WO2021221105A1 - Evaporator - Google Patents
Evaporator Download PDFInfo
- Publication number
- WO2021221105A1 WO2021221105A1 PCT/JP2021/016988 JP2021016988W WO2021221105A1 WO 2021221105 A1 WO2021221105 A1 WO 2021221105A1 JP 2021016988 W JP2021016988 W JP 2021016988W WO 2021221105 A1 WO2021221105 A1 WO 2021221105A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- heat transfer
- supply pipe
- opening
- liquid
- Prior art date
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/02—Evaporators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B41/00—Fluid-circulation arrangements
- F25B41/40—Fluid line arrangements
- F25B41/42—Arrangements for diverging or converging flows, e.g. branch lines or junctions
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
- F28D5/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation in which the evaporating medium flows in a continuous film or trickles freely over the conduits
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D7/00—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D7/16—Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged in parallel spaced relation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
Definitions
- This disclosure relates to an evaporator.
- a liquid film type evaporator that supplies a liquid phase refrigerant from above to a group of heat transfer tubes through which a cooling medium flows inside is known.
- Such a liquid film type evaporator is provided with a pipe for supplying a refrigerant to a heat transfer tube group (for example, Patent Document 1).
- Patent Document 1 describes a liquid film type evaporator in which the entire end surface of a refrigerant supply pipe extending in the longitudinal direction is closed. This pipe supplies the refrigerant to the heat transfer pipe group by blowing out the refrigerant from a plurality of slits formed at the bottom of the pipe.
- the amount of refrigerant in the liquid phase reaching the end in the longitudinal direction is reduced, the amount of refrigerant supplied to the heat transfer tube group is distributed. As a result, the heat exchange efficiency in the heat transfer tube group may decrease, and the performance of the evaporator may decrease.
- the present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an evaporator capable of improving heat exchange efficiency and improving the performance of the evaporator.
- the evaporator of the present disclosure employs the following means.
- the evaporator according to one aspect of the present disclosure is immersed in a housing forming an outer shell and a liquid-phase refrigerant housed in the housing and stored in a storage portion provided in the lower part of the housing.
- a group of first heat transfer tubes having a plurality of first heat transfer tubes through which a medium to be cooled flows, and a liquid phase refrigerant housed in the housing and stored in the lower part of the housing above the liquid level of the refrigerant.
- a refrigerant supply pipe in which a gas-liquid two-phase state refrigerant flows and supplies the refrigerant to the second heat transfer tube group from above is provided, and the refrigerant supply pipe closes at least the lower end portion of the end face in the predetermined direction. It has a closed portion and an opening which is an end portion in the predetermined direction and is formed above the closed portion and connects the inner space of the refrigerant supply pipe and the outer space of the refrigerant supply pipe.
- the heat exchange efficiency can be improved and the performance of the evaporator can be improved.
- FIG. 1 is a cross-sectional view taken along the line II-II of FIG.
- FIG. 3 is a cross-sectional view taken along the line III-III of FIG.
- It is a front view which shows the refrigerant supply pipe provided in the evaporator of FIG.
- It is a side view which shows the refrigerant supply pipe of FIG.
- It is a graph which shows the relationship between the position of the refrigerant supply pipe in a predetermined direction, and the flow velocity of the refrigerant at the position.
- It is a graph which shows the relationship between the position of the refrigerant supply pipe in a predetermined direction, and the supply amount of the refrigerant at the said position.
- the vertical vertical direction will be the Z-axis direction
- the extending direction of the heat transfer tube will be the X-axis direction
- the Z-axis direction and the direction orthogonal to the X-axis direction will be described as the Y-axis direction.
- the evaporator 10 is applied to a turbo refrigerating apparatus.
- the turbo refrigeration system includes a turbo compressor that compresses the refrigerant (not shown), a condenser that condenses the refrigerant compressed by the turbo compressor (not shown), and an expansion valve that expands the refrigerant condensed by the condenser (not shown). It is configured in a unit shape with an evaporator (not shown) and an evaporator that evaporates the refrigerant expanded by the expansion valve.
- Each device is connected by a pipe through which a refrigerant flows.
- a low-pressure refrigerant such as R1233zd used at a maximum pressure of less than 0.2 MPaG is used.
- the evaporator 10 is provided below the pressure vessel (housing) 11 forming the outer shell, the refrigerant inlet pipe 12 for introducing the refrigerant into the pressure vessel 11, and the refrigerant inlet pipe 12.
- the refrigerant supply pipe 13 the full-liquid heat transfer tube group (first heat transfer tube group) 14 immersed in the liquid phase refrigerant stored in the lower part of the pressure vessel 11, and the liquid stored in the lower part of the pressure vessel 11.
- a liquid film type heat transfer tube group (second heat transfer tube group) 15 provided above the liquid level S (see FIGS. 2 and 3) of the phase refrigerant, and a refrigerant outlet tube for discharging the evaporated refrigerant from the pressure vessel 11. (Refrigerant outlet) 16.
- the cylindrical portion 11a whose central axis extends along the X-axis direction and both ends of the cylindrical portion 11a in the direction along the central axis (X-axis direction). It integrally has two tube plates 11b for closing the.
- the cylindrical portion 11a is arranged so that the central axis is substantially horizontal.
- Each tube plate 11b is a disk-shaped plate material.
- a liquid phase refrigerant is stored in the lower part of the pressure vessel 11.
- the region in which the liquid phase refrigerant is stored is referred to as a storage unit 11c.
- the refrigerant inlet pipe 12 is a cylindrical member extending in the vertical direction, and is formed in a substantially linear shape.
- the refrigerant inlet pipe 12 is provided so as to penetrate the upper portion of the cylindrical portion 11a in the vertical direction.
- the refrigerant inlet pipe 12 is provided at substantially the center of the cylindrical portion 11a in the X-axis direction.
- the refrigerant inlet pipe 12 is connected to a pipe (not shown) that connects the evaporator 10 and the expansion valve. That is, the refrigerant expanded by the expansion valve is guided to the inside of the pressure vessel 11 via the refrigerant inlet pipe 12.
- the refrigerant supply pipe 13 is housed in the pressure vessel 11.
- the refrigerant supply pipe 13 is provided above the liquid film type heat transfer pipe group 15.
- the refrigerant supply pipe 13 extends in the X-axis direction.
- the lower end of the refrigerant inlet pipe 12 is connected to the upper part of the refrigerant supply pipe 13 substantially in the center in the X-axis direction.
- a gas-liquid two-phase state refrigerant introduced from the refrigerant inlet pipe 12 is circulated inside the refrigerant supply pipe 13, a gas-liquid two-phase state refrigerant introduced from the refrigerant inlet pipe 12 is circulated.
- a plurality of slits 13a are formed at the lower end of the refrigerant supply pipe 13. Each slit 13a is formed so that the Y-axis direction is the longitudinal direction.
- the plurality of slits 13a are arranged side by side at equal intervals in the X-axis direction.
- the refrigerant flowing in the refrigerant supply pipe 13 is blown out from each slit 13a.
- the refrigerant supply pipe 13 supplies the refrigerant blown out from each slit 13a to the liquid film type heat transfer pipe group 15 from above.
- the full-liquid heat transfer tube group 14 is housed in the pressure vessel 11. Further, the full-liquid heat transfer tube group 14 is immersed in the refrigerant stored in the storage unit 11c. That is, it is arranged below the liquid level S of the stored refrigerant.
- the full-liquid heat transfer tube group 14 has a plurality of first heat transfer tubes extending along the X-axis direction.
- the plurality of first heat transfer tubes are arranged substantially in parallel.
- the plurality of first heat transfer tubes are arranged side by side at predetermined intervals in the vertical direction and the Y-axis direction. Specifically, the plurality of first heat transfer tubes are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction.
- each first heat transfer tube Water as a cooling medium (hereinafter referred to as "cooled water") is circulated inside each first heat transfer tube. Further, each first heat transfer tube is formed in a straight line. Further, each first heat transfer tube extends from one end (left end in FIG. 1) to the other end (right end in FIG. 1) of the pressure vessel 11 in the X-axis direction and penetrates each tube plate 11b. The length of the full-liquid heat transfer tube group 14 in the X-axis direction is longer than the length of the refrigerant supply tube 13 in the X-axis direction. In addition, in FIGS. 1 to 3, due to the illustration, the first heat transfer tubes are not shown one by one, but are collectively shown as a full-liquid heat transfer tube group 14.
- the liquid film type heat transfer tube group 15 is housed in the pressure vessel 11.
- the liquid film type heat transfer tube group 15 is arranged above the liquid level S of the stored refrigerant.
- the liquid film type heat transfer tube group 15 has a plurality of second heat transfer tubes extending along the X-axis direction.
- the plurality of second heat transfer tubes are arranged substantially in parallel.
- the plurality of second heat transfer tubes are arranged side by side at predetermined intervals in the vertical direction and the Y-axis direction.
- the plurality of second heat transfer tubes are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction. Water as a cooling medium circulates inside each second heat transfer tube. Further, each second heat transfer tube is formed in a straight line.
- each second heat transfer tube extends from one end (left end in FIG. 1) to the other end (right end in FIG. 1) of the pressure vessel 11 in the X-axis direction and penetrates each tube plate 11b.
- the length of the liquid film type heat transfer tube group 15 in the X-axis direction is longer than the length of the refrigerant supply tube 13 in the X-axis direction.
- the second heat transfer tubes are not shown one by one because of the illustration, but are collectively shown as a liquid film type heat transfer tube group 15.
- the liquid film type heat transfer tube group 15 includes a lower liquid film type heat transfer tube group 15b provided above the liquid level S, an upper liquid film type heat transfer tube group 15c provided above the lower liquid film type heat transfer tube group 15b, and the upper liquid film type heat transfer tube group 15c. have.
- the lower liquid film type heat transfer tube group 15b and the lower liquid film type heat transfer tube group 15b are separated from each other in the vertical direction.
- One end (the left end in FIG. 1) of the full-liquid heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b is arranged in the introduction portion 17 into which the water to be cooled is introduced.
- the introduction portion 17 is arranged outside the pressure vessel 11. Water to be cooled is supplied to the introduction unit 17 from a water to be cooled water supply device (not shown) (see arrow A5). Cooled water flows into the inside of the full-liquid heat transfer tube group 14 and the lower liquid film heat transfer tube group 15b from one end (see arrow A6).
- the other end (right end in FIG. 1) of the full-liquid type heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b is arranged in the return portion 18. Further, the other end (right end in FIG. 1) of the upper liquid film type heat transfer tube group 15c is also arranged in the return portion 18.
- the return portion 18 is arranged outside the pressure vessel 11.
- the liquid to be cooled that has flowed through the full-filled heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b enters the return portion 18 from the other end of the full-liquid type heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b. It is discharged (see arrow A7).
- the liquid to be cooled discharged to the return portion 18 flows into the upper liquid film type heat transfer tube group 15c from the other end of the upper liquid film type heat transfer tube group 15c (see arrow A8).
- One end (the left end in FIG. 1) of the upper liquid film type heat transfer tube group 15c is arranged in the discharge unit 19 for discharging the cooled water.
- the discharge unit 19 is arranged outside the pressure vessel 11.
- the water to be cooled is discharged to the discharge unit 19 from one end of the upper liquid film type heat transfer tube group 15c (see arrow A9).
- the refrigerant flowing into the discharge unit 19 is cooled to become cold water by exchanging heat with the water in each heat transfer tube group. This cold water is discharged from the discharge unit 19 (see arrow A10) and is used as a cold heat medium for air conditioning, industrial cooling water, and the like.
- the refrigerant outlet pipe 16 is a cylindrical member extending in the vertical direction.
- the refrigerant outlet pipe 16 is provided so as to communicate with an opening formed in the upper part of the cylindrical portion 11a.
- the refrigerant outlet pipe 16 is provided on the end side of the cylindrical portion 11a in the X-axis direction. That is, the refrigerant outlet pipe 16 is provided in the vicinity of the pipe plate 11b of the pressure vessel 11.
- the refrigerant vaporized in the evaporator 10 is discharged to the outside of the pressure vessel 11 via the refrigerant outlet pipe 16.
- the refrigerant supply pipe 13 is a tubular member extending along the X-axis direction. As shown in FIG. 5, the refrigerant supply pipe 13 is formed in a substantially rectangular shape in a side view. Further, the refrigerant supply pipe 13 is curved so that the lower end portion protrudes downward in a side view. In each slit 13a, the slit 13a is formed in substantially the entire area of the curved portion 13b in the Y-axis direction.
- closing portions 20 are provided at both ends of the refrigerant supply pipe 13 in the X-axis direction. Each closing portion 20 closes each end face of the refrigerant supply pipe 13 in the X-axis direction.
- An opening 21 is formed in each closing portion 20.
- the opening 21 is formed at a substantially central portion of the closing portion 20 in the Z-axis direction. That is, the closing portion 20 includes a lower closing portion 20b that closes below the opening 21 of the refrigerant supply pipe 13 (including the lower end portion) and an upper closing portion that closes above the opening 21 of the refrigerant supply pipe 13. It has 20a and. Further, the positions and shapes of the openings 21 formed in the closed portions 20 are substantially the same.
- the opening 21 is formed above the lower closing portion 20b.
- the opening 21 is formed so as to penetrate the closing portion 20. That is, the opening 21 connects the inner space of the refrigerant supply pipe 13 and the outer space of the refrigerant supply pipe 13.
- the opening area of the opening 21 is set to be equal to or larger than the opening area of the slit 13a formed at the end portion in the X-axis direction.
- the opening 21 is formed over substantially the entire area of the refrigerant supply pipe 13 in the Y-axis direction. Further, the length of the opening 21 in the Z-axis direction is shorter than half the length of the refrigerant supply pipe 13 in the Z-axis direction.
- the length of the opening 21 in the Z-axis direction may be about one-third of the length of the refrigerant supply pipe 13 in the Z-axis direction.
- the present disclosure is not limited to this.
- the length of the opening 21 in the Z-axis direction may be longer than half the length of the refrigerant supply pipe 13 in the Z-axis direction.
- the refrigerant supply pipe 13 is supported by the pressure vessel 11 by the support plate (second shielding plate portion) 22.
- the support plate 22 is arranged so that the plate surface faces the vertical plane.
- the support plate 22 is fixed to the upper portion and the side portion of the inner peripheral surface of the pressure vessel 11. Further, an opening is formed in the support plate 22, and the refrigerant supply pipe 13 is inserted into the opening.
- the refrigerant supply pipe 13 inserted into the opening is arranged so as not to protrude from the support plate 22.
- the support plate 22 is located above and to the side of the upper liquid film type heat transfer tube group 15c.
- the height of the lower end of the support plate 22 is substantially the same as the height of the upper end of the lower liquid film type heat transfer tube group 15b.
- the support plate 22 is provided between the opening 21 and the refrigerant outlet pipe 16.
- the support plate 22 may also serve as the end surface of the refrigerant supply pipe 13. That is, the refrigerant supply pipe 13 may be formed by attaching a tubular member extending along the X-axis direction to the support plate 22.
- the refrigerant supply pipe 13 may be supported by the pressure vessel 11 by other means without providing the support plate 22.
- the refrigerant and the like circulate as follows.
- the refrigerant flows into the pressure vessel 11 from the refrigerant inlet pipe 12 (see arrow A1).
- the refrigerant that has flowed into the pressure vessel 11 flows in the refrigerant supply pipe 13 in the X-axis direction (see arrow A2).
- the refrigerant flowing in the refrigerant supply pipe 13 is in a gas-liquid two-phase state.
- the liquid-phase refrigerant flowing in the refrigerant supply pipe 13 is blown downward through a large number of slits 13a formed at the lower end of the refrigerant supply pipe 13 (see arrow A3).
- the liquid-phase refrigerant blown out from the refrigerant supply pipe 13 comes into contact with the second heat transfer tube arranged at the uppermost stage of the liquid film type heat transfer tube group 15 (upper liquid film type heat transfer tube group 15c), and the liquid phase refrigerant of the second heat transfer tube Cover the outer peripheral surface like a film.
- the refrigerant that covers the outer peripheral surface of the second heat transfer tube in a film shape exchanges heat with the water to be cooled inside the second heat transfer tube. A part of the refrigerant evaporates due to heat exchange, and the non-evaporated refrigerant falls further down to the second heat transfer tube. Such heat exchange is continuously repeated.
- the refrigerant that has not evaporated even by heat exchange with the water in the second heat transfer tube arranged at the lowermost part is stored in the storage portion 11c provided at the lower part of the pressure vessel 11. In this way, a pool of liquid phase refrigerant is formed inside the pressure vessel 11. The level of the liquid level in this refrigerant pool is automatically adjusted to a predetermined height.
- the first heat transfer tube of the full-liquid heat transfer tube group 14 is in a state of being immersed in the refrigerant of the liquid phase stored in the storage section 11c.
- the water to be cooled flowing in the first heat transfer tube exchanges heat with the refrigerant stored in the storage unit 11c.
- the refrigerant that has exchanged heat with the first heat transfer tube evaporates and is guided upward from the liquid level S.
- the refrigerant evaporated in the liquid film type heat transfer tube group 15 and the full liquid type heat transfer tube group 14 is guided to the refrigerant outlet pipe 16.
