Nothing Special   »   [go: up one dir, main page]

WO2021201186A1 - Biodegradable resin composition and molded article - Google Patents

Biodegradable resin composition and molded article Download PDF

Info

Publication number
WO2021201186A1
WO2021201186A1 PCT/JP2021/014071 JP2021014071W WO2021201186A1 WO 2021201186 A1 WO2021201186 A1 WO 2021201186A1 JP 2021014071 W JP2021014071 W JP 2021014071W WO 2021201186 A1 WO2021201186 A1 WO 2021201186A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
aliphatic
resin composition
polyester resin
unit
Prior art date
Application number
PCT/JP2021/014071
Other languages
French (fr)
Japanese (ja)
Inventor
悠太 池田
加藤 聡
野口 浩
玲美 宮町
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2022512672A priority Critical patent/JPWO2021201186A1/ja
Publication of WO2021201186A1 publication Critical patent/WO2021201186A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/16Compositions of unspecified macromolecular compounds the macromolecular compounds being biodegradable
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L5/00Compositions of polysaccharides or of their derivatives not provided for in groups C08L1/00 or C08L3/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds

Definitions

  • the present invention relates to a biodegradable resin composition and a molded product containing the biodegradable resin composition.
  • plastic In modern society, plastic is light and has excellent electrical insulation, molding processability, durability, etc., so it is used in a wide range of personal applications such as packaging materials, home appliance materials, and building materials.
  • Plastics used for these purposes include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate and the like.
  • these plastic molded products are not easily decomposed in a natural environment, they tend to remain in the ground even if they are buried after use. In addition, even if it is incinerated, it may generate harmful gas and damage the incinerator. In recent years, from the viewpoint of preventing environmental pollution, products that can be composted at home (home compostable products). ) Is required.
  • biodegradable materials that are decomposed into carbon dioxide and water by microorganisms in compost.
  • Typical examples of biodegradable materials include biodegradable resins such as polylactic acid (hereinafter, may be abbreviated as "PLA").
  • the present inventors diligently examined in view of the above circumstances. Specifically, we focused on polysaccharides containing amino sugars, and thought that polysaccharides containing amino sugars would contribute to the promotion of decomposition. As a result, the present inventors have obtained a remarkable biodegradation-promoting effect by blending a specific amount of a polysaccharide containing an amino sugar with a resin having a glass transition temperature of a specific temperature or lower.
  • the problem can be solved and completed the present invention. That is, the gist of the present invention is as follows.
  • a biodegradable resin composition containing a resin having a glass transition temperature of 40 ° C. or lower and a polysaccharide containing an amino sugar, wherein the content of the polysaccharide containing an amino sugar is 0.01% by weight or more.
  • a biodegradable resin composition of 30% by weight or less.
  • the polyester resin has at least one selected from the group consisting of 1,4-butanediol, 1,3-propanediol and ethylene glycol as a diol unit. Resin composition.
  • biodegradable resin composition according to the above [7], wherein the polysaccharide is chitin.
  • a method for biodegrading a polyester resin which comprises biodegrading a polyester resin having a glass transition temperature of 40 ° C. or lower in seawater in the presence of a polysaccharide containing an amino sugar. ..
  • biodegradable resin composition having a high biodegradation rate and a high degree of biodegradation, and contributes greatly to solving environmental problems such as marine pollution problems.
  • biodegradable resin composition containing a resin and a polysaccharide containing an amino sugar
  • the resin composition of the present invention is preferably a biodegradable resin composition obtained by mixing or kneading a resin and a polysaccharide containing an amino sugar.
  • biodegradable means that the resin is decomposed into small molecules such as oligomers and monomers by the action of microorganisms, and then these are further decomposed into water, carbon dioxide and the like. Means.
  • the resin composition of the present invention may be biodegraded in any environment as long as the resin is biodegraded.
  • the amount and types of microorganisms are small, and the resin is difficult to biodegrade.
  • the resin composition of the present invention can exhibit its effect in such an environment where biodegradation is difficult. Therefore, it is preferable that the resin composition of the present invention has high biodegradability in seawater (ocean biodegradable resin composition).
  • the biodegradable resin composition according to the present embodiment contains a polysaccharide containing an amino sugar (hereinafter, may be referred to as "polysaccharide according to the present invention” or simply “polysaccharide”).
  • the amino sugar means a saccharide having an amino group and a derivative such as an acylated product thereof.
  • Polysaccharides containing amino sugars are polysaccharides in which amino sugars or amino sugars and other monosaccharides or oligosaccharides are bound via glycosidic bonds. Polysaccharides in which amino sugars are bound to each other via glycosidic bonds are preferable.
  • Polysaccharides containing amino sugars are useful as biodegradation accelerators because they can easily improve the biodegradation rate or the degree of biodegradation of resins as compared with polysaccharides containing no amino sugars such as cellulose and agarose.
  • polysaccharides containing amino sugars include chitin, glucosamine, chondroitin, hyaluronic acid, keratan sulfate, heparan sulfate, heparin, dermatan sulfate, and derivatives thereof.
  • chitin is more preferable, from the viewpoint of the biodegradability promoting effect.
  • the method for producing chitin is not particularly limited. For example, it may be made from crustaceans such as crabs or cartilage of squid, or it may be produced by culturing cells. Moreover, either ⁇ -chitin or ⁇ -chitin can be used. There are no restrictions on the shape of chitin, and it may be in the form of powder or nanofibers.
  • the resin composition containing chitin and polyhydroxybutyrate in a ratio of 3: 7 (weight ratio) is preferably excluded from the scope of the present invention. Further, the resin composition containing chitin and polyhydroxybutyrate is preferably excluded from the scope of the present invention. Furthermore, it is preferable that polyhydroxybutyrate is removed from the resin in the present invention.
  • the molecular weight of the polysaccharide containing the amino sugar is preferably small from the viewpoint of promoting the biodegradability and from the viewpoint of easy uniform dispersion in the resin. Therefore, specifically, the molecular weight of the polysaccharide containing an amino sugar is preferably 10,000,000 or less, more preferably 5,000,000 or less. On the other hand, it is usually 3,000 or more, preferably 10,000 or more.
  • the molecular weight of the polysaccharide including amino sugar can be measured by gel permeation chromatography (GPC). When the polysaccharide containing an amino sugar is a polymer, the molecular weight is the weight average molecular weight.
  • polysaccharide containing an amino sugar When a commercially available product is used as the polysaccharide containing an amino sugar, the molecular weight may be confirmed from the catalog value. It is preferable that polysaccharides containing amino sugars do not easily inhibit the growth of microorganisms. Moreover, from the viewpoint of safety, it is preferable that it is not a dangerous substance, an insecticide, a pesticide such as a herbicide, or the like.
  • the biodegradable resin composition contains a polysaccharide containing an amino sugar in an amount of 0.01% by weight or more and 30% by weight or less.
  • the amount of the polysaccharide containing amino sugar contained in the biodegradable resin composition may be appropriately adjusted according to the type of resin, the type of polysaccharide containing amino sugar, the use of the biodegradable resin composition, and the like. good.
  • the content of the polysaccharide containing an amino sugar is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, further preferably 1% by weight or more, and particularly preferably 5% by weight or more. On the other hand, the content is preferably 25% by weight or less, more preferably 20% by weight or less, and further preferably 15% by weight or less.
  • the biodegradable resin composition according to the present embodiment contains a resin.
  • the resin contained in the biodegradable resin composition according to the present embodiment is not particularly limited as long as the biodegradability is improved by using the resin composition with the above-mentioned aminosaccharide-containing polysaccharide.
  • the resin contained in the biodegradable resin composition according to the embodiment is preferably a biodegradable resin.
  • the degree of biodegradation of the resin and the biodegradable resin composition according to the present embodiment will be described later.
  • the resin contained in the biodegradable resin composition according to the present embodiment one type may be used alone, or two or more types of resins may be used in any combination and ratio.
  • Polylactic acid and the like are known as biodegradable resins.
  • a polyester resin is preferable because the biodegradability can be easily improved by using a resin composition with a polysaccharide containing an amino sugar.
  • a polyester resin having a carboxylic acid unit such as an acid unit or an oxycarboxylic acid unit is more preferable.
  • a polyester resin having a dicarboxylic acid unit and a diol unit and a polyester resin having an oxycarboxylic acid unit are particularly preferable, and a polyester resin having a dicarboxylic acid unit and a diol unit is most preferable.
  • the polyester resins are PBSSe (polybutylene succinate sebacate), PBSeT (polybutylene succinate terephthalate) and PHBH (poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)), PCL. (Polycaprolactone) is particularly preferred.
  • the polyester resin may be an aliphatic polyester resin, an aromatic polyester resin, or an aliphatic-aromatic polyester resin.
  • an aliphatic polyester resin or an aliphatic-aromatic polyester resin is preferable in terms of high flexibility.
  • the aromatics also include complex aromatics.
  • each repeating unit in a polyester resin is also referred to as a compound unit for a compound from which each repeating unit is derived.
  • a repeating unit derived from an aliphatic diol is an "aliphatic diol unit”
  • a repeating unit derived from an aliphatic dicarboxylic acid is a "aliphatic dicarboxylic acid unit”
  • a repeating unit derived from an aromatic dicarboxylic acid is an "aromatic dicarboxylic acid”.
  • acid unit also called "acid unit”.
  • the "main constituent unit" in the polyester resin is usually a constituent unit in which the constituent unit is contained in an amount of 80% by weight or more in the polyester resin, and does not include a constituent unit other than the main constituent unit.
  • the polyester resin contained in the biodegradable resin composition according to the present embodiment includes (1) a polyester resin containing a diol unit and a dicarboxylic acid unit, and (2) a diol unit, a dicarboxylic acid unit and an oxycarboxylic acid unit. Polyester resins, (3) polyester resins containing an oxycarboxylic acid unit, and the like are preferable.
  • a polyester resin containing a diol unit and a dicarboxylic acid unit (3) a polyester resin containing an oxycarboxylic acid unit, and the like are more preferable.
  • the polyester resin contained in the biodegradable resin composition according to the present embodiment is considered to be likely to promote biodegradation due to a decrease in the crystallinity of the polyester resin and an increase in the number of amorphous portions. It is preferable to have two or more types of structural units.
  • polyester resin containing diol unit and dicarboxylic acid unit The polyester resin containing a diol unit and a dicarboxylic acid unit will be described in detail.
  • the diol unit contained in the polyester resin may be aliphatic or aromatic, but from the viewpoint of biodegradability, the aliphatic is preferable, and the diol unit represented by the following general formula (1) is particularly preferable.
  • R 1 represents an aliphatic hydrocarbon group having 2 or more carbon atoms and 20 or less carbon atoms.
  • the carbon number of the aliphatic hydrocarbon group represented by R 1 is usually 2 or more, preferably 4 or more, and usually 20 or less, preferably 16 or less, more preferably 12 from the viewpoint of moldability, mechanical strength, and the like. Below, it is more preferably 6 or less.
  • a particularly preferable group as the aliphatic hydrocarbon group is an aliphatic hydrocarbon group having 4 carbon atoms.
  • the aliphatic diol giving the aliphatic diol unit represented by the formula (1) for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like are preferable.
  • 1,4-Butanediol, 1,3-propanediol and ethylene glycol are more preferable, and 1,4-butanediol is particularly preferable.
  • the diol unit contained in the polyester resin one type or two or more types of units may be used in any combination and ratio.
  • the polyester resin contains a plurality of types of diol units, the total diol units preferably contain 30 mol% or more of the aliphatic diol units, and more preferably 50 mol% or more. The upper limit is 100 mol%.
  • the diol unit contained in the polyester resin may contain an aromatic diol unit.
  • the aromatic diol component that gives the aromatic diol unit include, for example, xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis (4'-hydroxyphenyl) propane, and 2,2-bis (. Examples thereof include 4'- ⁇ -hydroxyethoxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, and bis (4- ⁇ -hydroxyethoxyphenyl) sulfonic acid.
  • the aromatic diol component may be a derivative of the aromatic diol compound. Further, it may be a compound having a structure in which a plurality of aliphatic diol compounds and / or aromatic diol compounds are dehydrated and condensed with each other.
  • the dicarboxylic acid unit contained in the polyester resin may be aliphatic or aromatic. Further, the dicarboxylic acid unit contained in the polyester resin may contain one type or two or more types of units in any combination and ratio, and may contain an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit. good. However, from the viewpoint of biodegradability, the dicarboxylic acid unit preferably contains an aliphatic dicarboxylic acid unit. When the polyester resin contains a plurality of types of dicarboxylic acid units, the aliphatic dicarboxylic acid unit is preferably contained in an amount of 30 mol% or more, more preferably 50 mol% or more, based on all the dicarboxylic acid units.
  • the upper limit of the aliphatic dicarboxylic acid unit contained in all the dicarboxylic acid units is 100 mol%.
  • the aromatic dicarboxylic acid unit is preferably 70 mol% or less, more preferably 60 mol% or less, based on the total dicarboxylic acid unit. ..
  • the dicarboxylic acid unit contained in the polyester resin is preferably a dicarboxylic acid having 2 to 22 carbon atoms, and the dicarboxylic acid unit has 2 or more carbon atoms from the viewpoint of biodegradability, moldability, and mechanical strength.
  • the dicarboxylic acid unit contained in the polyester resin is preferably oxalic acid or a dicarboxylic acid unit represented by the following general formula (2).
  • -OC-R 2- CO- (2) In the formula (2), R 2 represents a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic group having 4 to 8 carbon atoms.
  • R 2 is an aliphatic hydrocarbon group
  • the number of carbon atoms of the aliphatic hydrocarbon group is usually 1 or more, preferably 2 or more, more preferably 4 or more, and on the other hand, usually 22 or less, preferably 22 or less. It is 16 or less, more preferably 12 or less, still more preferably 8 or less.
  • the polyester resin contains two or more kinds of aliphatic dicarboxylic acid units represented by the formula (2)
  • the combination of the aliphatic hydrocarbon groups includes an aliphatic hydrocarbon group having 2 carbon atoms and an aliphatic hydrocarbon group having 4 or more carbon atoms and 10 or less carbon atoms. The combination with the aliphatic hydrocarbon group of is preferable.
  • the aliphatic dicarboxylic acid component giving the aliphatic dicarboxylic acid unit represented by the formula (2) is not particularly limited, but the carbon number thereof is preferably 2 or more, more preferably 4 or more, and on the other hand, 22 The following is preferable, and 10 or less is more preferable. That is, a derivative such as an aliphatic dicarboxylic acid having 2 or more and 22 or less carbon atoms or an alkyl ester thereof is preferable, and a derivative such as an aliphatic carboxylic acid having 4 or more and 10 or less carbon atoms or an alkyl ester thereof is more preferable.
