identified is determined to be defective.
  • FIG. 6 is a diagram showing the configuration of the second learning device 23.
  • the second learning device 23 includes a data acquisition unit 61, a control parameter setting unit 62, a simulation unit 63, a second learning data creation unit 64, and a second trained model generation unit 65.
  • the data acquisition unit 61 acquires temperature difference distribution data on the surface of the substrate 10 when soldering is defective from the first learning device 22.
  • the control parameter setting unit 62 sets the control parameters. In the learning phase, the control parameter setting unit 62 corrects the control parameter in a plurality of steps from the standard value when the soldering of the substrate 10 becomes defective.
  • the control parameter setting unit 62 raises the temperature of the solder bath heater 14 by 5 ° C, 10 ° C, and 15 ° C higher than the standard value when the control parameter is the temperature of the solder tank heater 14.
  • the control parameter setting unit 62 makes the rotation speed of the jet motor 15 10%, 20%, and 30% faster than the standard value when the control parameter is the rotation speed of the jet motor 15.
  • the control parameter setting unit 62 increases the angle of the jet nozzle 13 by 10 °, 20 °, and 30 ° when the control parameter is the angle of the jet nozzle 13.
  • the simulation unit 63 obtains the temperature distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameters have been corrected by simulation, based on the modified control parameters output from the control parameter setting unit 62. ..
  • the simulation unit 63 includes the "temperature distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been corrected” obtained by the simulation and the "board 10" stored in the target temperature distribution storage unit 76.
  • the "temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been corrected” indicating the difference from the "target temperature distribution data on the surface of the substrate 10" is output.
  • the second learning data creation unit 64 includes the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value, the correction amount of the control parameter, and the time lapse set after the control parameter is corrected.
  • a second learning data including a plurality of sets of temperature difference distribution data (correct answer) on the surface of the substrate 10 is created and stored in the second learning data storage unit 74.
  • the second learning data storage unit 74 stores the second learning data.
  • the second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74, and the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value.
  • a second trained model is generated that estimates the temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameters have been modified.
  • the second trained model generation unit 65 stores the generated second trained model in the second trained model storage unit 75.
  • the second trained model storage unit 75 stores the second trained model.
  • known algorithms such as supervised learning, unsupervised learning, and reinforcement learning can be used.
  • supervised learning unsupervised learning
  • reinforcement learning can be used as an example, a case where a neural network is applied will be described.
  • the second trained model generation unit 65 executes so-called supervised learning according to, for example, a neural network model.
  • supervised learning by giving a set of data of input and result (label) to the second trained model generation unit 65, the features in those learning data are learned, and the result is obtained from the input. A method of inferring.
  • FIG. 7 is a diagram showing an example of the configuration of a neural network.
  • a neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer (hidden layer) composed of a plurality of neurons, and an output layer composed of a plurality of neurons.
  • the intermediate layer may be one layer or two or more layers.
  • the neural network outputs the temperature difference distribution data on the surface of the substrate 10 after the set time elapses after the control parameters are corrected by so-called supervised learning according to the first learning data. learn.
  • the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value and the correction amount of the control parameter are input to the input layer, and the result output from the output layer is the control parameter.
  • the learning is executed by adjusting the weights W1 and W2 so as to approach the temperature difference distribution data (correct answer) on the surface of the substrate 10 after the set time has elapsed after the correction.
  • FIG. 8 is a diagram showing the configuration of the first inference device 24.
  • the first inference device 24 includes a control parameter setting unit 36, a temperature distribution data creation unit 31, a temperature difference distribution data creation unit 32, a feature amount extraction unit 33, a first estimation unit 34, and a data output unit. 35 and.
  • the control parameter setting unit 62 sets the control parameter to a standard value. Similar to the temperature distribution data creating unit 51 in the first learning device 22, the temperature distribution data creating unit 31 acquires information on the temperature distribution on the surface of the substrate 10 from the temperature measuring device 17, and the temperature on the surface of the substrate 10 Create distribution data.
  • the temperature difference distribution data creating unit 32 like the temperature difference distribution data creating unit 52 in the first learning device 22, has the temperature distribution data on the surface of the substrate 10 and the substrate stored in the target temperature distribution storage unit 76.
  • the temperature difference distribution data on the surface of the substrate 10 representing the difference from the target temperature distribution data on the surface of 10 is created.
  • the feature amount extraction unit 33 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10 in the same manner as the feature amount extraction unit 53 in the first learning device 22.
  • the first estimation unit 34 reads out the first trained model that estimates the quality of soldering of the substrate 10 from the feature amount of the temperature difference distribution data on the surface of the substrate 10 from the first trained model storage unit 72.
  • the first estimation unit 34 inputs the feature amount of the temperature difference distribution data on the surface of the substrate 10 output from the feature amount extraction unit 33 into the first trained model, thereby determining whether the soldering of the substrate 10 is good or bad. Get the data to represent.
  • the data output unit 35 is the substrate 10 when the control parameter generated by the temperature difference distribution data creation unit 32 is a standard value when the soldering of the substrate 10 is estimated to be defective by the first estimation unit 34. Output the surface temperature difference distribution data.
  • FIG. 9 is a diagram showing the configuration of the second inference device 25.
  • the second inference device 25 includes a data acquisition unit 41, a second estimation unit 42, and a control parameter setting unit 43.
  • the control parameter setting unit 43 sets the control parameter to a standard value or a value corrected from the standard value by a correction amount.
  • the data acquisition unit 41 acquires the temperature difference distribution data on the surface of the substrate 10 when the control parameter output from the data output unit 35 of the first inference device 24 is a standard value.
  • the second estimation unit 42 corrects the control parameters from the second learned model storage unit 75 based on the temperature difference distribution data on the surface of the substrate 10 when the control parameters are standard values and the correction amount of the control parameters.
  • a second trained model for estimating the temperature difference distribution data on the surface of the substrate 10 after the lapse of a set time is read out.
  • the second estimation unit 42 is modified by the temperature difference distribution data on the surface of the substrate 10 when the control parameter output from the data acquisition unit 41 to the second trained model is a standard value, and the control parameter setting unit 43. By inputting the correction amount of the control parameter, the temperature difference distribution data on the surface of the substrate 10 after the set time elapses after the control parameter is corrected is obtained.
  • FIG. 10 is a flowchart showing a learning procedure by the first learning device 22 and the second learning device 23 in the first embodiment.
  • step S101 a drive switch (not shown) is set to ON. As a result, the substrate 10 is transported to the upper part of the solder tank 5 by the transport mechanism 2.
  • step S102 the control parameter setting unit 62 sets the control parameter to a standard value.
  • step S103 the temperature distribution data creation unit 51 creates temperature distribution data on the surface of the substrate 10.
  • step S104 the temperature difference distribution data creating unit 52 represents the difference between the temperature distribution data on the surface of the substrate 10 and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. Create temperature difference distribution data on the surface of.
  • step S105 the feature amount extraction unit 53 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10.
  • step S106 the soldering inspection device 16 inspects the quality of soldering of the substrate 10.
  • step S107 the first learning data creating unit 54 features the feature amount of the temperature difference distribution data on the surface of the substrate 10 obtained in step S105, and the label of the quality of soldering of the substrate 10 obtained in step S106.
  • the set with the correct answer) is added to the first learning data in the first learning storage unit 71.
  • step S108 When the end instruction is input in step S108, the process proceeds to step S109.
  • the process returns to step S103, and the process of steps S103 to S107 is repeated for the next board 10 to be conveyed.
  • step S109 a drive switch (not shown) is set to off. As a result, the transfer of the substrate 10 by the transfer mechanism 2 is stopped.
  • step S110 the first trained model generation unit 55 uses the first training data stored in the first training data storage unit 71 from the feature amount of the temperature difference distribution data on the surface of the substrate 10. A first trained model for estimating the quality of soldering of the substrate 10 is generated. The first trained model generation unit 55 stores the generated first trained model in the first trained model storage unit 72.
  • step S111 the data acquisition unit 61 of the second learning device 23 acquires one temperature difference distribution data on the surface of the substrate 10 when soldering is defective from the first learning device 22.
  • step S112 the control parameter setting unit 62 corrects the control parameters from the standard values by ⁇ P, 2 ⁇ ⁇ P, 3 ⁇ ⁇ P, ... And n ⁇ ⁇ P.
  • the simulation unit 63 has the temperature of the surface of the substrate 10 after the time set after the control parameters have been corrected by the simulation based on the modified control parameters output from the control parameter setting unit 62.
  • the simulation unit 63 includes the temperature distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been modified, and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76.
  • the temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameter representing the difference between the two has been corrected is output.
  • the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are modified is output.
  • step S114 the second learning data creation unit 64 determines the temperature difference distribution data on the surface of the substrate 10 when the control parameter acquired in step S111 is a standard value, the correction amount of the control parameter in step S112, and step S113.
  • the set with the temperature difference distribution data (correct answer) on the surface of the substrate 10 after the lapse of time set after the control parameters obtained in the above are corrected is used as the second learning data in the second learning data storage unit 74. to add.
  • the above set is added to the second training data for the modified n control parameters.
  • step S115 When the end instruction is input in step S115, the process proceeds to step S116.
  • the process returns to step S111, and the process of steps S111 to S114 is repeated for another substrate 10 whose soldering is defective.
  • step S116 the second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74 to display the surface of the substrate 10 when the control parameter is a standard value. From the temperature difference distribution data and the correction amount of the control parameter, a second trained model for estimating the temperature difference distribution data on the surface of the substrate 10 after the set time elapses after the control parameter is corrected is generated. The second trained model generation unit 65 stores the generated second trained model in the second trained model storage unit 75.
  • FIG. 11 is a flowchart showing the inference procedure by the first inference device 24 and the second inference device 25 in the first embodiment.
  • step S201 a drive switch (not shown) is set to ON. As a result, the substrate 10 is transported to the upper part of the solder tank 5 by the transport mechanism 2.
  • step S202 the control parameter setting unit 36 sets the control parameter to a standard value.
  • step S203 the temperature distribution data creation unit 31 creates temperature distribution data on the surface of the substrate 10.
  • step S204 the temperature difference distribution data creating unit 32 represents the difference between the temperature distribution data on the surface of the substrate 10 and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. Create temperature difference distribution data on the surface of.
  • step S205 the feature amount extraction unit 33 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10.
  • step S206 the first estimation unit 34 estimates the quality of soldering of the substrate 10 from the feature amount of the temperature difference distribution data on the surface of the substrate 10 from the first learned model storage unit 72. Read the model.
  • step S207 the first estimation unit 34 solders the substrate 10 by inputting the feature amount of the temperature difference distribution data on the surface of the substrate 10 output from the feature amount extraction unit 33 into the first trained model. Obtain data indicating the quality of the soldering.
  • step S208 If the soldering of the substrate 10 is defective in step S208, the process proceeds to step S209. If the soldering of the substrate 10 is good, the process ends.
  • step S209 the data acquisition unit 41 acquires the temperature difference distribution data on the surface of the substrate 10 when the control parameter created by the temperature difference distribution data creation unit 32 in step S204 is a standard value.
  • step S210 the second estimation unit 42 obtains from the second learned model storage unit 75, the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value, and the correction amount of the control parameter.
  • a second trained model that estimates the temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameters have been modified is read out.
  • step S212 the second estimation unit 42 sets the correction amount of the control parameter to K ⁇ ⁇ P.
  • step S213 the second estimation unit 42 corrects the temperature difference distribution data on the surface of the substrate 10 and the control parameters when the control parameters output from the data acquisition unit 41 to the second trained model are standard values. By inputting the quantity, the temperature difference distribution data of the substrate after the set time elapses after the control parameters are modified is obtained.
  • step S214 in the second estimation unit 42, the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are corrected is the allowable temperature difference distribution data storage unit.
  • the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameter is corrected is the temperature difference at each position of the allowable temperature difference distribution data.
  • it exceeds it is determined that the temperature difference distribution data on the surface of the substrate 10 is out of the allowable range.
  • the process proceeds to step S216, and when it is out of the permissible range, the process proceeds to step S215.
  • step S215 the second estimation unit 42 increments K by 1. After that, the process returns to step S211.
  • step S216 the control parameter setting unit 43 corrects the control parameter by the amount of correction.
  • the corrected control parameter is output to the drive control unit 26.
  • the drive control unit 26 drives the soldering system 1 based on the modified control parameters. This causes, for example, dissolution of the accumulated dross or movement of the accumulated dross position. Then, it is uniformly ejected from the jet nozzle 13, and the temperature distribution on the surface of the substrate 10 falls within the allowable temperature distribution.
  • FIG. 12 is a flowchart showing the learning procedure by the first learning device 22 and the second learning device 23 in the second embodiment. Since steps S101 to S111 in the flowchart of FIG. 12 are the same as steps S101 to S111 in the flowchart of FIG. 10, the description will not be repeated.
  • step S313 the control parameter setting unit 62 corrects the control parameter from the standard value by K ⁇ ⁇ P.
  • step S314 the simulation unit 63 determines the temperature of the surface of the substrate 10 after the time set after the control parameters have been corrected by simulation based on the modified control parameters output from the control parameter setting unit 62. Obtain distribution data.
  • the simulation unit 63 includes the temperature distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been modified, and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76.
  • the temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameter representing the difference between the two has been corrected is output.
  • step S315 in the second learning data creation unit 64, the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are corrected is the allowable temperature difference distribution data.
  • the temperature difference is equal to or less than the temperature difference at each position of the allowable temperature difference distribution data in the storage unit 73, it is determined that the temperature difference distribution data on the surface of the substrate 10 is within the allowable range.
  • the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are corrected is the temperature difference at each position of the allowable temperature difference distribution data.
  • step S317 When the temperature difference is exceeded, it is determined that the temperature difference distribution data on the surface of the substrate 10 is out of the allowable range.
  • the process proceeds to step S317, and when it is out of the permissible range, the process proceeds to step S316.
  • step S316 the control parameter setting unit 62 increments K by 1. After that, the process returns to step S313.
  • step S317 the second learning data creation unit 64 determines the temperature difference distribution data on the surface of the substrate 10 when the control parameter acquired in step S111 is a standard value, and the correction amount of the control parameter set in step S313. The set with the correct answer) is added to the second learning data in the second learning data storage unit 74.
  • step S318 When the end instruction is input in step S318, the process proceeds to step S319.
  • the process returns to step S111, and the processes of steps S111 and S312 to S317 are repeated for another substrate 10 whose soldering is defective.
  • step S319 the second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74 to display the surface of the substrate 10 when the control parameter is a standard value. From the temperature difference distribution data, a second trained model for estimating the correction amount of the control parameter is generated. The second trained model generation unit 65 stores the generated second trained model in the second trained model storage unit 75.
  • FIG. 13 is a flowchart showing the inference procedure by the first inference device 24 and the second inference device 25 in the second embodiment. Since steps S201 to S209 in the flowchart of FIG. 13 are the same as steps S101 to S209 in the flowchart of FIG. 11, the description will not be repeated.
  • step S410 the second estimation unit 42 estimates the correction amount of the control parameter from the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value from the second learned model storage unit 75. Read out the trained model of 2.
  • step S411 the second estimation unit 42 inputs the temperature difference distribution data on the surface of the substrate 10 when the control parameter output from the data acquisition unit 41 is a standard value into the second trained model. Obtain the correction amount of the control parameter.
  • step S412 the control parameter setting unit 43 corrects the control parameter by the amount of correction.
  • FIG. 14 is a flowchart showing the procedure of inference and re-learning by the first inference device 24 and the second inference device 25 in the third embodiment. Since steps S201 to S209 and S410 to S412 in the flowchart of FIG. 14 are the same as steps S201 to S209 and S410 to S412 in the flowchart of FIG. 13, the description will not be repeated.
  • Step S501 and step S502 are executed after step S207 and before step S208.
  • step S501 the first learning data creation unit 54 features the feature amount of the temperature difference distribution data on the surface of the substrate 10 obtained in step S205 and the label (correct answer) of the soldering quality of the substrate obtained in step S207. ) Is added to the first learning data in the first learning data storage unit 71.
  • step S502 the first trained model generation unit 55 uses the first training data stored in the first training data storage unit 71 from the feature amount of the temperature difference distribution data on the surface of the substrate 10.
  • the first trained model for estimating the quality of soldering of the substrate 10 is updated.
  • the first trained model generation unit 55 stores the updated first trained model in the first trained model storage unit 72.
  • step S501 and step S502 as the operation of the soldering system 1 is continued, the accumulated amount of the first learning data increases, and as the accumulated amount of the first learning data increases, the first learned data is completed.
  • the estimation accuracy of the model is high.
  • step S503 the second learning data creation unit 64 determines the temperature difference distribution data on the surface of the substrate 10 when the control parameter acquired in step S204 is a standard value, and the correction amount of the control parameter obtained in step S411. The set with the correct answer) is added to the second learning data in the second learning data storage unit 74.
  • step S504 the second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74 to display the surface of the substrate 10 when the control parameter is a standard value. From the temperature difference distribution data, the second trained model that estimates the correction amount of the control parameter is updated. The second trained model generation unit 65 stores the updated second trained model in the second trained model storage unit 75.
  • step S503 and step S504 the accumulated amount of the second learning data increases as the operation of the soldering system 1 is continued, and the second learned data is accumulated as the accumulated amount of the second learning data increases.
  • the estimation accuracy of the model is high.
  • the temperature measuring device 17 includes an infrared camera 7.
  • FIG. 15 is a diagram showing the arrangement of the infrared camera 7 in the fourth embodiment. As shown in FIG. 15, the transfer mechanism 2 conveys the substrate 10 in a direction different from the horizontal direction by a certain angle (5 ⁇ 1 °).
  • the infrared camera 7 is arranged so that the direction of the optical axis K of the infrared camera 7 is perpendicular to the surface of the substrate 10 to be conveyed. That is, the direction of the optical axis of the infrared camera 7 is a direction different from the horizontal direction by 90 ° ⁇ (5 ⁇ 1) °.
  • the infrared camera 7 is located between the position PA at 220 [mm] in the horizontal direction upstream from the rear end PN of the secondary nozzle 13b and the position PB at 300 [mm] in the horizontal direction downstream. Is installed.
  • the reason why the installation range of the infrared camera 7 is widened in this way is that the infrared camera 7 may not be installed at the position of the rear end PN of the secondary nozzle 13b due to the difference in the structure of the soldering system 1. Is.
  • the infrared camera 7 By installing the infrared camera 7 as described above, it is possible to exclude the distortion of the thermal image taken by the infrared camera 7 and perform accurate measurement. Further, by installing the infrared camera 7, it is possible to reduce the area behind the parts mounted on the substrate 10, so that it becomes easy to secure the area required for temperature measurement.
  • FIG. 16 is a diagram showing a time change of the surface temperature of the substrate 10.
  • the solid line represents the temperature change on the surface of the substrate 10 when the contact time between the substrate 10 and the molten solder is long. At time t1, the substrate 10 is separated from the molten solder.
  • the substrate 10 is separated from the jet melting.
  • the temperature difference on the surface of the substrate 10 is larger due to the difference in the contact time between the substrate 10 and the molten solder.
  • FIG. 17A is a diagram showing a state when the substrate 10 comes into contact with the molten solder.
  • FIG. 17B is a diagram showing a state immediately after the substrate 10 is separated from the molten solder.
  • the temperature measuring device 17 measures the temperature of the upper surface of the substrate 10 after the substrate 10 is separated from the molten solder jetted from the jet nozzle 13.
  • FIG. 18 is a schematic view showing the soldering system 1b of the sixth embodiment.
  • a hole 151 is formed in the exterior 91 of the soldering system 1.
  • the infrared camera 7 included in the temperature measuring device 17 is arranged outside the exterior 91 of the soldering system 1b, and the lens of the infrared camera 7 is arranged in the portion of the hole 151. As a result, it is possible to prevent the solvent of the volatilized flux from adhering to the infrared camera 7, so that accurate temperature measurement can be performed.
  • the infrared camera 7 Since the infrared camera 7 is located outside the soldering system 1b, the influence of the temperature change of the infrared camera 7 at the time of maintenance or the like can be reduced. In a general infrared camera, if the temperature of the camera body changes, the measured temperature also changes, but by adopting this configuration, more accurate measurement can be performed.
  • FIG. 19 is a diagram showing the configuration of the soldering system 1a according to the seventh embodiment.
  • the soldering system 1a of the seventh embodiment includes a protective window 98.
  • the protective window 98 is provided to protect the lens of the infrared camera 7. By doing so, it is possible to prevent the flux from adhering to the infrared camera 7 even during long-term operation, so that the infrared rays are not blocked and accurate temperature measurement becomes possible.
  • FIG. 20 is a diagram showing a hardware configuration of the control device 9.
  • the control device 9 can configure the corresponding operation with the hardware or software of the digital circuit.
  • the control device 9 includes, for example, as shown in FIG. 20, a processor 1002 and a memory 1003 connected by a bus 1001.
  • the memory 1003 includes a ROM (Read Only Memory) and a RAM (Random Access Memory).
  • the program executed by the processor 1002 and the data necessary for executing the program are stored in the ROM.
  • the data created during program execution is stored in RAM.
  • the temperature distribution data creation unit divided the surface of the substrate 10 into a 1000 ⁇ 1000 two-dimensional matrix.
  • the division of the surface of the substrate 10 is not limited to this.
  • the temperature distribution data creating unit may divide the surface of the substrate 10 according to the size of the substrate 10, the analysis accuracy of the temperature distribution, the control accuracy of the soldering system 1, and the like.
  • the temperature distribution data creation unit may divide the surface of the substrate 10 into 50 ⁇ 50, 100 ⁇ 800, 7000 ⁇ 3000, and the like.
  • soldering inspection The quality of soldering may be evaluated by an operator.
  • the method for determining the simulation result is not limited to that described in the above embodiment.
  • the temperature distribution obtained by the simulation may be input to the support vector machine to identify whether the group belongs to the defective soldering group or the normal soldering group.
  • the re-learning of the first trained model may be stopped.
  • the retraining of the second trained model may be stopped.
  • the input of the first trained model is a feature amount of the temperature difference distribution data, but the input is not limited thereto.
  • the input of the first trained model may be data representing the temperature distribution of the substrate.
  • the input of the first trained model may be the temperature distribution data created by the temperature distribution data creation unit or the temperature difference distribution data created by the temperature difference distribution data creation unit.
  • the input of the second trained model is the temperature difference distribution data, but the input is not limited to this.
  • the input of the second trained model may be data representing the temperature distribution of the substrate.
  • the input of the second trained model may be the temperature distribution data created by the temperature distribution data creation unit.
  • Temperature measuring device As the measuring method of the temperature measuring device, a laser method, an ultrasonic method, or an electromagnetic wave method can be used.
  • the temperature measuring device may include a radiation thermometer instead of an infrared camera.
  • the first trained model generation unit and the second trained model generation unit are the first trained model using the first training data and the second training data created in the plurality of soldering systems.
  • a second trained model may be generated.
  • the first trained model generation unit and the second trained model generation unit may acquire the first training data and the second training data from a plurality of soldering systems used in the same area.
  • the first training data and the second training data collected from a plurality of soldering systems operating independently in different areas may be used.
  • soldering system that collects the first trained model and the second trained model
  • the first trained model and the second trained model generated for one soldering system are applied to another soldering system, and the first trained model and the second trained model are obtained by retraining. You may try to update.
  • Deep learning that learns the extraction of the feature amount itself can also be used, and other known ones are known.
  • Machine learning may be performed according to methods such as genetic programming, functional logic programming, or support vector machines.
  • the first learning device, the first inference device, the second learning device, and the second inference device may be built in the soldering system. Further, the first learning device, the first inference device, the second learning device, and the second inference device may exist on the cloud server.
  • the first inference device and the second inference device acquire the first trained model and the second trained model from the outside such as other soldering systems, and execute inference based on these. May be good.
  • 1,1a, 1b soldering system 2 transfer mechanism, 3 flux coating machine, 4 preheater, 5 solder tank, 7 infrared camera, 9 control device, 10 board, 11 flux, 13 jet nozzle, 13a primary nozzle, 13b 2 Next nozzle, 14 solder bath heater, 15 jet motor, 16 soldering inspection device, 17 temperature measuring device, 18 fluxer control unit, 21 identification and setting unit, 22 first learning device, 23 second learning device, 24th 1 inference device, 25 2nd inference device, 26 drive control unit, 27 storage device, 31,51 temperature distribution data creation unit, 32,52 temperature difference distribution data creation unit, 33,53 feature quantity extraction unit, 34th 1 estimation unit, 35 data output unit, 36, 43, 62 control parameter setting unit, 41, 61 data acquisition unit, 42 second estimation unit, 54 first training data creation unit, 55 first trained model Generation unit, 63 simulation unit, 64 second training data creation unit, 65 second trained model generation unit, 71 first training data storage unit, 72 first trained model storage unit, 73 allowable temperature difference distribution.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Artificial Intelligence (AREA)
  • General Health & Medical Sciences (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Molten Solder (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