- the refrigerant guided to the refrigerant outlet pipe 16 is discharged to the outside of the pressure vessel 11 (see arrow A4).
- the refrigerant discharged from the refrigerant outlet pipe 16 is sucked and compressed by the turbo compressor.
- the opening 21 is formed at the end of the refrigerant supply pipe 13.
- a part of the gas-phase refrigerant flows to the end of the refrigerant supply pipe 13 and is discharged to the outside from the opening 21.
- the flow velocity of the gas-phase refrigerant flowing in the refrigerant supply pipe 13 is unlikely to decrease even at the end.
- the liquid phase refrigerant is accompanied by the gas phase refrigerant. Therefore, the liquid phase refrigerant can be easily guided to the end.
- the liquid phase refrigerant can be suitably supplied to the end portion, the amount of the refrigerant supplied to the liquid film type heat transfer tube group 15 can be made uniform in the X-axis direction. Therefore, since the heat exchange efficiency can be improved, the performance of the evaporator 10 can be improved.
- FIGS. 6 and 7 are simulation results of the refrigerant supply pipe 13 according to the present embodiment.
- the horizontal axes of FIGS. 6 and 7 indicate the positions of the refrigerant supply pipe 13 in the X-axis direction. In detail, the position from the center to one end (or the other end) in the X-axis direction is shown. 0 on the horizontal axis indicates the center of the refrigerant supply pipe 13 in the X-axis direction, and 1 on the horizontal axis indicates one end (or the other end) of the refrigerant supply pipe 13 in the X-axis direction.
- FIG. 6 shows the flow velocity of the refrigerant flowing inside the refrigerant supply pipe 13 in the X-axis direction.
- the ratio when the flow velocity in the center of the refrigerant supply pipe 13 in the X-axis direction is 1.
- the vertical axis of FIG. 7 shows the amount of refrigerant in the liquid phase blown out from the slit 13a.
- the ratio when the amount of the refrigerant blown out is 1 when the refrigerant is blown out evenly from each slit 13a is shown.
- the amount of the refrigerant blown out at the end portion is not zero, and the refrigerant is also blown out at the end portion.
- the liquid phase refrigerant can be suitably supplied to the end in the X-axis direction.
- a closing portion 20 for closing the lower end portion of the end surface of the refrigerant supply pipe 13 and the like is provided, and the opening portion 21 is formed above the closing portion 20.
- the liquid phase refrigerant accompanying the gas phase refrigerant easily flows through the lower part of the refrigerant supply pipe 13 due to gravity (see also the refrigerant R in FIG. 8).
- the liquid-phase refrigerant accompanying the gas-phase refrigerant collides with the closing portion 20 when it moves to the end face of the refrigerant supply pipe 13. Therefore, it is possible to prevent the liquid phase refrigerant from being discharged from the opening 21 of the refrigerant supply pipe 13. Therefore, it is possible to suppress a reduction in the amount of refrigerant supplied to the liquid film type heat transfer tube group 15 through the slit 13a.
- the opening 21 is formed substantially in the center of the refrigerant supply pipe 13 in the height direction.
- the liquid phase refrigerant easily flows through the lower part in the refrigerant supply pipe 13. Therefore, by forming the opening 21 substantially in the center, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 21. Therefore, it is possible to further suppress the reduction in the amount of the refrigerant supplied to the liquid film type heat transfer tube group 15.
- a support plate 22 is provided between the opening 21 and the refrigerant outlet pipe 16.
- the gas phase refrigerant discharged from the opening 21 (see arrow A11 in FIG. 1) is once guided downward (see arrow A12 in FIG. 1), and then the refrigerant provided in the upper part of the pressure vessel 11 is provided. It is guided upward with the outlet pipe 16. Therefore, when the gas phase refrigerant discharged from the opening 21 is accompanied by the liquid phase refrigerant, the liquid phase refrigerant can be separated from the gas phase refrigerant by gravity. Therefore, it is possible to make it difficult for the gas phase refrigerant discharged from the refrigerant outlet pipe 16 to the outside of the pressure vessel 11 to accompany the liquid phase refrigerant (so-called carryover).
- the separated liquid phase refrigerant falls downward.
- the length of the liquid film type heat transfer tube group 15 in the X-axis direction is longer than the length of the refrigerant supply tube 13 in the X-axis direction. That is, when viewed in a plan view, the end portion of the liquid film type heat transfer tube group 15 protrudes from the end portion of the refrigerant supply pipe 13. As a result, the separated and dropped liquid phase refrigerant comes into contact with the protruding portion of the liquid film type heat transfer tube group 15. Therefore, even when the gas phase refrigerant discharged from the opening 21 is accompanied by the liquid phase refrigerant, the accompanying liquid phase refrigerant can be evaporated.
- the performance of the evaporator 10 can be improved.
- the position where the opening is provided is not limited to the example described above. It is preferable that the opening is formed in the upper part of the closing portion 20.
- the upper part may be substantially the center in the Z-axis direction or above the substantially center. Further, for example, as shown in FIG. 8, it is more suitable when the opening 41 is formed above the position of a quarter from the upper end with respect to the entire height of the refrigerant supply pipe 13. .. In the example shown in FIG. 8, the opening 41 is provided near the upper end of the closing portion 20.
- the opening may be formed in addition to the closing portion 20 of the refrigerant supply pipe 13. For example, it may be formed above the end of the refrigerant supply pipe 13 (see FIG. 11). Further, it may be formed on the side portion of the end portion of the refrigerant supply pipe 13.
- a gas-liquid separation structure 50 may be provided inside the refrigerant supply pipe 13.
- the gas-liquid separation structure 50 is arranged inside the refrigerant supply pipe 13 and in the vicinity of the opening 41.
- the gas-liquid separation structure is arranged on the central portion side in the X-axis direction with respect to the opening 41, and is a baffle plate (first) extending downward from the upper part of the inner peripheral surface of the refrigerant supply pipe 13.
- the baffle plate 51 and the vertical portion 53 are opposed to each other and are arranged apart from each other.
- the lower end of the baffle plate 51 is located below the lower end of the opening 41.
- a first flow path 54 in which the refrigerant flows from the lower side to the upper side is formed between the baffle plate 51 and the vertical portion 53.
- the inner peripheral surface of the refrigerant supply pipe 13, the vertical portion 53, and the horizontal surface portion 52 form a second flow path 55 in which the refrigerant flows from above to below.
- the liquid phase refrigerant R adheres to the upper part of the inner peripheral surface of the refrigerant supply pipe 13.
- the refrigerant adhering to the upper part moves toward the end by accommodating the refrigerant in the gas phase that circulates.
- the baffle plate 51 is provided on the central portion side in the X-axis direction with respect to the opening 41. As a result, the liquid phase refrigerant moving toward the end is blocked by the baffle plate 51, so that the refrigerant does not reach the opening 41. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 41.
- the gas phase refrigerant flowing in the refrigerant supply pipe 13 is guided to the opening 41 by bypassing the obstruction plate 51.
- the liquid phase refrigerant accompanied by the gas phase refrigerant can be centrifuged by the centrifugal force when bypassing the baffle plate 51. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 41.
- the refrigerant can be centrifuged even when the refrigerant is guided from the first flow path 54 to the second flow path 55.
- the gas-liquid separation structure is not limited to the example described above.
- the horizontal surface portion 52 and the vertical portion 53 may not be provided, and only the baffle plate 51 may be formed.
- an opening 57 may be formed in the upper part of the end portion of the refrigerant supply pipe 13. Even with the configurations shown in FIGS. 10 and 11, the liquid phase refrigerant can be made difficult to be discharged from the opening.
- the pipe (cylinder body) 60 may be inserted into the opening 21 formed in the closed portion 20.
- the pipe 60 is inserted so as to protrude inside the refrigerant supply pipe 13.
- the refrigerant R adhering to the upper part of the inner peripheral surface of the refrigerant supply pipe 13 is blocked by the upper part of the pipe 60. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 41.
- the present disclosure is not limited to the above embodiment, and can be appropriately modified as long as it does not deviate from the gist thereof.
- the opening area of the opening formed in the closing portion 20 on one end side of the refrigerant supply pipe 13 may be different from the opening area of the opening formed in the closing portion 20 on the other end side.
- the amount of refrigerant in the gas phase discharged from the opening differs between the opening formed at one end and the opening formed at the other end. Therefore, the flow velocity of the gas phase refrigerant flowing toward one end in the refrigerant supply pipe 13 and the flow velocity of the gas phase refrigerant flowing toward the other end are also different.
- the amount of the liquid phase refrigerant accompanying the gas phase refrigerant is also different, the amount of the liquid phase refrigerant leading to the one end side and the amount of the liquid phase refrigerant leading to the other end side should be different. Can be done. Therefore, the amount of refrigerant leading to each end can be adjusted. Thereby, the amount of the refrigerant supplied to the liquid film type heat transfer tube group 15 can be adjusted along the X-axis direction. Therefore, since the heat exchange efficiency can be improved in the liquid film type heat transfer tube group 15, the performance of the evaporator 10 can be improved. For example, the opening on the side where the heat load of the liquid film type heat transfer tube group 15 is high may be formed larger than the opening on the side where the heat load of the liquid film type heat transfer tube group 15 is low.
- the evaporator described in the present embodiment described above is grasped as follows, for example.
- the evaporator according to one aspect of the present disclosure includes a housing (11) forming an outer shell and a liquid phase housed in the housing and stored in a storage portion (11c) provided in the lower part of the housing.
- a first heat transfer tube group (14) having a plurality of first heat transfer tubes immersed in a refrigerant and having a plurality of first heat transfer tubes through which a medium to be cooled flows, and a liquid housed in the housing and stored in the lower part of the housing.
- the refrigerant supply pipe is formed at a closing portion (20) that closes at least the lower end of the end face in the predetermined direction and an end portion in the predetermined direction (X-axis direction) above the closing portion. It has an opening (21) that connects the inner space of the supply pipe and the outer space of the refrigerant supply pipe.
- an opening is formed at the end of the refrigerant supply pipe.
- the gas-phase refrigerant is discharged from the opening to the outside when it flows to the end of the refrigerant supply pipe.
- the flow velocity of the gas-phase refrigerant flowing in the refrigerant supply pipe is unlikely to decrease even at the end.
- the liquid phase refrigerant is accompanied by the gas phase refrigerant. Therefore, the liquid phase refrigerant can be easily guided to the end.
- the liquid phase refrigerant can be suitably supplied to the end portion, the amount of the refrigerant supplied to the second heat transfer tube group can be made uniform in a predetermined direction. Therefore, the heat exchange efficiency can be improved, and the performance of the evaporator can be improved. Further, a closing portion for closing the lower end of the end surface of the refrigerant supply pipe is provided, and the opening is formed above the closed portion. In the refrigerant supply pipe, the liquid phase refrigerant accompanying the gas phase refrigerant tends to circulate in the lower part of the refrigerant supply pipe due to gravity.
- the liquid-phase refrigerant accompanying the gas-phase refrigerant collides with the closed portion when it moves to the end face of the refrigerant supply pipe. Therefore, it is possible to prevent the liquid phase refrigerant from being discharged from the opening of the liquid supply pipe. Therefore, it is possible to suppress a reduction in the amount of refrigerant supplied to the second heat transfer tube group.
- the opening is formed in the upper part of the refrigerant supply pipe.
- the opening is formed in the upper part of the refrigerant supply pipe.
- the liquid phase refrigerant easily flows through the lower part in the refrigerant supply pipe. Therefore, by forming the opening at the upper part, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
- the upper part of the refrigerant supply pipe may be above the center in the height direction of the refrigerant supply pipe. Further, more preferably, it may be above the position of a quarter from the upper end with respect to the entire height of the refrigerant supply pipe.
- the evaporator according to one aspect of the present disclosure is arranged in the refrigerant supply pipe on the central portion side in a predetermined direction from the opening, and extends downward from the upper part of the inner peripheral surface of the refrigerant supply pipe. 1
- a shielding plate portion (51) is provided.
- Liquid-phase refrigerant adheres to the upper part of the inner peripheral surface of the refrigerant supply pipe.
- the refrigerant adhering to the upper part moves toward the end by accommodating the refrigerant in the gas phase that circulates.
- the first shielding plate portion is provided on the central portion side in the predetermined direction with respect to the opening.
- the liquid phase refrigerant moving toward the end is blocked by the first shielding plate portion, so that it does not reach the opening. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
- the gas phase refrigerant flowing in the refrigerant supply pipe is guided to the opening by bypassing the first shielding plate portion.
- the liquid phase refrigerant accompanied by the gas phase refrigerant can be centrifuged by the centrifugal force when bypassing the first shielding plate portion. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
- the lower end of the first shielding plate portion may be located below the lower end of the opening.
- a tubular body (60) is inserted in the opening.
- the housing is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside at the upper part, and the second heat transfer tube group is provided in the predetermined direction.
- the length of the refrigerant supply pipe is longer than the length of the refrigerant supply pipe in the predetermined direction, and is above the refrigerant supply pipe, and between the opening and the refrigerant outlet, a second shielding plate portion (22) Is provided.
- a second shielding plate portion is provided between the opening and the outlet pipe.
- the length of the second heat transfer tube group in the predetermined direction is longer than the length of the refrigerant supply tube in the predetermined direction. That is, when viewed in a plan view, the end portion of the second heat transfer tube group protrudes from the end portion of the refrigerant supply pipe. As a result, the separated and dropped liquid phase refrigerant comes into contact with the protruding portion of the second heat transfer tube group. Therefore, even when the gas phase refrigerant discharged from the opening is accompanied by the liquid phase refrigerant, the accompanying liquid phase refrigerant can be evaporated.
- the performance of the evaporator can be improved.
- the openings are formed at both ends in the predetermined direction, and the openings are formed at one end in the predetermined direction.
- the area is different from the opening area of the opening formed at the other end in the predetermined direction.
- the opening area of the opening formed at one end in a predetermined direction and the opening area of the opening formed at the other end are different.
- the amount of the gas phase refrigerant discharged from the opening differs between the opening formed at one end and the opening formed at the other end. Therefore, the flow velocity of the gas phase refrigerant flowing toward one end in the refrigerant supply pipe and the flow velocity of the gas phase refrigerant flowing toward the other end are also different. Therefore, since the amount of the liquid phase refrigerant accompanying the gas phase refrigerant is also different, the amount of the liquid phase refrigerant leading to the one end side and the amount of the liquid phase refrigerant leading to the other end side should be different. Can be done.
- the amount of the refrigerant leading to each end can be adjusted, the amount of the refrigerant supplied to the second heat transfer tube group can be adjusted along a predetermined direction. Therefore, since the heat exchange efficiency can be improved in the second heat transfer tube group, the performance of the evaporator can be improved.
- the opening on the side where the heat load of the second heat transfer tube group is high may be formed larger than the opening on the side where the heat load of the second heat transfer tube group is low.
- Evaporator 11 Pressure vessel (housing) 11a: Cylindrical part 11b: Pipe plate 11c: Storage part 12: Refrigerant inlet pipe (refrigerant inlet) 13: Refrigerant supply pipe 13a: Slit 13b: Curved part 14: Full-liquid heat transfer tube group (first heat transfer tube group) 15: Liquid film type heat transfer tube group (second heat transfer tube group) 15b: Lower liquid film type heat transfer tube group 15c: Upper liquid film type heat transfer tube group 16: Refrigerant outlet pipe (refrigerant outlet) 17: Introductory part 18: Return part 19: Discharge part 20: Closed part 20a: Upper closed part 20b: Lower closed part 21: Opening part 22: Support plate (second shielding plate part) 41: Opening 50: Gas-liquid separation structure 51: Interfering plate (first shielding plate) 52: Horizontal part 53: Vertical part 54: First flow path 55: Second flow path 57: Opening 60: Piping (cylinder body) R: Refrigerant S:
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
The purpose of the present invention is to improve heat exchange efficiency and improve the performance of an evaporator. The present invention is provided with: a pressure vessel that forms an outer shell; a liquid-film-type heat transfer pipe group that is housed in the pressure vessel and immersed in a liquid-phase refrigerant stored in a storage part provided to a lower part of the pressure vessel and that includes a plurality of first heat transfer pipes in which water to be cooled flows; a liquid-film-type heat transfer pipe group that is housed in the pressure vessel and located upward of the liquid level of the liquid-phase refrigerant stored in the lower part of the pressure vessel and that includes a plurality of second heat transfer pipes which extend in a predetermined direction and in which water to be cooled flows; and a refrigerant supply pipe (13) that is for supplying the refrigerant from above to the liquid-film-type heat transfer pipe groups, that is housed in the pressure vessel, that extends in a predetermined direction, and in which a refrigerant in a state of being in two phases, i.e., gas and liquid phases, flows. The refrigerant supply pipe (13) has: a closure part (20) that closes at least a lower end portion of an end surface in an X-axis direction; and an opening part (21) that is formed, above the closure part (20), at an end portion in the X-axis direction and that connects the internal space of the refrigerant supply pipe (13) and the external space of the refrigerant supply pipe (13).
Description
本開示は、蒸発器に関するものである。
This disclosure relates to an evaporator.
