WO2021210080A1 - Heat dissipation structure, high frequency circuit, and antenna device - Google Patents
Heat dissipation structure, high frequency circuit, and antenna device Download PDFInfo
- Publication number
- WO2021210080A1 WO2021210080A1 PCT/JP2020/016478 JP2020016478W WO2021210080A1 WO 2021210080 A1 WO2021210080 A1 WO 2021210080A1 JP 2020016478 W JP2020016478 W JP 2020016478W WO 2021210080 A1 WO2021210080 A1 WO 2021210080A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal conductor
- conductor
- heat dissipation
- signal
- dielectric substrate
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P5/00—Coupling devices of the waveguide type
- H01P5/02—Coupling devices of the waveguide type with invariable factor of coupling
Definitions
- This disclosure relates to a heat dissipation structure, a high frequency circuit and an antenna device.
- a large amount of transmission power is required to propagate the transmission signal over a long distance, and a power amplifier that increases the output power is used.
- the power consumption inside the power amplifier increases as the output power increases, so that the amount of heat generated from the power amplifier increases.
- the heat generated in the power amplifier is dissipated through the board on which the power amplifier is mounted or the heat dissipation fins attached to the power amplifier.
- a part of the heat that cannot be dissipated is transferred to the high frequency circuit through the high frequency transmission line connected to the power amplifier. If the amount of heat transferred to the high-frequency circuit is large, it may not only induce malfunction of the high-frequency circuit but also shorten the life of the circuit.
- Patent Document 1 includes a transmission line having a length of about 1/4 of the wavelength of the operating frequency and whose tip is short-circuited with a metal having good heat dissipation, that is, a so-called tip short-circuit 1/4 wavelength stub.
- a heat dissipation structure is described in which the heat generated in the power amplifier is dissipated through a short-circuited 1/4 wavelength stub at the tip. Since the tip short circuit 1/4 wavelength stub can be regarded as open at the center frequency, it does not adversely affect the operation of the high frequency circuit. In order to reduce the amount of heat transferred to the high-frequency circuit, it is necessary that the thermal resistance of the 1/4 wavelength stub at the tip short circuit from the transmission line is small.
- the thermal resistance of an object is proportional to the length of the object and inversely proportional to its cross-sectional area. Since the length of the tip short-circuit 1/4 wavelength stub is determined by the operating frequency, it is important how to increase the cross-sectional area in order to improve the heat dissipation.
- the characteristic impedance of the transmission line constituting the tip short-circuit 1/4 wavelength stub becomes low, and the frequency band that can be regarded as open in the high frequency band becomes a narrow band. This means that the frequency bandwidth that can be operated in the high frequency circuit is reduced.
- the conventional heat dissipation structure when a tip short-circuited 1/4 wavelength stub is used, there is a trade-off relationship between heat dissipation and operating bandwidth, and if one is improved, the other is deteriorated. there were.
- the present disclosure solves the above problems, and an object of the present invention is to obtain a heat dissipation structure, a high frequency circuit, and an antenna device capable of improving heat dissipation without narrowing the operating bandwidth.
- the heat dissipation structure has a first surface, a second surface opposite to the first surface, and a dielectric substrate provided with a ground conductor on the second surface, and a dielectric substrate.
- a first signal conductor provided on the first surface of the high frequency signal, one end of which is connected to the input terminal of the high frequency signal, and one provided on the first surface of the dielectric substrate and one end to the output terminal of the high frequency signal.
- a second signal conductor whose ends are connected and whose other end is connected to the end opposite to the input terminal in the first signal conductor, and a second signal conductor provided on the first surface of the dielectric substrate for operation.
- a third signal conductor having a length of one-fourth of the frequency wavelength and a fourth signal provided in the inner layer of the dielectric substrate and having a length of one-fourth of the operating frequency wavelength.
- a first connecting conductor that connects one end of the conductor and the fourth signal conductor to the connection point between the first signal conductor and the second signal conductor, and the other end of the fourth signal conductor.
- the third signal conductor is provided with a third signal conductor and a second connecting conductor that connects to the ground conductor, and the third signal conductor is connected to the connection point between the first signal conductor and the second signal conductor, and the fourth signal conductor is connected to the second signal conductor.
- the signal conductor is arranged parallel to the plane including the third signal conductor so that at least a part of the third signal conductor overlaps with the third signal conductor when viewed in a plane.
- a first signal conductor having one end connected to an input terminal of a high frequency signal and an input terminal of the first signal conductor having one end connected to an output terminal of a high frequency signal.
- a second signal conductor having the other end connected to the end opposite to the one, and a first signal conductor and a second signal conductor having a length of a quarter of the wavelength of the operating frequency.
- a third signal conductor whose end is connected to the connection point with, a fourth signal conductor provided in the inner layer of the dielectric substrate and having a length of one-fourth of the operating frequency wavelength, and a third signal conductor.
- the third signal conductor is connected to the connection point between the first signal conductor and the second signal conductor, and the fourth signal conductor is When viewed in a plane, they are arranged parallel to the plane including the third signal conductor so that at least a part of the third signal conductor overlaps.
- the third signal conductor and the fourth signal conductor are connected in parallel, and are arranged parallel to the plane including the third signal conductor so that the third signal conductor and the fourth signal conductor overlap each other when viewed in a plane. ing.
- the heat dissipation structure according to the present disclosure allows the third signal conductor and the fourth signal conductor to be connected from the connection point between the first signal conductor and the second signal conductor without narrowing the operating bandwidth.
- the apparent thermal resistance can be reduced and the heat dissipation can be improved.
- FIG. 1A is a perspective view showing a heat radiating structure according to the first embodiment
- FIG. 1B is a cross-sectional view showing a cross section of the heat radiating structure according to the first embodiment cut along the line AA'of FIG. 1A
- FIG. 1C is a cross-sectional view showing a cross section of the heat radiating structure according to the first embodiment cut along the line BB'of FIG. 1A.
- It is a circuit diagram which shows the equivalent circuit of the heat dissipation structure which concerns on Embodiment 1.
- FIG. 3A is a perspective view showing a conventional heat dissipation structure
- FIG. 3B is a cross-sectional view showing a cross section of the conventional heat dissipation structure cut along the line AA'of FIG.
- FIG. 5 is a cross-sectional view showing a cross section of the heat radiating structure cut along the line BB'of FIG. 3A.
- It is a circuit diagram which shows the equivalent circuit of the conventional heat dissipation structure.
- It is a graph which shows the example of the calculation result of the reflection amplitude in the equivalent circuit of the conventional heat dissipation structure.
- It is a graph which shows the example of the calculation result of the reflection amplitude in the equivalent circuit of the heat dissipation structure which concerns on Embodiment 1.
- FIG. 8A is a cross-sectional view showing a cross section and dimensions of the heat radiating structure according to the first embodiment cut along the line AA'of FIG. 1A
- FIG. 8B shows a conventional heat radiating structure taken along the line AA of FIG. 3A.
- FIG. 9A is a perspective view showing a modified example of the heat radiating structure according to the first embodiment
- FIG. 9B is a modified example of the heat radiating structure according to the first embodiment cut along the line AA'of FIG.
- FIG. 9A. 9C is a cross-sectional view showing a cross section
- FIG. 9C is a cross-sectional view showing a modified example of the heat dissipation structure according to the first embodiment cut along the line BB'of FIG. 9A
- 10A is a perspective view showing the heat dissipation structure according to the second embodiment
- FIG. 10B is a cross-sectional view showing a cross section of the heat dissipation structure according to the second embodiment cut along the line AA'of FIG. 10A
- 10C is a cross-sectional view showing a cross section of the heat radiating structure according to the second embodiment cut along the line BB'of FIG. 10A.
- FIG. 11A is a perspective view showing the heat dissipation structure according to the third embodiment
- FIG. 11B is a cross-sectional view showing a cross section of the heat dissipation structure according to the third embodiment cut along the line AA'of FIG. 11A
- 11C is a cross-sectional view showing a cross section of the heat radiating structure according to the third embodiment cut along the line BB'of FIG. 11A.
- It is a circuit diagram which shows the equivalent circuit of the heat dissipation structure which concerns on Embodiment 3.
- It is a graph which shows the electromagnetic field analysis result of the reflection amplitude in the heat radiation structure which concerns on Embodiment 1 and the heat radiation structure which concerns on Embodiment 3.
- FIG. 1A is a perspective view showing a heat dissipation structure 1 according to the first embodiment.
- FIG. 1B is a cross-sectional view showing a cross section of the heat dissipation structure 1 cut along the line AA'of FIG. 1A.
- FIG. 1C is a cross-sectional view showing a cross section of the heat dissipation structure 1 cut along the line BB'of FIG. 1A.
- the heat dissipation structure 1 is, for example, a high frequency circuit into which a high frequency signal is input / output, an input terminal 2a into which the high frequency signal is input, an output terminal 2b in which the high frequency signal is output, and a signal. It includes a conductor 3a, a signal conductor 3b, a signal conductor 4a, a signal conductor 4b, a dielectric substrate 5, a ground conductor 6, a connecting conductor 7a, and a connecting conductor 7b.
- the signal conductor 3a is provided on the first surface (plane in the + z direction) of the dielectric substrate 5, one end is connected to the input terminal 2a, and the other end is connected to the end of the signal conductor 3b. It is the first signal conductor.
- the signal conductor 3b is provided on the first surface of the dielectric substrate 5, one end is connected to the output terminal 2b, and the other end is at the end of the signal conductor 3a opposite to the input terminal 2a. It is a connected second signal conductor.
- the signal conductor 4a is provided on the first surface of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and one end is a connection point between the signal conductor 3a and the signal conductor 3b. It is a third signal conductor connected to.
- the signal conductor 4b is provided in the inner layer of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and is at least equal to the signal conductor 4a in terms of plan. It is a fourth signal conductor arranged parallel to the plane including the signal conductor 4a so as to partially overlap.
- the connecting conductor 7a and the connecting conductor 7b are provided in the inner layer of the dielectric substrate 5.
- the connecting conductor 7a is a first connecting conductor that connects one end of the signal conductor 4b to the connection point between the signal conductor 3a and the signal conductor 3b.
- the connecting conductor 7b is a second connecting conductor that connects the other end of the signal conductor 4b to the signal conductor 4a and the ground conductor 6.
- the coupling conductor 8 is an electrically coupled signal conductor 4a and a signal conductor 4b having a length of one-fourth of the wavelength of the operating frequency.
- the distance between the signal conductor 4a and the signal conductor 4b in the thickness direction (z direction) is, for example, one tenth or less of the thickness of the dielectric substrate 5.
- the signal conductor 3a, the signal conductor 3b, the signal conductor 4a, and the signal conductor 4b function together with the ground conductor 6 as a transmission line for transmitting a high frequency signal.
- the length of the connecting conductor 7a and the connecting conductor 7b is preferably one tenth or less of the wavelength of the operating frequency.
- FIG. 2 is a circuit diagram showing an equivalent circuit of the heat dissipation structure 1, and is an equivalent circuit showing the electrical operation of the heat dissipation structure 1.
- the equivalent circuit shown in FIG. 2 is composed of an input terminal 2a into which a high-frequency signal is input, an output terminal 2b in which a high-frequency signal is output, a power supply line 9a, a power supply line 9b, a transmission line 10a, and a transmission line 10b.
- the transmission line 10a and the transmission line 10b have a length of one-fourth of the wavelength of the operating frequency.
- One end of the power supply line 9a is connected to the input terminal 2a, and the other end is connected to the end of the power supply line 9b.
- One end of the power supply line 9b is connected to the output terminal 2b, and the other end is connected to the end of the power supply line 9a opposite to the input terminal 2a.
- the coupling line 11 is configured by electrically coupling the transmission line 10a and the transmission line 10b.
- the ends of the transmission line 10a and the transmission line 10b are connected to each other.
- One of the end portions of the transmission line 10a and the transmission line 10b connected to each other is connected to the connection point between the power supply line 9a and the power supply line 9b, and the other is grounded.
- the signal conductor 3a and the signal conductor 3b shown in FIG. 1 together with the ground conductor 6 function as a transmission line for transmitting a high frequency signal.
- the feeding line 9a corresponds to the signal conductor 3a
- the feeding line 9b corresponds to the signal conductor 3b.
- the transmission line 10a corresponds to the signal conductor 4a shown in FIG. 1
- the transmission line 10b corresponds to the signal conductor 4b.
- FIG. 3A is a perspective view showing a conventional heat dissipation structure 100.
- FIG. 3B is a cross-sectional view showing a cross section of the heat radiating structure 100 cut along the line AA'of FIG. 3A.
- FIG. 3C is a cross-sectional view showing a cross section of the heat radiating structure 100 cut along the line BB'of FIG. 3A.
- the heat dissipation structure 100 includes an input terminal 101a for inputting a high-frequency signal, an output terminal 101b for outputting a high-frequency signal, a signal conductor 102a, a signal conductor 102b, and a signal conductor 103a. It includes a dielectric substrate 104, a ground conductor 105, and a connecting conductor 106.
- the signal conductor 102a is provided on the first surface (plane in the + z direction) of the dielectric substrate 104, one end thereof is connected to the input terminal 101a, and the other end is connected to the end of the signal conductor 102b.
- the signal conductor 102b is provided on the first surface of the dielectric substrate 104, one end is connected to the output terminal 101b, and the other end is the end of the signal conductor 102a opposite to the input terminal 101a.
- the signal conductor 103a is provided on the first surface of the dielectric substrate 104, has a length of one-fourth of the wavelength of the operating frequency, and is connected to the connection point between the signal conductor 102a and the signal conductor 102b. ..
- the heat radiating structure 100 does not include the members corresponding to the signal conductor 4b and the connecting conductor 7a in the heat radiating structure 1.
- the signal conductor 102a, the signal conductor 102b, and the signal conductor 103a, together with the ground conductor 105, function as a transmission line for transmitting a high frequency signal.
- One end of the signal conductor 103a is connected to the ground conductor 105 by a connecting conductor 106.
- FIG. 4 is a circuit diagram showing an equivalent circuit of the conventional heat dissipation structure 100.
- the heat dissipation structure 100 is represented by the equivalent circuit shown in FIG.
- the equivalent circuit shown in FIG. 4 is a circuit in which the transmission line 10b is removed from the equivalent circuit shown in FIG.
- the electrical length ⁇ is expressed by the following equation (2).
- l is the physical length of the transmission line 108a and ⁇ is the phase constant.
- phase constant ⁇ is expressed by the following equation (3) using the effective wavelength ⁇ eff.
- the input impedance Z in is expressed as the following equation (4).
- FIG. 5 is a graph showing an example of the calculation result of the reflection amplitude in the equivalent circuit of the heat dissipation structure 100.
- a ground conductor 105 is formed on the second surface of the dielectric substrate 104, and a transmission called a microstrip line formed of copper foil is used as a signal conductor on the first surface of the dielectric substrate 104.
- a transmission called a microstrip line formed of copper foil is used as a signal conductor on the first surface of the dielectric substrate 104.
- the characteristic impedance Z S is expressed by the following equation ( It can be calculated according to 5).
- the value of the thickness of the copper foil forming the microstrip line is much smaller than the value of the thickness h of the dielectric substrate 104. ing.
- the above equation (5) is an example of an approximate equation, and many approximate equations have been reported for microstrip lines, and even if the characteristic impedance Z S is calculated using an approximate equation other than the above equation (5). good.
- the characteristic impedance Zs is the line width of the signal conductor. It can be increased by narrowing W.
- heat dissipation from the device mounted on the substrate will be described. Strictly speaking, as a heat dissipation path from the device mounted on the substrate, heat transfer by a copper foil or heat dissipation via a dielectric substrate or air can be considered. However, under natural convection, air has a large thermal resistance, and especially for small package parts, the heat dissipation area is small and it is difficult to dissipate heat.
- the thermal resistance of the resin-based substrate is about 100 to 1000 times that of a metal such as copper, and the thermal resistance is very large. Therefore, it is considered that the heat dissipation of the heat dissipation structure 1 is mainly due to heat dissipation of the copper foil forming the signal conductor, and the thermal resistance of the signal conductor 4a will be described.
- the ground conductor 6 to which the signal conductor 4a is connected has a very small thermal resistance.
- the thermal resistance RS of the signal conductor 4a is expressed using the following equation (6).
- ⁇ is the thermal resistance
- t is the thickness of the signal conductor 4a
- W is the width of the signal conductor 4a
- l is the length of the signal conductor 4a. ..
- the thickness of the copper foil is basically the same as the thickness t of the signal conductor 4a.
- the plating thickness that can be manufactured in a normal substrate manufacturing process is limited, and the substrate manufacturing cost is high. Therefore, in order to reduce the thermal resistance Rs, it is necessary to widen the width W of the signal conductor 4a.
- the heat dissipation by the heat dissipation structure 1 is basically the same as that of the conventional heat dissipation structure 100.
- the combined thermal resistance R Se of the signal conductor 4a and the signal conductor 4b is represented by the following equation (7).
- R sA is the thermal resistance of the signal conductor 4a
- R sB is the thermal resistance of the signal conductor 4b.
- the thermal resistance RS is expressed by the above equation (6).
- the heat dissipation structure 1 will be described with reference to the equivalent circuit shown in FIG.
- the coupled line has two propagation modes called even mode and odd mode.
- the characteristic impedance and the propagation constant exist in each mode.
- Reference 2 in an ideal equivalent circuit, the characteristic impedance Z 0e in the even mode and the characteristic impedance Z 0o in the odd mode are described below using the coupling degree c representing the strength of these electrical couplings. It is expressed as the formula (8a) and the following formula (8b).
- the degree of coupling c is 0 ⁇ c ⁇ 1.
- the characteristic of the even mode is that the denominator in the radical symbol approaches 0 as the coupling degree c approaches 1.
- Impedance Z 0e diverges.
- Z 0e ⁇ 2Z S
- the input impedance Zine when the coupling line 11 is viewed from the node of the feeding line 9a and the feeding line 9b in the equivalent circuit shown in FIG. 2 sets the characteristic impedance Z 0e of the even mode and the electrical length ⁇ e of the even mode in the coupling line 11. It is expressed by the following equation (9).
- the electrical length ⁇ e in the even mode is expressed by the following equation (10) by using the phase constant ⁇ e in the even mode and the physical length l of the transmission line 10a and the transmission line 10b.
- phase constant ⁇ e in the even mode is expressed by the following equation (11) using the effective wavelength ⁇ effe in the even mode.
- the heat radiating structure 1 has a reflection characteristic and a heat radiating structure. It is possible to improve the heat dissipation while making it the same as 100.
