Nothing Special   »   [go: up one dir, main page]

WO2022045055A1 - METHOD FOR FORMULATING NON-ENVELOPED VIRAL VECTOR PARTICLES BY CHANGE IN pH - Google Patents

METHOD FOR FORMULATING NON-ENVELOPED VIRAL VECTOR PARTICLES BY CHANGE IN pH Download PDF

Info

Publication number
WO2022045055A1
WO2022045055A1 PCT/JP2021/030774 JP2021030774W WO2022045055A1 WO 2022045055 A1 WO2022045055 A1 WO 2022045055A1 JP 2021030774 W JP2021030774 W JP 2021030774W WO 2022045055 A1 WO2022045055 A1 WO 2022045055A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
carrier
aav
vector particles
buffer solution
Prior art date
Application number
PCT/JP2021/030774
Other languages
French (fr)
Japanese (ja)
Inventor
春子 猪瀬
英人 蝶野
多佳久 月原
優子 釜田
健介 安部
敏和 西江
佳典 田中
Original Assignee
タカラバイオ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by タカラバイオ株式会社 filed Critical タカラバイオ株式会社
Priority to JP2022544577A priority Critical patent/JPWO2022045055A1/ja
Publication of WO2022045055A1 publication Critical patent/WO2022045055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • C12N7/02Recovery or purification