冷凍機で用いられる蒸発器として、内部に被冷却媒体が流通する伝熱管群に対して、上方から液相の冷媒を供給する液膜式の蒸発器が知られている。このような液膜式の蒸発器には、伝熱管群へ冷媒を供給する配管が設けられている(例えば、特許文献1)。
As an evaporator used in a refrigerator, a liquid film type evaporator that supplies a liquid phase refrigerant from above to a group of heat transfer tubes through which a cooling medium flows inside is known. Such a liquid film type evaporator is provided with a pipe for supplying a refrigerant to a heat transfer tube group (for example, Patent Document 1).
特許文献1には、長手方向に延在する冷媒供給用の配管の両端面の全域が閉鎖されている液膜式の蒸発器が記載されている。この配管は、管底部に形成された複数のスリットから冷媒を吹出すことで、伝熱管群へ冷媒を供給している。
Patent Document 1 describes a liquid film type evaporator in which the entire end surface of a refrigerant supply pipe extending in the longitudinal direction is closed. This pipe supplies the refrigerant to the heat transfer pipe group by blowing out the refrigerant from a plurality of slits formed at the bottom of the pipe.
しかしながら、特許文献1のように、両端面の全域が閉鎖されている冷媒供給用の配管は、長手方向の端部に向かうにつれて配管内を流通する冷媒の流速が著しく低下する。冷媒供給用の配管内を流通する冷媒は、気液混合状態であるので、流速が低下すると重力の影響によって、気液分離される。これにより、液相の冷媒が配管の底部に溜まることとなり、液相の冷媒がスリットから流出し易くなる。したがって、長手方向の端部まで至る液相の冷媒量が低減してしまう可能性があった。
長手方向の端部まで至る液相の冷媒量が低減してしまうと、伝熱管群に供給される冷媒量に分布が生じる。これにより、伝熱管群における熱交換効率が低下し、蒸発器の性能が低減する可能性があった。 However, as inPatent Document 1, in the refrigerant supply pipe in which the entire entire end surface is closed, the flow velocity of the refrigerant flowing in the pipe decreases remarkably toward the end in the longitudinal direction. Since the refrigerant flowing in the refrigerant supply pipe is in a gas-liquid mixed state, gas-liquid separation is performed by the influence of gravity when the flow velocity decreases. As a result, the liquid-phase refrigerant accumulates at the bottom of the pipe, and the liquid-phase refrigerant easily flows out from the slit. Therefore, there is a possibility that the amount of refrigerant in the liquid phase reaching the end in the longitudinal direction may be reduced.
When the amount of refrigerant in the liquid phase reaching the end in the longitudinal direction is reduced, the amount of refrigerant supplied to the heat transfer tube group is distributed. As a result, the heat exchange efficiency in the heat transfer tube group may decrease, and the performance of the evaporator may decrease.
長手方向の端部まで至る液相の冷媒量が低減してしまうと、伝熱管群に供給される冷媒量に分布が生じる。これにより、伝熱管群における熱交換効率が低下し、蒸発器の性能が低減する可能性があった。 However, as in
When the amount of refrigerant in the liquid phase reaching the end in the longitudinal direction is reduced, the amount of refrigerant supplied to the heat transfer tube group is distributed. As a result, the heat exchange efficiency in the heat transfer tube group may decrease, and the performance of the evaporator may decrease.
本開示は、このような事情に鑑みてなされたものであって、熱交換効率を向上させ、蒸発器の性能を向上させることができる蒸発器を提供することを目的とする。
The present disclosure has been made in view of such circumstances, and an object of the present disclosure is to provide an evaporator capable of improving heat exchange efficiency and improving the performance of the evaporator.
上記課題を解決するために、本開示の蒸発器は以下の手段を採用する。
本開示の一態様に係る蒸発器は、外殻を為す筐体と、前記筐体に収容され、前記筐体の下部に設けられた貯留部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の第1伝熱管を有する第1伝熱管群と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面よりも上方に設けられ、内部に被冷却媒体が流通し所定方向に延在する複数の第2伝熱管を有する第2伝熱管群と、前記筐体に収容され、前記所定方向に延在し、内部に気液二相状態の冷媒が流通し、上方から前記第2伝熱管群へ冷媒を供給する冷媒供給管と、を備え、前記冷媒供給管は、前記所定方向の端面の少なくとも下端部を閉鎖する閉鎖部と、前記所定方向の端部であって前記閉鎖部よりも上方に形成され該冷媒供給管の内側空間と該冷媒供給管の外側空間とを接続する開口部と、を有する。 In order to solve the above problems, the evaporator of the present disclosure employs the following means.
The evaporator according to one aspect of the present disclosure is immersed in a housing forming an outer shell and a liquid-phase refrigerant housed in the housing and stored in a storage portion provided in the lower part of the housing. A group of first heat transfer tubes having a plurality of first heat transfer tubes through which a medium to be cooled flows, and a liquid phase refrigerant housed in the housing and stored in the lower part of the housing above the liquid level of the refrigerant. A group of second heat transfer tubes having a plurality of second heat transfer tubes, which are provided in the above and have a plurality of second heat transfer tubes in which a medium to be cooled flows and extend in a predetermined direction, and a group of second heat transfer tubes housed in the housing, which extend in the predetermined direction and extend inside. A refrigerant supply pipe in which a gas-liquid two-phase state refrigerant flows and supplies the refrigerant to the second heat transfer tube group from above is provided, and the refrigerant supply pipe closes at least the lower end portion of the end face in the predetermined direction. It has a closed portion and an opening which is an end portion in the predetermined direction and is formed above the closed portion and connects the inner space of the refrigerant supply pipe and the outer space of the refrigerant supply pipe.
本開示の一態様に係る蒸発器は、外殻を為す筐体と、前記筐体に収容され、前記筐体の下部に設けられた貯留部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の第1伝熱管を有する第1伝熱管群と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面よりも上方に設けられ、内部に被冷却媒体が流通し所定方向に延在する複数の第2伝熱管を有する第2伝熱管群と、前記筐体に収容され、前記所定方向に延在し、内部に気液二相状態の冷媒が流通し、上方から前記第2伝熱管群へ冷媒を供給する冷媒供給管と、を備え、前記冷媒供給管は、前記所定方向の端面の少なくとも下端部を閉鎖する閉鎖部と、前記所定方向の端部であって前記閉鎖部よりも上方に形成され該冷媒供給管の内側空間と該冷媒供給管の外側空間とを接続する開口部と、を有する。 In order to solve the above problems, the evaporator of the present disclosure employs the following means.
The evaporator according to one aspect of the present disclosure is immersed in a housing forming an outer shell and a liquid-phase refrigerant housed in the housing and stored in a storage portion provided in the lower part of the housing. A group of first heat transfer tubes having a plurality of first heat transfer tubes through which a medium to be cooled flows, and a liquid phase refrigerant housed in the housing and stored in the lower part of the housing above the liquid level of the refrigerant. A group of second heat transfer tubes having a plurality of second heat transfer tubes, which are provided in the above and have a plurality of second heat transfer tubes in which a medium to be cooled flows and extend in a predetermined direction, and a group of second heat transfer tubes housed in the housing, which extend in the predetermined direction and extend inside. A refrigerant supply pipe in which a gas-liquid two-phase state refrigerant flows and supplies the refrigerant to the second heat transfer tube group from above is provided, and the refrigerant supply pipe closes at least the lower end portion of the end face in the predetermined direction. It has a closed portion and an opening which is an end portion in the predetermined direction and is formed above the closed portion and connects the inner space of the refrigerant supply pipe and the outer space of the refrigerant supply pipe.
本開示によれば、熱交換効率を向上させ、蒸発器の性能を向上させることができる。
According to the present disclosure, the heat exchange efficiency can be improved and the performance of the evaporator can be improved.
以下に、本開示に係る蒸発器の一実施形態について、図1から図12を用いて説明する。なお、以下の説明及び図面では、鉛直上下方向をZ軸方向とし、伝熱管の延在する方向をX軸方向とし、Z軸方向及びX軸方向と直交する方向をY軸方向として説明する。
Hereinafter, an embodiment of the evaporator according to the present disclosure will be described with reference to FIGS. 1 to 12. In the following description and drawings, the vertical vertical direction will be the Z-axis direction, the extending direction of the heat transfer tube will be the X-axis direction, and the Z-axis direction and the direction orthogonal to the X-axis direction will be described as the Y-axis direction.
本実施形態に係る蒸発器10は、ターボ冷凍装置に適用される。ターボ冷凍装置は、冷媒を圧縮するターボ圧縮機(図示省略)と、ターボ圧縮機で圧縮された冷媒を凝縮する凝縮器(図示省略)と、凝縮器で凝縮された冷媒を膨張させる膨張弁(図示省略)と、膨張弁で膨張された冷媒を蒸発させる蒸発器等を備えて、ユニット状に構成されている。各装置は、冷媒が流通する配管によって接続されている。冷媒としては、例えば、最高圧力0.2MPaG未満で使用されるR1233zd等の低圧冷媒等が用いられる。
The evaporator 10 according to this embodiment is applied to a turbo refrigerating apparatus. The turbo refrigeration system includes a turbo compressor that compresses the refrigerant (not shown), a condenser that condenses the refrigerant compressed by the turbo compressor (not shown), and an expansion valve that expands the refrigerant condensed by the condenser (not shown). It is configured in a unit shape with an evaporator (not shown) and an evaporator that evaporates the refrigerant expanded by the expansion valve. Each device is connected by a pipe through which a refrigerant flows. As the refrigerant, for example, a low-pressure refrigerant such as R1233zd used at a maximum pressure of less than 0.2 MPaG is used.
図1に示すように、蒸発器10は、外殻を為す圧力容器(筐体)11と、圧力容器11の内部へ冷媒を導入する冷媒入口管12と、冷媒入口管12の下方に設けられる冷媒供給管13と、圧力容器11の下部に貯留される液相の冷媒に浸漬している満液式伝熱管群(第1伝熱管群)14と、圧力容器11の下部に貯留される液相の冷媒の液面S(図2及び図3参照)よりも上方に設けられる液膜式伝熱管群(第2伝熱管群)15と、蒸発した冷媒を圧力容器11から排出する冷媒出口管(冷媒出口)16と、を有している。
As shown in FIG. 1, the evaporator 10 is provided below the pressure vessel (housing) 11 forming the outer shell, the refrigerant inlet pipe 12 for introducing the refrigerant into the pressure vessel 11, and the refrigerant inlet pipe 12. The refrigerant supply pipe 13, the full-liquid heat transfer tube group (first heat transfer tube group) 14 immersed in the liquid phase refrigerant stored in the lower part of the pressure vessel 11, and the liquid stored in the lower part of the pressure vessel 11. A liquid film type heat transfer tube group (second heat transfer tube group) 15 provided above the liquid level S (see FIGS. 2 and 3) of the phase refrigerant, and a refrigerant outlet tube for discharging the evaporated refrigerant from the pressure vessel 11. (Refrigerant outlet) 16.
図1から図3に示すように、圧力容器11は、中心軸線がX軸方向に沿って延在する円筒部11aと、該円筒部11aの中心軸線に沿う方向(X軸方向)の両端部を閉鎖する2枚の管板11bとを一体的に有する。円筒部11aは、中心軸線が略水平となるように配置されている。各管板11bは、円盤状の板材である。また、圧力容器11の下部には液相の冷媒が貯留している。以下では、液相の冷媒が貯留されている領域を貯留部11cと称する。
As shown in FIGS. 1 to 3, in the pressure vessel 11, the cylindrical portion 11a whose central axis extends along the X-axis direction and both ends of the cylindrical portion 11a in the direction along the central axis (X-axis direction). It integrally has two tube plates 11b for closing the. The cylindrical portion 11a is arranged so that the central axis is substantially horizontal. Each tube plate 11b is a disk-shaped plate material. Further, a liquid phase refrigerant is stored in the lower part of the pressure vessel 11. Hereinafter, the region in which the liquid phase refrigerant is stored is referred to as a storage unit 11c.
冷媒入口管12は、上下方向に延びる円筒状の部材であって、略直線状に形成されている。冷媒入口管12は、円筒部11aの上部を上下方向に貫通するように設けられている。冷媒入口管12は、円筒部11aのX軸方向の略中央に設けられている。冷媒入口管12は、蒸発器10と膨張弁とを接続する配管(図示省略)と接続されている。すなわち、膨張弁で膨張した冷媒は、冷媒入口管12を介して、圧力容器11の内部へ導かれる。
The refrigerant inlet pipe 12 is a cylindrical member extending in the vertical direction, and is formed in a substantially linear shape. The refrigerant inlet pipe 12 is provided so as to penetrate the upper portion of the cylindrical portion 11a in the vertical direction. The refrigerant inlet pipe 12 is provided at substantially the center of the cylindrical portion 11a in the X-axis direction. The refrigerant inlet pipe 12 is connected to a pipe (not shown) that connects the evaporator 10 and the expansion valve. That is, the refrigerant expanded by the expansion valve is guided to the inside of the pressure vessel 11 via the refrigerant inlet pipe 12.
冷媒供給管13は、圧力容器11に収容されている。冷媒供給管13は、液膜式伝熱管群15の上方に設けられている。冷媒供給管13は、X軸方向に延在している。冷媒供給管13は、X軸方向の略中央の上部に冷媒入口管12の下端が接続されている。冷媒供給管13の内部には、冷媒入口管12から導入された気液二相状態の冷媒が流通している。冷媒供給管13の下端部には、複数のスリット13aが形成されている。各スリット13aは、Y軸方向が長手方向となるように形成されている。複数のスリット13aは、X軸方向に等間隔に並んで配置されている。各スリット13aからは、冷媒供給管13内を流通する冷媒が吹出す。冷媒供給管13は、各スリット13aから吹出した冷媒を上方から液膜式伝熱管群15へ供給する。
The refrigerant supply pipe 13 is housed in the pressure vessel 11. The refrigerant supply pipe 13 is provided above the liquid film type heat transfer pipe group 15. The refrigerant supply pipe 13 extends in the X-axis direction. The lower end of the refrigerant inlet pipe 12 is connected to the upper part of the refrigerant supply pipe 13 substantially in the center in the X-axis direction. Inside the refrigerant supply pipe 13, a gas-liquid two-phase state refrigerant introduced from the refrigerant inlet pipe 12 is circulated. A plurality of slits 13a are formed at the lower end of the refrigerant supply pipe 13. Each slit 13a is formed so that the Y-axis direction is the longitudinal direction. The plurality of slits 13a are arranged side by side at equal intervals in the X-axis direction. The refrigerant flowing in the refrigerant supply pipe 13 is blown out from each slit 13a. The refrigerant supply pipe 13 supplies the refrigerant blown out from each slit 13a to the liquid film type heat transfer pipe group 15 from above.
満液式伝熱管群14は、圧力容器11に収容されている。また、満液式伝熱管群14は、貯留部11cに貯留されている冷媒に浸漬している。すなわち、貯留する冷媒の液面Sよりも下方に配置されている。満液式伝熱管群14は、X軸方向に沿って延在する複数の第1伝熱管を有する。複数の第1伝熱管は、略平行に配置されている。複数の第1伝熱管は、上下方向及びY軸方向に所定の間隔で並んで配置されている。詳細には、複数の第1伝熱管は、上下方向に複数段並んでいるとともに、Y軸方向に複数列並んでいる。各第1伝熱管の内部には、被冷却媒体としての水(以下、「被冷却水」と称する)が流通している。また、各第1伝熱管は、直線状に形成されている。また、各第1伝熱管は、圧力容器11のX軸方向の一端(図1中の左端)から他端(図1中の右端)まで延びていて、各管板11bを貫通している。満液式伝熱管群14のX軸方向の長さは、冷媒供給管13のX軸方向の長さよりも長い。なお、図1から図3では、図示の関係上、第1伝熱管を1本ずつ図示せず、まとめて満液式伝熱管群14として図示している。
The full-liquid heat transfer tube group 14 is housed in the pressure vessel 11. Further, the full-liquid heat transfer tube group 14 is immersed in the refrigerant stored in the storage unit 11c. That is, it is arranged below the liquid level S of the stored refrigerant. The full-liquid heat transfer tube group 14 has a plurality of first heat transfer tubes extending along the X-axis direction. The plurality of first heat transfer tubes are arranged substantially in parallel. The plurality of first heat transfer tubes are arranged side by side at predetermined intervals in the vertical direction and the Y-axis direction. Specifically, the plurality of first heat transfer tubes are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction. Water as a cooling medium (hereinafter referred to as "cooled water") is circulated inside each first heat transfer tube. Further, each first heat transfer tube is formed in a straight line. Further, each first heat transfer tube extends from one end (left end in FIG. 1) to the other end (right end in FIG. 1) of the pressure vessel 11 in the X-axis direction and penetrates each tube plate 11b. The length of the full-liquid heat transfer tube group 14 in the X-axis direction is longer than the length of the refrigerant supply tube 13 in the X-axis direction. In addition, in FIGS. 1 to 3, due to the illustration, the first heat transfer tubes are not shown one by one, but are collectively shown as a full-liquid heat transfer tube group 14.