- FIG. 6 is a graph showing an example of the calculation result of the reflection amplitude in the equivalent circuit of the heat dissipation structure 1.
- This is equivalent to the calculation result when the characteristic impedance Z S is changed to 25 ⁇ , 50 ⁇ , and 100 ⁇ in the equivalent circuit of the heat dissipation structure 100 as shown in FIG. As is clear from the calculation result of the equivalent circuit, by designing the characteristic impedance Z 0e of the even mode in the heat dissipation structure 1, the electric characteristics equivalent to those of the heat dissipation structure 100 can be obtained.
- FIG. 7 is a graph showing the electromagnetic field analysis results of the reflection amplitudes of the heat dissipation structure 1 and the conventional heat dissipation structure 100 according to the first embodiment, where the horizontal axis shows the frequency and the vertical axis shows the reflection amplitude.
- the electromagnetic field analysis result of the reflection amplitude shown in FIG. 7 is obtained with the dielectric constant of the dielectric substrate 5 or 104 being 3.7 and the lengths of the signal conductor 4a, the signal conductor 4b, and the signal conductor 103a being 18.75 mm. It was done.
- the relationship of the broken line with the reference numeral C is the electromagnetic field analysis result of the heat dissipation structure 1
- the relationship of the broken line with the reference numeral D is the electromagnetic field analysis result of the heat dissipation structure 100.
- FIG. 8A is a cross-sectional view showing a cross section and dimensions of the heat radiating structure 1 cut along the line AA'of FIG. 1A.
- FIG. 8B is a cross-sectional view showing a cross section and dimensions of the heat radiating structure 100 cut along the line AA'of FIG. 3A.
- the thickness t c of the signal conductor 4a, the signal conductor 4b and the signal conductor 103a is 0.036 mm
- the thickness h of the dielectric substrate 5 and the dielectric substrate 104 is 1.5 mm. be.
- the distance d between the signal conductor 4a and the signal conductor 4b in the thickness direction is 0.15 mm.
- the width W of the signal conductor 4a and the signal conductor 4b is 1.1 mm
- the width W of the signal conductor 103a is 1.5 mm.
- the distance d in the thickness direction between the signal conductor 4a and the signal conductor 4b is the dielectric substrate 5. It is set to be about 1/10 of the thickness h.
- the reflection amplitude of the heat dissipation structure 1 and the reflection amplitude of the heat dissipation structure 100 are substantially the same, and the same operating bandwidth is obtained.
- FIG. 9A is a perspective view showing a heat radiating structure 1A which is a modification of the heat radiating structure 1 according to the first embodiment.
- FIG. 9B is a cross-sectional view showing a modified example of the heat dissipation structure 1A cut along the line AA'of FIG. 9A.
- FIG. 9C is a cross-sectional view showing a modified example of the heat dissipation structure 1A cut along the line BB'of FIG. 9A.
- the heat radiating structure 1A includes a heat transfer member 12 and a metal body 13 in addition to the structure of the heat radiating structure 1.
- a metal body 13 is connected to the ground conductor 6 in the heat radiating structure 1A via a heat transfer member 12.
- the heat radiating structure 1A improves the heat radiating property from the ground conductor 6.
- a heat conductive grease, a heat conductive sheet, or a conductive adhesive is used for the heat transfer member 12.
- the metal body 13 may be provided with heat radiating fins in order to further improve the heat radiating property.
- the case where the signal conductor 4a and the signal conductor 4b have the same line width has been shown, but the line widths of both may be different.
- the case where the signal conductor 4b is arranged so as to overlap the signal conductor 4a when viewed in a plane is shown.
- the signal conductor 4a and the signal conductor 4b are perpendicular to the length direction and the plane of the dielectric substrate 5. It may be arranged offset in the direction.
- the offset amount is assumed to be the line width W or less, and the signal conductor 4a and the signal conductor 4b are viewed in a plane. It is desirable that at least a part of them overlap each other.
- the heat dissipation structure 1 or 1A which is a so-called microstrip line structure in which the ground conductor 6 is arranged on the second surface of the dielectric substrate 5 and the signal conductor is formed on the first surface is provided. Indicated.
- the heat dissipation structure 1 or 1A may be a strip line structure in which ground conductors are provided on both sides of the dielectric substrate 5 and signal conductors are provided in the inner layer of the dielectric substrate 5.
- one end is connected to the signal conductor 3a to which one end is connected to the input terminal 2a of the high frequency signal, and one end is connected to the output terminal 2b of the high frequency signal.
- a signal conductor 4a whose end is connected to a connection point of the conductor 3b, a signal conductor 4b provided in the inner layer of the dielectric substrate 5 and having a length of a quarter of the operating frequency wavelength, and a signal conductor 4b. It includes a connecting conductor 7a that connects one end to a connection point between the signal conductor 3a and the signal conductor 3b, and a connecting conductor 7b that connects the other end of the signal conductor 4a to the signal conductor 4b and the ground conductor 6. .
- the signal conductor 4a is connected to the connection point between the signal conductor 3a and the signal conductor 3b, and the signal conductor 4b is parallel to the plane including the signal conductor 4a so that at least a part of the signal conductor 4a overlaps the signal conductor 4a when viewed in a plane. Is located in.
- the signal conductor 4a and the signal conductor 4b are connected in parallel, and are arranged in parallel with the plane including the signal conductor 4a so that the signal conductor 4a and the signal conductor 4b overlap each other when viewed in a plane.
- the heat dissipation structure 1 reduces the thermal resistance of the signal conductor 4a and the signal conductor 4b from the connection point between the signal conductor 3a and the signal conductor 3b without narrowing the operating bandwidth equivalent to that of the heat dissipation structure 100. It can improve heat dissipation.
- Embodiment 2 is a perspective view showing the heat dissipation structure 1B according to the second embodiment.
- FIG. 10B is a cross-sectional view showing a cross section of the heat radiating structure 1B cut along the line AA'of FIG. 10A.
- FIG. 10C is a cross-sectional view showing a cross section of the heat radiating structure 1B cut along the line BB'of FIG. 10A.
- the heat dissipation structure 1B is, for example, a high frequency circuit into which a high frequency signal is input / output, and is an input terminal 2a, an output terminal 2b, a signal conductor 3a, a signal conductor 3b, a signal conductor 4a, and a signal. It includes a conductor 4b, a dielectric substrate 5, a ground conductor 6, a connecting conductor 7b, a connecting conductor 7c, and an electrode 14.
- the electrode 14 is an electrode provided on the second surface (plane in the ⁇ z direction) of the dielectric substrate 5 and formed by removing a part of the ground conductor 6.
- the signal conductor 3a is provided on the first surface (plane in the + z direction) of the dielectric substrate 5, one end is connected to the input terminal 2a, and the other end is connected to the end of the signal conductor 3b. It is the first signal conductor.
- the signal conductor 3b is provided on the first surface of the dielectric substrate 5, one end is connected to the output terminal 2b, and the other end is at the end of the signal conductor 3a opposite to the input terminal 2a. It is a connected second signal conductor.
- the signal conductor 4a is provided on the first surface of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and one end is a connection point between the signal conductor 3a and the signal conductor 3b. It is a third signal conductor connected to. As shown in FIGS. 10B and 10C, the signal conductor 4b is provided in the inner layer of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and is at least equal to the signal conductor 4a in terms of plan. It is a fourth signal conductor arranged parallel to the plane including the signal conductor 4a so as to partially overlap.
- the connecting conductor 7b is a second connecting conductor provided in the inner layer of the dielectric substrate 5 and connecting the other end of the signal conductor 4b to the signal conductor 4a and the ground conductor 6.
- the connecting conductor 7c is provided in the inner layer of the dielectric substrate 5, and the connecting conductor 7c connects one end of the signal conductor 4a to the connection point between the signal conductor 3a and the signal conductor 3b, the signal conductor 4b and the electrode 14. It is the first connecting conductor to be used.
- the coupling conductor 8 is an electrically coupled signal conductor 4a and a signal conductor 4b having a length of one-fourth of the wavelength of the operating frequency.
- the heat dissipation structure 1B dissipates heat generated in the power amplifier connected to the input terminal 2a to the ground conductor 6 via the coupling conductor 8. Further, as shown in FIG. 1B, the heat dissipation structure 1 includes a connecting conductor 7a connecting the inner layer provided with the signal conductor 4b from the first surface of the dielectric substrate 5 provided with the signal conductor 4a, and a dielectric material. It has two types of connecting conductors with a connecting conductor 7b arranged so as to penetrate the substrate 5.
- the heat radiating structure 1 Since the heat radiating structure 1 has not only a connecting conductor penetrating the dielectric substrate 5 but also a connecting conductor that stops at the inner layer of the dielectric substrate 5, it is necessary to separately perform viahole processing in order to provide these connecting conductors. Yes, the man-hours will increase.
- the connecting conductors 7b and 7c included in the heat radiating structure 1B only the connecting conductors penetrating the dielectric substrate 5 are used, and these connecting conductors can be obtained by one via hole processing. As a result, the heat dissipation structure 1B can reduce the manufacturing man-hours.
- the heat radiating structure 1B includes an electrode 14 provided on the second surface of the dielectric substrate 5 and formed by removing a part of the ground conductor 6.
- the connecting conductor 7c connects one end of the signal conductor 4b to the connection point between the signal conductor 3a and the signal conductor 3b and the electrode 14.
- the size of the connecting conductor 7c and the electrode 14 is sufficiently small compared to the wavelength of the operating frequency, and the influence from the connecting conductor 7c and the electrode 14 can be ignored. Therefore, the heat dissipation structure 1B can be manufactured by a simple manufacturing method while having the same operating bandwidth and heat dissipation performance as the heat dissipation structure 1. As a result, the manufacturing cost is also reduced.
- FIG. 11A is a perspective view showing the heat dissipation structure 1C according to the third embodiment.
- FIG. 11B is a cross-sectional view showing a cross section of the heat radiating structure 1C cut along the line AA'of FIG. 11A.
- FIG. 11C is a cross-sectional view showing a cross section of the heat radiating structure 1C cut along the line BB'of FIG. 11A.
- the heat dissipation structure 1C is, for example, a high frequency circuit into which a high frequency signal is input / output, and is an input terminal 2a, an output terminal 2b, a signal conductor 3a, a signal conductor 3b, a signal conductor 4c, and a signal.
- a conductor 4d, a dielectric substrate 5, a ground conductor 6, a connecting conductor 7a, a connecting conductor 7b, a connecting conductor 7d, an electrode 14a, an electrode 14b, and a chip capacitor 15 are provided.
- the signal conductor 3a is provided on the first surface (plane in the + z direction) of the dielectric substrate 5, one end is connected to the input terminal 2a, and the other end is connected to the end of the signal conductor 3b. It is the first signal conductor.
- the signal conductor 3b is provided on the first surface of the dielectric substrate 5, one end is connected to the output terminal 2b, and the other end is at the end of the signal conductor 3a opposite to the input terminal 2a. It is a connected second signal conductor.
- the signal conductor 4c is provided on the first surface of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and one end is a connection point between the signal conductor 3a and the signal conductor 3b. It is a third signal conductor connected to. As shown in FIGS. 11B and 11C, the signal conductor 4d is provided in the inner layer of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and is at least equal to the signal conductor 4c in terms of plan. It is a fourth signal conductor arranged parallel to the plane including the signal conductor 4c so that a part of the signal conductor overlaps.
- a ground conductor 6, which is a solid pattern of a conductor, is formed on a second surface (a surface in the ⁇ z direction) opposite to the first surface of the dielectric substrate 5.
- the electrode 14a is a first electrode provided on the first surface of the dielectric substrate 5 and connected to a connection point between the signal conductor 3a and the signal conductor 3b.
- the electrode 14b is a second electrode provided on the first surface of the dielectric substrate 5 and connected to the ground conductor 6 by the connecting conductor 7d.
- the chip capacitor 15 is a capacitor that connects the electrode 14a and the electrode 14b.
- the connecting conductor 7a is a first connecting conductor that connects one end of the signal conductor 4c to the connection point between the signal conductor 3a and the signal conductor 3b and the signal conductor 4d.
- the connecting conductor 7b is a second connecting conductor that connects the other end of the signal conductor 4c to the signal conductor 4c and the ground conductor 6.
- the connecting conductor 7d is a third connecting conductor provided in the inner layer of the dielectric substrate 5 and connecting the electrode 14b to the ground conductor 6.
- the coupling conductor 16 is an electrically coupled signal conductor 4c and a signal conductor 4d having a length of one-fourth of the wavelength of the operating frequency.
- the distance d in the thickness direction (z direction) between the signal conductor 4c and the signal conductor 4d is, for example, one tenth or less of the thickness of the dielectric substrate 5.
- the signal conductor 3a, the signal conductor 3b, the signal conductor 4c, and the signal conductor 4d function together with the ground conductor 6 as a transmission line for transmitting a high frequency signal.
- the chip capacitor 15 is connected in parallel with the coupling conductor 16, and the length of the coupling conductor 16 can be set to 1/4 or less of the wavelength of the operating frequency by the chip capacitor 15. , It is possible to reduce the thermal resistance.
- FIG. 12 is a circuit diagram showing an equivalent circuit of the heat dissipation structure 1C according to the third embodiment, and is an equivalent circuit showing the electrical operation of the heat dissipation structure 1C.
- the equivalent circuit shown in FIG. 12 is composed of an input terminal 2a into which a high-frequency signal is input, an output terminal 2b in which a high-frequency signal is output, a power supply line 9a, a power supply line 9b, a transmission line 10c, and a transmission line 10d.
- the transmission line 10c and the transmission line 10d have a length of one-fourth of the wavelength of the operating frequency.
- One end of the power supply line 9a is connected to the input terminal 2a, and the other end is connected to the end of the power supply line 9b.
- One end of the power supply line 9b is connected to the output terminal 2b, and the other end is connected to the end of the power supply line 9a opposite to the input terminal 2a.
- the capacitor of the chip capacitor 15 shown in FIG. 11 is the capacitor shown in FIG. Hereinafter, it will be referred to as a capacitor 15.
- One end of the capacitor 15 is connected to the connection point between the feeding line 9a and the feeding line 9b, and the other end is grounded.
- the coupling conductor 16 is configured by electrically coupling a transmission line 10c having a length of one-fourth of the wavelength of the operating frequency and a transmission line 10d, and functions as a tip short-circuit 1/4 wavelength stub. Of the ends of the transmission line 10c and the transmission line 10d, the ends on the same side are connected to each other. One of the end portions of the transmission line 10c and the transmission line 10d connected to each other is connected to the connection point between the power supply line 9a and the power supply line 9b, and the other is grounded.
- the signal conductor 3a and the signal conductor 3b shown in FIG. 11 together with the ground conductor 6 function as a transmission line for transmitting a high frequency signal.
- the feeding line 9a corresponds to the signal conductor 3a
- the feeding line 9b corresponds to the signal conductor 3b.
- the transmission line 10c corresponds to the signal conductor 4c shown in FIG. 11, and the transmission line 10d corresponds to the signal conductor 4d.
- the capacitor 15 is loaded in parallel with the tip short-circuited 1/4 wavelength stub which is the coupling conductor 16.
- the tip short circuit 1/4 wavelength stub operates as an LC parallel resonant circuit near the operating frequency.
- the resonance frequency is shifted to the low frequency side.
- the heat dissipation structure 1C can make the lengths of the signal conductors 4a and the signal conductors 4b shorter than the length of one-fourth of the wavelength of the operating frequency even when they are operated at the same frequency. Further reduction of thermal resistance becomes possible.
- FIG. 13 is a graph showing the electromagnetic field analysis results of the reflection amplitude in the heat dissipation structure 1 according to the first embodiment and the heat dissipation structure 1C according to the third embodiment, and is a reflection of the equivalent circuit of the heat dissipation structure 1 shown in FIG.
- the amplitude calculation result E and the reflection amplitude calculation result F of the equivalent circuit of the heat dissipation structure 1C shown in FIG. 12 are shown.
- the vertical axis represents the reflection amplitude.
- the calculation result F of the equivalent circuit of the heat dissipation structure 1C shown in FIG. 12 and the calculation result E of the reflection amplitude of the equivalent circuit of the heat dissipation structure 100 shown in FIG. 4 are both standards.
- the conversion frequency is around 1.0, and the reflection amplitude is minimized.
- ⁇ e ⁇ / 2 rad.
- ⁇ e ⁇ / 4rad. Is.
- the electrical length ⁇ e and the length l of the signal conductor are in a proportional relationship as shown in the above equation (10), and if ⁇ e is halved, the length l is also halved. Therefore, in the heat dissipation structure 1C, the combined thermal resistance of the signal conductor 4c and the signal conductor 4d is half of the combined thermal resistance in the heat dissipation structure 1 shown in FIG. 1, and the heat dissipation property is further improved.
- the heat dissipation structure 1C according to the third embodiment shows actual numerical values such as capacitance and electrical length as an example when describing the operation as a high frequency circuit, but this is an example.
- the heat dissipation structure 1C is provided on the first surface of the dielectric substrate 5, and has an electrode 14a connected to a connection point between the signal conductor 3a and the signal conductor 3b, and a dielectric material.
- An electrode 14b provided on the first surface of the substrate 5, a chip capacitor 15 provided on the first surface of the dielectric substrate 5 and connecting between the electrode 14a and the electrode 14b, and an inner layer of the dielectric substrate 5.
- a connecting conductor 7d for connecting the 14b electrode to the ground conductor 6 is provided.
- the combined thermal resistance of the signal conductor 4c and the signal conductor 4d is half the combined thermal resistance of the heat radiating structure 1 shown in FIG. 1, so that the heat radiating property is further improved.
- FIG. 14 is a block diagram showing an example of a high frequency circuit 19 including at least one of the heat dissipation structures 1, 1A to 1C according to the first to third embodiments.
- the high-frequency circuit 19 includes an input terminal 17a for inputting at least one or more high-frequency signals, an output terminal 17b for outputting a high-frequency signal, at least one of heat dissipation structures 1, 1A to 1C, and first.
- a second high frequency device 18a, 18b The first high frequency device 18a includes at least one or more power amplifiers.
- the output terminals of the first high-frequency device 18a are connected to the input terminals 2a of the heat-dissipating structures 1, 1A to 1C, and the input terminals of the second high-frequency device 18b are connected to the output terminals 2b of the heat-dissipating structures 1, 1A to 1C. Is connected.
- the input terminal of the first high frequency device 18a and the output terminal of the second high frequency device 18b are the input terminal 17a and the output terminal 17b in the high frequency circuit 19, respectively.