Definitions

  • the present invention relates to a method for producing non-enveloped virus (hereinafter, non-enveloped virus) particles, preferably adeno-associated virus (hereinafter, AAV) particles. More specifically, the present invention relates to a method for preparing AAV vector particles from a sample containing AAV vector particles and an empty capsid of AAV.
  • non-enveloped virus preferably adeno-associated virus (hereinafter, AAV) particles.
  • AAV adeno-associated virus
  • a viral vector is a vector obtained by modifying a naturally occurring virus so that a desired gene or the like can be transferred into a target cell, and technological development has been progressing in recent years.
  • a virus vector prepared by using gene recombination technology is called a recombinant virus vector
  • the virus from which such a recombinant virus vector is derived includes retrovirus, lentivirus, Sendai virus, herpes virus and the like.
  • Non-enveloped viruses such as enveloped viruses, adenoviruses, and AAV are well known.
  • AAV can infect a wide variety of cells including humans, it also infects non-dividing cells that have completed differentiation such as blood cells, muscles, and nerve cells, and there is little concern about side effects because it is not pathogenic to humans. Since the virus particles are physicochemically stable, their utility value as a vector for gene transfer used in gene therapy for the treatment of congenital gene diseases as well as cancer and infectious diseases is high. It has been attracting attention in recent years.
  • an element essential for virus particle formation is introduced into a cell in the form of a nucleic acid construct to prepare a cell having an ability to produce a virus (hereinafter referred to as a virus-producing cell). It is performed by culturing cells and expressing the elements essential for virus particle formation in the cells.
  • a virus-producing cell a cell having an ability to produce a virus
  • the essential elements for virus particle formation those that require cis supply and those that can be trans-supplied are separated and introduced into virus-producing cells to produce wild-type virus and genetic recombination. Measures are taken to prevent self-sustaining replication at the virus-infected destination.
  • rAAV recombinant virus
  • rAAV vector derived from AAV
  • introducing the "rAAV plasmid” loaded on the plasmid (B) introducing the "rep-cap gene expression plasmid” to supply the Rep protein and Cap protein to the trans, and AAV is a helper for the formation of its infectious virus particles.
  • a method using (C) adenovirus infection has been established because it requires the supply of an auxiliary element from any virus such as adenovirus, herpesvirus, or vaccinia virus, which is called a virus.
  • adenovirus is theoretically contaminated in the produced vector solution, but in order to avoid it, only the adenovirus-derived elements essential for the formation of AAV virus particles are expressed.
  • a manufacturing method (helper-free system) using the introduction of a "helper plasmid" has been developed.
  • the virus-producing cells in which virus production has been achieved are then collected, disrupted, and the resulting cell disruption solution containing the rAAV vector is appropriately subjected to a step such as filter filtration, ultracentrifugation, chromatography, or ultrafiltration.
  • the rAAV vector is purified to the final product.
  • the ultracentrifugation method has been mainly adopted as a method for purifying an rAAV vector.
  • drawbacks of the ultracentrifuge method are (1) special equipment (ultracentrifuge) is required, (2) special work (ultracentrifuge) is required, and (3) AAV particles that can be processed. The amount is limited, and so on.
  • Patent Document 1 discloses a method of separating AAV vector particles and an empty capsid of AAV by using an ion exchange chromatography column depending on the difference in the "salt concentration" of the buffer solution added to the column. This is the first document to show that the AAV vector particles and the empty capsids of AAV can be separated by taking advantage of the different charges and / or charge densities.
  • Patent Document 1 discloses a method of separating AAV vector particles and an empty capsid of AAV by using an ion exchange chromatography column depending on the difference in the "salt concentration" of the buffer solution added to the column. do.
  • novel that specifically remove non-enveloped virus empty capsid or specifically reduce the number of non-enveloped virus empty capsids from samples containing non-enveloped viral vector particles and non-enveloped virus empty capsids There is still a need for methods.
  • the present inventors apply the anion exchange carrier to the carrier.
  • the present invention was completed by finding that the non-enveloped virus vector particles and the empty capsid of the non-enveloped virus can be separated by the difference in the "pH" of the buffer solution.
  • the present invention [1] A method for obtaining an AAV preparation from a sample containing AAV vector particles and an empty capsid of AAV.
  • C A step of applying a buffer solution having a pH lower than that of the buffer solution equilibrated with the carrier to the carrier after the step (b) to elute the AAV vector particles from the carrier; and (d) from the carrier in the step (c).
  • the present invention provides a method for obtaining a non-enveloped virus preparation with a reduced content of empty capsids of non-enveloped virus.
  • non-enveloped virus particles prepared using this method are provided.
  • the non-enveloped virus particles produced by the method of the present invention can also be applied to a conventional method for producing non-enveloped virus particles.
  • FIG. It is a figure which shows the elution pattern of the empty capsid of AAV in Example 1.
  • FIG. It is a figure which shows the elution pattern of the AAV vector particle in Example 1.
  • FIG. It is a figure in which "the elution pattern of the empty capsid of AAV" and "the elution pattern of AAV vector particles” in Example 1 are superimposed.
  • FIG. It is a figure which shows the elution pattern of the mixture containing the AAV vector particle and the empty capsid of AAV in Example 2.
  • FIG. It is a figure which shows SDS-PAGE in Example 2.
  • non-enveloped virus refers to a virus other than the enveloped virus.
  • the enveloped virus refers to a virus having a lipid layer or a lipid bilayer on the surface of the virus.
  • Typical non-enveloped viruses include adenovirus, parvovirus, papovavirus, human papillomavirus, etc. for viruses whose genome is DNA, and rotavirus, coxsackie virus, enterovirus, and sapovirus for viruses whose genome is RNA.
  • Norovirus, poliovirus, echovirus, hepatitis A virus, hepatitis E virus, rhinovirus, astrovirus and the like are exemplified.
  • the non-enveloped virus to which the production method of the present invention is applied is not particularly limited, and even a non-enveloped virus whose production method is already known is a non-enveloped virus newly obtained from nature or a gene recombination derived from them. It may be a virus vector.
  • the non-enveloped virus produced by the production method of the present invention preferably includes adenovirus or AAV of the family Parvoviridae.
  • the production method of the present invention is applicable to any known serotype of AAV, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, and AAV13.
  • the production method of the present invention is preferably applied to AAV2.
  • the serotype from which the capsid is derived is used as a reference. That is, the serotype of the rAAV shall be determined according to the origin of the cap gene used at the time of rAAV preparation, and shall not depend on the origin of the serotype of the AAV genome encapsulated in the rAAV particles. For example, if the capsid is derived from AAV6 and the ITR in the AAV genome encapsulated in the rAAV particles is derived from AAV2, the rAAV is serotype 6 herein. Furthermore, the production method of the present invention can also be applied to the production of AAV containing a variant of the capsid of AAV of each of the above serotypes.
  • AAV refers to a small virus belonging to the family Parvoviridae, Dependoparvovirus, which infects primate animals including humans and other mammals.
  • AAV has an envelopeless icosahedron outer shell and a single single-stranded DNA inside it.
  • AAV includes wild-type viruses and their derivatives, and includes all serotypes and clades unless otherwise noted.
  • non-enveloped virus particle or "virus particle” means a particle having an outer shell composed of a capsid protein.
  • capsid or “capsid protein” is a protein encoded by a cap gene present in the virus genome, and means a protein constituting the outer shell of the virus.
  • the wild-type AAV genome encodes three types of capsid proteins called VP1, VP2, and VP3.
  • all of VP1, VP2 and VP3 are included in the capsid protein.
  • wild-type AAV particles generally 60 capsid proteins containing VP1, VP2, and VP3 in a ratio of 1: 1:10 aggregate to form one icosahedral outer shell.
  • the particles having the outer shell are included in the AAV particles as long as the outer shell can be formed. That is, as used herein, the term "AAV particle” means a particle having an outer shell composed of a capsid protein selected from any one or more of VP1, VP2 and VP3.
  • virus genome means a nucleic acid contained in a virus particle. That is, the term “viral genome” includes genetic elements contained within non-enveloped viral particles (eg, plasmids, phages, transposons, cosmids, chromosomes, etc.).
  • virus vector particle means a virus particle having a vector function. That is, a viral vector particle is an infectious particle containing a virus genome in the virus particle.
  • virus vector particle includes "complete particle”, “full particle”, “vector particle” and "virion”.
  • empty capsid refers to a non-infectious protein or particle that contains a viral capsid protein but lacks a viral genome. Therefore, empty capsids do not function to transfer the gene of interest into the host cell.
  • empty capsid includes “hollow particles” and "empty particles”.
  • the method for measuring the non-enveloped virus is not particularly limited, but for example, (a) the concentration of the non-enveloped virus vector in a certain amount of sample, for example, the concentration of the virus genome, or (b) the protein constituting the non-enveloped virus. Examples thereof include a method of measuring the concentration, for example, the concentration of the capsid protein.
  • a method of measuring the number of copies of the virus genome in the sample by the PCR method is exemplified.
  • AAVpro registered trademark
  • Titration Kit for Real Time PCR
  • Ver. 2 manufactured by Takara Bio Inc.
  • concentration of the AAV genome can be calculated by the method described in the instruction manual.
  • Examples of the method (b) above include a method of analyzing the protein by SDS-PAGE or a method of quantifying the protein by an immunological method.
  • the ratio of the virus vector particles contained in the sample to the empty capsid of the virus can be calculated. That is, the viral vector particles contain both the capsid protein and the viral genome, whereas the empty capsid of the virus contains the capsid protein but not the viral genome. Thus, for example, when a sample is measured, a small amount of viral genome per fixed amount of capsid protein indicates that the sample is high in empty capsids.
  • Another method for determining the ratio of the virus vector particles contained in the sample to the empty capsid of the virus is (c) a method of observing with an electron microscope.
  • a method for measuring whether or not the viral vector particles contained in the sample are functional that is, whether or not they have the ability to infect target cells
  • (d) the ability of the viral vector particles to infect cells experimentally can be mentioned. More specifically, for example, a method of infecting an appropriate target cell with a serial diluted solution of a sample containing a virus vector particle to detect a change in cell shape (cell degeneration), a method of detecting the expression of an introductory gene, or a method of detecting the expression of a transgene. Examples thereof include a method for measuring the number of copies of a viral genome introduced into a cell.
  • sample containing virus vector particles and virus empty capsid used in the method of the present invention is not particularly limited, but is preferably a sample derived from virus-producing cells.
  • the virus-producing cells are not particularly limited, and may be virus-producing cells obtained in the environment or from clinical specimens of patients with infectious diseases, or may be artificially produced virus-producing cells.
  • the cells for producing the virus-producing cells are not particularly limited, and are mammalian cells such as humans, monkeys, and rodents, preferably 293 cells (ATCC CRL-1573) and 293T cells (ATCC) having high transfection efficiency.
  • CRL-3216 293T / 17 cells (ATCC CRL-11268), 293F cells, 293FT cells (all manufactured by Life Technologies), G3T-hi cells (International Publication No. 2006/035829), for commercial virus production
  • a cell line AAV293 cells (manufactured by Stratagene) is exemplified.
  • arthropod cells arthropod cells (insect cells) such as Sf9 cells (ATCC CRL-1711) are exemplified.
  • the 293 cells and the like constitutively express the adenovirus E1 protein, and one or some of the proteins necessary for rAAV production are modified to transiently or constitutively express. It may be a cell.
  • the following elements necessary for virus formation can be introduced into these various cells using a known method or a commercially available kit to obtain virus-producing cells.
  • the cells can be cultured under known culture conditions. For example, culture at a temperature of 30 to 37 ° C., a humidity of 95% RH, and a CO 2 concentration of 5 to 10% (v / v) is exemplified, but the present invention is not limited to such conditions. If the desired proliferation of virus-producing cells and the production of virus can be achieved, the temperature, humidity, and CO 2 concentration other than the above ranges may be used.
  • the culture period is not particularly limited, and is, for example, 12 to 150 hours, preferably 48 to 120 hours.
  • rAAV-producing cells as non-enveloped virus-producing cells as an example, as essential elements for rAAV formation, (A) a nucleic acid encapsulated in rAAV particles, (B) an element derived from AAV, for example, Rep protein and Cap proteins and (C) adenovirus-derived elements such as E1a protein, E1b protein, E2 protein, E4 protein and VARNA.
  • AAV nucleic acid encapsulated in rAAV particles
  • B an element derived from AAV, for example, Rep protein and Cap proteins
  • C adenovirus-derived elements such as E1a protein, E1b protein, E2 protein, E4 protein and VARNA.
  • (A) nucleic acid encapsulated in rAAV particles is composed of an AAV-derived ITR sequence and a nucleic acid desired to be mounted on rAAV particles.
  • Nucleic acids desired to be loaded on rAAV particles include arbitrary foreign genes such as polypeptides (enzymes, growth factors, cytokines, receptors, structural proteins, etc.), antisense RNA, ribozymes, decoys, RNAs that cause RNA interference, and the like. Nucleic acid to supply is exemplified.
  • suitable promoters, enhancers, terminators and other transcriptional regulatory elements may be inserted into the nucleic acids to control the expression of foreign genes.
  • the nucleic acid encapsulated in the rAAV particle may contain any foreign gene desired to be loaded into the rAAV vector between the two ITR sequences, or the rAAV particle between the two ITR sequences. It may contain any foreign gene desired to be loaded into and one or more elements for controlling the expression of the foreign gene.
  • the nucleic acid encapsulated in the rAAV particles can be introduced into cells in the form of a plasmid as a nucleic acid construct.
  • the above-mentioned plasmid can be constructed, for example, by a known method using a commercially available or known plasmid.
  • An example of the plasmid is pAAV-CMV Vector (manufactured by Takara Bio Inc.).
  • each element can be directly introduced into a cell as a protein, and each element can be supplied 1.
  • it can be loaded into a plasmid or viral vector as a plurality of nucleic acid constructs and introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector.
  • An example of the plasmid is pRC2-mi342 Vector (manufactured by Takara Bio Inc.).
  • each element can be directly introduced into cells as a protein.
  • Each element can be loaded into a plasmid or viral vector as one or more nucleic acid constructs capable of being introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector.
  • An example of the plasmid is pHelper Vector (manufactured by Takara Bio Inc.).
  • the above-mentioned purpose can also be achieved by directly infecting cells with adenovirus instead of a plasmid or viral vector.
  • sample containing virus vector particles and an empty capsid of virus used in the method of the present invention is not particularly limited to the present invention, but the virus-producing cells cultured as described above are disrupted or lysed. Can be prepared.
  • the present invention can be carried out using the supernatant of the culture solution as a sample.
  • Crushing and lysis of virus-producing cells can be carried out by known methods such as ultrasonic treatment, freeze-thaw treatment, enzyme treatment, and osmotic pressure treatment.
  • cells can be lysed by adding a surfactant to a culture solution containing virus-producing cells.
  • the surfactant is not particularly limited, and for example, Triton X-100 is exemplified.
  • the concentration of the surfactant is not particularly limited, for example, the final concentration is 0.01 to 1%, preferably the final concentration is 0.05 to 0.5%, and more preferably the final concentration is 0.08 to 0.12%. Is exemplified.
  • the temperature and time during contact with the surfactant are not particularly limited, and the temperature is, for example, 0 to 40 ° C, preferably 4 to 37 ° C, and the time is, for example, 5 minutes to 8 hours. Is exemplified by 10 minutes to 4 hours, more preferably 30 minutes to 2 hours.
  • the above-mentioned sample obtained by disrupting or lysing virus-producing cells may be directly subjected to the method of the present invention, or may be temporarily subjected to another purification step. Further, the virus vector particles and / or the empty capsid of the virus may be concentrated by the other purification step. Examples of the other purification method include ultracentrifugation, chromatography, ultrafiltration, and other known methods.
  • Purification by chromatography is performed by an ion exchange column (for example, Mustang Q (manufactured by pool)), an affinity column (for example, AVB Sepharose (registered trademark) (manufactured by Cytiva), a heparin column, etc.), a hydroxyl apatite column, or the like. Can be carried out.
  • an ion exchange column for example, Mustang Q (manufactured by pool)
  • an affinity column for example, AVB Sepharose (registered trademark) (manufactured by Cytiva), a heparin column, etc.
  • a hydroxyl apatite column or the like.
  • sample containing virus vector particles and virus empty capsid prepared in this way can be stored for a long period of time in an appropriate solution.
  • a sample containing AAV vector particles and an empty capsid of AAV when replaced with phosphate buffered saline (pH 7.4), under the condition of ⁇ 80 ° C., for example, for 12 hours or more and 1 day or more, 2 days or more, 3 days or more, 4 days or more, 5 days or more, 6 days or more, 1 week or more, 2 weeks or more, 3 weeks or more, 1 month or more, 2 months or more, 3 months or more, 4 months It can be stored for 5 months or more, or 6 months or more.
  • anion exchange carrier Various known anion exchange carriers can be used in the method of the present invention. Examples include, but are not limited to: Macro-Prep (registered trademark) Q (manufactured by Bio-Rad Laboratories), UNOSphere Q (manufactured by Bio-Rad Laboratories), POROS 50HQ (manufactured by Thermo Fisher Scientific), POROS 50 (Thermo Fisher Scientific), SOURCE 30Q (Cytiva), DEAE-Sepharose (Cytiva), Q Sepharose (Cytiva).
  • Macro-Prep registered trademark
  • Q manufactured by Bio-Rad Laboratories
  • UNOSphere Q manufactured by Bio-Rad Laboratories
  • POROS 50HQ manufactured by Thermo Fisher Scientific
  • POROS 50 Thermo Fisher Scientific
  • SOURCE 30Q Cytiva
  • DEAE-Sepharose Cytiva
  • Q Sepharose Cytiva
  • Examples of the functional group (also referred to as an ion exchange group) of the anion exchange carrier include, but are not limited to, a quaternary ammonium group, a tertiary amino group, a secondary amino group, and a primary amino group.
  • a quaternary ammonium group is suitable as the functional group of the anion exchange carrier.
  • the anion exchange carrier may or may not be packed in the column, but preferably, the anion exchange carrier packed in the column is used.
  • CIMmultus QA manufactured by BIA Separations
  • the anion exchange carrier is first equilibrated using standard buffer according to the manufacturer's specifications.
  • the buffer solution for equilibrating the anion exchange carrier is referred to as "equilibrium buffer”. It is desirable that the composition of the equilibration buffer is such that it can provide conditions under which the AAV vector particles can bind to the carrier. Such a composition can be appropriately determined by those skilled in the art.
  • the buffer component of the equilibration buffer is not particularly limited, but one based on Tris hydroxymethylaminomethane (hereinafter, Tris) buffer or Bis-Tris propane (hereinafter, BTP) buffer is preferable, and one based on Tris buffer. Is more desirable.
  • Tris buffer the equilibration buffer is, for example, 10-50 mM Tris-HCl, preferably 15-40 (eg, 15, 20, 25, 30, 35, 40, etc.) mM Tris-HCl.
  • the equilibration buffer further comprises salts (eg, NaCl or KCl), eg, 5-50 mM (eg, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 mM, etc., or ranges thereof.
  • the equilibration buffer is salt-free.
  • the pH of the equilibration buffer is, for example, 7-11, preferably 8-10 (eg, pH 8, 8.5, 9, 9.5, 10, etc., or any pH within these ranges). ..
  • Step (a) is a step of applying a sample containing virus vector particles and an empty capsid of virus to an anion exchange carrier equilibrated with a buffer solution, and binding the virus vector particles to the carrier.
  • the empty capsid of the virus may bind to the anion exchange carrier as long as the virus vector particles bind to the anion exchange carrier. That is, only the viral vector particles may bind to the anion exchange carrier, or both the viral vector particles and the empty capsid of the virus may bind to the anion exchange carrier.
  • the volume of the sample applied to the anion exchange carrier is appropriately determined depending on the amount of virus contained in the sample and the type and volume of the anion exchange carrier used.
  • the sample can be diluted or replaced with a suitable solution in advance, and then applied to the anion exchange carrier.
  • the sample can be diluted 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 30-fold, 40-fold or 50-fold with equilibration buffer.
  • the step (b) is a step of applying a buffer solution to the carrier to which the virus vector particles are bound after the step (a), and elution of the non-bound product from the carrier.
  • the virus vector particles are bound to the carrier after the step (a), but in the step (b), the virus vector particles are not eluted, but only the non-bound product is eluted from the carrier.
  • the empty capsid of the virus is eluted from the carrier by applying an appropriate buffer solution in this step. ..
  • non-binding substance means a substance that does not bind to the carrier other than the viral vector particles.
  • Non-bindings include, for example, contaminants in the sample and empty capsids if the empty capsid of the virus does not bind to the carrier in step (a).
  • the empty capsid of the virus is eluted from the carrier by applying an appropriate buffer solution. ..
  • the buffer solution used in the step (b) has a higher pH than the buffer solution used in the step (c), which will be described later, it is also called a "high pH buffer".
  • the high pH buffer does not elute the viral vector particles bound to the carrier from the carrier, while the high pH buffer elutes the unbound material from the carrier. If both the viral vector particles and the empty capsid of the virus are bound to the carrier, the viral vector particles bound to the carrier are eluted from the carrier by applying a high pH buffer with a higher salt concentration than the equilibrium buffer. Instead, only the empty capsid of the virus is eluted from the carrier.
  • the high pH buffer may have the same salt concentration as the equilibration buffer, eg the same buffer as the equilibration buffer. You may.
  • both the virus vector particles and the empty capsid of the virus are bound to the carrier, equilibrate after applying a high pH buffer with a salt concentration comparable to that of the equilibration buffer to elute the unbound from the carrier.
  • a high pH buffer solution with a salt concentration higher than that of the conversion buffer solution may be applied to elute the empty capsid of the virus bound to the carrier from the carrier.
  • a high pH buffer solution having a salt concentration higher than that of the equilibration buffer solution may be applied to elute the unbound product and the empty capsid of the virus bound to the carrier from the carrier in one step.
  • the high pH buffer solution is preferably based on Tris buffer or BTP buffer, and more preferably based on Tris buffer.
  • the high pH buffer is, for example, 10-50 mM Tris-HCl, preferably 15-40 (eg, 15, 20, 25, 30, 35, 40, etc.) mM Tris-HCl.
  • High pH buffers further include salts (eg, NaCl or KCl), such as 10-100 mM, preferably 20-80 (eg, 20, 30, 40, 50, 55, 60, 70, 80, etc., or these. Any concentration within the range of) may be contained in mM.
  • the high pH buffer may further include another salt (eg, MgCl 2 ), such as 1-10 mM, preferably 2-8 (eg, 2, 3, 4, 5, 5.5, 6, 7, 8 and the like. , Or any concentration within these ranges) may be included in mM.
  • the pH of the high pH buffer is, for example, 7-11, preferably 8-10 (eg, pH 8, 8.5, 9, 9.5, 10, etc., or any pH within these ranges). ..
  • the high pH buffer has a higher pH than the low pH buffer described later.
  • the difference in pH between the high pH buffer solution and the low pH buffer solution is preferably 1.0 or more, 1.5 or more, 2.0 or more, 2.5 or more, and 3.0 or more.
  • the high pH buffer may have the same pH as the equilibration buffer, or may have a higher or lower pH than the equilibration buffer.
  • the high pH buffer has the same pH as the equilibration buffer.
  • the high pH buffer solution and the low pH buffer solution contain salts of the same type and concentration. That is, it is desirable that the composition of the high pH buffer solution and the low pH buffer solution are the same except that the pH is different.
  • Examples of the high pH buffer solution include "20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 9.0".
  • a buffer solution having a pH lower than that of the equilibrium buffer solution and lower than that of the high pH buffer solution is applied to the carrier to which the virus vector particles are bound after the step (b), and the virus vector particles are used as the carrier. It is a step of elution from.
  • the buffer solution used in the step (c) has a lower pH than the equilibration buffer solution and the buffer solution used in the step (b), it is also called a "low pH buffer".
  • a buffer solution having a pH lower than that of the equilibration buffer solution by 1.0 or more preferably a buffer solution having a pH lower than that of the equilibration buffer solution by 2.0 or more is used as the low pH buffer solution.
  • the low pH buffer may or may not elute the empty capsid of the virus as long as it elutes the viral vector particles bound to the carrier from the carrier.
  • the low pH buffer is preferably based on Tris buffer or BTP buffer, and more preferably based on Tris buffer.
  • the low pH buffer is, for example, 10-50 mM Tris-HCl, preferably 15-40 (eg, 15, 20, 25, 30, 35, 40, etc.) mM Tris-HCl.
  • the low pH buffer further comprises salts (eg, NaCl or KCl), eg, 10-100 mM, preferably 20-80 (eg, 20, 30, 40, 50, 55, 60, 70, 80, etc., or these. Any concentration within the range of) may be contained in mM.
  • the low pH buffer may further include another salt (eg, MgCl 2 ), such as 1-10 mM, preferably 2-8 (eg, 2, 3, 4, 5, 5.5, 6, 7, 8 and the like. , Or any concentration within these ranges) may be included in mM.
  • the pH of the low pH buffer is, for example, 5-9, preferably 6-8 (eg, pH 6, 6.5, 7, 7.5, 8, etc., or any pH within these ranges). ..
  • the low pH buffer has a lower pH than the high pH buffer.
  • the difference in pH between the high pH buffer solution and the low pH buffer solution is preferably 1.0 or more, 1.5 or more, 2.0 or more, 2.5 or more, and 3.0 or more.
  • the high pH buffer solution and the low pH buffer solution contain salts of the same type and concentration. That is, it is desirable that the composition of the high pH buffer solution and the low pH buffer solution are the same except that the pH is different.
  • Examples of the low pH buffer solution include "20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 7.0".
  • Step (d) is a step of collecting the eluate from the carrier in step (c) to obtain a virus preparation.
  • the eluate from the carrier contains viral vector particles. Therefore, step (d) can also be said to be a step of collecting the eluate containing the virus vector particles from the carrier to obtain a virus preparation.
  • the resulting virus preparation contains viral vector particles.
  • the virus preparation may contain not only the viral vector particles but also the empty capsids of the virus, but the content of the empty capsids is compared to the content in the sample containing the viral vector particles and the empty capsids of the virus. It has decreased much.
  • the method of collecting the eluate is not particularly limited. For example, when using an anion-exchange carrier packed in a column, it is done by separating the solution eluted from the column when a low pH buffer is applied.
  • the virus preparation is based on the total amount of the virus vector particle and the virus empty capsid. , Less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10% or less than 5% containing empty capsids of the virus. Therefore, by the method of the present invention, a virus preparation containing a high concentration of viral vector particles can be obtained.
  • the recovery rates of viral vector particles in virus preparations are 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more. Therefore, the present invention also provides a method for efficiently recovering viral vector particles from a sample containing viral vector particles and an empty capsid of virus.
  • the present invention provides a method for producing a virus preparation containing non-enveloped viral vector particles, a kit used in the production method, and a preparation containing non-enveloped virus vector particles produced by the production method.
  • the kit includes, for example, a buffer used in each step of the method of the invention, and an anion exchange carrier.
  • the preparation containing the non-enveloped viral vector particles obtained by using the production method of the present invention can be used as an active ingredient of a pharmaceutical composition.
  • the pharmaceutical composition can be used in vitro to cells derived from the patient or administered directly to the patient.
  • Preparation Example 1 Preparation of AAV vector particles and empty capsid (1) Production of rAAV2 293T cells (ATCC, CRL-3216) were used as host cells for producing rAAV2. Three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were transfected into 293T cells by the lipofection method. After transfection, 293T cells were cultured for 3 days.
  • pRC2-mi342 Vector manufactured by Takara Bio Inc.
  • pHelper Vector manufactured by Takara Bio Inc.
  • pAAV-ZsGreen1 Vector manufactured by Takara Bio Inc.
  • AAV vector particles and empty capsids contained in rAAV2 obtained in Preparation Example 1- (2) are separated and separated by cesium chloride density gradient centrifugation using an ultracentrifuge. I drew it. Cesium chloride was added to the sample so that the refractive index was 1.371, and ultracentrifugation was performed using Optima XE-90 (manufactured by Beckman Coulter) at 148500 ⁇ g at 21 ° C. for 42 hours. A part of each fraction obtained by separating 0.5 ml of the separated sample was subjected to SDS-polyacrylamide gel electrophoresis.
  • the fraction in which the AAV capsid protein was accumulated was determined by Oriole staining with Oriole fluorescent gel stain (manufactured by Bio-Rad Laboratories). Next, the concentration of the AAV genome contained in each fraction was measured by quantitative real-time PCR using AAVpro Titration Kit (manufactured by Takara Bio Inc.) to determine the fraction in which the AAV genome was accumulated. The fraction in which only the AAV capsid protein is accumulated is collected as "empty capsid", and the fraction in which both the AAV capsid protein and the AAV genome are accumulated is collected as "AAV vector particles". It was replaced with (pH 7.4).
  • Example 1 Differences in Elution Patterns of AAV Vector Particles and Empty Capsids (1) Program Design A program was designed for the purpose of separating AAV vector particles and empty capsids using anion exchange column chromatography. That is, in the program, the sample was first loaded into a CIMmultus QA (quaternary aminoe) -1 column (manufactured by BIA Separations) equilibrated with equilibration buffer (20 mM Tris-HCl, pH 9.0). Run the equilibration buffer and wash the column until the UV280 value drops near baseline.
  • CIMmultus QA quaternary aminoe
  • a buffer solution (20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 9.0) having the same pH as the equilibration buffer solution and having an increased salt concentration is flowed through the column to elute the empty capsid.
  • a buffer solution (20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 7.0) having the same salt concentration but lower pH is passed through the column to elute the AAV vector particles. Differences in elution patterns of AAV vector particles and empty capsids were revealed by loading AAV vector particles and empty capsids separately into columns and eluting using the above program.
  • Example 3- (3) Elution of AAV vector particles
  • the AAV vector particles obtained in Preparation Example 1- (3) were diluted 20-fold with an equilibration buffer solution, and the equilibration buffer solution was used. It was loaded onto a column equilibrated with (20 mM Tris-HCl, pH 9.0). After the column was washed with equilibration buffer and the UV280 value dropped to near the baseline, elution was performed from the column using the same program as in Example 1- (2). The pH was the same as that of the equilibration buffer solution, and a peak with absorption in UV280 could not be confirmed in the buffer solution having an increased salt concentration.
  • pH 7.0 elution fraction a peak absorbed by UV280 could be recovered (hereinafter referred to as "pH 7.0 elution fraction").
  • the collected fractions were analyzed by SDS-PAGE and quantitative real-time PCR. From the obtained data, it was confirmed that the "pH 7.0 elution fraction" contained AAV vector particles (data not shown). The elution pattern of AAV vector particles is shown in FIG.
  • FIG. 3 shows an overlay of the elution patterns of empty capsids (FIG. 1) and the elution patterns of AAV vector particles (FIG. 2).
  • Example 2 Separation of AAV Vector Particles and Empty Capsids Based on the findings of Example 1- (4), AAV vector particles and empty capsids were separated using a CIMmultus QA-1 column. That is, the AAV vector particles obtained in Preparation Example 1- (3) and the empty capsid were mixed (about 1: 1 by weight), the mixture was loaded onto a CIMmultus QA-1 column, and Example 1- (1). ) Eluted by the program. Peaks with absorption in UV280 were confirmed in both the pH 9.0 elution fraction and the pH 7.0 elution fraction, and each was recovered. The elution pattern of the mixture of AAV vector particles and empty capsid is shown in FIG.
  • the collected fractions were analyzed by SDS-PAGE and quantitative real-time PCR.
  • SDS-PAGE and quantitative real-time PCR were performed according to conventional methods. As a result, similar capsid protein bands were confirmed in both fractions by SDS-PAGE (Fig. 5).
  • quantitative real-time PCR the AAV genome was detected only in the pH 7.0-eluted fraction (Fig. 6). From these data, it was shown that the pH 9.0 elution fraction contained only empty capsids, whereas the pH 7.0 elution fraction contained AAV vector particles.
  • a preparation containing high-purity non-enveloped viral vector particles can be obtained.
  • the non-enveloped viral vector particles prepared by the method of the present invention and compositions containing the particles as active ingredients are very useful as gene transfer methods in the field of basic research on gene therapy or clinical application.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Virology (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides a method that is for obtaining an AAV formulation from a sample containing AAV vector particles and empty capsids of AAV, and that comprises: (a) a step for applying the sample containing AAV vector particles and empty capsids of AAV to an anionic exchange carrier equilibrated with a buffer so as to cause the AAV vector particles to be bound to the carrier; (b) a step for applying a buffer to the carrier after step (a) so that non-bound substances are eluted from the carrier; (c) a step for applying a buffer having a pH lower than that of the buffer used to equilibrate the carrier to the carrier after step (b) so that the AAV vector particles are eluted from the carrier; and (d) a step for collecting an eluate obtained from the carrier in step (c) to obtain an AAV formulation.

