Nothing Special   »   [go: up one dir, main page]

WO2021227570A1 - 一种智能音箱、控制智能音箱的方法和系统 - Google Patents

一种智能音箱、控制智能音箱的方法和系统 Download PDF

Info

Publication number
WO2021227570A1
WO2021227570A1 PCT/CN2021/075138 CN2021075138W WO2021227570A1 WO 2021227570 A1 WO2021227570 A1 WO 2021227570A1 CN 2021075138 W CN2021075138 W CN 2021075138W WO 2021227570 A1 WO2021227570 A1 WO 2021227570A1
Authority
WO
WIPO (PCT)
Prior art keywords
sound
detection module
smart
signal
smart speaker
Prior art date
Application number
PCT/CN2021/075138
Other languages
English (en)
French (fr)
Inventor
刘广松
王梓瑞
杨青
Original Assignee
苏州触达信息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州触达信息技术有限公司 filed Critical 苏州触达信息技术有限公司
Publication of WO2021227570A1 publication Critical patent/WO2021227570A1/zh
Priority to US18/054,911 priority Critical patent/US20230071703A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/26Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/02Casings; Cabinets ; Supports therefor; Mountings therein
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/80Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using ultrasonic, sonic or infrasonic waves
    • G01S3/802Systems for determining direction or deviation from predetermined direction
    • G01S3/808Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems
    • G01S3/8083Systems for determining direction or deviation from predetermined direction using transducers spaced apart and measuring phase or time difference between signals therefrom, i.e. path-difference systems determining direction of source
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/22Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/24Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/08Mouthpieces; Microphones; Attachments therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/326Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only for microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R1/00Details of transducers, loudspeakers or microphones
    • H04R1/20Arrangements for obtaining desired frequency or directional characteristics
    • H04R1/32Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only
    • H04R1/40Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers
    • H04R1/406Arrangements for obtaining desired frequency or directional characteristics for obtaining desired directional characteristic only by combining a number of identical transducers microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2201/00Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
    • H04R2201/40Details of arrangements for obtaining desired directional characteristic by combining a number of identical transducers covered by H04R1/40 but not provided for in any of its subgroups
    • H04R2201/4012D or 3D arrays of transducers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2430/00Signal processing covered by H04R, not provided for in its groups
    • H04R2430/20Processing of the output signals of the acoustic transducers of an array for obtaining a desired directivity characteristic
    • H04R2430/21Direction finding using differential microphone array [DMA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2499/00Aspects covered by H04R or H04S not otherwise provided for in their subgroups
    • H04R2499/10General applications
    • H04R2499/11Transducers incorporated or for use in hand-held devices, e.g. mobile phones, PDA's, camera's