A soldering system (1) is provided with: a flux coating machine (3) for applying flux to a substrate (10); a preheater (4) for preheating the substrate (10); a solder bath (5) for storing molten solder; a solder bath heater (14) for melting the solder inside the solder bath (5); a jet flow nozzle (13) for spraying the molten solder in the solder bath (5) toward the substrate (10); a transport mechanism (2) for sequentially transporting the substrate (10) above the flux coating machine (3), the preheater (4), and the solder bath (5); and a temperature measurement device (17) arranged above the jet flow nozzle (13).

Description

はんだ付けシステムSoldering system
 本開示は、はんだ付けシステムに関する。 This disclosure relates to a soldering system.
 はんだ付けの良否を自動チェックする手段を備えたはんだ付けシステムが知られている。たとえば、特許文献1のシステムは、はんだ付け直後の基板の温度分布を非接触温度センサによって検知するとともに画像処理し、この処理信号をコンピュータに予め記録させた最適温度データと比較演算することにより、はんだ付け温度の異常の有無を検出する。このシステムは、検出結果に基づいて、基板の搬送速度、プリヒータの温度、および溶融はんだの温度を制御する。 A soldering system equipped with a means for automatically checking the quality of soldering is known. For example, in the system of Patent Document 1, the temperature distribution of the substrate immediately after soldering is detected by a non-contact temperature sensor and image processing is performed, and this processing signal is compared and calculated with the optimum temperature data recorded in advance by a computer. Detects the presence or absence of abnormal soldering temperature. The system controls the transfer speed of the substrate, the temperature of the preheater, and the temperature of the molten solder based on the detection results.
特開平7-142852号公報Japanese Unexamined Patent Publication No. 7-142852
 特許文献1では、基板と噴流された溶融はんだとの接触状態の変化を逐次把握することができない。その結果、基板のはんだ付けの品質が安定しない。 In Patent Document 1, it is not possible to sequentially grasp the change in the contact state between the substrate and the jetted molten solder. As a result, the soldering quality of the board is not stable.
 それゆえに、本開示の目的は、安定した品質で基板のはんだ付けが可能なはんだ付けシステムを提供することである。 Therefore, an object of the present disclosure is to provide a soldering system capable of soldering a substrate with stable quality.
 本開示のはんだ付けシステムは、基板にフラックスを塗布するフラックス塗布機と、基板を予熱するプリヒータと、溶融はんだを貯留するはんだ槽と、はんだ槽内のはんだを溶融させるはんだ槽ヒータと、基板に向けてはんだ槽内の溶融はんだを噴流する噴流ノズルと、フラックス塗布機の上方、プリヒータの上方、およびはんだ槽の上方に順次基板を搬送する搬送機構と、噴流ノズルの上方に配置された温度測定装置とを備える。 The soldering system of the present disclosure includes a flux coating machine that applies flux to a substrate, a preheater that preheats the substrate, a solder bath that stores molten solder, a solder tank heater that melts the solder in the solder tank, and a substrate. A jet nozzle that ejects molten solder in the solder bath toward the solder tank, a transport mechanism that sequentially transports the substrate above the flux coating machine, above the preheater, and above the solder tank, and temperature measurement located above the jet nozzle. Equipped with a device.
 本開示のはんだ付けシステムによれば、噴流ノズルの上方に配置された温度測定装置を備えるので、安定した品質で基板のはんだ付けをすることができる。 According to the soldering system of the present disclosure, since the temperature measuring device arranged above the jet nozzle is provided, the substrate can be soldered with stable quality.
実施の形態1のはんだ付けシステム1を示す概略図である。It is a schematic diagram which shows the soldering system 1 of Embodiment 1. FIG. 制御装置9の構成を表わす図である。It is a figure which shows the structure of the control device 9. 第1の学習装置22の構成を表わす図である。It is a figure which shows the structure of the 1st learning apparatus 22. (a)は、基板10の表面の温度分布データの例を表わす図である。(b)は、基板10の表面の目標温度分布データの例を示す図である。(c)は、基板10の表面の温度差分布データの例を表わす図である。(A) is a diagram showing an example of temperature distribution data on the surface of the substrate 10. (B) is a diagram showing an example of target temperature distribution data on the surface of the substrate 10. (C) is a diagram showing an example of temperature difference distribution data on the surface of the substrate 10. サポートベクトルマシンにおける識別イメージを表わす図である。It is a figure which shows the identification image in a support vector machine. 第2の学習装置23の構成を表わす図である。It is a figure which shows the structure of the 2nd learning apparatus 23. ニューラルネットワークの構成の一例を表わす図である。It is a figure which shows an example of the structure of a neural network. 第1の推論装置24の構成を表わす図である。It is a figure which shows the structure of the 1st inference device 24. 第2の推論装置25の構成を表わす図である。It is a figure which shows the structure of the 2nd inference device 25. 実施の形態1における第1の学習装置22および第2の学習装置23による学習手順を表わすフローチャートである。It is a flowchart which shows the learning procedure by the 1st learning apparatus 22 and the 2nd learning apparatus 23 in Embodiment 1. FIG. 実施の形態1における第1の推論装置24および第2の推論装置25による推論手順を表わすフローチャートである。It is a flowchart which shows the inference procedure by the 1st inference apparatus 24 and the 2nd inference apparatus 25 in Embodiment 1. FIG. 実施の形態2における第1の学習装置22および第2の学習装置23による学習手順を表わすフローチャートである。It is a flowchart which shows the learning procedure by the 1st learning apparatus 22 and the 2nd learning apparatus 23 in Embodiment 2. 実施の形態2における第1の推論装置24および第2の推論装置25による推論手順を表わすフローチャートである。It is a flowchart which shows the inference procedure by the 1st inference apparatus 24 and the 2nd inference apparatus 25 in Embodiment 2. 実施の形態3における第1の推論装置24および第2の推論装置25による推論および再学習の手順を表わすフローチャートである。It is a flowchart showing the procedure of inference and relearning by the first inference device 24 and the second inference device 25 in Embodiment 3. 実施の形態4における赤外線カメラ7の配置を表わす図である。It is a figure which shows the arrangement of the infrared camera 7 in Embodiment 4. 基板10の表面温度の時間変化を表わす図である。It is a figure which shows the time change of the surface temperature of the substrate 10. (a)は、基板10が溶融はんだに接触したときの状態を表わす図である。(b)は、基板10が溶融はんだから離脱した直後の状態を表わす図である。(A) is a figure showing a state when a substrate 10 comes into contact with molten solder. (B) is a diagram showing a state immediately after the substrate 10 is separated from the molten solder. 実施の形態6のはんだ付けシステム1bを示す概略図である。It is a schematic diagram which shows the soldering system 1b of Embodiment 6. 実施の形態7のはんだ付けシステム1aの構成を表わす図である。It is a figure which shows the structure of the soldering system 1a of Embodiment 7. 制御装置9のハードウェア構成を表わす図である。It is a figure which shows the hardware composition of the control device 9.
 実施の形態について、図面を参照して説明する。
 実施の形態1.
 図1は、実施の形態1のはんだ付けシステム1を示す概略図である。
The embodiments will be described with reference to the drawings.
Embodiment 1.
FIG. 1 is a schematic view showing the soldering system 1 of the first embodiment.
 はんだ付けシステム1は、搬送機構2、フラックス塗布機3、プリヒータ4、はんだ槽5、フラクサー制御部18、噴流モータ15、はんだ槽ヒータ14、温度測定装置17、制御装置9、およびはんだ付け検査装置16を備える。 The soldering system 1 includes a transfer mechanism 2, a flux coating machine 3, a preheater 4, a solder tank 5, a fluxer control unit 18, a jet motor 15, a solder tank heater 14, a temperature measuring device 17, a control device 9, and a soldering inspection device. 16 is provided.
 フラックス塗布機3は、はんだ付けされる対象の電子部品201が搭載された基板10の下面(はんだ付け面)に対して、フラックス11を塗布する。フラックス11を塗布する工法としては、スプレー式、発泡式、および浸漬式がある。 The flux coating machine 3 applies the flux 11 to the lower surface (soldered surface) of the substrate 10 on which the electronic component 201 to be soldered is mounted. As a method of applying the flux 11, there are a spray type, a foaming type, and a dipping type.
 フラクサー制御部18は、フラックス11の塗布量を制御する。フラックス11の塗布量は、フラックス液の流量、圧縮空気の圧力、および2つのノズルの移動速度によって決定される。フラックス11の塗布量は、フラックス塗布機3内のノズルの詰まり具合、フラックス塗布機3の動作のばらつき、およびフラックス塗布機3内の排気ファンの排気量のばらつきなどによって、変動する。フラックス11の塗布量が多くなると、プリヒータ4での予熱工程において、溶剤の蒸発に要する時間が長くなるので、基板10の温度が十分に上がらない。フラックス11の塗布量が少なくなると、プリヒータ4での予熱工程において、溶剤がすぐに揮発するので、基板10の温度が高くなり過ぎる。 The fluxer control unit 18 controls the coating amount of the flux 11. The amount of the flux 11 applied is determined by the flow rate of the flux liquid, the pressure of the compressed air, and the moving speed of the two nozzles. The coating amount of the flux 11 varies depending on the degree of clogging of the nozzle in the flux coating machine 3, the variation in the operation of the flux coating machine 3, the variation in the displacement of the exhaust fan in the flux coating machine 3, and the like. If the amount of the flux 11 applied is large, the time required for the solvent to evaporate in the preheating step of the preheater 4 becomes long, so that the temperature of the substrate 10 does not rise sufficiently. When the amount of the flux 11 applied is small, the solvent is immediately volatilized in the preheating step of the preheater 4, so that the temperature of the substrate 10 becomes too high.
 プリヒータ4は、基板10を予熱する。予熱の目的は、フラックス11の溶剤を揮発させること、およびはんだ付け前に基板10を加熱することである。これにより、フラックス11の酸化膜除去効果を発揮することができるので、はんだ付けが成功する比率が向上する。プリヒータ4の加熱方式には、赤外線、遠赤外線、および熱風がある。基板10の下面(はんだ付け面)のみを加熱する場合もあれば、基板10の上面(非はんだ付け面、部品面)も加熱する場合もある。 The preheater 4 preheats the substrate 10. The purpose of preheating is to volatilize the solvent of the flux 11 and to heat the substrate 10 before soldering. As a result, the effect of removing the oxide film of the flux 11 can be exhibited, so that the ratio of successful soldering is improved. The heating method of the preheater 4 includes infrared rays, far infrared rays, and hot air. In some cases, only the lower surface (soldered surface) of the substrate 10 is heated, and in other cases, the upper surface (non-soldered surface, component surface) of the substrate 10 is also heated.
 はんだ槽5は、溶融はんだを貯留する。
 噴流ノズル13は、はんだ槽5内の貯留させた溶融はんだ12を噴流する。これによって、基板10の下面が溶融はんだ12に接触して、はんだ付けが行われる。噴流ノズル13は、1次ノズル13aと2次ノズル13bとを備える。1次ノズル13aは、荒れた波を形成し、基板10のはんだ付け面の隅々まで溶融はんだを供給する。2次ノズル13bは、整った波を形成し、適切な量のはんだが基板10に付着するようにする。
The solder bath 5 stores molten solder.
The jet nozzle 13 jets the molten solder 12 stored in the solder bath 5. As a result, the lower surface of the substrate 10 comes into contact with the molten solder 12, and soldering is performed. The jet nozzle 13 includes a primary nozzle 13a and a secondary nozzle 13b. The primary nozzle 13a forms a rough wave and supplies molten solder to every corner of the soldered surface of the substrate 10. The secondary nozzle 13b forms a well-ordered wave so that an appropriate amount of solder adheres to the substrate 10.
 はんだ槽ヒータ14は、はんだを溶融させる。
 噴流モータ15は、インペラを回転させ、噴流ノズル13に溶融はんだ12を送り込む。これによって、溶融はんだ12が噴流ノズル13から噴流する。
The solder bath heater 14 melts the solder.
The jet motor 15 rotates the impeller and feeds the molten solder 12 to the jet nozzle 13. As a result, the molten solder 12 is jetted from the jet nozzle 13.
 制御装置9は、はんだ付けシステム1の各構成要素を制御する。たとえば、制御装置9は、はんだ槽ヒータ14の温度、噴流モータ15の回転速度、および噴流ノズル13の角度などを制御する。 The control device 9 controls each component of the soldering system 1. For example, the control device 9 controls the temperature of the solder bath heater 14, the rotation speed of the jet motor 15, the angle of the jet nozzle 13, and the like.
 温度測定装置17は、噴流ノズル13を構成する2次ノズル13bの上方に配置される。温度測定装置17は、基板10の表面温度を測定する。温度測定装置17は、赤外線カメラを備える。温度測定装置17は、赤外線カメラによって基板10を撮影する。温度測定装置17は、撮像された赤外線画像に基づいて、基板10の表面の温度分布を測定する。温度測定装置17は、測定された基板10の表面の温度分布の情報を制御装置9に出力する。赤外線カメラは、赤外線カメラの光軸の向きを変更することが可能な首振り機構を備えることとしてもよい。基板10に大型部品が搭載されている場合に、通常の光軸の向きでは、大型部品に遮られて基板10の表面の温度を測定できないときに、大型部品に遮れないように、光軸の向きを変えることによって、基板10の表面の温度を測定することができる。 The temperature measuring device 17 is arranged above the secondary nozzle 13b constituting the jet nozzle 13. The temperature measuring device 17 measures the surface temperature of the substrate 10. The temperature measuring device 17 includes an infrared camera. The temperature measuring device 17 photographs the substrate 10 with an infrared camera. The temperature measuring device 17 measures the temperature distribution on the surface of the substrate 10 based on the captured infrared image. The temperature measuring device 17 outputs the measured information on the temperature distribution on the surface of the substrate 10 to the control device 9. The infrared camera may be provided with a swing mechanism capable of changing the direction of the optical axis of the infrared camera. When a large component is mounted on the substrate 10, the optical axis is not obstructed by the large component when the temperature of the surface of the substrate 10 cannot be measured due to the obstruction by the large component in the normal orientation of the optical axis. The temperature of the surface of the substrate 10 can be measured by changing the direction of.
 温度測定装置17が、2次ノズル13bの上方に配置されているので、温度測定装置17が、基板10が、噴流された溶融はんだから離脱する直後の基板10の温度を測定することができる。これによって、基板10へのはんだ付けの品質が安定する。 Since the temperature measuring device 17 is arranged above the secondary nozzle 13b, the temperature measuring device 17 can measure the temperature of the substrate 10 immediately after the substrate 10 is separated from the jetted molten solder. This stabilizes the quality of soldering to the substrate 10.
 制御装置9は、はんだ付け検査装置16と接続される。
 はんだ付け検査装置16は、基板10のはんだ付けの良否を検査する。具体的には、はんだ付け検査装置16は、画像解析機能を備える。はんだ付け検査装置16は、基板10の撮像画像などに基づいて、はんだ付けの状態を解析する。詳細には、はんだ付け検査装置16は、電子部品201の端子に付着した「つらら状」のはんだに該当する画像の有無、およびはんだブリッジに該当する画像の有無を検出する。また、はんだ付け検査装置16は、はんだが付着している面積を求め、この面積の予め定められた面積に対する過不足を評価する。さらに、はんだ付け検査装置16は、はんだの光沢を評価し、光沢基準を満たすか否かを評価する。はんだ付け検査装置16は、以上のような複数の項目について評価する。はんだ付け検査装置16は、各項目の評価に基づいて、はんだ付けの良否を検査する。
The control device 9 is connected to the soldering inspection device 16.
The soldering inspection device 16 inspects the quality of soldering of the substrate 10. Specifically, the soldering inspection device 16 has an image analysis function. The soldering inspection device 16 analyzes the soldering state based on the captured image of the substrate 10 and the like. Specifically, the soldering inspection device 16 detects the presence / absence of an image corresponding to the "icicle-shaped" solder adhering to the terminal of the electronic component 201 and the presence / absence of an image corresponding to the solder bridge. Further, the soldering inspection device 16 determines the area to which the solder is attached, and evaluates the excess or deficiency of this area with respect to the predetermined area. Further, the soldering inspection device 16 evaluates the gloss of the solder and evaluates whether or not the gloss standard is satisfied. The soldering inspection device 16 evaluates a plurality of items as described above. The soldering inspection device 16 inspects the quality of soldering based on the evaluation of each item.
 制御装置9は、基板10の表面の温度分布を許容範囲内の温度分布にするための制御パラメータを求める。制御装置9は、求められた制御パラメータに基づいて、はんだ付けシステム1の各部を制御する。 The control device 9 obtains a control parameter for making the temperature distribution on the surface of the substrate 10 within the allowable range. The control device 9 controls each part of the soldering system 1 based on the obtained control parameters.
 図2は、制御装置9の構成を表わす図である。制御装置9は、識別および設定部21と、記憶装置27と、駆動制御部26とを備える。 FIG. 2 is a diagram showing the configuration of the control device 9. The control device 9 includes an identification and setting unit 21, a storage device 27, and a drive control unit 26.
 識別および設定部21は、第1の学習装置22と、第2の学習装置23と、第1の推論装置24と、第2の推論装置25とを備える。 The identification and setting unit 21 includes a first learning device 22, a second learning device 23, a first inference device 24, and a second inference device 25.
 記憶装置27は、目標温度分布記憶部76と、許容温度差分布記憶部73と、第1の学習データ記憶部71と、第2の学習データ記憶部74と、第1の学習済みモデル記憶部72と、第2の学習済みモデル記憶部75とを備える。 The storage device 27 includes a target temperature distribution storage unit 76, an allowable temperature difference distribution storage unit 73, a first learning data storage unit 71, a second learning data storage unit 74, and a first trained model storage unit. 72 and a second trained model storage unit 75 are provided.