液膜式伝熱管群15は、圧力容器11に収容されている。液膜式伝熱管群15は、貯留する冷媒の液面Sよりも上方に配置されている。液膜式伝熱管群15は、X軸方向に沿って延在する複数の第2伝熱管を有する。複数の第2伝熱管は、略平行に配置されている。複数の第2伝熱管は、上下方向及びY軸方向に所定の間隔で並んで配置されている。詳細には、複数の第2伝熱管は、上下方向に複数段並んでいるとともに、Y軸方向に複数列並んでいる。各第2伝熱管の内部には、被冷却媒体としての水が流通している。また、各第2伝熱管は、直線状に形成されている。また、各第2伝熱管は、圧力容器11のX軸方向の一端(図1中の左端)から他端(図1中の右端)まで延びていて、各管板11bを貫通している。液膜式伝熱管群15のX軸方向の長さは、冷媒供給管13のX軸方向の長さよりも長い。なお、図1から図3では、図示の関係上、第2伝熱管を1本ずつ図示せず、まとめて液膜式伝熱管群15として図示している。
The liquid film type heat transfer tube group 15 is housed in the pressure vessel 11. The liquid film type heat transfer tube group 15 is arranged above the liquid level S of the stored refrigerant. The liquid film type heat transfer tube group 15 has a plurality of second heat transfer tubes extending along the X-axis direction. The plurality of second heat transfer tubes are arranged substantially in parallel. The plurality of second heat transfer tubes are arranged side by side at predetermined intervals in the vertical direction and the Y-axis direction. Specifically, the plurality of second heat transfer tubes are arranged in a plurality of stages in the vertical direction and in a plurality of rows in the Y-axis direction. Water as a cooling medium circulates inside each second heat transfer tube. Further, each second heat transfer tube is formed in a straight line. Further, each second heat transfer tube extends from one end (left end in FIG. 1) to the other end (right end in FIG. 1) of the pressure vessel 11 in the X-axis direction and penetrates each tube plate 11b. The length of the liquid film type heat transfer tube group 15 in the X-axis direction is longer than the length of the refrigerant supply tube 13 in the X-axis direction. In addition, in FIGS. 1 to 3, the second heat transfer tubes are not shown one by one because of the illustration, but are collectively shown as a liquid film type heat transfer tube group 15.
液膜式伝熱管群15は、液面Sの上方に設けられる下方液膜式伝熱管群15bと、下方液膜式伝熱管群15bの上方に設けられる上方液膜式伝熱管群15cと、を有している。下方液膜式伝熱管群15bと下方液膜式伝熱管群15bとは、上下方向に離間している。
The liquid film type heat transfer tube group 15 includes a lower liquid film type heat transfer tube group 15b provided above the liquid level S, an upper liquid film type heat transfer tube group 15c provided above the lower liquid film type heat transfer tube group 15b, and the upper liquid film type heat transfer tube group 15c. have. The lower liquid film type heat transfer tube group 15b and the lower liquid film type heat transfer tube group 15b are separated from each other in the vertical direction.
満液式伝熱管群14及び下方液膜式伝熱管群15bの一端(図1中の左端)は、被冷却水を導入する導入部17内に配置されている。導入部17は、圧力容器11の外部に配置されている。導入部17には、被冷却水供給装置(図示省略)から被冷却水が供給される(矢印A5参照)。満液式伝熱管群14及び下方液膜式伝熱管群15bの内部には、一端から被冷却水が流入する(矢印A6参照)。
One end (the left end in FIG. 1) of the full-liquid heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b is arranged in the introduction portion 17 into which the water to be cooled is introduced. The introduction portion 17 is arranged outside the pressure vessel 11. Water to be cooled is supplied to the introduction unit 17 from a water to be cooled water supply device (not shown) (see arrow A5). Cooled water flows into the inside of the full-liquid heat transfer tube group 14 and the lower liquid film heat transfer tube group 15b from one end (see arrow A6).
また、満液式伝熱管群14及び下方液膜式伝熱管群15bの他端(図1中の右端)は、リターン部18内に配置されている。また、上方液膜式伝熱管群15cの他端(図1中の右端)も、リターン部18内に配置されている。リターン部18は、圧力容器11の外部に配置されている。満液式伝熱管群14及び下方液膜式伝熱管群15b内を流通した被冷却液は、満液式伝熱管群14及び下方液膜式伝熱管群15bの他端からリターン部18内に排出される(矢印A7参照)。リターン部18に排出された被冷却液は、上方液膜式伝熱管群15cの他端から上方液膜式伝熱管群15c内に流入する(矢印A8参照)。
Further, the other end (right end in FIG. 1) of the full-liquid type heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b is arranged in the return portion 18. Further, the other end (right end in FIG. 1) of the upper liquid film type heat transfer tube group 15c is also arranged in the return portion 18. The return portion 18 is arranged outside the pressure vessel 11. The liquid to be cooled that has flowed through the full-filled heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b enters the return portion 18 from the other end of the full-liquid type heat transfer tube group 14 and the lower liquid film type heat transfer tube group 15b. It is discharged (see arrow A7). The liquid to be cooled discharged to the return portion 18 flows into the upper liquid film type heat transfer tube group 15c from the other end of the upper liquid film type heat transfer tube group 15c (see arrow A8).
上方液膜式伝熱管群15cの一端(図1中の左端)は、被冷却水を排出する排出部19内に配置されている。排出部19は、圧力容器11の外部に配置されている。排出部19には、上方液膜式伝熱管群15cの一端から被冷却水が排出される(矢印A9参照)。排出部19に流入した冷媒は、各伝熱管群内の水と熱交換することで、冷却されて冷水となっている。この冷水は、排出部19から排出され(矢印A10参照)、空調用の冷熱媒や工業用冷却水等として利用される。
One end (the left end in FIG. 1) of the upper liquid film type heat transfer tube group 15c is arranged in the discharge unit 19 for discharging the cooled water. The discharge unit 19 is arranged outside the pressure vessel 11. The water to be cooled is discharged to the discharge unit 19 from one end of the upper liquid film type heat transfer tube group 15c (see arrow A9). The refrigerant flowing into the discharge unit 19 is cooled to become cold water by exchanging heat with the water in each heat transfer tube group. This cold water is discharged from the discharge unit 19 (see arrow A10) and is used as a cold heat medium for air conditioning, industrial cooling water, and the like.
冷媒出口管16は、上下方向に延びる円筒状の部材である。冷媒出口管16は、円筒部11aの上部に形成された開口と連通するように設けられている。冷媒出口管16は、円筒部11aのX軸方向の端部側に設けられている。すなわち、冷媒出口管16は、圧力容器11の管板11bの近傍に設けられている。蒸発器10で蒸発した冷媒は、冷媒出口管16を介して、圧力容器11の外部へ排出される。
The refrigerant outlet pipe 16 is a cylindrical member extending in the vertical direction. The refrigerant outlet pipe 16 is provided so as to communicate with an opening formed in the upper part of the cylindrical portion 11a. The refrigerant outlet pipe 16 is provided on the end side of the cylindrical portion 11a in the X-axis direction. That is, the refrigerant outlet pipe 16 is provided in the vicinity of the pipe plate 11b of the pressure vessel 11. The refrigerant vaporized in the evaporator 10 is discharged to the outside of the pressure vessel 11 via the refrigerant outlet pipe 16.
次に、冷媒供給管13の詳細について図4及び図5を用いて詳細に説明する。
図4に示すように、冷媒供給管13は、X軸方向に沿って延びる管状の部材である。図5に示すように、冷媒供給管13は、側面視で略長方形状に形成されている。また、冷媒供給管13は、側面視で下端部が下方に突出するように湾曲している。各スリット13aは、湾曲部13bのY軸方向の略全域にスリット13aが形成されている。 Next, the details of therefrigerant supply pipe 13 will be described in detail with reference to FIGS. 4 and 5.
As shown in FIG. 4, therefrigerant supply pipe 13 is a tubular member extending along the X-axis direction. As shown in FIG. 5, the refrigerant supply pipe 13 is formed in a substantially rectangular shape in a side view. Further, the refrigerant supply pipe 13 is curved so that the lower end portion protrudes downward in a side view. In each slit 13a, the slit 13a is formed in substantially the entire area of the curved portion 13b in the Y-axis direction.
図4に示すように、冷媒供給管13は、X軸方向に沿って延びる管状の部材である。図5に示すように、冷媒供給管13は、側面視で略長方形状に形成されている。また、冷媒供給管13は、側面視で下端部が下方に突出するように湾曲している。各スリット13aは、湾曲部13bのY軸方向の略全域にスリット13aが形成されている。 Next, the details of the
As shown in FIG. 4, the
また、冷媒供給管13のX軸方向の両端には、閉鎖部20が設けられている。各閉鎖部20は、冷媒供給管13のX軸方向の各端面を閉鎖している。各閉鎖部20には、開口部21が形成されている。開口部21は、閉鎖部20のZ軸方向の略中央部に形成されている。すなわち、閉鎖部20は、冷媒供給管13の開口部21よりも下方(下端部を含む)を閉鎖する下部閉鎖部20bと、冷媒供給管13の開口部21よりも上方を閉鎖する上部閉鎖部20aと、を有している。また、各閉鎖部20に形成される各開口部21の位置及び形状は略同一とされている。
Further, closing portions 20 are provided at both ends of the refrigerant supply pipe 13 in the X-axis direction. Each closing portion 20 closes each end face of the refrigerant supply pipe 13 in the X-axis direction. An opening 21 is formed in each closing portion 20. The opening 21 is formed at a substantially central portion of the closing portion 20 in the Z-axis direction. That is, the closing portion 20 includes a lower closing portion 20b that closes below the opening 21 of the refrigerant supply pipe 13 (including the lower end portion) and an upper closing portion that closes above the opening 21 of the refrigerant supply pipe 13. It has 20a and. Further, the positions and shapes of the openings 21 formed in the closed portions 20 are substantially the same.
開口部21は、下部閉鎖部20bの上方に形成されている。開口部21は、閉鎖部20を貫通するように形成されている。すなわち、開口部21は、冷媒供給管13の内側空間と冷媒供給管13の外側空間とを接続している。開口部21の開口面積は、最もX軸方向の端部に形成されるスリット13aの開口面積以上とされている。開口部21は、冷媒供給管13のY軸方向の略全域に亘って形成されている。また、開口部21のZ軸方向の長さは、冷媒供給管13のZ軸方向の長さの半分よりも短い。開口部21のZ軸方向の長さは、冷媒供給管13のZ軸方向の長さの3分の1程度であってもよい。なお、本開示はこれに限定されない。開口部21のZ軸方向の長さは、冷媒供給管13のZ軸方向の長さの半分よりも長くてもよい。
The opening 21 is formed above the lower closing portion 20b. The opening 21 is formed so as to penetrate the closing portion 20. That is, the opening 21 connects the inner space of the refrigerant supply pipe 13 and the outer space of the refrigerant supply pipe 13. The opening area of the opening 21 is set to be equal to or larger than the opening area of the slit 13a formed at the end portion in the X-axis direction. The opening 21 is formed over substantially the entire area of the refrigerant supply pipe 13 in the Y-axis direction. Further, the length of the opening 21 in the Z-axis direction is shorter than half the length of the refrigerant supply pipe 13 in the Z-axis direction. The length of the opening 21 in the Z-axis direction may be about one-third of the length of the refrigerant supply pipe 13 in the Z-axis direction. The present disclosure is not limited to this. The length of the opening 21 in the Z-axis direction may be longer than half the length of the refrigerant supply pipe 13 in the Z-axis direction.
冷媒供給管13は、支持板(第2遮蔽板部)22によって、圧力容器11に支持されている。支持板22は、板面が鉛直面となるように配置されている。支持板22は、圧力容器11の内周面の上部及び側部に固定されている。また、支持板22には、開口が形成されており、この開口に冷媒供給管13が挿入されている。開口に挿入される冷媒供給管13は、支持板22から突出しないように配置されている。支持板22は、上方液膜式伝熱管群15cの上方及び側方に位置している。支持板22の下端の高さは、下方液膜式伝熱管群15bの上端の高さと略同一とされている。このように、支持板22は、開口部21と冷媒出口管16との間に設けられている。
なお、冷媒供給管13の端面を支持板22が兼ねてもよい。すなわち、X軸方向に沿って延びる管状の部材が支持板22に取り付けられることによって、冷媒供給管13を構成してもよい。
なお、支持板22を設けずに、他の手段で冷媒供給管13を圧力容器11に支持されていてもよい。 Therefrigerant supply pipe 13 is supported by the pressure vessel 11 by the support plate (second shielding plate portion) 22. The support plate 22 is arranged so that the plate surface faces the vertical plane. The support plate 22 is fixed to the upper portion and the side portion of the inner peripheral surface of the pressure vessel 11. Further, an opening is formed in the support plate 22, and the refrigerant supply pipe 13 is inserted into the opening. The refrigerant supply pipe 13 inserted into the opening is arranged so as not to protrude from the support plate 22. The support plate 22 is located above and to the side of the upper liquid film type heat transfer tube group 15c. The height of the lower end of the support plate 22 is substantially the same as the height of the upper end of the lower liquid film type heat transfer tube group 15b. In this way, the support plate 22 is provided between the opening 21 and the refrigerant outlet pipe 16.
Thesupport plate 22 may also serve as the end surface of the refrigerant supply pipe 13. That is, the refrigerant supply pipe 13 may be formed by attaching a tubular member extending along the X-axis direction to the support plate 22.
Therefrigerant supply pipe 13 may be supported by the pressure vessel 11 by other means without providing the support plate 22.
なお、冷媒供給管13の端面を支持板22が兼ねてもよい。すなわち、X軸方向に沿って延びる管状の部材が支持板22に取り付けられることによって、冷媒供給管13を構成してもよい。
なお、支持板22を設けずに、他の手段で冷媒供給管13を圧力容器11に支持されていてもよい。 The
The
The
以上のように構成された蒸発器10において、冷媒等は以下のように流通する。
図1に示すように、蒸発器10では、冷媒入口管12から圧力容器11の内部に流入する(矢印A1参照)。圧力容器11内に流入した冷媒は、冷媒供給管13内をX軸方向に流通する(矢印A2参照)。冷媒供給管13内を流通する冷媒は、気液二相状態となっている。冷媒供給管13内を流通する液相の冷媒は、冷媒供給管13の下端に形成された多数のスリット13aを介して下方へ吹出す(矢印A3参照)。冷媒供給管13から吹出した液相の冷媒は、液膜式伝熱管群15(上方液膜式伝熱管群15c)の最上段に配置された第2伝熱管と接触し、第2伝熱管の外周面を膜状に覆う。第2伝熱管の外周面を膜状に覆った冷媒は、第2伝熱管の内部の被冷却水と熱交換を行う。熱交換により冷媒の一部は蒸発するとともに、蒸発しなかった冷媒はさらに下方に配置された第2伝熱管へと落下する。このような熱交換を連続的に繰り返す。最も下部に配置された第2伝熱管内の水との熱交換でも蒸発しなかった冷媒は、圧力容器11の下部に設けられた貯留部11cに貯留される。このようにして、圧力容器11の内部で液相の冷媒のプールが形成される。この冷媒プールの液面のレベルは、所定の高さとなるように自動調整される。満液式伝熱管群14の第1伝熱管は、貯留部11cの貯留された液相の冷媒に浸漬された状態となっている。第1伝熱管内を流通する被冷却水は、貯留部11cに貯留された冷媒と熱交換を行う。第1伝熱管と熱交換した冷媒は、蒸発し液面Sから上方に導かれる。液膜式伝熱管群15及び満液式伝熱管群14で蒸発した冷媒は、冷媒出口管16へ導かれる。冷媒出口管16へ導かれた冷媒は、圧力容器11の外部へ排出される(矢印A4参照)。冷媒出口管16から排出された冷媒は、ターボ圧縮機に吸入・圧縮される。 In theevaporator 10 configured as described above, the refrigerant and the like circulate as follows.
As shown in FIG. 1, in theevaporator 10, the refrigerant flows into the pressure vessel 11 from the refrigerant inlet pipe 12 (see arrow A1). The refrigerant that has flowed into the pressure vessel 11 flows in the refrigerant supply pipe 13 in the X-axis direction (see arrow A2). The refrigerant flowing in the refrigerant supply pipe 13 is in a gas-liquid two-phase state. The liquid-phase refrigerant flowing in the refrigerant supply pipe 13 is blown downward through a large number of slits 13a formed at the lower end of the refrigerant supply pipe 13 (see arrow A3). The liquid-phase refrigerant blown out from the refrigerant supply pipe 13 comes into contact with the second heat transfer tube arranged at the uppermost stage of the liquid film type heat transfer tube group 15 (upper liquid film type heat transfer tube group 15c), and the liquid phase refrigerant of the second heat transfer tube Cover the outer peripheral surface like a film. The refrigerant that covers the outer peripheral surface of the second heat transfer tube in a film shape exchanges heat with the water to be cooled inside the second heat transfer tube. A part of the refrigerant evaporates due to heat exchange, and the non-evaporated refrigerant falls further down to the second heat transfer tube. Such heat exchange is continuously repeated. The refrigerant that has not evaporated even by heat exchange with the water in the second heat transfer tube arranged at the lowermost part is stored in the storage portion 11c provided at the lower part of the pressure vessel 11. In this way, a pool of liquid phase refrigerant is formed inside the pressure vessel 11. The level of the liquid level in this refrigerant pool is automatically adjusted to a predetermined height. The first heat transfer tube of the full-liquid heat transfer tube group 14 is in a state of being immersed in the refrigerant of the liquid phase stored in the storage section 11c. The water to be cooled flowing in the first heat transfer tube exchanges heat with the refrigerant stored in the storage unit 11c. The refrigerant that has exchanged heat with the first heat transfer tube evaporates and is guided upward from the liquid level S. The refrigerant evaporated in the liquid film type heat transfer tube group 15 and the full liquid type heat transfer tube group 14 is guided to the refrigerant outlet pipe 16. The refrigerant guided to the refrigerant outlet pipe 16 is discharged to the outside of the pressure vessel 11 (see arrow A4). The refrigerant discharged from the refrigerant outlet pipe 16 is sucked and compressed by the turbo compressor.