Definitions

  • the embodiments of the present invention relate to the technical field of sound processing, and more specifically, to a smart speaker, and a method and system for controlling the smart speaker.
  • the prior art mainly judges the user's distance by the volume of the voice picked up by the microphone array, or obtains the user's position through the ranging sensor, and then feeds back to the smart speaker to adjust the volume size.
  • the embodiment of the present invention proposes a smart speaker, and a method and system for controlling the smart speaker.
  • a smart speaker comprising: a first sound detection module for detecting a first sound signal directly reaching the first sound detection module; a second sound detection module for detecting a second sound signal directly reaching the second sound detection module Sound signal; wherein the first sound signal and the second sound signal are simultaneously transmitted by the same sound emitting device; the angle determination module is used to determine the difference between the receiving moment of the first sound signal and the receiving moment of the second sound signal Time difference; based on the distance between the first sound detection module and the second sound detection module and the time difference, determine the relative angle between the smart speaker and the sound-producing device; The sound-producing device emits sound directionally.
  • the sound emitting module is configured to control the speaker array to directionally emit sound to the sound emitting device based on the relative angle, or control the ultrasonic directional sounder to directionally emit sound to the sound emitting device based on the relative angle; or
  • the smart speaker further includes: a distance determination module for determining the distance between the smart speaker and the sounding device, wherein the sounding module is used for controlling the speaker array to emit sound to the sounding device in a direction based on the relative angle and the distance, wherein The volume of the sound has a monotonically increasing relationship with the distance.
  • a method for controlling a smart speaker includes a first sound detection module and a second sound detection module.
  • the method includes: detecting a first sound signal that reaches the first sound detection module directly, and detecting that the second sound signal The second sound signal of the sound detection module; wherein the first sound signal and the second sound signal are simultaneously transmitted by the same sound emitting device; determine the difference between the receiving moment of the first sound signal and the receiving moment of the second sound signal Time difference; based on the distance between the first sound detection module and the second sound detection module and the time difference, determine the relative angle between the smart speaker and the sounding device; based on the relative angle to directionally emit sound to the sounding device.
  • the directional emission of sound to the sound emitting device based on the relative angle includes: controlling a speaker array to directionally emit sound to the sound emitting device based on the relative angle, or controlling an ultrasonic directional sounder to emit sound based on the relative angle.
  • the sound emitting device emits sound directionally; or
  • the method further includes: determining the distance between the smart speaker and the sound emitting device; wherein the directionally emitting sound to the sound emitting device based on the relative angle includes: controlling the speaker array to orient the sound emitting device based on the relative angle and the distance A sound is emitted, wherein the volume of the sound has a monotonically increasing relationship with the distance.
  • the first sound signal and the second sound signal are ultrasonic signals containing the identification of the sound emitting device.
  • a system for controlling a smart speaker includes: a sound generating device; the smart speaker includes: a first sound detection module for detecting a first sound signal directly to the first sound detection module; a second sound detection module for detecting A second sound signal directly to the second sound detection module, wherein the first sound signal and the second sound signal are simultaneously transmitted by the sound emitting device; the angle determination module is used to determine the reception of the first sound signal The time difference between the time and the receiving time of the second sound signal, based on the distance between the first sound detection module and the second sound detection module and the time difference, determine the relative angle between the smart speaker and the sounding device; sounding module , Used to directionally emit sound to the sound emitting device based on the relative angle.
  • the sound generating device includes: a smart phone; a smart headset; a smart remote control; a tablet computer; a personal digital assistant; a smart bracelet; and smart glasses.
  • a computer-readable storage medium in which computer-readable instructions are stored, and the computer-readable instructions are used to execute the method for controlling a smart speaker as described in any one of the above items.
  • the smart speaker includes: a first sound detection module for detecting a first sound signal that reaches the first sound detection module; a second sound detection module for detecting a sound that reaches the second sound detection module The second sound signal; wherein the first sound signal and the second sound signal are simultaneously transmitted by the same sound emitting device; the angle determination module is used to determine the receiving time of the first sound signal and the receiving time of the second sound signal Determine the relative angle between the smart speaker and the sound device based on the distance between the first sound detection module and the second sound detection module and the time difference; the sound module is used to determine the relative angle between the smart speaker and the sound device; Directly emit sound to the sound emitting device. It can be seen that the present invention realizes directional sound based on relative angle calculation, and improves user experience.
  • Fig. 1 is an exemplary flowchart of a method for determining a relative angle between smart devices of the present invention.
  • Figure 2 is a schematic diagram of the principle of determining the relative angle between smart devices of the present invention.
  • Fig. 3 is a calculation principle diagram of the relative angle between the smart devices of the present invention.
  • Fig. 4 is a first exemplary schematic diagram of determining a pair of direct signals according to the present invention.
  • Fig. 5 is a second exemplary schematic diagram of determining a pair of direct signals according to the present invention.
  • Fig. 6 is a schematic diagram of a first exemplary arrangement of the first sound detection module and the second sound detection module in the smart device of the present invention.
  • Fig. 7 is a schematic diagram of a second exemplary arrangement of the first sound detection module and the second sound detection module in the smart device of the present invention.
  • Fig. 8 is a schematic diagram of the relative positioning of the first smart device and the second smart device of the present invention.
  • Fig. 9 is a schematic diagram showing the relative angle in the interface of the smart device according to the present invention.
  • Fig. 10 is an exemplary processing flowchart of relative positioning between smart devices of the present invention.
  • Fig. 11 is a structural diagram of a smart speaker according to the present invention.
  • Fig. 12 is a flowchart of a method for controlling a smart speaker according to the present invention.
  • Fig. 13 is a structural diagram of a system for controlling a smart speaker according to the present invention.
  • the relative positioning has universal applicability. Devices of different manufacturers can achieve interoperability and compatibility. Based on this, innovative applications of smart devices will be explored.
  • the embodiment of the invention proposes a sound (preferably ultrasound)-based relative direction recognition scheme between smart devices. No additional hardware is required.
  • the software can be used to realize the relative direction recognition between two smart devices, and the positioning result is accurate and reliable.
  • an intelligent device refers to any device, appliance or machine with computing and processing capabilities.
  • Fig. 1 is an exemplary flowchart of a method for determining a relative angle between smart devices of the present invention. The method is applicable to a first smart device, and the first smart device includes a first sound detection module and a second sound detection module. The first sound detection module and the second sound detection module are fixedly installed in the first smart device.
  • the first sound detection module may be implemented as a microphone or a set of microphone arrays arranged in the first smart device.
  • the second sound detection module may be implemented as a microphone or a group of microphone arrays arranged in the first smart device that is different from the first sound detection module.
  • the method includes:
  • Step 101 Enable the first sound detection module to detect the first sound signal sent by the second smart device and reach the first sound detection module, and enable the second sound detection module to detect the second sound detection module sent by the second smart device and reach the second sound detection module The second sound signal, where the first sound signal and the second sound signal are simultaneously emitted by the second smart device.
  • the second smart device can send out one sound signal or send out multiple sound signals at the same time.
  • the first sound detection module and the second sound detection module in the second smart device respectively detect the sound signal.
  • the detection signal detected by the first sound detection module and the sound signal directly reaching the first sound detection module is determined to be the first sound signal; the detection signal detected by the second sound detection module and the sound signal directly reaching the first sound detection module
  • the detection signal is determined to be the second sound signal.
  • the second smart device sends out multiple sound signals at the same time, for example, it sends out an ultrasonic signal and an audible sound signal.
  • the first sound detection module in the second smart device is adapted to detect ultrasonic signals
  • the second sound detection module is adapted to detect audible sound signals.
  • the first sound detection module detects the ultrasonic signal
  • the second sound detection module detects the audible sound signal.
  • the detection signal detected by the first sound detection module and the ultrasonic signal reaching the first sound detection module is determined to be the first sound signal
  • the detection signal of the module is determined to be the second sound signal.
  • first sound signal and the second sound signal may be separate detection signals of the first sound detection module and the second sound detection module for the same sound signal emitted by the second smart device.
  • first sound signal and the second sound signal may be separate detection signals of the first sound detection module and the second sound detection module for different sound signals simultaneously emitted by the second smart device.
  • Step 102 Determine the time difference between the receiving moment of the first sound signal and the receiving moment of the second sound signal.
  • the first smart device (for example, the CPU in the first smart device) can record the receiving time of the first sound signal and the receiving time of the second sound signal, and calculate the time difference between the two.
  • Step 103 Determine the relative angle between the first smart device and the second smart device based on the distance and the time difference between the first sound detection module and the second sound detection module.
  • step 103 may be executed by the CPU of the first smart device.
  • the value of the time difference determined in step 102 may be a positive number or a negative number.
  • the receiving time of the second sound signal is earlier than the receiving time of the first sound signal, so the relative angle ⁇ between the first smart device and the second smart device is usually an acute angle;