 目標温度分布記憶部76は、基板10の表面の目標温度分布データを記憶する。溶融はんだが吹き付けられている基板10の表面の温度分布は、均一であることが望ましい。基板10の上方から測定される表面の温度分布は、電子部品201が基板10に実装されているために、均一にならない。そこで、目標温度分布記憶部76は、実装された電子部品201を考慮した基板10の表面の目標温度分布データを予め記憶する。基板10の表面の目標温度分布データは、実験によって予め求められている。具体的には、はんだ付け不良とならなかった複数の温度分布データを統計処理することにより、基板10の表面の目標温度分布データが作成される。 The target temperature distribution storage unit 76 stores the target temperature distribution data on the surface of the substrate 10. It is desirable that the temperature distribution on the surface of the substrate 10 on which the molten solder is sprayed is uniform. The surface temperature distribution measured from above the substrate 10 is not uniform because the electronic component 201 is mounted on the substrate 10. Therefore, the target temperature distribution storage unit 76 stores in advance the target temperature distribution data on the surface of the substrate 10 in consideration of the mounted electronic component 201. The target temperature distribution data on the surface of the substrate 10 has been obtained in advance by an experiment. Specifically, the target temperature distribution data on the surface of the substrate 10 is created by statistically processing a plurality of temperature distribution data that did not result in soldering defects.
 許容温度差分布記憶部73は、許容温度差分布データを記憶する。許容温度差分布データは、基板の表面の温度差分布データの各位置の温度差の許容範囲を定める。 The permissible temperature difference distribution storage unit 73 stores the permissible temperature difference distribution data. The permissible temperature difference distribution data determines the permissible range of the temperature difference at each position of the temperature difference distribution data on the surface of the substrate.
 図3は、第1の学習装置22の構成を表わす図である。
 第1の学習装置22は、温度分布データ作成部51と、温度差分布データ作成部52と、特徴量抽出部53と、第1の学習データ作成部54と、第1の学習済みモデル生成部55とを備える。
FIG. 3 is a diagram showing the configuration of the first learning device 22.
The first learning device 22 includes a temperature distribution data creation unit 51, a temperature difference distribution data creation unit 52, a feature amount extraction unit 53, a first learning data creation unit 54, and a first trained model generation unit. It is equipped with 55.
 温度分布データ作成部51は、温度測定装置17から基板10の表面の温度分布の情報を取得する。温度分布データ作成部51は、基板10の表面を、例えば1000×1000の領域を有する2次元マトリクスに分割する。温度分布データ作成部51は、マトリクスに対して、縦方向が1から1000、横方向が1から1000の座標を設定する。この処理によって、基板10の表面の各位置の温度と座標とを対応付けて処理することができる。温度分布データ作成部51は、取得した温度分布の情報から、マトリクスの各位置ごとの温度を特定し、基板10の表面の温度分布データを作成する。 The temperature distribution data creation unit 51 acquires information on the temperature distribution on the surface of the substrate 10 from the temperature measuring device 17. The temperature distribution data creation unit 51 divides the surface of the substrate 10 into, for example, a two-dimensional matrix having a region of 1000 × 1000. The temperature distribution data creation unit 51 sets the coordinates of 1 to 1000 in the vertical direction and 1 to 1000 in the horizontal direction with respect to the matrix. By this processing, it is possible to process the temperature of each position on the surface of the substrate 10 in association with the coordinates. The temperature distribution data creation unit 51 specifies the temperature at each position of the matrix from the acquired temperature distribution information, and creates the temperature distribution data on the surface of the substrate 10.
 温度差分布データ作成部52は、基板10の表面の温度分布データと、目標温度分布記憶部76に記憶されている基板10の表面の目標温度分布データとの差分を表わす基板10の表面の温度差分布データを作成する。 The temperature difference distribution data creation unit 52 is the temperature of the surface of the substrate 10 representing the difference between the temperature distribution data on the surface of the substrate 10 and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. Create difference distribution data.
 図4(a)は、基板10の表面の温度分布データの例を表わす図である。図4(b)は、基板10の表面の目標温度分布データの例を示す図である。図4(c)は、基板10の表面の温度差分布データの例を表わす図である。 FIG. 4A is a diagram showing an example of temperature distribution data on the surface of the substrate 10. FIG. 4B is a diagram showing an example of target temperature distribution data on the surface of the substrate 10. FIG. 4C is a diagram showing an example of temperature difference distribution data on the surface of the substrate 10.
 図4(a)~(c)において、外枠で囲まれた範囲は、基板10の表面の範囲を表す。枠内の線は、等温線を表す。例えば、5℃ごとの等温線が示されている。 In FIGS. 4A to 4C, the range surrounded by the outer frame represents the range of the surface of the substrate 10. The lines in the frame represent isotherms. For example, isotherms are shown every 5 ° C.
 特徴量抽出部53は、基板10の表面の温度差分布データの特徴量を抽出する。特徴量は、たとえば、温度の絶対値、等温線の密度、等温線の形状、前回測定された基板10の表面の温度分布に対する等温線の変化量、または設定されている時間前に取得された基板10の表面の温度分布に対する等温線の変化量などのデータである。設定されている時間は、例えば、1時間とすることができる。特徴量は、これらのデータを主成分分析または独立成分分析することによって得られるデータとしてもよい。 The feature amount extraction unit 53 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10. The feature quantity is obtained, for example, the absolute value of the temperature, the density of the isotherm, the shape of the isotherm, the amount of change of the isotherm with respect to the temperature distribution on the surface of the substrate 10 measured last time, or the time before the set time. This is data such as the amount of change in the isotherm with respect to the temperature distribution on the surface of the substrate 10. The set time can be, for example, one hour. The feature amount may be data obtained by performing principal component analysis or independent component analysis of these data.
 第1の学習データ作成部54は、特徴量抽出部53から出力される基板10の表面の温度差分布データの特徴量を受け、はんだ付け検査装置16から出力される基板10のはんだ付けの良否の検査結果を受ける。 The first learning data creation unit 54 receives the feature amount of the temperature difference distribution data on the surface of the substrate 10 output from the feature amount extraction unit 53, and the soldering quality of the substrate 10 output from the soldering inspection device 16 is good or bad. Receive the inspection result of.
 第1の学習データ作成部54は、複数の基板10について、基板10の表面の温度差分布データの特徴量と、基板10のはんだ付けの良否のラベル(正解)とのセットからなる第1の学習データを作成して、第1の学習データ記憶部71に記憶させる。 The first learning data creation unit 54 is a first set including a feature amount of temperature difference distribution data on the surface of the substrate 10 and a label (correct answer) of whether or not the soldering of the substrate 10 is good or bad for a plurality of substrates 10. The learning data is created and stored in the first learning data storage unit 71.
 第1の学習データ記憶部71は、第1の学習データを記憶する。
 第1の学習済みモデル生成部55は、第1の学習データ記憶部71に記憶されている第1の学習データを用いて、基板10の表面の温度差分布データの特徴量から基板10のはんだ付けの良否を推定する第1の学習済みモデルを生成する。第1の学習済みモデル生成部55は、生成した第1の学習済みモデルを第1の学習済みモデル記憶部72に記憶させる。
The first learning data storage unit 71 stores the first learning data.
The first trained model generation unit 55 uses the first training data stored in the first training data storage unit 71 to solder the substrate 10 from the feature amount of the temperature difference distribution data on the surface of the substrate 10. Generate a first trained model that estimates the quality of the soldering. The first trained model generation unit 55 stores the generated first trained model in the first trained model storage unit 72.
 第1の学習済みモデル記憶部72は、第1の学習済みモデルを記憶する。
 第1の学習済みモデル生成部55は、例えば、サポートベクトルマシンに従って、いわゆる教師あり学習により、第1の学習済みモデルを生成する。ここで、教師あり学習とは、入力と結果(ラベル)のデータのセットからなる第1の学習データを第1の学習済みモデル生成部55に与えることで、第1の学習データにある特徴を学習し、入力から結果を推論する手法をいう。
The first trained model storage unit 72 stores the first trained model.
The first trained model generation unit 55 generates the first trained model by so-called supervised learning according to, for example, a support vector machine. Here, in supervised learning, by giving the first learning data consisting of a set of input and result (label) data to the first trained model generation unit 55, the features of the first learning data can be obtained. A method of learning and inferring results from input.
 図5は、サポートベクトルマシンにおける識別イメージを表わす図である。図5では、説明の便宜上、二次元で表されている。 FIG. 5 is a diagram showing an identification image in the support vector machine. In FIG. 5, for convenience of explanation, it is represented in two dimensions.
 黒丸は、第1の学習データに含まれるはんだ付けが不良と判定された基板10の温度差分布データの特徴量を表わす。三角印は、第1の学習データに含まれるはんだ付けが良と判定された基板10の表面の温度差分布データの特徴量を表わす。 The black circles represent the feature amounts of the temperature difference distribution data of the substrate 10 included in the first learning data, which is determined to be defective in soldering. The triangular mark represents the feature amount of the temperature difference distribution data on the surface of the substrate 10 which is included in the first learning data and is judged to be good for soldering.
 サポートベクトルマシンは、学習フェーズにおいて、第1の学習データに基づいて、はんだ付けが不良と判定された基板10の表面の温度差分布データの特徴量と、はんだ付けが良と判定された基板10の表面の温度差分布データの特徴量とを識別する識別面を構築する。 In the support vector machine, based on the first learning data in the learning phase, the feature amount of the temperature difference distribution data on the surface of the substrate 10 determined to be defective in soldering and the substrate 10 determined to be good in soldering are used. We construct a discriminant surface that distinguishes from the features of the temperature difference distribution data on the surface of the solder.
 サポートベクトルマシンは、推論フェーズにおいて、識別対象の基板10の表面の温度差分布データの特徴量が識別面によって分割された2つの空間のうちのいずれに属するかを特定することによって、識別対象の基板10のはんだ付けの良否を判定する。星印は、識別対象の基板10の温度差分布データの特徴量ベクトルの例を表わす。この例では、識別対象の基板10が不良と判定される。 In the inference phase, the support vector machine identifies which of the two spaces divided by the identification surface belongs to the feature amount of the temperature difference distribution data on the surface of the substrate 10 to be identified. The quality of soldering of the substrate 10 is determined. The asterisk represents an example of the feature amount vector of the temperature difference distribution data of the substrate 10 to be identified. In this example, the substrate 10 to be identified is determined to be defective.
 図6は、第2の学習装置23の構成を表わす図である。
 第2の学習装置23は、データ取得部61と、制御パラメータ設定部62と、シミュレーション部63と、第2の学習データ作成部64と、第2の学習済みモデル生成部65とを備える。
FIG. 6 is a diagram showing the configuration of the second learning device 23.
The second learning device 23 includes a data acquisition unit 61, a control parameter setting unit 62, a simulation unit 63, a second learning data creation unit 64, and a second trained model generation unit 65.
 データ取得部61は、第1の学習装置22から、はんだ付けが不良となったときの基板10の表面の温度差分布データを取得する。 The data acquisition unit 61 acquires temperature difference distribution data on the surface of the substrate 10 when soldering is defective from the first learning device 22.
 制御パラメータ設定部62は、制御パラメータを設定する。制御パラメータ設定部62は、学習フェーズにおいて、基板10のはんだ付けが不良となったときに、制御パラメータを標準値から複数段階修正する。制御パラメータ設定部62は、制御パラメータがはんだ槽ヒータ14の温度のときに、はんだ槽ヒータ14の温度を標準値よりも5℃、10℃、および15℃だけ高くする。制御パラメータ設定部62は、制御パラメータが噴流モータ15の回転速度のときに、噴流モータ15の回転速度を標準値よりも10%、20%、および30%だけ速くする。制御パラメータ設定部62は、制御パラメータが噴流ノズル13の角度のときに、噴流ノズル13の角度を10°、20°、および30°だけ大きくする。 The control parameter setting unit 62 sets the control parameters. In the learning phase, the control parameter setting unit 62 corrects the control parameter in a plurality of steps from the standard value when the soldering of the substrate 10 becomes defective. The control parameter setting unit 62 raises the temperature of the solder bath heater 14 by 5 ° C, 10 ° C, and 15 ° C higher than the standard value when the control parameter is the temperature of the solder tank heater 14. The control parameter setting unit 62 makes the rotation speed of the jet motor 15 10%, 20%, and 30% faster than the standard value when the control parameter is the rotation speed of the jet motor 15. The control parameter setting unit 62 increases the angle of the jet nozzle 13 by 10 °, 20 °, and 30 ° when the control parameter is the angle of the jet nozzle 13.
 シミュレーション部63は、制御パラメータ設定部62から出力される修正後の制御パラメータに基づいて、シミュレーションによって、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度分布データを得る。シミュレーション部63は、シミュレーションによって得られた「制御パラメータが修正された後設定された時間経過後の基板10の表面の温度分布データ」と、目標温度分布記憶部76に記憶されている「基板10の表面の目標温度分布データ」との差分を表わす「制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データ」を出力する。 The simulation unit 63 obtains the temperature distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameters have been corrected by simulation, based on the modified control parameters output from the control parameter setting unit 62. .. The simulation unit 63 includes the "temperature distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been corrected" obtained by the simulation and the "board 10" stored in the target temperature distribution storage unit 76. The "temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been corrected" indicating the difference from the "target temperature distribution data on the surface of the substrate 10" is output.
 第2の学習データ作成部64は、制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータの修正量と、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データ(正解)とのセットを複数個含む第2の学習データを作成して、第2の学習データ記憶部74に記憶させる。 The second learning data creation unit 64 includes the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value, the correction amount of the control parameter, and the time lapse set after the control parameter is corrected. A second learning data including a plurality of sets of temperature difference distribution data (correct answer) on the surface of the substrate 10 is created and stored in the second learning data storage unit 74.
 第2の学習データ記憶部74は、第2の学習データを記憶する。
 第2の学習済みモデル生成部65は、第2の学習データ記憶部74に記憶されている第2の学習データを用いて、制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータの修正量とから、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データを推定する第2の学習済みモデルを生成する。第2の学習済みモデル生成部65は、生成した第2の学習済みモデルを第2の学習済みモデル記憶部75に記憶させる。
The second learning data storage unit 74 stores the second learning data.
The second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74, and the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value. A second trained model is generated that estimates the temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameters have been modified. The second trained model generation unit 65 stores the generated second trained model in the second trained model storage unit 75.
 第2の学習済みモデル記憶部75は、第2の学習済みモデルを記憶する。
 第2の学習済みモデル生成部65が用いる学習アルゴリズムは、教師あり学習、教師なし学習、または強化学習等の公知のアルゴリズムを用いることができる。一例として、ニューラルネットワークを適用した場合について説明する。
The second trained model storage unit 75 stores the second trained model.
As the learning algorithm used by the second trained model generation unit 65, known algorithms such as supervised learning, unsupervised learning, and reinforcement learning can be used. As an example, a case where a neural network is applied will be described.
 第2の学習済みモデル生成部65は、例えば、ニューラルネットワークモデルに従って、いわゆる教師あり学習を実行する。ここで、教師あり学習とは、入力と結果(ラベル)のデータの組を第2の学習済みモデル生成部65に与えることによって、それらの学習用データにある特徴を学習し、入力から結果を推論する手法をいう。 The second trained model generation unit 65 executes so-called supervised learning according to, for example, a neural network model. Here, in supervised learning, by giving a set of data of input and result (label) to the second trained model generation unit 65, the features in those learning data are learned, and the result is obtained from the input. A method of inferring.
 図7は、ニューラルネットワークの構成の一例を表わす図である。
 ニューラルネットワークは、複数のニューロンからなる入力層、複数のニューロンからなる中間層(隠れ層)、および複数のニューロンからなる出力層で構成される。中間層は、1層、または2層以上でもよい。
FIG. 7 is a diagram showing an example of the configuration of a neural network.
A neural network is composed of an input layer composed of a plurality of neurons, an intermediate layer (hidden layer) composed of a plurality of neurons, and an output layer composed of a plurality of neurons. The intermediate layer may be one layer or two or more layers.
 例えば、図7に示すような3層のニューラルネットワークであれば、複数の入力が入力層(X1~Xn)に入力されると、その値に重みW1を掛けて中間層(Y1~Ym)に入力され、その結果にさらに重みW2を掛けて出力層(Z1~Zs)から出力される。この出力結果は、重みW1およびW2の値によって変わる。 For example, in the case of a three-layer neural network as shown in FIG. 7, when a plurality of inputs are input to the input layer (X1 to Xn), the value is multiplied by the weight W1 to the intermediate layer (Y1 to Ym). It is input, and the result is further multiplied by the weight W2 and output from the output layer (Z1 to Zs). This output result depends on the values of the weights W1 and W2.