Description

pHの違いによる非エンベロープウイルスベクター粒子の調製方法Method of preparing non-enveloped viral vector particles by different pH
 本発明は、エンベロープを持たないウイルス(以下、非エンベロープウイルス)粒子、好適には、アデノ随伴ウイルス(以下、AAV)粒子を製造するための方法に関する。より具体的には、本発明は、AAVベクター粒子とAAVの空キャプシドとを含む試料から、AAVベクター粒子を調製するための方法に関する。 The present invention relates to a method for producing non-enveloped virus (hereinafter, non-enveloped virus) particles, preferably adeno-associated virus (hereinafter, AAV) particles. More specifically, the present invention relates to a method for preparing AAV vector particles from a sample containing AAV vector particles and an empty capsid of AAV.
 現在、遺伝子組換え分野や医療分野においては、ヒトを含む哺乳動物細胞に遺伝子を導入する方法として、電気穿孔や金属微粒子を用いる物理的方法、核酸、ポリカチオン、もしくはリポソームを用いる化学的方法等に加えて、生物学的方法としてウイルス由来の遺伝子導入用のベクター(以下、ウイルスベクター)を用いる方法がある。ウイルスベクターとは、天然由来のウイルスを改変し、所望の遺伝子等を標的細胞に移入することができるようにしたベクターのことで、近年技術開発が進んでいる。一般に、遺伝子組換え技術を用いて作製したウイルスベクターは、組換えウイルスベクターと呼ばれるが、そういった組換えウイルスベクターの由来となるウイルスとしては、レトロウイルスやレンチウイルス、センダイウイルス、ならびにヘルペスウイルス等のエンベロープを持つウイルス、アデノウイルス、AAV等の非エンベロープウイルスがよく知られている。 Currently, in the field of gene recombination and medical field, as a method for introducing a gene into mammalian cells including humans, a physical method using electric perforation or metal fine particles, a chemical method using nucleic acid, polycation, or liposome, etc. In addition, as a biological method, there is a method using a vector for introducing a gene derived from a virus (hereinafter referred to as a virus vector). A viral vector is a vector obtained by modifying a naturally occurring virus so that a desired gene or the like can be transferred into a target cell, and technological development has been progressing in recent years. Generally, a virus vector prepared by using gene recombination technology is called a recombinant virus vector, and the virus from which such a recombinant virus vector is derived includes retrovirus, lentivirus, Sendai virus, herpes virus and the like. Non-enveloped viruses such as enveloped viruses, adenoviruses, and AAV are well known.
 特にAAVはヒトを含む広範な種の細胞に感染可能で、血球、筋、神経細胞等の分化を終えた非分裂細胞にも感染すること、ヒトに対する病原性がないため副作用の心配が低いこと、ウイルス粒子が物理化学的に安定であること等から、先天性遺伝子疾患の治療の他、癌や感染症の治療を目的とした遺伝子治療法に用いる遺伝子導入用のベクターとしての利用価値が、近年注目されている。 In particular, AAV can infect a wide variety of cells including humans, it also infects non-dividing cells that have completed differentiation such as blood cells, muscles, and nerve cells, and there is little concern about side effects because it is not pathogenic to humans. Since the virus particles are physicochemically stable, their utility value as a vector for gene transfer used in gene therapy for the treatment of congenital gene diseases as well as cancer and infectious diseases is high. It has been attracting attention in recent years.
 組換えウイルスベクターの製造方法としては、通常、ウイルス粒子形成に必須な要素を核酸構築物の形で細胞に導入し、ウイルスを産生する能力を有する細胞(以下、ウイルス産生細胞)を作製し、当該細胞を培養してウイルス粒子形成に必須な要素を当該細胞内で発現させることで行われる。一般的には、前記ウイルス粒子形成に必須な要素のうち、シス供給を要するものとトランス供給可能なものを分離してウイルス産生細胞に導入することで、野生型ウイルスの産生、及び遺伝子組換えウイルスの感染先での自立複製を防ぐ方法が取られる。 As a method for producing a recombinant virus vector, usually, an element essential for virus particle formation is introduced into a cell in the form of a nucleic acid construct to prepare a cell having an ability to produce a virus (hereinafter referred to as a virus-producing cell). It is performed by culturing cells and expressing the elements essential for virus particle formation in the cells. In general, among the essential elements for virus particle formation, those that require cis supply and those that can be trans-supplied are separated and introduced into virus-producing cells to produce wild-type virus and genetic recombination. Measures are taken to prevent self-sustaining replication at the virus-infected destination.
 以下、AAVを由来とした組換えウイルス(以下、rAAV)ベクターを例に挙げて具体的に説明すると、(A)野生型AAVゲノムの両端のITRを残し、rep遺伝子およびcap遺伝子を除いた核酸をプラスミドに搭載した「rAAVプラスミド」の導入、(B)Repタンパク質およびCapタンパク質をトランスに供給するための「rep-cap遺伝子発現プラスミド」の導入、加えてAAVはその感染性ウイルス粒子形成にヘルパーウイルスと呼ばれる、アデノウイルス、ヘルペスウイルス、又はワクシニアウイルス等のいずれかのウイルスからの補助要素の供給を要することから、(C)アデノウイルス感染、を用いる方法が確立されている。更に、上記方法を用いると、理論上、製造されたベクター液中にアデノウイルスが混入するが、それを回避するため、アデノウイルス由来要素のうち、AAVのウイルス粒子形成に必須な要素のみを発現する「ヘルパープラスミド」の導入、を用いる製造方法(ヘルパーフリー系)が開発された。 Hereinafter, a recombinant virus (hereinafter referred to as rAAV) vector derived from AAV will be specifically described as an example. Introducing the "rAAV plasmid" loaded on the plasmid, (B) introducing the "rep-cap gene expression plasmid" to supply the Rep protein and Cap protein to the trans, and AAV is a helper for the formation of its infectious virus particles. A method using (C) adenovirus infection has been established because it requires the supply of an auxiliary element from any virus such as adenovirus, herpesvirus, or vaccinia virus, which is called a virus. Furthermore, when the above method is used, adenovirus is theoretically contaminated in the produced vector solution, but in order to avoid it, only the adenovirus-derived elements essential for the formation of AAV virus particles are expressed. A manufacturing method (helper-free system) using the introduction of a "helper plasmid" has been developed.
 ウイルス産生が達成されたウイルス産生細胞は、その後、回収、破砕され、得られたrAAVベクターを含む細胞破砕液を適宜フィルターろ過、超遠心、クロマトグラフィー、又は限外ろ過等の工程に供することによってrAAVベクターが精製され、最終製造物となる。 The virus-producing cells in which virus production has been achieved are then collected, disrupted, and the resulting cell disruption solution containing the rAAV vector is appropriately subjected to a step such as filter filtration, ultracentrifugation, chromatography, or ultrafiltration. The rAAV vector is purified to the final product.
 rAAVベクターの精製方法として、従来は超遠心法が主に採用されてきた。しかし、超遠心法の難点として、(1)特殊な機器(超遠心機)が必要であること、(2)特殊な作業(超遠心)が必要であること、(3)処理できるAAV粒子の量に限りがあること、等が挙げられる。 Conventionally, the ultracentrifugation method has been mainly adopted as a method for purifying an rAAV vector. However, the drawbacks of the ultracentrifuge method are (1) special equipment (ultracentrifuge) is required, (2) special work (ultracentrifuge) is required, and (3) AAV particles that can be processed. The amount is limited, and so on.
 現在、rAAVベクターの利用が遺伝子治療の基礎研究、又は臨床応用の分野に広がるにつれ、より高力価、高純度のrAAVベクターを、大規模にかつ簡易に取得する方法が必要とされ、各種の改良方法が開示されている。例えば、大規模にrAAVベクターを精製するために、カラムクロマトグラフィーが用いられるが、カラムクロマトグラフィーを使用して精製したrAAVベクターは、通常、かなりの量の空キャプシドを含む。大量の空キャプシドの存在は、例えば、そのキャプシドタンパク質に対する望ましくない免疫応答を惹起することによって、または標的細胞表面結合部位についてrAAVベクターと競合することによって、臨床的適用を妨害し得る。 Currently, as the use of rAAV vectors spreads to the fields of basic research on gene therapy or clinical application, there is a need for a large-scale and easy method for obtaining rAAV vectors with higher titers and higher purity. The improvement method is disclosed. For example, column chromatography is used to purify rAAV vectors on a large scale, but rAAV vectors purified using column chromatography usually contain significant amounts of empty capsids. The presence of large amounts of empty capsids can interfere with clinical application, for example, by eliciting an undesired immune response to the capsid protein or by competing with the rAAV vector for target cell surface binding sites.
 近年、イオン交換クロマトグラフィーを用いて、AAVベクター粒子とAAVの空キャプシドとを分離する方法が開発された。すなわち、特許文献1では、イオン交換クロマトグラフィーカラムを用いて、該カラムに添加する緩衝液の「塩濃度」の違いにより、AAVベクター粒子とAAVの空キャプシドとを分離する方法が開示される。当該文献は、AAVベクター粒子とAAVの空キャプシドとの間では電荷および/または電荷密度が異なることを利用して、両者が分離できることを示した最初の文献である。 In recent years, a method for separating AAV vector particles and empty capsids of AAV using ion exchange chromatography has been developed. That is, Patent Document 1 discloses a method of separating AAV vector particles and an empty capsid of AAV by using an ion exchange chromatography column depending on the difference in the "salt concentration" of the buffer solution added to the column. This is the first document to show that the AAV vector particles and the empty capsids of AAV can be separated by taking advantage of the different charges and / or charge densities.
特許第5166477号Patent No. 5166477
 上述したように、特許文献1は、イオン交換クロマトグラフィーカラムを用いて、該カラムに添加する緩衝液の「塩濃度」の違いにより、AAVベクター粒子とAAVの空キャプシドとを分離する方法を開示する。しかし、非エンベロープウイルスベクター粒子と非エンベロープウイルスの空キャプシドとを含む試料から非エンベロープウイルスの空キャプシドを特異的に除去するかまたは非エンベロープウイルスの空キャプシドの数を特異的に減少させる、新規な方法についての必要性が依然存在する。 As described above, Patent Document 1 discloses a method of separating AAV vector particles and an empty capsid of AAV by using an ion exchange chromatography column depending on the difference in the "salt concentration" of the buffer solution added to the column. do. However, novels that specifically remove non-enveloped virus empty capsid or specifically reduce the number of non-enveloped virus empty capsids from samples containing non-enveloped viral vector particles and non-enveloped virus empty capsids. There is still a need for methods.
 本発明者らは、非エンベロープウイルスの空キャプシドの量が減少した非エンベロープウイルスを調製するための方法を提供することを目的に鋭意研究した結果、アニオン交換担体を用いて、該担体に適用する緩衝液の「pH」の違いにより、非エンベロープウイルスベクター粒子と非エンベロープウイルスの空キャプシドとを分離できることを見出し、本発明を完成させた。 As a result of diligent research aimed at providing a method for preparing a non-enveloped virus in which the amount of empty capsid of the non-enveloped virus is reduced, the present inventors apply the anion exchange carrier to the carrier. The present invention was completed by finding that the non-enveloped virus vector particles and the empty capsid of the non-enveloped virus can be separated by the difference in the "pH" of the buffer solution.
 すなわち、本発明は、
[1]AAVベクター粒子とAAVの空キャプシドとを含む試料からAAV調製物を得るための方法であって、該方法は、
 (a)AAVベクター粒子とAAVの空キャプシドとを含む試料を、緩衝液で平衡化されたアニオン交換担体に対して適用し、該AAVベクター粒子を該担体に結合させる工程;
 (b)工程(a)後の担体に緩衝液を適用し、非結合物を担体から溶出させる工程;
 (c)工程(b)後の担体に担体を平衡化した緩衝液よりも低いpHの緩衝液を適用し、AAVベクター粒子を担体から溶出させる工程;及び
 (d)工程(c)における担体からの溶出物を収集してAAV調製物を得る工程、
を包含する、方法、
[2]工程(b)において、担体に結合したAAVの空キャプシドをさらに溶出させる、[1]に記載の方法、
[3]担体を平衡化した緩衝液と工程(c)の溶出用緩衝液のpHの差が1.0以上である、[1]に記載の方法、
[4]担体を平衡化した緩衝液と工程(c)の溶出用緩衝液のpHの差が2.0以上である、[1]に記載の方法、
[5]アニオン交換担体の官能基が4級アンモニウム基である[1]に記載の方法、
[6]カラムに充填されたアニオン交換担体が使用される[1]に記載の方法、
[7]担体を平衡化した緩衝液が、緩衝成分としてトリスを含む緩衝液である[1]に記載の方法、
[8]工程(c)の溶出用緩衝液が、緩衝成分としてトリスを含む緩衝液である[1]に記載の方法、
に関する。
That is, the present invention
[1] A method for obtaining an AAV preparation from a sample containing AAV vector particles and an empty capsid of AAV.
(A) A step of applying a sample containing AAV vector particles and an empty capsid of AAV to an anion exchange carrier equilibrated with a buffer and binding the AAV vector particles to the carrier;
(B) A step of applying a buffer solution to the carrier after the step (a) to elute the non-bonded product from the carrier;
(C) A step of applying a buffer solution having a pH lower than that of the buffer solution equilibrated with the carrier to the carrier after the step (b) to elute the AAV vector particles from the carrier; and (d) from the carrier in the step (c). To obtain an AAV preparation by collecting the eluate of
Including, method,
[2] The method according to [1], wherein the empty capsid of AAV bound to the carrier is further eluted in the step (b).
[3] The method according to [1], wherein the difference in pH between the buffer solution in which the carrier is equilibrated and the buffer solution for elution in step (c) is 1.0 or more.
[4] The method according to [1], wherein the difference in pH between the buffer solution in which the carrier is equilibrated and the buffer solution for elution in step (c) is 2.0 or more.
[5] The method according to [1], wherein the functional group of the anion exchange carrier is a quaternary ammonium group.
[6] The method according to [1], wherein the anion exchange carrier packed in the column is used.
[7] The method according to [1], wherein the buffer solution in which the carrier is equilibrated is a buffer solution containing Tris as a buffer component.
[8] The method according to [1], wherein the elution buffer solution in step (c) is a buffer solution containing Tris as a buffer component.
Regarding.
 本発明により、非エンベロープウイルスの空キャプシドの含有量が減少した非エンベロープウイルス調製物を得るための方法が提供される。更に、当該方法を用いて調製した非エンベロープウイルス粒子が提供される。本発明の方法で製造された非エンベロープウイルス粒子は、従来の非エンベロープウイルス粒子の製造法にも適用可能である。 The present invention provides a method for obtaining a non-enveloped virus preparation with a reduced content of empty capsids of non-enveloped virus. In addition, non-enveloped virus particles prepared using this method are provided. The non-enveloped virus particles produced by the method of the present invention can also be applied to a conventional method for producing non-enveloped virus particles.
実施例1における、AAVの空キャプシドの溶出パターンを示す図である。It is a figure which shows the elution pattern of the empty capsid of AAV in Example 1. FIG. 実施例1における、AAVベクター粒子の溶出パターンを示す図である。It is a figure which shows the elution pattern of the AAV vector particle in Example 1. FIG. 実施例1における、「AAVの空キャプシドの溶出パターン」と「AAVベクター粒子の溶出パターン」とを重ねた図である。It is a figure in which "the elution pattern of the empty capsid of AAV" and "the elution pattern of AAV vector particles" in Example 1 are superimposed. 実施例2における、AAVベクター粒子とAAVの空キャプシドとを含む混合物の溶出パターンを示す図である。It is a figure which shows the elution pattern of the mixture containing the AAV vector particle and the empty capsid of AAV in Example 2. FIG. 実施例2における、SDS-PAGEを示す図である。It is a figure which shows SDS-PAGE in Example 2. 実施例2における、定量リアルタイムPCRを示す図である。It is a figure which shows the quantitative real-time PCR in Example 2. FIG.
 以下に本発明について詳細に説明する。
<定義>
The present invention will be described in detail below.
<Definition>
 本明細書において「非エンベロープウイルス」という用語は、エンベロープウイルス以外のウイルスを指す。ここでエンベロープウイルスとは、ウイルス表面に脂質層もしくは脂質2重層を持つウイルスを指す。非エンベロープウイルスの代表的なものとしては、DNAをゲノムとするウイルスについては、アデノウイルス、パルボウイルス、パポバウイルス、ヒトパピローマウイルス等、RNAをゲノムとするウイルスについては、ロタウイルス、コクサッキーウイルス、エンテロウイルス、サポウイルス、ノロウイルス、ポリオウイルス、エコーウイルス、A型肝炎ウイルス、E型肝炎ウイルス、ライノウイルス、アストロウイルス等が例示される。 In the present specification, the term "non-enveloped virus" refers to a virus other than the enveloped virus. Here, the enveloped virus refers to a virus having a lipid layer or a lipid bilayer on the surface of the virus. Typical non-enveloped viruses include adenovirus, parvovirus, papovavirus, human papillomavirus, etc. for viruses whose genome is DNA, and rotavirus, coxsackie virus, enterovirus, and sapovirus for viruses whose genome is RNA. , Norovirus, poliovirus, echovirus, hepatitis A virus, hepatitis E virus, rhinovirus, astrovirus and the like are exemplified.
 本発明の製造方法が適用される非エンベロープウイルスに特に限定はなく、既に産生方法が知られた非エンベロープウイルスでも、天然から新たに取得された非エンベロープウイルス、又はそれらを由来とする遺伝子組換えウイルスベクターでもよい。本発明の製造方法で製造される非エンベロープウイルスには、好適にはアデノウイルス、又はパルボウイルス科のAAVが例示される。本発明の製造方法は、公知のいずれの血清型のAAVにも適用可能であり、例えば、AAV1、AAV2、AAV3、AAV4、AAV5、AAV6、AAV7、AAV8、AAV9、AAV10、AAV11、AAV12、及びAAV13からなる群より選択された少なくとも1種のAAVの製造に利用することができる。本発明の製造方法は、好適にはAAV2に適用される。なお、本明細書においてrAAVの血清型について述べる場合、キャプシド(capsid)の由来となる血清型を基準とする。すなわち、rAAV調製時に使用されるcap遺伝子の由来に応じてそのrAAVの血清型を決定するものとし、rAAV粒子中に封入されているAAVゲノムの血清型の由来には依存しないものとする。例えば、キャプシドがAAV6由来で、rAAV粒子中に封入されているAAVゲノム中のITRがAAV2由来の場合は、本明細書中では当該rAAVは血清型6とする。さらに、前記の各血清型のAAVのキャプシドの変異体を含むAAVの製造にも、本発明の製造方法を適用することができる。 The non-enveloped virus to which the production method of the present invention is applied is not particularly limited, and even a non-enveloped virus whose production method is already known is a non-enveloped virus newly obtained from nature or a gene recombination derived from them. It may be a virus vector. The non-enveloped virus produced by the production method of the present invention preferably includes adenovirus or AAV of the family Parvoviridae. The production method of the present invention is applicable to any known serotype of AAV, for example, AAV1, AAV2, AAV3, AAV4, AAV5, AAV6, AAV7, AAV8, AAV9, AAV10, AAV11, AAV12, and AAV13. It can be used to produce at least one AAV selected from the group consisting of. The production method of the present invention is preferably applied to AAV2. When describing the serotype of rAAV in the present specification, the serotype from which the capsid is derived is used as a reference. That is, the serotype of the rAAV shall be determined according to the origin of the cap gene used at the time of rAAV preparation, and shall not depend on the origin of the serotype of the AAV genome encapsulated in the rAAV particles. For example, if the capsid is derived from AAV6 and the ITR in the AAV genome encapsulated in the rAAV particles is derived from AAV2, the rAAV is serotype 6 herein. Furthermore, the production method of the present invention can also be applied to the production of AAV containing a variant of the capsid of AAV of each of the above serotypes.