  • Preferred aliphatic dicarboxylic acid units include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid.
  • adipic acid, succinic acid and sebacic acid are preferable, succinic acid and sebacic acid are more preferable, and succinic acid is particularly preferable.
  • the ratio of the above-mentioned preferable dicarboxylic acid unit to the total dicarboxylic acid unit is preferably 5 mol% or more, more preferably 10 mol% or more, and further preferably 50 mol% or more. It is preferably 64 mol% or more, and most preferably 68 mol% or more. The upper limit is 100 mol%.
  • the polyester resin preferably contains two or more types of aliphatic dicarboxylic acid units, and more preferably contains two or more types of the above-mentioned preferable aliphatic dicarboxylic acid units.
  • the combination of the aliphatic dicarboxylic acid unit is preferably a combination of an aliphatic dicarboxylic acid unit having 4 carbon atoms and an aliphatic dicarboxylic acid unit having 6 or more and 12 or less carbon atoms, and an aliphatic dicarboxylic acid unit having 4 carbon atoms. Is more preferably combined with an aliphatic dicarboxylic acid unit having 6 or more and 10 or less carbon atoms.
  • the combination of the aliphatic dicarboxylic acid units preferably includes at least one unit of succinic acid unit, adipic acid unit, azelaic acid unit, and sebacic acid unit, and two or more of these. It is more preferable to combine the dicarboxylic acid units of.
  • the dicarboxylic acid unit to be combined with the succinic acid unit a pimeric acid unit, a suberic acid unit, an adipic acid unit, an adipic acid unit, a sebacic acid unit, an undecanedioic acid unit or a dodecanedioic acid unit is preferable, and an adipic acid unit or a sebacic acid unit is preferable.
  • polyester resins are preferable.
  • polyester resin having a succinic acid unit polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene succinate sebacate (PBSSe), polybutylene succinate azelate (PBSAz) and the like are preferable.
  • polyester resins having two or more dicarboxylic acid units such as polybutylene succinate adipate (PBSA), polybutylene succinate sebacate (PBSSe) and polybutylene succinate azelate (PBSAz).
  • polyester resin having a sebacic acid unit polybutylene succinate sebacate (PBSSe), polybutylene sebacate terephthalate (PBSeT) and polybutylene sebacate furanoate (PBSeF) are preferable.
  • polyester resin having an azelaic acid unit polybutylene succinate azelate (PBSAz), polybutylene succinate terephthalate (PBAzT) and the like are preferable.
  • polyester resin having an adipic acid unit polybutylene succinate adipate (PBSA) and polybutylene adipate terephthalate (PBAT) are preferable.
  • the dicarboxylic acid unit to be combined with the succinic acid unit preferably contains 5 mol% or more, more preferably 10 mol% or more, and 15 mol% or more, based on the total dicarboxylic acid units. On the other hand, it is more preferably contained in an amount of 50 mol% or less, more preferably contained in an amount of 45 mol% or less, and further preferably contained in an amount of 40 mol% or less.
  • the aromatic dicarboxylic acid component that gives the aromatic dicarboxylic acid unit represented by the formula (2) is not particularly limited, but the carbon number thereof is usually 4 or more and 8 or less, preferably 6 or less. Specific examples thereof include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, a 2,5-frangyl group and the like.
  • the aromatic dicarboxylic acid component that gives the aromatic dicarboxylic acid unit represented by the formula (2) is not particularly limited, but is usually the above-mentioned aromatic dicarboxylic acid having a preferable carbon number or a derivative thereof.
  • Specific examples thereof include phthalic acid, isophthalic acid, terephthalic acid, 2,5-furandicarboxylic acid and its derivatives, and among them, terephthalic acid and 2,5-furandicarboxylic acid or derivatives thereof are preferable, and 2,5 -Flange carboxylic acid or a derivative thereof is more preferable.
  • Examples of the derivative of the aromatic dicarboxylic acid include lower alkyl esters of the aromatic dicarboxylic acid having 1 or more and 4 or less carbon atoms, acid anhydrides and the like.
  • Specific examples of the derivative of the aromatic dicarboxylic acid include lower alkyl esters such as the above-mentioned methyl ester, ethyl ester, propyl ester and butyl ester of the aromatic dicarboxylic acid; cyclic acid anhydride of the aromatic dicarboxylic acid; and the like. .. Of these, dimethyl terephthalate is preferable.
  • the polyester resin having a dicarboxylic acid unit a polyester resin having a different amount of the dicarboxylic acid unit may be used.
  • a polyester resin containing only the above-mentioned preferable dicarboxylic acid unit as the dicarboxylic acid unit and a dicarboxylic acid unit other than these may be used. It is also possible to blend with the containing polyester resin to adjust the ratio of the preferable dicarboxylic acid unit in the polyester resin within the above range.
  • the polyester resin used in the present invention may further contain an oxycarboxylic acid unit described later.
  • the polyester resin is an aliphatic polyester resin containing an aliphatic diol unit and an aliphatic dicarboxylic acid unit as a main constituent unit (hereinafter, may be referred to as "aliphatic polyester resin (A)"), an aliphatic polyester resin (A).
  • the repeating unit of the aliphatic-aromatic polyester resin (B) and the aliphatic polyester resin (A) is replaced with an aromatic compound unit.
  • the aliphatic polyester resin (A), the aliphatic dicarboxylic acid unit an aliphatic diol units and R 2 represented by the formula (1) is represented by the above formula is an aliphatic hydrocarbon group (2) described later and an aliphatic dicarboxylic acid unit an aliphatic diol units and R 2 represented by the formula (1) is represented by the above formula is an aliphatic hydrocarbon group (2), aliphatic polyester resins containing An aliphatic polyester resin containing an aliphatic oxycarboxylic acid unit represented by the formula (3) is preferable.
  • the aliphatic diol unit represented by the formula (1), the aliphatic dicarboxylic acid unit wherein R 2 is represented by formula (2) is an aliphatic hydrocarbon group is as previously described.
  • the aliphatic polyester resin preferable as the aliphatic polyester (A) is also as described above.
  • the aliphatic oxycarboxylic acid unit represented by the formula (3) and the aliphatic polyester resin (A) are a trifunctional or higher aliphatic polyvalent alcohol and a trifunctional or higher functional aliphatic polyvalent carboxylic acid or an acid thereof. The case where the anhydride or the trifunctional or higher functional aliphatic polyvalent oxycarboxylic acid component is copolymerized will be described later.
  • polybutylene succinate PBS
  • polybutylene succinate adipate PBSA
  • polybutylene succinate sebacate PBSSe
  • polybutylene succinate aze polybutylene succinate aze
  • Polybutylene succinate-based resins such as rate (PBSAz) are particularly preferred, and polybutylene succinate sebacate is most preferred.
  • the aliphatic-aromatic polyester resin (B) is a resin in which at least a part of the repeating units of the above-mentioned aliphatic polyester resin (A) is replaced with an aromatic compound unit.
  • Aliphatic - aromatic polyester resin (B), an aromatic dicarboxylic acid aliphatic diol units and R 2 represented by the above formula (1) is represented by the above formula is an aromatic group (2)
  • An aliphatic-aromatic polyester resin containing an aliphatic oxycarboxylic acid unit represented by (3) is preferable.
  • the aliphatic diol unit represented by the formula (1), the aromatic dicarboxylic acid unit R 2 is represented by formula (2) is an aromatic group are as described above.
  • the aliphatic polyester preferable as the aliphatic-aromatic polyester (B) the aliphatic-aromatic polyester resin (B) is a trifunctional or higher functional aliphatic polyhydric alcohol and a trifunctional or higher functional aliphatic polyvalent carboxylic acid. This is as described above, including the case where an acid or an acid anhydride thereof or a trifunctional or higher functional aliphatic polyvalent oxycarboxylic acid component is copolymerized.
  • the aliphatic-aromatic polyester resin (B) may contain an aromatic diol unit. That is, the aliphatic-aromatic polyester resin (B) has an aromatic diol unit and an aliphatic dicarboxylic acid unit; an aromatic diol unit, an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit; A diol unit and an aromatic dicarboxylic acid unit; a polyester resin having an aliphatic diol unit, an aromatic diol unit, an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit may be used.
  • specific examples of the aromatic diol component are as described above.
  • the aliphatic-aromatic polyester resin (B) may contain an aromatic oxycarboxylic acid unit.
  • aromatic oxycarboxylic acid component that gives the aromatic oxycarboxylic acid unit are as described above.
  • the aliphatic-aromatic polyester resin (B) it is preferable to use an aromatic dicarboxylic acid component as a component that gives an aromatic compound unit, and the content of the aromatic dicarboxylic acid unit in this case is the aliphatic dicarboxylic acid. Based on the total amount of the unit and the aromatic dicarboxylic acid unit (100 mol%), it is preferably 10 mol% or more and 80 mol% or less.
  • the aromatic dicarboxylic acid unit it is preferable to use a terephthalic acid unit or a 2,5-furandicarboxylic acid unit.
  • examples of the aliphatic-aromatic polyester resin (B) include polybutylene adipate terephthalate (PBAT), polybutylene succinate terephthalate (PBST), polybutylene succinate terephthalate (PBSeT), and polybutylene succinate terephthalate (PBSeT).
  • Polybutylene terephthalate resin such as PBAzT), polybutylene adipate furanoate (PBAF), polybutylene succinate furanoate (PBSF), polybutylene succinate furanoate (PBSeF), polybutylene succinate sebacate furanoate (PBSSeF).
  • PBAzT polybutylene adipate furanoate
  • PBAF polybutylene adipate furanoate
  • PBSF polybutylene succinate furanoate
  • PBSeF polybutylene succinate sebacate furanoate
  • PBSSeF polybutylene succinate sebacate fur
  • aliphatic-aromatic polyester resin (B) a resin having succinic acid, adipic acid and sebacic acid as dicarboxylic acid units is preferable. Therefore, as the aliphatic-aromatic polyester resin (B), polybutylene succinate resins such as PBST, PBSF and PBSSeF; polybutylene adipate resins such as PBAT, PBAF and PBASEF and polybutylene such as PBSeT and PBSeF are used.
  • polybutylene succinate resins such as PBST, PBSF and PBSSeF
  • polybutylene adipate resins such as PBAT, PBAF and PBASEF
  • PBSeT and PBSeF polybutylene
  • Sebasinate-based resins polybutylene succinate-based resins such as PBAzT (polybutylene succinate terephthalate) and PBAzF (polybutylene succinate furanoate) are preferable, and polybutylene succinate-aromatic dicarboxylic acids such as PBST, PBSF, and PBSSeF are preferable. Acidic resins are even more preferred.
  • the aromatic polyester resin (polyarylate) (C) is a resin in which the repeating unit of the above-mentioned aliphatic polyester resin (A) is replaced with an aromatic compound unit.
  • the aromatic polyester resin (C) is represented by the above formula (2) in which the aromatic diol unit and R 2 which may be contained in the above-mentioned aliphatic-aromatic polyester resin (B) are aromatic groups.
  • the aromatic dicarboxylic acid unit and the aromatic polyester resin containing the aromatic oxycarboxylic acid unit which may be contained in the aliphatic-aromatic polyester resin (B) are preferable.
  • the units and the like contained in the aromatic polyester resin (C) are as described above.
  • the polyester resin is obtained by copolymerizing a trifunctional or higher functional aliphatic polyvalent alcohol with a trifunctional or higher functional aliphatic polyvalent carboxylic acid or an acid anhydride thereof, or a trifunctional or higher functional aliphatic polyvalent oxycarboxylic acid component. It may be a resin having an increased melt viscosity. When these copolymerization components are used, one type may be used alone, or two or more types may be used in any combination and ratio.
  • trifunctional aliphatic polyhydric alcohol examples include trimethylolpropane and glycerin.
  • tetrafunctional aliphatic polyhydric alcohol include pentaerythritol and the like.
  • trifunctional aliphatic polyvalent carboxylic acid or its acid anhydride examples include propanetricarboxylic acid or its acid anhydride.
  • tetrafunctional polyvalent carboxylic acid or its acid anhydride examples include cyclopentanetetracarboxylic acid or its acid anhydride.
  • the trifunctional aliphatic oxycarboxylic acid has (i) a type having two carboxyl groups and one hydroxyl group in the same molecule, and (ii) having one carboxyl group and two hydroxyl groups. It is roughly divided into types. Any type can be used, but from the viewpoint of moldability, mechanical strength, appearance of the molded product, etc., (i) a type having two carboxyl groups and one hydroxyl group such as malic acid in the same molecule is preferable. , Malic acid is more preferred.
  • the tetrafunctional aliphatic oxycarboxylic acid component is (i) a type in which three carboxyl groups and one hydroxyl group are shared in the same molecule, and (ii) two carboxyl groups and two hydroxyls. It is roughly classified into a type in which a group is shared in the same molecule and a type in which (iii) three hydroxyl groups and one carboxyl group are shared in the same molecule. Any type can be used, but those having a plurality of carboxyl groups are preferable, and citric acid and tartaric acid are more preferable. One of these may be used alone, or two or more thereof may be used in any combination and ratio.
  • the polyester resin contains a structural unit derived from the above-mentioned trifunctional or higher functional component
  • the content thereof is preferably 0.01 mol% or more in all the structural units constituting the polyester resin, and on the other hand. 5 mol% or less is preferable, and 2.5 mol% or less is more preferable.
  • the polyester resin does not have to contain the structural units derived from the above-mentioned trifunctional or higher functional components.
  • the diol component forming the diol unit and the dicarboxylic acid component forming the dicarboxylic acid unit are reacted during the production of the polyester resin, the diol component and the dicarboxylic acid so that the produced polyester resin has the desired composition. Adjust the amount of acid component used. Normally, the diol component and the dicarboxylic acid component react in substantially equal molar amounts, but since the diol component is distilled off during the esterification reaction, it is usually 1 mol% to 20 mol more than the dicarboxylic acid component. % Excessive use.
  • the compound corresponding to each of the oxycarboxylic acid unit and the polyfunctional component unit so as to have the desired composition. (Monomer or oligomer) may be subjected to the reaction. At this time, there is no limitation on the timing and method of introducing these components into the reaction system, and it is arbitrary as long as the polyester resin can be produced.
  • the time for introducing the oxycarboxylic acid component is not particularly limited as long as it is before the polycondensation reaction between the diol component and the dicarboxylic acid component, and a catalyst is used in advance.