 本実施の形態において、ニューラルネットワークは、第1の学習用データに従って、いわゆる教師あり学習により、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データの出力を学習する。 In the present embodiment, the neural network outputs the temperature difference distribution data on the surface of the substrate 10 after the set time elapses after the control parameters are corrected by so-called supervised learning according to the first learning data. learn.
 すなわち、ニューラルネットワークは、入力層に制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータの修正量とを入力して、出力層から出力された結果が、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データ(正解)に近づくように重みW1とW2とを調整することで学習を実行する。 That is, in the neural network, the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value and the correction amount of the control parameter are input to the input layer, and the result output from the output layer is the control parameter. The learning is executed by adjusting the weights W1 and W2 so as to approach the temperature difference distribution data (correct answer) on the surface of the substrate 10 after the set time has elapsed after the correction.
 図8は、第1の推論装置24の構成を表わす図である。
 第1の推論装置24は、制御パラメータ設定部36と、温度分布データ作成部31と、温度差分布データ作成部32と、特徴量抽出部33と、第1の推定部34と、データ出力部35とを備える。
FIG. 8 is a diagram showing the configuration of the first inference device 24.
The first inference device 24 includes a control parameter setting unit 36, a temperature distribution data creation unit 31, a temperature difference distribution data creation unit 32, a feature amount extraction unit 33, a first estimation unit 34, and a data output unit. 35 and.
 制御パラメータ設定部62は、制御パラメータを標準値に設定する。
 温度分布データ作成部31は、第1の学習装置22内の温度分布データ作成部51と同様に、温度測定装置17から基板10の表面の温度分布の情報を取得し、基板10の表面の温度分布データを作成する。
The control parameter setting unit 62 sets the control parameter to a standard value.
Similar to the temperature distribution data creating unit 51 in the first learning device 22, the temperature distribution data creating unit 31 acquires information on the temperature distribution on the surface of the substrate 10 from the temperature measuring device 17, and the temperature on the surface of the substrate 10 Create distribution data.
 温度差分布データ作成部32は、第1の学習装置22内の温度差分布データ作成部52と同様に、基板10の表面の温度分布データと、目標温度分布記憶部76に記憶されている基板10の表面の目標温度分布データとの差分を表わす基板10の表面の温度差分布データを作成する。 The temperature difference distribution data creating unit 32, like the temperature difference distribution data creating unit 52 in the first learning device 22, has the temperature distribution data on the surface of the substrate 10 and the substrate stored in the target temperature distribution storage unit 76. The temperature difference distribution data on the surface of the substrate 10 representing the difference from the target temperature distribution data on the surface of 10 is created.
 特徴量抽出部33は、第1の学習装置22内の特徴量抽出部53と同様に、基板10の表面の温度差分布データの特徴量を抽出する。 The feature amount extraction unit 33 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10 in the same manner as the feature amount extraction unit 53 in the first learning device 22.
 第1の推定部34は、第1の学習済みモデル記憶部72から基板10の表面の温度差分布データの特徴量から基板10のはんだ付けの良否を推定する第1の学習済みモデルを読み出す。第1の推定部34は、第1の学習済みモデルに特徴量抽出部33から出力される基板10の表面の温度差分布データの特徴量を入力することによって、基板10のはんだ付けの良否を表わすデータを得る。 The first estimation unit 34 reads out the first trained model that estimates the quality of soldering of the substrate 10 from the feature amount of the temperature difference distribution data on the surface of the substrate 10 from the first trained model storage unit 72. The first estimation unit 34 inputs the feature amount of the temperature difference distribution data on the surface of the substrate 10 output from the feature amount extraction unit 33 into the first trained model, thereby determining whether the soldering of the substrate 10 is good or bad. Get the data to represent.
 データ出力部35は、第1の推定部34によって、基板10のはんだ付けが不良と推定されたときに、温度差分布データ作成部32によって生成された制御パラメータが標準値のときの基板10の表面の温度差分布データを出力する。 The data output unit 35 is the substrate 10 when the control parameter generated by the temperature difference distribution data creation unit 32 is a standard value when the soldering of the substrate 10 is estimated to be defective by the first estimation unit 34. Output the surface temperature difference distribution data.
 図9は、第2の推論装置25の構成を表わす図である。
 第2の推論装置25は、データ取得部41と、第2の推定部42と、制御パラメータ設定部43とを備える。
FIG. 9 is a diagram showing the configuration of the second inference device 25.
The second inference device 25 includes a data acquisition unit 41, a second estimation unit 42, and a control parameter setting unit 43.
 制御パラメータ設定部43は、制御パラメータを標準値または標準値から修正量だけ修正した値に設定する。 The control parameter setting unit 43 sets the control parameter to a standard value or a value corrected from the standard value by a correction amount.
 データ取得部41は、第1の推論装置24のデータ出力部35から出力された制御パラメータが標準値のときの基板10の表面の温度差分布データを取得する。 The data acquisition unit 41 acquires the temperature difference distribution data on the surface of the substrate 10 when the control parameter output from the data output unit 35 of the first inference device 24 is a standard value.
 第2の推定部42は、第2の学習済みモデル記憶部75から、制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータの修正量とから、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データを推定する第2の学習済みモデルを読み出す。 The second estimation unit 42 corrects the control parameters from the second learned model storage unit 75 based on the temperature difference distribution data on the surface of the substrate 10 when the control parameters are standard values and the correction amount of the control parameters. A second trained model for estimating the temperature difference distribution data on the surface of the substrate 10 after the lapse of a set time is read out.
 第2の推定部42は、第2の学習済みモデルにデータ取得部41から出力される制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータ設定部43によって修正された制御パラメータの修正量とを入力することによって、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データを得る。 The second estimation unit 42 is modified by the temperature difference distribution data on the surface of the substrate 10 when the control parameter output from the data acquisition unit 41 to the second trained model is a standard value, and the control parameter setting unit 43. By inputting the correction amount of the control parameter, the temperature difference distribution data on the surface of the substrate 10 after the set time elapses after the control parameter is corrected is obtained.
 図10は、実施の形態1における第1の学習装置22および第2の学習装置23による学習手順を表わすフローチャートである。 FIG. 10 is a flowchart showing a learning procedure by the first learning device 22 and the second learning device 23 in the first embodiment.
 ステップS101において、図示しない駆動スイッチがオンに設定される。これによって、搬送機構2によって、基板10がはんだ槽5の上部に搬送される。 In step S101, a drive switch (not shown) is set to ON. As a result, the substrate 10 is transported to the upper part of the solder tank 5 by the transport mechanism 2.
 ステップS102において、制御パラメータ設定部62は、制御パラメータを標準値に設定する。 In step S102, the control parameter setting unit 62 sets the control parameter to a standard value.
 ステップS103において、温度分布データ作成部51は、基板10の表面の温度分布データを作成する。 In step S103, the temperature distribution data creation unit 51 creates temperature distribution data on the surface of the substrate 10.
 ステップS104において、温度差分布データ作成部52は、基板10の表面の温度分布データと、目標温度分布記憶部76に記憶されている基板10の表面の目標温度分布データとの差分を表わす基板10の表面の温度差分布データを作成する。 In step S104, the temperature difference distribution data creating unit 52 represents the difference between the temperature distribution data on the surface of the substrate 10 and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. Create temperature difference distribution data on the surface of.
 ステップS105において、特徴量抽出部53は、基板10の表面の温度差分布データの特徴量を抽出する。 In step S105, the feature amount extraction unit 53 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10.
 ステップS106において、はんだ付け検査装置16は、基板10のはんだ付けの良否を検査する。 In step S106, the soldering inspection device 16 inspects the quality of soldering of the substrate 10.
 ステップS107において、第1の学習データ作成部54は、ステップS105において得られた基板10の表面の温度差分布データの特徴量と、ステップS106において得られた基板10のはんだ付けの良否のラベル(正解)とのセットを第1の学習記憶部71内の第1の学習データに追加する。 In step S107, the first learning data creating unit 54 features the feature amount of the temperature difference distribution data on the surface of the substrate 10 obtained in step S105, and the label of the quality of soldering of the substrate 10 obtained in step S106. The set with the correct answer) is added to the first learning data in the first learning storage unit 71.
 ステップS108において、終了指示が入力されたときには、処理がステップS109に進む。終了指示が入力されないときには、処理がステップS103に戻り、搬送される次の基板10について、ステップS103~S107の処理が繰り返される。 When the end instruction is input in step S108, the process proceeds to step S109. When the end instruction is not input, the process returns to step S103, and the process of steps S103 to S107 is repeated for the next board 10 to be conveyed.
 ステップS109において、図示しない駆動スイッチがオフに設定される。これによって、搬送機構2による基板10の搬送が停止される。 In step S109, a drive switch (not shown) is set to off. As a result, the transfer of the substrate 10 by the transfer mechanism 2 is stopped.
 ステップS110において、第1の学習済みモデル生成部55は、第1の学習データ記憶部71に記憶されている第1の学習データを用いて、基板10の表面の温度差分布データの特徴量から基板10のはんだ付けの良否を推定する第1の学習済みモデルを生成する。第1の学習済みモデル生成部55は、生成した第1の学習済みモデルを第1の学習済みモデル記憶部72に記憶させる。 In step S110, the first trained model generation unit 55 uses the first training data stored in the first training data storage unit 71 from the feature amount of the temperature difference distribution data on the surface of the substrate 10. A first trained model for estimating the quality of soldering of the substrate 10 is generated. The first trained model generation unit 55 stores the generated first trained model in the first trained model storage unit 72.
 ステップS111において、第2の学習装置23のデータ取得部61は、第1の学習装置22からはんだ付けが不良となったときの基板10の表面の温度差分布データを1つ取得する。 In step S111, the data acquisition unit 61 of the second learning device 23 acquires one temperature difference distribution data on the surface of the substrate 10 when soldering is defective from the first learning device 22.
 ステップS112において、制御パラメータ設定部62は、制御パラメータを標準値からΔP、2×ΔP、3×ΔP、・・・およびn×ΔPだけ修正する。 In step S112, the control parameter setting unit 62 corrects the control parameters from the standard values by ΔP, 2 × ΔP, 3 × ΔP, ... And n × ΔP.
 ステップS113において、シミュレーション部63は、制御パラメータ設定部62から出力される修正後の制御パラメータに基づいて、シミュレーションによって、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度分布データを得る。シミュレーション部63は、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度分布データと、目標温度分布記憶部76に記憶されている基板10の表面の目標温度分布データとの差分を表わす制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データを出力する。修正されたn個の制御パラメータについて、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データが出力される。 In step S113, the simulation unit 63 has the temperature of the surface of the substrate 10 after the time set after the control parameters have been corrected by the simulation based on the modified control parameters output from the control parameter setting unit 62. Obtain distribution data. The simulation unit 63 includes the temperature distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been modified, and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. The temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameter representing the difference between the two has been corrected is output. For the modified n control parameters, the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are modified is output.
 ステップS114において、第2の学習データ作成部64は、ステップS111で取得した制御パラメータが標準値のときの基板10の表面の温度差分布データと、ステップS112における制御パラメータの修正量と、ステップS113で得られた制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データ(正解)とのセットを第2の学習データ記憶部74内の第2の学習データに追加する。修正されたn個の制御パラメータについて、上記のセットが第2の学習データに追加される。 In step S114, the second learning data creation unit 64 determines the temperature difference distribution data on the surface of the substrate 10 when the control parameter acquired in step S111 is a standard value, the correction amount of the control parameter in step S112, and step S113. The set with the temperature difference distribution data (correct answer) on the surface of the substrate 10 after the lapse of time set after the control parameters obtained in the above are corrected is used as the second learning data in the second learning data storage unit 74. to add. The above set is added to the second training data for the modified n control parameters.
 ステップS115において、終了指示が入力されたときには、処理がステップS116に進む。終了指示が入力されないときには、処理がステップS111に戻り、はんだ付けが不良となった別の基板10について、ステップS111~S114の処理が繰り返される。 When the end instruction is input in step S115, the process proceeds to step S116. When the end instruction is not input, the process returns to step S111, and the process of steps S111 to S114 is repeated for another substrate 10 whose soldering is defective.
 ステップS116において、第2の学習済みモデル生成部65は、第2の学習データ記憶部74に記憶されている第2の学習データを用いて、制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータの修正量とから、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データを推定する第2の学習済みモデルを生成する。第2の学習済みモデル生成部65は、生成した第2の学習済みモデルを第2の学習済みモデル記憶部75に記憶させる。 In step S116, the second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74 to display the surface of the substrate 10 when the control parameter is a standard value. From the temperature difference distribution data and the correction amount of the control parameter, a second trained model for estimating the temperature difference distribution data on the surface of the substrate 10 after the set time elapses after the control parameter is corrected is generated. The second trained model generation unit 65 stores the generated second trained model in the second trained model storage unit 75.
 図11は、実施の形態1における第1の推論装置24および第2の推論装置25による推論手順を表わすフローチャートである。 FIG. 11 is a flowchart showing the inference procedure by the first inference device 24 and the second inference device 25 in the first embodiment.
 ステップS201において、図示しない駆動スイッチがオンに設定される。これによって、搬送機構2によって、基板10がはんだ槽5の上部に搬送される。 In step S201, a drive switch (not shown) is set to ON. As a result, the substrate 10 is transported to the upper part of the solder tank 5 by the transport mechanism 2.
 ステップS202において、制御パラメータ設定部36は、制御パラメータを標準値に設定する。 In step S202, the control parameter setting unit 36 sets the control parameter to a standard value.
 ステップS203において、温度分布データ作成部31は、基板10の表面の温度分布データを作成する。 In step S203, the temperature distribution data creation unit 31 creates temperature distribution data on the surface of the substrate 10.
 ステップS204において、温度差分布データ作成部32は、基板10の表面の温度分布データと、目標温度分布記憶部76に記憶されている基板10の表面の目標温度分布データとの差分を表わす基板10の表面の温度差分布データを作成する。 In step S204, the temperature difference distribution data creating unit 32 represents the difference between the temperature distribution data on the surface of the substrate 10 and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. Create temperature difference distribution data on the surface of.
 ステップS205において、特徴量抽出部33は、基板10の表面の温度差分布データの特徴量を抽出する。 In step S205, the feature amount extraction unit 33 extracts the feature amount of the temperature difference distribution data on the surface of the substrate 10.
 ステップS206において、第1の推定部34は、第1の学習済みモデル記憶部72から基板10の表面の温度差分布データの特徴量から基板10のはんだ付けの良否を推定する第1の学習済みモデルを読み出す。 In step S206, the first estimation unit 34 estimates the quality of soldering of the substrate 10 from the feature amount of the temperature difference distribution data on the surface of the substrate 10 from the first learned model storage unit 72. Read the model.
 ステップS207において、第1の推定部34は、第1の学習済みモデルに特徴量抽出部33から出力される基板10の表面の温度差分布データの特徴量を入力することによって、基板10のはんだ付けの良否を表わすデータを得る。 In step S207, the first estimation unit 34 solders the substrate 10 by inputting the feature amount of the temperature difference distribution data on the surface of the substrate 10 output from the feature amount extraction unit 33 into the first trained model. Obtain data indicating the quality of the soldering.
 ステップS208において、基板10のはんだ付けが不良の場合には、処理がステップS209に進む。基板10のはんだ付けが良の場合には、処理が終了する。 If the soldering of the substrate 10 is defective in step S208, the process proceeds to step S209. If the soldering of the substrate 10 is good, the process ends.