 本明細書においてAAVとは、パルボウイルス科、ディペンドウイルス属に属する、ヒトを含む霊長目の動物やその他の哺乳類に感染する小型のウイルスを示す。AAVはエンベロープを持たない正20面体の外殻とその内部に1本の1本鎖DNAを有する。本明細書において、AAVは野生型ウイルス及びその派生物を含み、特に記載する場合を除き全ての血清型及びクレードを含む。 As used herein, AAV refers to a small virus belonging to the family Parvoviridae, Dependoparvovirus, which infects primate animals including humans and other mammals. AAV has an envelopeless icosahedron outer shell and a single single-stranded DNA inside it. As used herein, AAV includes wild-type viruses and their derivatives, and includes all serotypes and clades unless otherwise noted.
 本明細書において、「非エンベロープウイルス粒子」または「ウイルス粒子」という用語は、キャプシドタンパク質から構成される外殻を有する粒子を意味する。ここで、「キャプシド」または「キャプシドタンパク質」とは、ウイルスゲノムに存在するcap遺伝子にコードされるタンパク質で、ウイルスの外殻を構成するタンパク質を意味する。 As used herein, the term "non-enveloped virus particle" or "virus particle" means a particle having an outer shell composed of a capsid protein. Here, the "capsid" or "capsid protein" is a protein encoded by a cap gene present in the virus genome, and means a protein constituting the outer shell of the virus.
 AAVを例に挙げて説明すると、野生型AAVゲノムは、VP1、VP2及びVP3と呼ばれる3種類のキャプシドタンパク質をコードする。本明細書においては、VP1、VP2及びVP3のいずれもがキャプシドタンパク質に含まれる。野生型AAV粒子においては、一般的に、VP1、VP2及びVP3を1:1:10の比率で含む60個のキャプシドタンパク質が集合して、1つの正20面体の外殻を形成する。しかし、VP1、VP2及びVP3の比率が上述のものと異なっていても、外殻を形成することができる限りにおいては、当該外殻を有する粒子はAAV粒子に含まれる。すなわち、本明細書において、「AAV粒子」という用語は、VP1、VP2及びVP3のうちのいずれか1種以上から選択されるキャプシドタンパク質から構成される外殻を有する粒子を意味する。 Taking AAV as an example, the wild-type AAV genome encodes three types of capsid proteins called VP1, VP2, and VP3. As used herein, all of VP1, VP2 and VP3 are included in the capsid protein. In wild-type AAV particles, generally 60 capsid proteins containing VP1, VP2, and VP3 in a ratio of 1: 1:10 aggregate to form one icosahedral outer shell. However, even if the ratios of VP1, VP2 and VP3 are different from those described above, the particles having the outer shell are included in the AAV particles as long as the outer shell can be formed. That is, as used herein, the term "AAV particle" means a particle having an outer shell composed of a capsid protein selected from any one or more of VP1, VP2 and VP3.
 本明細書において、「ウイルスゲノム」とは、ウイルス粒子の中に包含されている核酸を意味する。すなわち、「ウイルスゲノム」という用語は、非エンベロープウイルス粒子の中に包含されている遺伝的エレメント(例えば、プラスミド、ファージ、トランスポゾン、コスミド、染色体など)を包含する。 In the present specification, the "virus genome" means a nucleic acid contained in a virus particle. That is, the term "viral genome" includes genetic elements contained within non-enveloped viral particles (eg, plasmids, phages, transposons, cosmids, chromosomes, etc.).
 本明細書において、「ウイルスベクター粒子」とは、ベクター機能を有するウイルス粒子を意味する。すなわち、ウイルスベクター粒子は、ウイルスゲノムをウイルス粒子の中に含む感染性の粒子をいう。なお、「ウイルスベクター粒子」という用語は、「完全粒子(complete particle)」、「全粒子(full particle)」、「ベクター粒子(vecotor particle)」及び「ビリオン(virion)」を包含する。 In the present specification, the "virus vector particle" means a virus particle having a vector function. That is, a viral vector particle is an infectious particle containing a virus genome in the virus particle. The term "virus vector particle" includes "complete particle", "full particle", "vector particle" and "virion".
 本明細書において、「空キャプシド(empty capsid)」とは、ウイルスのキャプシドタンパク質を含むが、ウイルスゲノムを欠く、非感染性のタンパク質または粒子をいう。従って、空キャプシドは、目的の遺伝子を宿主細胞へと移入するためには機能しない。なお、「空キャプシド」という用語は、「中空粒子(hollow particle)」及び「空粒子(empty particle)」を包含する。 As used herein, the term "empty capsid" refers to a non-infectious protein or particle that contains a viral capsid protein but lacks a viral genome. Therefore, empty capsids do not function to transfer the gene of interest into the host cell. The term "empty capsid" includes "hollow particles" and "empty particles".
<非エンベロープウイルスの測定方法>
 非エンベロープウイルスの測定方法として、特に限定はないが、例えば、一定量の試料中の(a)非エンベロープウイルスベクターの濃度、例えばウイルスゲノムの濃度、または(b)非エンベロープウイルスを構成するタンパク質の濃度、例えばキャプシドタンパク質の濃度を測定する方法が挙げられる。
<Measurement method for non-enveloped virus>
The method for measuring the non-enveloped virus is not particularly limited, but for example, (a) the concentration of the non-enveloped virus vector in a certain amount of sample, for example, the concentration of the virus genome, or (b) the protein constituting the non-enveloped virus. Examples thereof include a method of measuring the concentration, for example, the concentration of the capsid protein.
 上記(a)の方法としては、試料中のウイルスゲノムのコピー数をPCR法で測定する方法が例示される。特に限定はされないが、例えば、AAVpro(登録商標) Titration Kit(for Real Time PCR) Ver.2(タカラバイオ社製)を使用し、取扱説明書に記載された方法で、AAVゲノムの濃度を算出することができる。 As the method (a) above, a method of measuring the number of copies of the virus genome in the sample by the PCR method is exemplified. Although not particularly limited, for example, AAVpro (registered trademark) Titration Kit (for Real Time PCR) Ver. 2 (manufactured by Takara Bio Inc.) can be used to calculate the concentration of the AAV genome by the method described in the instruction manual.
 上記(b)の方法としては、例えば当該タンパク質をSDS-PAGEで解析する方法あるいは免疫的手法で定量する方法等が例示される。 Examples of the method (b) above include a method of analyzing the protein by SDS-PAGE or a method of quantifying the protein by an immunological method.
 上記(a)及び(b)を組み合わせることにより、試料中に含まれるウイルスベクター粒子とウイルスの空キャプシドとの比率について計算することができる。すなわち、ウイルスベクター粒子はキャプシドタンパク質及びウイルスゲノムの両方を含むのに対して、ウイルスの空キャプシドはキャプシドタンパク質を含むがウイルスゲノムを含まない。したがって、例えば、ある試料を測定した時に、一定量のキャプシドタンパク質あたりのウイルスゲノムの量が少ない場合、その試料は空キャプシドを多く含むことを示す。 By combining the above (a) and (b), the ratio of the virus vector particles contained in the sample to the empty capsid of the virus can be calculated. That is, the viral vector particles contain both the capsid protein and the viral genome, whereas the empty capsid of the virus contains the capsid protein but not the viral genome. Thus, for example, when a sample is measured, a small amount of viral genome per fixed amount of capsid protein indicates that the sample is high in empty capsids.
 試料中に含まれるウイルスベクター粒子とウイルスの空キャプシドとの比率を求める方法としては、他にも、(c)電子顕微鏡で観察する方法、が挙げられる。 Another method for determining the ratio of the virus vector particles contained in the sample to the empty capsid of the virus is (c) a method of observing with an electron microscope.
 また、試料中に含まれるウイルスベクター粒子が機能的であるかどうか、すなわち標的細胞に感染する能力を有するかどうかを測定する方法として、(d)実験的にウイルスベクター粒子の細胞への感染能力(感染力価)を測定する方法が挙げられる。より具体的には、例えばウイルスベクター粒子を含む試料の系列希釈液を適当な標的細胞に感染させ、細胞の形状変化(細胞変性)を検出する方法、導入遺伝子の発現を検出する方法、または、細胞に導入されたウイルスゲノムのコピー数を測定する方法等が例示される。 In addition, as a method for measuring whether or not the viral vector particles contained in the sample are functional, that is, whether or not they have the ability to infect target cells, (d) the ability of the viral vector particles to infect cells experimentally. A method of measuring (infectious titer) can be mentioned. More specifically, for example, a method of infecting an appropriate target cell with a serial diluted solution of a sample containing a virus vector particle to detect a change in cell shape (cell degeneration), a method of detecting the expression of an introductory gene, or a method of detecting the expression of a transgene. Examples thereof include a method for measuring the number of copies of a viral genome introduced into a cell.
<ウイルスベクター粒子とウイルスの空キャプシドとを含む試料>
 本発明の方法で用いられる「ウイルスベクター粒子とウイルスの空キャプシドとを含む試料」は、特に限定されないが、好ましくはウイルス産生細胞由来の試料である。当該ウイルス産生細胞は特に限定はなく、環境中や、感染症の患者の臨床検体等から得られたウイルス産生細胞でもよく、人為的に作製したウイルス産生細胞でもよい。
<Sample containing virus vector particles and virus empty capsid>
The "sample containing virus vector particles and an empty capsid of virus" used in the method of the present invention is not particularly limited, but is preferably a sample derived from virus-producing cells. The virus-producing cells are not particularly limited, and may be virus-producing cells obtained in the environment or from clinical specimens of patients with infectious diseases, or may be artificially produced virus-producing cells.
 前記ウイルス産生細胞製造用の細胞としては、特に限定はなく、ヒト、サル、げっ歯類等の哺乳動物細胞、好適にはトランスフェクション効率が高い293細胞(ATCC CRL-1573)、293T細胞(ATCC CRL-3216)、293T/17細胞(ATCC CRL-11268)、293F細胞、293FT細胞(いずれもライフテクノロジーズ社製)、G3T-hi細胞(国際公開第2006/035829号パンフレット)、市販のウイルス産生用細胞株、AAV293細胞(Stratagene社製)が例示される。また、Sf9細胞(ATCC CRL-1711)などの節足動物細胞(昆虫細胞)が例示される。例えば、前記293細胞等はアデノウイルスE1タンパク質を恒常的に発現するが、このような、rAAV産生に必要なタンパク質の1つ、又はいくつかを一過的もしくは恒常的に発現するように改変した細胞であってもよい。これらの種々の細胞に対して、公知の方法や市販のキットを用いて以下に挙げるウイルス形成に必要な要素を導入し、ウイルス産生細胞とすることができる。また、当該細胞の培養は、公知の培養条件で行うことができる。例えば温度30~37℃、湿度95%RH、CO濃度5~10%(v/v)での培養が例示されるが、本発明はこのような条件に限定されるものではない。所望のウイルス産生細胞の増殖やウイルスの産生が達成できるのであれば前記の範囲以外の温度、湿度、CO濃度で実施してもよい。また、培養期間は特に限定はなく、例えば12~150時間、好適には48~120時間である。 The cells for producing the virus-producing cells are not particularly limited, and are mammalian cells such as humans, monkeys, and rodents, preferably 293 cells (ATCC CRL-1573) and 293T cells (ATCC) having high transfection efficiency. CRL-3216), 293T / 17 cells (ATCC CRL-11268), 293F cells, 293FT cells (all manufactured by Life Technologies), G3T-hi cells (International Publication No. 2006/035829), for commercial virus production A cell line, AAV293 cells (manufactured by Stratagene) is exemplified. Further, arthropod cells (insect cells) such as Sf9 cells (ATCC CRL-1711) are exemplified. For example, the 293 cells and the like constitutively express the adenovirus E1 protein, and one or some of the proteins necessary for rAAV production are modified to transiently or constitutively express. It may be a cell. The following elements necessary for virus formation can be introduced into these various cells using a known method or a commercially available kit to obtain virus-producing cells. In addition, the cells can be cultured under known culture conditions. For example, culture at a temperature of 30 to 37 ° C., a humidity of 95% RH, and a CO 2 concentration of 5 to 10% (v / v) is exemplified, but the present invention is not limited to such conditions. If the desired proliferation of virus-producing cells and the production of virus can be achieved, the temperature, humidity, and CO 2 concentration other than the above ranges may be used. The culture period is not particularly limited, and is, for example, 12 to 150 hours, preferably 48 to 120 hours.
 非エンベロープウイルス産生細胞として例えば、rAAV産生細胞を例に挙げて説明すると、rAAV形成に必須な要素として、(A)rAAV粒子に封入される核酸、(B)AAV由来の要素、例えばRepタンパク質及びCapタンパク質、並びに(C)アデノウイルス由来の要素、例えばE1aタンパク質、E1bタンパク質、E2タンパク質、E4タンパク質及びVARNA、が挙げられる。これらの要素を任意の細胞に導入することにより、rAAV産生細胞を作製することができる。 Taking, for example, rAAV-producing cells as non-enveloped virus-producing cells as an example, as essential elements for rAAV formation, (A) a nucleic acid encapsulated in rAAV particles, (B) an element derived from AAV, for example, Rep protein and Cap proteins and (C) adenovirus-derived elements such as E1a protein, E1b protein, E2 protein, E4 protein and VARNA. By introducing these elements into any cell, rAAV-producing cells can be produced.
 前記の「(A)rAAV粒子に封入される核酸」は、AAV由来のITR配列とrAAV粒子に搭載することが望まれる核酸とで構成される。rAAV粒子に搭載することが望まれる核酸としては、任意の外来遺伝子、例えばポリペプチド(酵素、成長因子、サイトカイン、レセプター、構造タンパク質等)、アンチセンスRNA、リボザイム、デコイ、RNA干渉を起こすRNA等を供給する核酸が例示される。加えて外来遺伝子の発現の制御のため、適当なプロモーター、エンハンサー、ターミネーターやその他の転写調節要素が前記の核酸に挿入されていてもよい。例えば、rAAV粒子に封入される核酸は、2つのITR配列の間にrAAVベクターに搭載することが望まれる任意の外来遺伝子を含んでいてもよく、又は、2つのITR配列の間に、rAAV粒子に搭載することが望まれる任意の外来遺伝子及び当該外来遺伝子の発現の制御のための1以上の要素を含んでいてもよい。rAAV粒子に封入される核酸は核酸構築物として、プラスミドの形態で細胞に導入することができる。前記のプラスミドは、例えば、市販又は公知のプラスミドを用いて公知の方法により構築することができる。当該プラスミドの例として、pAAV-CMV Vector(タカラバイオ社製)が挙げられる。 The above-mentioned "(A) nucleic acid encapsulated in rAAV particles" is composed of an AAV-derived ITR sequence and a nucleic acid desired to be mounted on rAAV particles. Nucleic acids desired to be loaded on rAAV particles include arbitrary foreign genes such as polypeptides (enzymes, growth factors, cytokines, receptors, structural proteins, etc.), antisense RNA, ribozymes, decoys, RNAs that cause RNA interference, and the like. Nucleic acid to supply is exemplified. In addition, suitable promoters, enhancers, terminators and other transcriptional regulatory elements may be inserted into the nucleic acids to control the expression of foreign genes. For example, the nucleic acid encapsulated in the rAAV particle may contain any foreign gene desired to be loaded into the rAAV vector between the two ITR sequences, or the rAAV particle between the two ITR sequences. It may contain any foreign gene desired to be loaded into and one or more elements for controlling the expression of the foreign gene. The nucleic acid encapsulated in the rAAV particles can be introduced into cells in the form of a plasmid as a nucleic acid construct. The above-mentioned plasmid can be constructed, for example, by a known method using a commercially available or known plasmid. An example of the plasmid is pAAV-CMV Vector (manufactured by Takara Bio Inc.).
 前記の「(B)AAV由来の要素、例えばRepタンパク質及びCapタンパク質」の形態には限定はなく、それぞれの要素を直接タンパク質として細胞に導入することもできるし、それぞれの要素を供給可能な1又は複数の核酸構築物として、プラスミドやウイルスベクターに搭載して、細胞に導入することもできる。これらの核酸の細胞への導入は、例えば、市販又は公知のプラスミド又はウイルスベクターを用いて公知の方法により行うことができる。当該プラスミドの例として、pRC2-mi342 Vector(タカラバイオ社製)が挙げられる。 The form of the above-mentioned "(B) AAV-derived element, for example, Rep protein and Cap protein" is not limited, and each element can be directly introduced into a cell as a protein, and each element can be supplied 1. Alternatively, it can be loaded into a plasmid or viral vector as a plurality of nucleic acid constructs and introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector. An example of the plasmid is pRC2-mi342 Vector (manufactured by Takara Bio Inc.).
 前記の「(C)アデノウイルス由来の要素、例えばE1aタンパク質、E1bタンパク質、E2タンパク質、E4タンパク質及びVARNA」の形態には限定はなく、それぞれの要素を直接タンパク質として細胞に導入することもできるし、それぞれの要素を供給可能な1又は複数の核酸構築物として、プラスミドやウイルスベクターに搭載して、細胞に導入することができる。これらの核酸の細胞への導入は、例えば、市販又は公知のプラスミド又はウイルスベクターを用いて公知の方法により行うことができる。当該プラスミドの例として、pHelper Vector(タカラバイオ社製)が挙げられ。また、プラスミドやウイルスベクターの代わりに、アデノウイルスを直接細胞に感染させることによっても、上述の目的を達成することができる。 The form of the above-mentioned "(C) adenovirus-derived element, for example, E1a protein, E1b protein, E2 protein, E4 protein and VARNA" is not limited, and each element can be directly introduced into cells as a protein. , Each element can be loaded into a plasmid or viral vector as one or more nucleic acid constructs capable of being introduced into cells. Introduction of these nucleic acids into cells can be performed, for example, by a known method using a commercially available or known plasmid or viral vector. An example of the plasmid is pHelper Vector (manufactured by Takara Bio Inc.). The above-mentioned purpose can also be achieved by directly infecting cells with adenovirus instead of a plasmid or viral vector.
 本発明の方法に使用される「ウイルスベクター粒子とウイルスの空キャプシドとを含む試料」は、特に本発明を限定するものではないが、上記のように培養されたウイルス産生細胞を破砕もしくは溶解して調製することができる。また、ウイルス産生細胞の培養中に、ウイルスベクター粒子が培地中に漏出するような場合には、培養液の上清を試料として本発明を実施することもできる。 The "sample containing virus vector particles and an empty capsid of virus" used in the method of the present invention is not particularly limited to the present invention, but the virus-producing cells cultured as described above are disrupted or lysed. Can be prepared. In addition, when virus vector particles leak into the medium during culture of virus-producing cells, the present invention can be carried out using the supernatant of the culture solution as a sample.
 ウイルス産生細胞の破砕や溶解は、超音波処理、凍結融解処理、酵素処理、浸透圧処理等の公知の方法で実施することができる。例えば、ウイルス産生細胞を含む培養用液に、界面活性剤を添加することにより、細胞を溶解できる。界面活性剤には特に限定は無く、例えばTriton X-100が例示される。界面活性剤の濃度には特に限定は無く、例えば終濃度0.01~1%、好適には終濃度0.05~0.5%、さらに好適には終濃度0.08~0.12%が例示される。また、界面活性剤と接触している際の温度と時間は特に限定はなく、温度としては例えば0~40℃、好適には4~37℃、時間としては例えば5分~8時間、好適には10分~4時間、さらに好適には30分~2時間が例示される。 Crushing and lysis of virus-producing cells can be carried out by known methods such as ultrasonic treatment, freeze-thaw treatment, enzyme treatment, and osmotic pressure treatment. For example, cells can be lysed by adding a surfactant to a culture solution containing virus-producing cells. The surfactant is not particularly limited, and for example, Triton X-100 is exemplified. The concentration of the surfactant is not particularly limited, for example, the final concentration is 0.01 to 1%, preferably the final concentration is 0.05 to 0.5%, and more preferably the final concentration is 0.08 to 0.12%. Is exemplified. The temperature and time during contact with the surfactant are not particularly limited, and the temperature is, for example, 0 to 40 ° C, preferably 4 to 37 ° C, and the time is, for example, 5 minutes to 8 hours. Is exemplified by 10 minutes to 4 hours, more preferably 30 minutes to 2 hours.