  • a catalyst is used in advance. Examples thereof include a method of mixing in a state of being dissolved in an oxycarboxylic acid solution, a method of introducing a catalyst into a reaction system at the time of charging a raw material, and a method of mixing at the same time.
  • the compound forming the polyfunctional component unit may be introduced at the same time as other monomers or oligomers in the initial stage of polymerization, or may be charged after the transesterification reaction and before the start of reduced pressure, but other monomers or It is preferable to charge the oligomer at the same time in terms of simplification of the process.
  • Polyester resin is usually manufactured in the presence of a catalyst.
  • a catalyst that can be used in the production of known polyester resins can be arbitrarily selected as long as the effects of the present invention are not significantly impaired.
  • metal compounds such as germanium, titanium, zirconium, hafnium, antimony, tin, magnesium, calcium and zinc are suitable. Of these, germanium compounds and titanium compounds are preferable.
  • Examples of the germanium compound that can be used as a catalyst include an organic germanium compound such as tetraalkoxygermanium, an inorganic germanium compound such as germanium oxide and germanium chloride, and the like. Among them, germanium oxide, tetraethoxygermanium, tetrabutoxygermanium and the like are preferable, and germanium oxide is particularly preferable, from the viewpoint of price and availability.
  • titanium compound that can be used as a catalyst examples include organic titanium compounds such as tetraalkoxytitanium such as tetrapropyl titanate, tetrabutyl titanate, and tetraphenyl titanate. Among them, tetrapropyl titanate, tetrabutyl titanate and the like are preferable from the viewpoint of price and availability.
  • One type of catalyst may be used alone, or two or more types may be used in any combination and ratio.
  • the amount of the catalyst used is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.0005% by weight or more, more preferably 0.001% by weight or more, and usually 3 with respect to the amount of the monomer used. By weight or less, preferably 1.5% by weight or less.
  • the introduction time of the catalyst is not particularly limited as long as it is before the polycondensation reaction, and it may be introduced at the time of raw material preparation or at the start of depressurization.
  • an aliphatic oxycarboxylic acid unit it is introduced at the same time as a monomer or oligomer forming an aliphatic oxycarboxylic acid unit such as lactic acid or glycolic acid at the time of raw material preparation, or the catalyst is dissolved in an aqueous aliphatic oxycarboxylic acid solution.
  • the method of dissolving the catalyst in an aliphatic oxycarboxylic acid aqueous solution and introducing it is preferable in terms of increasing the polymerization rate.
  • reaction conditions such as temperature, polymerization time, and pressure during the esterification reaction and / or transesterification reaction between the dicarboxylic acid component and the diol component are arbitrary as long as the effects of the present invention are not significantly impaired.
  • the reaction temperature of the esterification reaction and / or transesterification reaction between the dicarboxylic acid component and the diol component is usually 150 ° C. or higher, preferably 180 ° C. or higher, and usually 260 ° C. or lower, preferably 250 ° C. or lower.
  • the reaction atmosphere is usually an inert atmosphere such as nitrogen or argon.
  • the reaction pressure is usually normal pressure to 10 kPa, but normal pressure is particularly preferable.
  • the reaction time is usually 1 hour or more, usually 10 hours or less, preferably 6 hours or less, and more preferably 4 hours or less.
  • the pressure in the polycondensation reaction after the esterification reaction and / or transesterification reaction between the dicarboxylic acid component and the diol component is usually 0.01 ⁇ 10 3 Pa or more, preferably 0.03 ⁇ 10 3 Pa or more. , Usually 1.4 ⁇ 10 3 Pa or less, preferably 0.4 ⁇ 10 3 Pa or less.
  • the reaction temperature at this time is usually 150 ° C. or higher, preferably 180 ° C. or higher, and usually 260 ° C. or lower, preferably 250 ° C. or lower.
  • the reaction time is usually 2 hours or more, usually 15 hours or less, preferably 10 hours or less.
  • a chain extender such as a carbonate compound or a diisocyanate compound can also be used.
  • the amount of the chain extender is usually 10 mol% or less, preferably 5 mol% or less, more preferably 3 mol% or less, as the ratio of carbonate bond or urethane bond to all the constituent units constituting the polyester resin.
  • the carbonate bond is preferably less than 1 mol% and 0.5 mol% or less with respect to all the constituent units constituting the polyester resin. More preferably, it is more preferably 0.1 mol% or less.
  • the urethane bond is preferably 0.55 mol% or less, more preferably 0.3 mol% or less, further preferably 0.12 mol% or less, and 0.05 mol% or less. Is particularly preferable.
  • this amount is converted to% by weight with respect to the polyester resin composition, it is preferably 0.9% by weight or less, more preferably 0.5% by weight or less, further preferably 0.2% by weight or less, and 0.1% by weight or less. Is particularly preferable.
  • by setting the urethane bond amount within the above range smoke generation and odor caused by urethane bond decomposition are suppressed in the film forming process and the like, and film breakage due to foaming in the molten film is suppressed, so that molding is stable. Sex can be ensured.
  • the amount of carbonate bond or urethane bond in the polyester resin can be calculated from the measurement results by NMR (nuclear magnetic resonance spectrum apparatus) such as 1 H-NMR and 13 C-NMR.
  • the carbonate compound as a chain extender examples include diphenyl carbonate, ditril carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, ethylene carbonate, and the like. Examples thereof include diamyl carbonate and dicyclohexyl carbonate.
  • carbonate compounds derived from hydroxy compounds such as phenols and alcohols can also be used.
  • diisocyanate compound examples include 2,4-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, 1,5-naphthylene diisocyanate, and xylylene diisocyanate.
  • Xylylene diisocyanate hydride hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, tetramethylxylylene diisocyanate, 2,4,6-triisopropylphenyldiisocyanate, 4,4'-diphenylmethane diisocyanate, trizine diisocyanate, etc.
  • dioxazoline, silicic acid ester and the like may be used as other chain extenders.
  • Specific examples of the silicic acid ester include tetramethoxysilane, dimethoxydiphenylsilane, dimethoxydimethylsilane, and diphenyldihydroxysilane.
  • High molecular weight polyester resins using these chain extenders can also be produced using conventionally known techniques.
  • the chain extender is usually added to the reaction system in a uniform molten state without solvent after the completion of polycondensation, and is reacted with the polyester obtained by polycondensation.
  • a polyester resin having a substantially hydroxyl group as a terminal group which is obtained by catalytically reacting a diol component and a dicarboxylic acid component, is reacted with a chain extender to increase the molecular weight of the polyester.
  • Resin can be obtained.
  • Prepolymers with a weight average molecular weight of 20,000 or more are not affected by the residual catalyst even under harsh conditions such as in a molten state due to the use of a small amount of chain extender, so that gel is not formed during the reaction.
  • a high molecular weight polyester resin can be produced.
  • the weight average molecular weight (Mw) of the polyester resin is obtained as a conversion value using monodisperse polystyrene from a value measured by gel permeation chromatography (GPC) at a measurement temperature of 40 ° C. using chloroform as a solvent.
  • the weight average molecular weight of the prepolymer is preferably 20,000 or more, more preferably 40,000 or more.
  • the amount of the diisocyanate compound used for increasing the molecular weight can be small, so that the heat resistance is unlikely to decrease. In this way, a polyester resin having a urethane bond having a linear structure linked via a urethane bond derived from a diisocyanate compound is produced.
  • the pressure at the time of chain extension is preferably 0.01 MPa or more, more preferably 0.05 MPa or more, and even more preferably 0.07 MPa or more.
  • the pressure at the time of chain extension is preferably 1 MPa or less, more preferably 0.5 MPa or less, and even more preferably 0.3 MPa or less.
  • the pressure at the time of chain extension is most preferably normal pressure.
  • the reaction temperature at the time of chain extension is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, further preferably 190 ° C. or higher, and particularly preferably 200 ° C. or higher.
  • the reaction temperature at the time of chain extension is preferably 250 ° C. or lower, more preferably 240 ° C. or lower, and even more preferably 230 ° C. or lower.
  • the time for carrying out the chain extension reaction is preferably 0.1 minutes or longer, more preferably 1 minute or longer, and even more preferably 5 minutes or longer.
  • the time for carrying out the chain extension reaction is preferably 5 hours or less, more preferably 1 hour or less, further preferably 30 minutes or less, and particularly preferably 15 minutes or less.
  • the oxycarboxylic acid unit contained in the polyester resin is preferably an aliphatic oxycarboxylic acid unit represented by the following general formula (3). -OR 3- CO- (3)
  • R 3 represents an aliphatic hydrocarbon group having 1 or more carbon atoms and 20 or less carbon atoms.
  • the number of carbon atoms of the aliphatic hydrocarbon group represented by R 3 is preferably 1 or more, more preferably 2 or more, and particularly preferably 5 or more. On the other hand, it is preferably 16 or less, more preferably 12 or less, and further preferably 8 or less.
  • the aliphatic oxycarboxylic acid component that gives the aliphatic oxycarboxylic acid unit represented by the formula (3) is not particularly limited, and is, for example, glycolic acid, 3-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-. Hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 5- Examples thereof include hydroxy acids such as hydroxyvaleric acid and 6-hydroxycaproic acid, or derivatives such as lower alkyl esters or intramolecular esters thereof. When optical isomers are present in these, either D-form or L-form may be used. Of these, glycolic acid and 3-hydroxybutyric acid are preferred.
  • the polyester resin contains these aliphatic oxycarboxylic acid units, the content thereof is preferably 20 mol% or less, more preferably 20 mol% or less, based on all the constituent units constituting the polyester resin from the viewpoint of moldability. Is 10 mol% or less, more preferably 5 mol% or less.
  • the polyester resin does not have to contain oxycarboxylic acid.
  • the oxycarboxylic acid unit contained in the polyester resin may contain an aromatic oxycarboxylic acid unit.
  • the aromatic oxycarboxylic acid component that gives the aromatic oxycarboxylic acid unit include p-hydroxybenzoic acid and p- ⁇ -hydroxyethoxybenzoic acid.
  • the aromatic oxycarboxylic acid component may be a derivative of the aromatic oxycarboxylic acid compound. Further, it may be a compound (oligomer) having a structure in which a plurality of aromatic oxycarboxylic acid compounds and / or aromatic oxycarboxylic acid compounds are dehydrated and condensed with each other. That is, an oligomer may be used as a raw material.
  • an aliphatic oxycarboxylic acid resin As the resin contained in the biodegradable resin composition according to the present embodiment, an aliphatic oxycarboxylic acid resin is also preferably used.
  • the aliphatic oxycarboxylic acid resin (D) contains an aliphatic oxycarboxylic acid unit as a main constituent unit.
  • Examples of the aliphatic oxycarboxylic acid resin (D) include an aliphatic oxycarboxylic acid resin containing an aliphatic oxycarboxylic acid unit represented by the above formula (3).
  • the aliphatic oxycarboxylic acid unit and the component giving the unit in the aliphatic oxycarboxylic acid resin (D) are the same as the aliphatic oxycarboxylic acid unit and the aliphatic oxycarboxylic acid component in the above-mentioned aliphatic polyester resin (A). The same applies to the preferred embodiment defined in.
  • polycaprolactone PCL
  • poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) PHBH
  • a urethane bond, an amide bond, a carbonate bond, an ether bond or the like may be introduced into the aliphatic oxycarboxylic acid resin (D) as long as it does not affect the biodegradability.
  • the method for producing the aliphatic oxycarboxylic acid resin (D) is not particularly limited, and it can be produced by a known method such as a direct polymerization method of oxycarboxylic acid or a ring-opening polymerization method of a cyclic substance.
  • the polyhydroxyalkanoate (E) As the aliphatic oxycarboxylic acid resin (D), the polyhydroxyalkanoate (E) described below is preferable.
  • the polyhydroxyalkanoate (E) preferably used in this embodiment has a general formula: [-CHR-CH 2- CO-O-] (in the formula, R is an alkyl group having 1 to 15 carbon atoms. ) Is an aliphatic polyester containing a repeating unit, and is a copolymer containing a 3-hydroxybutyrate unit and a 3-hydroxyhexanoate unit as main constituent units.
  • the polyhydroxyalkanoate (E) preferably contains 80 mol% or more of 3-hydroxybutyrate units as a constituent component, and more preferably 85 mol% or more. Further, the polyhydroxyalkanoate (E) is preferably produced by a microorganism. Specific examples of the polyhydroxy alkanoate (E) include poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin and poly (3-hydroxybutyrate-co-3-hydroxyvalerate-). Co-3-hydroxyhexanoate) Copolymerized resin and the like can be mentioned. In particular, a poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin, that is, PHBH is preferable from the viewpoint of molding processability and physical properties of the obtained molded product.
  • the composition ratio of 3-hydroxybutyrate / comonomer is preferably 97/3 or more, that is, the molar ratio of the monomer in the copolymer resin is 97/3 or more from the viewpoint of molding processability, molded product quality, and the like. It is more preferably / 5 or more, and on the other hand, it is preferably 80/20 or less, and more preferably 85/15.
  • the ratio of each monomer in the polyhydroxy alkanoate (E) can be measured by gas chromatography as follows. 20 mg of dried polyhydroxyalkanoate is placed in a sample container, 2 ml of sulfuric acid / methanol mixed solution (15/85 (weight ratio)) and 2 ml of chloroform are added thereto, the mixture is sealed, and heated at 100 ° C. for 140 minutes. Then, the polyhydroxyalkanoate is decomposed to obtain a methyl ester. After cooling, 1.5 g of sodium hydrogen carbonate is added little by little to neutralize the mixture, and the mixture is left to stand until the generation of carbon dioxide gas stops.
  • the ratio of each monomer in the copolymer resin can be determined by analyzing the monomer unit composition of the sample decomposition product in the supernatant by capillary gas chromatography. can.
  • Polyhydroxyalkanoate (E) is, for example, Alcaligenes europhos AC32 strain (international deposit based on the Budapest Treaty, international deposit authority: Independent Administrative Institution Industrial Technology General Institute Patent Organism Deposit Center (1-1-1, Higashi, Ibaraki-shi, Japan, Central 6), Hara Deposit date: Transferred on August 12, 1996, August 7, 1997, Deposit number FERM BP- It can be produced by microorganisms such as 6038 (transferred from the original deposit FERM P-15786)) (J. Bacteriol., 179, 4821 (1997)).