  • the receiving time of the first sound signal is earlier than the receiving time of the second sound signal, so the relative angle ⁇ between the first smart device and the second smart device is usually an obtuse angle.
  • the first sound signal is a signal from the second smart device to the first sound detection module
  • the second sound signal is a signal from the second smart device to the second sound detection module.
  • both the first sound detection module and the second sound detection module may receive non-direct signals (for example, one reflection or multiple transmissions from an obstacle) from the second smart device. Therefore, how to determine the direct signal from the received multiple signals has significant meaning.
  • the received signal stream of each sound detection module includes a direct channel and a reflection channel.
  • the direct channel can be determined simply and conveniently based on the following principle: Among all the signals detected by the sound detection module, the signal strength of the direct channel is generally the strongest.
  • the method further includes: determining a sound signal whose intensity is greater than a predetermined threshold within a predetermined time window from the sound signal stream of the second smart device received by the first sound detection module as said The first sound signal; the second sound detection module receives the sound signal of the sound signal stream of the second smart device that has an intensity greater than the predetermined threshold within the predetermined time window, and determines it as the second sound signal .
  • Fig. 4 is a first exemplary schematic diagram of determining a pair of direct signals according to the present invention.
  • the sound signal stream detected by the first sound detection module is stream1, which contains multiple pulse signals that vary along time (t), and the predetermined signal strength threshold is T. It can be seen that within the range of the time window 90, the signal strength of the pulse signal 50 in the stream1 is greater than the threshold T.
  • the sound signal stream detected by the second sound detection module is stream2, which contains multiple pulse signals that vary along time (t), and the predetermined signal strength threshold is also T. It can be seen that within the range of the time window 90, the signal strength of the pulse signal 60 in the stream2 is greater than the threshold value T. Therefore, it is determined that the pulse signal 50 is the first sound signal; the pulse signal 60 is the second sound signal.
  • principle (1) among all signals detected by the sound detection module, the signal strength of the direct channel is generally the strongest; principle (2) ), joint discrimination method: the distance difference d calculated by the difference in arrival time of the two direct channel signals (the first sound signal and the second sound signal) should not be greater than the distance between the first sound detection module and the second sound detection module .
  • the method further includes: determining, in the sound signal stream of the second smart device that the first sound detection module detects, a sound signal with a strength greater than a predetermined threshold to form a first candidate signal set;
  • Fig. 5 is a second exemplary schematic diagram of determining a pair of direct signals according to the present invention.
  • the sound signal stream detected by the first sound detection module is stream1, which contains multiple pulse signals that vary along time (t), and the predetermined signal strength threshold is T. It can be seen that in stream1, the signal strength of the pulse signal 50 is greater than the threshold value T, so the first candidate signal set includes the pulse signal 50.
  • the sound signal stream detected by the second sound detection module is stream2, stream1 contains multiple pulse signals that vary along time (t), and the predetermined signal strength threshold is also T. It can be seen that in stream2, the signal strength of the pulse signal 60 and the pulse signal 70 are both greater than the threshold value T, so the second candidate signal set includes the pulse signal 60 and the pulse signal 70.
  • the time difference d1 between the receiving moments of the pulse signal 50 in the first candidate signal set and the pulse signal 60 in the second candidate signal set is determined, and the pulse signal 50 in the first candidate signal set and the pulse signal in the second candidate signal set are determined.
  • the time difference d2 between the reception moments of the signal 70. Assume that d1 is less than M and d2 is greater than M, where M (D/c), D is the distance between the first sound detection module and the second sound detection module, and c is the propagation speed of sound. Therefore, the pulse signal 50 in the pair of sound signals related to d1 is determined as the first sound signal, and the pulse signal 60 in the pair of sound signals is determined as the second sound signal.
  • the first sound signal and the second sound signal are ultrasonic waves having a code division multiple access format and include a media access control address (MAC) of the second smart device.
  • MAC media access control address
  • the first smart device can accurately identify the source of the sound signal based on the MAC address of the second smart device included in the sound signal.
  • the first smart device can accurately use two direct signals from the same sound source to determine the relative angle to the sound source based on the MAC address extracted from the sound signal. Will not be interfered by other sound sources.
  • the embodiment of the present invention also proposes a method for determining the relative angle between smart devices.
  • the method is applicable to a first smart device, and the first smart device includes a first sound detection module and a second sound detection module.
  • the method includes: determining the first moment when an ultrasonic signal sent by the second smart device reaches the first sound detection module; Determine the second moment when the ultrasonic signal reaches the second sound detection module; determine the time difference between the first moment and the second moment; determine the first intelligence based on the distance and time difference between the first sound detection module and the second sound detection module The relative angle between the device and the second smart device.
  • the method further includes at least one of the following treatments:
  • the ultrasonic signal with the predetermined threshold value is determined as the ultrasonic signal directly reaching the second sound detection module, and the time when the ultrasonic signal directly reaching the second sound detection module is received is determined as the second time.
  • the distance between the detection module and the second sound detection module, c is the sound propagation speed.
  • FIG. 2 is a schematic diagram of the principle of determining the relative angle between smart devices of the present invention.
  • Fig. 3 is a calculation principle diagram of the relative angle between the smart devices of the present invention.
  • the microphone a1 arranged at the bottom of the smart device A emits an ultrasonic signal, which contains the MAC address of the smart device A
  • the smart device B (not shown in Figure 2) has two microphones arranged apart, respectively It is microphone b1 and microphone b2.
  • the microphone b1 receives the direct signal L1 of the ultrasonic signal
  • the microphone b2 receives the direct signal L2 of the ultrasonic signal.
  • the ultrasonic signal reaches the non-direct signals of microphone b1 and microphone b2 after being emitted by obstacles, and does not participate in the subsequent relative angle calculation. Since the smart device is small, especially when the two smart devices are far apart, the direct signals L 1 and L 2 can be regarded as parallel lines.
  • L 1 and L 2 respectively represent the direct signals received by the microphone b1 and the microphone b2 of the smart device B (not the signal reflected by the obstacle);
  • D is the distance between the microphone b1 and the microphone b2.
  • the first sound detection module and the second sound detection module may be arranged at multiple locations of the smart device.
  • Fig. 6 is a schematic diagram of a first exemplary arrangement of the first sound detection module and the second sound detection module in the smart device of the present invention.
  • the first sound detection module 18 and the second sound detection module 19 are respectively arranged at both ends of the smart device in the length direction. Therefore, the length D of the smart device can be directly determined as the first sound detection module 18 and the first sound detection module 18 and the second sound detection module.
  • Fig. 7 is a schematic diagram of a second exemplary arrangement of the first sound detection module and the second sound detection module in the smart device of the present invention. In FIG.
  • the first sound detection module 18 and the second sound detection module 19 are respectively arranged at both ends of the smart device in the width direction. Therefore, the width D of the smart device can be directly determined as the first sound detection module 18 and the first sound detection module 18 and the second sound detection module. The distance between two sound detection modules 19.
  • the current smart device usually has two sets of microphones, and these two sets of microphones can be used as the first sound detection module and the second sound detection module in the embodiments of the present invention without changing the smart device in hardware.
  • Fig. 8 is a schematic diagram of the relative positioning of the first smart device and the second smart device of the present invention.
  • Fig. 10 is an exemplary processing flowchart of relative positioning between smart devices of the present invention.
  • an analog-to-digital converter (ADC) converts a continuous variable analog signal into a discrete digital signal.
  • a device; a band-pass filter (BPF) is a device that allows waves in a specific frequency band to pass while shielding other frequency bands.
  • the steps of identifying the relative direction between two smart devices based on ultrasound include:
  • Step 1 The first smart device transmits a positioning signal in an ultrasound format, and the positioning signal contains the Mac address of the smart device 1.
  • Step 2 The two sets of microphones of the second smart device respectively detect positioning signals, parse out the Mac addresses from the respective detected positioning signals, and confirm that the respective detected positioning signals originate from the same sound source based on the Mac address.
  • Step 3 The second smart device calculates the distance difference d between the two direct signals for the positioning signal based on the time difference between the two direct signals detected by the two sets of microphones contained in the second smart device.
  • the fourth step the second smart device calculation The signal incident angle That is, the relative angle between the first smart device and the second smart device, where D is the distance between the two sets of microphones in the second smart device.
  • Step 5 The second smart device displays the relative angle on its display interface Thereby prompting the user the relative direction of the first smart device.
  • FIG. 9 is a schematic diagram showing the relative angle in the interface of the smart device according to the present invention.
  • the first smart device is specifically implemented as a smart speaker, and the first smart device is specifically implemented as a smart phone.
  • Step 1 The smart speaker transmits an ultrasonic signal.
  • the ultrasonic signal includes the Mac address of the smart speaker and is a signal based on the CDMA code division multiple access technology architecture.
  • Step 2 The two microphone arrays of the smart phone receive ultrasonic signals and calculate the Mac address of the smart speaker. At the same time, the smart phone calculates the distance difference d between the two direct signals of the two microphone arrays.
  • Step 3 Smartphone calculation Then the signal incident angle The smart phone displays an angle of 84.4° on its display screen, that is, the smart speaker is in the 84.4° direction of the smart phone.
  • the relative distance between the two smart devices can be further obtained.