 ステップS209において、データ取得部41は、ステップS204において温度差分布データ作成部32によって作成された制御パラメータが標準値のときの基板10の表面の温度差分布データを取得する。 In step S209, the data acquisition unit 41 acquires the temperature difference distribution data on the surface of the substrate 10 when the control parameter created by the temperature difference distribution data creation unit 32 in step S204 is a standard value.
 ステップS210において、第2の推定部42は、第2の学習済みモデル記憶部75から、制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータの修正量とから、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データを推定する第2の学習済みモデルを読み出す。 In step S210, the second estimation unit 42 obtains from the second learned model storage unit 75, the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value, and the correction amount of the control parameter. A second trained model that estimates the temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameters have been modified is read out.
 ステップS211において、第2の推定部42は、K=1に設定する。
 ステップS212において、第2の推定部42は、制御パラメータの修正量をK×ΔPに設定する。
In step S211 the second estimation unit 42 is set to K = 1.
In step S212, the second estimation unit 42 sets the correction amount of the control parameter to K × ΔP.
 ステップS213において、第2の推定部42は、第2の学習済みモデルにデータ取得部41から出力される制御パラメータが標準値のときの基板10の表面の温度差分布データと、制御パラメータの修正量とを入力することによって、制御パラメータが修正された後設定された時間経過後の基板の温度差分布データを得る。 In step S213, the second estimation unit 42 corrects the temperature difference distribution data on the surface of the substrate 10 and the control parameters when the control parameters output from the data acquisition unit 41 to the second trained model are standard values. By inputting the quantity, the temperature difference distribution data of the substrate after the set time elapses after the control parameters are modified is obtained.
 ステップS214において、第2の推定部42は、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データの各位置の温度差が、許容温度差分布データ記憶部73内の許容温度差分布データの各位置の温度差以下のときには、基板10の表面の温度差分布データが許容範囲内と判断する。第2の推定部42は、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データの各位置の温度差が、許容温度差分布データの各位置の温度差を越えるときには、基板10の表面の温度差分布データが許容範囲外と判断する。基板10の表面の温度差分布データが許容範囲内のときには、処理がステップS216に進み、許容範囲外のときには、処理がステップS215に進む。 In step S214, in the second estimation unit 42, the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are corrected is the allowable temperature difference distribution data storage unit. When the temperature difference is equal to or less than the temperature difference at each position of the allowable temperature difference distribution data in 73, it is determined that the temperature difference distribution data on the surface of the substrate 10 is within the allowable range. In the second estimation unit 42, the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameter is corrected is the temperature difference at each position of the allowable temperature difference distribution data. When it exceeds, it is determined that the temperature difference distribution data on the surface of the substrate 10 is out of the allowable range. When the temperature difference distribution data on the surface of the substrate 10 is within the permissible range, the process proceeds to step S216, and when it is out of the permissible range, the process proceeds to step S215.
 ステップS215において、第2の推定部42は、Kを1だけインクリメントする。その後、処理がステップS211に戻る。 In step S215, the second estimation unit 42 increments K by 1. After that, the process returns to step S211.
 ステップS216において、制御パラメータ設定部43は、制御パラメータを修正量だけ修正する。修正された制御パラメータは、駆動制御部26に出力される。駆動制御部26は、修正後の制御パラメータに基づいて、はんだ付けシステム1を駆動する。これにより、たとえば、滞留していたドロスの溶解又はドロスの滞留位置の移動が起こる。そして、噴流ノズル13から均一に噴出され、基板10の表面の温度分布は、許容温度分布の範囲内に収まる。 In step S216, the control parameter setting unit 43 corrects the control parameter by the amount of correction. The corrected control parameter is output to the drive control unit 26. The drive control unit 26 drives the soldering system 1 based on the modified control parameters. This causes, for example, dissolution of the accumulated dross or movement of the accumulated dross position. Then, it is uniformly ejected from the jet nozzle 13, and the temperature distribution on the surface of the substrate 10 falls within the allowable temperature distribution.
 実施の形態2.
 図12は、実施の形態2における第1の学習装置22および第2の学習装置23による学習手順を表わすフローチャートである。図12のフローチャートのステップS101~S111は、図10のフローチャートのステップS101~S111と同様なので、説明を繰り返さない。
Embodiment 2.
FIG. 12 is a flowchart showing the learning procedure by the first learning device 22 and the second learning device 23 in the second embodiment. Since steps S101 to S111 in the flowchart of FIG. 12 are the same as steps S101 to S111 in the flowchart of FIG. 10, the description will not be repeated.
 ステップS312において、制御パラメータ設定部62は、K=1に設定する。
 ステップS313において、制御パラメータ設定部62は、制御パラメータを標準値からK×ΔPだけ修正する。
In step S312, the control parameter setting unit 62 sets K = 1.
In step S313, the control parameter setting unit 62 corrects the control parameter from the standard value by K × ΔP.
 ステップS314において、シミュレーション部63は、制御パラメータ設定部62から出力される修正後の制御パラメータに基づいて、シミュレーションによって、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度分布データを得る。シミュレーション部63は、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度分布データと、目標温度分布記憶部76に記憶されている基板10の表面の目標温度分布データとの差分を表わす制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データを出力する。 In step S314, the simulation unit 63 determines the temperature of the surface of the substrate 10 after the time set after the control parameters have been corrected by simulation based on the modified control parameters output from the control parameter setting unit 62. Obtain distribution data. The simulation unit 63 includes the temperature distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters have been modified, and the target temperature distribution data on the surface of the substrate 10 stored in the target temperature distribution storage unit 76. The temperature difference distribution data on the surface of the substrate 10 after the set time has elapsed after the control parameter representing the difference between the two has been corrected is output.
 ステップS315において、第2の学習データ作成部64は、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データの各位置の温度差が、許容温度差分布データ記憶部73内の許容温度差分布データの各位置の温度差以下のときには、基板10の表面の温度差分布データが許容範囲内と判断する。第2の学習データ作成部64は、制御パラメータが修正された後設定された時間経過後の基板10の表面の温度差分布データの各位置の温度差が、許容温度差分布データの各位置の温度差を越えるときには、基板10の表面の温度差分布データが許容範囲外と判断する。基板10の表面の温度差分布データが許容範囲内のときには、処理がステップS317に進み、許容範囲外のときには、処理がステップS316に進む。 In step S315, in the second learning data creation unit 64, the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are corrected is the allowable temperature difference distribution data. When the temperature difference is equal to or less than the temperature difference at each position of the allowable temperature difference distribution data in the storage unit 73, it is determined that the temperature difference distribution data on the surface of the substrate 10 is within the allowable range. In the second learning data creation unit 64, the temperature difference at each position of the temperature difference distribution data on the surface of the substrate 10 after the lapse of time set after the control parameters are corrected is the temperature difference at each position of the allowable temperature difference distribution data. When the temperature difference is exceeded, it is determined that the temperature difference distribution data on the surface of the substrate 10 is out of the allowable range. When the temperature difference distribution data on the surface of the substrate 10 is within the permissible range, the process proceeds to step S317, and when it is out of the permissible range, the process proceeds to step S316.
 ステップS316において、制御パラメータ設定部62は、Kを1だけインクリメントする。その後、処理がステップS313に戻る。 In step S316, the control parameter setting unit 62 increments K by 1. After that, the process returns to step S313.
 ステップS317において、第2の学習データ作成部64は、ステップS111において取得した制御パラメータが標準値のときの基板10の表面の温度差分布データと、ステップS313において設定された制御パラメータの修正量(正解)とのセットを第2の学習データ記憶部74内の第2の学習データに追加する。 In step S317, the second learning data creation unit 64 determines the temperature difference distribution data on the surface of the substrate 10 when the control parameter acquired in step S111 is a standard value, and the correction amount of the control parameter set in step S313. The set with the correct answer) is added to the second learning data in the second learning data storage unit 74.
 ステップS318において、終了指示が入力されたときには、処理がステップS319に進む。終了指示が入力されないときには、処理がステップS111に戻り、はんだ付けが不良となった別の基板10について、ステップS111、およびS312~S317の処理が繰り返される。 When the end instruction is input in step S318, the process proceeds to step S319. When the end instruction is not input, the process returns to step S111, and the processes of steps S111 and S312 to S317 are repeated for another substrate 10 whose soldering is defective.
 ステップS319において、第2の学習済みモデル生成部65は、第2の学習データ記憶部74に記憶されている第2の学習データを用いて、制御パラメータが標準値のときの基板10の表面の温度差分布データから、制御パラメータの修正量を推定する第2の学習済みモデルを生成する。第2の学習済みモデル生成部65は、生成した第2の学習済みモデルを第2の学習済みモデル記憶部75に記憶させる。 In step S319, the second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74 to display the surface of the substrate 10 when the control parameter is a standard value. From the temperature difference distribution data, a second trained model for estimating the correction amount of the control parameter is generated. The second trained model generation unit 65 stores the generated second trained model in the second trained model storage unit 75.
 図13は、実施の形態2における第1の推論装置24および第2の推論装置25による推論手順を表わすフローチャートである。図13のフローチャートのステップS201~S209は、図11のフローチャートのステップS101~S209と同様なので、説明を繰り返さない。 FIG. 13 is a flowchart showing the inference procedure by the first inference device 24 and the second inference device 25 in the second embodiment. Since steps S201 to S209 in the flowchart of FIG. 13 are the same as steps S101 to S209 in the flowchart of FIG. 11, the description will not be repeated.
 ステップS410において、第2の推定部42は、第2の学習済みモデル記憶部75から、制御パラメータが標準値のときの基板10の表面の温度差分布データから制御パラメータの修正量を推定する第2の学習済みモデルを読み出す。 In step S410, the second estimation unit 42 estimates the correction amount of the control parameter from the temperature difference distribution data on the surface of the substrate 10 when the control parameter is a standard value from the second learned model storage unit 75. Read out the trained model of 2.
 ステップS411において、第2の推定部42は、第2の学習済みモデルにデータ取得部41から出力される制御パラメータが標準値のときの基板10の表面の温度差分布データを入力することによって、制御パラメータの修正量を得る。 In step S411, the second estimation unit 42 inputs the temperature difference distribution data on the surface of the substrate 10 when the control parameter output from the data acquisition unit 41 is a standard value into the second trained model. Obtain the correction amount of the control parameter.
 ステップS412において、制御パラメータ設定部43は、制御パラメータを修正量だけ修正する。 In step S412, the control parameter setting unit 43 corrects the control parameter by the amount of correction.
 実施の形態3.
 図14は、実施の形態3における第1の推論装置24および第2の推論装置25による推論および再学習の手順を表わすフローチャートである。図14のフローチャートのステップS201~S209、S410~S412は、図13のフローチャートのステップS201~S209、S410~S412と同様なので、説明を繰り返さない。
Embodiment 3.
FIG. 14 is a flowchart showing the procedure of inference and re-learning by the first inference device 24 and the second inference device 25 in the third embodiment. Since steps S201 to S209 and S410 to S412 in the flowchart of FIG. 14 are the same as steps S201 to S209 and S410 to S412 in the flowchart of FIG. 13, the description will not be repeated.
 ステップS207の後、ステップS208の前までに、ステップS501およびステップS502が実行される。 Step S501 and step S502 are executed after step S207 and before step S208.
 ステップS501において、第1の学習データ作成部54は、ステップS205において得られた基板10の表面の温度差分布データの特徴量と、ステップS207において得られた基板のはんだ付けの良否のラベル(正解)とのセットを第1の学習データ記憶部71内の第1の学習データに追加する。 In step S501, the first learning data creation unit 54 features the feature amount of the temperature difference distribution data on the surface of the substrate 10 obtained in step S205 and the label (correct answer) of the soldering quality of the substrate obtained in step S207. ) Is added to the first learning data in the first learning data storage unit 71.
 ステップS502において、第1の学習済みモデル生成部55は、第1の学習データ記憶部71に記憶されている第1の学習データを用いて、基板10の表面の温度差分布データの特徴量から基板10のはんだ付けの良否を推定する第1の学習済みモデルを更新する。第1の学習済みモデル生成部55は、更新した第1の学習済みモデルを第1の学習済みモデル記憶部72に記憶させる。 In step S502, the first trained model generation unit 55 uses the first training data stored in the first training data storage unit 71 from the feature amount of the temperature difference distribution data on the surface of the substrate 10. The first trained model for estimating the quality of soldering of the substrate 10 is updated. The first trained model generation unit 55 stores the updated first trained model in the first trained model storage unit 72.
 ステップS501およびステップS502によって、はんだ付けシステム1の運用を継続するに伴い、第1の学習データの蓄積量が増加し、第1の学習データの蓄積量の増加に伴って、第1の学習済みモデルの推定精度が高くなる。 By step S501 and step S502, as the operation of the soldering system 1 is continued, the accumulated amount of the first learning data increases, and as the accumulated amount of the first learning data increases, the first learned data is completed. The estimation accuracy of the model is high.
 ステップS412の後、ステップS503およびステップS504が実行される。
 ステップS503において、第2の学習データ作成部64は、ステップS204において取得した制御パラメータが標準値のときの基板10の表面の温度差分布データと、ステップS411において得られた制御パラメータの修正量(正解)とのセットを第2の学習データ記憶部74内の第2の学習データに追加する。
After step S412, steps S503 and S504 are executed.
In step S503, the second learning data creation unit 64 determines the temperature difference distribution data on the surface of the substrate 10 when the control parameter acquired in step S204 is a standard value, and the correction amount of the control parameter obtained in step S411. The set with the correct answer) is added to the second learning data in the second learning data storage unit 74.
 ステップS504において、第2の学習済みモデル生成部65は、第2の学習データ記憶部74に記憶されている第2の学習データを用いて、制御パラメータが標準値のときの基板10の表面の温度差分布データから、制御パラメータの修正量を推定する第2の学習済みモデルを更新する。第2の学習済みモデル生成部65は、更新した第2の学習済みモデルを第2の学習済みモデル記憶部75に記憶させる。 In step S504, the second trained model generation unit 65 uses the second training data stored in the second training data storage unit 74 to display the surface of the substrate 10 when the control parameter is a standard value. From the temperature difference distribution data, the second trained model that estimates the correction amount of the control parameter is updated. The second trained model generation unit 65 stores the updated second trained model in the second trained model storage unit 75.
 ステップS503およびステップS504によって、はんだ付けシステム1の運用を継続するに伴い、第2の学習データの蓄積量が増加し、第2の学習データの蓄積量の増加に伴って、第2の学習済みモデルの推定精度が高くなる。 By step S503 and step S504, the accumulated amount of the second learning data increases as the operation of the soldering system 1 is continued, and the second learned data is accumulated as the accumulated amount of the second learning data increases. The estimation accuracy of the model is high.
 実施の形態4.
 本実施の形態では、温度測定装置17は、赤外線カメラ7を備える。
Embodiment 4.
In this embodiment, the temperature measuring device 17 includes an infrared camera 7.
 図15は、実施の形態4における赤外線カメラ7の配置を表わす図である。
 図15に示すように、搬送機構2によって、基板10は、水平方向と一定角度(5±1°)だけ相違する方向に搬送される。
FIG. 15 is a diagram showing the arrangement of the infrared camera 7 in the fourth embodiment.
As shown in FIG. 15, the transfer mechanism 2 conveys the substrate 10 in a direction different from the horizontal direction by a certain angle (5 ± 1 °).
 赤外線カメラ7の光軸Kの方向は、搬送される基板10の面に対して垂直となるように赤外線カメラ7が配置される。すなわち、赤外線カメラ7の光軸の方向は、水平方向から、90°―(5±1)°だけ相違する方向である。 The infrared camera 7 is arranged so that the direction of the optical axis K of the infrared camera 7 is perpendicular to the surface of the substrate 10 to be conveyed. That is, the direction of the optical axis of the infrared camera 7 is a direction different from the horizontal direction by 90 ° − (5 ± 1) °.