- the high frequency circuit 19 has a function of converting a high frequency signal input to the input terminal 17a and outputting it from the output terminal 17b.
- the "conversion" is a function of amplifying or attenuating the amplitude of a high-frequency signal, adjusting the phase, or converting the frequency.
- the first high-frequency device 18a generates heat with the conversion of the high-frequency signal, and this heat is transferred from the output terminal of the first high-frequency device 18a to the heat dissipation structures 1, 1A to 1C via the input terminal 2a and is dissipated. ..
- the operating bandwidths of the first and second high-frequency devices 18a and 18b are narrower than the operating bandwidths of the heat-dissipating structures 1, 1A to 1C, the operating bandwidth of the high-frequency circuit 19 is increased.
- the heat from the first high frequency device 18a can be efficiently dissipated without narrowing the band. As a result, it is possible to suppress the heat generated by the first high-frequency device 18a from being transferred to the second high-frequency device 18b. Therefore, fluctuations in electrical characteristics and circuit malfunctions due to temperature changes in the second high-frequency device 18b are prevented.
- FIG. 15 is a block diagram showing an example of the antenna device 20 including at least one of the heat dissipation structures 1, 1, 1A to 1C according to the first to third embodiments.
- the antenna device 20 includes an input terminal 17a for inputting a high frequency signal, at least one of heat dissipation structures 1, 1A to 1C, and a first high frequency device 18a.
- the first high frequency device 18a includes at least one or more power amplifiers.
- the output terminal of the first high frequency device 18a is connected to the input terminals 2a of the heat dissipation structures 1, 1A to 1C, and the antenna 21 is connected to the output terminals 2b of the heat dissipation structures 1, 1A to 1C.
- the input terminal of the first high frequency device 18a is the input terminal 17a of the antenna device 20.
- the antenna device 20 has a function of converting a high frequency signal input to the input terminal 17a and radiating it from the antenna 21.
- the "conversion" is a function of amplifying or attenuating the amplitude of a high-frequency signal, adjusting the phase, or converting the frequency.
- the first high-frequency device 18a generates heat with the conversion of the high-frequency signal, and this heat is transferred from the output terminal of the first high-frequency device 18a to the heat dissipation structures 1, 1A to 1C via the input terminal 2a and is dissipated. ..
- the operating bandwidths of the first high-frequency device 18a and the antenna 21 are narrower than the operating bandwidths of the heat dissipation structures 1, 1A to 1C, the operating bandwidth of the antenna device 20 is narrowed.
- the heat from the first high-frequency device 18a can be efficiently dissipated without being converted. As a result, it is possible to suppress the heat generated by the first high-frequency device 18a from being transferred to the antenna 21. Therefore, distortion due to the temperature change of the antenna 21 or fluctuation of the electrical characteristics due to the distortion of the antenna 21 is prevented.
- the heat dissipation structure according to the present disclosure can be used, for example, in a high frequency circuit included in a radar device.
- 1,1A to 1C heat dissipation structure 2a input terminal, 2b output terminal, 3a, 3b, 4a to 4d signal conductor, 5 dielectric substrate, 6 ground conductor, 7a to 7d connection conductor, 8 coupling conductor, 9a, 9b power supply line 10a-10d transmission line, 11 coupling line, 12 heat transfer member, 13 metal body, 14, 14a, 14b electrode, 15 chip capacitor, 16 coupling conductor, 100 heat dissipation structure, 101a input terminal, 101b output terminal, 102a, 102b , 103a signal conductor, 104 dielectric substrate, 105 ground conductor, 106 connection conductor, 107a, 107b power supply line, 108a transmission line, 17a input terminal, 17b output terminal, 18a first high frequency device, 18b second high frequency device, 19 high frequency circuit, 20 antenna device, 21 antenna.
Landscapes
- Tests Of Electronic Circuits (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
The present invention comprises: a signal conductor (3a); a signal conductor (3b); a signal conductor (4a) which has an end connected to a connection point between the signal conductor (3a) and the signal conductor (3b) and which has a length of one fourth the wavelength of an operation frequency; and a signal conductor (4b) which is provided to an inner layer of a dielectric substrate (5) and which has a length of one fourth the wavelength of the operation frequency, wherein the signal conductor(4a) is connected to the connection point between the signal conductor (3a) and the signal conductor (3b), and the signal conductor (4b) is provided so as to at least partially overlap the signal conductor (4a) in a plan view and be parallel to a plane including the signal conductor (4a).
Description
本開示は、放熱構造、高周波回路およびアンテナ装置に関する。
This disclosure relates to a heat dissipation structure, a high frequency circuit and an antenna device.
高周波帯またはマイクロ波帯の信号を扱うレーダ装置においては、遠距離まで送信信号を伝搬させるために大電力の送信電力が必要であり、出力電力を増大させる電力増幅器が用いられる。一般に、電力増幅器においては、出力電力を大きくするに従って電力増幅器内部における消費電力が大きくなるので、電力増幅器からの発熱量は、大きくなる。電力増幅器に生じた熱は、電力増幅器が実装された基板あるいは電力増幅器に取り付けられた放熱フィンを通じて放熱される。しかしながら、放熱しきれなかった熱の一部は、電力増幅器に接続された高周波伝送線路を通じて高周波回路に伝熱する。高周波回路に伝熱した熱量が大きい場合、高周波回路の誤作動を誘引するだけではなく、回路の寿命を短くする可能性がある。
In a radar device that handles signals in the high frequency band or microwave band, a large amount of transmission power is required to propagate the transmission signal over a long distance, and a power amplifier that increases the output power is used. Generally, in a power amplifier, the power consumption inside the power amplifier increases as the output power increases, so that the amount of heat generated from the power amplifier increases. The heat generated in the power amplifier is dissipated through the board on which the power amplifier is mounted or the heat dissipation fins attached to the power amplifier. However, a part of the heat that cannot be dissipated is transferred to the high frequency circuit through the high frequency transmission line connected to the power amplifier. If the amount of heat transferred to the high-frequency circuit is large, it may not only induce malfunction of the high-frequency circuit but also shorten the life of the circuit.
例えば、特許文献1には、動作周波数の波長の約1/4の長さを有しかつ先端部が放熱性のよい金属に短絡された伝送線路、いわゆる先端短絡1/4波長スタブを備え、電力増幅器に生じた熱を、先端短絡1/4波長スタブを介して放熱させる放熱構造が記載されている。先端短絡1/4波長スタブは、中心周波数において開放とみなせるので、高周波回路の動作には悪影響を与えない。高周波回路へ伝熱される熱量を小さくするためには、伝送線路から先端短絡1/4波長スタブをみた熱抵抗が小さいことが必要である。一般に、物体の熱抵抗は、物体の長さに比例し、その断面積に反比例する。先端短絡1/4波長スタブの長さは、動作周波数によって決定されるため、放熱性を改善するためには、如何に断面積を大きくするかが重要となる。
For example, Patent Document 1 includes a transmission line having a length of about 1/4 of the wavelength of the operating frequency and whose tip is short-circuited with a metal having good heat dissipation, that is, a so-called tip short-circuit 1/4 wavelength stub. A heat dissipation structure is described in which the heat generated in the power amplifier is dissipated through a short-circuited 1/4 wavelength stub at the tip. Since the tip short circuit 1/4 wavelength stub can be regarded as open at the center frequency, it does not adversely affect the operation of the high frequency circuit. In order to reduce the amount of heat transferred to the high-frequency circuit, it is necessary that the thermal resistance of the 1/4 wavelength stub at the tip short circuit from the transmission line is small. In general, the thermal resistance of an object is proportional to the length of the object and inversely proportional to its cross-sectional area. Since the length of the tip short-circuit 1/4 wavelength stub is determined by the operating frequency, it is important how to increase the cross-sectional area in order to improve the heat dissipation.
先端短絡1/4波長スタブの断面積を大きくすると、先端短絡1/4波長スタブを構成する伝送線路の特性インピーダンスが低くなり、高周波帯において開放とみなせる周波数帯が狭帯域となる。これは、高周波回路において動作可能な周波数帯域幅が減少することを意味する。このように、従来の放熱構造は、先端短絡1/4波長スタブを用いた場合、放熱性と動作帯域幅とがトレードオフの関係にあり、一方を改善すると、もう一方が劣化するという課題があった。
When the cross-sectional area of the tip short-circuit 1/4 wavelength stub is increased, the characteristic impedance of the transmission line constituting the tip short-circuit 1/4 wavelength stub becomes low, and the frequency band that can be regarded as open in the high frequency band becomes a narrow band. This means that the frequency bandwidth that can be operated in the high frequency circuit is reduced. As described above, in the conventional heat dissipation structure, when a tip short-circuited 1/4 wavelength stub is used, there is a trade-off relationship between heat dissipation and operating bandwidth, and if one is improved, the other is deteriorated. there were.
本開示は上記課題を解決するものであり、動作帯域幅を狭帯域化することなく、放熱性を改善することができる、放熱構造、高周波回路およびアンテナ装置を得ることを目的とする。
The present disclosure solves the above problems, and an object of the present invention is to obtain a heat dissipation structure, a high frequency circuit, and an antenna device capable of improving heat dissipation without narrowing the operating bandwidth.
本開示に係る放熱構造は、第1の面と、第1の面とは反対側の第2の面を有し、第2の面に地導体が設けられた誘電体基板と、誘電体基板の第1の面に設けられ、高周波信号の入力端子に一方の端部が接続された第1の信号導体と、誘電体基板の第1の面に設けられ、高周波信号の出力端子に一方の端部が接続され、第1の信号導体における入力端子とは反対側の端部に他方の端部が接続された第2の信号導体と、誘電体基板の第1の面に設けられ、動作周波数の波長の4分の1の長さを有した第3の信号導体と、誘電体基板の内層に設けられて、動作周波数の波長の4分の1の長さを有した第4の信号導体と、第4の信号導体の一方の端部を、第1の信号導体と第2の信号導体との接続点に接続する第1の接続導体と、第4の信号導体の他方の端部を、第3の信号導体および地導体に接続する第2の接続導体とを備え、第3の信号導体は、第1の信号導体と第2の信号導体との接続点に接続され、第4の信号導体は、平面的にみて、第3の信号導体と少なくとも一部が重なるように、第3の信号導体を含む平面と平行に配置されている。
The heat dissipation structure according to the present disclosure has a first surface, a second surface opposite to the first surface, and a dielectric substrate provided with a ground conductor on the second surface, and a dielectric substrate. A first signal conductor provided on the first surface of the high frequency signal, one end of which is connected to the input terminal of the high frequency signal, and one provided on the first surface of the dielectric substrate and one end to the output terminal of the high frequency signal. A second signal conductor whose ends are connected and whose other end is connected to the end opposite to the input terminal in the first signal conductor, and a second signal conductor provided on the first surface of the dielectric substrate for operation. A third signal conductor having a length of one-fourth of the frequency wavelength and a fourth signal provided in the inner layer of the dielectric substrate and having a length of one-fourth of the operating frequency wavelength. A first connecting conductor that connects one end of the conductor and the fourth signal conductor to the connection point between the first signal conductor and the second signal conductor, and the other end of the fourth signal conductor. The third signal conductor is provided with a third signal conductor and a second connecting conductor that connects to the ground conductor, and the third signal conductor is connected to the connection point between the first signal conductor and the second signal conductor, and the fourth signal conductor is connected to the second signal conductor. The signal conductor is arranged parallel to the plane including the third signal conductor so that at least a part of the third signal conductor overlaps with the third signal conductor when viewed in a plane.
本開示によれば、高周波信号の入力端子に一方の端部が接続された第1の信号導体と、高周波信号の出力端子に一方の端部が接続され、第1の信号導体における、入力端子とは反対側の端部に他方の端部が接続された第2の信号導体と、動作周波数の波長の4分の1の長さを有し、第1の信号導体と第2の信号導体との接続点に端部が接続された第3の信号導体と、誘電体基板の内層に設けられ、動作周波数の波長の4分の1の長さを有した第4の信号導体と、第4の信号導体の一方の端部を、第1の信号導体と第2の信号導体との接続点に接続する第1の接続導体と、第4の信号導体の他方の端部を、第3の信号導体および地導体に接続する第2の接続導体とを備え、第3の信号導体は、第1の信号導体と第2の信号導体との接続点に接続され、第4の信号導体は、平面的にみて、第3の信号導体と少なくとも一部が重なるように、第3の信号導体を含む平面と平行に配置されている。第3の信号導体と第4の信号導体が並列に接続され、平面的にみて、第3の信号導体と第4の信号導体が重なるように第3の信号導体を含む平面と平行に配置されている。これにより、本開示に係る放熱構造は、動作帯域幅を狭帯域化することなく、第1の信号導体と第2の信号導体との接続点から第3の信号導体および第4の信号導体をみた熱抵抗を低減でき、放熱性を改善することができる。
According to the present disclosure, a first signal conductor having one end connected to an input terminal of a high frequency signal and an input terminal of the first signal conductor having one end connected to an output terminal of a high frequency signal. A second signal conductor having the other end connected to the end opposite to the one, and a first signal conductor and a second signal conductor having a length of a quarter of the wavelength of the operating frequency. A third signal conductor whose end is connected to the connection point with, a fourth signal conductor provided in the inner layer of the dielectric substrate and having a length of one-fourth of the operating frequency wavelength, and a third signal conductor. A first connecting conductor that connects one end of the signal conductor 4 to the connection point between the first signal conductor and the second signal conductor, and a third connecting conductor that connects the other end of the fourth signal conductor. The third signal conductor is connected to the connection point between the first signal conductor and the second signal conductor, and the fourth signal conductor is When viewed in a plane, they are arranged parallel to the plane including the third signal conductor so that at least a part of the third signal conductor overlaps. The third signal conductor and the fourth signal conductor are connected in parallel, and are arranged parallel to the plane including the third signal conductor so that the third signal conductor and the fourth signal conductor overlap each other when viewed in a plane. ing. As a result, the heat dissipation structure according to the present disclosure allows the third signal conductor and the fourth signal conductor to be connected from the connection point between the first signal conductor and the second signal conductor without narrowing the operating bandwidth. The apparent thermal resistance can be reduced and the heat dissipation can be improved.
実施の形態1.
図1Aは、実施の形態1に係る放熱構造1を示す斜視図である。図1Bは、放熱構造1を、図1AのA-A’線で切断した断面を示す断面図である。図1Cは、放熱構造1を、図1AのB-B’線で切断した断面を示す断面図である。図1A、図1Bおよび図1Cにおいて、放熱構造1は、例えば、高周波信号が入出力される高周波回路であり、高周波信号が入力される入力端子2a、高周波信号が出力される出力端子2b、信号導体3a、信号導体3b、信号導体4a、信号導体4b、誘電体基板5、地導体6、接続導体7aおよび接続導体7bを備える。Embodiment 1.
FIG. 1A is a perspective view showing aheat dissipation structure 1 according to the first embodiment. FIG. 1B is a cross-sectional view showing a cross section of the heat dissipation structure 1 cut along the line AA'of FIG. 1A. FIG. 1C is a cross-sectional view showing a cross section of the heat dissipation structure 1 cut along the line BB'of FIG. 1A. In FIGS. 1A, 1B and 1C, the heat dissipation structure 1 is, for example, a high frequency circuit into which a high frequency signal is input / output, an input terminal 2a into which the high frequency signal is input, an output terminal 2b in which the high frequency signal is output, and a signal. It includes a conductor 3a, a signal conductor 3b, a signal conductor 4a, a signal conductor 4b, a dielectric substrate 5, a ground conductor 6, a connecting conductor 7a, and a connecting conductor 7b.
図1Aは、実施の形態1に係る放熱構造1を示す斜視図である。図1Bは、放熱構造1を、図1AのA-A’線で切断した断面を示す断面図である。図1Cは、放熱構造1を、図1AのB-B’線で切断した断面を示す断面図である。図1A、図1Bおよび図1Cにおいて、放熱構造1は、例えば、高周波信号が入出力される高周波回路であり、高周波信号が入力される入力端子2a、高周波信号が出力される出力端子2b、信号導体3a、信号導体3b、信号導体4a、信号導体4b、誘電体基板5、地導体6、接続導体7aおよび接続導体7bを備える。
FIG. 1A is a perspective view showing a
信号導体3aは、誘電体基板5の第1の面(+z方向の面)に設けられ、一方の端部が入力端子2aに接続され、他方の端部が信号導体3bの端部に接続された第1の信号導体である。信号導体3bは、誘電体基板5の第1の面に設けられ、一方の端部が出力端子2bに接続され、他方の端部が信号導体3aにおける入力端子2aとは反対側の端部に接続された第2の信号導体である。信号導体4aは、誘電体基板5の第1の面に設けられ、動作周波数の波長の4分の1の長さを有し、一方の端部が信号導体3aと信号導体3bとの接続点に接続された第3の信号導体である。
The signal conductor 3a is provided on the first surface (plane in the + z direction) of the dielectric substrate 5, one end is connected to the input terminal 2a, and the other end is connected to the end of the signal conductor 3b. It is the first signal conductor. The signal conductor 3b is provided on the first surface of the dielectric substrate 5, one end is connected to the output terminal 2b, and the other end is at the end of the signal conductor 3a opposite to the input terminal 2a. It is a connected second signal conductor. The signal conductor 4a is provided on the first surface of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and one end is a connection point between the signal conductor 3a and the signal conductor 3b. It is a third signal conductor connected to.
信号導体4bは、図1Bおよび図1Cに示すように、誘電体基板5の内層に設けられ、動作周波数の波長の4分の1の長さを有し、平面的にみて信号導体4aと少なくとも一部が重なるように、信号導体4aを含む平面と平行に配置された、第4の信号導体である。誘電体基板5における第1の面とは反対側の第2の面(-z方向の面)には、導体のベタパターンである地導体6が形成されている。
As shown in FIGS. 1B and 1C, the signal conductor 4b is provided in the inner layer of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and is at least equal to the signal conductor 4a in terms of plan. It is a fourth signal conductor arranged parallel to the plane including the signal conductor 4a so as to partially overlap. A ground conductor 6, which is a solid pattern of a conductor, is formed on a second surface (a surface in the −z direction) opposite to the first surface of the dielectric substrate 5.