  • the embodiment of the present invention also proposes an application scenario of using a sound-producing device (for example, a smart phone, a smart earphone, etc.) to control a smart speaker according to the above-mentioned relative angle calculation method.
  • a sound-producing device for example, a smart phone, a smart earphone, etc.
  • Fig. 11 is a structural diagram of a smart speaker according to the present invention.
  • a first sound detection module and a second sound detection module are arranged in the smart speaker, and there is a fixed distance between the first sound detection module and the second sound detection module.
  • the distance between the first sound detection module and the second sound detection module is smaller than the distance from the sound emitting device.
  • the distance between the first sound detection module and the second sound detection module is generally no more than 0.5 meters.
  • the smart speaker includes: a first sound detection module for detecting a first sound signal that reaches the first sound detection module; a second sound detection module for detecting a sound that reaches the second sound detection module The second sound signal of the module; wherein the first sound signal and the second sound signal are simultaneously emitted by the same sound emitting device; the angle determination module is used to determine the receiving moment of the first sound signal and the reception of the second sound signal The time difference between times; the relative angle between the smart speaker and the sound device is determined based on the distance between the first sound detection module and the second sound detection module and the time difference; The angle emits sound directionally to the sound emitting device.
  • the sound generating device may be implemented as a smart device suitable for being held or worn by a user, such as a smart phone, a smart headset, a smart remote control, a tablet computer, a personal digital assistant, a smart bracelet, smart glasses, and so on.
  • the sound generating device simultaneously transmits the first sound signal directly to the first sound detection module and the second sound signal directly to the second sound detection module by using a built-in microphone (or microphone array).
  • the first sound detection module and the second sound detection module may be implemented as microphones or microphone arrays, respectively.
  • the first sound detection module and the second sound detection module can reuse the original two microphones in the smart speaker.
  • the first sound detection module and the second sound detection module can be arranged at any position in the smart speaker, such as the top of the box or the wall of the box, etc. The embodiment of the present invention is not limited to this.
  • the smart speaker corresponds to the first smart device in the method shown in FIG. 1, and the sound-producing device corresponds to the second smart device in the method shown in FIG.
  • Smart speakers can use the built-in controller of the speaker to perform the relative angle determination process, or use a single-chip computer, single-board computer, or DSP and other control modules to perform the relative angle determination process.
  • the sound module is used to directionally emit sound to the sound device based on the relative angle. It can be seen that the sound of the smart speaker of the present invention no longer diffuses the sound in 360 degrees like the traditional way, but transmits the sound in a direction along a certain path.
  • the sound emitting module is used to control the speaker array to directionally emit sound to the sound emitting device based on the relative angle, or control the ultrasonic directional sounder to directionally emit sound to the sound emitting device based on the relative angle.
  • the sound module can implement directional sound emission based on multiple directional sound technologies. For example:
  • Loudspeaker array technology A large number of tweeters are used to form an array to form a beam.
  • the beam direction that is, the main lobe direction, has the highest energy, and the beam direction is aligned with the sound emitting device positioned based on the relative angle.
  • the sounding module includes: an array processor for generating an audio signal containing a beam deflection angle aimed at the sounding device based on a relative angle; a digital-to-analog converter for converting the audio signal into an analog format; and a power amplifier for Power amplifies the audio signal output by the digital-to-analog converter; the speaker array is used to transmit the audio signal output by the power amplifier.
  • Ultrasound-based audio frequency directional propagation technology The audible sound signal is modulated onto the ultrasonic carrier signal and emitted into the air by the ultrasonic transducer.
  • these signals will interact and self-demodulate, and then generate a new sound wave whose frequency is the sum of the original ultrasonic frequency (sum frequency) and the difference (difference frequency). If the ultrasonic wave is selected properly, the difference frequency sound wave can fall in the audible sound area. In this way, with the help of the high directivity of the ultrasound itself, the process of directional sound propagation is realized.
  • the sound module includes: an ultrasonic directional sounder.
  • the smart speaker can determine the distance between the smart speaker and the sound emitting device based on multiple methods. For example, based on sound positioning (preferably ultrasonic positioning), and so on.
  • a smart speaker determining the distance between a smart speaker and a sounding device.
  • a smart speaker can also use infrared ranging, Bluetooth ranging, non-time-synchronized ultrasonic ranging, etc. to determine and sounding equipment
  • infrared ranging Bluetooth ranging
  • non-time-synchronized ultrasonic ranging etc.
  • the distance between the smart speaker and the sound device can be further combined to control the volume of the directional sound emission.
  • the smart speaker further includes: a distance determination module for determining the distance between the smart speaker and the sounding device, wherein the sounding module is used for controlling the speaker array to emit sound to the sounding device in a direction based on the relative angle and distance, wherein the volume of the sound is It has a monotonically increasing relationship with distance. For example, the greater the distance, the greater the volume of the sound emitted by the sound module, thereby overcoming the path transmission attenuation. Therefore, the present invention can also realize that the smart speaker adaptively adjusts the audio volume and direction according to the user's position and position changes, enhances the degree of intelligence of the speaker, and makes the user experience better.
  • Fig. 12 is a flowchart of a method for controlling a smart speaker according to the present invention.
  • the smart speaker includes a first sound detection module and a second sound detection module.
  • the method includes:
  • Step 1201 Detect a first sound signal directly reaching the first sound detection module, and detect a second sound signal directly reaching the second sound detection module; wherein the first sound signal and the second sound signal are the same sound Simultaneously launched by the device.
  • Step 1202 Determine the time difference between the receiving moment of the first sound signal and the receiving moment of the second sound signal.
  • Step 1203 Determine the relative angle between the smart speaker and the sound emitting device based on the distance between the first sound detection module and the second sound detection module and the time difference.
  • Step 1204 Directly emit sound to the sound emitting device based on the relative angle.
  • determining the relative angle between the smart speaker and the sound emitting device includes:
  • directionally emitting sound to the sound emitting device based on the relative angle includes: controlling a speaker array to directionally emit sound to the sound emitting device based on the relative angle, or controlling an ultrasonic directional sounder to emit sound to the sound emitting device based on the relative angle.
  • the method further includes: determining the distance between the smart speaker and the sound emitting device; wherein the directional emitting sound to the sound emitting device based on the relative angle includes: controlling the speaker array based on the relative angle and the The distance directionally emits sound to the sound emitting device, wherein the volume of the sound has a monotonically increasing relationship with the distance.
  • the first sound signal and the second sound signal are ultrasonic signals containing the identification of the sound emitting device. Therefore, based on comparing whether the identifiers in the sound signals detected by the first sound detection module and the second sound detection module are consistent, the smart speaker can determine whether the sound signals originate from the same sound source.
  • Fig. 13 is a structural diagram of a system for controlling a smart speaker according to the present invention.
  • the user when the user expects the smart speaker 30 to play music in its direction, the user opens the APP in the smart phone 40 and triggers the play button in the APP.
  • the microphone 20 of the smart phone 40 emits an ultrasonic signal containing the unique identification of the smart phone 40.
  • the first microphone 18 and the second microphone 19 are closely arranged on the side wall of the smart speaker 30. The distance between the first microphone 18 and the second microphone 19 is D. Moreover, the first microphone 18 and the second microphone 19 respectively receive ultrasonic signals.
  • the first microphone 18 receives the direct ultrasonic signal along the line K between the microphone 20 and the first microphone 18, and the second microphone 19 receives the direct ultrasonic signal along the microphone 20 and the first microphone.
  • the connection E of the two microphones 19 receives the direct ultrasonic signal.
  • Relative angle Is the angle between the line K between the microphone 20 and the first microphone 18 and the line A between the first microphone 18 and the second microphone 19, or the line E between the microphone 20 and the second microphone 19 and the first microphone 18
  • D the angle between the line A and the second microphone 19, where D is sufficiently small relative to L
  • the smart speaker 30 has a built-in ultrasonic directional sounder, based on the relative angle Sound is directed to the smartphone 40 to be emitted.
  • the sound range of directional emission is between line B and line C, where the angles between line B and line C and line A are all.
  • the user holding the smartphone 40 located between the straight line B and the straight line C can listen to the sound directionally, and the volume at each position between the straight line B and the straight line C is the same.
  • the control of the speaker array is based on the relative angle
  • the sum distance L directs sound to the smartphone 40, where the volume of the sound and the distance L have a monotonically increasing relationship.
  • the main beam of sound covers the area defined by straight line B and straight line C, and the beam deflection angle of the main beam is Therefore, the user who is holding the smartphone 40 between the straight line B and the straight line C can listen to the sound directionally.
  • the distance L is greater, the volume of the sound emitted by the speaker array is greater, thereby overcoming the path transmission attenuation, so as to ensure that the sound volume at each position between the straight line B and the straight line C is the same as possible.
  • the embodiment of the present invention also provides a computer-readable storage medium, and a computer program is stored on the computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium.
  • the computer-readable storage medium such as read-only memory (Read-Only Memory, ROM for short), random access memory (Random Access Memory, RAM for short), magnetic disk, or optical disk, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Health & Medical Sciences (AREA)
  • Otolaryngology (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本发明提出了一种智能音箱、控制智能音箱的方法和系统。智能音箱,包括:第一声音检测模块,用于检测直达所述第一声音检测模块的第一声音信号;第二声音检测模块,用于检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一发声设备同时发射的;角度确定模块,用于确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与该发声设备之间的相对角度;发声模块,用于基于所述相对角度向所述发声设备定向发射声音。实现了基于相对角度计算的定向发声。