 また、水平方向については、2次ノズル13bの後端PNから上流の水平方向に220[mm]の位置PAと、下流の水平方向に300[mm]の位置PBとの間に、赤外線カメラ7が設置される。このように赤外線カメラ7の設置範囲に幅を持たせているのは、はんだ付けシステム1の構造の差異によって、赤外線カメラ7が2次ノズル13bの後端PNの位置に設置できない場合があるからである。 In the horizontal direction, the infrared camera 7 is located between the position PA at 220 [mm] in the horizontal direction upstream from the rear end PN of the secondary nozzle 13b and the position PB at 300 [mm] in the horizontal direction downstream. Is installed. The reason why the installation range of the infrared camera 7 is widened in this way is that the infrared camera 7 may not be installed at the position of the rear end PN of the secondary nozzle 13b due to the difference in the structure of the soldering system 1. Is.
 上述のように赤外線カメラ7を設置することによって、赤外線カメラ7によって撮影される熱画像のゆがみを除外して、正確な測定をすることができる。さらには、赤外線カメラ7を設置することによって、基板10に搭載された部品の影になる面積を小さくすることができるので、温度測定に必要な面積を確保しやすくなる。 By installing the infrared camera 7 as described above, it is possible to exclude the distortion of the thermal image taken by the infrared camera 7 and perform accurate measurement. Further, by installing the infrared camera 7, it is possible to reduce the area behind the parts mounted on the substrate 10, so that it becomes easy to secure the area required for temperature measurement.
 実施の形態5.
 図16は、基板10の表面温度の時間変化を表わす図である。
Embodiment 5.
FIG. 16 is a diagram showing a time change of the surface temperature of the substrate 10.
 実線が、基板10と溶融はんだとの接触時間が長い場合の基板10の表面の温度変化を表わす。時刻t1において、基板10が溶融はんだから離脱する。 The solid line represents the temperature change on the surface of the substrate 10 when the contact time between the substrate 10 and the molten solder is long. At time t1, the substrate 10 is separated from the molten solder.
 破線が、基板10と溶融との接触時間が短い場合の基板10の表面の温度変化を表わす時刻t2において、基板10が噴溶融から離脱する。 At time t2, where the broken line represents the temperature change on the surface of the substrate 10 when the contact time between the substrate 10 and the melting is short, the substrate 10 is separated from the jet melting.
 基板10が溶融はんだから離脱した後の方が、基板10と溶融はんだとの接触時間の違いによる基板10の表面の温度差が大きい。基板10が、溶融はんだから離脱したときの基板10の温度を測定することによって、基板10の入熱量の差異を明確に検出することができる。 After the substrate 10 is separated from the molten solder, the temperature difference on the surface of the substrate 10 is larger due to the difference in the contact time between the substrate 10 and the molten solder. By measuring the temperature of the substrate 10 when the substrate 10 is separated from the molten solder, the difference in the amount of heat input of the substrate 10 can be clearly detected.
 図17(a)は、基板10が溶融はんだに接触したときの状態を表わす図である。
 図17(b)は、基板10が溶融はんだから離脱した直後の状態を表わす図である。
FIG. 17A is a diagram showing a state when the substrate 10 comes into contact with the molten solder.
FIG. 17B is a diagram showing a state immediately after the substrate 10 is separated from the molten solder.
 本実施の形態では、温度測定装置17は、噴流ノズル13から噴流された溶融はんだから基板10が離脱した後の基板10の上面の温度を測定する。 In the present embodiment, the temperature measuring device 17 measures the temperature of the upper surface of the substrate 10 after the substrate 10 is separated from the molten solder jetted from the jet nozzle 13.
 実施の形態6.
 図18は、実施の形態6のはんだ付けシステム1bを示す概略図である。
Embodiment 6.
FIG. 18 is a schematic view showing the soldering system 1b of the sixth embodiment.
 はんだ付けシステム1の外装91に穴151が形成されている。温度測定装置17に含まれる赤外線カメラ7が、はんだ付けシステム1bの外装91の外側に配置され、赤外線カメラ7のレンズは、穴151の部分に配置される。これによって、揮発したフラックスの溶剤が赤外線カメラ7に付着するのを回避できるため、正確な温度測定ができる。 A hole 151 is formed in the exterior 91 of the soldering system 1. The infrared camera 7 included in the temperature measuring device 17 is arranged outside the exterior 91 of the soldering system 1b, and the lens of the infrared camera 7 is arranged in the portion of the hole 151. As a result, it is possible to prevent the solvent of the volatilized flux from adhering to the infrared camera 7, so that accurate temperature measurement can be performed.
 赤外線カメラ7は、はんだ付けシステム1bの外側にあるため、メンテナンス時等における赤外線カメラ7の温度変化の影響を少なくすることができる。一般的な赤外線カメラは、カメラ本体に温度変化がある場合、測定温度も変化してしまうが、本構成をとることで、より正確な測定をすることができる。 Since the infrared camera 7 is located outside the soldering system 1b, the influence of the temperature change of the infrared camera 7 at the time of maintenance or the like can be reduced. In a general infrared camera, if the temperature of the camera body changes, the measured temperature also changes, but by adopting this configuration, more accurate measurement can be performed.
 実施の形態7.
 図19は、実施の形態7のはんだ付けシステム1aの構成を表わす図である。
Embodiment 7.
FIG. 19 is a diagram showing the configuration of the soldering system 1a according to the seventh embodiment.
 実施の形態7のはんだ付けシステム1aは、保護窓98を備える。
 保護窓98は、赤外線カメラ7のレンズを保護するために設けられる。このようにすることで、長期間の稼働においても、フラックスが赤外線カメラ7に付着を防止することができるため、赤外線が遮られず、正確な温度測定が可能となる。
The soldering system 1a of the seventh embodiment includes a protective window 98.
The protective window 98 is provided to protect the lens of the infrared camera 7. By doing so, it is possible to prevent the flux from adhering to the infrared camera 7 even during long-term operation, so that the infrared rays are not blocked and accurate temperature measurement becomes possible.
 実施の形態8.
 図20は、制御装置9のハードウェア構成を表わす図である。
Embodiment 8.
FIG. 20 is a diagram showing a hardware configuration of the control device 9.
 制御装置9は、相当する動作をデジタル回路のハードウェアまたはソフトウェアで構成することができる。制御装置9の機能をソフトウェアを用いて実現する場合には、制御装置9は、例えば、図20に示すように、バス1001によって接続されたプロセッサ1002とメモリ1003とを備える。メモリ1003は、ROM(Read Only Memory)と、RAM(Random Access Memory)とを含む。プロセッサ1002が実行するプログラムとプログラムを実行するために必要なデータが、ROMに記憶されている。プログラム実行中に作成されるデータが、RAMに記憶される。 The control device 9 can configure the corresponding operation with the hardware or software of the digital circuit. When the function of the control device 9 is realized by using software, the control device 9 includes, for example, as shown in FIG. 20, a processor 1002 and a memory 1003 connected by a bus 1001. The memory 1003 includes a ROM (Read Only Memory) and a RAM (Random Access Memory). The program executed by the processor 1002 and the data necessary for executing the program are stored in the ROM. The data created during program execution is stored in RAM.
 変形例.
 本開示は、次のような変形例を含む。
Modification example.
The present disclosure includes the following modifications.
 (1)赤外線カメラの位置
 温度測定装置17に含まれる赤外線カメラをはんだ付けシステム1に設けられた排気ダクト(図示しない)直下から、離して設置することによって、赤外線カメラが備えるレンズにフラックス蒸気が付着することを防止してもよい。
(1) Position of the infrared camera By installing the infrared camera included in the temperature measuring device 17 away from directly under the exhaust duct (not shown) provided in the soldering system 1, flux vapor is generated in the lens of the infrared camera. It may be prevented from adhering.
 (2)温度分布データ作成
 温度分布データ作成部は、基板10の表面を1000×1000の2次元マトリクスに分割した。基板10の表面の分割は、これに限定されない。温度分布データ作成部は、基板10の表面を、基板10の大きさ、温度分布の解析精度、はんだ付けシステム1の制御精度等に応じて、分割しても良い。例えば、温度分布データ作成部は、基板10の表面を、50×50、100×800、7000×3000等に分割しても良い。
(2) Temperature distribution data creation The temperature distribution data creation unit divided the surface of the substrate 10 into a 1000 × 1000 two-dimensional matrix. The division of the surface of the substrate 10 is not limited to this. The temperature distribution data creating unit may divide the surface of the substrate 10 according to the size of the substrate 10, the analysis accuracy of the temperature distribution, the control accuracy of the soldering system 1, and the like. For example, the temperature distribution data creation unit may divide the surface of the substrate 10 into 50 × 50, 100 × 800, 7000 × 3000, and the like.
 (3)はんだ付け検査
 はんだ付けの良否の評価は、作業者によって行われても良い。
(3) Soldering inspection The quality of soldering may be evaluated by an operator.
 (4)シミュレーション
 シミュレーション結果の判別方法は、上記の実施形態に記載されたものに限定されない。例えば、シミュレーションにより得られた温度分布をサポートベクトルマシンに入力し、はんだ付けの不良に属するグループとはんだ付けが正常に属するグループの何れに属するかを識別してもよい。
(4) Simulation The method for determining the simulation result is not limited to that described in the above embodiment. For example, the temperature distribution obtained by the simulation may be input to the support vector machine to identify whether the group belongs to the defective soldering group or the normal soldering group.
 第1の学習済みモデルの精度が一定値以上に達した場合に、第1の学習済みモデルの再学習を停止するものとしてもよい。第2の学習済みモデルの精度が一定値以上に達した場合に、第2の学習済みモデルの再学習を停止するものとしてもよい。再学習を停止することによって、制御装置9における処理負荷を軽減できる。 When the accuracy of the first trained model reaches a certain value or more, the re-learning of the first trained model may be stopped. When the accuracy of the second trained model reaches a certain value or more, the retraining of the second trained model may be stopped. By stopping the re-learning, the processing load on the control device 9 can be reduced.
 (5)第1の学習済みモデルの入力
 上記の実施形態では、第1の学習済みモデルの入力は、温度差分布データの特徴量としたが、これに限定されるものではない。第1の学習済みモデルの入力は、基板の温度分布を表わすデータであればよい。たとえば、第1の学習済みモデルの入力は、温度分布データ作成部によって作成された温度分布データ、あるいは温度差分布データ作成部によって作成された温度差分布データであってもよい。
(5) Input of the first trained model In the above embodiment, the input of the first trained model is a feature amount of the temperature difference distribution data, but the input is not limited thereto. The input of the first trained model may be data representing the temperature distribution of the substrate. For example, the input of the first trained model may be the temperature distribution data created by the temperature distribution data creation unit or the temperature difference distribution data created by the temperature difference distribution data creation unit.
 (6)第2の学習済みモデルの入力
 上記の実施形態では、第2の学習済みモデルの入力は、温度差分布データとしたが、これに限定されるものではない。第2の学習済みモデルの入力は、基板の温度分布を表わすデータであればよい。たとえば、第2の学習済みモデルの入力は、温度分布データ作成部によって作成された温度分布データであってもよい。
(6) Input of the second trained model In the above embodiment, the input of the second trained model is the temperature difference distribution data, but the input is not limited to this. The input of the second trained model may be data representing the temperature distribution of the substrate. For example, the input of the second trained model may be the temperature distribution data created by the temperature distribution data creation unit.
 (7)温度測定装置
 温度測定装置の計測方式としては、レーザ方式、超音波方式、または電磁波方式を用いることができる。温度測定装置は、赤外線カメラではなく、放射温度計を備えるものとしてもよい。
(7) Temperature measuring device As the measuring method of the temperature measuring device, a laser method, an ultrasonic method, or an electromagnetic wave method can be used. The temperature measuring device may include a radiation thermometer instead of an infrared camera.
 (8)学習
 本実施の形態では、第1の学習済みモデル生成部および第2の学習済みモデル生成部が用いる学習アルゴリズムに教師あり学習を適用した場合について説明したが、これに限られるものではない。学習アルゴリズムについては、教師あり学習以外にも、強化学習、教師なし学習、または半教師あり学習等を適用することも可能である。
(8) Learning In the present embodiment, the case where supervised learning is applied to the learning algorithms used by the first trained model generation unit and the second trained model generation unit has been described, but the present invention is not limited to this. do not have. As for the learning algorithm, it is also possible to apply reinforcement learning, unsupervised learning, semi-supervised learning, etc. in addition to supervised learning.
 第1の学習済みモデル生成部、第2の学習済みモデル生成部は、複数のはんだ付けシステムにおいて作成される第1の学習データ、第2の学習データを用いて、第1の学習済モデル、第2の学習済みモデルを生成するようにしてもよい。第1の学習済みモデル生成部、第2の学習済みモデル生成部は、同一のエリアで使用される複数のはんだ付けシステムから第1の学習データ、第2の学習データを取得してもよいし、異なるエリアで独立して動作する複数のはんだ付けシステムから収集される第1の学習データ、第2の学習データを利用しもよい。 The first trained model generation unit and the second trained model generation unit are the first trained model using the first training data and the second training data created in the plurality of soldering systems. A second trained model may be generated. The first trained model generation unit and the second trained model generation unit may acquire the first training data and the second training data from a plurality of soldering systems used in the same area. , The first training data and the second training data collected from a plurality of soldering systems operating independently in different areas may be used.
 第1の学習済モデル、第2の学習済みモデルを収集するはんだ付けシステムを途中で対象に追加したり、対象から除去することも可能である。さらに、あるはんだ付けシステムに関して生成した第1の学習済モデル、第2の学習済みモデルを、別のはんだ付けシステムに適用し、再学習によって第1の学習済モデル、第2の学習済みモデルを更新するようにしてもよい。 It is also possible to add or remove the soldering system that collects the first trained model and the second trained model to the target on the way. Furthermore, the first trained model and the second trained model generated for one soldering system are applied to another soldering system, and the first trained model and the second trained model are obtained by retraining. You may try to update.
 第1の学習済みモデル生成部および第2の学習済みモデル生成部に用いられる学習アルゴリズムとしては、特徴量そのものの抽出を学習する、深層学習(Deep Learning)を用いることもでき、他の公知の方法、例えば遺伝的プログラミング、機能論理プログラミング、またはサポートベクトルマシンなどに従って機械学習を実行してもよい。 As the learning algorithm used in the first trained model generation unit and the second trained model generation unit, deep learning that learns the extraction of the feature amount itself can also be used, and other known ones are known. Machine learning may be performed according to methods such as genetic programming, functional logic programming, or support vector machines.
 第1の学習装置、第1の推論装置、第2の学習装置、および第2の推論装置は、はんだ付けシステムに内蔵されていてもよい。さらに、第1の学習装置、第1の推論装置、第2の学習装置、および第2の推論装置は、クラウドサーバ上に存在していてもよい。 The first learning device, the first inference device, the second learning device, and the second inference device may be built in the soldering system. Further, the first learning device, the first inference device, the second learning device, and the second inference device may exist on the cloud server.
 第1の推論装置、第2の推論装置は、他のはんだ付けシステムなどの外部から第1の学習済モデル、第2の学習済みモデルを取得し、これらに基づいて、推論を実行することとしてもよい。 The first inference device and the second inference device acquire the first trained model and the second trained model from the outside such as other soldering systems, and execute inference based on these. May be good.
 (9)実施形態の組み合わせ
 上記の各実施形態を任意に組み合わせて実施することとしてもよい。
(9) Combination of Embodiments Each of the above embodiments may be arbitrarily combined and implemented.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。 The embodiments disclosed this time should be considered to be exemplary in all respects and not restrictive. The scope of the present disclosure is shown by the scope of claims rather than the above description, and is intended to include all modifications within the meaning and scope of the claims.
 1,1a,1b はんだ付けシステム、2 搬送機構、3 フラックス塗布機、4 プリヒータ、5 はんだ槽、7 赤外線カメラ、9 制御装置、10 基板、11 フラックス、13 噴流ノズル、13a 1次ノズル、13b 2次ノズル、14 はんだ槽ヒータ、15 噴流モータ、16 はんだ付け検査装置、17 温度測定装置、18 フラクサー制御部、21 識別および設定部、22 第1の学習装置、23 第2の学習装置、24 第1の推論装置、25 第2の推論装置、26 駆動制御部、27 記憶装置、31,51 温度分布データ作成部、32,52 温度差分布データ作成部、33,53 特徴量抽出部、34 第1の推定部、35 データ出力部、36,43,62 制御パラメータ設定部、41,61 データ取得部、42 第2の推定部、54 第1の学習データ作成部、55 第1の学習済みモデル生成部、63 シミュレーション部、64 第2の学習データ作成部、65 第2の学習済みモデル生成部、71 第1の学習データ記憶部、72 第1の学習済みモデル記憶部、73 許容温度差分布記憶部、74 第2の学習データ記憶部、75 第2の学習済みモデル記憶部、76 目標温度分布記憶部、91 外装、98 保護窓、151 穴、201 電子部品、1001 バス、1002 プロセッサ、1003 メモリ、K 光軸。 1,1a, 1b soldering system, 2 transfer mechanism, 3 flux coating machine, 4 preheater, 5 solder tank, 7 infrared camera, 9 control device, 10 board, 11 flux, 13 jet nozzle, 13a primary nozzle, 13b 2 Next nozzle, 14 solder bath heater, 15 jet motor, 16 soldering inspection device, 17 temperature measuring device, 18 fluxer control unit, 21 identification and setting unit, 22 first learning device, 23 second learning device, 24th 1 inference device, 25 2nd inference device, 26 drive control unit, 27 storage device, 31,51 temperature distribution data creation unit, 32,52 temperature difference distribution data creation unit, 33,53 feature quantity extraction unit, 34th 1 estimation unit, 35 data output unit, 36, 43, 62 control parameter setting unit, 41, 61 data acquisition unit, 42 second estimation unit, 54 first training data creation unit, 55 first trained model Generation unit, 63 simulation unit, 64 second training data creation unit, 65 second trained model generation unit, 71 first training data storage unit, 72 first trained model storage unit, 73 allowable temperature difference distribution. Storage unit, 74 second learning data storage unit, 75 second learned model storage unit, 76 target temperature distribution storage unit, 91 exterior, 98 protective window, 151 hole, 201 electronic parts, 1001 bus, 1002 processor, 1003 Memory, K optical axis.