接続導体7aおよび接続導体7bは、誘電体基板5の内層に設けられる。接続導体7aは、信号導体4bの一方の端部を、信号導体3aと信号導体3bとの接続点に接続する第1の接続導体である。接続導体7bは、信号導体4bの他方の端部を信号導体4aおよび地導体6に接続する第2の接続導体である。
The connecting conductor 7a and the connecting conductor 7b are provided in the inner layer of the dielectric substrate 5. The connecting conductor 7a is a first connecting conductor that connects one end of the signal conductor 4b to the connection point between the signal conductor 3a and the signal conductor 3b. The connecting conductor 7b is a second connecting conductor that connects the other end of the signal conductor 4b to the signal conductor 4a and the ground conductor 6.
結合導体8は、動作周波数の波長の4分の1の長さを有した信号導体4aおよび信号導体4bが電気的に結合したものである。信号導体4aと信号導体4bとの間の厚み方向(z方向)の間隔は、例えば、誘電体基板5の厚さの10分の1以下である。信号導体3a、信号導体3b、信号導体4aおよび信号導体4bは、地導体6と合わせて高周波信号を伝送する伝送線路として機能する。
The coupling conductor 8 is an electrically coupled signal conductor 4a and a signal conductor 4b having a length of one-fourth of the wavelength of the operating frequency. The distance between the signal conductor 4a and the signal conductor 4b in the thickness direction (z direction) is, for example, one tenth or less of the thickness of the dielectric substrate 5. The signal conductor 3a, the signal conductor 3b, the signal conductor 4a, and the signal conductor 4b function together with the ground conductor 6 as a transmission line for transmitting a high frequency signal.
接続導体7aおよび接続導体7bの物理的な大きさが動作周波数の波長と比較して十分に小さい場合、高周波帯では、接続導体7aおよび接続導体7bの影響を無視することができる。接続導体7aおよび接続導体7bの長さは、動作周波数の波長の10分の1以下であることが望ましい。
When the physical size of the connecting conductor 7a and the connecting conductor 7b is sufficiently smaller than the wavelength of the operating frequency, the influence of the connecting conductor 7a and the connecting conductor 7b can be ignored in the high frequency band. The length of the connecting conductor 7a and the connecting conductor 7b is preferably one tenth or less of the wavelength of the operating frequency.
図2は、放熱構造1の等価回路を示す回路図であり、放熱構造1の電気的な動作を表す等価回路である。図2に示す等価回路は、高周波信号が入力される入力端子2a、高周波信号が出力される出力端子2b、給電線路9a、給電線路9b、伝送線路10aおよび伝送線路10bによって構成される。伝送線路10aおよび伝送線路10bは、動作周波数の波長の4分の1の長さを有している。
FIG. 2 is a circuit diagram showing an equivalent circuit of the heat dissipation structure 1, and is an equivalent circuit showing the electrical operation of the heat dissipation structure 1. The equivalent circuit shown in FIG. 2 is composed of an input terminal 2a into which a high-frequency signal is input, an output terminal 2b in which a high-frequency signal is output, a power supply line 9a, a power supply line 9b, a transmission line 10a, and a transmission line 10b. The transmission line 10a and the transmission line 10b have a length of one-fourth of the wavelength of the operating frequency.
給電線路9aは、一方の端部が入力端子2aに接続され、他方の端部が給電線路9bの端部に接続されている。給電線路9bは、一方の端部が出力端子2bに接続され、他方の端部が、給電線路9aにおける入力端子2aとは反対側の端部に接続されている。結合線路11は、伝送線路10aと伝送線路10bが電気的に結合されて構成される。
One end of the power supply line 9a is connected to the input terminal 2a, and the other end is connected to the end of the power supply line 9b. One end of the power supply line 9b is connected to the output terminal 2b, and the other end is connected to the end of the power supply line 9a opposite to the input terminal 2a. The coupling line 11 is configured by electrically coupling the transmission line 10a and the transmission line 10b.
伝送線路10aおよび伝送線路10bの端部のうち、同じ側にある端部は、互いに接続される。伝送線路10aおよび伝送線路10bにおける互いに接続された端部の一方は、給電線路9aと給電線路9bとの接続点に接続され、もう一方は接地される。
Of the ends of the transmission line 10a and the transmission line 10b, the ends on the same side are connected to each other. One of the end portions of the transmission line 10a and the transmission line 10b connected to each other is connected to the connection point between the power supply line 9a and the power supply line 9b, and the other is grounded.
図1に示した信号導体3aおよび信号導体3bは、地導体6と合わせて、高周波信号を伝送する伝送線路として機能する。図2においては、給電線路9aが信号導体3aに対応し、給電線路9bが信号導体3bに対応する。伝送線路10aは、図1に示した信号導体4aに対応し、伝送線路10bは、信号導体4bに対応する。
The signal conductor 3a and the signal conductor 3b shown in FIG. 1 together with the ground conductor 6 function as a transmission line for transmitting a high frequency signal. In FIG. 2, the feeding line 9a corresponds to the signal conductor 3a, and the feeding line 9b corresponds to the signal conductor 3b. The transmission line 10a corresponds to the signal conductor 4a shown in FIG. 1, and the transmission line 10b corresponds to the signal conductor 4b.
放熱構造1の効果を説明する前に、従来の放熱構造について説明する。
図3Aは、従来の放熱構造100を示す斜視図である。図3Bは、放熱構造100を、図3AのA-A’線で切断した断面を示す断面図である。図3Cは、放熱構造100を、図3AのB-B’線で切断した断面を示す断面図である。 Before explaining the effect of theheat dissipation structure 1, the conventional heat dissipation structure will be described.
FIG. 3A is a perspective view showing a conventionalheat dissipation structure 100. FIG. 3B is a cross-sectional view showing a cross section of the heat radiating structure 100 cut along the line AA'of FIG. 3A. FIG. 3C is a cross-sectional view showing a cross section of the heat radiating structure 100 cut along the line BB'of FIG. 3A.
図3Aは、従来の放熱構造100を示す斜視図である。図3Bは、放熱構造100を、図3AのA-A’線で切断した断面を示す断面図である。図3Cは、放熱構造100を、図3AのB-B’線で切断した断面を示す断面図である。 Before explaining the effect of the
FIG. 3A is a perspective view showing a conventional
図3A、図3Bおよび図3Cに示すように、放熱構造100は、高周波信号が入力される入力端子101a、高周波信号が出力される出力端子101b、信号導体102a、信号導体102b、信号導体103a、誘電体基板104、地導体105および接続導体106を備える。
As shown in FIGS. 3A, 3B and 3C, the heat dissipation structure 100 includes an input terminal 101a for inputting a high-frequency signal, an output terminal 101b for outputting a high-frequency signal, a signal conductor 102a, a signal conductor 102b, and a signal conductor 103a. It includes a dielectric substrate 104, a ground conductor 105, and a connecting conductor 106.
信号導体102aは、誘電体基板104の第1の面(+z方向の面)に設けられ、一方の端部が入力端子101aに接続され、他方の端部が信号導体102bの端部に接続される。信号導体102bは、誘電体基板104の第1の面に設けられ、一方の端部が出力端子101bに接続され、他方の端部が信号導体102aにおける、入力端子101aとは反対側の端部に接続される。信号導体103aは、誘電体基板104の第1の面に設けられ、動作周波数の波長の4分の1の長さを有し、信号導体102aと信号導体102bとの接続点に接続されている。
The signal conductor 102a is provided on the first surface (plane in the + z direction) of the dielectric substrate 104, one end thereof is connected to the input terminal 101a, and the other end is connected to the end of the signal conductor 102b. NS. The signal conductor 102b is provided on the first surface of the dielectric substrate 104, one end is connected to the output terminal 101b, and the other end is the end of the signal conductor 102a opposite to the input terminal 101a. Connected to. The signal conductor 103a is provided on the first surface of the dielectric substrate 104, has a length of one-fourth of the wavelength of the operating frequency, and is connected to the connection point between the signal conductor 102a and the signal conductor 102b. ..
図3Bおよび図3Cに示すように、放熱構造100は、放熱構造1における、信号導体4bと接続導体7aとに対応する各部材を備えていない。放熱構造100において、信号導体102a、信号導体102bおよび信号導体103aは、地導体105と合わせて、高周波信号を伝送する伝送線路として機能する。信号導体103aの一方の端部は、接続導体106によって地導体105に接続されている。
As shown in FIGS. 3B and 3C, the heat radiating structure 100 does not include the members corresponding to the signal conductor 4b and the connecting conductor 7a in the heat radiating structure 1. In the heat dissipation structure 100, the signal conductor 102a, the signal conductor 102b, and the signal conductor 103a, together with the ground conductor 105, function as a transmission line for transmitting a high frequency signal. One end of the signal conductor 103a is connected to the ground conductor 105 by a connecting conductor 106.
図4は、従来の放熱構造100の等価回路を示す回路図である。図3Bに示した接続導体106の大きさが動作周波数の波長と比較して十分に小さい場合、この接続導体106の影響は小さく無視することができる。従って、放熱構造100は、図4に示す等価回路で表される。図4に示す等価回路は、図2に示した等価回路から伝送線路10bが除去された回路である。
FIG. 4 is a circuit diagram showing an equivalent circuit of the conventional heat dissipation structure 100. When the size of the connecting conductor 106 shown in FIG. 3B is sufficiently small compared to the wavelength of the operating frequency, the influence of the connecting conductor 106 is small and can be ignored. Therefore, the heat dissipation structure 100 is represented by the equivalent circuit shown in FIG. The equivalent circuit shown in FIG. 4 is a circuit in which the transmission line 10b is removed from the equivalent circuit shown in FIG.
図4に示す放熱構造100の等価回路において、給電線路107aと給電線路107bとの接続点から伝送線路108aをみた入力インピーダンスZinは、伝送線路108aの特性インピーダンスZsと電気長θを用いて、下記式(1)のように表現される。
In the equivalent circuit of theheat dissipation structure 100 shown in FIG. 4, the input impedance Z in seen a transmission line 108a from the connection point between the feeder line 107a and the feeder line 107b, using the characteristic impedance Zs and the electrical length θ of the transmission line 108a, It is expressed as the following equation (1).
In the equivalent circuit of the
電気長θは、下記式(2)のように表現される。下記式(2)において、lは伝送線路108aの物理長、βは位相定数である。
The electrical length θ is expressed by the following equation (2). In the following equation (2), l is the physical length of thetransmission line 108a and β is the phase constant.
The electrical length θ is expressed by the following equation (2). In the following equation (2), l is the physical length of the
位相定数βは、実効波長λeffを用いて、下記式(3)のように表現される。
The phase constant β is expressed by the following equation (3) using the effective wavelength λ eff.
The phase constant β is expressed by the following equation (3) using the effective wavelength λ eff.
上記式(1)、上記式(2)および上記式(3)を用いることで、入力インピーダンスZinは、下記式(4)のように表現される。
By using the above equation (1), the above equation (2), and the above equation (3), the input impedance Z in is expressed as the following equation (4).
By using the above equation (1), the above equation (2), and the above equation (3), the input impedance Z in is expressed as the following equation (4).
上記式(4)において、l=λeff/4である場合、Zin=∞となり開放とみなすことができる。従って、入力端子101a側の内部インピーダンス、出力端子101b側の負荷インピーダンス、および、給電線路107aおよび107bの特性インピーダンスを、全て同一のインピーダンスZ0とした場合、l=λeff/4となる周波数においては、入力端子101aから入力された高周波信号は、反射することなく、出力端子101bへ出力される。しかしながら、l=λeff/4となる周波数以外の周波数では、Zin≠∞となるので、入力端子101aから入力された高周波信号の一部は、反射し、入力端子101aに出力される。
In the above equation (4), when l = λ eff / 4, Z in = ∞ and can be regarded as open. Thus, the internal impedance of the input terminal 101a side, the load impedance of the output terminal 101b side, and, if the characteristic impedance of the feeder line 107a and 107 b, were all the same impedance Z 0, the frequency at which l = λ eff / 4 Is that the high frequency signal input from the input terminal 101a is output to the output terminal 101b without being reflected. However, at frequencies other than the frequency where l = λ eff / 4, Z in ≠ ∞, so that a part of the high frequency signal input from the input terminal 101a is reflected and output to the input terminal 101a.
図5は、放熱構造100の等価回路における、反射振幅の計算結果の例を示すグラフである。図5において、横軸は、θ=π/2(rad)となる周波数で規格化された周波数であり、縦軸は、反射振幅を表している。図5の反射振幅の計算結果は、Z0=50Ωとし、伝送線路108aの特性インピーダンスZSを、25Ω(一点破線)、50Ω(実線)、100Ω(破線)と変化させて反射振幅を計算した結果である。なお、以下の反射振幅の計算では、全てZ0=50Ωとしている。
FIG. 5 is a graph showing an example of the calculation result of the reflection amplitude in the equivalent circuit of the heat dissipation structure 100. In FIG. 5, the horizontal axis represents the frequency standardized by the frequency at which θ = π / 2 (rad), and the vertical axis represents the reflection amplitude. The calculation result of the reflection amplitude in FIG. 5 was Z 0 = 50Ω, and the characteristic impedance Z S of the transmission line 108a was changed to 25Ω (one-point broken line), 50Ω (solid line), and 100Ω (broken line) to calculate the reflection amplitude. The result. In the following calculation of the reflection amplitude, Z 0 = 50Ω.
図5から明らかなように、特性インピーダンスZSが大きくなるつれて一定の反射振幅以下となる帯域幅が広くなっている。仮に、反射振幅-20dB以下を目標とした場合、ZS=25Ωでは比帯域幅12%となり、ZS=100Ωでは比帯域幅48%となり、前述の通り、特性インピーダンスZSが大きい方がより広帯域になっている。これは、上記式(1)において、入力インピーダンスZinを、電気長θに依らず大きくしようとすると、特性インピーダンスZSを大きくする必要があることから明らかである。従って、より広い帯域幅を得ようとすると、特性インピーダンスZSを高く設計する必要がある。
As is clear from FIG. 5, as the characteristic impedance Z S increases, the bandwidth that becomes below a certain reflection amplitude becomes wider. If the target is a reflection amplitude of -20 dB or less, the specific bandwidth is 12% when Z S = 25 Ω, the specific bandwidth is 48% when Z S = 100 Ω, and as described above, the larger the characteristic impedance Z S, the more. It is wideband. This is clear from the fact that in the above equation (1), if the input impedance Z in is to be increased regardless of the electrical length θ, the characteristic impedance Z S needs to be increased. Therefore, in order to obtain a wider bandwidth, it is necessary to design the characteristic impedance Z S to be high.
例えば、放熱構造100において、誘電体基板104の第2の面に地導体105が形成され、誘電体基板104の第1の面における信号導体として、銅箔で形成されたマイクロストリップ線路と呼ばれる伝送線路を用いる。この場合、参考文献1に示すように、誘電体基板104の厚さh、誘電体基板104の比誘電率εrおよび信号導体の幅Wを用いることで、特性インピーダンスZSは、下記式(5)に従って計算することができる。
(参考文献1)J. S. Hong and M. J. Lancaster, “ Microstrip Filters for RF/Microwave Applications ”, Second Edition,John Wiley & Sons Inc, 2011. For example, in theheat dissipation structure 100, a ground conductor 105 is formed on the second surface of the dielectric substrate 104, and a transmission called a microstrip line formed of copper foil is used as a signal conductor on the first surface of the dielectric substrate 104. Use a railroad. In this case, as shown in Reference 1, by using the thickness h of the dielectric substrate 104, the relative permittivity ε r of the dielectric substrate 104, and the width W of the signal conductor, the characteristic impedance Z S is expressed by the following equation ( It can be calculated according to 5).
(Reference 1) J. S. Hong and M. J. Lancaster, "Microtrip Filters for RF / Microwave Applications", Second Edition, John Wiley & Sons Inc, 2011.
(参考文献1)J. S. Hong and M. J. Lancaster, “ Microstrip Filters for RF/Microwave Applications ”, Second Edition,John Wiley & Sons Inc, 2011. For example, in the
(Reference 1) J. S. Hong and M. J. Lancaster, "Microtrip Filters for RF / Microwave Applications", Second Edition, John Wiley & Sons Inc, 2011.
上記式(5)を用いた特性インピーダンスZSの算出では、マイクロストリップ線路を形成する銅箔の厚さの値が、誘電体基板104の厚さhの値に比べて非常に小さいと仮定している。上記式(5)は近似式の一例であり、マイクロストリップ線路に関しては多数の近似式が報告されており、上記式(5)以外の近似式を用いて特性インピーダンスZSの算出を行ってもよい。
In the calculation of the characteristic impedance Z S using the above equation (5), it is assumed that the value of the thickness of the copper foil forming the microstrip line is much smaller than the value of the thickness h of the dielectric substrate 104. ing. The above equation (5) is an example of an approximate equation, and many approximate equations have been reported for microstrip lines, and even if the characteristic impedance Z S is calculated using an approximate equation other than the above equation (5). good.
上記式(5)から明らかなように、マイクロストリップ線路では、誘電体基板104の厚さhおよび誘電体基板の比誘電率εrを不変とした場合、特性インピーダンスZsは、信号導体の線路幅Wを狭くすることによって大きくすることが可能である。
As is clear from the above equation (5), in the microstrip line, when the thickness h of the dielectric substrate 104 and the relative permittivity ε r of the dielectric substrate are unchanged, the characteristic impedance Zs is the line width of the signal conductor. It can be increased by narrowing W.
次に、基板上に実装されたデバイスからの放熱について説明する。
厳密には、基板上に実装されたデバイスからの放熱経路として、銅箔による伝熱の他、誘電体基板または空気を介した放熱が考えられる。しかし、自然対流下において、空気は熱抵抗が大きく、特に小型なパッケージ部品では放熱面積が小さく、放熱しづらい。 Next, heat dissipation from the device mounted on the substrate will be described.
Strictly speaking, as a heat dissipation path from the device mounted on the substrate, heat transfer by a copper foil or heat dissipation via a dielectric substrate or air can be considered. However, under natural convection, air has a large thermal resistance, and especially for small package parts, the heat dissipation area is small and it is difficult to dissipate heat.
厳密には、基板上に実装されたデバイスからの放熱経路として、銅箔による伝熱の他、誘電体基板または空気を介した放熱が考えられる。しかし、自然対流下において、空気は熱抵抗が大きく、特に小型なパッケージ部品では放熱面積が小さく、放熱しづらい。 Next, heat dissipation from the device mounted on the substrate will be described.
Strictly speaking, as a heat dissipation path from the device mounted on the substrate, heat transfer by a copper foil or heat dissipation via a dielectric substrate or air can be considered. However, under natural convection, air has a large thermal resistance, and especially for small package parts, the heat dissipation area is small and it is difficult to dissipate heat.