  • polyhydroxy alkanoate (E) As the polyhydroxy alkanoate (E), a commercially available product can also be used. Commercially available products of polyhydroxyalkanoate (E) containing 3-hydroxybutyrate unit and 3-hydroxyhexanoate unit as main constituent units include “PHBH X331N”, “PHBH X131A”, and “PHBH X151A” manufactured by Kaneka Corporation. , “PHBH 151C” etc. can be used
  • the aliphatic oxycarboxylic acid resin (D) including the above-mentioned polyhydroxyalkanoate (E) is not limited to one type, but the type of the constituent unit, the constituent unit ratio, the production method, the physical properties, and the like are different. Two or more kinds of aliphatic oxycarboxylic acid resins (D) can be blended and used.
  • the polyester resin contained in the biodegradable resin composition according to the present embodiment includes a diol unit represented by the general formula (1) and a dicarboxylic acid unit represented by the general formula (2).
  • a polyester resin or the like containing an oxycarboxylic acid unit represented by the above general formula (3) is preferable.
  • the polyester resin contained in the biodegradable resin composition according to the present embodiment one type may be used alone or two or more types may be used in any combination and ratio as each structural unit.
  • the diol unit, the dicarboxylic acid unit and the aliphatic oxycarboxylic acid unit may be derived from a compound derived from petroleum or a compound derived from a plant material, but are derived from a plant material. It is desirable that it is derived from a compound because it can consider environmental problems.
  • aromatic compound component any of the D-form, L-form, and racemic form may be used. Further, the aromatic compound component is not limited to the above example as long as an aromatic compound unit can be given. One type of aromatic compound component may be used alone, or two or more types may be used in any combination and ratio.
  • the biodegradable resin composition according to the present embodiment may contain a resin other than the polyester resin.
  • the other resin is not particularly limited, and a known resin can be used.
  • a resin can be used.
  • polyurethane resin polyimide resin
  • polyacrylic resin acrylonitrile-butadiene-styrene resin
  • acrylonitrile-styrene resin polycarbonate resin
  • LDPE MDPE, HDPE, LLDPE, carboxyl-modified polyethylene and other polyethylene, polypropylene, polybutene, polypentene, ethylene- Polyolefin resins such as propylene copolymers and ethylene-butylene copolymers
  • polyvinyl acetate resin polyvinyl chloride resin
  • polyvinylidene chloride resin polystyrene resin
  • epoxy resin melamine resin
  • Polyamide resin such as nylon 610 and nylon 6T can be mentioned.
  • the above-mentioned preferable resin is preferably 5% by weight or more because the biodegradable resin composition is excellent in biodegradability. More preferably, it is 10% by weight or more.
  • the resin contained in the biodegradable resin composition according to the present embodiment is preferably only the above-mentioned preferable resin. However, as described above, if the resin contained in the biodegradable resin composition according to the present embodiment is a resin composition with the above-mentioned polysaccharide containing amino sugar, the biodegradability is improved.
  • the resin is not particularly limited, and a resin made of a resin other than the above-mentioned preferable resin may be used.
  • the glass transition temperature (Tg) of the resin according to the present invention is 40 ° C. or lower.
  • the glass transition temperature of the resin is preferably 30 ° C. or lower, more preferably 25 ° C. or lower, and particularly preferably 20 ° C. or lower.
  • the glass transition temperature can be measured by the following method. Put 10 mg of each resin in an aluminum sample container and use it as a measurement sample.
  • the temperature is raised from ⁇ 100 ° C. to 160 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere to obtain a DSC chart.
  • the glass transition temperature is obtained from the baseline shift existing on the lower temperature side than the peak showing the melting point. Specifically, the intersection of the contact point between the baseline on the low temperature side and the inflection point is defined as the glass transition temperature.
  • the reduced viscosity ⁇ sp / c of the resin according to the present invention at 30 ° C. is preferably 0.5 dL / g or more and 4.0 dL / g or less.
  • the reduced viscosity of the resin may be appropriately selected within this range according to the application, processing method, and the like.
  • the reducing viscosity of the resin at 30 ° C. is more preferably 0.8 dL / g or more, further preferably 1.0 dL / g or more, and 1.2 dL / g or more.
  • it is more preferably 3.0 dL / g or less, further preferably 2.5 dL / g or less, and particularly preferably 2.3 dL / g or less.
  • the reduced viscosity of the resin can usually be measured by the following method. First, the resin is dissolved in a solvent to prepare a resin solution having a concentration of c (g / dL). Next, using a capillary viscometer (Ubbelohde viscometer), the solvent passage time t0 and the resin solution passage time t were measured under the condition of a temperature of 30.0 ° C. ⁇ 0.1 ° C., and based on the following equation (i). The relative viscosity ⁇ rel is calculated. Then, the specific viscosity ⁇ sp is obtained from the relative viscosity ⁇ rel based on the following equation (ii).
  • a capillary viscometer Ubbelohde viscometer
  • the reduced viscosity ⁇ sp / c can be obtained by dividing the obtained specific viscosity ⁇ sp by the concentration c (g / dL). Generally, the higher this value, the larger the molecular weight.
  • the molecular weight of the resin is usually measured by gel permeation chromatography (GPC).
  • the resin contained in the biodegradable resin composition according to the present embodiment preferably has a weight average molecular weight (Mw) of monodisperse polystyrene as a standard substance in the following range. .. That is, the molecular weight of the resin is preferably 10,000 or more, more preferably 20,000 or more, further preferably 30,000 or more, and particularly preferably 50,000 or more. On the other hand, it is preferably 2,500,000 or less, more preferably 1,000,000 or less, further preferably 800,000 or less, and particularly preferably 600,000 or less. It is more preferably 500,000 or less, and most preferably 400,000 or less.
  • the weight average molecular weight (Mw) of the polyhydroxyalkanoate resin is preferably 200,000 or more, more preferably 250,000 or more, and even more preferably 300,000 or more. ..
  • the weight average molecular weight (Mw) of the polyhydroxyalkanoate resin is preferably 2500,000 or less, more preferably 2,000,000 or less, and 1,000,000 or less. Is more preferable.
  • the melt flow rate (MFR) of the resin can be evaluated based on JIS K 7210 (1999) with a value measured at 190 ° C. and a load of 2.16 kg.
  • the MFR of the resin contained in the biodegradable resin composition according to the present embodiment is preferably in the following range from the viewpoint of moldability and mechanical strength. That is, it is preferably 0.1 g / 10 minutes or more, and more preferably 1 g / 10 minutes or more.
  • the MFR of the resin is preferably 100 g / 10 minutes or less, more preferably 80 g / 10 minutes or less, further preferably 50 g / 10 minutes or less, and 40 g / 10 minutes or less. Is particularly preferable, and 30 g / 10 minutes or less is most preferable.
  • the MFR of the resin can be adjusted by the molecular weight and the like.
  • the melting point of the resin is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 75 ° C. or higher, particularly preferably 80 ° C. or higher, and on the other hand, preferably 270 ° C. or lower, more preferably 200 ° C. or lower.
  • 160 ° C. or lower is further preferable, 150 ° C. or lower is particularly preferable, 140 ° C. or lower is particularly preferable, and 130 ° C. or lower is most preferable.
  • the resin has a plurality of melting points, it is preferable that at least one melting point is within the above range.
  • the melting point of the polyhydroxyalkanoate resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and on the other hand, 180 ° C. or lower, more preferably 170 ° C. or lower, and particularly less than 160 ° C. preferable.
  • the tensile elastic modulus of the resin is preferably 10 MPa or more, more preferably 100 MPa or more, still more preferably 180 MPa or more, because good molding processability and impact resistance can be ensured. On the other hand, it is preferably 2500 MPa or less, and more preferably 2000 MPa or less.
  • the tensile elastic modulus can be measured by the following method. A hot press sheet of each resin is prepared and punched into a No. 8 dumbbell mold to prepare a test piece. Specifically, a surface-released gold frame is placed on a 150 mm ⁇ 150 mm PTFE tape, 1.6 g of each resin is measured inside the gold frame, and a 150 mm ⁇ 150 mm PTFE is further placed on the metal frame. Place the tape.
  • the method for adjusting the melting point and tensile elastic modulus of the resin is not particularly limited. It can be adjusted according to the type of copolymerization component and its copolymerization ratio.
  • the acid value of the resin is preferably low from the viewpoint that hydrolysis is less likely to occur and storage stability is excellent. Therefore, specifically, it is preferably 250 eq / t or less, more preferably 150 eq / t or less, further preferably 100 eq / t or less, and particularly preferably 50 eq / t or less.
  • the acid value can be measured by the following method. 0.4 g of the resin is precisely weighed, 25 mL of benzyl alcohol is added thereto, and the resin is dissolved by heating to 195 ° C.
  • the biodegradable resin composition according to the present embodiment is a filler (filler), a plasticizer, an antistatic agent, an antioxidant, a light stabilizer, an ultraviolet absorber, as long as the effects of the present invention are not significantly impaired.
  • It may contain other components such as various additives such as activators, slip agents, freshness preservatives and antibacterial agents. When these components are contained, the components may contain only one type or two or more types.
  • the content thereof is 40% by weight or less based on the total amount of the biodegradable resin composition from the viewpoint of not impairing the characteristics of the biodegradable resin composition. It is preferably 20% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less.
  • the lower limit of the content of other components is not particularly limited.
  • the method for producing the biodegradable resin composition according to the present embodiment is not particularly limited.
  • the biodegradable resin composition according to the present embodiment can be obtained by kneading a resin, a polysaccharide containing an amino sugar, and if necessary, another resin and other components.
  • the biodegradable resin composition is produced, for example, by blending each component at a predetermined ratio at the same time or in an arbitrary order, and using a machine such as a tumbler, a V-type blender, a Nauter mixer, a Banbury mixer, a kneading roll, or an extruder.
  • It can be carried out by mixing or kneading, preferably by melt-kneading. Alternatively, it can also be produced by dissolving or dispersing a resin and a polysaccharide containing an amino sugar in a solvent and removing the solvent.
  • the biodegradable resin composition is preferably produced by kneading, and more preferably by melt kneading.
  • the kneader used for kneading may be a melt kneader.
  • the extruder may be either a twin-screw extruder or a single-screw extruder, but a twin-screw extruder is more preferable.
  • the melt-kneading temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and on the other hand, preferably 220 ° C. or lower, more preferably 210 ° C. or lower. Within this temperature range, melt-kneading can be performed in a short time, deterioration of the color tone due to deterioration of the resin and carbonization of polysaccharides including amino sugars is unlikely to occur, and practical use such as impact resistance and moisture heat resistance. It tends to be a resin composition having better physical characteristics on the surface.
  • the melt-kneading time is not particularly limited as long as the polysaccharide containing amino sugar can be uniformly dispersed in the biodegradable resin, but similarly, deterioration of the resin is unlikely to occur, so that it is desirable to carry out the melt-kneading time in a short time.
  • the melt-kneading time is preferably 10 seconds or more, more preferably 30 seconds or more, and on the other hand, preferably 20 minutes or less, more preferably 15 minutes or less.
  • the biodegradable resin composition according to the present embodiment has biodegradability.
  • the resin composition of the present invention is particularly preferably biodegradable in seawater, where the resin is difficult to biodegrade (ocean biodegradable resin composition).
  • the reason why the resin composition of the present invention exhibits biodegradability even in seawater is presumed as follows. Usually, in seawater, the amount and type of microorganisms are small. Therefore, it is difficult for molds and the like to grow in seawater, and it is presumed that the formation of a biofilm is important for biodegradation in seawater. Furthermore, in seawater, nitrogen, which is an essential element for life support, is scarce.
  • the presence of polysaccharides including amino sugars promotes cell proliferation and activation of microorganisms in seawater, promotes biofilm formation, and promotes biodegradability.
  • the molecular chain tends to move when the temperature becomes higher than the glass transition temperature. Therefore, it is presumed that a resin having a low glass transition temperature is easily biodegraded. In particular, when the glass transition temperature of the resin is 40 ° C. or lower, it is considered that the resin is more easily biodegraded by polysaccharides containing amino sugars in seawater.
  • the degree of biodegradation is calculated as the ratio of the biological oxygen demand (BOD) to the theoretical oxygen demand (ThOD).
  • biodegradation in seawater was measured in accordance with ISO 14851: 1999 (Plastic-How to determine the ultimate aerobic biodegradability in aquatic culture solution-Method by measuring the amount of carbon dioxide generated); Regarding biodegradation in soil, it complies with ISO 17556: 2003 (Plastic-How to determine the aerobic ultimate biodegradability in soil by measuring oxygen consumption or carbon dioxide generated using a respiratory meter). Be measured.
  • the biodegradable resin composition according to the present embodiment has a degree of biodegradation at an arbitrary time point after the start of the biodegradability test, excluding the above-mentioned polysaccharides containing aminosaccharides from the biodegradable resin composition according to the present embodiment.
  • the degree of biodegradation of the composition (hereinafter, may be referred to as “reference composition”) exceeds 1.0 times (hereinafter, the rate of increase in the degree of biodegradation with respect to the degree of biodegradation of the reference composition).
  • biodegradation improvement Sometimes referred to as “biodegradation improvement”).
  • the degree of improvement in biodegradation of the biodegradable resin composition according to the present embodiment is more preferably 1.1 times or more. , 1.2 times or more, more preferably 2.0 times or more, and most preferably 2.5 times or more.
  • a high degree of biodegradation means that the degree of improvement in biodegradation of the biodegradable resin composition at an arbitrary time after the start of the biodegradability test is the above-mentioned preferable degree of improvement.
  • the reduced viscosity ⁇ sp / c of the resin composition according to the present embodiment at 30 ° C. is preferably 0.5 dL / g or more and 4.0 dL / g or less.
  • the reduced viscosity of the resin composition may be appropriately selected within this range according to the application, processing method and the like.
  • the reducing viscosity of the resin composition at 30 ° C. is preferably 0.8 dL / g or more, more preferably 1.0 dL / g or more, and 1.2 dL / g or more.
  • the reducing viscosity of the resin composition is more preferably 3.0 dL / g or less, further preferably 2.5 dL / g or less, and particularly preferably 2.3 dL / g or less.
  • the biodegradable resin composition according to the present embodiment can be used as a method for biodegrading the resin. Can be applied. Further, since the biodegradation of the polyester resin in seawater can be promoted in particular, the biodegradable resin composition according to the present embodiment can be applied to the biodegradation method of the polyester resin. That is, it can be applied to a method of biodegrading a polyester resin in seawater in the presence of a polysaccharide containing an amino sugar.
  • the polyester resin suitable for this method, polysaccharides containing amino sugars, and the like are as described above.
  • the biodegradable resin composition according to the present embodiment can be molded by various molding methods applied to general-purpose plastics.
  • the molding method include compression molding (compression molding, laminate molding, stampable molding), injection molding, extrusion molding, co-extrusion molding (film molding by inflation method or T-die method, laminate molding, pipe molding, electric wire / cable molding).