図1に示すように、蒸発器10では、冷媒入口管12から圧力容器11の内部に流入する(矢印A1参照)。圧力容器11内に流入した冷媒は、冷媒供給管13内をX軸方向に流通する(矢印A2参照)。冷媒供給管13内を流通する冷媒は、気液二相状態となっている。冷媒供給管13内を流通する液相の冷媒は、冷媒供給管13の下端に形成された多数のスリット13aを介して下方へ吹出す(矢印A3参照)。冷媒供給管13から吹出した液相の冷媒は、液膜式伝熱管群15(上方液膜式伝熱管群15c)の最上段に配置された第2伝熱管と接触し、第2伝熱管の外周面を膜状に覆う。第2伝熱管の外周面を膜状に覆った冷媒は、第2伝熱管の内部の被冷却水と熱交換を行う。熱交換により冷媒の一部は蒸発するとともに、蒸発しなかった冷媒はさらに下方に配置された第2伝熱管へと落下する。このような熱交換を連続的に繰り返す。最も下部に配置された第2伝熱管内の水との熱交換でも蒸発しなかった冷媒は、圧力容器11の下部に設けられた貯留部11cに貯留される。このようにして、圧力容器11の内部で液相の冷媒のプールが形成される。この冷媒プールの液面のレベルは、所定の高さとなるように自動調整される。満液式伝熱管群14の第1伝熱管は、貯留部11cの貯留された液相の冷媒に浸漬された状態となっている。第1伝熱管内を流通する被冷却水は、貯留部11cに貯留された冷媒と熱交換を行う。第1伝熱管と熱交換した冷媒は、蒸発し液面Sから上方に導かれる。液膜式伝熱管群15及び満液式伝熱管群14で蒸発した冷媒は、冷媒出口管16へ導かれる。冷媒出口管16へ導かれた冷媒は、圧力容器11の外部へ排出される(矢印A4参照)。冷媒出口管16から排出された冷媒は、ターボ圧縮機に吸入・圧縮される。 In the
As shown in FIG. 1, in the
本実施形態によれば、以下の作用効果を奏する。
本実施形態では、冷媒供給管13の端部に開口部21が形成されている。冷媒供給管13内を流通する気液二相状態の冷媒のうち気相の冷媒の一部は、冷媒供給管13の端部まで流通すると開口部21から外部へ排出される。これにより、冷媒供給管13内を流通する気相の冷媒は、端部においても流速が低下し難い。冷媒供給管13内で、液相の冷媒は気相の冷媒に同伴される。したがって、液相の冷媒が、端部まで導かれ易くすることができる。したがって、端部まで液相の冷媒を好適に供給することができるので、X軸方向において、液膜式伝熱管群15に供給される冷媒量を均一化することができる。よって、熱交換効率を向上させることができるので、蒸発器10の性能を向上させることができる。 According to this embodiment, the following effects are exhibited.
In the present embodiment, theopening 21 is formed at the end of the refrigerant supply pipe 13. Of the gas-liquid two-phase state refrigerants flowing in the refrigerant supply pipe 13, a part of the gas-phase refrigerant flows to the end of the refrigerant supply pipe 13 and is discharged to the outside from the opening 21. As a result, the flow velocity of the gas-phase refrigerant flowing in the refrigerant supply pipe 13 is unlikely to decrease even at the end. In the refrigerant supply pipe 13, the liquid phase refrigerant is accompanied by the gas phase refrigerant. Therefore, the liquid phase refrigerant can be easily guided to the end. Therefore, since the liquid phase refrigerant can be suitably supplied to the end portion, the amount of the refrigerant supplied to the liquid film type heat transfer tube group 15 can be made uniform in the X-axis direction. Therefore, since the heat exchange efficiency can be improved, the performance of the evaporator 10 can be improved.
本実施形態では、冷媒供給管13の端部に開口部21が形成されている。冷媒供給管13内を流通する気液二相状態の冷媒のうち気相の冷媒の一部は、冷媒供給管13の端部まで流通すると開口部21から外部へ排出される。これにより、冷媒供給管13内を流通する気相の冷媒は、端部においても流速が低下し難い。冷媒供給管13内で、液相の冷媒は気相の冷媒に同伴される。したがって、液相の冷媒が、端部まで導かれ易くすることができる。したがって、端部まで液相の冷媒を好適に供給することができるので、X軸方向において、液膜式伝熱管群15に供給される冷媒量を均一化することができる。よって、熱交換効率を向上させることができるので、蒸発器10の性能を向上させることができる。 According to this embodiment, the following effects are exhibited.
In the present embodiment, the
端部における冷媒量の低減の抑制効果を図6及び図7を用いて説明する。図6及び図7は、本実施形態に係る冷媒供給管13におけるシミュレーション結果である。
図6及び図7の横軸は、冷媒供給管13のX軸方向の位置を示している。詳細には、X軸方向の中央から一端(もしくは他端)までの位置を示している。横軸の0は、冷媒供給管13のX軸方向の中央を示し、横軸の1が冷媒供給管13のX軸方向の一端(もしくは他端)を示している。また、図6の縦軸は、冷媒供給管13の内部を流れる冷媒のX軸方向の流速を示している。詳細には、冷媒供給管13のX軸方向の中央における流速を1とした場合の比率を示している。また、図7の縦軸は、スリット13aから吹出す液相の冷媒量を示している。詳細には、各スリット13aから均等に冷媒が吹出す場合の冷媒の吹出し量を1とした場合の比率を示している。 The effect of suppressing the reduction in the amount of refrigerant at the end portion will be described with reference to FIGS. 6 and 7. 6 and 7 are simulation results of therefrigerant supply pipe 13 according to the present embodiment.
The horizontal axes of FIGS. 6 and 7 indicate the positions of therefrigerant supply pipe 13 in the X-axis direction. In detail, the position from the center to one end (or the other end) in the X-axis direction is shown. 0 on the horizontal axis indicates the center of the refrigerant supply pipe 13 in the X-axis direction, and 1 on the horizontal axis indicates one end (or the other end) of the refrigerant supply pipe 13 in the X-axis direction. The vertical axis of FIG. 6 shows the flow velocity of the refrigerant flowing inside the refrigerant supply pipe 13 in the X-axis direction. In detail, the ratio when the flow velocity in the center of the refrigerant supply pipe 13 in the X-axis direction is 1. The vertical axis of FIG. 7 shows the amount of refrigerant in the liquid phase blown out from the slit 13a. In detail, the ratio when the amount of the refrigerant blown out is 1 when the refrigerant is blown out evenly from each slit 13a is shown.
図6及び図7の横軸は、冷媒供給管13のX軸方向の位置を示している。詳細には、X軸方向の中央から一端(もしくは他端)までの位置を示している。横軸の0は、冷媒供給管13のX軸方向の中央を示し、横軸の1が冷媒供給管13のX軸方向の一端(もしくは他端)を示している。また、図6の縦軸は、冷媒供給管13の内部を流れる冷媒のX軸方向の流速を示している。詳細には、冷媒供給管13のX軸方向の中央における流速を1とした場合の比率を示している。また、図7の縦軸は、スリット13aから吹出す液相の冷媒量を示している。詳細には、各スリット13aから均等に冷媒が吹出す場合の冷媒の吹出し量を1とした場合の比率を示している。 The effect of suppressing the reduction in the amount of refrigerant at the end portion will be described with reference to FIGS. 6 and 7. 6 and 7 are simulation results of the
The horizontal axes of FIGS. 6 and 7 indicate the positions of the
図6に示すように、開口部を形成していない場合には、X軸方向の中央から端部に向かうにつれて冷媒の流速が低減し、X軸方向の端部において流速がゼロとなる。これにより、図7に示すように、端部における冷媒の吹出量がゼロとなる。
一方、開口部21を形成した場合には、図6に示すように、開口を形成していない場合と同様に、X軸方向の中央から端部に向かうにつれて冷媒の流速が低減しているものの、開口を形成していない場合と比較して流速の低減が抑制されている。これにより、X軸方向の端部において流速がゼロとなっていない。したがって、図7に示すように、端部における冷媒の吹出量もゼロとなっておらず、端部においても冷媒が吹出している。このように、本実施形態では、X軸方向の端部まで液相の冷媒を好適に供給することができる。 As shown in FIG. 6, when the opening is not formed, the flow velocity of the refrigerant decreases from the center to the end in the X-axis direction, and the flow velocity becomes zero at the end in the X-axis direction. As a result, as shown in FIG. 7, the amount of refrigerant blown out at the end becomes zero.
On the other hand, when theopening 21 is formed, as shown in FIG. 6, the flow velocity of the refrigerant decreases from the center to the end in the X-axis direction, as in the case where the opening is not formed. , The reduction of the flow velocity is suppressed as compared with the case where the opening is not formed. As a result, the flow velocity is not zero at the end in the X-axis direction. Therefore, as shown in FIG. 7, the amount of the refrigerant blown out at the end portion is not zero, and the refrigerant is also blown out at the end portion. As described above, in the present embodiment, the liquid phase refrigerant can be suitably supplied to the end in the X-axis direction.
一方、開口部21を形成した場合には、図6に示すように、開口を形成していない場合と同様に、X軸方向の中央から端部に向かうにつれて冷媒の流速が低減しているものの、開口を形成していない場合と比較して流速の低減が抑制されている。これにより、X軸方向の端部において流速がゼロとなっていない。したがって、図7に示すように、端部における冷媒の吹出量もゼロとなっておらず、端部においても冷媒が吹出している。このように、本実施形態では、X軸方向の端部まで液相の冷媒を好適に供給することができる。 As shown in FIG. 6, when the opening is not formed, the flow velocity of the refrigerant decreases from the center to the end in the X-axis direction, and the flow velocity becomes zero at the end in the X-axis direction. As a result, as shown in FIG. 7, the amount of refrigerant blown out at the end becomes zero.
On the other hand, when the
また、本実施形態では、冷媒供給管13の端面の下端部等を閉鎖する閉鎖部20が設けられ、開口部21が閉鎖部20よりも上方に形成されている。冷媒供給管13内において、気相の冷媒に同伴する液相の冷媒は、重力により冷媒供給管13内の下部を流通し易い(図8の冷媒Rも参照)。これにより、気相の冷媒に同伴する液相の冷媒は、冷媒供給管13の端面まで移動すると、閉鎖部20と衝突する。したがって、液相の冷媒が冷媒供給管13の開口部21から排出され難くすることができる。よって、スリット13aを介して液膜式伝熱管群15に供給される冷媒量の低減を抑制することができる。
Further, in the present embodiment, a closing portion 20 for closing the lower end portion of the end surface of the refrigerant supply pipe 13 and the like is provided, and the opening portion 21 is formed above the closing portion 20. In the refrigerant supply pipe 13, the liquid phase refrigerant accompanying the gas phase refrigerant easily flows through the lower part of the refrigerant supply pipe 13 due to gravity (see also the refrigerant R in FIG. 8). As a result, the liquid-phase refrigerant accompanying the gas-phase refrigerant collides with the closing portion 20 when it moves to the end face of the refrigerant supply pipe 13. Therefore, it is possible to prevent the liquid phase refrigerant from being discharged from the opening 21 of the refrigerant supply pipe 13. Therefore, it is possible to suppress a reduction in the amount of refrigerant supplied to the liquid film type heat transfer tube group 15 through the slit 13a.
また、本実施形態では、開口部21が冷媒供給管13の高さ方向の略中央に形成されている。上述のように、冷媒供給管13内において、液相の冷媒は、冷媒供給管13内の下部を流通し易い。したがって、開口部21を略中央に形成することで、より液相の冷媒が開口部21から排出され難くすることができる。よって、液膜式伝熱管群15に供給される冷媒量の低減をより抑制することができる。
Further, in the present embodiment, the opening 21 is formed substantially in the center of the refrigerant supply pipe 13 in the height direction. As described above, in the refrigerant supply pipe 13, the liquid phase refrigerant easily flows through the lower part in the refrigerant supply pipe 13. Therefore, by forming the opening 21 substantially in the center, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 21. Therefore, it is possible to further suppress the reduction in the amount of the refrigerant supplied to the liquid film type heat transfer tube group 15.
また、本実施形態では、開口部21と冷媒出口管16との間には、支持板22が設けられている。これにより、開口部21から排出される気相の冷媒(図1の矢印A11参照)は、一旦下方へ導かれてから(図1の矢印A12参照)、圧力容器11の上部に設けられた冷媒出口管16のある上方へ導かれる。したがって、開口部21から排出された気相の冷媒が液相の冷媒を同伴している場合には、重力によって気相の冷媒から液相の冷媒を分離することができる。したがって、冷媒出口管16から圧力容器11の外部へ排出される気相の冷媒が、液相の冷媒を同伴する現象(いわゆるキャリーオーバー)を、発生し難くすることができる。
Further, in the present embodiment, a support plate 22 is provided between the opening 21 and the refrigerant outlet pipe 16. As a result, the gas phase refrigerant discharged from the opening 21 (see arrow A11 in FIG. 1) is once guided downward (see arrow A12 in FIG. 1), and then the refrigerant provided in the upper part of the pressure vessel 11 is provided. It is guided upward with the outlet pipe 16. Therefore, when the gas phase refrigerant discharged from the opening 21 is accompanied by the liquid phase refrigerant, the liquid phase refrigerant can be separated from the gas phase refrigerant by gravity. Therefore, it is possible to make it difficult for the gas phase refrigerant discharged from the refrigerant outlet pipe 16 to the outside of the pressure vessel 11 to accompany the liquid phase refrigerant (so-called carryover).
また、分離された液相の冷媒は、下方へ落下する。本実施形態では、液膜式伝熱管群15のX軸方向の長さは、冷媒供給管13のX軸方向の長さよりも長い。すなわち、平面視した際に、液膜式伝熱管群15の端部は、冷媒供給管13の端部よりも突出している。これにより、分離されて落下した液相の冷媒が液膜式伝熱管群15の突出部分と接触する。したがって、開口部21から排出された気相の冷媒が液相の冷媒を同伴している場合であっても、同伴された液相の冷媒を蒸発させることができる。
また、液膜式伝熱管群15の突出部分は、通常冷媒が供給され難いが、開口部21から排出された液相の冷媒と接触することで熱交換に供することができる。したがって、蒸発器10の性能を向上させることができる。 Further, the separated liquid phase refrigerant falls downward. In the present embodiment, the length of the liquid film type heattransfer tube group 15 in the X-axis direction is longer than the length of the refrigerant supply tube 13 in the X-axis direction. That is, when viewed in a plan view, the end portion of the liquid film type heat transfer tube group 15 protrudes from the end portion of the refrigerant supply pipe 13. As a result, the separated and dropped liquid phase refrigerant comes into contact with the protruding portion of the liquid film type heat transfer tube group 15. Therefore, even when the gas phase refrigerant discharged from the opening 21 is accompanied by the liquid phase refrigerant, the accompanying liquid phase refrigerant can be evaporated.
Further, although it is usually difficult to supply the refrigerant to the protruding portion of the liquid film type heattransfer tube group 15, it can be used for heat exchange by coming into contact with the liquid phase refrigerant discharged from the opening 21. Therefore, the performance of the evaporator 10 can be improved.
また、液膜式伝熱管群15の突出部分は、通常冷媒が供給され難いが、開口部21から排出された液相の冷媒と接触することで熱交換に供することができる。したがって、蒸発器10の性能を向上させることができる。 Further, the separated liquid phase refrigerant falls downward. In the present embodiment, the length of the liquid film type heat
Further, although it is usually difficult to supply the refrigerant to the protruding portion of the liquid film type heat
[変形例1]
なお、開口部を設ける位置は、上記説明の例に限定されない。開口部は、閉鎖部20の上部に形成されていると好適である。上部とは、Z軸方向の略中央または略中央よりも上方でもよい。また、例えば、図8に示すように、冷媒供給管13の高さ全体に対して上端から4分の1の位置よりも上方に開口部41が形成されている場合には、さらに好適である。図8に示す例では、開口部41は、閉鎖部20の上端部近傍に設けられている。
また、開口部は、冷媒供給管13の閉鎖部20以外に形成されていてもよい。例えば、冷媒供給管13の端部の上部に形成されていてもよい(図11参照)。また、冷媒供給管13の端部の側部に形成されていてもよい。 [Modification 1]
The position where the opening is provided is not limited to the example described above. It is preferable that the opening is formed in the upper part of the closingportion 20. The upper part may be substantially the center in the Z-axis direction or above the substantially center. Further, for example, as shown in FIG. 8, it is more suitable when the opening 41 is formed above the position of a quarter from the upper end with respect to the entire height of the refrigerant supply pipe 13. .. In the example shown in FIG. 8, the opening 41 is provided near the upper end of the closing portion 20.