Description

一种智能音箱、控制智能音箱的方法和系统 技术领域
本发明实施方式涉及声音处理技术领域,更具体地,涉及一种智能音箱、控制智能音箱的方法和系统。
背景技术
随着室内定位技术和通信技术的不断发展,移动终端的功能日趋丰富,极大地提高了人们日常工作、生活的便捷性和娱乐性。目前,市场推出的智能音箱多是按预设定的响度来播放,或者可以使用移动终端无线控制音频的播放、音量的调节。
目前,在基于用户位置的音频音量、方向控制智能音箱的方法中,现有技术主要通过麦克风阵列拾取语音的音量大小判断用户距离,或者通过测距传感器获取用户位置,继而反馈给智能音箱调节音量大小。
发明内容
本发明实施方式提出一种智能音箱、控制智能音箱的方法和系统。
本发明实施方式的技术方案如下:
一种智能音箱,包括:第一声音检测模块,用于检测直达所述第一声音检测模块的第一声音信号;第二声音检测模块,用于检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一发声设备同时发射的;角度确定模块,用于确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与该发声设备之间的相对角度; 发声模块,用于基于所述相对角度向所述发声设备定向发射声音。
在一个实施方式中,角度确定模块,用于基于
Figure PCTCN2021075138-appb-000001
确定θ,其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定该智能音箱与该发声设备之间的相对角度
Figure PCTCN2021075138-appb-000002
其中
Figure PCTCN2021075138-appb-000003
在一个实施方式中,发声模块,用于控制扬声器阵列基于所述相对角度向所述发声设备定向发射声音,或控制超声波定向发声器基于所述相对角度向所述发声设备定向发射声音;或
智能音箱还包括:距离确定模块,用于确定智能音箱与发声设备之间的距离,其中发声模块,用于控制扬声器阵列基于所述相对角度和所述距离向所述发声设备定向发射声音,其中所述声音的音量与所述距离具有单调递增关系。
一种控制智能音箱的方法,所述智能音箱包括第一声音检测模块和第二声音检测模块,该方法包括:检测直达所述第一声音检测模块的第一声音信号,检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一发声设备同时发射的;确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度;基于所述相对角度向所述发声设备定向发射声音。
在一个实施方式中,基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度包括:基于
Figure PCTCN2021075138-appb-000004
确定θ,其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定该智能音箱与该发声设备之间的相对角度
Figure PCTCN2021075138-appb-000005
其中
Figure PCTCN2021075138-appb-000006
在一个实施方式中,所述基于相对角度向所述发声设备定向发射声音包括: 控制扬声器阵列基于所述相对角度向所述发声设备定向发射声音,或控制超声波定向发声器基于所述相对角度向所述发声设备定向发射声音;或
该方法进一步包括:确定智能音箱与发声设备之间的距离;其中所述基于相对角度向所述发声设备定向发射声音包括:控制扬声器阵列基于所述相对角度和所述距离向所述发声设备定向发射声音,其中所述声音的音量与所述距离具有单调递增关系。
在一个实施方式中,所述第一声音信号和第二声音信号为包含所述发声设备的标识的超声波信号。
一种控制智能音箱的系统,包括:发声设备;智能音箱,包括:第一声音检测模块,用于检测直达所述第一声音检测模块的第一声音信号;第二声音检测模块,用于检测直达所述第二声音检测模块的第二声音信号,其中所述第一声音信号和所述第二声音信号为所述发声设备同时发射的;角度确定模块,用于确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差,基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度;发声模块,用于基于所述相对角度向所述发声设备定向发射声音。
在一个实施方式中,所述发声设备包括:智能手机;智能耳机;智能遥控器;平板电脑;个人数字助理;智能手环;智能眼镜。
一种计算机可读存储介质,其中存储有计算机可读指令,该计算机可读指令用于执行如上任一项所述的控制智能音箱的方法。
从上述技术方案可以看出,智能音箱包括:第一声音检测模块,用于检测直达第一声音检测模块的第一声音信号;第二声音检测模块,用于检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一发声设备同时发射的;角度确定模块,用于确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与该发声设备之间的相对角度;发声模块,用于基于所述相对角度向所述发声设备定向发射声 音。由此可见,本发明实现了基于相对角度计算的定向发声,提高了用户体验。
附图说明
图1为本发明智能设备间的相对角度确定方法的示范性流程图。
图2为本发明智能设备间相对角度确定的原理示意图。
图3为本发明智能设备间相对角度的计算原理图。
图4为本发明确定一对直达信号的第一示范性示意图。
图5为本发明确定一对直达信号的第二示范性示意图。
图6为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第一示范性布置示意图。
图7为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第二示范性布置示意图。
图8为本发明第一智能设备和第二智能设备的相对定位示意图。
图9为本发明在智能设备界面中展示相对角度的示意图。
图10为本发明智能设备间相对定位的示范性处理流程图。
图11为根据本发明的智能音箱的结构图。
图12为根据本发明控制智能音箱的方法的流程图。
图13为根据本发明控制智能音箱的系统的结构图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明作进一步的详细描述。
为不额外添加硬件地、利用软件实现智能设备间相对方向定位,使得该相对定位具备普适性,不同厂家的设备都能实现互操作和互兼容,并基于此探索智能设备的创新应用,本发明实施方式提出一种基于声音(优选为超声) 的智能设备间相对方向识别方案,无需额外添加硬件,可以利用软件实现两台智能设备间的相对方向识别,定位结果准确且可靠。
首先,智能设备(intelligent device)是指任何一种具有计算处理能力的设备、器械或者机器。图1为本发明智能设备间的相对角度确定方法的示范性流程图。该方法适用于第一智能设备,第一智能设备包括第一声音检测模块和第二声音检测模块。第一声音检测模块和第二声音检测模块在第一智能设备中被固定安装。比如,第一声音检测模块可以实施为布置在第一智能设备中的一个麦克风或一组麦克风阵列。同样地,第二声音检测模块可以实施为布置在第一智能设备中的、不同于第一声音检测模块的一个麦克风或一组麦克风阵列。
如图1所示,该方法包括:
步骤101:使能第一声音检测模块检测第二智能设备发出并直达第一声音检测模块的第一声音信号,使能第二声音检测模块检测第二智能设备发出并直达第二声音检测模块的第二声音信号,其中第一声音信号和第二声音信号为第二智能设备同时发出的。
在这里,第二智能设备可以发出一个声音信号或同时发出多个声音信号。
比如:当第二智能设备发出一个声音信号时,第二智能设备中的第一声音检测模块和第二声音检测模块分别检测该声音信号。其中:第一声音检测模块检测到的、该声音信号直达第一声音检测模块的检测信号被确定为第一声音信号;第二声音检测模块检测到的、该声音信号直达第一声音检测模块的检测信号,被确定为第二声音信号。再比如,当第二智能设备同时发出多个声音信号时,比如发出一个超声波信号,一个可听声音信号。第二智能设备中的第一声音检测模块适配于检测超声波信号,第二声音检测模块适配于检测可听声音信号。第一声音检测模块检测该超声波信号,第二声音检测模块该可听声音信号。其中:第一声音检测模块检测到的、该超声波信号直达第一声音检测模块的检测信号被确定为第一声音信号;第二声音检测模块检测到的、该可听声音信号直达第二声音检测模块的检测信号,被确定为第二 声音信号。
换句话说,第一声音信号和第二声音信号,可以为第一声音检测模块和第二声音检测模块针对第二智能设备发出的同一声音信号的分别检测信号。或,第一声音信号和第二声音信号,可以为第一声音检测模块和第二声音检测模块针对第二智能设备同时发出的不同声音信号的分别检测信号。
步骤102:确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差。
在这里,第一智能设备(比如,第一智能设备中的CPU)可以记录第一声音信号的接收时刻以及第二声音信号的接收时刻,并计算这两者之间的时间差。
步骤103:基于第一声音检测模块与第二声音检测模块之间的距离以及时间差,确定第一智能设备与第二智能设备之间的相对角度。
比如,可以由第一智能设备的CPU执行步骤103。
在一个实施方式中,步骤103中确定第一智能设备与第二智能设备之间的相对角度包括:基于
Figure PCTCN2021075138-appb-000007
确定θ;其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定第一智能设备与第二智能设备之间的相对角度
Figure PCTCN2021075138-appb-000008
其中
Figure PCTCN2021075138-appb-000009
其中,步骤102中确定出的时间差的值可以为正数,也可以为负数。当所述时间差的值为正数时,第二声音信号的接收时刻早于第一声音信号的接收时刻,因此第一智能设备与第二智能设备之间的相对角度φ通常为锐角;当时间差的值为负数时,第一声音信号的接收时刻早于第二声音信号的接收时刻,因此第一智能设备与第二智能设备之间的相对角度φ通常为钝角。
在本发明实施方式中,第一声音信号为自第二智能设备直达第一声音检测模块的信号,第二声音信号为自第二智能设备直达第二声音检测模块的信 号。实际上,无论是第一声音检测模块还是第二声音检测模块,都可能收到自第二智能设备发出且非直达的信号(比如,经过障碍物的一次反射或多次发射)。因此,如何从接收到的多个信号中确定出直达信号具有显著意义。
申请人发现:通常情况下,每个声音检测模块的接收信号流(stream)都包含直达信道与反射信道。可以依据如下原则简单且便利地确定直达信道:在声音检测模块检测到的所有信号中,直达信道的信号强度一般是最强的。
因此,在一个实施方式中,该方法还包括:将第一声音检测模块接收第二智能设备的声音信号流中的、在预定时间窗口内强度大于预定门限值的声音信号,确定为所述第一声音信号;将第二声音检测模块接收第二智能设备的声音信号流中的、在所述预定时间窗口内强度大于所述预定门限值的声音信号,确定为所述第二声音信号。