  • the molded body formed by molding the biodegradable resin composition according to the present embodiment has a chemical function, an electrical function, a magnetic function, a mechanical function, a friction / wear / lubrication function, and an optical function. It is also possible to perform various secondary processes for the purpose of imparting thermal functions, surface functions such as biocompatibility, and the like. Examples of secondary processing include embossing, painting, bonding, printing, metallizing (plating, etc.), machining, surface treatment (antistatic treatment, corona discharge treatment, plasma treatment, photochromism treatment, physical vapor deposition, chemical vapor deposition, etc.) Coating, etc.) and the like.
  • the biodegradable resin composition according to the present embodiment is used in a wide range of applications such as packaging materials for packaging various foods, chemicals, liquids such as miscellaneous goods, powders and solids, agricultural materials, and building materials. It is preferably used. Specific applications include injection molded products (eg, fresh food trays, fast food containers, coffee capsule containers, cutlery, outdoor leisure products, etc.), extruded molded products (eg, films, sheets, fishing threads, fishing nets, vegetation, etc.). Examples include nets, secondary processing sheets, water retention sheets, etc.), hollow molded bodies (bottles, etc.), and the like.
  • injection molded products eg, fresh food trays, fast food containers, coffee capsule containers, cutlery, outdoor leisure products, etc.
  • extruded molded products eg, films, sheets, fishing threads, fishing nets, vegetation, etc.
  • Examples include nets, secondary processing sheets, water retention sheets, etc.), hollow molded bodies (bottles, etc.), and the like.
  • molded product is particularly suitable as a container for food such as a film for food packaging, a tray for fresh food, a container for fast food, and a lunch box.
  • the molar ratio of the sebacic acid-derived unit / terephthalic acid-derived unit of PBSeT determined by 1 H-NMR (Nuclear Magnetic Resonance Spectrum) was 60/40. Further, when the reducing viscosity of PBSeT was measured according to the following measuring method, it was 1.41 dL / g, the glass transition temperature was ⁇ 45 ° C., the tensile elastic modulus was 30 MPa, and the acid value was 28 ⁇ eq / g. ..
  • PCL PCL manufactured by Sigma-Aldrich.
  • the reduction viscosity is 1.28 dL / g
  • the glass transition temperature is -60 ° C
  • the tensile elastic modulus is 430 MPa.
  • PHBH PHBH "151C” manufactured by Kaneka Corporation.
  • the glass transition temperature is 0 ° C. (catalog value)
  • the tensile elastic modulus is 950 MPa.
  • PLA PLA "4032D” manufactured by Nature Works.
  • the glass transition temperature is 55-60 ° C. (catalog value)
  • the reducing viscosity is 2.18 dL / g
  • the tensile elastic modulus is 3450 MPa.
  • a hot press sheet of each resin was prepared and punched into a No. 8 dumbbell mold to prepare a test piece. Specifically, a gold frame (SUS304, outer diameter) that has been surface-demolded on a 150 mm ⁇ 150 mm PTFE tape (Nachias Corporation Naflon tape (registered trademark) BTOMBO No. 9001, thickness 0.05 mm). (110 mm, inner diameter 70 mm, thickness 0.2 mm) was placed, 1.6 g of each resin was weighed inside the metal frame, and a 150 mm ⁇ 150 mm PTFE tape was further placed on it.
  • PBSSe Chitin (manufactured by Tokyo Chemical Industry Co., Ltd.) is blended at a weight ratio of 90:10, put into a small twin-screw kneader (“Xplore MC15 Micro Composer” manufactured by DSM), and melted at 150 ° C. for 3 minutes in a nitrogen atmosphere. Kneaded. The obtained kneaded product was pulverized, and particles having a particle size of 250 ⁇ m or less were classified to obtain a biodegradable resin composition having a chitin content of 10% by weight.
  • Example 2 heparin sodium (manufactured by Nacalai Tesque) was used instead of chitin to obtain a biodegradable resin composition having a heparin sodium content of 10% by weight and a particle size of 250 ⁇ m or less, as in Example 1. ..
  • Example 3 In Example 1, using sodium chondroitin sulfate (manufactured by Nacalai Tesque) instead of chitin, a biodegradable resin composition having a chondroitin sulfate C sodium content of 10% by weight and a particle size of 250 ⁇ m or less was used in the same manner as in Example 1. I got something.
  • Example 4 In Example 1, sodium hyaluronate (manufactured by Nacalai Tesque, Inc.) was used instead of chitin to prepare a biodegradable resin composition having a sodium hyaluronate content of 10% by weight and a particle size of 250 ⁇ m or less, as in Example 1. Obtained.
  • PBSSe was pulverized, and particles having a particle size of 250 ⁇ m or less were classified to obtain a sample.
  • Example 2 cellulose (manufactured by Sigma-Aldrich) was used instead of chitin to obtain a biodegradable resin composition having a cellulose content of 10% by weight and a particle size of 250 ⁇ m or less, as in Example 1.
  • Example 5 PBSeT and chitin were each pulverized and classified into powders having a particle size of 250 ⁇ m or less. 27 mg of PBSeT powder and 3 mg of chitin powder were weighed and placed in a 510 mL brown bottle.
  • Example 6 The PCL was pulverized and classified into 250 ⁇ m or less into a powder. 27 mg of PCL powder and 3 mg of chitin powder were weighed and placed in a 510 mL brown bottle.
  • PHBH was pulverized and classified into 250 ⁇ m or less into a powder. 27 mg of PHBH powder and 3 mg of chitin powder were weighed and placed in a 510 mL brown bottle.
  • the biodegradable resin compositions (Examples 1 to 7) containing the resin and the polysaccharide containing aminosaccharides are the resin itself (Comparative Example 1, It was confirmed that the degree of biodegradation was more than twice that of 3 to 5). On the other hand, the composition containing the resin and cellulose (Comparative Example 2) improved the degree of biodegradation only 1.04 times as much as that of the resin itself. In addition, for resins with a glass transition point higher than 40 ° C, the degree of biodegradation may rather decrease by using polysaccharides containing amino sugars, even though the biodegradability test has been conducted for a long period of time. found. From these results, it was confirmed that the degree of biodegradation of the resin having a glass transition temperature of 40 ° C. or lower was significantly improved by the polysaccharide containing amino sugar.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A biodegradable resin composition containing a resin having a glass transition temperature not higher than 40°C and polysaccharides including an amino sugar, wherein the contained amount of the polysaccharides including the amino sugar is 0.01-30 wt%. The present invention can provide a biodegradable resin composition that has a rapid biodegradation rate and a high biodegradation degree.

Description

生分解性樹脂組成物及び成形体Biodegradable resin composition and molded article
 本発明は、生分解性樹脂組成物及び該生分解性樹脂組成物を含む成形体に関する。 The present invention relates to a biodegradable resin composition and a molded product containing the biodegradable resin composition.
 現代社会において、プラスチックは、軽く、電気絶縁性、成型加工性、耐久性などに優れることから、包装用資材、家電製品資材、建築資材などの身の回りの幅広い用途で使用されている。これらの用途に使用されているプラスチックとしては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリエチレンテレフタレート等がある。しかしながら、これらのプラスチックの成形品は、自然環境下で分解され難いため、使用後に埋設しても地中に残存し易い。また、焼却しても有害ガスを発生して焼却炉を傷めることがあり、近年、世界中で、環境汚染防止の観点から、一般家庭で堆肥にすることが可能な製品(ホームコンポスト可能な製品)が求められている。 In modern society, plastic is light and has excellent electrical insulation, molding processability, durability, etc., so it is used in a wide range of personal applications such as packaging materials, home appliance materials, and building materials. Plastics used for these purposes include polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyethylene terephthalate and the like. However, since these plastic molded products are not easily decomposed in a natural environment, they tend to remain in the ground even if they are buried after use. In addition, even if it is incinerated, it may generate harmful gas and damage the incinerator. In recent years, from the viewpoint of preventing environmental pollution, products that can be composted at home (home compostable products). ) Is required.
 上述の問題を解決する手段として、コンポスト中の微生物によって二酸化炭素及び水に分解される生分解性を有する材料についての研究がなされてきた。生分解性材料の代表例としては、ポリ乳酸(以下、「PLA」と略記することがある。)等の生分解性樹脂が挙げられる。 As a means for solving the above-mentioned problems, research has been conducted on biodegradable materials that are decomposed into carbon dioxide and water by microorganisms in compost. Typical examples of biodegradable materials include biodegradable resins such as polylactic acid (hereinafter, may be abbreviated as "PLA").
 しかしながら、海洋中で生分解する樹脂についての検討はなされていない。 However, no studies have been conducted on resins that biodegrade in the ocean.
 本発明の課題は、生分解速度が速く、かつ、生分解度の高い生分解性樹脂組成物を提供することである。また、特に、海洋中において、生分解速度が速く、かつ、生分解度の高い生分解性樹脂組成物を提供することである。 An object of the present invention is to provide a biodegradable resin composition having a high biodegradation rate and a high degree of biodegradation. Another object of the present invention is to provide a biodegradable resin composition having a high biodegradation rate and a high degree of biodegradation, particularly in the ocean.
 本発明者らは、上記実情に鑑み、鋭意検討した。具体的には、アミノ糖を含む多糖類に着目し、アミノ糖を含む多糖類が分解促進に寄与すると考えた。そして、この結果、本発明者らは、ガラス転移温度が特定温度以下である樹脂に、アミノ糖を含む多糖類を特定量配合することにより、著しい生分解促進効果が得られること及びこれにより上記課題を解決できることを見出し、本発明を完成させた。すなわち、本発明の要旨は、以下の通りである。 The present inventors diligently examined in view of the above circumstances. Specifically, we focused on polysaccharides containing amino sugars, and thought that polysaccharides containing amino sugars would contribute to the promotion of decomposition. As a result, the present inventors have obtained a remarkable biodegradation-promoting effect by blending a specific amount of a polysaccharide containing an amino sugar with a resin having a glass transition temperature of a specific temperature or lower. We have found that the problem can be solved and completed the present invention. That is, the gist of the present invention is as follows.
[1]ガラス転移温度が40℃以下である樹脂と、アミノ糖を含む多糖類を含有する生分解性樹脂組成物であって、アミノ糖を含む多糖類の含有量が0.01重量%以上30重量%以下である生分解性樹脂組成物。
[2]前記樹脂がポリエステル樹脂である、上記[1]に記載の生分解性樹脂組成物。
[3]前記ポリエステル樹脂が、ジオール単位として、1,4-ブタンジオール、1,3-プロパンジオール及びエチレングリコールよりなる群から選ばれる1種類以上を有する、上記[2]に記載の生分解性樹脂組成物。
[4]前記ポリエステル樹脂が、ジカルボン酸単位として、炭素数2~22のジカルボン酸を有する、上記[2]又は[3]に記載の生分解性樹脂組成物。
[5]前記樹脂が生分解性樹脂である、上記[1]~[4]の何れかに記載の生分解性樹脂組成物。
[6]前記ポリエステル樹脂の引張弾性率が10~2500MPaである、上記[2]~[5]の何れかに記載の生分解性樹脂組成物。
[7]前記多糖類が、グルコサミン類を含む多糖類である、上記[1]~[6]の何れかに記載の生分解性樹脂組成物。
[8]前記多糖類が、キチンである、上記[7]に記載の生分解性樹脂組成物。
[9]上記[1]~[8]の何れかに記載の生分解性樹脂組成物を含む、成形体。
[10]ポリエステル樹脂を生分解させる方法であって、海水中で、ガラス転移温度が40℃以下のポリエステル樹脂を、アミノ糖を含む多糖類の存在下で生分解させる、ポリエステル樹脂の生分解方法。
[1] A biodegradable resin composition containing a resin having a glass transition temperature of 40 ° C. or lower and a polysaccharide containing an amino sugar, wherein the content of the polysaccharide containing an amino sugar is 0.01% by weight or more. A biodegradable resin composition of 30% by weight or less.
[2] The biodegradable resin composition according to the above [1], wherein the resin is a polyester resin.
[3] The biodegradability according to the above [2], wherein the polyester resin has at least one selected from the group consisting of 1,4-butanediol, 1,3-propanediol and ethylene glycol as a diol unit. Resin composition.
[4] The biodegradable resin composition according to the above [2] or [3], wherein the polyester resin has a dicarboxylic acid having 2 to 22 carbon atoms as a dicarboxylic acid unit.
[5] The biodegradable resin composition according to any one of the above [1] to [4], wherein the resin is a biodegradable resin.
[6] The biodegradable resin composition according to any one of the above [2] to [5], wherein the polyester resin has a tensile elastic modulus of 10 to 2500 MPa.
[7] The biodegradable resin composition according to any one of [1] to [6] above, wherein the polysaccharide is a polysaccharide containing glucosamines.
[8] The biodegradable resin composition according to the above [7], wherein the polysaccharide is chitin.
[9] A molded product containing the biodegradable resin composition according to any one of the above [1] to [8].
[10] A method for biodegrading a polyester resin, which comprises biodegrading a polyester resin having a glass transition temperature of 40 ° C. or lower in seawater in the presence of a polysaccharide containing an amino sugar. ..
 本発明によれば、生分解速度が速く、かつ、生分解度の高い生分解性樹脂組成物を提供することができ、海洋汚染問題等の環境問題解決に対する寄与は高い。 According to the present invention, it is possible to provide a biodegradable resin composition having a high biodegradation rate and a high degree of biodegradation, and contributes greatly to solving environmental problems such as marine pollution problems.
 以下に本発明の実施の形態を詳細に説明する。
 本発明は、以下の説明に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いることとする。
Embodiments of the present invention will be described in detail below.
The present invention is not limited to the following description, and can be arbitrarily modified and carried out without departing from the gist of the present invention. In addition, in this specification, when a numerical value or a physical property value is put before and after using "-", it is used as including the value before and after that.
 以下、本発明について詳細に説明するが、以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明はこれらの内容に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。 Hereinafter, the present invention will be described in detail, but the description of the constituent elements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these contents. It can be implemented with various modifications within the scope of the abstract.