 上記の、ウイルス産生細胞の破砕もしくは溶解により得られた試料を、直接、本発明の方法に供してもよいし、一旦、別の精製工程に付してもよい。また、当該別の精製工程により、ウイルスベクター粒子及び/又はウイルスの空キャプシドが濃縮されてもよい。当該別の精製方法としては、超遠心、クロマトグラフィー、限外ろ過、その他公知の方法が例示される。 The above-mentioned sample obtained by disrupting or lysing virus-producing cells may be directly subjected to the method of the present invention, or may be temporarily subjected to another purification step. Further, the virus vector particles and / or the empty capsid of the virus may be concentrated by the other purification step. Examples of the other purification method include ultracentrifugation, chromatography, ultrafiltration, and other known methods.
 前記クロマトグラフィーによる精製は、イオン交換カラム(例えば、ムスタングQ(pall社製))やアフィニティカラム(例えば、AVB Sepharose(登録商標)(Cytiva社製)やヘパリンカラム等)、ハイドロキシルアパタイトカラム等によって実施することができる。 Purification by chromatography is performed by an ion exchange column (for example, Mustang Q (manufactured by pool)), an affinity column (for example, AVB Sepharose (registered trademark) (manufactured by Cytiva), a heparin column, etc.), a hydroxyl apatite column, or the like. Can be carried out.
 このようにして調製された「ウイルスベクター粒子とウイルスの空キャプシドとを含む試料」は、適切な溶液中で、長期間保存することが可能である。例えば、AAVベクター粒子とAAVの空キャプシドとを含む試料は、リン酸緩衝生理食塩水(pH7.4)に置換した場合、-80℃の条件下で、例えば、12時間以上、1日以上、2日以上、3日以上、4日以上、5日以上、6日以上、1週間以上、2週間以上、3週間以上、1か月以上、2か月以上、3か月以上、4か月以上、5か月以上、又は6か月以上保存することができる。 The "sample containing virus vector particles and virus empty capsid" prepared in this way can be stored for a long period of time in an appropriate solution. For example, a sample containing AAV vector particles and an empty capsid of AAV, when replaced with phosphate buffered saline (pH 7.4), under the condition of −80 ° C., for example, for 12 hours or more and 1 day or more, 2 days or more, 3 days or more, 4 days or more, 5 days or more, 6 days or more, 1 week or more, 2 weeks or more, 3 weeks or more, 1 month or more, 2 months or more, 3 months or more, 4 months It can be stored for 5 months or more, or 6 months or more.
 「ウイルスベクター粒子とウイルスの空キャプシドとを含む試料」について、上述した任意の「非エンベロープウイルスの測定方法」を実施することにより、その試料における、「ウイルスベクターの濃度」、「キャプシドタンパク質の濃度」、「ウイルスベクター粒子とウイルスの空キャプシドとの比率」など、所望の値を測定することができる。 By carrying out any of the above-mentioned "measurement methods for non-enveloped viruses" for "a sample containing virus vector particles and an empty capsid of virus", "concentration of virus vector" and "concentration of capsid protein" in the sample. , "Ratio of virus vector particles to empty capsids of virus" and the like, desired values can be measured.
<アニオン交換担体>
 本発明の方法には公知のさまざまなアニオン交換担体が使用できる。例えば以下が挙げられるが、これらに限定されない。Macro-Prep(登録商標) Q(Bio-Rad Laboratories社製)、UNOsphere Q(Bio-Rad Laboratories社製)、POROS 50HQ(Thermo Fisher Scientific社製)、POROS 50D(Thermo Fisher Scientific社製)、POROS 50PI(Thermo Fisher Scientific社製)、SOURCE 30Q(Cytiva社製)、DEAE-Sepharose(Cytiva社製)、Q Sepharose(Cytiva社製)。
<Anion exchange carrier>
Various known anion exchange carriers can be used in the method of the present invention. Examples include, but are not limited to: Macro-Prep (registered trademark) Q (manufactured by Bio-Rad Laboratories), UNOSphere Q (manufactured by Bio-Rad Laboratories), POROS 50HQ (manufactured by Thermo Fisher Scientific), POROS 50 (Thermo Fisher Scientific), SOURCE 30Q (Cytiva), DEAE-Sepharose (Cytiva), Q Sepharose (Cytiva).
 アニオン交換担体の官能基(イオン交換基ともいう)として、4級アンモニウム基、3級アミノ基、2級アミノ基、1級アミノ基が例示されるが、これらに限定されない。アニオン交換担体の官能基としては、4級アンモニウム基が好適である。 Examples of the functional group (also referred to as an ion exchange group) of the anion exchange carrier include, but are not limited to, a quaternary ammonium group, a tertiary amino group, a secondary amino group, and a primary amino group. As the functional group of the anion exchange carrier, a quaternary ammonium group is suitable.
 上記アニオン交換担体は、カラムに充填されていてもよいし、カラムに充填されていなくてもよいが、好適には、カラムに充填されたアニオン交換担体が使用される。市販のカラムとして、CIMmultus QA(BIAセパレーションズ社製)が例示される。 The anion exchange carrier may or may not be packed in the column, but preferably, the anion exchange carrier packed in the column is used. As a commercially available column, CIMmultus QA (manufactured by BIA Separations) is exemplified.
<アニオン交換担体の平衡化>
 アニオン交換担体はまず、標準的な緩衝液を使用して、製造者の仕様書に従って平衡化される。ここで、アニオン交換担体を平衡化するための緩衝液を、「平衡化緩衝液(Equilibration buffer)」と呼ぶ。平衡化緩衝液の組成は、AAVベクター粒子が担体に結合可能な条件を提供可能なものであることが望ましい。このような組成は当業者が適宜決定することができる。
<Equilibration of anion exchange carrier>
The anion exchange carrier is first equilibrated using standard buffer according to the manufacturer's specifications. Here, the buffer solution for equilibrating the anion exchange carrier is referred to as "equilibrium buffer". It is desirable that the composition of the equilibration buffer is such that it can provide conditions under which the AAV vector particles can bind to the carrier. Such a composition can be appropriately determined by those skilled in the art.
 平衡化緩衝液の緩衝成分は特に限定されないが、トリスヒドロキシメチルアミノメタン(以下、トリス)バッファーまたはBis-Tris propane(以下、BTP)バッファーをベースとしたものが望ましく、トリスバッファーをベースとしたものがより望ましい。トリスバッファーを用いる場合、平衡化緩衝液は、例えば10~50mM Tris-HClであり、好ましくは15~40(例えば、15、20、25、30、35、40など)mM Tris-HClである。平衡化緩衝液は、さらに、塩(例えば、NaClまたはKCl)を、例えば5~50mM(例えば、5、10、15、20、25、30、35、40、45、50mMなど、またはこれらの範囲内の任意の濃度)で含んでもよいし、塩を含んでいなくてもよい。好ましくは、平衡化緩衝液は塩を含まない。平衡化緩衝液のpHは、例えば7~11であり、好ましくは8~10(例えば、pH8、8.5、9、9.5、10など、またはこれらの範囲内の任意のpH)である。 The buffer component of the equilibration buffer is not particularly limited, but one based on Tris hydroxymethylaminomethane (hereinafter, Tris) buffer or Bis-Tris propane (hereinafter, BTP) buffer is preferable, and one based on Tris buffer. Is more desirable. When using Tris buffer, the equilibration buffer is, for example, 10-50 mM Tris-HCl, preferably 15-40 (eg, 15, 20, 25, 30, 35, 40, etc.) mM Tris-HCl. The equilibration buffer further comprises salts (eg, NaCl or KCl), eg, 5-50 mM (eg, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 mM, etc., or ranges thereof. It may be contained at any concentration in the above, or may not contain salt. Preferably, the equilibration buffer is salt-free. The pH of the equilibration buffer is, for example, 7-11, preferably 8-10 (eg, pH 8, 8.5, 9, 9.5, 10, etc., or any pH within these ranges). ..
 平衡化緩衝液として、「20mM Tris-HCl、pH9.0」が例示される。 As an equilibration buffer solution, "20 mM Tris-HCl, pH 9.0" is exemplified.
<工程(a):試料を担体に適用する工程>
 工程(a)は、ウイルスベクター粒子とウイルスの空キャプシドとを含む試料を、緩衝液で平衡化されたアニオン交換担体に対して適用し、該ウイルスベクター粒子を該担体に結合させる工程である。なお、ウイルスベクター粒子がアニオン交換担体に結合する条件であれば、ウイルスの空キャプシドがアニオン交換担体に結合してもよい。すなわち、ウイルスベクター粒子だけがアニオン交換担体に結合してもよいし、またはウイルスベクター粒子とウイルスの空キャプシドの両方がアニオン交換担体に結合してもよい。
<Step (a): Step of applying the sample to the carrier>
Step (a) is a step of applying a sample containing virus vector particles and an empty capsid of virus to an anion exchange carrier equilibrated with a buffer solution, and binding the virus vector particles to the carrier. The empty capsid of the virus may bind to the anion exchange carrier as long as the virus vector particles bind to the anion exchange carrier. That is, only the viral vector particles may bind to the anion exchange carrier, or both the viral vector particles and the empty capsid of the virus may bind to the anion exchange carrier.
 アニオン交換担体に適用する試料の容量については、試料に含まれるウイルス量や、使用するアニオン交換担体の種類及び容量によって適宜決定する。また、試料を、あらかじめ適切な溶液に希釈または置換してから、アニオン交換担体に適用することができる。例えば、試料を、平衡化緩衝液で2倍、3倍、4倍、5倍、10倍、20倍、30倍、40倍または50倍に希釈することができる。 The volume of the sample applied to the anion exchange carrier is appropriately determined depending on the amount of virus contained in the sample and the type and volume of the anion exchange carrier used. In addition, the sample can be diluted or replaced with a suitable solution in advance, and then applied to the anion exchange carrier. For example, the sample can be diluted 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 20-fold, 30-fold, 40-fold or 50-fold with equilibration buffer.
<工程(b):非結合物を担体から溶出させる工程>
 工程(b)は、工程(a)後のウイルスベクター粒子が結合している担体に緩衝液を適用し、非結合物を担体から溶出させる工程である。工程(a)後の担体には、ウイルスベクター粒子が結合しているが、工程(b)では、このウイルスベクター粒子を溶出させないが、非結合物のみを担体から溶出させる。なお、工程(a)後の担体に、ウイルスベクター粒子とウイルスの空キャプシドの両方が結合している場合、本工程において適切な緩衝液を適用することにより、ウイルスの空キャプシドを担体から溶出させる。
<Step (b): Elution of non-bonded product from carrier>
The step (b) is a step of applying a buffer solution to the carrier to which the virus vector particles are bound after the step (a), and elution of the non-bound product from the carrier. The virus vector particles are bound to the carrier after the step (a), but in the step (b), the virus vector particles are not eluted, but only the non-bound product is eluted from the carrier. When both the virus vector particles and the empty capsid of the virus are bound to the carrier after the step (a), the empty capsid of the virus is eluted from the carrier by applying an appropriate buffer solution in this step. ..
 「非結合物」とは、ウイルスベクター粒子以外の、担体に結合しない物質を意味する。非結合物には、例えば、試料中の夾雑物や、工程(a)でウイルスの空のキャプシドが担体に結合しない場合、空のキャプシドが含まれる。上述したように、工程(a)後の担体に、ウイルスベクター粒子とウイルスの空キャプシドの両方が結合している場合、適切な緩衝液を適用することにより、ウイルスの空キャプシドを担体から溶出させる。 The "non-binding substance" means a substance that does not bind to the carrier other than the viral vector particles. Non-bindings include, for example, contaminants in the sample and empty capsids if the empty capsid of the virus does not bind to the carrier in step (a). As described above, when both the viral vector particles and the empty capsid of the virus are bound to the carrier after the step (a), the empty capsid of the virus is eluted from the carrier by applying an appropriate buffer solution. ..
 工程(b)で使用される緩衝液は、後述する、工程(c)で用いる緩衝液よりもpHが高いことから、「高pH緩衝液(high pH buffer)」とも呼ばれる。高pH緩衝液は、担体に結合したウイルスベクター粒子を担体から溶出させない、一方、高pH緩衝液は、非結合物を担体から溶出させる。ウイルスベクター粒子とウイルスの空キャプシドの両方が担体に結合している場合、平衡化緩衝液より高い塩濃度の高pH緩衝液を適用することにより、担体に結合したウイルスベクター粒子を担体から溶出させずに、ウイルスの空キャプシドのみを担体から溶出させる。工程(a)によってウイルスベクター粒子のみが担体に結合している場合、高pH緩衝液は、平衡化緩衝液と同じ塩濃度であってもよく、例えば平衡化緩衝液と同一の緩衝液であってもよい。 Since the buffer solution used in the step (b) has a higher pH than the buffer solution used in the step (c), which will be described later, it is also called a "high pH buffer". The high pH buffer does not elute the viral vector particles bound to the carrier from the carrier, while the high pH buffer elutes the unbound material from the carrier. If both the viral vector particles and the empty capsid of the virus are bound to the carrier, the viral vector particles bound to the carrier are eluted from the carrier by applying a high pH buffer with a higher salt concentration than the equilibrium buffer. Instead, only the empty capsid of the virus is eluted from the carrier. When only the viral vector particles are bound to the carrier by step (a), the high pH buffer may have the same salt concentration as the equilibration buffer, eg the same buffer as the equilibration buffer. You may.
 ウイルスベクター粒子とウイルスの空キャプシドの両方が担体に結合している場合、平衡化緩衝液と同程度の塩濃度の高pH緩衝液を適用して非結合物を担体から溶出させた後に、平衡化緩衝液より高い塩濃度の高pH緩衝液を適用して、担体に結合したウイルスの空キャプシドを担体から溶出させてもよい。あるいは、平衡化緩衝液より高い塩濃度の高pH緩衝液を適用して、非結合物と、担体に結合したウイルスの空キャプシドとを一段階で担体から溶出させてもよい。 If both the virus vector particles and the empty capsid of the virus are bound to the carrier, equilibrate after applying a high pH buffer with a salt concentration comparable to that of the equilibration buffer to elute the unbound from the carrier. A high pH buffer solution with a salt concentration higher than that of the conversion buffer solution may be applied to elute the empty capsid of the virus bound to the carrier from the carrier. Alternatively, a high pH buffer solution having a salt concentration higher than that of the equilibration buffer solution may be applied to elute the unbound product and the empty capsid of the virus bound to the carrier from the carrier in one step.
 高pH緩衝液は、トリスバッファーまたはBTPバッファーをベースとしたものが望ましく、トリスバッファーをベースとしたものがより望ましい。トリスバッファーを用いる場合、高pH緩衝液は、例えば10~50mM Tris-HClであり、好ましくは15~40(例えば、15、20、25、30、35、40など)mM Tris-HClである。高pH緩衝液は、さらに、塩(例えば、NaClまたはKCl)を、例えば10~100mM、好ましくは20~80(例えば、20、30、40、50、55、60、70、80など、またはこれらの範囲内の任意の濃度)mMで含んでもよい。高pH緩衝液は、さらに、別の塩(例えば、MgCl)を、例えば1~10mM、好ましくは2~8(例えば、2、3、4、5、5.5、6、7、8など、またはこれらの範囲内の任意の濃度)mMで含んでもよい。高pH緩衝液のpHは、例えば7~11であり、好ましくは8~10(例えば、pH8、8.5、9、9.5、10など、またはこれらの範囲内の任意のpH)である。 The high pH buffer solution is preferably based on Tris buffer or BTP buffer, and more preferably based on Tris buffer. When using Tris buffer, the high pH buffer is, for example, 10-50 mM Tris-HCl, preferably 15-40 (eg, 15, 20, 25, 30, 35, 40, etc.) mM Tris-HCl. High pH buffers further include salts (eg, NaCl or KCl), such as 10-100 mM, preferably 20-80 (eg, 20, 30, 40, 50, 55, 60, 70, 80, etc., or these. Any concentration within the range of) may be contained in mM. The high pH buffer may further include another salt (eg, MgCl 2 ), such as 1-10 mM, preferably 2-8 (eg, 2, 3, 4, 5, 5.5, 6, 7, 8 and the like. , Or any concentration within these ranges) may be included in mM. The pH of the high pH buffer is, for example, 7-11, preferably 8-10 (eg, pH 8, 8.5, 9, 9.5, 10, etc., or any pH within these ranges). ..
 高pH緩衝液は、後述の低pH緩衝液よりもpHが高い。高pH緩衝液と低pH緩衝液のpHの差は1.0以上、1.5以上、2.0以上、2.5以上、3.0以上であることが望ましい。高pH緩衝液は、平衡化緩衝液と同じpHであってもよく、あるいは平衡化緩衝液よりも高いまたは低いpHであってもよい。好ましくは、高pH緩衝液は、平衡化緩衝液と同じpHを有する。 The high pH buffer has a higher pH than the low pH buffer described later. The difference in pH between the high pH buffer solution and the low pH buffer solution is preferably 1.0 or more, 1.5 or more, 2.0 or more, 2.5 or more, and 3.0 or more. The high pH buffer may have the same pH as the equilibration buffer, or may have a higher or lower pH than the equilibration buffer. Preferably, the high pH buffer has the same pH as the equilibration buffer.
 特に限定されないが、高pH緩衝液と低pH緩衝液は、同じ種類および濃度の塩を含んでいることが望ましい。すなわち、高pH緩衝液と低pH緩衝液の組成は、pHが異なることを除き、同じであることが望ましい。 Although not particularly limited, it is desirable that the high pH buffer solution and the low pH buffer solution contain salts of the same type and concentration. That is, it is desirable that the composition of the high pH buffer solution and the low pH buffer solution are the same except that the pH is different.
 高pH緩衝液として、「20mM Tris-HCl、55mM NaCl、5.5mM MgCl、pH9.0」が例示される。 Examples of the high pH buffer solution include "20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 9.0".
<工程(c):ウイルスベクター粒子を担体から溶出させる工程>
 工程(c)は、工程(b)後のウイルスベクター粒子が結合した担体に、平衡化緩衝液よりも低く、かつ高pH緩衝液よりも低いpHの緩衝液を適用し、ウイルスベクター粒子を担体から溶出させる工程である。
<Step (c): Elution of viral vector particles from the carrier>
In the step (c), a buffer solution having a pH lower than that of the equilibrium buffer solution and lower than that of the high pH buffer solution is applied to the carrier to which the virus vector particles are bound after the step (b), and the virus vector particles are used as the carrier. It is a step of elution from.
 工程(c)で用いる緩衝液は、平衡化緩衝液ならびに工程(b)で使用された緩衝液よりもpHが低いことから、「低pH緩衝液(low pH buffer)」とも呼ばれる。例えば、平衡化緩衝液よりもpHが1.0以上低い緩衝液、好ましくは平衡化緩衝液よりもpHが2.0以上低い緩衝液が低pH緩衝液として使用される。低pH緩衝液は、担体に結合したウイルスベクター粒子を担体から溶出させるものであれば、ウイルスの空キャプシドを溶出させるものであっても、溶出させないものであってもよい。 Since the buffer solution used in the step (c) has a lower pH than the equilibration buffer solution and the buffer solution used in the step (b), it is also called a "low pH buffer". For example, a buffer solution having a pH lower than that of the equilibration buffer solution by 1.0 or more, preferably a buffer solution having a pH lower than that of the equilibration buffer solution by 2.0 or more is used as the low pH buffer solution. The low pH buffer may or may not elute the empty capsid of the virus as long as it elutes the viral vector particles bound to the carrier from the carrier.
 低pH緩衝液は、トリスバッファーまたはBTPバッファーをベースとしたものが望ましく、トリスバッファーをベースとしたものがより望ましい。トリスバッファーを用いる場合、低pH緩衝液は、例えば10~50mM Tris-HClであり、好ましくは15~40(例えば、15、20、25、30、35、40など)mM Tris-HClである。低pH緩衝液は、さらに、塩(例えば、NaClまたはKCl)を、例えば10~100mM、好ましくは20~80(例えば、20、30、40、50、55、60、70、80など、またはこれらの範囲内の任意の濃度)mMで含んでもよい。低pH緩衝液は、さらに、別の塩(例えば、MgCl)を、例えば1~10mM、好ましくは2~8(例えば、2、3、4、5、5.5、6、7、8など、またはこれらの範囲内の任意の濃度)mMで含んでもよい。低pH緩衝液のpHは、例えば5~9であり、好ましくは6~8(例えば、pH6、6.5、7、7.5、8など、またはこれらの範囲内の任意のpH)である。 The low pH buffer is preferably based on Tris buffer or BTP buffer, and more preferably based on Tris buffer. When using Tris buffer, the low pH buffer is, for example, 10-50 mM Tris-HCl, preferably 15-40 (eg, 15, 20, 25, 30, 35, 40, etc.) mM Tris-HCl. The low pH buffer further comprises salts (eg, NaCl or KCl), eg, 10-100 mM, preferably 20-80 (eg, 20, 30, 40, 50, 55, 60, 70, 80, etc., or these. Any concentration within the range of) may be contained in mM. The low pH buffer may further include another salt (eg, MgCl 2 ), such as 1-10 mM, preferably 2-8 (eg, 2, 3, 4, 5, 5.5, 6, 7, 8 and the like. , Or any concentration within these ranges) may be included in mM. The pH of the low pH buffer is, for example, 5-9, preferably 6-8 (eg, pH 6, 6.5, 7, 7.5, 8, etc., or any pH within these ranges). ..