图4为本发明确定一对直达信号的第一示范性示意图。在图4中,第一声音检测模块检测到的声音信号流为stream1,stream1包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值为T。可见,在时间窗口90的范围内,stream1中的脉冲信号50的信号强度大于门限值T。第二声音检测模块检测到的声音信号流为stream2,stream2包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值同样为T。可见,在时间窗口90的范围内,stream2中的脉冲信号60的信号强度大于门限值T。因此,确定脉冲信号50为第一声音信号;脉冲信号60为第二声音信号。
另外,申请人还发现:可以综合考虑以下两个原则准确地确定直达信道:原则(1)、在声音检测模块检测到的所有信号中,直达信道的信号强度一般是最强的;原则(2)、联合判别法:两条直达信道信号(第一声音信号和第二声音信号)的到达时间差所换算出的距离差d不应大于第一声音检测模块和第二声音检测模块之间的距离。
因此,在一个实施方式中,该方法还包括:在第一声音检测模块检测第二智能设备的声音信号流中确定出强度大于预定门限值的声音信号,以形成第一候选信号集;在第二声音检测模块检测第二智能设备的声音信号流中确定出强 度大于所述预定门限值的声音信号,以形成第二候选信号集;确定第一候选信号集中的每个声音信号的接收时刻与第二候选信号集中的每个声音信号的接收时刻之间的各自的时间差;将所述时间差小于M的一对声音信号,确定为所述第一声音信号和第二声音信号,其中M=(D/c),D为第一声音检测模块与第二声音检测模块之间的距离,c为声音的传播速度。
图5为本发明确定一对直达信号的第二示范性示意图。在图5中,第一声音检测模块检测到的声音信号流为stream1,stream1包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值为T。可见,在stream1中,脉冲信号50的信号强度大于门限值T,因此第一候选信号集包含脉冲信号50。第二声音检测模块检测到的声音信号流为stream2,stream1包含沿着时间(t)变化的多个脉冲信号,预定信号强度的门限值同样为T。可见,在stream2中,脉冲信号60和脉冲信号70的信号强度都大于门限值T,因此第二候选信号集包含脉冲信号60和脉冲信号70。
而且,确定第一候选信号集中的脉冲信号50与第二候选信号集中的脉冲信号60的接收时刻之间的时间差d1,以及确定第一候选信号集中的脉冲信号50与第二候选信号集中的脉冲信号70的接收时刻之间的时间差d2。假定d1小于M,d2大于M,其中M=(D/c),D为第一声音检测模块与第二声音检测模块之间的距离,c为声音的传播速度。因此,将与d1相关的一对声音信号中的脉冲信号50确定为第一声音信号,且该对声音信号中的脉冲信号60确定为第二声音信号。
优选地,第一声音信号和第二声音信号为具有码分多址格式的超声波且包含第二智能设备的媒体访问控制地址(MAC)。
因此,第一智能设备可以基于包含在声音信号中的第二智能设备的MAC地址,准确识别声音信号的来源。当环境中存在多个发出声音信号的声源时,第一智能设备基于提取声音信号中的MAC地址,可以准确利用来自于同一声源的两个直达信号确定与该声源的相对角度,而不会受到其它声源的干扰。
本发明实施方式还提出了一种智能设备间的相对角度确定方法。该方法适 用于第一智能设备,第一智能设备包括第一声音检测模块和第二声音检测模块,该方法包括:确定第二智能设备发出的超声波信号直达第一声音检测模块的第一时刻;确定超声波信号直达第二声音检测模块的第二时刻;确定第一时刻与第二时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及时间差,确定第一智能设备与第二智能设备之间的相对角度。
在一个实施方式中,确定第一智能设备与第二智能设备之间的相对角度包括:基于
Figure PCTCN2021075138-appb-000010
确定θ;其中arcsin为反正弦函数,d=t*c,t为时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定第一智能设备与第二智能设备之间的相对角度
Figure PCTCN2021075138-appb-000011
其中
Figure PCTCN2021075138-appb-000012
在一个实施方式中,该方法还包括下列处理中的至少一个:
(1)、将第一声音检测模块接收第二智能设备的超声波信号流中的、在预定时间窗口内强度大于预定门限值的超声波信号,确定为直达第一声音检测模块的超声波信号,将接收到该直达第一声音检测模块的超声波信号的时刻确定为所述第一时刻;将第二声音检测模块接收第二智能设备的超声波信号流中的、在所述预定时间窗口内强度大于所述预定门限值的超声波信号,确定为直达第二声音检测模块的超声波信号,将接收到该直达第二声音检测模块的超声波信号的时刻确定为所述第二时刻。
(2)、在第一声音检测模块检测第二智能设备的超声波信号流中确定出强度大于预定门限值的超声波信号,以形成第一候选信号集;在第二声音检测模块检测第二智能设备的超声波信号流中确定出强度大于所述预定门限值的超声波信号,以形成第二候选信号集;确定第一候选信号集中的每个超声波信号的接收时刻与第二候选信号集中的每个超声波信号的接收时刻之间的各自的时间差;将时间差小于M的一对超声波信号的接收时刻,确定为第一时刻和第二时刻,其中M=(D/c),D为第一声音检测模块与第二声音检测模块之间的距离,c为声音的传播速度。
下面对本发明的相对定位的原理和计算过程进行示范性说明。
图2为本发明智能设备间相对角度确定的原理示意图。图3为本发明智能设备间相对角度的计算原理图。如图2所示,布置在智能设备A底部的麦克风a1发射超声信号,该超声信号包含智能设备A的MAC地址,智能设备B(图2中没有示出)具有相隔布置的两个麦克风,分别为麦克风b1和麦克风b2。其中:麦克风b1接收该超声信号的直达信号L1,麦克风b2接收该超声信号的直达信号L2。该超声信号经过障碍物发射后到达麦克风b1和麦克风b2的非直达信号,不参与后续的相对角度计算。由于智能设备较小,特别是两台智能设备相距较远时,因此直达信号L 1、L 2可以视为平行线。
如图3所示,L 1、L 2分别表示智能设备B的麦克风b1、麦克风b2接收到的直达信号(不是经障碍物反射的信号);D为麦克风b1和麦克风b2之间的距离。比如,如果麦克风b1和麦克风b2分别布置在智能设备B的上下两端,那么D可以为智能设备B的长度;自麦克风b2向直达信号L 1作垂线,垂足与麦克风b1之间的距离即为d,d为L 1和L 2的距离差,运用信号的相关算法可以确定直达信号L 1相对于直达信号L 2的延迟时间差t,可以基于延迟时间差t计算出d,其中d=t*c,c为声音在介质(比如空气)中的传播速度;θ为辅助角度,其中
Figure PCTCN2021075138-appb-000013
因此,可以计算出智能设备A与智能设备B的相对角度
Figure PCTCN2021075138-appb-000014
其中
Figure PCTCN2021075138-appb-000015
优选地,智能设备A与智能设备B可以实施为下列中的至少一个:智能手机;平板电脑;智能手表;智能手环;智能音箱;智能电视;智能耳机;智能机器人,等等。
可以在智能设备的多个位置处布置第一声音检测模块和第二声音检测模块。图6为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第一示范性布置示意图。在图6中,第一声音检测模块18和第二声音检测模块19分别布置在智能设备在长度方向上的两端,因此可以直接将智能设备的长度D确 定为第一声音检测模块18和第二声音检测模块19之间的距离。图7为本发明的第一声音检测模块和第二声音检测模块在智能设备中的第二示范性布置示意图。在图7中,第一声音检测模块18和第二声音检测模块19分别布置在智能设备在宽度方向上的两端,因此可以直接将智能设备的宽度D确定为第一声音检测模块18和第二声音检测模块19之间的距离。
以上示范性描述了第一声音检测模块和第二声音检测模块在智能设备中的布置示意图,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
实际上,目前智能设备通常都具有两组麦克风,可以将这两组麦克风作为第一声音检测模块和第二声音检测模块应用在本发明实施方式中,而无需在硬件上改动智能设备。
下面描述基于本发明实施方式利用超声计算智能设备间的相对角度的典型实例。
图8为本发明第一智能设备和第二智能设备的相对定位示意图。图10为本发明智能设备间相对定位的示范性处理流程图。在图7中,示意出检测声音信号的两组合麦克风的各自的处理路径,其中,模/数转换器(Analog-to-Digital Converter,ADC)是将连续变量的模拟信号转换为离散的数字信号的器件;带通滤波器(band-pass filter,BPF)是允许特定频段的波通过同时屏蔽其他频段的设备。基于超声的两台智能设备间相对方向识别步骤包括:
第一步:第一智能设备发射超声格式的定位信号,该定位信号包含智能设备1的Mac地址。
第二步:第二智能设备的两组麦克风分别检测定位信号,从各自检测到的定位信号中解析出Mac地址,并基于Mac地址确认各自检测到的定位信号源自同一声源。
第三步:第二智能设备基于自身所包含的两组麦克风分别检测出的、针对定位信号的两个直达信号之间的时间差计算出这两个直达信号的距离差d。
第四步:第二智能设备计算
Figure PCTCN2021075138-appb-000016
则信号入射角度
Figure PCTCN2021075138-appb-000017
即为第一智能设备与第二智能设备的相对角度,其中D为第二智能设备中这两组麦克风的距离。
第五步:第二智能设备在自身的显示界面上显示相对角度
Figure PCTCN2021075138-appb-000018
从而提示用户第一智能设备的相对方向。比如,图9为本发明在智能设备界面中展示相对角度的示意图。
举例说明,假定在图8所示的环境中,第一智能设备具体实施为智能音箱,第一智能设备具体实施为智能手机。
步骤一:该智能音箱发射超声信号,该超声信号包含智能音箱的Mac地址,且为基于CDMA码分多址技术架构的信号。
步骤二:智能手机的两组麦克风阵列接收超声信号并解算出智能音箱的Mac地址,同时,智能手机解算出两组麦克风阵列的两个直达信号之间的距离差d。其中:假定两组克风阵列的各自接收信号流stream1和stream2中,分别存在信号强度峰值大于门限值T的直达信号,因此满足原则1;再假定这两个直达信号的到达时间差
Figure PCTCN2021075138-appb-000019
计算对应于该Δt的d,其中
Figure PCTCN2021075138-appb-000020
两组麦克风距离D为已知(即手机长度),假定为0.145m,可见d<D,因此满足原则2。因此,可以选定这两个直达信号计算相对角度,其中d=0.014(m)。
步骤三:智能手机计算
Figure PCTCN2021075138-appb-000021
那么信号入射角度
Figure PCTCN2021075138-appb-000022
智能手机在自己的显示屏幕上显示角度84.4°,即智能音箱在智能手机的84.4°方向。