 本発明の一実施形態は、樹脂とアミノ糖を含む多糖類を含む生分解性樹脂組成物(以下、「本実施形態に係る生分解性樹脂組成物」又は「本発明の樹脂組成物」と言う場合がある。)である。本発明の樹脂組成物は、樹脂とアミノ糖を含む多糖類とを混合又は混練してなる生分解性樹脂組成物であることが好ましい。
 本明細書において、「生分解性」とは、微生物の働きにより、樹脂が加水分解等によりオリゴマーやモノマー等の低分子に分解され、次いで、これらが更に水と二酸化炭素等に分解される性質を意味する。本発明の樹脂組成物は、樹脂が生分解されれば、どのような環境で生分解されてもよい。特に、海水中では微生物量や種類が少なく、樹脂が生分解し難い。しかしながら、本発明の樹脂組成物は、こうした生分解し難い環境で効果を発現できる。そこで、本発明の樹脂組成物は、海水中で生分解性が高いこと(海洋生分解性樹脂組成物)が好ましい。
 以下、本実施形態に係る生分解性樹脂組成物の構成成分、特性、製造方法及び用途について説明する。
One embodiment of the present invention is referred to as a biodegradable resin composition containing a resin and a polysaccharide containing an amino sugar (hereinafter, "biodegradable resin composition according to the present embodiment" or "resin composition of the present invention". I may say.). The resin composition of the present invention is preferably a biodegradable resin composition obtained by mixing or kneading a resin and a polysaccharide containing an amino sugar.
In the present specification, "biodegradable" means that the resin is decomposed into small molecules such as oligomers and monomers by the action of microorganisms, and then these are further decomposed into water, carbon dioxide and the like. Means. The resin composition of the present invention may be biodegraded in any environment as long as the resin is biodegraded. In particular, in seawater, the amount and types of microorganisms are small, and the resin is difficult to biodegrade. However, the resin composition of the present invention can exhibit its effect in such an environment where biodegradation is difficult. Therefore, it is preferable that the resin composition of the present invention has high biodegradability in seawater (ocean biodegradable resin composition).
Hereinafter, the constituent components, characteristics, production method and use of the biodegradable resin composition according to the present embodiment will be described.
[アミノ糖を含む多糖類]
 本実施形態に係る生分解性樹脂組成物は、アミノ糖を含む多糖類(以下、「本発明に係る多糖類」又は単に「多糖類」と言う場合がある。)を含有する。ここで、アミノ糖とは、アミノ基を有する糖類及びそのアシル化物等の誘導体を意味する。
 アミノ糖を含む多糖類は、アミノ糖同士又はアミノ糖と他の単糖類若しくはオリゴ糖とが、グリコシド結合を介して結合した多糖類である。アミノ糖同士がグリコシド結合を介して結合した多糖類が好ましい。アミノ糖を含む多糖類は、セルロース、アガロース等のアミノ糖を構成成分に含まない多糖類に比べ、樹脂の生分解速度又は生分解度を向上させやすく、生分解促進剤として有用である。
 アミノ糖を含む多糖類としては、例えば、キチン、グルコサミン、コンドロイチン、ヒアルロン酸、ケラタン硫酸、ヘパラン硫酸、ヘパリン、デルマタン硫酸等及びこれらの誘導体等が挙げられる。これらのうち、生分解性促進効果の観点から、グルコサミン、N-アセチルグルコサミン等のグルコサミン類を含む多糖類が好ましく、キチンがより好ましい。
 キチンの製法は、特に限定されない。例えば、カニなどの甲殻類の甲殻やイカの軟骨を原料にしたものでもよいし、菌体培養により生産したものでもよい。また、αキチン、βキチンのいずれも使用することができる。キチンの形状についても、制約はなく、粉末状でもよいし、ナノファイバー状でもよい。
 なお、本発明においてキチンとポリヒドロキシ酪酸を3:7(重量比)で含む樹脂組成物は本発明の範囲からは除かれることが好ましい。また、キチンとポリヒドロキシ酪酸を含む樹脂組成物は本発明の範囲から除かれることが好ましい。さらには本発明における樹脂からポリヒドロキシ酪酸は除かれることが好ましい。
[Polysaccharides containing amino sugars]
The biodegradable resin composition according to the present embodiment contains a polysaccharide containing an amino sugar (hereinafter, may be referred to as "polysaccharide according to the present invention" or simply "polysaccharide"). Here, the amino sugar means a saccharide having an amino group and a derivative such as an acylated product thereof.
Polysaccharides containing amino sugars are polysaccharides in which amino sugars or amino sugars and other monosaccharides or oligosaccharides are bound via glycosidic bonds. Polysaccharides in which amino sugars are bound to each other via glycosidic bonds are preferable. Polysaccharides containing amino sugars are useful as biodegradation accelerators because they can easily improve the biodegradation rate or the degree of biodegradation of resins as compared with polysaccharides containing no amino sugars such as cellulose and agarose.
Examples of polysaccharides containing amino sugars include chitin, glucosamine, chondroitin, hyaluronic acid, keratan sulfate, heparan sulfate, heparin, dermatan sulfate, and derivatives thereof. Of these, polysaccharides containing glucosamines such as glucosamine and N-acetylglucosamine are preferable, and chitin is more preferable, from the viewpoint of the biodegradability promoting effect.
The method for producing chitin is not particularly limited. For example, it may be made from crustaceans such as crabs or cartilage of squid, or it may be produced by culturing cells. Moreover, either α-chitin or β-chitin can be used. There are no restrictions on the shape of chitin, and it may be in the form of powder or nanofibers.
In the present invention, the resin composition containing chitin and polyhydroxybutyrate in a ratio of 3: 7 (weight ratio) is preferably excluded from the scope of the present invention. Further, the resin composition containing chitin and polyhydroxybutyrate is preferably excluded from the scope of the present invention. Furthermore, it is preferable that polyhydroxybutyrate is removed from the resin in the present invention.
 アミノ糖を含む多糖類の分子量は、生分解性の促進効果の観点及び樹脂中に均一分散しやすい点では小さいことが好ましい。そこで、具体的には、アミノ糖を含む多糖類の分子量は、10,000,000以下が好ましく、5,000,000以下がより好ましい。また、一方で、通常3,000以上であり、10,000以上が好ましい。なお、アミノ糖を含む多糖類の分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により測定することができる。アミノ糖を含む多糖類が重合体である場合の分子量は、重量平均分子量とする。アミノ糖を含む多糖類として市販品を用いた場合は、カタログ値より分子量を確認してもよい。
 アミノ糖を含む多糖類は、微生物の繁殖を阻害し難いことが好ましい。また、安全性の観点から危険物、殺虫剤、除草剤などの農薬などではないことが好ましい。
The molecular weight of the polysaccharide containing the amino sugar is preferably small from the viewpoint of promoting the biodegradability and from the viewpoint of easy uniform dispersion in the resin. Therefore, specifically, the molecular weight of the polysaccharide containing an amino sugar is preferably 10,000,000 or less, more preferably 5,000,000 or less. On the other hand, it is usually 3,000 or more, preferably 10,000 or more. The molecular weight of the polysaccharide including amino sugar can be measured by gel permeation chromatography (GPC). When the polysaccharide containing an amino sugar is a polymer, the molecular weight is the weight average molecular weight. When a commercially available product is used as the polysaccharide containing an amino sugar, the molecular weight may be confirmed from the catalog value.
It is preferable that polysaccharides containing amino sugars do not easily inhibit the growth of microorganisms. Moreover, from the viewpoint of safety, it is preferable that it is not a dangerous substance, an insecticide, a pesticide such as a herbicide, or the like.
 生分解性樹脂組成物中には、アミノ糖を含む多糖類が0.01重量%以上30重量%以下の量で含有される。生分解性樹脂組成物中に含有されるアミノ糖を含む多糖類の量は、樹脂の種類、アミノ糖を含む多糖類の種類、生分解性樹脂組成物の用途等に応じて適宜調整すればよい。アミノ糖を含む多糖類の含有量は、0.05重量%以上が好ましく、0.1重量%以上がより好ましく、1重量%以上がさらに好ましく、5重量%以上が特に好ましい。また、一方で、同含有量は、25重量%以下が好ましく、20重量%以下がより好ましく、15重量%以下が更に好ましい。生分解性樹脂組成物中のアミノ糖を含む多糖類の含有量を上記範囲内とすることで、生分解性と、成形体に加工した際の機械特性を兼ね備えた組成物となりやすい。 The biodegradable resin composition contains a polysaccharide containing an amino sugar in an amount of 0.01% by weight or more and 30% by weight or less. The amount of the polysaccharide containing amino sugar contained in the biodegradable resin composition may be appropriately adjusted according to the type of resin, the type of polysaccharide containing amino sugar, the use of the biodegradable resin composition, and the like. good. The content of the polysaccharide containing an amino sugar is preferably 0.05% by weight or more, more preferably 0.1% by weight or more, further preferably 1% by weight or more, and particularly preferably 5% by weight or more. On the other hand, the content is preferably 25% by weight or less, more preferably 20% by weight or less, and further preferably 15% by weight or less. By setting the content of polysaccharides including amino sugars in the biodegradable resin composition within the above range, it is easy to obtain a composition having both biodegradability and mechanical properties when processed into a molded product.
[樹脂]
 本実施形態に係る生分解性樹脂組成物は、樹脂を含有する。本実施形態に係る生分解性樹脂組成物に含有される樹脂は、上述のアミノ糖を含む多糖類との樹脂組成物とすることにより、生分解性が向上すれば、特に限定されないが、本実施形態に係る生分解性樹脂組成物に含有される樹脂は、生分解性樹脂が好ましい。樹脂および本実施形態に係る生分解性樹脂組成物の生分解度については、後述する。本実施形態に係る生分解性樹脂組成物に含有される樹脂は、1種類を単独で用いても、2種類以上の樹脂を任意の組み合わせと比率で用いてもよい。
[resin]
The biodegradable resin composition according to the present embodiment contains a resin. The resin contained in the biodegradable resin composition according to the present embodiment is not particularly limited as long as the biodegradability is improved by using the resin composition with the above-mentioned aminosaccharide-containing polysaccharide. The resin contained in the biodegradable resin composition according to the embodiment is preferably a biodegradable resin. The degree of biodegradation of the resin and the biodegradable resin composition according to the present embodiment will be described later. As the resin contained in the biodegradable resin composition according to the present embodiment, one type may be used alone, or two or more types of resins may be used in any combination and ratio.
 生分解性の樹脂としては、ポリ乳酸などが知られている。 Polylactic acid and the like are known as biodegradable resins.
 本実施形態に係る生分解性樹脂組成物に含有される樹脂としては、アミノ糖を含む多糖類との樹脂組成物とすることにより生分解性が向上しやすいことから、ポリエステル樹脂が好ましく、ジカルボン酸単位やオキシカルボン酸単位などのカルボン酸単位を有するポリエステル樹脂がより好ましい。また、ジカルボン酸単位とジオール単位を有するポリエステル樹脂およびオキシカルボン酸単位を有するポリエステル樹脂が特に好ましく、ジカルボン酸単位とジオール単位を有するポリエステル樹脂が最も好ましい。具体的には、ポリエステル樹脂は、PBSSe(ポリブチレンサクシネートセバケート)、PBSeT(ポリブチレンセバケートテレフタレート)及びPHBH(ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート))、PCL(ポリカプロラクトン)が特に好ましい。
 ポリエステル樹脂は、脂肪族ポリエステル樹脂であっても、芳香族ポリエステル樹脂であっても、脂肪族-芳香族ポリエステル樹脂であってもよい。但し、柔軟性が高い点では、脂肪族ポリエステル樹脂又は脂肪族-芳香族ポリエステル樹脂が好ましい。なお、ここで、本明細書において、芳香族には、複素芳香族も含まれる。
As the resin contained in the biodegradable resin composition according to the present embodiment, a polyester resin is preferable because the biodegradability can be easily improved by using a resin composition with a polysaccharide containing an amino sugar. A polyester resin having a carboxylic acid unit such as an acid unit or an oxycarboxylic acid unit is more preferable. Further, a polyester resin having a dicarboxylic acid unit and a diol unit and a polyester resin having an oxycarboxylic acid unit are particularly preferable, and a polyester resin having a dicarboxylic acid unit and a diol unit is most preferable. Specifically, the polyester resins are PBSSe (polybutylene succinate sebacate), PBSeT (polybutylene succinate terephthalate) and PHBH (poly (3-hydroxybutyrate-co-3-hydroxyhexanoate)), PCL. (Polycaprolactone) is particularly preferred.
The polyester resin may be an aliphatic polyester resin, an aromatic polyester resin, or an aliphatic-aromatic polyester resin. However, an aliphatic polyester resin or an aliphatic-aromatic polyester resin is preferable in terms of high flexibility. Here, in the present specification, the aromatics also include complex aromatics.
 樹脂は、1種類のみでも、構成単位の種類、構成単位比、製造方法、物性等の異なる2種類以上の樹脂をブレンドして用いることができる。 Even if only one type of resin is used, two or more types of resins having different types of constituent units, constituent unit ratios, manufacturing methods, physical characteristics, etc. can be blended and used.
 本実施形態に係る生分解性樹脂組成物に含有される樹脂について、ポリエステル樹脂を例に以下に詳述する。なお、ポリエステル樹脂における各繰返し単位は、それぞれの繰返し単位の由来となる化合物に対する化合物単位とも呼ぶ。例えば、脂肪族ジオールに由来する繰返し単位を「脂肪族ジオール単位」、脂肪族ジカルボン酸に由来する繰返し単位を「脂肪族ジカルボン酸単位」、芳香族ジカルボン酸に由来する繰返し単位を「芳香族ジカルボン酸単位」とも呼ぶ。また、ポリエステル樹脂中の「主構成単位」とは、通常、その構成単位が当該ポリエステル樹脂中に80重量%以上含まれる構成単位のことであり、主構成単位以外の構成単位が含まれない場合もある。
 本実施形態に係る生分解性樹脂組成物に含有されるポリエステル樹脂としては、(1)ジオール単位及びジカルボン酸単位を含むポリエステル樹脂、(2)ジオール単位、ジカルボン酸単位及びオキシカルボン酸単位を含むポリエステル樹脂、(3)オキシカルボン酸単位を含むポリエステル樹脂等が好ましい。これらのうち、(1)ジオール単位及びジカルボン酸単位を含むポリエステル樹脂および(3)オキシカルボン酸単位を含むポリエステル樹脂等がより好ましい。
 本実施形態に係る生分解性樹脂組成物に含有されるポリエステル樹脂は、ポリエステル樹脂の結晶化度が低下し、非晶部が多くなることにより、生分解が促進されやすくなると考えられることから、2種類以上の構造単位を有することが好ましい。
The resin contained in the biodegradable resin composition according to the present embodiment will be described in detail below by taking a polyester resin as an example. In addition, each repeating unit in a polyester resin is also referred to as a compound unit for a compound from which each repeating unit is derived. For example, a repeating unit derived from an aliphatic diol is an "aliphatic diol unit", a repeating unit derived from an aliphatic dicarboxylic acid is a "aliphatic dicarboxylic acid unit", and a repeating unit derived from an aromatic dicarboxylic acid is an "aromatic dicarboxylic acid". Also called "acid unit". Further, the "main constituent unit" in the polyester resin is usually a constituent unit in which the constituent unit is contained in an amount of 80% by weight or more in the polyester resin, and does not include a constituent unit other than the main constituent unit. There is also.