 低pH緩衝液は、高pH緩衝液よりもpHが低い。高pH緩衝液と低pH緩衝液のpHの差は1.0以上、1.5以上、2.0以上、2.5以上、3.0以上であることが望ましい。 The low pH buffer has a lower pH than the high pH buffer. The difference in pH between the high pH buffer solution and the low pH buffer solution is preferably 1.0 or more, 1.5 or more, 2.0 or more, 2.5 or more, and 3.0 or more.
 特に限定されないが、高pH緩衝液と低pH緩衝液は、同じ種類および濃度の塩を含んでいることが望ましい。すなわち、高pH緩衝液と低pH緩衝液の組成は、pHが異なることを除き、同じであることが望ましい。 Although not particularly limited, it is desirable that the high pH buffer solution and the low pH buffer solution contain salts of the same type and concentration. That is, it is desirable that the composition of the high pH buffer solution and the low pH buffer solution are the same except that the pH is different.
 低pH緩衝液として、「20mM Tris-HCl、55mM NaCl、5.5mM MgCl、pH7.0」が例示される。 Examples of the low pH buffer solution include "20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 7.0".
<工程(d):ウイルス調製物を得る工程>
 工程(d)は、工程(c)における担体からの溶出物を収集してウイルス調製物を得る工程である。ここで、担体からの溶出物は、ウイルスベクター粒子を含む。従って、工程(d)は、担体からのウイルスベクター粒子を含む溶出物を収集してウイルス調製物を得る工程ということもできる。かくして得られたウイルス調製物は、ウイルスベクター粒子を含む。ウイルス調製物には、ウイルスベクター粒子だけでなく、ウイルスの空キャプシドも含み得るが、該空のキャプシドの含有量は、ウイルスベクター粒子とウイルスの空キャプシドとを含む試料中の含有量と比べて遥かに減少している。
<Step (d): Step of obtaining virus preparation>
Step (d) is a step of collecting the eluate from the carrier in step (c) to obtain a virus preparation. Here, the eluate from the carrier contains viral vector particles. Therefore, step (d) can also be said to be a step of collecting the eluate containing the virus vector particles from the carrier to obtain a virus preparation. The resulting virus preparation contains viral vector particles. The virus preparation may contain not only the viral vector particles but also the empty capsids of the virus, but the content of the empty capsids is compared to the content in the sample containing the viral vector particles and the empty capsids of the virus. It has decreased much.
 溶出物の収集方法はとくに限定されない。例えば、カラムに充填されたアニオン交換担体を使用する場合、低pH緩衝液を適用したときに、カラムから溶出されてくる溶液を分取することにより行われる。 The method of collecting the eluate is not particularly limited. For example, when using an anion-exchange carrier packed in a column, it is done by separating the solution eluted from the column when a low pH buffer is applied.
 上記方法により得られた「ウイルス調製物」について、任意の「非エンベロープウイルスの測定方法」を実施することにより、その試料における、「ウイルスベクターの濃度」、「キャプシドタンパク質の濃度」、「ウイルスベクター粒子とウイルスの空キャプシドとの比率」など、所望の値を測定することができる。また、これらの値を、アニオン交換担体に適用する前の試料の値と比較することにより、ウイルスベクター粒子の回収率を計算することができる。 By carrying out any "method for measuring non-enveloped virus" with respect to the "virus preparation" obtained by the above method, "concentration of virus vector", "concentration of capsid protein", "virus vector" in the sample. A desired value such as "ratio of particles to empty capsid of virus" can be measured. In addition, the recovery rate of the viral vector particles can be calculated by comparing these values with the values of the sample before application to the anion exchange carrier.
 本発明の方法により、ウイルスベクター粒子とウイルスの空キャプシドとを1:1で含む試料からウイルス調製物を得た場合、当該ウイルス調製物は、ウイルスベクター粒子とウイルスの空キャプシドの総量に対して、45%未満、40%未満、35%未満、30%未満、25%未満、20%未満、15%未満、10%未満または5%未満のウイルスの空キャプシドを含む。従って、本発明の方法により、高濃度のウイルスベクター粒子を含むウイルス調製物を得ることができる。 When a virus preparation is obtained from a sample containing a virus vector particle and a virus empty capsid at a ratio of 1: 1 by the method of the present invention, the virus preparation is based on the total amount of the virus vector particle and the virus empty capsid. , Less than 45%, less than 40%, less than 35%, less than 30%, less than 25%, less than 20%, less than 15%, less than 10% or less than 5% containing empty capsids of the virus. Therefore, by the method of the present invention, a virus preparation containing a high concentration of viral vector particles can be obtained.
 ウイルス調製物における、ウイルスベクター粒子の回収率は、20%以上、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、90%以上である。従って、本発明はまた、ウイルスベクター粒子とウイルスの空キャプシドとを含む試料から、ウイルスベクター粒子を効率よく回収する方法を提供する。 The recovery rates of viral vector particles in virus preparations are 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more. Therefore, the present invention also provides a method for efficiently recovering viral vector particles from a sample containing viral vector particles and an empty capsid of virus.
 本発明により、非エンベロープウイルスベクター粒子を含むウイルス調製物の製造方法の他、当該製造方法に使用されるキット、及び当該製造方法で製造した非エンベロープウイルスベクター粒子を含む調製物も提供される。上記キットには、例えば、本発明の方法の各工程で使用される緩衝液、およびアニオン交換担体が含まれる。本発明の製造方法を用いて取得した非エンベロープウイルスベクター粒子を含む調製物は、医薬組成物の有効成分として使用することができる。当該医薬組成物は、患者由来の細胞に体外で使用するか、もしくは患者へ直接投与することができる。 INDUSTRIAL APPLICABILITY The present invention provides a method for producing a virus preparation containing non-enveloped viral vector particles, a kit used in the production method, and a preparation containing non-enveloped virus vector particles produced by the production method. The kit includes, for example, a buffer used in each step of the method of the invention, and an anion exchange carrier. The preparation containing the non-enveloped viral vector particles obtained by using the production method of the present invention can be used as an active ingredient of a pharmaceutical composition. The pharmaceutical composition can be used in vitro to cells derived from the patient or administered directly to the patient.
 以下の実施例により本発明を更に具体的に説明するが、本発明の範囲はこれらの実施例によって限定されない。 The present invention will be described in more detail with reference to the following examples, but the scope of the present invention is not limited to these examples.
調製例1 AAVベクター粒子および空キャプシドの調製
(1)rAAV2の産生
 293T細胞(ATCC、CRL-3216)を、rAAV2を産生するための宿主細胞として使用した。293T細胞に、3種のプラスミド(pRC2-mi342 Vector(タカラバイオ社製)、pHelper Vector(タカラバイオ社製)、およびpAAV-ZsGreen1 Vector(タカラバイオ社製))をリポフェクション法で、トランスフェクションした。トランスフェクション後、293T細胞を3日間培養した。
Preparation Example 1 Preparation of AAV vector particles and empty capsid (1) Production of rAAV2 293T cells (ATCC, CRL-3216) were used as host cells for producing rAAV2. Three plasmids (pRC2-mi342 Vector (manufactured by Takara Bio Inc.), pHelper Vector (manufactured by Takara Bio Inc.), and pAAV-ZsGreen1 Vector (manufactured by Takara Bio Inc.)) were transfected into 293T cells by the lipofection method. After transfection, 293T cells were cultured for 3 days.
(2)rAAV2の精製
 293T細胞を含む培養溶液に終濃度0.1%のTriton X-100を添加し、37℃で1時間処理することにより細胞を溶解した。細胞溶解物を遠心して回収した上清をポアサイズ0.2μmのフィルタに通して細胞片を除去した。排除分子量100kDaの遠心式限外ろ過フィルタを用いて約10倍に濃縮した試料を、AVB Sepharose High Performance(Cytiva社製)が充填されたカラムにロードし、吸着物をNaClを含む緩衝液で溶出することによってrAAV2を精製した。精製されたrAAV2は、AAVベクター粒子および空キャプシドの両方を含む。
(2) Purification of rAAV2 Triton X-100 with a final concentration of 0.1% was added to a culture solution containing 293T cells, and the cells were lysed by treatment at 37 ° C. for 1 hour. The supernatant collected by centrifuging the cytolysate was passed through a filter having a pore size of 0.2 μm to remove cell debris. A sample concentrated about 10-fold using a centrifugal ultrafiltration filter having an exclusion molecular weight of 100 kDa was loaded onto a column packed with AVB Sepharose High Performance (manufactured by Cytiva), and the adsorbate was eluted with a buffer solution containing NaCl. Purified rAAV2 by Purified rAAV2 contains both AAV vector particles and empty capsids.
(3)AAVベクター粒子および空キャプシドの分離
 調製例1-(2)で得られたrAAV2に含まれるAAVベクター粒子および空キャプシドを、超遠心機を用いた塩化セシウム密度勾配遠心法で分離、分画した。試料に屈折率が1.371となるよう塩化セシウムを加え、Optima XE-90(Beckman Coulter社製)を使用して148500×g、21℃の条件で42時間超遠心を行った。分離後の試料を0.5mlずつ分取して得られた各画分の一部を、SDS-ポリアクリルアミドゲル電気泳動に供した。Oriole蛍光ゲルステイン(Bio-Rad Laboratories社製)を用いたOriole染色により、AAVキャプシドタンパク質が集積する画分を決定した。次いで、各画分に含まれるAAVゲノムの濃度をAAVpro Titration Kit(タカラバイオ社製)を用いた定量リアルタイムPCRで測定することにより、AAVゲノムが集積する画分を決定した。AAVキャプシドタンパク質のみが集積する画分を「空キャプシド」、AAVキャプシドタンパク質とAAVゲノムの両方が集積する画分を「AAVベクター粒子」としてそれぞれ回収し、透析法で溶液をリン酸緩衝生理食塩水(pH7.4)に置換した。
(3) Separation of AAV vector particles and empty capsids The AAV vector particles and empty capsids contained in rAAV2 obtained in Preparation Example 1- (2) are separated and separated by cesium chloride density gradient centrifugation using an ultracentrifuge. I drew it. Cesium chloride was added to the sample so that the refractive index was 1.371, and ultracentrifugation was performed using Optima XE-90 (manufactured by Beckman Coulter) at 148500 × g at 21 ° C. for 42 hours. A part of each fraction obtained by separating 0.5 ml of the separated sample was subjected to SDS-polyacrylamide gel electrophoresis. The fraction in which the AAV capsid protein was accumulated was determined by Oriole staining with Oriole fluorescent gel stain (manufactured by Bio-Rad Laboratories). Next, the concentration of the AAV genome contained in each fraction was measured by quantitative real-time PCR using AAVpro Titration Kit (manufactured by Takara Bio Inc.) to determine the fraction in which the AAV genome was accumulated. The fraction in which only the AAV capsid protein is accumulated is collected as "empty capsid", and the fraction in which both the AAV capsid protein and the AAV genome are accumulated is collected as "AAV vector particles". It was replaced with (pH 7.4).
実施例1 AAVベクター粒子および空キャプシドの溶出パターンの差異
(1)プログラムの設計
 アニオン交換カラムクロマトグラフィーを用いてAAVベクター粒子と空キャプシドとを分離することを目的としたプログラムを設計した。すなわち、当該プログラムでは、最初に、平衡化緩衝液(20mM Tris-HCl、pH9.0)で平衡化されたCIMmultus QA(quaternary amine)-1カラム(BIAセパレーションズ社製)にサンプルをロードし、UV280の値がベースライン付近に下がるまで平衡化緩衝液を流し、カラムを洗浄する。次に、pHは平衡化緩衝液と同じで塩濃度を上げた緩衝液(20mM Tris-HCl、55mM NaCl、5.5mM MgCl、pH9.0)をカラムに流し、空キャプシドを溶出する。最後に、塩濃度は同じでpHを下げた緩衝液(20mM Tris-HCl、55mM NaCl、5.5mM MgCl、pH7.0)をカラムに流し、AAVベクター粒子を溶出する。
 AAVベクター粒子および空キャプシドを、カラムに別々にロードし、上記プログラムを用いて溶出することにより、AAVベクター粒子および空キャプシドの溶出パターンの差異を明らかにした。
Example 1 Differences in Elution Patterns of AAV Vector Particles and Empty Capsids (1) Program Design A program was designed for the purpose of separating AAV vector particles and empty capsids using anion exchange column chromatography. That is, in the program, the sample was first loaded into a CIMmultus QA (quaternary aminoe) -1 column (manufactured by BIA Separations) equilibrated with equilibration buffer (20 mM Tris-HCl, pH 9.0). Run the equilibration buffer and wash the column until the UV280 value drops near baseline. Next, a buffer solution (20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 9.0) having the same pH as the equilibration buffer solution and having an increased salt concentration is flowed through the column to elute the empty capsid. Finally, a buffer solution (20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 7.0) having the same salt concentration but lower pH is passed through the column to elute the AAV vector particles.
Differences in elution patterns of AAV vector particles and empty capsids were revealed by loading AAV vector particles and empty capsids separately into columns and eluting using the above program.
(2)空キャプシドの溶出
 平衡化緩衝液(20mM Tris-HCl、pH9.0)で平衡化されたCIMmultus QA-1カラムに、調製例1-(3)で得られた空キャプシドを平衡化緩衝液で20倍に希釈し、ロードした。280nmにおける吸光度(UV280)の値がベースライン付近に下がるまで平衡化緩衝液でカラムを洗浄した後、pHは平衡化緩衝液と同じで塩濃度を上げた緩衝液(20mM Tris-HCl、55mM NaCl、5.5mM MgCl、pH9.0)をカラムに流し、UV280に吸収のあるピークを回収した(以下、「pH9.0溶出画分」とする)。次に、塩濃度は同じでpHを下げた緩衝液(20mM Tris-HCl、55mM NaCl、5.5mM MgCl、pH7.0)をカラムに流したが、UV280に吸収のあるピークは確認できなかった。回収した画分をSDS-PAGEおよび定量リアルタイムPCRで解析し、「pH9.0溶出画分」が空キャプシドを含むことを確認した(data not shown)。空キャプシドの溶出パターンを図1に示す。
(2) Elution of empty capsid Equilibration buffer of empty capsid obtained in Preparation Example 1- (3) on a CIMmultus QA-1 column equilibrated with an equilibration buffer (20 mM Tris-HCl, pH 9.0). It was diluted 20-fold with liquid and loaded. After washing the column with equilibration buffer until the value of absorbance (UV280) at 280 nm drops to near baseline, the pH is the same as equilibration buffer and the salt concentration is increased (20 mM Tris-HCl, 55 mM NaCl). 5.5 mM MgCl 2 , pH 9.0) was flowed through the column, and the peak absorbed by UV280 was recovered (hereinafter referred to as “pH 9.0 elution fraction”). Next, a buffer solution (20 mM Tris-HCl, 55 mM NaCl, 5.5 mM MgCl 2 , pH 7.0) having the same salt concentration but lowering the pH was flowed through the column, but no peak with absorption in UV280 could be confirmed. rice field. The collected fractions were analyzed by SDS-PAGE and quantitative real-time PCR, and it was confirmed that the "pH 9.0-eluted fraction" contained an empty capsid (data not shoun). The elution pattern of the empty capsid is shown in FIG.
(3)AAVベクター粒子の溶出
 実施例1-(2)と同様にして、調製例1-(3)で得られたAAVベクター粒子を平衡化緩衝液で20倍に希釈し、平衡化緩衝液(20mM Tris-HCl、pH9.0)で平衡化されたカラムにロードした。平衡化緩衝液でカラムを洗浄してUV280の値がベースライン付近に下がった後、実施例1-(2)と同じプログラムでカラムからの溶出を実施した。pHは平衡化緩衝液と同じで塩濃度を上げた緩衝液ではUV280に吸収のあるピークは確認できなかった。一方、塩濃度は同じでpHを下げた緩衝液ではUV280に吸収のあるピークを回収できた(以下、「pH7.0溶出画分」とする)。回収した画分をSDS-PAGEおよび定量リアルタイムPCRで解析した。得られたデータから、「pH7.0溶出画分」がAAVベクター粒子を含むことを確認した(data not shown)。AAVベクター粒子の溶出パターンを図2に示す。
(3) Elution of AAV vector particles In the same manner as in Example 1- (2), the AAV vector particles obtained in Preparation Example 1- (3) were diluted 20-fold with an equilibration buffer solution, and the equilibration buffer solution was used. It was loaded onto a column equilibrated with (20 mM Tris-HCl, pH 9.0). After the column was washed with equilibration buffer and the UV280 value dropped to near the baseline, elution was performed from the column using the same program as in Example 1- (2). The pH was the same as that of the equilibration buffer solution, and a peak with absorption in UV280 could not be confirmed in the buffer solution having an increased salt concentration. On the other hand, with a buffer solution having the same salt concentration and a lowered pH, a peak absorbed by UV280 could be recovered (hereinafter referred to as "pH 7.0 elution fraction"). The collected fractions were analyzed by SDS-PAGE and quantitative real-time PCR. From the obtained data, it was confirmed that the "pH 7.0 elution fraction" contained AAV vector particles (data not shown). The elution pattern of AAV vector particles is shown in FIG.
(4)AAVベクター粒子および空キャプシドの溶出パターンの比較
 空キャプシドの溶出パターン(図1)とAAVベクター粒子の溶出パターン(図2)とを重ねた図を、図3に示す。
(4) Comparison of Elution Patterns of AAV Vector Particles and Empty Capsids FIG. 3 shows an overlay of the elution patterns of empty capsids (FIG. 1) and the elution patterns of AAV vector particles (FIG. 2).
実施例2 AAVベクター粒子および空キャプシドの分離
 実施例1-(4)の知見に基づき、CIMmultus QA-1カラムを用いて、AAVベクター粒子および空キャプシドの分離を行った。すなわち、調製例1-(3)で得られたAAVベクター粒子および空キャプシドを混合し(重量比で約1:1)、当該混合物をCIMmultus QA-1カラムにロードし、実施例1-(1)のプログラムで溶出した。pH9.0溶出画分およびpH7.0溶出画分の両方でUV280に吸収のあるピークを確認し、それぞれ回収した。AAVベクター粒子および空キャプシドの混合物の溶出パターンを図4に示す。
Example 2 Separation of AAV Vector Particles and Empty Capsids Based on the findings of Example 1- (4), AAV vector particles and empty capsids were separated using a CIMmultus QA-1 column. That is, the AAV vector particles obtained in Preparation Example 1- (3) and the empty capsid were mixed (about 1: 1 by weight), the mixture was loaded onto a CIMmultus QA-1 column, and Example 1- (1). ) Eluted by the program. Peaks with absorption in UV280 were confirmed in both the pH 9.0 elution fraction and the pH 7.0 elution fraction, and each was recovered. The elution pattern of the mixture of AAV vector particles and empty capsid is shown in FIG.
 回収した画分をSDS-PAGEおよび定量リアルタイムPCRで解析した。SDS-PAGEおよび定量リアルタイムPCRは、常法にしたがって実施した。その結果、SDS-PAGEでは両画分とも同様のキャプシドタンパク質のバンドが確認された(図5)。一方、定量リアルタイムPCRではpH7.0溶出画分にのみAAVゲノムが検出された(図6)。これらのデータから、pH9.0溶出画分には空キャプシドのみが含まれるのに対して、pH7.0溶出画分にはAAVベクター粒子が含まれることが示された。 The collected fractions were analyzed by SDS-PAGE and quantitative real-time PCR. SDS-PAGE and quantitative real-time PCR were performed according to conventional methods. As a result, similar capsid protein bands were confirmed in both fractions by SDS-PAGE (Fig. 5). On the other hand, in quantitative real-time PCR, the AAV genome was detected only in the pH 7.0-eluted fraction (Fig. 6). From these data, it was shown that the pH 9.0 elution fraction contained only empty capsids, whereas the pH 7.0 elution fraction contained AAV vector particles.
 本発明の方法により、高純度の非エンベロープウイルスベクター粒子を含む調製物を得ることができる。本発明の方法で調製された非エンベロープウイルスベクター粒子や当該粒子を有効成分とする組成物は、遺伝子治療の基礎研究、又は臨床応用の分野における遺伝子導入方法として非常に有用である。 By the method of the present invention, a preparation containing high-purity non-enveloped viral vector particles can be obtained. The non-enveloped viral vector particles prepared by the method of the present invention and compositions containing the particles as active ingredients are very useful as gene transfer methods in the field of basic research on gene therapy or clinical application.