Further, the opening may be formed in addition to the closingportion 20 of the refrigerant supply pipe 13. For example, it may be formed above the end of the refrigerant supply pipe 13 (see FIG. 11). Further, it may be formed on the side portion of the end portion of the refrigerant supply pipe 13.
なお、開口部を設ける位置は、上記説明の例に限定されない。開口部は、閉鎖部20の上部に形成されていると好適である。上部とは、Z軸方向の略中央または略中央よりも上方でもよい。また、例えば、図8に示すように、冷媒供給管13の高さ全体に対して上端から4分の1の位置よりも上方に開口部41が形成されている場合には、さらに好適である。図8に示す例では、開口部41は、閉鎖部20の上端部近傍に設けられている。
また、開口部は、冷媒供給管13の閉鎖部20以外に形成されていてもよい。例えば、冷媒供給管13の端部の上部に形成されていてもよい(図11参照)。また、冷媒供給管13の端部の側部に形成されていてもよい。 [Modification 1]
The position where the opening is provided is not limited to the example described above. It is preferable that the opening is formed in the upper part of the closing
Further, the opening may be formed in addition to the closing
[変形例2]
また、冷媒供給管13の内部に、図9から図11に示すように、気液分離構造50を設けてもよい。気液分離構造50は、冷媒供給管13の内部であって、開口部41の近傍に配置される。気液分離構造は、例えば、図9に示すように、開口部41よりもX軸方向の中心部側に配置され、冷媒供給管13の内周面の上部から下方に延びる邪魔板(第1遮蔽板部)51と、開口部41の下端から冷媒供給管13の内部側に延びる水平面部52と、水平面部52の先端から上方へ曲折して延びる鉛直部53と、を備えている。邪魔板51と鉛直部53とは対向するとともに、離間して配置されている。邪魔板51の下端は、開口部41の下端よりも下方に位置している。
これにより、邪魔板51と鉛直部53との間に冷媒が下方から上方へ向かう第1流路54が形成される。また、冷媒供給管13の内周面、鉛直部53及び水平面部52によって、冷媒が上方から下方へ向かう第2流路55が形成される。 [Modification 2]
Further, as shown in FIGS. 9 to 11, a gas-liquid separation structure 50 may be provided inside the refrigerant supply pipe 13. The gas-liquid separation structure 50 is arranged inside the refrigerant supply pipe 13 and in the vicinity of the opening 41. As shown in FIG. 9, for example, the gas-liquid separation structure is arranged on the central portion side in the X-axis direction with respect to the opening 41, and is a baffle plate (first) extending downward from the upper part of the inner peripheral surface of the refrigerant supply pipe 13. A shielding plate portion) 51, a horizontal surface portion 52 extending from the lower end of the opening 41 to the inside of the refrigerant supply pipe 13, and a vertical portion 53 extending upward from the tip of the horizontal surface portion 52. The baffle plate 51 and the vertical portion 53 are opposed to each other and are arranged apart from each other. The lower end of the baffle plate 51 is located below the lower end of the opening 41.
As a result, afirst flow path 54 in which the refrigerant flows from the lower side to the upper side is formed between the baffle plate 51 and the vertical portion 53. Further, the inner peripheral surface of the refrigerant supply pipe 13, the vertical portion 53, and the horizontal surface portion 52 form a second flow path 55 in which the refrigerant flows from above to below.
また、冷媒供給管13の内部に、図9から図11に示すように、気液分離構造50を設けてもよい。気液分離構造50は、冷媒供給管13の内部であって、開口部41の近傍に配置される。気液分離構造は、例えば、図9に示すように、開口部41よりもX軸方向の中心部側に配置され、冷媒供給管13の内周面の上部から下方に延びる邪魔板(第1遮蔽板部)51と、開口部41の下端から冷媒供給管13の内部側に延びる水平面部52と、水平面部52の先端から上方へ曲折して延びる鉛直部53と、を備えている。邪魔板51と鉛直部53とは対向するとともに、離間して配置されている。邪魔板51の下端は、開口部41の下端よりも下方に位置している。
これにより、邪魔板51と鉛直部53との間に冷媒が下方から上方へ向かう第1流路54が形成される。また、冷媒供給管13の内周面、鉛直部53及び水平面部52によって、冷媒が上方から下方へ向かう第2流路55が形成される。 [Modification 2]
Further, as shown in FIGS. 9 to 11, a gas-
As a result, a
本変形例によれば、以下の作用効果を奏する。
図9に示すように、冷媒供給管13の内周面の上部には、液相の冷媒Rが付着する。上部に付着した冷媒は、流通する気相の冷媒に同伴することで端部方向へ移動する。本変形例では、開口部41よりもX軸方向の中心部側に邪魔板51が設けられている。これにより、端部方向へ移動する液相の冷媒は、邪魔板51に遮られるので、開口部41まで至らない。したがって、より液相の冷媒が開口部41から排出され難くすることができる。
また、本変形例では、冷媒供給管13内を流通する気相の冷媒が、邪魔板51を迂回して開口部41へ導かれる。これにより、邪魔板51を迂回する際の遠心力によって、気相の冷媒が同伴している液相の冷媒を遠心分離することができる。したがって、より液相の冷媒が開口部41から排出され難くすることができる。また、本変形例では、第1流路54から第2流路55へ導かれる際にも、冷媒を遠心分離することができる。 According to this modification, the following effects are obtained.
As shown in FIG. 9, the liquid phase refrigerant R adheres to the upper part of the inner peripheral surface of therefrigerant supply pipe 13. The refrigerant adhering to the upper part moves toward the end by accommodating the refrigerant in the gas phase that circulates. In this modification, the baffle plate 51 is provided on the central portion side in the X-axis direction with respect to the opening 41. As a result, the liquid phase refrigerant moving toward the end is blocked by the baffle plate 51, so that the refrigerant does not reach the opening 41. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 41.
Further, in this modification, the gas phase refrigerant flowing in therefrigerant supply pipe 13 is guided to the opening 41 by bypassing the obstruction plate 51. As a result, the liquid phase refrigerant accompanied by the gas phase refrigerant can be centrifuged by the centrifugal force when bypassing the baffle plate 51. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 41. Further, in this modification, the refrigerant can be centrifuged even when the refrigerant is guided from the first flow path 54 to the second flow path 55.
図9に示すように、冷媒供給管13の内周面の上部には、液相の冷媒Rが付着する。上部に付着した冷媒は、流通する気相の冷媒に同伴することで端部方向へ移動する。本変形例では、開口部41よりもX軸方向の中心部側に邪魔板51が設けられている。これにより、端部方向へ移動する液相の冷媒は、邪魔板51に遮られるので、開口部41まで至らない。したがって、より液相の冷媒が開口部41から排出され難くすることができる。
また、本変形例では、冷媒供給管13内を流通する気相の冷媒が、邪魔板51を迂回して開口部41へ導かれる。これにより、邪魔板51を迂回する際の遠心力によって、気相の冷媒が同伴している液相の冷媒を遠心分離することができる。したがって、より液相の冷媒が開口部41から排出され難くすることができる。また、本変形例では、第1流路54から第2流路55へ導かれる際にも、冷媒を遠心分離することができる。 According to this modification, the following effects are obtained.
As shown in FIG. 9, the liquid phase refrigerant R adheres to the upper part of the inner peripheral surface of the
Further, in this modification, the gas phase refrigerant flowing in the
なお、気液分離構造は、上記説明の例に限定されない。例えば、図10に示すように、水平面部52及び鉛直部53を設けずに、邪魔板51のみで構成されてもよい。また、図11に示すように、冷媒供給管13の端部の上部に開口部57を形成してもよい。図10及び図11に示す構成であっても、液相の冷媒が開口部から排出され難くすることができる。
The gas-liquid separation structure is not limited to the example described above. For example, as shown in FIG. 10, the horizontal surface portion 52 and the vertical portion 53 may not be provided, and only the baffle plate 51 may be formed. Further, as shown in FIG. 11, an opening 57 may be formed in the upper part of the end portion of the refrigerant supply pipe 13. Even with the configurations shown in FIGS. 10 and 11, the liquid phase refrigerant can be made difficult to be discharged from the opening.
[変形例3]
また、図12に示すように、閉鎖部20に形成された開口部21に、配管(筒体)60を挿入してもよい。配管60は、冷媒供給管13の内部に突出するように挿入されている。このように構成することで、冷媒供給管13の内周面の上部に付着した冷媒Rは、配管60の上部によって遮られる。したがって、より液相の冷媒が開口部41から排出され難くすることができる。 [Modification 3]
Further, as shown in FIG. 12, the pipe (cylinder body) 60 may be inserted into theopening 21 formed in the closed portion 20. The pipe 60 is inserted so as to protrude inside the refrigerant supply pipe 13. With this configuration, the refrigerant R adhering to the upper part of the inner peripheral surface of the refrigerant supply pipe 13 is blocked by the upper part of the pipe 60. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening 41.
また、図12に示すように、閉鎖部20に形成された開口部21に、配管(筒体)60を挿入してもよい。配管60は、冷媒供給管13の内部に突出するように挿入されている。このように構成することで、冷媒供給管13の内周面の上部に付着した冷媒Rは、配管60の上部によって遮られる。したがって、より液相の冷媒が開口部41から排出され難くすることができる。 [Modification 3]
Further, as shown in FIG. 12, the pipe (cylinder body) 60 may be inserted into the
なお、本開示は、上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲において、適宜変形が可能である。
例えば、冷媒供給管13の一端側の閉鎖部20に形成される開口部の開口面積と、他端側の閉鎖部20に形成される開口部の開口面積とを異なるようにしてもよい。このように構成することにより、開口部から排出される気相の冷媒量が、一端部に形成される開口部と、他端部に形成される開口部とで異なることとなる。したがって、冷媒供給管13内を一端部に向かって流通する気相の冷媒の流速と、他端部に向かって流通する気相の冷媒の流速も異なる。よって、気相の冷媒に同伴される液相の冷媒の量も異なるので、一端部側へ導く液相の冷媒量と、他端部側へ導く液相の冷媒量とを異なる量にすることができる。よって、各端部へ導く冷媒量を調整することができる。これによって、液膜式伝熱管群15に供給する冷媒量をX軸方向に沿って調整することができる。したがって、液膜式伝熱管群15において熱交換効率を向上させることができるので、蒸発器10の性能を向上させることができる。なお、例えば、液膜式伝熱管群15の熱負荷が高い側の開口部を、液膜式伝熱管群15の熱負荷が低い側の開口部よりも大きく形成してもよい。 The present disclosure is not limited to the above embodiment, and can be appropriately modified as long as it does not deviate from the gist thereof.
For example, the opening area of the opening formed in the closingportion 20 on one end side of the refrigerant supply pipe 13 may be different from the opening area of the opening formed in the closing portion 20 on the other end side. With this configuration, the amount of refrigerant in the gas phase discharged from the opening differs between the opening formed at one end and the opening formed at the other end. Therefore, the flow velocity of the gas phase refrigerant flowing toward one end in the refrigerant supply pipe 13 and the flow velocity of the gas phase refrigerant flowing toward the other end are also different. Therefore, since the amount of the liquid phase refrigerant accompanying the gas phase refrigerant is also different, the amount of the liquid phase refrigerant leading to the one end side and the amount of the liquid phase refrigerant leading to the other end side should be different. Can be done. Therefore, the amount of refrigerant leading to each end can be adjusted. Thereby, the amount of the refrigerant supplied to the liquid film type heat transfer tube group 15 can be adjusted along the X-axis direction. Therefore, since the heat exchange efficiency can be improved in the liquid film type heat transfer tube group 15, the performance of the evaporator 10 can be improved. For example, the opening on the side where the heat load of the liquid film type heat transfer tube group 15 is high may be formed larger than the opening on the side where the heat load of the liquid film type heat transfer tube group 15 is low.
例えば、冷媒供給管13の一端側の閉鎖部20に形成される開口部の開口面積と、他端側の閉鎖部20に形成される開口部の開口面積とを異なるようにしてもよい。このように構成することにより、開口部から排出される気相の冷媒量が、一端部に形成される開口部と、他端部に形成される開口部とで異なることとなる。したがって、冷媒供給管13内を一端部に向かって流通する気相の冷媒の流速と、他端部に向かって流通する気相の冷媒の流速も異なる。よって、気相の冷媒に同伴される液相の冷媒の量も異なるので、一端部側へ導く液相の冷媒量と、他端部側へ導く液相の冷媒量とを異なる量にすることができる。よって、各端部へ導く冷媒量を調整することができる。これによって、液膜式伝熱管群15に供給する冷媒量をX軸方向に沿って調整することができる。したがって、液膜式伝熱管群15において熱交換効率を向上させることができるので、蒸発器10の性能を向上させることができる。なお、例えば、液膜式伝熱管群15の熱負荷が高い側の開口部を、液膜式伝熱管群15の熱負荷が低い側の開口部よりも大きく形成してもよい。 The present disclosure is not limited to the above embodiment, and can be appropriately modified as long as it does not deviate from the gist thereof.
For example, the opening area of the opening formed in the closing
以上説明した本実施形態に記載の蒸発器は例えば以下のように把握される。
本開示の一態様に係る蒸発器は、外殻を為す筐体(11)と、前記筐体に収容され、前記筐体の下部に設けられた貯留部(11c)に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の第1伝熱管を有する第1伝熱管群(14)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面(S)よりも上方に設けられ、内部に被冷却媒体が流通し所定方向に延在する複数の第2伝熱管を有する第2伝熱管群(15)と、前記筐体に収容され、前記所定方向に延在し、内部に気液二相状態の冷媒が流通し、上方から前記第2伝熱管群へ冷媒を供給する冷媒供給管(13)と、を備え、前記冷媒供給管は、前記所定方向の端面の少なくとも下端部を閉鎖する閉鎖部(20)と、前記所定方向(X軸方向)の端部であって前記閉鎖部よりも上方に形成され該冷媒供給管の内側空間と該冷媒供給管の外側空間とを接続する開口部(21)と、を有する。 The evaporator described in the present embodiment described above is grasped as follows, for example.
The evaporator according to one aspect of the present disclosure includes a housing (11) forming an outer shell and a liquid phase housed in the housing and stored in a storage portion (11c) provided in the lower part of the housing. A first heat transfer tube group (14) having a plurality of first heat transfer tubes immersed in a refrigerant and having a plurality of first heat transfer tubes through which a medium to be cooled flows, and a liquid housed in the housing and stored in the lower part of the housing. A second heat transfer tube group (15) provided above the liquid level (S) of the phase refrigerant and having a plurality of second heat transfer tubes extending in a predetermined direction through which a medium to be cooled flows, and the casing. It is provided with a refrigerant supply pipe (13) that is housed in the body, extends in the predetermined direction, a refrigerant in a gas-liquid two-phase state flows inside, and supplies the refrigerant from above to the second heat transfer tube group. The refrigerant supply pipe is formed at a closing portion (20) that closes at least the lower end of the end face in the predetermined direction and an end portion in the predetermined direction (X-axis direction) above the closing portion. It has an opening (21) that connects the inner space of the supply pipe and the outer space of the refrigerant supply pipe.
本開示の一態様に係る蒸発器は、外殻を為す筐体(11)と、前記筐体に収容され、前記筐体の下部に設けられた貯留部(11c)に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の第1伝熱管を有する第1伝熱管群(14)と、前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面(S)よりも上方に設けられ、内部に被冷却媒体が流通し所定方向に延在する複数の第2伝熱管を有する第2伝熱管群(15)と、前記筐体に収容され、前記所定方向に延在し、内部に気液二相状態の冷媒が流通し、上方から前記第2伝熱管群へ冷媒を供給する冷媒供給管(13)と、を備え、前記冷媒供給管は、前記所定方向の端面の少なくとも下端部を閉鎖する閉鎖部(20)と、前記所定方向(X軸方向)の端部であって前記閉鎖部よりも上方に形成され該冷媒供給管の内側空間と該冷媒供給管の外側空間とを接続する開口部(21)と、を有する。 The evaporator described in the present embodiment described above is grasped as follows, for example.