さらに、誘電体基板として安価な樹脂系の基板を採用した場合、樹脂系の基板の熱抵抗率は、銅などの金属と比較して100~1000倍程度であり、非常に熱抵抗が大きい。従って、放熱構造1の放熱性は、信号導体を形成する銅箔の熱伝導による放熱が主要素であると考え、信号導体4aの熱抵抗について説明する。
Furthermore, when an inexpensive resin-based substrate is used as the dielectric substrate, the thermal resistance of the resin-based substrate is about 100 to 1000 times that of a metal such as copper, and the thermal resistance is very large. Therefore, it is considered that the heat dissipation of the heat dissipation structure 1 is mainly due to heat dissipation of the copper foil forming the signal conductor, and the thermal resistance of the signal conductor 4a will be described.
前提として、信号導体4aが接続される地導体6は、熱抵抗が非常に小さいものとしている。信号導体4aの熱抵抗RSは、下記式(6)を用いて表現される。下記式(6)において、ρは、熱抵抗率であり、tは、信号導体4aの厚さであり、Wは、信号導体4aの幅であり、lは、信号導体4aの長さである。
As a premise, theground conductor 6 to which the signal conductor 4a is connected has a very small thermal resistance. The thermal resistance RS of the signal conductor 4a is expressed using the following equation (6). In the following formula (6), ρ is the thermal resistance, t is the thickness of the signal conductor 4a, W is the width of the signal conductor 4a, and l is the length of the signal conductor 4a. ..
As a premise, the
信号導体4aの熱抵抗RSを小さくするためには、上記式(6)に従って信号導体4aの長さlを短くするか、厚さtおよび幅Wを大きくする必要がある。しかしながら、前述の通り、信号導体4aの長さlは、動作周波数の波長においてl=λeff/4とする必要があり、動作周波数によって決定される。
In order to reduce the thermal resistance RS of the signal conductor 4a, it is necessary to shorten the length l of the signal conductor 4a or increase the thickness t and the width W according to the above equation (6). However, as described above, the length l of the signal conductor 4a needs to be l = λ eff / 4 at the wavelength of the operating frequency, and is determined by the operating frequency.
一方、誘電体基板5上に、銅箔を用いて信号導体4aを形成した場合、基本的に、銅箔厚さがそのまま信号導体4aの厚さtとなる。なお、メッキなどによって信号導体4aの厚さtを大きくすることも可能であるが、通常の基板製造プロセスでは製造可能なメッキ厚さに制限がある上、基板製造コストが高くなる。これにより、熱抵抗Rsを小さくするためには、信号導体4aの幅Wを広くすることが必要である。
On the other hand, when the signal conductor 4a is formed on the dielectric substrate 5 by using the copper foil, the thickness of the copper foil is basically the same as the thickness t of the signal conductor 4a. Although it is possible to increase the thickness t of the signal conductor 4a by plating or the like, the plating thickness that can be manufactured in a normal substrate manufacturing process is limited, and the substrate manufacturing cost is high. Therefore, in order to reduce the thermal resistance Rs, it is necessary to widen the width W of the signal conductor 4a.
動作帯域幅を広げるためには、信号導体4aの幅Wを狭くする必要があるが、放熱性を改善するためには、信号導体4aの幅Wを広くする必要がある。従って、放熱構造100において、動作帯域幅と放熱性とはトレードオフの関係にあり、一方を改善しようとすると、もう一方が劣化する。
In order to widen the operating bandwidth, it is necessary to narrow the width W of the signal conductor 4a, but in order to improve the heat dissipation, it is necessary to widen the width W of the signal conductor 4a. Therefore, in the heat dissipation structure 100, there is a trade-off relationship between the operating bandwidth and the heat dissipation, and if one is tried to be improved, the other is deteriorated.
実施の形態1に係る放熱構造1の動作を、図1を参照しながら説明する。
まず、放熱構造1による放熱は、基本的に、従来の放熱構造100と同じである。放熱構造1では、信号導体4aと信号導体4bとが並列に接続されているため、信号導体4aおよび信号導体4bの合成熱抵抗RSeは、下記式(7)によって表される。RsAは、信号導体4aの熱抵抗であり、RsBは、信号導体4bの熱抵抗である。
The operation of theheat dissipation structure 1 according to the first embodiment will be described with reference to FIG.
First, the heat dissipation by theheat dissipation structure 1 is basically the same as that of the conventional heat dissipation structure 100. In the heat dissipation structure 1, since the signal conductor 4a and the signal conductor 4b are connected in parallel, the combined thermal resistance R Se of the signal conductor 4a and the signal conductor 4b is represented by the following equation (7). R sA is the thermal resistance of the signal conductor 4a, and R sB is the thermal resistance of the signal conductor 4b.
まず、放熱構造1による放熱は、基本的に、従来の放熱構造100と同じである。放熱構造1では、信号導体4aと信号導体4bとが並列に接続されているため、信号導体4aおよび信号導体4bの合成熱抵抗RSeは、下記式(7)によって表される。RsAは、信号導体4aの熱抵抗であり、RsBは、信号導体4bの熱抵抗である。
The operation of the
First, the heat dissipation by the
信号導体4aと信号導体4bとの厚さt、幅Wおよび長さlを用いて、熱抵抗RSは、上記式(6)によって表現される。2RsA=2RsB=RSとした場合に、上記式(7)によって、信号導体4aおよび信号導体4bの合成熱抵抗RSeと信号導体4aの熱抵抗RSは等しくなる(RSe=RS)。
Using the thickness t, width W, and length l of the signal conductor 4a and the signal conductor 4b, the thermal resistance RS is expressed by the above equation (6). When 2R sA = 2R sB = RS , the combined thermal resistance R Se of the signal conductor 4a and the signal conductor 4b and the thermal resistance R S of the signal conductor 4a become equal (R Se = R) according to the above equation (7). S ).
図2に示した等価回路を参照しながら、放熱構造1の電気的な動作について説明する。一般に、特性インピーダンスZSを有した2つの伝送線路が電気的に結合して結合線路を構成する場合、この結合線路は、偶モードおよび奇モードと呼ばれる2つの伝搬モードを有する。このとき、各モードにおいて、特性インピーダンスおよび伝搬定数が存在する。
The electrical operation of the heat dissipation structure 1 will be described with reference to the equivalent circuit shown in FIG. Generally, when two transmission lines having a characteristic impedance Z S are electrically coupled to form a coupled line, the coupled line has two propagation modes called even mode and odd mode. At this time, the characteristic impedance and the propagation constant exist in each mode.
偶モードにおける特性インピーダンスをZ0eおよび電気長をθeとし、奇モードにおける特性インピーダンスZ0oおよび電気長をθoとする。参考文献2に示すように、理想的な等価回路において、偶モードの特性インピーダンスZ0eと奇モードの特性インピーダンスZ0oは、これらの電気的な結合の強度を表す結合度cを用いて、下記式(8a)および下記式(8b)のように表現される。結合度cは、0<c<1である。
(参考文献2)R. E. Collin, “ Foundations for Microwave Engineering ”, Second Edition, McGRAW-HILL,Inc,1992. The characteristic impedance of even mode and Z 0e and an electrical length theta e, the characteristic impedance Z 0o and electrical length in the odd mode and theta o. As shown in Reference 2, in an ideal equivalent circuit, the characteristic impedance Z 0e in the even mode and the characteristic impedance Z 0o in the odd mode are described below using the coupling degree c representing the strength of these electrical couplings. It is expressed as the formula (8a) and the following formula (8b). The degree of coupling c is 0 <c <1.
(Reference 2) R. E. Collin, "Foundations for Microwave Engineering", Second Edition, McGRAW-HILL, Inc, 1992.
(参考文献2)R. E. Collin, “ Foundations for Microwave Engineering ”, Second Edition, McGRAW-HILL,Inc,1992. The characteristic impedance of even mode and Z 0e and an electrical length theta e, the characteristic impedance Z 0o and electrical length in the odd mode and theta o. As shown in Reference 2, in an ideal equivalent circuit, the characteristic impedance Z 0e in the even mode and the characteristic impedance Z 0o in the odd mode are described below using the coupling degree c representing the strength of these electrical couplings. It is expressed as the formula (8a) and the following formula (8b). The degree of coupling c is 0 <c <1.
(Reference 2) R. E. Collin, "Foundations for Microwave Engineering", Second Edition, McGRAW-HILL, Inc, 1992.
上記式(8a)および上記式(8b)において、偶モードの特性インピーダンスZ0eに着目すると、結合度cを1に近づけていくと、根号内の分母が0に近づくため、偶モードの特性インピーダンスZ0eは発散する。例えば、上記式(8a)において、結合度cを、c≧3/5とすると、Z0e≧2ZSとなり、元の伝送線路の特性インピーダンスZSよりも2倍以上大きな偶モードの特性インピーダンスZ0eが実現される。図2に示した等価回路における給電線路9aと給電線路9bの節点から結合線路11をみた入力インピーダンスZineは、結合線路11における、偶モードの特性インピーダンスZ0eと偶モードの電気長θeを用いて、下記式(9)で表現される。
Focusing on the characteristic impedance Z 0e of the even mode in the above equations (8a) and (8b), the characteristic of the even mode is that the denominator in the radical symbol approaches 0 as the coupling degree c approaches 1. Impedance Z 0e diverges. For example, in the above equation (8a), if the degree of coupling c is c ≧ 3/5 , then Z 0e ≧ 2Z S , which is the characteristic impedance Z of the even mode that is more than twice as large as the characteristic impedance Z S of the original transmission line. 0e is realized. The input impedance Zine when thecoupling line 11 is viewed from the node of the feeding line 9a and the feeding line 9b in the equivalent circuit shown in FIG. 2 sets the characteristic impedance Z 0e of the even mode and the electrical length θ e of the even mode in the coupling line 11. It is expressed by the following equation (9).
Focusing on the characteristic impedance Z 0e of the even mode in the above equations (8a) and (8b), the characteristic of the even mode is that the denominator in the radical symbol approaches 0 as the coupling degree c approaches 1. Impedance Z 0e diverges. For example, in the above equation (8a), if the degree of coupling c is c ≧ 3/5 , then Z 0e ≧ 2Z S , which is the characteristic impedance Z of the even mode that is more than twice as large as the characteristic impedance Z S of the original transmission line. 0e is realized. The input impedance Zine when the
偶モードにおける電気長θeは、偶モードの位相定数βeと、伝送線路10aおよび伝送線路10bの物理長lを用いることで、下記式(10)によって表現される。
The electrical length θ e in the even mode is expressed by the following equation (10) by using the phase constant β e in the even mode and the physical length l of thetransmission line 10a and the transmission line 10b.
The electrical length θ e in the even mode is expressed by the following equation (10) by using the phase constant β e in the even mode and the physical length l of the
偶モードの位相定数βeは、偶モードにおける実効波長λeffeを用いて下記式(11)によって表現される。
The phase constant β e in the even mode is expressed by the following equation (11) using the effective wavelength λ effe in the even mode.
The phase constant β e in the even mode is expressed by the following equation (11) using the effective wavelength λ effe in the even mode.
放熱構造1は、従来の放熱構造100と同様に、動作周波数において、θe=π/2となるように、物理長lが決定されることにより、Zine=∞となる。すなわち、動作周波数において、入力端子2aに入力された高周波信号は、反射なく、出力端子2bから出力される。上記式(9)と電気長θをθeとした上記式(1)とを比較すると、両式の違いは、特性インピーダンスZSとZ0e/2である。
Similar to the conventional heat dissipation structure 100, the heat dissipation structure 1 has Zine = ∞ by determining the physical length l so that θ e = π / 2 at the operating frequency. That is, at the operating frequency, the high frequency signal input to the input terminal 2a is output from the output terminal 2b without reflection. Comparing the above equation (9) with the above equation (1) in which the electrical length θ is θ e , the difference between the two equations is the characteristic impedance Z S and Z 0 e / 2.
結合導体8における、偶モードの特性インピーダンスおよび奇モードの特性インピーダンスとの電気的な結合度cを大きくすることにより、偶モードの特性インピーダンスZ0eを、特性インピーダンスZSの2倍以上(Z0e≧2ZS)にできる。従って、2ZS=Z0eとなるように、信号導体4aと信号導体4bとの幅Wと、信号導体4aと信号導体4bとの厚さ方向の間隔が設計された放熱構造1は、放熱構造100との間で同一の反射特性となる。このとき、結合線路11の熱抵抗Rs2を、放熱構造100の熱抵抗RSと比較し、RSe<RSとなるように設計することで、放熱構造1は、反射特性を、放熱構造100と同一としながら、放熱性の改善が可能となる。
By increasing the degree of electrical coupling c between the even-mode characteristic impedance and the odd-mode characteristic impedance in the coupling conductor 8, the even-mode characteristic impedance Z 0e is more than twice the characteristic impedance Z S (Z 0e). ≧ 2Z S ). Therefore, the heat dissipation structure 1 in which the width W between the signal conductor 4a and the signal conductor 4b and the distance between the signal conductor 4a and the signal conductor 4b in the thickness direction are designed so that 2Z S = Z 0e is a heat dissipation structure. It has the same reflection characteristics as 100. At this time, by comparing the thermal resistance R s2 of the coupling line 11 with the thermal resistance RS of the heat radiating structure 100 and designing so that R Se < RS , the heat radiating structure 1 has a reflection characteristic and a heat radiating structure. It is possible to improve the heat dissipation while making it the same as 100.
放熱構造1においては、放熱性の改善のために、線路幅Wを大きくしつつ、偶モードの特性インピーダンスZ0eと特性インピーダンスZSとが、2ZS=Z0eの関係となることが望ましい。従って、放熱構造1では、製造上可能な限り、信号導体4aと信号導体4bとの厚さ方向の間隔を小さくし、結合度cを大きくすることが求められる。
In the heat dissipation structure 1, it is desirable that the characteristic impedance Z 0e and the characteristic impedance Z S in the even mode have a relationship of 2Z S = Z 0e while increasing the line width W in order to improve the heat dissipation. Therefore, in the heat dissipation structure 1, it is required to reduce the distance between the signal conductor 4a and the signal conductor 4b in the thickness direction and increase the degree of coupling c as much as possible in manufacturing.
図6は、放熱構造1の等価回路における反射振幅の計算結果の例を示すグラフである。図6において、横軸はθ=π/2(rad)となる周波数で規格化された周波数であり、縦軸は反射振幅を表している。図6に示す反射振幅の計算結果は、Z0=50Ωとし、結合線路11の偶モードの特性インピーダンスZOeを、50Ω(一点破線)、100Ω(実線)、200Ω(破線)と変化させて反射振幅を計算した結果である。
FIG. 6 is a graph showing an example of the calculation result of the reflection amplitude in the equivalent circuit of the heat dissipation structure 1. In FIG. 6, the horizontal axis represents the frequency standardized by the frequency at which θ = π / 2 (rad), and the vertical axis represents the reflection amplitude. The calculation result of the reflection amplitude shown in FIG. 6 is Z 0 = 50Ω, and the characteristic impedance Z Oe of the even mode of the coupling line 11 is changed to 50Ω (dashed line), 100Ω (solid line), and 200Ω (dashed line) for reflection. This is the result of calculating the amplitude.
図6から明らかなように、特性インピーダンスZOeが大きくなるつれて一定の反射振幅以下となる帯域幅が広くなっている。仮に、反射振幅-20dB以下を目標とした場合、ZOe=50Ωでは比帯域幅12%となり、ZOe=200Ωでは比帯域幅48%となっており、特性インピーダンスZOeが大きい方がより広帯域になっている。これは、図5に示したように、放熱構造100の等価回路において、特性インピーダンスZSを、25Ω、50Ω、100Ωと変化させたときの計算結果と等しい。等価回路の計算結果から明らかなように、放熱構造1において偶モードの特性インピーダンスZ0eを設計することで、放熱構造100と同等の電気特性が得らえる。
As is clear from FIG. 6, as the characteristic impedance Z Oe increases, the bandwidth that becomes below a certain reflection amplitude becomes wider. If the target is a reflection amplitude of -20 dB or less, the specific bandwidth is 12% when Z Oe = 50 Ω, and the specific bandwidth is 48% when Z Oe = 200 Ω. The larger the characteristic impedance Z Oe, the wider the band. It has become. This is equivalent to the calculation result when the characteristic impedance Z S is changed to 25Ω, 50Ω, and 100Ω in the equivalent circuit of the heat dissipation structure 100 as shown in FIG. As is clear from the calculation result of the equivalent circuit, by designing the characteristic impedance Z 0e of the even mode in the heat dissipation structure 1, the electric characteristics equivalent to those of the heat dissipation structure 100 can be obtained.
図7は、実施の形態1に係る放熱構造1と従来の放熱構造100とにおける反射振幅の電磁界解析結果を示すグラフであり、横軸は周波数、縦軸は反射振幅を示している。図7に示す反射振幅の電磁界解析結果は、誘電体基板5または104の誘電率を3.7とし、信号導体4a、信号導体4bおよび信号導体103aのそれぞれの長さを18.75mmとして得られたものである。符号Cを付した破線の関係が、放熱構造1の電磁界解析結果であり、符号Dを付した破線の関係が、放熱構造100の電磁界解析結果である。
FIG. 7 is a graph showing the electromagnetic field analysis results of the reflection amplitudes of the heat dissipation structure 1 and the conventional heat dissipation structure 100 according to the first embodiment, where the horizontal axis shows the frequency and the vertical axis shows the reflection amplitude. The electromagnetic field analysis result of the reflection amplitude shown in FIG. 7 is obtained with the dielectric constant of the dielectric substrate 5 or 104 being 3.7 and the lengths of the signal conductor 4a, the signal conductor 4b, and the signal conductor 103a being 18.75 mm. It was done. The relationship of the broken line with the reference numeral C is the electromagnetic field analysis result of the heat dissipation structure 1, and the relationship of the broken line with the reference numeral D is the electromagnetic field analysis result of the heat dissipation structure 100.