Claims (13)

  1.  基板にフラックスを塗布するフラックス塗布機と、
     前記基板を予熱するプリヒータと、
     溶融はんだを貯留するはんだ槽と、
     前記はんだ槽内のはんだを溶融させるはんだ槽ヒータと、
     前記基板に向けて前記はんだ槽内の前記溶融はんだを噴流する噴流ノズルと、
     前記フラックス塗布機の上方、前記プリヒータの上方、および前記はんだ槽の上方に前記基板を順次搬送する搬送機構と、
     前記噴流ノズルの上方に配置された温度測定装置と、を備えるはんだ付けシステム。
    A flux coating machine that applies flux to the substrate,
    A preheater that preheats the substrate and
    A solder bath for storing molten solder and
    A solder bath heater that melts the solder in the solder tank, and
    A jet nozzle that ejects the molten solder in the solder bath toward the substrate, and a jet nozzle.
    A transport mechanism for sequentially transporting the substrate above the flux coating machine, above the preheater, and above the solder bath.
    A soldering system comprising a temperature measuring device arranged above the jet nozzle.
  2.  前記搬送機構によって、前記基板は、水平方向と一定の角度だけ相違する方向に搬送され、
     前記温度測定装置は、赤外線カメラを含み、
     前記赤外線カメラの光軸の方向が、前記基板の面に対して垂直となるように前記赤外線カメラが配置されている、請求項1記載のはんだ付けシステム。
    By the transport mechanism, the substrate is transported in a direction different from the horizontal direction by a certain angle.
    The temperature measuring device includes an infrared camera.
    The soldering system according to claim 1, wherein the infrared camera is arranged so that the direction of the optical axis of the infrared camera is perpendicular to the surface of the substrate.
  3.  前記温度測定装置は、前記噴流ノズルから噴流された溶融はんだから前記基板が離脱した後の前記基板の上面の温度を測定する、請求項1または2記載のはんだ付けシステム。 The soldering system according to claim 1 or 2, wherein the temperature measuring device measures the temperature of the upper surface of the substrate after the substrate is separated from the molten solder jetted from the jet nozzle.
  4.  前記はんだ付けシステムの外装には、穴が形成され、
     前記赤外線カメラは、前記はんだ付けシステムの外装の外側の前記穴の部分に配置される、請求項2に記載のはんだ付けシステム。
    Holes are formed in the exterior of the soldering system.
    The soldering system according to claim 2, wherein the infrared camera is arranged in a portion of the hole outside the exterior of the soldering system.
  5.  前記赤外線カメラは、前記赤外線カメラのレンズを保護するための保護窓を含む、請求項2に記載のはんだ付けシステム。 The soldering system according to claim 2, wherein the infrared camera includes a protective window for protecting the lens of the infrared camera.
  6.  前記赤外線カメラは、前記赤外線カメラの光軸の向きを変更することが可能な首振り機構を含む、請求項2に記載のはんだ付けシステム。 The soldering system according to claim 2, wherein the infrared camera includes a swing mechanism capable of changing the direction of the optical axis of the infrared camera.
  7.  基板の温度分布を表わすデータから基板のはんだ付けの良否を推定する第1の学習済みモデルを記憶する第1の記憶部と、
     前記温度測定装置によって測定された温度に基づいて前記搬送機構によって搬送された基板の温度分布を表わすデータを生成し、前記第1の記憶部に記憶されている前記第1の学習済みモデルを用いて、前記生成された前記基板の温度分布を表わすデータから、前記搬送機構によって搬送された基板のはんだ付けの良否を推定する第1の推論装置と、をさらに備える請求項1~6のいずれか1項に記載のはんだ付けシステム。
    A first storage unit that stores the first trained model that estimates the quality of soldering of the board from the data representing the temperature distribution of the board, and
    Data representing the temperature distribution of the substrate conveyed by the transfer mechanism is generated based on the temperature measured by the temperature measuring device, and the first trained model stored in the first storage unit is used. Further, any one of claims 1 to 6, further comprising a first inference device for estimating the quality of soldering of the substrate conveyed by the transfer mechanism from the generated data representing the temperature distribution of the substrate. The soldering system according to item 1.
  8.  制御パラメータに基づいて、前記はんだ付けシステムを制御する駆動制御部と、
     前記制御パラメータが標準値のときの基板の温度分布を表わすデータから前記制御パラメータの修正量を推定する第2の学習済みモデルを記憶する第2の記憶部と、
     前記制御パラメータが標準値のときに前記温度測定装置によって測定された温度から前記搬送機構によって搬送された基板の温度分布を表わすデータを取得し、前記第2の記憶部に記憶されている前記第2の学習済みモデルを用いて、前記取得された前記基板の温度分布を表わすデータから、制御パラメータの修正量を推定する第2の推論装置と、をさらに備える請求項1~6のいずれか1項に記載のはんだ付けシステム。
    A drive control unit that controls the soldering system based on control parameters,
    A second storage unit that stores a second trained model that estimates a correction amount of the control parameter from data representing the temperature distribution of the substrate when the control parameter is a standard value, and a second storage unit.
    When the control parameter is a standard value, data representing the temperature distribution of the substrate conveyed by the transfer mechanism is acquired from the temperature measured by the temperature measuring device, and the data is stored in the second storage unit. One of claims 1 to 6, further comprising a second inference device that estimates a correction amount of a control parameter from the acquired data representing the temperature distribution of the substrate using the trained model of 2. Soldering system as described in section.
  9.  制御パラメータに基づいて、前記はんだ付けシステムを制御する駆動制御部と、
     前記制御パラメータが標準値のときの基板の温度分布を表わすデータと、前記制御パラメータの修正量とから前記制御パラメータが修正された後の設定時間経過後の基板の温度分布を表わすデータを推定する第2の学習済みモデルを記憶する第2の記憶部と、
     前記制御パラメータが標準値のときに前記温度測定装置によって測定された温度から前記搬送機構によって搬送された基板の温度分布を表わすデータを取得し、前記制御パラメータの修正量を生成し、
     前記第2の記憶部に記憶されている前記第2の学習済みモデルを用いて、前記取得された基板の温度分布を表わすデータと、前記生成された制御パラメータの修正量とから、前記制御パラメータが修正された後の設定時間経過後の基板の温度分布を表わすデータを推定する第2の推論装置とを、さらに備える請求項1~6のいずれか1項に記載のはんだ付けシステム。
    A drive control unit that controls the soldering system based on control parameters,
    From the data representing the temperature distribution of the substrate when the control parameter is a standard value and the amount of modification of the control parameter, the data representing the temperature distribution of the substrate after the set time elapses after the control parameter is modified is estimated. A second storage unit that stores the second trained model,
    When the control parameter is a standard value, data representing the temperature distribution of the substrate conveyed by the transfer mechanism is acquired from the temperature measured by the temperature measuring device, and a correction amount of the control parameter is generated.
    Using the second trained model stored in the second storage unit, the control parameter is obtained from the acquired data representing the temperature distribution of the substrate and the correction amount of the generated control parameter. The soldering system according to any one of claims 1 to 6, further comprising a second inference device for estimating data representing the temperature distribution of the substrate after the set time has elapsed after the modification.
  10.  前記搬送機構によって搬送された基板の温度分布を表わすデータと、はんだ付け検査装置による検査結果を表わす前記搬送機構によって搬送された基板のはんだ付けの良否を表わすデータとのセットを複数個含む第1の学習データを記憶する第1の学習データ記憶部と、
     前記第1の学習データを用いて、基板の温度分布を表わすデータから基板のはんだ付けの良否を推定する第1の学習済みモデルを生成する第1の学習装置と、をさらに備える請求項1~6のいずれか1項に記載のはんだ付けシステム。
    A first set including a plurality of sets of data representing the temperature distribution of the substrate conveyed by the transfer mechanism and data indicating the quality of soldering of the substrate conveyed by the transfer mechanism indicating the inspection result by the soldering inspection device. The first learning data storage unit that stores the learning data of
    Claims 1 to further include a first learning device that generates a first trained model that estimates the quality of soldering of the board from data representing the temperature distribution of the board using the first learning data. 6. The soldering system according to any one of 6.
  11.  制御パラメータに基づいて、前記はんだ付けシステムを制御する駆動制御部と、
     前記制御パラメータが標準値のときの前記搬送機構によって搬送された基板の温度分布を表わすデータと、シミュレーションによって求めた前記搬送機構によって搬送された基板の温度分布が許容範囲となるような前記制御パラメータの修正量とのセットを複数個含む第2の学習データを記憶する第2の学習データ記憶部と、
     前記第2の学習データを用いて、前記制御パラメータが標準値のときの基板の温度分布を表わすデータから前記制御パラメータの修正量を推定する第2の学習済みモデルを生成する第2の学習装置と、をさらに備える請求項1~6のいずれか1項に記載のはんだ付けシステム。
    A drive control unit that controls the soldering system based on control parameters,
    The control parameter so that the data representing the temperature distribution of the substrate conveyed by the transfer mechanism when the control parameter is a standard value and the temperature distribution of the substrate conveyed by the transfer mechanism obtained by simulation are within the allowable range. A second training data storage unit that stores a second training data including a plurality of sets of correction amounts of
    A second learning device that uses the second learning data to generate a second trained model that estimates the amount of modification of the control parameter from the data representing the temperature distribution of the substrate when the control parameter is a standard value. The soldering system according to any one of claims 1 to 6, further comprising.
  12.  制御パラメータに基づいて、前記はんだ付けシステムを制御する駆動制御部と、
     前記制御パラメータが標準値のときの前記搬送機構によって搬送された基板の温度分布を表わすデータと、制御パラメータの修正量と、シミュレーションによって求めた前記制御パラメータが前記修正量だけ修正された後の設定時間経過後の前記搬送機構によって搬送された基板の温度分布を表わすデータとのセットを複数個含む第2の学習データを記憶する第2の学習データ記憶部と、
     前記第2の学習データを用いて、前記制御パラメータが標準値のときの基板の温度分布を表わすデータと、前記制御パラメータの修正量とから前記制御パラメータが修正された後の設定時間経過後の基板の温度分布を表わすデータを推定する第2の学習済みモデルを生成する第2の学習装置と、をさらに備える請求項1~6のいずれか1項に記載のはんだ付けシステム。
    A drive control unit that controls the soldering system based on control parameters,
    Data representing the temperature distribution of the substrate conveyed by the transfer mechanism when the control parameter is a standard value, the correction amount of the control parameter, and the setting after the control parameter obtained by simulation is corrected by the correction amount. A second learning data storage unit that stores a second learning data including a plurality of sets of data representing the temperature distribution of the substrate conveyed by the transfer mechanism after the lapse of time, and a second learning data storage unit.
    After the set time elapses after the control parameter is corrected from the data representing the temperature distribution of the substrate when the control parameter is a standard value and the correction amount of the control parameter using the second learning data. The soldering system according to any one of claims 1 to 6, further comprising a second learning device that generates a second trained model that estimates data representing the temperature distribution of the substrate.
  13.  前記基板の温度分布を表わすデータは、前記温度測定装置によって測定された基板の複数位置の温度と、前記基板の複数位置の目標温度との差分を表わす温度差分布データの特徴量である、請求項7~12のいずれか1項に記載のはんだ付けシステム。 The data representing the temperature distribution of the substrate is a feature amount of the temperature difference distribution data representing the difference between the temperature at the plurality of positions of the substrate measured by the temperature measuring device and the target temperature at the plurality of positions of the substrate. Item 2. The soldering system according to any one of Items 7 to 12.
PCT/JP2021/031180 2020-09-04 2021-08-25 Soldering system WO2022050149A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180052031.XA CN115996809A (en) 2020-09-04 2021-08-25 Welding system
JP2022546265A JPWO2022050149A1 (en) 2020-09-04 2021-08-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020149384 2020-09-04
JP2020-149384 2020-09-04