The polyester resin contained in the biodegradable resin composition according to the present embodiment includes (1) a polyester resin containing a diol unit and a dicarboxylic acid unit, and (2) a diol unit, a dicarboxylic acid unit and an oxycarboxylic acid unit. Polyester resins, (3) polyester resins containing an oxycarboxylic acid unit, and the like are preferable. Of these, (1) a polyester resin containing a diol unit and a dicarboxylic acid unit, (3) a polyester resin containing an oxycarboxylic acid unit, and the like are more preferable.
The polyester resin contained in the biodegradable resin composition according to the present embodiment is considered to be likely to promote biodegradation due to a decrease in the crystallinity of the polyester resin and an increase in the number of amorphous portions. It is preferable to have two or more types of structural units.
<ジオール単位及びジカルボン酸単位を含むポリエステル樹脂>
 ジオール単位及びジカルボン酸単位を含むポリエステル樹脂について詳述する。
 ポリエステル樹脂に含まれるジオール単位は、脂肪族でも芳香族でもよいが、生分解性の観点から、脂肪族が好ましく、下記一般式(1)で表されるジオール単位が特に好ましい。
 -O-R-O-    (1)
 式(1)中、Rは炭素数2以上20以下の脂肪族炭化水素基を表す。
<Polyester resin containing diol unit and dicarboxylic acid unit>
The polyester resin containing a diol unit and a dicarboxylic acid unit will be described in detail.
The diol unit contained in the polyester resin may be aliphatic or aromatic, but from the viewpoint of biodegradability, the aliphatic is preferable, and the diol unit represented by the following general formula (1) is particularly preferable.
-OR 1 -O- (1)
In the formula (1), R 1 represents an aliphatic hydrocarbon group having 2 or more carbon atoms and 20 or less carbon atoms.
 Rで表される脂肪族炭化水素基の炭素数は、成形性、機械強度等の観点から、通常2以上、好ましくは4以上、また、通常20以下、好ましくは16以下、より好ましくは12以下、さらに好ましくは6以下である。脂肪族炭化水素基として特に好ましい基は、炭素数4の脂肪族炭化水素基である。
 式(1)で表される脂肪族ジオール単位を与える脂肪族ジオールとしては、例えば、エチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール等が好ましく、1,4-ブタンジオール、1,3-プロパンジオール及びエチレングリコールがより好ましく、1,4-ブタンジオールが特に好ましい。
 ポリエステル樹脂に含まれるジオール単位は、1種類でも、2種類以上の単位を任意の組み合わせと比率で用いてもよい。ポリエステル樹脂に複数種のジオール単位が含まれる場合、全ジオール単位中に脂肪族ジオール単位が、30モル%以上含まれることが好ましく、50モル%以上含まれることがより好ましい。また、上限は、100モル%である。
The carbon number of the aliphatic hydrocarbon group represented by R 1 is usually 2 or more, preferably 4 or more, and usually 20 or less, preferably 16 or less, more preferably 12 from the viewpoint of moldability, mechanical strength, and the like. Below, it is more preferably 6 or less. A particularly preferable group as the aliphatic hydrocarbon group is an aliphatic hydrocarbon group having 4 carbon atoms.
As the aliphatic diol giving the aliphatic diol unit represented by the formula (1), for example, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,4-cyclohexanedimethanol and the like are preferable. 1,4-Butanediol, 1,3-propanediol and ethylene glycol are more preferable, and 1,4-butanediol is particularly preferable.
As the diol unit contained in the polyester resin, one type or two or more types of units may be used in any combination and ratio. When the polyester resin contains a plurality of types of diol units, the total diol units preferably contain 30 mol% or more of the aliphatic diol units, and more preferably 50 mol% or more. The upper limit is 100 mol%.
 ポリエステル樹脂に含まれるジオール単位は、芳香族ジオール単位を含んでいてもよい。芳香族ジオール単位を与える芳香族ジオール成分の具体例としては、例えば、キシリレングリコール、4,4’-ジヒドロキシビフェニル、2,2-ビス(4’-ヒドロキシフェニル)プロパン、2,2-ビス(4’-β-ヒドロキシエトキシフェニル)プロパン、ビス(4-ヒドロキシフェニル)スルホン、ビス(4-β-ヒドロキシエトキシフェニル)スルホン酸等が挙げられる。芳香族ジオール成分は、芳香族ジオール化合物の誘導体でもよい。また、複数の脂肪族ジオール化合物及び/又は芳香族ジオール化合物が互いに脱水縮合した構造を有する化合物であってもよい。 The diol unit contained in the polyester resin may contain an aromatic diol unit. Specific examples of the aromatic diol component that gives the aromatic diol unit include, for example, xylylene glycol, 4,4'-dihydroxybiphenyl, 2,2-bis (4'-hydroxyphenyl) propane, and 2,2-bis (. Examples thereof include 4'-β-hydroxyethoxyphenyl) propane, bis (4-hydroxyphenyl) sulfone, and bis (4-β-hydroxyethoxyphenyl) sulfonic acid. The aromatic diol component may be a derivative of the aromatic diol compound. Further, it may be a compound having a structure in which a plurality of aliphatic diol compounds and / or aromatic diol compounds are dehydrated and condensed with each other.
 ポリエステル樹脂に含まれるジカルボン酸単位は、脂肪族でも芳香族でもよい。また、ポリエステル樹脂に含まれるジカルボン酸単位は、1種類でも、2種類以上の単位を任意の組み合わせと比率で含んでいてもよく、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位を含んでいてもよい。但し、生分解性の観点から、ジカルボン酸単位は、脂肪族のジカルボン酸単位を含んでいることが好ましい。ポリエステル樹脂に複数種のジカルボン酸単位が含まれる場合、全ジカルボン酸単位に対し、脂肪族ジカルボン酸単位が、30モル%以上含まれることが好ましく、50モル%以上含まれることがより好ましい。なお、脂肪族ジカルボン酸単位が含まれる場合における全ジカルボン酸単位に含まれる脂肪族ジカルボン酸単位の上限は、100モル%である。また、ポリエステル樹脂に芳香族ジカルボン酸単位が含まれる場合は、芳香族ジカルボン酸単位が全ジカルボン酸単位に対して、70モル%以下であることが好ましく、60モル%以下であることがさらに好ましい。
 ポリエステル樹脂に含まれるジカルボン酸単位は、炭素数2~22のジカルボン酸であることが好ましく、ジカルボン酸単位が有する炭素数は、生分解性、成形性、機械強度の観点から、2以上であることがより好ましく、4以上であることがさらに好ましく、また、一方で、16以下であることがより好ましく、13以下であることがさらに好ましい。
 ポリエステル樹脂に含まれるジカルボン酸単位は、シュウ酸または下記一般式(2)で表されるジカルボン酸単位が好ましい。
 -OC-R-CO-  (2)
 式(2)中、Rは単結合、炭素数1以上20以下の脂肪族炭化水素基又は炭素数4以上8以下の芳香族基を表す。
The dicarboxylic acid unit contained in the polyester resin may be aliphatic or aromatic. Further, the dicarboxylic acid unit contained in the polyester resin may contain one type or two or more types of units in any combination and ratio, and may contain an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit. good. However, from the viewpoint of biodegradability, the dicarboxylic acid unit preferably contains an aliphatic dicarboxylic acid unit. When the polyester resin contains a plurality of types of dicarboxylic acid units, the aliphatic dicarboxylic acid unit is preferably contained in an amount of 30 mol% or more, more preferably 50 mol% or more, based on all the dicarboxylic acid units. When the aliphatic dicarboxylic acid unit is contained, the upper limit of the aliphatic dicarboxylic acid unit contained in all the dicarboxylic acid units is 100 mol%. When the polyester resin contains an aromatic dicarboxylic acid unit, the aromatic dicarboxylic acid unit is preferably 70 mol% or less, more preferably 60 mol% or less, based on the total dicarboxylic acid unit. ..
The dicarboxylic acid unit contained in the polyester resin is preferably a dicarboxylic acid having 2 to 22 carbon atoms, and the dicarboxylic acid unit has 2 or more carbon atoms from the viewpoint of biodegradability, moldability, and mechanical strength. More preferably, it is more preferably 4 or more, and on the other hand, it is more preferably 16 or less, and further preferably 13 or less.
The dicarboxylic acid unit contained in the polyester resin is preferably oxalic acid or a dicarboxylic acid unit represented by the following general formula (2).
-OC-R 2- CO- (2)
In the formula (2), R 2 represents a single bond, an aliphatic hydrocarbon group having 1 to 20 carbon atoms or an aromatic group having 4 to 8 carbon atoms.
 Rが脂肪族炭化水素基である場合の脂肪族炭化水素基の炭素数は、通常1以上、好ましくは2以上、より好ましくは4以上であり、また、一方で、通常22以下、好ましくは16以下、より好ましくは12以下、さらに好ましくは8以下である。ポリエステル樹脂が、式(2)で表される脂肪族ジカルボン酸単位を2種類以上含む場合、脂肪族炭化水素基の組み合わせとしては、炭素数2の脂肪族炭化水素基と炭素数4以上10以下の脂肪族炭化水素基との組み合わせが好ましい。 When R 2 is an aliphatic hydrocarbon group, the number of carbon atoms of the aliphatic hydrocarbon group is usually 1 or more, preferably 2 or more, more preferably 4 or more, and on the other hand, usually 22 or less, preferably 22 or less. It is 16 or less, more preferably 12 or less, still more preferably 8 or less. When the polyester resin contains two or more kinds of aliphatic dicarboxylic acid units represented by the formula (2), the combination of the aliphatic hydrocarbon groups includes an aliphatic hydrocarbon group having 2 carbon atoms and an aliphatic hydrocarbon group having 4 or more carbon atoms and 10 or less carbon atoms. The combination with the aliphatic hydrocarbon group of is preferable.
 式(2)で表される脂肪族ジカルボン酸単位を与える脂肪族ジカルボン酸成分としては、特に限定されないが、その炭素数は、2以上が好ましく、4以上がより好ましく、また、一方で、22以下が好ましく、10以下がより好ましい。すなわち、炭素数2以上22以下の脂肪族ジカルボン酸又はそのアルキルエステル等の誘導体が好ましく、炭素数4以上10以下の脂肪族カルボン酸又はそのアルキルエステル等の誘導体がより好ましい。
 好ましい脂肪族ジカルボン酸単位としては、例えば、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸が挙げられる。これらのうち、アジピン酸、コハク酸及びセバシン酸が好ましく、コハク酸及びセバシン酸がより好ましく、コハク酸が特に好ましい。
The aliphatic dicarboxylic acid component giving the aliphatic dicarboxylic acid unit represented by the formula (2) is not particularly limited, but the carbon number thereof is preferably 2 or more, more preferably 4 or more, and on the other hand, 22 The following is preferable, and 10 or less is more preferable. That is, a derivative such as an aliphatic dicarboxylic acid having 2 or more and 22 or less carbon atoms or an alkyl ester thereof is preferable, and a derivative such as an aliphatic carboxylic acid having 4 or more and 10 or less carbon atoms or an alkyl ester thereof is more preferable.
Preferred aliphatic dicarboxylic acid units include, for example, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelli acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid and dodecanedioic acid. Of these, adipic acid, succinic acid and sebacic acid are preferable, succinic acid and sebacic acid are more preferable, and succinic acid is particularly preferable.
 ポリエステル樹脂は、全ジカルボン酸単位中における上述の好ましいジカルボン酸単位の割合が、5モル%以上であることが好ましく、10モル%以上であることがより好ましく、50モル%以上であることが更に好ましく、64モル%以上であることが特に好ましく、68モル%以上であることが最も好ましい。なお、上限は100モル%である。ポリエステル樹脂における好ましいジカルボン酸の割合を上記範囲内とすることにより、成形性が向上すると共に、耐熱性、生分解性にも優れた生分解性樹脂組成物を得ることが可能となる。 In the polyester resin, the ratio of the above-mentioned preferable dicarboxylic acid unit to the total dicarboxylic acid unit is preferably 5 mol% or more, more preferably 10 mol% or more, and further preferably 50 mol% or more. It is preferably 64 mol% or more, and most preferably 68 mol% or more. The upper limit is 100 mol%. By setting the preferable ratio of the dicarboxylic acid in the polyester resin to the above range, it becomes possible to obtain a biodegradable resin composition which is excellent in heat resistance and biodegradability as well as improved moldability.
 ポリエステル樹脂は、脂肪族ジカルボン酸単位を2種類以上含むことが好ましく、上述の好ましい脂肪族ジカルボン酸単位を2種類以上含むことがより好ましい。この場合、脂肪族ジカルボン酸単位の組み合わせとしては、炭素数4の脂肪族ジカルボン酸単位と炭素数6以上12以下の脂肪族ジカルボン酸単位との組み合わせが好ましく、炭素数4の脂肪族ジカルボン酸単位と炭素数6以上10以下の脂肪族ジカルボン酸単位との組み合わせがより好ましい。具体的には、脂肪族ジカルボン酸単位の組み合わせとしては、コハク酸単位、アジピン酸単位、アゼライン酸単位、セバシン酸単位の少なくとも何れか1つの単位を含むことが好ましく、これらの中から2種以上のジカルボン酸単位を組み合わせることがより好ましい。
 コハク酸単位と組み合わせるジカルボン酸単位としては、ピメリン酸単位、スベリン酸単位、アゼライン酸単位、アジピン酸単位、セバシン酸単位、ウンデカン二酸単位若しくはドデカン二酸単位が好ましく、アジピン酸単位若しくはセバシン酸単位との組み合わせがより好ましく、セバシン酸単位との組み合わせがさらに好ましい。
 すなわち、具体的には、以下のポリエステル樹脂が好ましい。コハク酸単位を有するポリエステル樹脂としては、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンサクシネートセバケート(PBSSe)およびポリブチレンサクシネートアゼレート(PBSAz)などが好ましく、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンサクシネートセバケート(PBSSe)およびポリブチレンサクシネートアゼレート(PBSAz)などの2種以上のジカルボン酸単位を有するポリエステル樹脂がより好ましい。セバシン酸単位を有するポリエステル樹脂としては、ポリブチレンサクシネートセバケート(PBSSe)、ポリブチレンセバケートテレフタレート(PBSeT)およびポリブチレンセバケートフラノエート(PBSeF)が好ましい。アゼライン酸単位を有するポリエステル樹脂としては、ポリブチレンサクシネートアゼレート(PBSAz)、ポリブチレンアゼレートテレフタレート(PBAzT)などが好ましい。アジピン酸単位を有するポリエステル樹脂としては、ポリブチレンサクシネートアジペート(PBSA)およびポリブチレンアジペートテレフタレート(PBAT)が好ましい。
The polyester resin preferably contains two or more types of aliphatic dicarboxylic acid units, and more preferably contains two or more types of the above-mentioned preferable aliphatic dicarboxylic acid units. In this case, the combination of the aliphatic dicarboxylic acid unit is preferably a combination of an aliphatic dicarboxylic acid unit having 4 carbon atoms and an aliphatic dicarboxylic acid unit having 6 or more and 12 or less carbon atoms, and an aliphatic dicarboxylic acid unit having 4 carbon atoms. Is more preferably combined with an aliphatic dicarboxylic acid unit having 6 or more and 10 or less carbon atoms. Specifically, the combination of the aliphatic dicarboxylic acid units preferably includes at least one unit of succinic acid unit, adipic acid unit, azelaic acid unit, and sebacic acid unit, and two or more of these. It is more preferable to combine the dicarboxylic acid units of.