図8Aは、放熱構造1を、図1AのA-A’線で切断した断面および寸法を示す断面図である。図8Bは、放熱構造100を、図3AのA-A’線で切断した断面および寸法を示す断面図である。図8Aおよび図8Bにおいて、信号導体4a、信号導体4bおよび信号導体103aの厚さtcは、0.036mmであり、誘電体基板5および誘電体基板104の厚さhは、1.5mmである。信号導体4aと信号導体4bとの厚さ方向の間隔dは、0.15mmである。信号導体4aと信号導体4bとの幅Wは、1.1mmであり、信号導体103aの幅Wは、1.5mmである。
FIG. 8A is a cross-sectional view showing a cross section and dimensions of the heat radiating structure 1 cut along the line AA'of FIG. 1A. FIG. 8B is a cross-sectional view showing a cross section and dimensions of the heat radiating structure 100 cut along the line AA'of FIG. 3A. In FIGS. 8A and 8B, the thickness t c of the signal conductor 4a, the signal conductor 4b and the signal conductor 103a is 0.036 mm, and the thickness h of the dielectric substrate 5 and the dielectric substrate 104 is 1.5 mm. be. The distance d between the signal conductor 4a and the signal conductor 4b in the thickness direction is 0.15 mm. The width W of the signal conductor 4a and the signal conductor 4b is 1.1 mm, and the width W of the signal conductor 103a is 1.5 mm.
放熱構造1は、信号導体の幅Wを広くしつつ、より高い偶モードの特性インピーダンスZ0eを実現するため、信号導体4aと信号導体4bとの厚さ方向の間隔dが誘電体基板5の厚さhの10分の1程度と設定されている。図7に示すように、放熱構造1の反射振幅と放熱構造100の反射振幅は、概ね一致しており、同等の動作帯域幅が得られている。図8Bおよび図8Cに示した寸法に基づいて、放熱構造1と放熱構造100との熱抵抗の比RSe/RSを算出すると、RSe/RS=0.68となり、放熱構造100と比較して、熱抵抗が30%程度低減されている。
In the heat radiating structure 1, in order to realize a higher even mode characteristic impedance Z 0e while widening the width W of the signal conductor, the distance d in the thickness direction between the signal conductor 4a and the signal conductor 4b is the dielectric substrate 5. It is set to be about 1/10 of the thickness h. As shown in FIG. 7, the reflection amplitude of the heat dissipation structure 1 and the reflection amplitude of the heat dissipation structure 100 are substantially the same, and the same operating bandwidth is obtained. When the ratio R Se / RS of the thermal resistance between the heat radiation structure 1 and the heat radiation structure 100 is calculated based on the dimensions shown in FIGS. 8B and 8C, R Se / RS = 0.68, and the heat radiation structure 100 In comparison, the thermal resistance is reduced by about 30%.
図9Aは、実施の形態1に係る放熱構造1の変形例である放熱構造1Aを示す斜視図である。図9Bは、放熱構造1Aの変形例を、図9AのA-A’線で切断した断面を示す断面図である。図9Cは、放熱構造1Aの変形例を、図9AのB-B’線で切断した断面を示す断面図である。放熱構造1Aは、放熱構造1の構成に加え、伝熱部材12および金属体13を備える。放熱構造1Aにおける地導体6には、伝熱部材12を介して金属体13が接続されている。これらの部材を有することで、放熱構造1Aは、地導体6からの放熱性が改善する。伝熱部材12には、熱伝導グリス、熱伝導シートあるいは導電性接着剤が用いられる。金属体13は、放熱性をさらに改善するために放熱フィンを備えてもよい。
FIG. 9A is a perspective view showing a heat radiating structure 1A which is a modification of the heat radiating structure 1 according to the first embodiment. FIG. 9B is a cross-sectional view showing a modified example of the heat dissipation structure 1A cut along the line AA'of FIG. 9A. FIG. 9C is a cross-sectional view showing a modified example of the heat dissipation structure 1A cut along the line BB'of FIG. 9A. The heat radiating structure 1A includes a heat transfer member 12 and a metal body 13 in addition to the structure of the heat radiating structure 1. A metal body 13 is connected to the ground conductor 6 in the heat radiating structure 1A via a heat transfer member 12. By having these members, the heat radiating structure 1A improves the heat radiating property from the ground conductor 6. A heat conductive grease, a heat conductive sheet, or a conductive adhesive is used for the heat transfer member 12. The metal body 13 may be provided with heat radiating fins in order to further improve the heat radiating property.
これまでの説明では、信号導体4aおよび信号導体4bが、同一の線路幅である場合を示したが、両者の線路幅は異なっていてもよい。また、信号導体4bを、平面的にみて、信号導体4aと重なるように配置した場合を示したが、例えば、信号導体4aおよび信号導体4bは、長さ方向と垂直かつ誘電体基板5の平面方向へオフセットして配置されてもよい。放熱構造1の放熱性をより改善するためには、結合度cを大きくする必要があり、オフセット量は、線路幅W以下であるものとし、平面的にみて、信号導体4aと信号導体4bの少なくとも一部が重なるように配置されていることが望ましい。
In the explanation so far, the case where the signal conductor 4a and the signal conductor 4b have the same line width has been shown, but the line widths of both may be different. Further, the case where the signal conductor 4b is arranged so as to overlap the signal conductor 4a when viewed in a plane is shown. For example, the signal conductor 4a and the signal conductor 4b are perpendicular to the length direction and the plane of the dielectric substrate 5. It may be arranged offset in the direction. In order to further improve the heat dissipation of the heat dissipation structure 1, it is necessary to increase the coupling degree c, and the offset amount is assumed to be the line width W or less, and the signal conductor 4a and the signal conductor 4b are viewed in a plane. It is desirable that at least a part of them overlap each other.
また、これまでの説明では、誘電体基板5の第2の面に地導体6が配置され、第1の面に信号導体が形成された、いわゆるマイクロストリップ線路構造である放熱構造1または1Aを示した。ただし、放熱構造1または1Aは、誘電体基板5の両面に地導体を設け、誘電体基板5の内層に信号導体を設けたストリップ線路構造であってもよい。
Further, in the description so far, the heat dissipation structure 1 or 1A which is a so-called microstrip line structure in which the ground conductor 6 is arranged on the second surface of the dielectric substrate 5 and the signal conductor is formed on the first surface is provided. Indicated. However, the heat dissipation structure 1 or 1A may be a strip line structure in which ground conductors are provided on both sides of the dielectric substrate 5 and signal conductors are provided in the inner layer of the dielectric substrate 5.
以上のように、実施の形態1に係る放熱構造1は、高周波信号の入力端子2aに一方の端部が接続された信号導体3aと、高周波信号の出力端子2bに一方の端部が接続され、信号導体3aにおける入力端子2aとは反対側の端部に他方の端部が接続された信号導体3bと、動作周波数の波長の4分の1の長さを有し、信号導体3aと信号導体3bの接続点に端部が接続された信号導体4aと、誘電体基板5の内層に設けられ、動作周波数の波長の4分の1の長さを有した信号導体4bと、信号導体4bの一方の端部を信号導体3aと信号導体3bとの接続点に接続する接続導体7aと、信号導体4aの他方の端部を信号導体4bおよび地導体6に接続する接続導体7bとを備える。信号導体4aは、信号導体3aと信号導体3bとの接続点に接続され、信号導体4bは、平面的にみて、信号導体4aと少なくとも一部が重なるように、信号導体4aを含む平面と平行に配置されている。信号導体4aと信号導体4bが並列に接続され、平面的にみて、信号導体4aと信号導体4bが重なるように信号導体4aを含む平面と平行に配置されている。これにより、放熱構造1は、放熱構造100と同等の動作帯域幅で狭帯域化することなく、信号導体3aと信号導体3bとの接続点から信号導体4aおよび信号導体4bをみた熱抵抗を低減でき、放熱性を改善することができる。
As described above, in the heat dissipation structure 1 according to the first embodiment, one end is connected to the signal conductor 3a to which one end is connected to the input terminal 2a of the high frequency signal, and one end is connected to the output terminal 2b of the high frequency signal. , A signal conductor 3b in which the other end is connected to an end opposite to the input terminal 2a in the signal conductor 3a, and a signal conductor 3a and a signal having a length of one-fourth of the wavelength of the operating frequency. A signal conductor 4a whose end is connected to a connection point of the conductor 3b, a signal conductor 4b provided in the inner layer of the dielectric substrate 5 and having a length of a quarter of the operating frequency wavelength, and a signal conductor 4b. It includes a connecting conductor 7a that connects one end to a connection point between the signal conductor 3a and the signal conductor 3b, and a connecting conductor 7b that connects the other end of the signal conductor 4a to the signal conductor 4b and the ground conductor 6. .. The signal conductor 4a is connected to the connection point between the signal conductor 3a and the signal conductor 3b, and the signal conductor 4b is parallel to the plane including the signal conductor 4a so that at least a part of the signal conductor 4a overlaps the signal conductor 4a when viewed in a plane. Is located in. The signal conductor 4a and the signal conductor 4b are connected in parallel, and are arranged in parallel with the plane including the signal conductor 4a so that the signal conductor 4a and the signal conductor 4b overlap each other when viewed in a plane. As a result, the heat dissipation structure 1 reduces the thermal resistance of the signal conductor 4a and the signal conductor 4b from the connection point between the signal conductor 3a and the signal conductor 3b without narrowing the operating bandwidth equivalent to that of the heat dissipation structure 100. It can improve heat dissipation.
実施の形態2.
10Aは、実施の形態2に係る放熱構造1Bを示す斜視図である。図10Bは、放熱構造1Bを、図10AのA-A’線で切断した断面を示す断面図である。図10Cは、放熱構造1Bを、図10AのB-B’線で切断した断面を示す断面図である。図10A、図10Bおよび図10Cにおいて、放熱構造1Bは、例えば、高周波信号が入出力される高周波回路であり、入力端子2a、出力端子2b、信号導体3a、信号導体3b、信号導体4a、信号導体4b、誘電体基板5、地導体6、接続導体7b、接続導体7c、および電極14を備える。 Embodiment 2.
10A is a perspective view showing theheat dissipation structure 1B according to the second embodiment. FIG. 10B is a cross-sectional view showing a cross section of the heat radiating structure 1B cut along the line AA'of FIG. 10A. FIG. 10C is a cross-sectional view showing a cross section of the heat radiating structure 1B cut along the line BB'of FIG. 10A. In FIGS. 10A, 10B and 10C, the heat dissipation structure 1B is, for example, a high frequency circuit into which a high frequency signal is input / output, and is an input terminal 2a, an output terminal 2b, a signal conductor 3a, a signal conductor 3b, a signal conductor 4a, and a signal. It includes a conductor 4b, a dielectric substrate 5, a ground conductor 6, a connecting conductor 7b, a connecting conductor 7c, and an electrode 14.
10Aは、実施の形態2に係る放熱構造1Bを示す斜視図である。図10Bは、放熱構造1Bを、図10AのA-A’線で切断した断面を示す断面図である。図10Cは、放熱構造1Bを、図10AのB-B’線で切断した断面を示す断面図である。図10A、図10Bおよび図10Cにおいて、放熱構造1Bは、例えば、高周波信号が入出力される高周波回路であり、入力端子2a、出力端子2b、信号導体3a、信号導体3b、信号導体4a、信号導体4b、誘電体基板5、地導体6、接続導体7b、接続導体7c、および電極14を備える。 Embodiment 2.
10A is a perspective view showing the
電極14は、誘電体基板5の第2の面(-z方向の面)に設けられ、地導体6の一部が除去されて形成された電極である。信号導体3aは、誘電体基板5の第1の面(+z方向の面)に設けられ、一方の端部が入力端子2aに接続され、他方の端部が信号導体3bの端部に接続された第1の信号導体である。信号導体3bは、誘電体基板5の第1の面に設けられ、一方の端部が出力端子2bに接続され、他方の端部が信号導体3aにおける入力端子2aとは反対側の端部に接続された第2の信号導体である。
The electrode 14 is an electrode provided on the second surface (plane in the −z direction) of the dielectric substrate 5 and formed by removing a part of the ground conductor 6. The signal conductor 3a is provided on the first surface (plane in the + z direction) of the dielectric substrate 5, one end is connected to the input terminal 2a, and the other end is connected to the end of the signal conductor 3b. It is the first signal conductor. The signal conductor 3b is provided on the first surface of the dielectric substrate 5, one end is connected to the output terminal 2b, and the other end is at the end of the signal conductor 3a opposite to the input terminal 2a. It is a connected second signal conductor.
信号導体4aは、誘電体基板5の第1の面に設けられ、動作周波数の波長の4分の1の長さを有し、一方の端部が信号導体3aと信号導体3bとの接続点に接続された第3の信号導体である。信号導体4bは、図10Bおよび図10Cに示すように、誘電体基板5の内層に設けられ、動作周波数の波長の4分の1の長さを有し、平面的にみて信号導体4aと少なくとも一部が重なるように、信号導体4aを含む平面と平行に配置された、第4の信号導体である。誘電体基板5における第1の面とは反対側の第2の面には、導体のベタパターンである地導体6が形成されている。
The signal conductor 4a is provided on the first surface of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and one end is a connection point between the signal conductor 3a and the signal conductor 3b. It is a third signal conductor connected to. As shown in FIGS. 10B and 10C, the signal conductor 4b is provided in the inner layer of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and is at least equal to the signal conductor 4a in terms of plan. It is a fourth signal conductor arranged parallel to the plane including the signal conductor 4a so as to partially overlap. A ground conductor 6, which is a solid pattern of a conductor, is formed on a second surface of the dielectric substrate 5 opposite to the first surface.
接続導体7bは、誘電体基板5の内層に設けられ、信号導体4bの他方の端部を信号導体4aおよび地導体6に接続する第2の接続導体である。接続導体7cは、誘電体基板5の内層に設けられ、接続導体7cは、信号導体4aの一方の端部を、信号導体3aと信号導体3bとの接続点、信号導体4bおよび電極14に接続する第1の接続導体である。結合導体8は、動作周波数の波長の4分の1の長さを有した信号導体4aおよび信号導体4bが電気的に結合したものである。
The connecting conductor 7b is a second connecting conductor provided in the inner layer of the dielectric substrate 5 and connecting the other end of the signal conductor 4b to the signal conductor 4a and the ground conductor 6. The connecting conductor 7c is provided in the inner layer of the dielectric substrate 5, and the connecting conductor 7c connects one end of the signal conductor 4a to the connection point between the signal conductor 3a and the signal conductor 3b, the signal conductor 4b and the electrode 14. It is the first connecting conductor to be used. The coupling conductor 8 is an electrically coupled signal conductor 4a and a signal conductor 4b having a length of one-fourth of the wavelength of the operating frequency.
放熱構造1Bは、実施の形態1に係る放熱構造1と同様に、入力端子2aに接続される電力増幅器に発生した熱を、結合導体8を介して地導体6に放熱するものである。また、放熱構造1は、図1Bに示したように、誘電体基板5における信号導体4aが設けられた第1の面から信号導体4bが設けられた内層を接続する接続導体7aと、誘電体基板5を貫通して配置された接続導体7bとの2種類の接続導体を有する。
Similar to the heat dissipation structure 1 according to the first embodiment, the heat dissipation structure 1B dissipates heat generated in the power amplifier connected to the input terminal 2a to the ground conductor 6 via the coupling conductor 8. Further, as shown in FIG. 1B, the heat dissipation structure 1 includes a connecting conductor 7a connecting the inner layer provided with the signal conductor 4b from the first surface of the dielectric substrate 5 provided with the signal conductor 4a, and a dielectric material. It has two types of connecting conductors with a connecting conductor 7b arranged so as to penetrate the substrate 5.
放熱構造1は、誘電体基板5を貫通する接続導体だけでなく、誘電体基板5の内層で止まる接続導体を有するので、これらの接続導体を設けるためには別々にヴィアホール加工を行う必要があり、工数が増加する。これに対して、放熱構造1Bが備える接続導体7bおよび7cは、誘電体基板5を貫通する接続導体のみが用いられ、これらの接続導体は、一度のヴィアホール加工で得られる。これにより、放熱構造1Bは、製造工数を削減可能である。
Since the heat radiating structure 1 has not only a connecting conductor penetrating the dielectric substrate 5 but also a connecting conductor that stops at the inner layer of the dielectric substrate 5, it is necessary to separately perform viahole processing in order to provide these connecting conductors. Yes, the man-hours will increase. On the other hand, as the connecting conductors 7b and 7c included in the heat radiating structure 1B, only the connecting conductors penetrating the dielectric substrate 5 are used, and these connecting conductors can be obtained by one via hole processing. As a result, the heat dissipation structure 1B can reduce the manufacturing man-hours.
以上のように、実施の形態2に係る放熱構造1Bは、誘電体基板5の第2の面に設けられ、地導体6の一部が除去されて形成された電極14を備える。接続導体7cは、信号導体4bの一方の端部を、信号導体3aと信号導体3bとの接続点と電極14に接続する。接続導体7cおよび電極14の大きさは、動作周波数の波長に比べて十分に小さく、接続導体7cおよび電極14からの影響は無視できる。従って、放熱構造1Bは、放熱構造1に比べて動作帯域幅および放熱性能を同等としつつ、簡易な製造方法によって製造することができる。これにより、製造コストも低減される。
As described above, the heat radiating structure 1B according to the second embodiment includes an electrode 14 provided on the second surface of the dielectric substrate 5 and formed by removing a part of the ground conductor 6. The connecting conductor 7c connects one end of the signal conductor 4b to the connection point between the signal conductor 3a and the signal conductor 3b and the electrode 14. The size of the connecting conductor 7c and the electrode 14 is sufficiently small compared to the wavelength of the operating frequency, and the influence from the connecting conductor 7c and the electrode 14 can be ignored. Therefore, the heat dissipation structure 1B can be manufactured by a simple manufacturing method while having the same operating bandwidth and heat dissipation performance as the heat dissipation structure 1. As a result, the manufacturing cost is also reduced.
実施の形態3.
図11Aは、実施の形態3に係る放熱構造1Cを示す斜視図である。図11Bは、放熱構造1Cを、図11AのA-A’線で切断した断面を示す断面図である。図11Cは、放熱構造1Cを、図11AのB-B’線で切断した断面を示す断面図である。図11A、図11Bおよび図11Cにおいて、放熱構造1Cは、例えば、高周波信号が入出力される高周波回路であり、入力端子2a、出力端子2b、信号導体3a、信号導体3b、信号導体4c、信号導体4d、誘電体基板5、地導体6、接続導体7a、接続導体7b、接続導体7d、電極14a、電極14bおよびチップコンデンサ15を備える。 Embodiment 3.
FIG. 11A is a perspective view showing theheat dissipation structure 1C according to the third embodiment. FIG. 11B is a cross-sectional view showing a cross section of the heat radiating structure 1C cut along the line AA'of FIG. 11A. FIG. 11C is a cross-sectional view showing a cross section of the heat radiating structure 1C cut along the line BB'of FIG. 11A. In FIGS. 11A, 11B and 11C, the heat dissipation structure 1C is, for example, a high frequency circuit into which a high frequency signal is input / output, and is an input terminal 2a, an output terminal 2b, a signal conductor 3a, a signal conductor 3b, a signal conductor 4c, and a signal. A conductor 4d, a dielectric substrate 5, a ground conductor 6, a connecting conductor 7a, a connecting conductor 7b, a connecting conductor 7d, an electrode 14a, an electrode 14b, and a chip capacitor 15 are provided.