The evaporator according to one aspect of the present disclosure includes a housing (11) forming an outer shell and a liquid phase housed in the housing and stored in a storage portion (11c) provided in the lower part of the housing. A first heat transfer tube group (14) having a plurality of first heat transfer tubes immersed in a refrigerant and having a plurality of first heat transfer tubes through which a medium to be cooled flows, and a liquid housed in the housing and stored in the lower part of the housing. A second heat transfer tube group (15) provided above the liquid level (S) of the phase refrigerant and having a plurality of second heat transfer tubes extending in a predetermined direction through which a medium to be cooled flows, and the casing. It is provided with a refrigerant supply pipe (13) that is housed in the body, extends in the predetermined direction, a refrigerant in a gas-liquid two-phase state flows inside, and supplies the refrigerant from above to the second heat transfer tube group. The refrigerant supply pipe is formed at a closing portion (20) that closes at least the lower end of the end face in the predetermined direction and an end portion in the predetermined direction (X-axis direction) above the closing portion. It has an opening (21) that connects the inner space of the supply pipe and the outer space of the refrigerant supply pipe.
上記構成では、冷媒供給管の端部に開口部が形成されている。冷媒供給管内を流通する気液二相状態の冷媒のうち気相の冷媒は、冷媒供給管の端部まで流通すると開口部から外部へ排出される。これにより、冷媒供給管内を流通する気相の冷媒は、端部においても流速が低下し難い。冷媒供給管内で、液相の冷媒は気相の冷媒に同伴される。したがって、液相の冷媒が、端部まで導かれ易くすることができる。したがって、端部まで液相の冷媒を好適に供給することができるので、所定方向において、第2伝熱管群に供給される冷媒量を均一化することができる。よって、熱交換効率を向上させることができるので、蒸発器の性能を向上させることができる。
また、冷媒供給管の端面の下端部を閉鎖する閉鎖部が設けられ、開口部が閉鎖部よりも上方に形成されている。冷媒供給管内において、気相の冷媒に同伴する液相の冷媒は、重力により冷媒供給管内の下部を流通し易い。これにより、気相の冷媒に同伴する液相の冷媒は、冷媒供給管の端面まで移動すると、閉鎖部と衝突する。したがって、液相の冷媒が液体供給管の開口部から排出され難くすることができる。よって、第2伝熱管群に供給される冷媒量の低減を抑制することができる。 In the above configuration, an opening is formed at the end of the refrigerant supply pipe. Of the gas-liquid two-phase state refrigerants flowing in the refrigerant supply pipe, the gas-phase refrigerant is discharged from the opening to the outside when it flows to the end of the refrigerant supply pipe. As a result, the flow velocity of the gas-phase refrigerant flowing in the refrigerant supply pipe is unlikely to decrease even at the end. In the refrigerant supply pipe, the liquid phase refrigerant is accompanied by the gas phase refrigerant. Therefore, the liquid phase refrigerant can be easily guided to the end. Therefore, since the liquid phase refrigerant can be suitably supplied to the end portion, the amount of the refrigerant supplied to the second heat transfer tube group can be made uniform in a predetermined direction. Therefore, the heat exchange efficiency can be improved, and the performance of the evaporator can be improved.
Further, a closing portion for closing the lower end of the end surface of the refrigerant supply pipe is provided, and the opening is formed above the closed portion. In the refrigerant supply pipe, the liquid phase refrigerant accompanying the gas phase refrigerant tends to circulate in the lower part of the refrigerant supply pipe due to gravity. As a result, the liquid-phase refrigerant accompanying the gas-phase refrigerant collides with the closed portion when it moves to the end face of the refrigerant supply pipe. Therefore, it is possible to prevent the liquid phase refrigerant from being discharged from the opening of the liquid supply pipe. Therefore, it is possible to suppress a reduction in the amount of refrigerant supplied to the second heat transfer tube group.
また、冷媒供給管の端面の下端部を閉鎖する閉鎖部が設けられ、開口部が閉鎖部よりも上方に形成されている。冷媒供給管内において、気相の冷媒に同伴する液相の冷媒は、重力により冷媒供給管内の下部を流通し易い。これにより、気相の冷媒に同伴する液相の冷媒は、冷媒供給管の端面まで移動すると、閉鎖部と衝突する。したがって、液相の冷媒が液体供給管の開口部から排出され難くすることができる。よって、第2伝熱管群に供給される冷媒量の低減を抑制することができる。 In the above configuration, an opening is formed at the end of the refrigerant supply pipe. Of the gas-liquid two-phase state refrigerants flowing in the refrigerant supply pipe, the gas-phase refrigerant is discharged from the opening to the outside when it flows to the end of the refrigerant supply pipe. As a result, the flow velocity of the gas-phase refrigerant flowing in the refrigerant supply pipe is unlikely to decrease even at the end. In the refrigerant supply pipe, the liquid phase refrigerant is accompanied by the gas phase refrigerant. Therefore, the liquid phase refrigerant can be easily guided to the end. Therefore, since the liquid phase refrigerant can be suitably supplied to the end portion, the amount of the refrigerant supplied to the second heat transfer tube group can be made uniform in a predetermined direction. Therefore, the heat exchange efficiency can be improved, and the performance of the evaporator can be improved.
Further, a closing portion for closing the lower end of the end surface of the refrigerant supply pipe is provided, and the opening is formed above the closed portion. In the refrigerant supply pipe, the liquid phase refrigerant accompanying the gas phase refrigerant tends to circulate in the lower part of the refrigerant supply pipe due to gravity. As a result, the liquid-phase refrigerant accompanying the gas-phase refrigerant collides with the closed portion when it moves to the end face of the refrigerant supply pipe. Therefore, it is possible to prevent the liquid phase refrigerant from being discharged from the opening of the liquid supply pipe. Therefore, it is possible to suppress a reduction in the amount of refrigerant supplied to the second heat transfer tube group.
また、本開示の一態様に係る蒸発器は、前記開口部は、前記冷媒供給管の上部に形成されている。
Further, in the evaporator according to one aspect of the present disclosure, the opening is formed in the upper part of the refrigerant supply pipe.
上記構成では、開口部が冷媒供給管の上部に形成されている。上述のように、冷媒供給管内において、液相の冷媒は、冷媒供給管内の下部を流通し易い。したがって、開口部を上部に形成することで、より液相の冷媒が開口部から排出され難くすることができる。よって、第2伝熱管群に供給される冷媒量の低減をより抑制することができる。
なお、冷媒供給管の上部は、冷媒供給管の高さ方向の中心よりも上方であってもよい。また、より好適には、冷媒供給管の高さ全体に対して上端から4分の1の位置よりも上方であってもよい。 In the above configuration, the opening is formed in the upper part of the refrigerant supply pipe. As described above, in the refrigerant supply pipe, the liquid phase refrigerant easily flows through the lower part in the refrigerant supply pipe. Therefore, by forming the opening at the upper part, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
The upper part of the refrigerant supply pipe may be above the center in the height direction of the refrigerant supply pipe. Further, more preferably, it may be above the position of a quarter from the upper end with respect to the entire height of the refrigerant supply pipe.
なお、冷媒供給管の上部は、冷媒供給管の高さ方向の中心よりも上方であってもよい。また、より好適には、冷媒供給管の高さ全体に対して上端から4分の1の位置よりも上方であってもよい。 In the above configuration, the opening is formed in the upper part of the refrigerant supply pipe. As described above, in the refrigerant supply pipe, the liquid phase refrigerant easily flows through the lower part in the refrigerant supply pipe. Therefore, by forming the opening at the upper part, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
The upper part of the refrigerant supply pipe may be above the center in the height direction of the refrigerant supply pipe. Further, more preferably, it may be above the position of a quarter from the upper end with respect to the entire height of the refrigerant supply pipe.
また、本開示の一態様に係る蒸発器は、前記冷媒供給管には、前記開口部よりも所定方向の中心部側に配置され、前記冷媒供給管の内周面の上部から下方に延びる第1遮蔽板部(51)が設けられている。
Further, the evaporator according to one aspect of the present disclosure is arranged in the refrigerant supply pipe on the central portion side in a predetermined direction from the opening, and extends downward from the upper part of the inner peripheral surface of the refrigerant supply pipe. 1 A shielding plate portion (51) is provided.
冷媒供給管の内周面の上部には、液相の冷媒が付着する。上部に付着した冷媒は、流通する気相の冷媒に同伴することで端部方向へ移動する。上記構成では、開口部よりも前記所定方向の中心部側に第1遮蔽板部が設けられている。これにより、端部方向へ移動する液相の冷媒は、第1遮蔽板部に遮られるので、開口部まで至らない。したがって、より液相の冷媒が開口部から排出され難くすることができる。よって、第2伝熱管群に供給される冷媒量の低減をより抑制することができる。
また、上記構成では、冷媒供給管内を流通する気相の冷媒が、第1遮蔽板部を迂回して開口部へ導かれる。これにより、第1遮蔽板部を迂回する際の遠心力によって、気相の冷媒が同伴している液相の冷媒を遠心分離することができる。したがって、より液相の冷媒が開口部から排出され難くすることができる。よって、第2伝熱管群に供給される冷媒量の低減をより抑制することができる。
なお、第1遮蔽板部は、下端が開口部の下端よりも下方に位置してもよい。 Liquid-phase refrigerant adheres to the upper part of the inner peripheral surface of the refrigerant supply pipe. The refrigerant adhering to the upper part moves toward the end by accommodating the refrigerant in the gas phase that circulates. In the above configuration, the first shielding plate portion is provided on the central portion side in the predetermined direction with respect to the opening. As a result, the liquid phase refrigerant moving toward the end is blocked by the first shielding plate portion, so that it does not reach the opening. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
Further, in the above configuration, the gas phase refrigerant flowing in the refrigerant supply pipe is guided to the opening by bypassing the first shielding plate portion. As a result, the liquid phase refrigerant accompanied by the gas phase refrigerant can be centrifuged by the centrifugal force when bypassing the first shielding plate portion. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
The lower end of the first shielding plate portion may be located below the lower end of the opening.
また、上記構成では、冷媒供給管内を流通する気相の冷媒が、第1遮蔽板部を迂回して開口部へ導かれる。これにより、第1遮蔽板部を迂回する際の遠心力によって、気相の冷媒が同伴している液相の冷媒を遠心分離することができる。したがって、より液相の冷媒が開口部から排出され難くすることができる。よって、第2伝熱管群に供給される冷媒量の低減をより抑制することができる。
なお、第1遮蔽板部は、下端が開口部の下端よりも下方に位置してもよい。 Liquid-phase refrigerant adheres to the upper part of the inner peripheral surface of the refrigerant supply pipe. The refrigerant adhering to the upper part moves toward the end by accommodating the refrigerant in the gas phase that circulates. In the above configuration, the first shielding plate portion is provided on the central portion side in the predetermined direction with respect to the opening. As a result, the liquid phase refrigerant moving toward the end is blocked by the first shielding plate portion, so that it does not reach the opening. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
Further, in the above configuration, the gas phase refrigerant flowing in the refrigerant supply pipe is guided to the opening by bypassing the first shielding plate portion. As a result, the liquid phase refrigerant accompanied by the gas phase refrigerant can be centrifuged by the centrifugal force when bypassing the first shielding plate portion. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
The lower end of the first shielding plate portion may be located below the lower end of the opening.
また、本開示の一態様に係る蒸発器は、前記開口部には、筒体(60)が挿入されている。
Further, in the evaporator according to one aspect of the present disclosure, a tubular body (60) is inserted in the opening.
上記構成では、開口部に筒体が挿入されている。これにより、冷媒供給管の内周面の上部に付着した冷媒は、筒体の上部によって遮られる。したがって、より液相の冷媒が開口部から排出され難くすることができる。よって、第2伝熱管群に供給される冷媒量の低減をより抑制することができる。
In the above configuration, a cylinder is inserted in the opening. As a result, the refrigerant adhering to the upper part of the inner peripheral surface of the refrigerant supply pipe is blocked by the upper part of the cylinder. Therefore, it is possible to make it more difficult for the liquid phase refrigerant to be discharged from the opening. Therefore, it is possible to further suppress the reduction in the amount of refrigerant supplied to the second heat transfer tube group.
また、本開示の一態様に係る蒸発器は、前記筐体には、蒸発した冷媒を外部へ排出する冷媒出口(16)が上部に設けられていて、前記第2伝熱管群の前記所定方向の長さは、前記冷媒供給管の前記所定方向の長さよりも長く、前記冷媒供給管の上方であって、前記開口部と前記冷媒出口との間には、第2遮蔽板部(22)が設けられている。
Further, in the evaporator according to one aspect of the present disclosure, the housing is provided with a refrigerant outlet (16) for discharging the evaporated refrigerant to the outside at the upper part, and the second heat transfer tube group is provided in the predetermined direction. The length of the refrigerant supply pipe is longer than the length of the refrigerant supply pipe in the predetermined direction, and is above the refrigerant supply pipe, and between the opening and the refrigerant outlet, a second shielding plate portion (22) Is provided.
上記構成では、開口部と出口配管との間には、第2遮蔽板部が設けられている。これにより、開口部から排出された気相の冷媒は、一旦下方へ導かれてから、筐体の上部に設けられた冷媒出口のある上方へ導かれる。したがって、開口部から排出された気相の冷媒が液相の冷媒を同伴している場合には、重力によって気相の冷媒から液相の冷媒を分離することができる。したがって、冷媒出口から筐体の外部へ排出される気相の冷媒が、液相の冷媒を同伴する現象(いわゆるキャリーオーバー)を、発生し難くすることができる。
また、分離された液相の冷媒は、下方へ落下する。上記構成では、第2伝熱管群の所定方向の長さは、冷媒供給管の所定方向の長さよりも長い。すなわち、平面視した際に、第2伝熱管群の端部は、冷媒供給管の端部よりも突出している。これにより、分離されて落下した液相の冷媒が第2伝熱管群の突出部分と接触する。したがって、開口部から排出された気相の冷媒が液相の冷媒を同伴している場合であっても、同伴された液相の冷媒を蒸発させることができる。
また、第2伝熱管群の突出部分は、通常冷媒が供給され難いが、開口部から排出された液相の冷媒と接触することで熱交換に供することができる。したがって、蒸発器の性能を向上させることができる。 In the above configuration, a second shielding plate portion is provided between the opening and the outlet pipe. As a result, the gas phase refrigerant discharged from the opening is once guided downward, and then is guided upward with a refrigerant outlet provided in the upper part of the housing. Therefore, when the gas phase refrigerant discharged from the opening is accompanied by the liquid phase refrigerant, the liquid phase refrigerant can be separated from the gas phase refrigerant by gravity. Therefore, it is possible to prevent the phenomenon that the gas phase refrigerant discharged from the refrigerant outlet to the outside of the housing accompanies the liquid phase refrigerant (so-called carryover).
Further, the separated liquid phase refrigerant falls downward. In the above configuration, the length of the second heat transfer tube group in the predetermined direction is longer than the length of the refrigerant supply tube in the predetermined direction. That is, when viewed in a plan view, the end portion of the second heat transfer tube group protrudes from the end portion of the refrigerant supply pipe. As a result, the separated and dropped liquid phase refrigerant comes into contact with the protruding portion of the second heat transfer tube group. Therefore, even when the gas phase refrigerant discharged from the opening is accompanied by the liquid phase refrigerant, the accompanying liquid phase refrigerant can be evaporated.
Further, although it is usually difficult to supply the refrigerant to the protruding portion of the second heat transfer tube group, it can be used for heat exchange by coming into contact with the liquid phase refrigerant discharged from the opening. Therefore, the performance of the evaporator can be improved.
また、分離された液相の冷媒は、下方へ落下する。上記構成では、第2伝熱管群の所定方向の長さは、冷媒供給管の所定方向の長さよりも長い。すなわち、平面視した際に、第2伝熱管群の端部は、冷媒供給管の端部よりも突出している。これにより、分離されて落下した液相の冷媒が第2伝熱管群の突出部分と接触する。したがって、開口部から排出された気相の冷媒が液相の冷媒を同伴している場合であっても、同伴された液相の冷媒を蒸発させることができる。
また、第2伝熱管群の突出部分は、通常冷媒が供給され難いが、開口部から排出された液相の冷媒と接触することで熱交換に供することができる。したがって、蒸発器の性能を向上させることができる。 In the above configuration, a second shielding plate portion is provided between the opening and the outlet pipe. As a result, the gas phase refrigerant discharged from the opening is once guided downward, and then is guided upward with a refrigerant outlet provided in the upper part of the housing. Therefore, when the gas phase refrigerant discharged from the opening is accompanied by the liquid phase refrigerant, the liquid phase refrigerant can be separated from the gas phase refrigerant by gravity. Therefore, it is possible to prevent the phenomenon that the gas phase refrigerant discharged from the refrigerant outlet to the outside of the housing accompanies the liquid phase refrigerant (so-called carryover).
Further, the separated liquid phase refrigerant falls downward. In the above configuration, the length of the second heat transfer tube group in the predetermined direction is longer than the length of the refrigerant supply tube in the predetermined direction. That is, when viewed in a plan view, the end portion of the second heat transfer tube group protrudes from the end portion of the refrigerant supply pipe. As a result, the separated and dropped liquid phase refrigerant comes into contact with the protruding portion of the second heat transfer tube group. Therefore, even when the gas phase refrigerant discharged from the opening is accompanied by the liquid phase refrigerant, the accompanying liquid phase refrigerant can be evaporated.
Further, although it is usually difficult to supply the refrigerant to the protruding portion of the second heat transfer tube group, it can be used for heat exchange by coming into contact with the liquid phase refrigerant discharged from the opening. Therefore, the performance of the evaporator can be improved.