Publications (1)

Publication Number Publication Date
WO2022050149A1 true WO2022050149A1 (en) 2022-03-10

Family

ID=80490912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031180 WO2022050149A1 (en) 2020-09-04 2021-08-25 Soldering system

Country Status (3)

Country Link
JP (1) JPWO2022050149A1 (en)
CN (1) CN115996809A (en)
WO (1) WO2022050149A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117206625A (en) * 2023-11-08 2023-12-12 深圳市矗鑫电子设备有限公司 Welding equipment and welding method for preventing selective wave soldering from being carried out in succession
WO2024136457A1 (en) * 2022-12-23 2024-06-27 주식회사 아이티엘 Method and apparatus for detecting welding defects and performing reconstruction on basis of artificial intelligence model

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677639A (en) * 1992-08-27 1994-03-18 Sharp Corp Flow soldering equipment and reflow soldering equipment
JPH07142852A (en) * 1993-11-17 1995-06-02 Syst Enjinia Kk Method and device for monitoring temperature of printed wiring board in jet soldering device
JPH10193092A (en) * 1997-01-07 1998-07-28 Nissan Motor Co Ltd Device for controlling solder jetting flow
JP2001036232A (en) * 1999-07-23 2001-02-09 Hitachi Ltd Solder removing device
JP2006140244A (en) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd Soldering method and apparatus
WO2018139571A1 (en) * 2017-01-30 2018-08-02 三菱電機株式会社 Soldering system, control device, control method, and program

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677639A (en) * 1992-08-27 1994-03-18 Sharp Corp Flow soldering equipment and reflow soldering equipment
JPH07142852A (en) * 1993-11-17 1995-06-02 Syst Enjinia Kk Method and device for monitoring temperature of printed wiring board in jet soldering device
JPH10193092A (en) * 1997-01-07 1998-07-28 Nissan Motor Co Ltd Device for controlling solder jetting flow
JP2001036232A (en) * 1999-07-23 2001-02-09 Hitachi Ltd Solder removing device
JP2006140244A (en) * 2004-11-11 2006-06-01 Nissan Motor Co Ltd Soldering method and apparatus
WO2018139571A1 (en) * 2017-01-30 2018-08-02 三菱電機株式会社 Soldering system, control device, control method, and program

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024136457A1 (en) * 2022-12-23 2024-06-27 주식회사 아이티엘 Method and apparatus for detecting welding defects and performing reconstruction on basis of artificial intelligence model
CN117206625A (en) * 2023-11-08 2023-12-12 深圳市矗鑫电子设备有限公司 Welding equipment and welding method for preventing selective wave soldering from being carried out in succession
CN117206625B (en) * 2023-11-08 2024-01-09 深圳市矗鑫电子设备有限公司 Welding equipment and welding method for preventing selective wave soldering from being carried out in succession

Also Published As

Publication number Publication date
CN115996809A (en) 2023-04-21
JPWO2022050149A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2022050149A1 (en) Soldering system
JP6727345B2 (en) Soldering system, control device, control method and program
EP3045254B1 (en) Method and directed energy deposition material addition system and computer readable storage medium using neuro-fuzzy logic for controlling material addition processes
US9044827B2 (en) Real-time implementation of generalized predictive algorithm for direct metal deposition (DMD) process control
JP3203185B2 (en) Temperature measuring device and its sensor unit
EP1527379B1 (en) Method, apparatus and program of thermal analysis, heat controller and heating furnace using the method
US20230020897A1 (en) Method and device for controlling a thermal treatment process for glass sheets
JP2018111166A (en) Calibration device of visual sensor, method and program
JP2008296330A (en) Robot simulation device
JP2018107315A (en) Machine learning device for printed board assembling work, control device, industrial machine, assembly system, and machine learning method
JP2018027580A (en) Robot control device
US20070264439A1 (en) Method and Apparatus for Coating a Workpiece
US20240261890A1 (en) Calibration of a quality estimator for a laser cutting method
JPWO2022050149A5 (en)
Shen et al. Visual servoing path planning for cameras obeying the unified model
US20230234153A1 (en) Method for defining welding parameters for a welding process on a workpiece and welding device for carrying out a welding process on a workpiece with defined welding parameters
CN117697765B (en) Method and system for improving conveying accuracy of wafer mechanical arm based on sensing feedback
CN117548824B (en) Laser remote welding method for optical precision measurement robot
Jamnikar et al. Comprehensive molten pool condition-process relations modeling using CNN for wire-feed laser additive manufacturing
CN112462600A (en) High-energy laser control method and system, electronic equipment and storage medium
JP7422884B2 (en) Soldering system and method
KR20010060942A (en) Control apparatus and method of edge masking device using escape information of sheet plate
CN118144454B (en) Automatic control method and device for jet printing equipment based on intelligent data analysis
CN117215194B (en) Rim controller data processing method and system based on propeller cooperation
Pham et al. Model adaptive reference tracking control for uncertain robotic manipulators with input disturbance

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21864207

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022546265

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21864207

Country of ref document: EP

Kind code of ref document: A1