Claims (8)

  1.  AAVベクター粒子とAAVの空キャプシドとを含む試料からAAV調製物を得るための方法であって、該方法は、
     (a)AAVベクター粒子とAAVの空キャプシドとを含む試料を、緩衝液で平衡化されたアニオン交換担体に対して適用し、該AAVベクター粒子を該担体に結合させる工程;
     (b)工程(a)後の担体に緩衝液を適用し、非結合物を担体から溶出させる工程;
     (c)工程(b)後の担体に担体を平衡化した緩衝液よりも低いpHの緩衝液を適用し、AAVベクター粒子を担体から溶出させる工程;及び
     (d)工程(c)における担体からの溶出物を収集してAAV調製物を得る工程、
    を包含する、方法。
    A method for obtaining an AAV preparation from a sample containing AAV vector particles and an empty capsid of AAV.
    (A) A step of applying a sample containing AAV vector particles and an empty capsid of AAV to an anion exchange carrier equilibrated with a buffer and binding the AAV vector particles to the carrier;
    (B) A step of applying a buffer solution to the carrier after the step (a) to elute the non-bonded product from the carrier;
    (C) A step of applying a buffer solution having a pH lower than that of the buffer solution equilibrated with the carrier to the carrier after the step (b) to elute the AAV vector particles from the carrier; and (d) from the carrier in the step (c). To obtain an AAV preparation by collecting the eluate of
    A method that embraces.
  2.  工程(b)において、担体に結合したAAVの空キャプシドをさらに溶出させる、請求項1に記載の方法。 The method according to claim 1, wherein in the step (b), the empty capsid of AAV bound to the carrier is further eluted.
  3.  担体を平衡化した緩衝液と工程(c)の溶出用緩衝液のpHの差が1.0以上である、請求項1に記載の方法。 The method according to claim 1, wherein the difference in pH between the buffer solution in which the carrier is equilibrated and the buffer solution for elution in step (c) is 1.0 or more.
  4.  担体を平衡化した緩衝液と工程(c)の溶出用緩衝液のpHの差が2.0以上である、請求項1に記載の方法。 The method according to claim 1, wherein the difference in pH between the buffer solution in which the carrier is equilibrated and the buffer solution for elution in step (c) is 2.0 or more.
  5.  アニオン交換担体の官能基が4級アンモニウム基である請求項1に記載の方法。 The method according to claim 1, wherein the functional group of the anion exchange carrier is a quaternary ammonium group.
  6.  カラムに充填されたアニオン交換担体が使用される請求項1に記載の方法。 The method according to claim 1, wherein an anion exchange carrier packed in a column is used.
  7.  担体を平衡化した緩衝液が、緩衝成分としてトリスを含む緩衝液である請求項1に記載の方法。 The method according to claim 1, wherein the buffer solution in which the carrier is equilibrated is a buffer solution containing Tris as a buffer component.
  8.  工程(c)の溶出用緩衝液が、緩衝成分としてトリスを含む緩衝液である請求項1に記載の方法。 The method according to claim 1, wherein the elution buffer solution in the step (c) is a buffer solution containing Tris as a buffer component.
PCT/JP2021/030774 2020-08-24 2021-08-23 METHOD FOR FORMULATING NON-ENVELOPED VIRAL VECTOR PARTICLES BY CHANGE IN pH WO2022045055A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022544577A JPWO2022045055A1 (en) 2020-08-24 2021-08-23