また、本開示の一態様に係る蒸発器は、前記冷媒供給管は、前記所定方向の両端部に前記開口部が形成されていて、前記所定方向の一端部に形成される前記開口部の開口面積と、前記所定方向の他端部に形成される前記開口部の開口面積とが異なっている。
Further, in the evaporator according to one aspect of the present disclosure, in the refrigerant supply pipe, the openings are formed at both ends in the predetermined direction, and the openings are formed at one end in the predetermined direction. The area is different from the opening area of the opening formed at the other end in the predetermined direction.
上記構成では、所定方向の一端部に形成される開口部の開口面積と、他端部に形成される開口部の開口面積とが異なっている。これにより、開口部から排出される気相の冷媒量が、一端部に形成される開口部と、他端部に形成される開口部とで異なることとなる。したがって、冷媒供給管内を一端部に向かって流通する気相の冷媒の流速と、他端部に向かって流通する気相の冷媒の流速も異なる。よって、気相の冷媒に同伴される液相の冷媒の量も異なるので、一端部側へ導く液相の冷媒量と、他端部側へ導く液相の冷媒量とを異なる量にすることができる。よって、各端部へ導く冷媒量を調整することができるので、第2伝熱管群に供給する冷媒量を所定方向に沿って調整することができる。したがって、第2伝熱管群において熱交換効率を向上させることができるので、蒸発器の性能を向上させることができる。
なお、例えば、第2伝熱管群の熱負荷が高い側の開口部を、第2伝熱管群の熱負荷が低い側の開口部よりも大きく形成してもよい。 In the above configuration, the opening area of the opening formed at one end in a predetermined direction and the opening area of the opening formed at the other end are different. As a result, the amount of the gas phase refrigerant discharged from the opening differs between the opening formed at one end and the opening formed at the other end. Therefore, the flow velocity of the gas phase refrigerant flowing toward one end in the refrigerant supply pipe and the flow velocity of the gas phase refrigerant flowing toward the other end are also different. Therefore, since the amount of the liquid phase refrigerant accompanying the gas phase refrigerant is also different, the amount of the liquid phase refrigerant leading to the one end side and the amount of the liquid phase refrigerant leading to the other end side should be different. Can be done. Therefore, since the amount of the refrigerant leading to each end can be adjusted, the amount of the refrigerant supplied to the second heat transfer tube group can be adjusted along a predetermined direction. Therefore, since the heat exchange efficiency can be improved in the second heat transfer tube group, the performance of the evaporator can be improved.
For example, the opening on the side where the heat load of the second heat transfer tube group is high may be formed larger than the opening on the side where the heat load of the second heat transfer tube group is low.
なお、例えば、第2伝熱管群の熱負荷が高い側の開口部を、第2伝熱管群の熱負荷が低い側の開口部よりも大きく形成してもよい。 In the above configuration, the opening area of the opening formed at one end in a predetermined direction and the opening area of the opening formed at the other end are different. As a result, the amount of the gas phase refrigerant discharged from the opening differs between the opening formed at one end and the opening formed at the other end. Therefore, the flow velocity of the gas phase refrigerant flowing toward one end in the refrigerant supply pipe and the flow velocity of the gas phase refrigerant flowing toward the other end are also different. Therefore, since the amount of the liquid phase refrigerant accompanying the gas phase refrigerant is also different, the amount of the liquid phase refrigerant leading to the one end side and the amount of the liquid phase refrigerant leading to the other end side should be different. Can be done. Therefore, since the amount of the refrigerant leading to each end can be adjusted, the amount of the refrigerant supplied to the second heat transfer tube group can be adjusted along a predetermined direction. Therefore, since the heat exchange efficiency can be improved in the second heat transfer tube group, the performance of the evaporator can be improved.
For example, the opening on the side where the heat load of the second heat transfer tube group is high may be formed larger than the opening on the side where the heat load of the second heat transfer tube group is low.
10 :蒸発器
11 :圧力容器(筐体)
11a :円筒部
11b :管板
11c :貯留部
12 :冷媒入口管(冷媒入口)
13 :冷媒供給管
13a :スリット
13b :湾曲部
14 :満液式伝熱管群(第1伝熱管群)
15 :液膜式伝熱管群(第2伝熱管群)
15b :下方液膜式伝熱管群
15c :上方液膜式伝熱管群
16 :冷媒出口管(冷媒出口)
17 :導入部
18 :リターン部
19 :排出部
20 :閉鎖部
20a :上部閉鎖部
20b :下部閉鎖部
21 :開口部
22 :支持板(第2遮蔽板部)
41 :開口部
50 :気液分離構造
51 :邪魔板(第1遮蔽板部)
52 :水平面部
53 :鉛直部
54 :第1流路
55 :第2流路
57 :開口部
60 :配管(筒体)
R :冷媒
S :液面 10: Evaporator 11: Pressure vessel (housing)
11a:Cylindrical part 11b: Pipe plate 11c: Storage part 12: Refrigerant inlet pipe (refrigerant inlet)
13:Refrigerant supply pipe 13a: Slit 13b: Curved part 14: Full-liquid heat transfer tube group (first heat transfer tube group)
15: Liquid film type heat transfer tube group (second heat transfer tube group)
15b: Lower liquid film type heattransfer tube group 15c: Upper liquid film type heat transfer tube group 16: Refrigerant outlet pipe (refrigerant outlet)
17: Introductory part 18: Return part 19: Discharge part 20:Closed part 20a: Upper closed part 20b: Lower closed part 21: Opening part 22: Support plate (second shielding plate part)
41: Opening 50: Gas-liquid separation structure 51: Interfering plate (first shielding plate)
52: Horizontal part 53: Vertical part 54: First flow path 55: Second flow path 57: Opening 60: Piping (cylinder body)
R: Refrigerant S: Liquid level
11 :圧力容器(筐体)
11a :円筒部
11b :管板
11c :貯留部
12 :冷媒入口管(冷媒入口)
13 :冷媒供給管
13a :スリット
13b :湾曲部
14 :満液式伝熱管群(第1伝熱管群)
15 :液膜式伝熱管群(第2伝熱管群)
15b :下方液膜式伝熱管群
15c :上方液膜式伝熱管群
16 :冷媒出口管(冷媒出口)
17 :導入部
18 :リターン部
19 :排出部
20 :閉鎖部
20a :上部閉鎖部
20b :下部閉鎖部
21 :開口部
22 :支持板(第2遮蔽板部)
41 :開口部
50 :気液分離構造
51 :邪魔板(第1遮蔽板部)
52 :水平面部
53 :鉛直部
54 :第1流路
55 :第2流路
57 :開口部
60 :配管(筒体)
R :冷媒
S :液面 10: Evaporator 11: Pressure vessel (housing)
11a:
13:
15: Liquid film type heat transfer tube group (second heat transfer tube group)
15b: Lower liquid film type heat
17: Introductory part 18: Return part 19: Discharge part 20:
41: Opening 50: Gas-liquid separation structure 51: Interfering plate (first shielding plate)
52: Horizontal part 53: Vertical part 54: First flow path 55: Second flow path 57: Opening 60: Piping (cylinder body)
R: Refrigerant S: Liquid level
Claims (6)
- 外殻を為す筐体と、
前記筐体に収容され、前記筐体の下部に設けられた貯留部に貯留される液相の冷媒に浸漬しており、内部に被冷却媒体が流通する複数の第1伝熱管を有する第1伝熱管群と、
前記筐体に収容され、前記筐体の下部に貯留される液相の冷媒の液面よりも上方に設けられ、内部に被冷却媒体が流通し所定方向に延在する複数の第2伝熱管を有する第2伝熱管群と、
前記筐体に収容され、前記所定方向に延在し、内部に気液二相状態の冷媒が流通し、上方から前記第2伝熱管群へ冷媒を供給する冷媒供給管と、を備え、
前記冷媒供給管は、前記所定方向の端面の少なくとも下端部を閉鎖する閉鎖部と、前記所定方向の端部であって前記閉鎖部よりも上方に形成され該冷媒供給管の内側空間と該冷媒供給管の外側空間とを接続する開口部と、を有する蒸発器。 The housing that forms the outer shell and
A first heat transfer tube having a plurality of first heat transfer tubes housed in the housing, immersed in a liquid phase refrigerant stored in a storage portion provided in the lower part of the housing, and having a plurality of first heat transfer tubes through which a cooling medium flows. Heat transfer tube group and
A plurality of second heat transfer tubes housed in the housing and provided above the liquid level of the liquid phase refrigerant stored in the lower part of the housing, and a medium to be cooled flows inside and extends in a predetermined direction. 2nd heat transfer tube group with
A refrigerant supply pipe housed in the housing, extending in the predetermined direction, flowing a refrigerant in a gas-liquid two-phase state inside, and supplying the refrigerant from above to the second heat transfer tube group is provided.
The refrigerant supply pipe has a closed portion that closes at least the lower end of the end face in the predetermined direction, an end portion in the predetermined direction that is formed above the closed portion, and an inner space of the refrigerant supply pipe and the refrigerant. An evaporator having an opening that connects to the outer space of the supply pipe. - 前記開口部は、前記冷媒供給管の上部に形成されている請求項1に記載の蒸発器。 The evaporator according to claim 1, wherein the opening is formed in the upper part of the refrigerant supply pipe.
- 前記冷媒供給管には、前記開口部よりも前記所定方向の中心部側に配置され、前記冷媒供給管の内周面の上部から下方に延びる第1遮蔽板部が設けられている請求項1または請求項2に記載の蒸発器。 1. The refrigerant supply pipe is provided with a first shielding plate portion which is arranged on the central portion side in the predetermined direction with respect to the opening and extends downward from the upper part of the inner peripheral surface of the refrigerant supply pipe. Alternatively, the evaporator according to claim 2.
- 前記開口部には、筒体が挿入されている請求項1から請求項3のいずれかに記載の蒸発器。 The evaporator according to any one of claims 1 to 3, wherein a cylinder is inserted into the opening.
- 前記筐体には、蒸発した冷媒を外部へ排出する冷媒出口が上部に設けられていて、
前記第2伝熱管群の前記所定方向の長さは、前記冷媒供給管の前記所定方向の長さよりも長く、
前記冷媒供給管の上方であって、前記開口部と前記冷媒出口との間には、第2遮蔽板部が設けられている請求項1から請求項4のいずれかに記載の蒸発器。 The housing is provided with a refrigerant outlet at the top, which discharges the evaporated refrigerant to the outside.
The length of the second heat transfer tube group in the predetermined direction is longer than the length of the refrigerant supply pipe in the predetermined direction.
The evaporator according to any one of claims 1 to 4, wherein a second shielding plate portion is provided above the refrigerant supply pipe and between the opening and the refrigerant outlet. - 前記冷媒供給管は、前記所定方向の両端部に前記開口部が形成されていて、
前記所定方向の一端部に形成される前記開口部の開口面積と、前記所定方向の他端部に形成される前記開口部の開口面積とが異なっている請求項1から請求項5のいずれかに記載の蒸発器。 The refrigerant supply pipe has the openings formed at both ends in the predetermined direction.
Any one of claims 1 to 5, wherein the opening area of the opening formed at one end in the predetermined direction and the opening area of the opening formed at the other end in the predetermined direction are different. Evaporator described in.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227037571A KR20220159448A (en) | 2020-05-01 | 2021-04-28 | evaporator |
CN202180030942.2A CN115485517B (en) | 2020-05-01 | 2021-04-28 | Evaporator |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-080900 | 2020-05-01 | ||
JP2020080900A JP6880280B1 (en) | 2020-05-01 | 2020-05-01 | Evaporator |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021221105A1 true WO2021221105A1 (en) | 2021-11-04 |
Family
ID=76083846
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/016988 WO2021221105A1 (en) | 2020-05-01 | 2021-04-28 | Evaporator |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP6880280B1 (en) |
KR (1) | KR20220159448A (en) |
CN (1) | CN115485517B (en) |
WO (1) | WO2021221105A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005134009A (en) * | 2003-10-29 | 2005-05-26 | Mitsubishi Electric Corp | Refrigerant distributor |
CN202452766U (en) * | 2012-02-03 | 2012-09-26 | 特灵空调系统(中国)有限公司 | Improved falling film evaporator used in refrigeration air-conditioning system |
CN103062962A (en) * | 2012-12-27 | 2013-04-24 | 麦克维尔空调制冷(武汉)有限公司 | Gas-liquid separative falling film type evaporator |
CN103673420A (en) * | 2012-09-14 | 2014-03-26 | 约克(无锡)空调冷冻设备有限公司 | Refrigerant distributor used in falling film evaporator and falling film evaporator |
US20140150490A1 (en) * | 2012-11-30 | 2014-06-05 | Jungho KANG | Evaporator and turbo chiller including the same |
US20140311721A1 (en) * | 2011-11-18 | 2014-10-23 | Carrier Corporation | Shell and tube heat exchanger |
CN105408703A (en) * | 2013-06-07 | 2016-03-16 | 江森自控科技公司 | Distributor for use in a vapor compression system |
JP2017161214A (en) * | 2016-03-08 | 2017-09-14 | 株式会社デンソー | Evaporator unit |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1139769C (en) * | 1997-03-17 | 2004-02-25 | 株式会社日立制作所 | Liquid distributor, fallig film heat exchanger and absorption refrigerator |
KR20110004149A (en) * | 2009-07-07 | 2011-01-13 | 엘지전자 주식회사 | Flooded evaporator of air conditioner |
GB2519405B (en) * | 2011-09-26 | 2016-04-13 | Trane Int Inc | Refrigerant management in HVAC systems |
CN109682131B (en) * | 2017-10-18 | 2022-03-08 | 开利公司 | Distributor, falling film evaporator and refrigerating system |
CN110530066B (en) * | 2019-09-11 | 2024-10-15 | 上海工程技术大学 | Low pressure refrigerant flooded evaporator |
-
2020
- 2020-05-01 JP JP2020080900A patent/JP6880280B1/en active Active
-
2021
- 2021-04-28 KR KR1020227037571A patent/KR20220159448A/en unknown
- 2021-04-28 CN CN202180030942.2A patent/CN115485517B/en active Active
- 2021-04-28 WO PCT/JP2021/016988 patent/WO2021221105A1/en active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005134009A (en) * | 2003-10-29 | 2005-05-26 | Mitsubishi Electric Corp | Refrigerant distributor |
US20140311721A1 (en) * | 2011-11-18 | 2014-10-23 | Carrier Corporation | Shell and tube heat exchanger |
CN202452766U (en) * | 2012-02-03 | 2012-09-26 | 特灵空调系统(中国)有限公司 | Improved falling film evaporator used in refrigeration air-conditioning system |
CN103673420A (en) * | 2012-09-14 | 2014-03-26 | 约克(无锡)空调冷冻设备有限公司 | Refrigerant distributor used in falling film evaporator and falling film evaporator |
US20140150490A1 (en) * | 2012-11-30 | 2014-06-05 | Jungho KANG | Evaporator and turbo chiller including the same |
CN103062962A (en) * | 2012-12-27 | 2013-04-24 | 麦克维尔空调制冷(武汉)有限公司 | Gas-liquid separative falling film type evaporator |
CN105408703A (en) * | 2013-06-07 | 2016-03-16 | 江森自控科技公司 | Distributor for use in a vapor compression system |
JP2017161214A (en) * | 2016-03-08 | 2017-09-14 | 株式会社デンソー | Evaporator unit |
Also Published As
Publication number | Publication date |
---|---|
KR20220159448A (en) | 2022-12-02 |
JP2021175922A (en) | 2021-11-04 |
CN115485517A (en) | 2022-12-16 |
CN115485517B (en) | 2023-12-26 |
JP6880280B1 (en) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6701372B2 (en) | Heat exchanger | |
US11365912B2 (en) | Suction duct and multiple suction ducts inside a shell of a flooded evaporator | |
JP2020521103A (en) | Heat exchanger | |
US10371422B2 (en) | Condenser with tube support structure | |
JP2004526934A (en) | Internal heat exchanger accumulator | |
JP6423221B2 (en) | Evaporator and refrigerator | |
WO2017179630A1 (en) | Evaporator, and turbo-refrigerating apparatus equipped with same | |
JP7364930B2 (en) | Heat exchanger | |
ES2972486T3 (en) | Heat exchanger | |
KR101379214B1 (en) | Apparatus and method for separating droplets from vaporized refrigerant | |
WO2021221105A1 (en) | Evaporator | |
KR101270835B1 (en) | Evaporator and refrigeration machine | |
JP2015121396A (en) | Refrigerant heat exchanger | |
WO2021117240A1 (en) | Refrigerator | |
JP6878550B2 (en) | Refrigerator | |
CN109642760B (en) | Refrigerant distributor for falling film evaporator | |
CN115427743B (en) | Evaporator | |
JP2022521365A (en) | Heat exchanger | |
JP2017127801A (en) | Compressed-air dehumidifier | |
CN117091322A (en) | Falling film evaporator and refrigerating system comprising same | |
CN117804102A (en) | Flash tank for HVAC system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21797907 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227037571 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21797907 Country of ref document: EP Kind code of ref document: A1 |