利用两个智能设备间相对方向的识别方法,可进一步获得两个智能设备间的相对距离。设想如下场景:有至少两个智能设备,其中,至少一个智能 设备a,用于发射超声定位信号,该超声定位信号包含智能设备a的MAC地址;至少一个智能设备b,用于接收超声定位信号并解算信号入射角度,并在进一步发生移动后计算与智能设备a的相对距离。
基于上述描述,本发明实施方式还提出了根据上述相对角度计算方式,利用发声设备(比如,智能手机、智能耳机,等等)控制智能音箱的应用场景。
图11为根据本发明的智能音箱的结构图。该智能音箱中布置有第一声音检测模块和第二声音检测模块,第一声音检测模块和第二声音检测模块之间具有固定的距离。第一声音检测模块和第二声音检测模块之间的距离,相对于与发声设备的距离较小。优选地,考虑到用于控制智能音箱的发声设备通常在几米之外,第一声音检测模块和第二声音检测模块之间的距离一般不超过0.5米。
如图11所示,智能音箱,包括:第一声音检测模块,用于检测直达所述第一声音检测模块的第一声音信号;第二声音检测模块,用于检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一发声设备同时发射的;角度确定模块,用于确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与该发声设备之间的相对角度;发声模块,用于基于所述相对角度向所述发声设备定向发射声音。
发声设备可以实施为适于被用户手持或穿戴的智能设备,比如智能手机、智能耳机、智能遥控器、平板电脑、个人数字助理,智能手环、智能眼镜,等等。发声设备利用内置的麦克风(或麦克风阵列)同时发射直达第一声音检测模块的第一声音信号和直达第二声音检测模块的第二声音信号。
第一声音检测模块和第二声音检测模块可以分别实施为麦克风或麦克风阵列。比如,第一声音检测模块和第二声音检测模块可以复用智能音箱中原有的两个麦克风。或,在智能音箱上新增布置两个麦克风,以作为第一声音检测模 块和第二声音检测模块。优选地,第一声音检测模块与第二声音检测模块可以布置在智能音箱中的任意位置,比如箱顶或箱壁等等,本发明实施方式对此并无限定。
智能音箱计算与发声设备之间的相对角度的方式,可以参照图1所示的关于
Figure PCTCN2021075138-appb-000023
的确定方法。智能音箱对应于图1所示方法中的第一智能设备,发声设备对应于图1所示方法中的第二智能设备,此处不再赘述相对角度的确定过程。智能音箱可以利用音箱内置的控制器执行相对角度的确定过程,或者利用单片机、单板机或DSP等控制模块执行相对角度的确定过程。
在一个实施方式中,角度确定模块,用于基于
Figure PCTCN2021075138-appb-000024
确定θ,其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定该智能音箱与该发声设备之间的相对角度
Figure PCTCN2021075138-appb-000025
其中
Figure PCTCN2021075138-appb-000026
发声模块,用于基于相对角度向发声设备定向发射声音。可见,本发明的智能音箱的声音不再如传统方式在360度上扩散声音,而是有方向的、沿着一定的路径传送声音。
在一个实施方式中,发声模块用于控制扬声器阵列基于相对角度向所述发声设备定向发射声音,或控制超声波定向发声器基于相对角度向发声设备定向发射声音。
具体地,发声模块可以基于多种定向声技术实现定向发射声音。比如:
1、扬声器阵列技术:通过大量的高频喇叭组成阵列以形成波束,波束方向即主瓣方向具有最高的能量,波束方向对准基于该相对角度被定位出的发声设备。具体地,发声模块包括:阵列处理器,用于基于相对角度生成包含对准发声设备的波束偏角的音频信号;数模转换器,用于将音频信号转换为模拟格式;功率放大器,用于功率放大数模转换器输出的音频信号;扬声器阵列,用于发射功率放大器输出的音频信号。
2、基于超声的声频定向传播技术:将可听声音信号调制到超声载波信号之上,并由超声换能器发射到空气中,不同频率的超声波在空气中传播的过程中,由于空气的非线性声学效应,这些信号会发生交互作用和自解调,进而产生频率为原超声频率之和(和频)与频率之差(差频)的新声波。若超声波选取合适,那么差频声波则可落在可听声区域。这样,借助超声波本身的高指向性,实现了声音定向传播的过程。具体的,发声模块包括:超声波定向发声器。
以上示范性描述了发声模块的典型实施例,本领域技术人员可以意识到,这种描述仅是示范性的,并不用于限定本发明实施方式的保护范围。
具体地,智能音箱可以基于多种方式确定智能音箱与发声设备之间的距离。比如,基于声音定位(优选为超声定位)方式,等等。
举例1:智能音箱与发声设备保持时间同步,第一声音信号进一步包含第一声音信号的发送时刻T1,其中智能音箱确定智能音箱与发声设备之间的距离包括:智能音箱中的控制器计算智能音箱与发声设备之间的距离L;其中L=(T2-T1)×c;c为声音在空气中的传播速度;T2为第一声音信号的接收时刻。
举例2:智能音箱与发声设备保持时间同步,第二声音信号进一步包含第二声音信号的发送时刻T3,其中智能音箱确定智能音箱与发声设备之间的距离包括:智能音箱中的控制器计算智能音箱与发声设备之间的距离L;其中L=(T4-T3)×c;c为声音在空气中的传播速度;T4为第二声音信号的接收时刻。
以上示范性描述了智能音箱确定智能音箱与发声设备之间的距离的典型实例,实际上,智能音箱还可以采用红外线测距、蓝牙测距、非时间同步的超声测距等方式确定与发声设备之间的距离,本发明实施方式对此并无限定。
优选地,当采用扬声器阵列技术实现定向发声时,还可以进一步结合智能音箱与发声设备之间的距离控制定向发射声音的音量。具体地,智能音箱还包括:距离确定模块,用于确定智能音箱与发声设备之间的距离,其中发声模块, 用于控制扬声器阵列基于相对角度和距离向发声设备定向发射声音,其中声音的音量与距离具有单调递增关系。比如,当距离越大时,则发声模块发出的声音音量越大,从而克服路径传输衰减。因此,本发明还可以实现智能音箱根据用户位置及位置变化自适应调节音频音量和方向,提升音箱的智能化程度,使得用户体验更佳。
图12为根据本发明控制智能音箱的方法的流程图。智能音箱包括第一声音检测模块和第二声音检测模块。
如图12所示,该方法包括:
步骤1201:检测直达所述第一声音检测模块的第一声音信号,检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一发声设备同时发射的。
步骤1202:确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差。
步骤1203:基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度。
步骤1204:基于所述相对角度向所述发声设备定向发射声音。
在一个实施方式中,基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度包括:
基于
Figure PCTCN2021075138-appb-000027
确定θ,其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定该智能音箱与该发声设备之间的相对角度
Figure PCTCN2021075138-appb-000028
其中
Figure PCTCN2021075138-appb-000029
在一个实施方式中,基于相对角度向所述发声设备定向发射声音包括:控制扬声器阵列基于所述相对角度向所述发声设备定向发射声音,或控制超声波定向发声器基于所述相对角度向所述发声设备定向发射声音;或,该方法进一步包括:确定智能音箱与发声设备之间的距离;其中所述基于相对角度向所述 发声设备定向发射声音包括:控制扬声器阵列基于所述相对角度和所述距离向所述发声设备定向发射声音,其中所述声音的音量与所述距离具有单调递增关系。
在一个实施方式中,所述第一声音信号和第二声音信号为包含所述发声设备的标识的超声波信号。因此,基于比对第一声音检测模块和第二声音检测模块各自检测到的声音信号中的标识是否一致,智能音箱可以判断声音信号是否源自同一声源。
图13为根据本发明控制智能音箱的系统的结构图。在图13中,当用户期望智能音箱30朝着自己定向播放音乐时,用户打开智能手机40中的APP,并触发APP中的播放按键。智能手机40的麦克风20发出包含智能手机40的唯一标识的超声信号。第一麦克风18和第二麦克风19紧密布置在智能音箱30的侧壁上。第一麦克风18和第二麦克风19之间的距离为D。而且,第一麦克风18和第二麦克风19分别接收超声信号,其中第一麦克风18沿着麦克风20与第一麦克风18的连线K接收到直达超声信号,第二麦克风19沿着麦克风20与第二麦克风19的连线E接收到直达超声信号。当智能音箱30中的控制器判定第一麦克风18和第二麦克风19接收到的直达超声信号中所包含的智能手机的唯一标识相同时,控制器分别计算出智能音箱30与智能手机40的相对角度
Figure PCTCN2021075138-appb-000030
和智能音箱30与智能手机40之间的距离L。相对角度
Figure PCTCN2021075138-appb-000031
为:麦克风20与第一麦克风18的连线K与第一麦克风18和第二麦克风19的连线A之间的夹角,或麦克风20与第二麦克风19的连线E与第一麦克风18和第二麦克风19的连线A之间的夹角,其中由于D相对于L足够小,这两个夹角可视为相同。
当智能音箱30内置超声波定向发声器时,基于相对角度
Figure PCTCN2021075138-appb-000032
向智能手机40定向发射声音。此时,定向发射的声音范围在直线B与直线C之间,其中直线B和直线C与连线A之间的夹角都是
Figure PCTCN2021075138-appb-000033
位于直线B与直线C之间的、手持智能手机40的用户可以定向收听到声音,而且位于直线B与直线C之间各个位置处的音量都相同。
当智能音箱30内置扬声器阵列时,控制扬声器阵列基于相对角度
Figure PCTCN2021075138-appb-000034
和距离L向智能手机40定向发射声音,其中声音的音量与距离L具有单调递增关系。此时,声音的主波束的涵盖直线B与直线C所限定的区域,而且主波束的波束偏角为
Figure PCTCN2021075138-appb-000035
因此,位于直线B与直线C之间的、手持智能手机40的用户可以定向收听到声音。而且,当距离L越大时,扬声器阵列发出的声音音量越大,从而克服路径传输衰减,以尽量保证位于直线B与直线C之间各个位置处的音量都相同。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现本发明上述各实施例中实现的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。其中,所述的计算机可读存储介质,如只读存储器(Read-Only Memory,简称ROM)、随机存取存储器(Random Access Memory,简称RAM)、磁碟或者光盘等。
上面结合附图对本发明的实施例进行了描述,但是本发明并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本发明的启示下,在不脱离本发明宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本发明的保护之内。