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-140734 2020-08-24
JP2020140734 2020-08-24

Publications (1)

Publication Number Publication Date
WO2022045055A1 true WO2022045055A1 (en) 2022-03-03

Family

ID=80353278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/030774 WO2022045055A1 (en) 2020-08-24 2021-08-23 METHOD FOR FORMULATING NON-ENVELOPED VIRAL VECTOR PARTICLES BY CHANGE IN pH

Country Status (2)

Country Link
JP (1) JPWO2022045055A1 (en)
WO (1) WO2022045055A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528886A (en) * 2003-05-21 2006-12-28 アビジェン, インコーポレイテッド Method for producing a recombinant AAV virion preparation substantially free of empty capsids
JP2007117003A (en) * 2005-10-28 2007-05-17 Nippon Pall Kk Method for rapidly removing and purifying hollow virus particle
JP2018507707A (en) * 2015-02-09 2018-03-22 インスティチュート ナショナル デ ラ サンテ エ デ ラ ルシェルシュ メディカル (インセルム) Purification of recombinant adeno-associated virus particles including an affinity purification step
JP2019509745A (en) * 2016-03-31 2019-04-11 スパーク セラピューティクス インコーポレイテッドSpark Therapeutics, Inc. Highly scalable rAAV manufacturing process based on columns

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006528886A (en) * 2003-05-21 2006-12-28 アビジェン, インコーポレイテッド Method for producing a recombinant AAV virion preparation substantially free of empty capsids
JP2007117003A (en) * 2005-10-28 2007-05-17 Nippon Pall Kk Method for rapidly removing and purifying hollow virus particle
JP2018507707A (en) * 2015-02-09 2018-03-22 インスティチュート ナショナル デ ラ サンテ エ デ ラ ルシェルシュ メディカル (インセルム) Purification of recombinant adeno-associated virus particles including an affinity purification step
JP2019509745A (en) * 2016-03-31 2019-04-11 スパーク セラピューティクス インコーポレイテッドSpark Therapeutics, Inc. Highly scalable rAAV manufacturing process based on columns

Also Published As

Publication number Publication date
JPWO2022045055A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US11261463B2 (en) Methods for producing preparations of recombinant AAV virions substantially free of empty capsids
US11732245B2 (en) Scalable purification method for AAV9
Robert et al. Manufacturing of recombinant adeno‐associated viruses using mammalian expression platforms
ES2934848T3 (en) Scalable purification method for AAV8
Joshi et al. Development of a scalable and robust AEX method for enriched rAAV preparations in genome-containing VCs of serotypes 5, 6, 8, and 9
Smith et al. Serum-free production and column purification of adeno-associated virus type 5
CN109152821A (en) Entirely extendable rAAV manufacturing process based on column
WO2021228930A2 (en) Methods and compositions for purifying adeno associated virus particles or adenoviruses
WO2022045055A1 (en) METHOD FOR FORMULATING NON-ENVELOPED VIRAL VECTOR PARTICLES BY CHANGE IN pH
KR102493350B1 (en) Method for producing non-enveloped virus particles
WO2023085382A1 (en) Virus purification method
ES2357131T3 (en) PROCEDURES TO PRODUCE PREPARATIONS OF VIRIONS OF AAV RECOMBINANTS SUBSTANTIALLY EXEMPT FROM EMPTY CAPSIDES.
WO2024079655A1 (en) Chromatography methods for purification of aav capsids
WO2024056561A1 (en) Method for separating full and empty aav particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21861481

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022544577

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21861481

Country of ref document: EP

Kind code of ref document: A1