図11Aは、実施の形態3に係る放熱構造1Cを示す斜視図である。図11Bは、放熱構造1Cを、図11AのA-A’線で切断した断面を示す断面図である。図11Cは、放熱構造1Cを、図11AのB-B’線で切断した断面を示す断面図である。図11A、図11Bおよび図11Cにおいて、放熱構造1Cは、例えば、高周波信号が入出力される高周波回路であり、入力端子2a、出力端子2b、信号導体3a、信号導体3b、信号導体4c、信号導体4d、誘電体基板5、地導体6、接続導体7a、接続導体7b、接続導体7d、電極14a、電極14bおよびチップコンデンサ15を備える。 Embodiment 3.
FIG. 11A is a perspective view showing the
信号導体3aは、誘電体基板5の第1の面(+z方向の面)に設けられ、一方の端部が入力端子2aに接続され、他方の端部が信号導体3bの端部に接続された第1の信号導体である。信号導体3bは、誘電体基板5の第1の面に設けられ、一方の端部が出力端子2bに接続され、他方の端部が信号導体3aにおける入力端子2aとは反対側の端部に接続された第2の信号導体である。
The signal conductor 3a is provided on the first surface (plane in the + z direction) of the dielectric substrate 5, one end is connected to the input terminal 2a, and the other end is connected to the end of the signal conductor 3b. It is the first signal conductor. The signal conductor 3b is provided on the first surface of the dielectric substrate 5, one end is connected to the output terminal 2b, and the other end is at the end of the signal conductor 3a opposite to the input terminal 2a. It is a connected second signal conductor.
信号導体4cは、誘電体基板5の第1の面に設けられ、動作周波数の波長の4分の1の長さを有し、一方の端部が信号導体3aと信号導体3bとの接続点に接続された第3の信号導体である。信号導体4dは、図11Bおよび図11Cに示すように、誘電体基板5の内層に設けられ、動作周波数の波長の4分の1の長さを有し、平面的にみて信号導体4cと少なくとも一部が重なるように、信号導体4cを含む平面と平行に配置された、第4の信号導体である。誘電体基板5における第1の面とは反対側の第2の面(-z方向の面)には、導体のベタパターンである地導体6が形成されている。
The signal conductor 4c is provided on the first surface of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and one end is a connection point between the signal conductor 3a and the signal conductor 3b. It is a third signal conductor connected to. As shown in FIGS. 11B and 11C, the signal conductor 4d is provided in the inner layer of the dielectric substrate 5, has a length of one-fourth of the wavelength of the operating frequency, and is at least equal to the signal conductor 4c in terms of plan. It is a fourth signal conductor arranged parallel to the plane including the signal conductor 4c so that a part of the signal conductor overlaps. A ground conductor 6, which is a solid pattern of a conductor, is formed on a second surface (a surface in the −z direction) opposite to the first surface of the dielectric substrate 5.
電極14aは、誘電体基板5の第1の面に設けられ、信号導体3aと信号導体3bとの接続点に接続された第1の電極である。電極14bは、誘電体基板5の第1の面に設けられ、接続導体7dによって地導体6と接続された第2の電極である。チップコンデンサ15は、電極14aと電極14bとの間を接続するコンデンサである。
The electrode 14a is a first electrode provided on the first surface of the dielectric substrate 5 and connected to a connection point between the signal conductor 3a and the signal conductor 3b. The electrode 14b is a second electrode provided on the first surface of the dielectric substrate 5 and connected to the ground conductor 6 by the connecting conductor 7d. The chip capacitor 15 is a capacitor that connects the electrode 14a and the electrode 14b.
接続導体7aは、信号導体4cの一方の端部を、信号導体3aと信号導体3bとの接続点および信号導体4dに接続する第1の接続導体である。接続導体7bは、信号導体4cの他方の端部を、信号導体4cおよび地導体6に接続する第2の接続導体である。接続導体7dは、誘電体基板5の内層に設けられて、電極14bを地導体6に接続する第3の接続導体である。
The connecting conductor 7a is a first connecting conductor that connects one end of the signal conductor 4c to the connection point between the signal conductor 3a and the signal conductor 3b and the signal conductor 4d. The connecting conductor 7b is a second connecting conductor that connects the other end of the signal conductor 4c to the signal conductor 4c and the ground conductor 6. The connecting conductor 7d is a third connecting conductor provided in the inner layer of the dielectric substrate 5 and connecting the electrode 14b to the ground conductor 6.
結合導体16は、動作周波数の波長の4分の1の長さを有した信号導体4cおよび信号導体4dが電気的に結合したものである。信号導体4cと信号導体4dとの間の厚み方向(z方向)の間隔dは、例えば、誘電体基板5の厚さの10分の1以下である。信号導体3a、信号導体3b、信号導体4cおよび信号導体4dは、地導体6と合わせて高周波信号を伝送する伝送線路として機能する。
The coupling conductor 16 is an electrically coupled signal conductor 4c and a signal conductor 4d having a length of one-fourth of the wavelength of the operating frequency. The distance d in the thickness direction (z direction) between the signal conductor 4c and the signal conductor 4d is, for example, one tenth or less of the thickness of the dielectric substrate 5. The signal conductor 3a, the signal conductor 3b, the signal conductor 4c, and the signal conductor 4d function together with the ground conductor 6 as a transmission line for transmitting a high frequency signal.
放熱構造1は、高周波特性に影響を与えぬように、動作周波数における、入力インピーダンスZin=∞となるように、物理長lを決定していた。このため、信号導体4aおよび信号導体4bの長さは、動作周波数によって制限される。上記式(6)に示すように、信号導体4aおよび信号導体4bの熱抵抗は、信号導体の長さlに比例する。信号導体の熱抵抗は、信号導体の長さlを短くすることで、小さくすることができる。
In the heat dissipation structure 1, the physical length l was determined so that the input impedance Z in = ∞ at the operating frequency so as not to affect the high frequency characteristics. Therefore, the lengths of the signal conductor 4a and the signal conductor 4b are limited by the operating frequency. As shown in the above equation (6), the thermal resistance of the signal conductor 4a and the signal conductor 4b is proportional to the length l of the signal conductor. The thermal resistance of the signal conductor can be reduced by shortening the length l of the signal conductor.
しかしながら、熱抵抗を低減するためには、放熱構造1において、信号導体4aおよび信号導体4bの長さ以外のパラメータを設計しなくてはならない。これに対し、放熱構造1Cは、結合導体16と並列にチップコンデンサ15が接続され、チップコンデンサ15によって結合導体16の長さを、動作周波数の波長の1/4波長以下とすることができるので、熱抵抗を低減することが可能となる。
However, in order to reduce the thermal resistance, it is necessary to design parameters other than the lengths of the signal conductor 4a and the signal conductor 4b in the heat dissipation structure 1. On the other hand, in the heat dissipation structure 1C, the chip capacitor 15 is connected in parallel with the coupling conductor 16, and the length of the coupling conductor 16 can be set to 1/4 or less of the wavelength of the operating frequency by the chip capacitor 15. , It is possible to reduce the thermal resistance.
図12は、実施の形態3に係る放熱構造1Cの等価回路を示す回路図であり、放熱構造1Cの電気的な動作を表す等価回路である。図12に示す等価回路は、高周波信号が入力される入力端子2a、高周波信号が出力される出力端子2b、給電線路9a、給電線路9b、伝送線路10cおよび伝送線路10dによって構成される。伝送線路10cおよび伝送線路10dは、動作周波数の波長の4分の1の長さを有している。
FIG. 12 is a circuit diagram showing an equivalent circuit of the heat dissipation structure 1C according to the third embodiment, and is an equivalent circuit showing the electrical operation of the heat dissipation structure 1C. The equivalent circuit shown in FIG. 12 is composed of an input terminal 2a into which a high-frequency signal is input, an output terminal 2b in which a high-frequency signal is output, a power supply line 9a, a power supply line 9b, a transmission line 10c, and a transmission line 10d. The transmission line 10c and the transmission line 10d have a length of one-fourth of the wavelength of the operating frequency.
給電線路9aは、一方の端部が入力端子2aに接続され、他方の端部が給電線路9bの端部に接続されている。給電線路9bは、一方の端部が出力端子2bに接続され、他方の端部が、給電線路9aにおける入力端子2aとは反対側の端部に接続されている。図11に示したチップコンデンサ15のキャパシタが、図12に示すキャパシタである。以降、キャパシタ15と記載する。キャパシタ15は、一方の端部が給電線路9aと給電線路9bとの接続点に接続され、もう一方は接地されている。
One end of the power supply line 9a is connected to the input terminal 2a, and the other end is connected to the end of the power supply line 9b. One end of the power supply line 9b is connected to the output terminal 2b, and the other end is connected to the end of the power supply line 9a opposite to the input terminal 2a. The capacitor of the chip capacitor 15 shown in FIG. 11 is the capacitor shown in FIG. Hereinafter, it will be referred to as a capacitor 15. One end of the capacitor 15 is connected to the connection point between the feeding line 9a and the feeding line 9b, and the other end is grounded.
結合導体16は、動作周波数の波長の4分の1の長さを有した伝送線路10cと伝送線路10dとが電気的に結合されて構成され、先端短絡1/4波長スタブとして機能する。伝送線路10cおよび伝送線路10dの端部のうち、同じ側にある端部は、互いに接続される。伝送線路10cおよび伝送線路10dにおける、互いに接続された端部の一方は、給電線路9aと給電線路9bとの接続点に接続され、もう一方は接地される。
The coupling conductor 16 is configured by electrically coupling a transmission line 10c having a length of one-fourth of the wavelength of the operating frequency and a transmission line 10d, and functions as a tip short-circuit 1/4 wavelength stub. Of the ends of the transmission line 10c and the transmission line 10d, the ends on the same side are connected to each other. One of the end portions of the transmission line 10c and the transmission line 10d connected to each other is connected to the connection point between the power supply line 9a and the power supply line 9b, and the other is grounded.
図11に示した信号導体3aおよび信号導体3bは、地導体6と合わせて、高周波信号を伝送する伝送線路として機能する。図12においては、給電線路9aが信号導体3aに対応し、給電線路9bが信号導体3bに対応する。伝送線路10cは、図11に示した信号導体4cに対応し、伝送線路10dは、信号導体4dに対応する。
The signal conductor 3a and the signal conductor 3b shown in FIG. 11 together with the ground conductor 6 function as a transmission line for transmitting a high frequency signal. In FIG. 12, the feeding line 9a corresponds to the signal conductor 3a, and the feeding line 9b corresponds to the signal conductor 3b. The transmission line 10c corresponds to the signal conductor 4c shown in FIG. 11, and the transmission line 10d corresponds to the signal conductor 4d.
図12に示すように、キャパシタ15は、結合導体16である先端短絡1/4波長スタブと並列に装荷されている。先端短絡1/4波長スタブは、動作周波数付近で、LC並列共振回路として動作する。先端短絡1/4波長スタブに対してキャパシタ15を並列に装荷することによって、共振周波数が低域側にシフトする。これにより、放熱構造1Cは、同一の周波数で動作させた場合であっても、信号導体4aおよび信号導体4bの長さを、動作周波数の波長の4分の1の長さよりも短くできるので、さらなる熱抵抗の低減が可能となる。
As shown in FIG. 12, the capacitor 15 is loaded in parallel with the tip short-circuited 1/4 wavelength stub which is the coupling conductor 16. The tip short circuit 1/4 wavelength stub operates as an LC parallel resonant circuit near the operating frequency. By loading the capacitor 15 in parallel with the tip short-circuit 1/4 wavelength stub, the resonance frequency is shifted to the low frequency side. As a result, the heat dissipation structure 1C can make the lengths of the signal conductors 4a and the signal conductors 4b shorter than the length of one-fourth of the wavelength of the operating frequency even when they are operated at the same frequency. Further reduction of thermal resistance becomes possible.
図13は、実施の形態1に係る放熱構造1と実施の形態3に係る放熱構造1Cにおける反射振幅の電磁界解析結果を示すグラフであり、図2に示した放熱構造1の等価回路の反射振幅の計算結果Eと図12に示した放熱構造1Cの等価回路の反射振幅の計算結果Fを示している。図13において、横軸はθ=π/2(rad)となる周波数で規格化された周波数であり、縦軸は反射振幅を表している。図13に示す反射振幅の計算結果においては、放熱構造1と放熱構造1Cの両方で、偶モードの特性インピーダンスZOeを100Ωとし、キャパシタ15は、C=3.2pFとしている。
FIG. 13 is a graph showing the electromagnetic field analysis results of the reflection amplitude in the heat dissipation structure 1 according to the first embodiment and the heat dissipation structure 1C according to the third embodiment, and is a reflection of the equivalent circuit of the heat dissipation structure 1 shown in FIG. The amplitude calculation result E and the reflection amplitude calculation result F of the equivalent circuit of the heat dissipation structure 1C shown in FIG. 12 are shown. In FIG. 13, the horizontal axis represents the frequency standardized by the frequency at which θ = π / 2 (rad), and the vertical axis represents the reflection amplitude. In the calculation results of the reflection amplitudes shown in FIG. 13, both of the heat dissipating structure 1 and the heat radiating structure 1C, the characteristic impedance Z Oe even mode and 100 [Omega, capacitor 15 has a C = 3.2 pF.
図13から明らかなように、図12に示した放熱構造1Cの等価回路の反射振幅の計算結果Fと、図4に示した放熱構造100の等価回路の反射振幅の計算結果Eでは、ともに規格化周波数が1.0付近で、反射振幅が極小になっている。このとき、図2に示した放熱構造1の等価回路では、規格化周波数が1.0において、θe=π/2rad.であるのに対し、図12に示した等価回路では、θe=π/4rad.である。信号導体の電気長θeと長さlは、上記式(10)に示すように比例関係であり、θeが1/2となれば、長さlも1/2となる。従って、放熱構造1Cにおいて、信号導体4cおよび信号導体4dの合成熱抵抗は、図1で示した放熱構造1における合成熱抵抗の半分となり、より放熱性が改善される。なお、実施の形態3に係る放熱構造1Cは、高周波回路として動作を述べる際に、キャパシタンスおよび電気長といった実際の数値を例に示したが、これは一例である。
As is clear from FIG. 13, the calculation result F of the equivalent circuit of the heat dissipation structure 1C shown in FIG. 12 and the calculation result E of the reflection amplitude of the equivalent circuit of the heat dissipation structure 100 shown in FIG. 4 are both standards. The conversion frequency is around 1.0, and the reflection amplitude is minimized. At this time, in the equivalent circuit of the heat dissipation structure 1 shown in FIG. 2, when the normalized frequency is 1.0, θ e = π / 2 rad. On the other hand, in the equivalent circuit shown in FIG. 12, θ e = π / 4rad. Is. The electrical length θe and the length l of the signal conductor are in a proportional relationship as shown in the above equation (10), and if θ e is halved, the length l is also halved. Therefore, in the heat dissipation structure 1C, the combined thermal resistance of the signal conductor 4c and the signal conductor 4d is half of the combined thermal resistance in the heat dissipation structure 1 shown in FIG. 1, and the heat dissipation property is further improved. The heat dissipation structure 1C according to the third embodiment shows actual numerical values such as capacitance and electrical length as an example when describing the operation as a high frequency circuit, but this is an example.
以上のように、実施の形態3に係る放熱構造1Cは、誘電体基板5の第1の面に設けられ、信号導体3aと信号導体3bとの接続点に接続された電極14aと、誘電体基板5の第1の面に設けられた電極14bと、誘電体基板5の第1の面に設けられ、電極14aと電極14bとの間を接続するチップコンデンサ15と、誘電体基板5の内層に設けられ、14b電極を地導体6に接続する接続導体7dを備える。放熱構造1Cは、信号導体4cおよび信号導体4dの合成熱抵抗が、図1で示した放熱構造1における合成熱抵抗の半分となるので、より放熱性が改善される。
As described above, the heat dissipation structure 1C according to the third embodiment is provided on the first surface of the dielectric substrate 5, and has an electrode 14a connected to a connection point between the signal conductor 3a and the signal conductor 3b, and a dielectric material. An electrode 14b provided on the first surface of the substrate 5, a chip capacitor 15 provided on the first surface of the dielectric substrate 5 and connecting between the electrode 14a and the electrode 14b, and an inner layer of the dielectric substrate 5. A connecting conductor 7d for connecting the 14b electrode to the ground conductor 6 is provided. In the heat radiating structure 1C, the combined thermal resistance of the signal conductor 4c and the signal conductor 4d is half the combined thermal resistance of the heat radiating structure 1 shown in FIG. 1, so that the heat radiating property is further improved.
実施の形態1~3に示した放熱構造1,1A~1Cは、高周波回路に利用可能である。
図14は、実施の形態1~3に係る放熱構造1,1A~1Cの少なくとも一つを含む高周波回路19の一例を示すブロック図である。高周波回路19は、少なくとも一つ以上の高周波信号を入力するための入力端子17aと、高周波信号を出力するための出力端子17bと、放熱構造1,1A~1Cのうちの少なくとも一つと、第一および第二の高周波デバイス18a,18bを備える。第一の高周波デバイス18aは、少なくとも一つ以上の電力増幅器を備える。 The heat dissipation structures 1, 1A to 1C shown in the first to third embodiments can be used in a high frequency circuit.
FIG. 14 is a block diagram showing an example of ahigh frequency circuit 19 including at least one of the heat dissipation structures 1, 1A to 1C according to the first to third embodiments. The high-frequency circuit 19 includes an input terminal 17a for inputting at least one or more high-frequency signals, an output terminal 17b for outputting a high-frequency signal, at least one of heat dissipation structures 1, 1A to 1C, and first. And a second high frequency device 18a, 18b. The first high frequency device 18a includes at least one or more power amplifiers.