Claims (10)

  1. 一种智能音箱,其特征在于,包括:
    第一声音检测模块,用于检测直达所述第一声音检测模块的第一声音信号;
    第二声音检测模块,用于检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一发声设备同时发射的;
    角度确定模块,用于确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差;基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与该发声设备之间的相对角度;
    发声模块,用于基于所述相对角度向所述发声设备定向发射声音。
  2. 根据权利要求1所述的智能音箱,其特征在于,
    角度确定模块,用于基于
    Figure PCTCN2021075138-appb-100001
    确定θ,其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定该智能音箱与该发声设备之间的相对角度
    Figure PCTCN2021075138-appb-100002
    其中
    Figure PCTCN2021075138-appb-100003
  3. 根据权利要求1所述的智能音箱,其特征在于,
    发声模块,用于控制扬声器阵列基于所述相对角度向所述发声设备定向发射声音,或控制超声波定向发声器基于所述相对角度向所述发声设备定向发射声音;或
    智能音箱还包括:距离确定模块,用于确定智能音箱与发声设备之间的距离,其中发声模块,用于控制扬声器阵列基于所述相对角度和所述距离向所述发声设备定向发射声音,其中所述声音的音量与所述距离具有单调递增关系。
  4. 一种控制智能音箱的方法,其特征在于,所述智能音箱包括第一声音检测模块和第二声音检测模块,该方法包括:
    检测直达所述第一声音检测模块的第一声音信号,检测直达所述第二声音检测模块的第二声音信号;其中所述第一声音信号和所述第二声音信号为同一 发声设备同时发射的;
    确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差;
    基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度;
    基于所述相对角度向所述发声设备定向发射声音。
  5. 根据权利要求4所述的控制智能音箱的方法,其特征在于,基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度包括:
    基于
    Figure PCTCN2021075138-appb-100004
    确定θ,其中arcsin为反正弦函数,d=t*c,t为所述时间差,c为声音的传播速度,D为第一声音检测模块与第二声音检测模块之间的距离;基于θ确定该智能音箱与该发声设备之间的相对角度
    Figure PCTCN2021075138-appb-100005
    其中
    Figure PCTCN2021075138-appb-100006
  6. 根据权利要求4所述的控制智能音箱的方法,其特征在于,
    所述基于相对角度向所述发声设备定向发射声音包括:控制扬声器阵列基于所述相对角度向所述发声设备定向发射声音,或控制超声波定向发声器基于所述相对角度向所述发声设备定向发射声音;或
    该方法进一步包括:确定智能音箱与发声设备之间的距离;其中所述基于相对角度向所述发声设备定向发射声音包括:控制扬声器阵列基于所述相对角度和所述距离向所述发声设备定向发射声音,其中所述声音的音量与所述距离具有单调递增关系。
  7. 根据权利要求4-6中任一项所述的控制智能音箱的方法,其特征在于,所述第一声音信号和第二声音信号为包含所述发声设备的标识的超声波信号。
  8. 一种控制智能音箱的系统,其特征在于,包括:
    发声设备;
    智能音箱,包括:第一声音检测模块,用于检测直达所述第一声音检测模块的第一声音信号;第二声音检测模块,用于检测直达所述第二声音检测模块 的第二声音信号,其中所述第一声音信号和所述第二声音信号为所述发声设备同时发射的;角度确定模块,用于确定第一声音信号的接收时刻与第二声音信号的接收时刻之间的时间差,基于第一声音检测模块与第二声音检测模块之间的距离以及所述时间差,确定该智能音箱与发声设备之间的相对角度;发声模块,用于基于所述相对角度向所述发声设备定向发射声音。
  9. 根据权利要求8所述的控制智能音箱的系统,其特征在于,所述发声设备包括:智能手机;智能耳机;智能遥控器;平板电脑;个人数字助理;智能手环;智能眼镜。
  10. 一种计算机可读存储介质,其特征在于,其中存储有计算机可读指令,该计算机可读指令用于执行如权利要求4-7中任一项所述的控制智能音箱的方法。
PCT/CN2021/075138 2020-05-13 2021-02-04 一种智能音箱、控制智能音箱的方法和系统 WO2021227570A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/054,911 US20230071703A1 (en) 2020-05-13 2022-11-13 Intelligent device, intelligent speaker, and method and system for controlling the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010402875.XA CN112104928A (zh) 2020-05-13 2020-05-13 一种智能音箱、控制智能音箱的方法和系统
CN202010402875.X 2020-05-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/054,911 Continuation-In-Part US20230071703A1 (en) 2020-05-13 2022-11-13 Intelligent device, intelligent speaker, and method and system for controlling the same

Publications (1)

Publication Number Publication Date
WO2021227570A1 true WO2021227570A1 (zh) 2021-11-18

Family

ID=73750584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/075138 WO2021227570A1 (zh) 2020-05-13 2021-02-04 一种智能音箱、控制智能音箱的方法和系统

Country Status (3)

Country Link
US (1) US20230071703A1 (zh)
CN (1) CN112104928A (zh)
WO (1) WO2021227570A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361573A (zh) * 2022-08-18 2022-11-18 深圳康佳电子科技有限公司 控制智能电视声音定向传播的方法、电视机及存储介质

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104928A (zh) * 2020-05-13 2020-12-18 苏州触达信息技术有限公司 一种智能音箱、控制智能音箱的方法和系统
CN112969121A (zh) * 2021-04-12 2021-06-15 苏州触达信息技术有限公司 耳机与多媒体设备的智能交互系统及方法
CN113163293A (zh) * 2021-05-08 2021-07-23 苏州触达信息技术有限公司 基于无线智能耳机的环境声音拟真系统及方法
KR20230094005A (ko) * 2021-12-20 2023-06-27 삼성전자주식회사 음향 센서를 이용한 화자 분류 장치 및 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784900A (zh) * 2003-05-08 2006-06-07 坦德伯格电信公司 用于音源追踪的装置和方法
US7587053B1 (en) * 2003-10-28 2009-09-08 Nvidia Corporation Audio-based position tracking
CN101656908A (zh) * 2008-08-19 2010-02-24 深圳华为通信技术有限公司 控制声音聚焦的方法、通讯设备及通讯系统
CN106125771A (zh) * 2016-08-16 2016-11-16 江西联创宏声电子有限公司 声频定向扬声器及其转向方法
US20180192223A1 (en) * 2016-12-30 2018-07-05 Caavo Inc Determining distances and angles between speakers and other home theater components
CN112104929A (zh) * 2020-05-13 2020-12-18 苏州触达信息技术有限公司 一种智能设备、控制智能音箱的方法和系统
CN112104928A (zh) * 2020-05-13 2020-12-18 苏州触达信息技术有限公司 一种智能音箱、控制智能音箱的方法和系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3572849B2 (ja) * 1997-02-14 2004-10-06 富士ゼロックス株式会社 音源位置計測装置、及びカメラ撮影制御装置
CN106303836B (zh) * 2016-11-15 2019-10-01 广东小天才科技有限公司 一种调节立体声播放的方法及装置
CN107705785A (zh) * 2017-08-01 2018-02-16 百度在线网络技术(北京)有限公司 智能音箱的声源定位方法、智能音箱及计算机可读介质
CN108810742B (zh) * 2018-08-01 2021-03-19 奇酷互联网络科技(深圳)有限公司 音箱控制方法、装置、可读存储介质及移动终端

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1784900A (zh) * 2003-05-08 2006-06-07 坦德伯格电信公司 用于音源追踪的装置和方法
US7587053B1 (en) * 2003-10-28 2009-09-08 Nvidia Corporation Audio-based position tracking
CN101656908A (zh) * 2008-08-19 2010-02-24 深圳华为通信技术有限公司 控制声音聚焦的方法、通讯设备及通讯系统
CN106125771A (zh) * 2016-08-16 2016-11-16 江西联创宏声电子有限公司 声频定向扬声器及其转向方法
US20180192223A1 (en) * 2016-12-30 2018-07-05 Caavo Inc Determining distances and angles between speakers and other home theater components
CN112104929A (zh) * 2020-05-13 2020-12-18 苏州触达信息技术有限公司 一种智能设备、控制智能音箱的方法和系统
CN112104928A (zh) * 2020-05-13 2020-12-18 苏州触达信息技术有限公司 一种智能音箱、控制智能音箱的方法和系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115361573A (zh) * 2022-08-18 2022-11-18 深圳康佳电子科技有限公司 控制智能电视声音定向传播的方法、电视机及存储介质

Also Published As

Publication number Publication date
CN112104928A (zh) 2020-12-18
US20230071703A1 (en) 2023-03-09

Similar Documents

Publication Publication Date Title
WO2021227570A1 (zh) 一种智能音箱、控制智能音箱的方法和系统
WO2021227571A1 (zh) 一种智能设备、控制智能音箱的方法和系统
EP3122066B1 (en) Audio enhancement via opportunistic use of microphones
EP2795930B1 (en) Automated user/sensor location recognition to customize audio performance in a distributed multi-sensor environment
US8958587B2 (en) Signal dereverberation using environment information
JP4725643B2 (ja) 音波出力装置、通話装置、音波出力方法、及びプログラム
CN106303836B (zh) 一种调节立体声播放的方法及装置
US9432767B2 (en) Headphone with microphones that processes external sound pickup by the microphones and inputs external source sound signal
US20080285771A1 (en) Teleconferencing Apparatus
JP2008543143A (ja) 音響変換器のアセンブリ、システムおよび方法
JP2008543144A (ja) 音響信号用装置、システム、方法
US20160161595A1 (en) Narrowcast messaging system
WO2018010375A1 (zh) 一种通过耳机实现卡拉ok功能的方法、装置及耳机
US20160165338A1 (en) Directional audio recording system
JP2007318550A (ja) 放収音装置
JP5577597B2 (ja) スピーカアレイ装置、信号処理方法およびプログラム
CN110933559B (zh) 一种智能音箱音效自适应调整方法、系统及存储介质
CN112672251A (zh) 一种扬声器的控制方法和系统、存储介质及扬声器
CN112105129B (zh) 一种智能灯、智能发光方法和计算机可读存储介质
CN112104686B (zh) 一种智能设备和智能设备间的文件传输方法
CN112098935A (zh) 一种寻找智能设备的方法和智能设备
CN112098930A (zh) 一种寻找车辆的方法和智能设备
CN112102540B (zh) 门禁控制器、门禁控制方法和计算机可读存储介质
KR101450095B1 (ko) 실시간 위치 추적 초음파 장치를 이용한 자동 음량 조절 시스템
EP3539128A1 (en) Processing speech from distributed microphones

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21804239

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21804239

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21804239

Country of ref document: EP

Kind code of ref document: A1