図14は、実施の形態1~3に係る放熱構造1,1A~1Cの少なくとも一つを含む高周波回路19の一例を示すブロック図である。高周波回路19は、少なくとも一つ以上の高周波信号を入力するための入力端子17aと、高周波信号を出力するための出力端子17bと、放熱構造1,1A~1Cのうちの少なくとも一つと、第一および第二の高周波デバイス18a,18bを備える。第一の高周波デバイス18aは、少なくとも一つ以上の電力増幅器を備える。 The
FIG. 14 is a block diagram showing an example of a
放熱構造1,1A~1Cの入力端子2aには、第一の高周波デバイス18aの出力端子が接続され、放熱構造1,1A~1Cの出力端子2bには、第二の高周波デバイス18bの入力端子が接続される。第一の高周波デバイス18aの入力端子および第二の高周波デバイス18bの出力端子は、それぞれ、高周波回路19における入力端子17aおよび出力端子17bとなる。高周波回路19は、入力端子17aへ入力された高周波信号を変換し、出力端子17bから出力する機能を有する。なお、「変換」とは、高周波信号の振幅を増幅あるいは減衰させる、位相を調整する、または、周波数を変換する、といった機能である。
The output terminals of the first high-frequency device 18a are connected to the input terminals 2a of the heat-dissipating structures 1, 1A to 1C, and the input terminals of the second high-frequency device 18b are connected to the output terminals 2b of the heat-dissipating structures 1, 1A to 1C. Is connected. The input terminal of the first high frequency device 18a and the output terminal of the second high frequency device 18b are the input terminal 17a and the output terminal 17b in the high frequency circuit 19, respectively. The high frequency circuit 19 has a function of converting a high frequency signal input to the input terminal 17a and outputting it from the output terminal 17b. The "conversion" is a function of amplifying or attenuating the amplitude of a high-frequency signal, adjusting the phase, or converting the frequency.
高周波信号の変換に伴って第一の高周波デバイス18aが発熱し、この熱は、第一の高周波デバイス18aの出力端子から入力端子2aを介して放熱構造1,1A~1Cへ伝わり、放熱される。この放熱において、第一および第二の高周波デバイス18a,18bの動作帯域幅が、放熱構造1,1A~1Cの動作帯域幅と比較して狭帯域であれば、高周波回路19の動作帯域幅を狭帯域化することなく、第一の高周波デバイス18aからの熱を効率よく放熱できる。これにより、第一の高周波デバイス18aで生じた熱が、第二の高周波デバイス18bへ伝熱することを抑圧できる。従って、第二の高周波デバイス18bの温度変化による電気特性の変動、回路の誤動作が防止される。
The first high-frequency device 18a generates heat with the conversion of the high-frequency signal, and this heat is transferred from the output terminal of the first high-frequency device 18a to the heat dissipation structures 1, 1A to 1C via the input terminal 2a and is dissipated. .. In this heat dissipation, if the operating bandwidths of the first and second high- frequency devices 18a and 18b are narrower than the operating bandwidths of the heat-dissipating structures 1, 1A to 1C, the operating bandwidth of the high-frequency circuit 19 is increased. The heat from the first high frequency device 18a can be efficiently dissipated without narrowing the band. As a result, it is possible to suppress the heat generated by the first high-frequency device 18a from being transferred to the second high-frequency device 18b. Therefore, fluctuations in electrical characteristics and circuit malfunctions due to temperature changes in the second high-frequency device 18b are prevented.
また、実施の形態1~3に示した放熱構造1,1A~1Cは、アンテナ装置に利用可能である。図15は、実施の形態1~3に係る放熱構造1,1,1A~1Cの少なくとも一つを含むアンテナ装置20の一例を示すブロック図である。アンテナ装置20は、高周波信号を入力するための入力端子17aと、放熱構造1,1A~1Cのうちの少なくとも一つと、第一の高周波デバイス18aを備える。第一の高周波デバイス18aは、少なくとも一つ以上の電力増幅器を備える。
Further, the heat dissipation structures 1, 1A to 1C shown in the first to third embodiments can be used for the antenna device. FIG. 15 is a block diagram showing an example of the antenna device 20 including at least one of the heat dissipation structures 1, 1, 1A to 1C according to the first to third embodiments. The antenna device 20 includes an input terminal 17a for inputting a high frequency signal, at least one of heat dissipation structures 1, 1A to 1C, and a first high frequency device 18a. The first high frequency device 18a includes at least one or more power amplifiers.
放熱構造1,1A~1Cの入力端子2aには、第一の高周波デバイス18aの出力端子が接続され、放熱構造1,1A~1Cの出力端子2bには、アンテナ21が接続される。第一の高周波デバイス18aの入力端子は、アンテナ装置20における入力端子17aとなる。アンテナ装置20は、入力端子17aへ入力された高周波信号を変換し、アンテナ21から放射する機能を有している。なお、「変換」とは、高周波信号の振幅を増幅あるいは減衰させる、位相を調整する、または、周波数を変換する、といった機能である。
The output terminal of the first high frequency device 18a is connected to the input terminals 2a of the heat dissipation structures 1, 1A to 1C, and the antenna 21 is connected to the output terminals 2b of the heat dissipation structures 1, 1A to 1C. The input terminal of the first high frequency device 18a is the input terminal 17a of the antenna device 20. The antenna device 20 has a function of converting a high frequency signal input to the input terminal 17a and radiating it from the antenna 21. The "conversion" is a function of amplifying or attenuating the amplitude of a high-frequency signal, adjusting the phase, or converting the frequency.
高周波信号の変換に伴って第一の高周波デバイス18aが発熱し、この熱は、第一の高周波デバイス18aの出力端子から入力端子2aを介して放熱構造1,1A~1Cへ伝わり、放熱される。この放熱において、第一の高周波デバイス18aおよびアンテナ21の動作帯域幅が、放熱構造1,1A~1Cの動作帯域幅と比較して狭帯域であれば、アンテナ装置20の動作帯域幅を狭帯域化することなく、第一の高周波デバイス18aからの熱を効率よく放熱できる。これにより、第一の高周波デバイス18aで生じた熱が、アンテナ21へ伝熱することを抑圧できる。従って、アンテナ21の温度変化による歪み、あるいは、アンテナ21の歪みに伴う電気特性の変動が防止される。
The first high-frequency device 18a generates heat with the conversion of the high-frequency signal, and this heat is transferred from the output terminal of the first high-frequency device 18a to the heat dissipation structures 1, 1A to 1C via the input terminal 2a and is dissipated. .. In this heat dissipation, if the operating bandwidths of the first high-frequency device 18a and the antenna 21 are narrower than the operating bandwidths of the heat dissipation structures 1, 1A to 1C, the operating bandwidth of the antenna device 20 is narrowed. The heat from the first high-frequency device 18a can be efficiently dissipated without being converted. As a result, it is possible to suppress the heat generated by the first high-frequency device 18a from being transferred to the antenna 21. Therefore, distortion due to the temperature change of the antenna 21 or fluctuation of the electrical characteristics due to the distortion of the antenna 21 is prevented.
なお、各実施の形態の組み合わせまたは実施の形態のそれぞれの任意の構成要素の変形もしくは実施の形態のそれぞれにおいて任意の構成要素の省略が可能である。
It should be noted that the combination of each embodiment, the modification of each arbitrary component of the embodiment, or the omission of any component in each of the embodiments is possible.
本開示に係る放熱構造は、例えば、レーダ装置が備える高周波回路に利用可能である。
The heat dissipation structure according to the present disclosure can be used, for example, in a high frequency circuit included in a radar device.
1,1A~1C 放熱構造、2a 入力端子、2b 出力端子、3a,3b,4a~4d 信号導体、5 誘電体基板、6 地導体、7a~7d 接続導体、8 結合導体、9a,9b 給電線路、10a~10d 伝送線路、11 結合線路、12 伝熱部材、13 金属体、14,14a,14b 電極、15 チップコンデンサ、16 結合導体、100 放熱構造、101a 入力端子、101b 出力端子、102a,102b,103a 信号導体、104 誘電体基板、105 地導体、106 接続導体、107a,107b 給電線路、108a 伝送線路、17a 入力端子、17b 出力端子、18a 第一の高周波デバイス、18b 第二の高周波デバイス、19 高周波回路、20 アンテナ装置、21 アンテナ。
1,1A to 1C heat dissipation structure, 2a input terminal, 2b output terminal, 3a, 3b, 4a to 4d signal conductor, 5 dielectric substrate, 6 ground conductor, 7a to 7d connection conductor, 8 coupling conductor, 9a, 9b power supply line 10a-10d transmission line, 11 coupling line, 12 heat transfer member, 13 metal body, 14, 14a, 14b electrode, 15 chip capacitor, 16 coupling conductor, 100 heat dissipation structure, 101a input terminal, 101b output terminal, 102a, 102b , 103a signal conductor, 104 dielectric substrate, 105 ground conductor, 106 connection conductor, 107a, 107b power supply line, 108a transmission line, 17a input terminal, 17b output terminal, 18a first high frequency device, 18b second high frequency device, 19 high frequency circuit, 20 antenna device, 21 antenna.
Claims (8)
- 第1の面と、前記第1の面とは反対側の第2の面を有し、前記第2の面に地導体が設けられた誘電体基板と、
前記誘電体基板の前記第1の面に設けられ、高周波信号の入力端子に一方の端部が接続された第1の信号導体と、
前記誘電体基板の前記第1の面に設けられ、高周波信号の出力端子に一方の端部が接続され、前記第1の信号導体における前記入力端子とは反対側の端部に他方の端部が接続された第2の信号導体と、
前記誘電体基板の前記第1の面に設けられ、動作周波数の波長の4分の1の長さを有した第3の信号導体と、
前記誘電体基板の内層に設けられて、前記動作周波数の波長の4分の1の長さを有した第4の信号導体と、
前記第4の信号導体の一方の端部を、前記第1の信号導体と前記第2の信号導体との接続点に接続する第1の接続導体と、
前記第4の信号導体の他方の端部を、前記第3の信号導体および前記地導体に接続する第2の接続導体と、を備え、
前記第3の信号導体は、前記第1の信号導体と前記第2の信号導体との接続点に接続され、
前記第4の信号導体は、平面的にみて、前記第3の信号導体と少なくとも一部が重なるように、前記第3の信号導体を含む平面と平行に配置されていること
を特徴とする放熱構造。 A dielectric substrate having a first surface and a second surface opposite to the first surface and provided with a ground conductor on the second surface.
A first signal conductor provided on the first surface of the dielectric substrate and having one end connected to an input terminal for a high frequency signal.
One end is connected to the output terminal of a high frequency signal provided on the first surface of the dielectric substrate, and the other end is connected to the end of the first signal conductor opposite to the input terminal. With the second signal conductor to which
A third signal conductor provided on the first surface of the dielectric substrate and having a length of one-fourth of the wavelength of the operating frequency,
A fourth signal conductor provided on the inner layer of the dielectric substrate and having a length of one-fourth of the wavelength of the operating frequency,
A first connecting conductor that connects one end of the fourth signal conductor to a connecting point between the first signal conductor and the second signal conductor.
The other end of the fourth signal conductor includes the third signal conductor and a second connecting conductor that connects to the ground conductor.
The third signal conductor is connected to a connection point between the first signal conductor and the second signal conductor.
The fourth signal conductor is arranged in parallel with the plane including the third signal conductor so that at least a part of the third signal conductor overlaps the third signal conductor when viewed in a plane. structure. - 金属体と、
前記地導体を前記金属体に接続する伝熱部材と、
を備えたことを特徴とする請求項1記載の放熱構造。 With a metal body
A heat transfer member that connects the ground conductor to the metal body,
The heat radiating structure according to claim 1, wherein the heat radiating structure is provided. - 前記誘電体基板の前記第2の面に設けられ、前記地導体の一部が除去されて形成された電極を備え、
前記第1の接続導体は、前記第4の信号導体の一方の端部を、前記第1の信号導体と前記第2の信号導体との接続点および前記電極に接続すること
を特徴とする請求項1記載の放熱構造。 An electrode provided on the second surface of the dielectric substrate and formed by removing a part of the ground conductor is provided.
The first connecting conductor is characterized in that one end of the fourth signal conductor is connected to a connection point between the first signal conductor and the second signal conductor and the electrode. Item 1. The heat dissipation structure according to item 1. - 前記誘電体基板の前記第1の面に設けられ、前記第1の信号導体と前記第2の信号導体との接続点に接続された第1の電極と、
前記誘電体基板の前記第1の面に設けられた第2の電極と、
前記誘電体基板の前記第1の面に設けられ、前記第1の電極と前記第2の電極との間を接続するコンデンサと、
前記誘電体基板の内層に設けられ、前記第2の電極を前記地導体に接続する第3の接続導体と、
を備えたことを特徴とする請求項1記載の放熱構造。 A first electrode provided on the first surface of the dielectric substrate and connected to a connection point between the first signal conductor and the second signal conductor.
A second electrode provided on the first surface of the dielectric substrate and
A capacitor provided on the first surface of the dielectric substrate and connecting between the first electrode and the second electrode.
A third connecting conductor provided in the inner layer of the dielectric substrate and connecting the second electrode to the ground conductor,
The heat radiating structure according to claim 1, wherein the heat radiating structure is provided. - 前記第3の信号導体と前記第4の信号導体との間隔は、前記誘電体基板の厚さの10分の1以下であること
を特徴とする請求項1記載の放熱構造。 The heat dissipation structure according to claim 1, wherein the distance between the third signal conductor and the fourth signal conductor is 1/10 or less of the thickness of the dielectric substrate. - 前記第3の信号導体と前記第4の信号導体は、同一の線路幅であること
を特徴とする請求項1記載の放熱構造。 The heat dissipation structure according to claim 1, wherein the third signal conductor and the fourth signal conductor have the same line width. - 請求項1から請求項6のいずれか1項記載の放熱構造と、
前記入力端子に接続された一つ以上の電力増幅器と、
を備えたことを特徴とする高周波回路。 The heat dissipation structure according to any one of claims 1 to 6,
With one or more power amplifiers connected to the input terminals,
A high-frequency circuit characterized by being equipped with. - 請求項1から請求項6のいずれか1項記載の放熱構造と、
前記入力端子に接続された一つ以上の電力増幅器を含む高周波回路と、
前記出力端子に接続されたアンテナと、
を備えたことを特徴とするアンテナ装置。 The heat dissipation structure according to any one of claims 1 to 6,
A high frequency circuit containing one or more power amplifiers connected to the input terminal, and
With the antenna connected to the output terminal,
An antenna device characterized by being equipped with.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022514909A JP7072743B2 (en) | 2020-04-14 | 2020-04-14 | Heat dissipation structure, high frequency circuit and antenna device |
PCT/JP2020/016478 WO2021210080A1 (en) | 2020-04-14 | 2020-04-14 | Heat dissipation structure, high frequency circuit, and antenna device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2020/016478 WO2021210080A1 (en) | 2020-04-14 | 2020-04-14 | Heat dissipation structure, high frequency circuit, and antenna device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021210080A1 true WO2021210080A1 (en) | 2021-10-21 |
Family
ID=78083619
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/016478 WO2021210080A1 (en) | 2020-04-14 | 2020-04-14 | Heat dissipation structure, high frequency circuit, and antenna device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7072743B2 (en) |
WO (1) | WO2021210080A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62245804A (en) * | 1986-04-18 | 1987-10-27 | Fujitsu Ltd | 90× hybrid |
JPH03198402A (en) * | 1989-12-26 | 1991-08-29 | Matsushita Electric Ind Co Ltd | Microwave circuit, bias circuit, and band stop filter |
JP2011139244A (en) * | 2009-12-28 | 2011-07-14 | Kyocera Corp | High frequency module |
WO2018122920A1 (en) * | 2016-12-26 | 2018-07-05 | 三菱電機株式会社 | Terminal device |
JP2019102886A (en) * | 2017-11-29 | 2019-06-24 | キヤノン株式会社 | Branch circuit |
-
2020
- 2020-04-14 WO PCT/JP2020/016478 patent/WO2021210080A1/en active Application Filing
- 2020-04-14 JP JP2022514909A patent/JP7072743B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62245804A (en) * | 1986-04-18 | 1987-10-27 | Fujitsu Ltd | 90× hybrid |
JPH03198402A (en) * | 1989-12-26 | 1991-08-29 | Matsushita Electric Ind Co Ltd | Microwave circuit, bias circuit, and band stop filter |
JP2011139244A (en) * | 2009-12-28 | 2011-07-14 | Kyocera Corp | High frequency module |
WO2018122920A1 (en) * | 2016-12-26 | 2018-07-05 | 三菱電機株式会社 | Terminal device |
JP2019102886A (en) * | 2017-11-29 | 2019-06-24 | キヤノン株式会社 | Branch circuit |
Also Published As
Publication number | Publication date |
---|---|
JP7072743B2 (en) | 2022-05-20 |
JPWO2021210080A1 (en) | 2021-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7355559B2 (en) | Small planar antenna with enhanced bandwidth and small strip radiator | |
US10418708B2 (en) | Wideband antenna | |
US10582608B2 (en) | Interconnection between printed circuit boards | |
US6492947B2 (en) | Stripline fed aperture coupled microstrip antenna | |
US8026859B2 (en) | Horn antenna with integrated impedance matching network for improved operating frequency range | |
US20120242547A1 (en) | Antenna device | |
JP5566169B2 (en) | Antenna device | |
US9006971B2 (en) | Planar helix slow-wave structure with straight-edge connections | |
JP2003289201A (en) | Post-wall waveguide and junction conversion structure for cavity waveguide | |
JP6563164B1 (en) | High frequency filter | |
JP4671458B2 (en) | Signal line to wave guide transformer | |
US7688164B2 (en) | High frequency circuit board converting a transmission mode of high frequency signals | |
JP4221884B2 (en) | Millimeter-wave high-frequency equipment | |
WO2021210080A1 (en) | Heat dissipation structure, high frequency circuit, and antenna device | |
JP4601573B2 (en) | Waveguide converter | |
JP7077137B2 (en) | Transmission lines and connectors | |
US11621469B2 (en) | Power-combining devices with increased output power | |
US20240106117A1 (en) | Wideband antenna structure | |
US20230291087A1 (en) | Antenna structures for spatial power-combining devices | |
WO2021192707A1 (en) | Rf detector and high-frequency module comprising same | |
JP2007166270A (en) | Short-circuiting means, and tip short-circuiting stub therewith, resonator and high-frequency filter | |
TWM605399U (en) | Broadband antenna apparatus | |
El Gharbi et al. | Design of a High Gain Substrate Integrated Waveguide Cavity-Backed Circular Patch Antenna using Two Different Feeding Transitions | |
JP3087689B2 (en) | Connection method between substrates for transmitting microwave and millimeter wave band signals | |
JP6232235B2 (en) | converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20931452 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022514909 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20931452 Country of ref document: EP Kind code of ref document: A1 |