As the dicarboxylic acid unit to be combined with the succinic acid unit, a pimeric acid unit, a suberic acid unit, an adipic acid unit, an adipic acid unit, a sebacic acid unit, an undecanedioic acid unit or a dodecanedioic acid unit is preferable, and an adipic acid unit or a sebacic acid unit is preferable. The combination with and is more preferable, and the combination with the sebacic acid unit is further preferable.
That is, specifically, the following polyester resins are preferable. As the polyester resin having a succinic acid unit, polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene succinate sebacate (PBSSe), polybutylene succinate azelate (PBSAz) and the like are preferable. More preferred are polyester resins having two or more dicarboxylic acid units such as polybutylene succinate adipate (PBSA), polybutylene succinate sebacate (PBSSe) and polybutylene succinate azelate (PBSAz). As the polyester resin having a sebacic acid unit, polybutylene succinate sebacate (PBSSe), polybutylene sebacate terephthalate (PBSeT) and polybutylene sebacate furanoate (PBSeF) are preferable. As the polyester resin having an azelaic acid unit, polybutylene succinate azelate (PBSAz), polybutylene succinate terephthalate (PBAzT) and the like are preferable. As the polyester resin having an adipic acid unit, polybutylene succinate adipate (PBSA) and polybutylene adipate terephthalate (PBAT) are preferable.
 コハク酸単位と組み合わせるジカルボン酸単位は、全ジカルボン酸単位に対して、5モル%以上含まれていることが好ましく、10モル%以上含まれていることがより好ましく、15モル%以上含まれていることが更に好ましく、また、一方で、50モル%以下含まれていることがより好ましく、45モル%以下含まれていることがより好ましく、40モル%以下含まれていることが更に好ましい。コハク酸単位以外の脂肪族ジカルボン酸単位を上記範囲内で共重合することで、ポリエステル樹脂の結晶化度を下げることができ、生分解速度を速くすることが可能である。 The dicarboxylic acid unit to be combined with the succinic acid unit preferably contains 5 mol% or more, more preferably 10 mol% or more, and 15 mol% or more, based on the total dicarboxylic acid units. On the other hand, it is more preferably contained in an amount of 50 mol% or less, more preferably contained in an amount of 45 mol% or less, and further preferably contained in an amount of 40 mol% or less. By copolymerizing an aliphatic dicarboxylic acid unit other than the succinic acid unit within the above range, the crystallinity of the polyester resin can be lowered and the biodegradation rate can be increased.
 式(2)で表される芳香族ジカルボン酸単位を与える芳香族ジカルボン酸成分としては、特に限定されないが、その炭素数は、通常4以上、8以下であり、好ましくは6以下である。具体的には、1,2-フェニレン基、1,3-フェニレン基、1,4-フェニレン基、2,5-フランジイル基等が挙げられる。 The aromatic dicarboxylic acid component that gives the aromatic dicarboxylic acid unit represented by the formula (2) is not particularly limited, but the carbon number thereof is usually 4 or more and 8 or less, preferably 6 or less. Specific examples thereof include a 1,2-phenylene group, a 1,3-phenylene group, a 1,4-phenylene group, a 2,5-frangyl group and the like.
 式(2)で表される芳香族ジカルボン酸単位を与える芳香族ジカルボン酸成分としては、特に限定されないが、通常、上述の好ましい炭素数の芳香族ジカルボン酸又はその誘導体である。具体的には、フタル酸、イソフタル酸、テレフタル酸、2,5-フランジカルボン酸等又はその誘導体が挙げられ、中でも、テレフタル酸及び2,5-フランジカルボン酸又はその誘導体が好ましく、2,5-フランジカルボン酸又はその誘導体が更に好ましい。 The aromatic dicarboxylic acid component that gives the aromatic dicarboxylic acid unit represented by the formula (2) is not particularly limited, but is usually the above-mentioned aromatic dicarboxylic acid having a preferable carbon number or a derivative thereof. Specific examples thereof include phthalic acid, isophthalic acid, terephthalic acid, 2,5-furandicarboxylic acid and its derivatives, and among them, terephthalic acid and 2,5-furandicarboxylic acid or derivatives thereof are preferable, and 2,5 -Flange carboxylic acid or a derivative thereof is more preferable.
 なお、芳香族ジカルボン酸の誘導体とは、芳香族ジカルボン酸の炭素数1以上4以下の低級アルキルエステル、酸無水物等が挙げられる。芳香族ジカルボン酸の誘導体の具体例としては、上述の芳香族ジカルボン酸のメチルエステル、エチルエステル、プロピルエステル、ブチルエステル等の低級アルキルエステル;芳香族ジカルボン酸の環状酸無水物;等が挙げられる。中でも、ジメチルテレフタレートが好ましい。
 ジカルボン酸単位を有するポリエステル樹脂は、ジカルボン酸単位の量が異なるポリエステル樹脂を用いてもよく、例えば、ジカルボン酸単位として上述の好ましいジカルボン酸単位のみを含むポリエステル樹脂と、これら以外のジカルボン酸単位を含むポリエステル樹脂とをブレンドして、ポリエステル樹脂における好ましいジカルボン酸単位の割合を上記範囲内に調整することも可能である。
 本発明で用いるポリエステル樹脂は、更に後述するオキシカルボン酸単位を含んでもよい。
 ポリエステル樹脂は、脂肪族ジオール単位及び脂肪族ジカルボン酸単位を主構成単位として含む脂肪族ポリエステル樹脂(以下、「脂肪族ポリエステル樹脂(A)」と言う場合がある。)、脂肪族ポリエステル樹脂(A)の繰り返し単位の少なくとも一部が、芳香族化合物単位に置き換えられた樹脂である脂肪族-芳香族ポリエステル樹脂(B)、脂肪族ポリエステル樹脂(A)の繰り返し単位が芳香族化合物単位に置き換えられた樹脂である芳香族ポリエステル樹脂(ポリアリレート)(C)が好ましく、脂肪族ポリエステル樹脂が特に好ましい。
Examples of the derivative of the aromatic dicarboxylic acid include lower alkyl esters of the aromatic dicarboxylic acid having 1 or more and 4 or less carbon atoms, acid anhydrides and the like. Specific examples of the derivative of the aromatic dicarboxylic acid include lower alkyl esters such as the above-mentioned methyl ester, ethyl ester, propyl ester and butyl ester of the aromatic dicarboxylic acid; cyclic acid anhydride of the aromatic dicarboxylic acid; and the like. .. Of these, dimethyl terephthalate is preferable.
As the polyester resin having a dicarboxylic acid unit, a polyester resin having a different amount of the dicarboxylic acid unit may be used. For example, a polyester resin containing only the above-mentioned preferable dicarboxylic acid unit as the dicarboxylic acid unit and a dicarboxylic acid unit other than these may be used. It is also possible to blend with the containing polyester resin to adjust the ratio of the preferable dicarboxylic acid unit in the polyester resin within the above range.
The polyester resin used in the present invention may further contain an oxycarboxylic acid unit described later.
The polyester resin is an aliphatic polyester resin containing an aliphatic diol unit and an aliphatic dicarboxylic acid unit as a main constituent unit (hereinafter, may be referred to as "aliphatic polyester resin (A)"), an aliphatic polyester resin (A). ) Is a resin in which at least a part of the repeating unit is replaced with an aromatic compound unit. The repeating unit of the aliphatic-aromatic polyester resin (B) and the aliphatic polyester resin (A) is replaced with an aromatic compound unit. The aromatic polyester resin (polyallylate) (C), which is a resin, is preferable, and the aliphatic polyester resin is particularly preferable.
(脂肪族ポリエステル樹脂(A))
 脂肪族ポリエステル樹脂(A)としては、上記の式(1)で表される脂肪族ジオール単位とRが脂肪族炭化水素基である上記の式(2)で表される脂肪族ジカルボン酸単位を含む脂肪族ポリエステル樹脂;上記の式(1)で表される脂肪族ジオール単位とRが脂肪族炭化水素基である上記の式(2)で表される脂肪族ジカルボン酸単位と後述する式(3)で表される脂肪族オキシカルボン酸単位を含む脂肪族ポリエステル樹脂が好ましい。
 なお、式(1)で表される脂肪族ジオール単位、Rが脂肪族炭化水素基である式(2)で表される脂肪族ジカルボン酸単位については、前述したとおりである。また、脂肪族ポリエステル(A)として好ましい脂肪族ポリエステル樹脂についても前述したとおりである。なお、式(3)で表される脂肪族オキシカルボン酸単位、及び脂肪族ポリエステル樹脂(A)が、3官能以上の脂肪族多価アルコールと3官能以上の脂肪族多価カルボン酸若しくはその酸無水物又は3官能以上の脂肪族多価オキシカルボン酸成分とを共重合されている場合については後述する。
(Aliphatic polyester resin (A))
The aliphatic polyester resin (A), the aliphatic dicarboxylic acid unit an aliphatic diol units and R 2 represented by the formula (1) is represented by the above formula is an aliphatic hydrocarbon group (2) described later and an aliphatic dicarboxylic acid unit an aliphatic diol units and R 2 represented by the formula (1) is represented by the above formula is an aliphatic hydrocarbon group (2), aliphatic polyester resins containing An aliphatic polyester resin containing an aliphatic oxycarboxylic acid unit represented by the formula (3) is preferable.
Incidentally, the aliphatic diol unit represented by the formula (1), the aliphatic dicarboxylic acid unit wherein R 2 is represented by formula (2) is an aliphatic hydrocarbon group is as previously described. Further, the aliphatic polyester resin preferable as the aliphatic polyester (A) is also as described above. The aliphatic oxycarboxylic acid unit represented by the formula (3) and the aliphatic polyester resin (A) are a trifunctional or higher aliphatic polyvalent alcohol and a trifunctional or higher functional aliphatic polyvalent carboxylic acid or an acid thereof. The case where the anhydride or the trifunctional or higher functional aliphatic polyvalent oxycarboxylic acid component is copolymerized will be described later.
 脂肪族ポリエステル樹脂(A)としては、生分解性が高いことから、ポリブチレンサクシネート(PBS)、ポリブチレンサクシネートアジペート(PBSA)、ポリブチレンサクシネートセバケート(PBSSe)、ポリブチレンサクシネートアゼレート(PBSAz)等のポリブチレンサクシネート系樹脂が特に好ましく、ポリブチレンサクシネートセバケートが最も好ましい。 As the aliphatic polyester resin (A), polybutylene succinate (PBS), polybutylene succinate adipate (PBSA), polybutylene succinate sebacate (PBSSe), and polybutylene succinate aze are used because of their high biodegradability. Polybutylene succinate-based resins such as rate (PBSAz) are particularly preferred, and polybutylene succinate sebacate is most preferred.
(脂肪族-芳香族ポリエステル樹脂(B))
 脂肪族-芳香族ポリエステル樹脂(B)は、上述の脂肪族ポリエステル樹脂(A)の繰り返し単位の少なくとも一部が、芳香族化合物単位に置き換えられた樹脂である。脂肪族-芳香族ポリエステル樹脂(B)としては、上述の式(1)で表される脂肪族ジオール単位及びRが芳香族基である上述の式(2)で表される芳香族ジカルボン酸単位を含む、脂肪族-芳香族ポリエステル樹脂;式(1)で表される脂肪族ジオール単位、Rが芳香族基である上述の式(2)で表される芳香族ジカルボン酸単位及び式(3)で表される脂肪族オキシカルボン酸単位を含む、脂肪族-芳香族ポリエステル樹脂が好ましい。
(Aliphatic-aromatic polyester resin (B))
The aliphatic-aromatic polyester resin (B) is a resin in which at least a part of the repeating units of the above-mentioned aliphatic polyester resin (A) is replaced with an aromatic compound unit. Aliphatic - aromatic polyester resin (B), an aromatic dicarboxylic acid aliphatic diol units and R 2 represented by the above formula (1) is represented by the above formula is an aromatic group (2) Aliphatic-aromatic polyester resin containing a unit; an aliphatic diol unit represented by the formula (1), an aromatic dicarboxylic acid unit represented by the above formula (2) in which R 2 is an aromatic group, and a formula. An aliphatic-aromatic polyester resin containing an aliphatic oxycarboxylic acid unit represented by (3) is preferable.
 なお、式(1)で表される脂肪族ジオール単位、Rが芳香族基である式(2)で表される芳香族ジカルボン酸単位については、前述したとおりである。また、脂肪族-芳香族ポリエステル(B)として好ましい脂肪族ポリエステルについても、脂肪族-芳香族ポリエステル樹脂(B)が、3官能以上の脂肪族多価アルコールと3官能以上の脂肪族多価カルボン酸若しくはその酸無水物又は3官能以上の脂肪族多価オキシカルボン酸成分とを共重合されている場合も含め、前述したとおりである。 Incidentally, the aliphatic diol unit represented by the formula (1), the aromatic dicarboxylic acid unit R 2 is represented by formula (2) is an aromatic group are as described above. Further, regarding the aliphatic polyester preferable as the aliphatic-aromatic polyester (B), the aliphatic-aromatic polyester resin (B) is a trifunctional or higher functional aliphatic polyhydric alcohol and a trifunctional or higher functional aliphatic polyvalent carboxylic acid. This is as described above, including the case where an acid or an acid anhydride thereof or a trifunctional or higher functional aliphatic polyvalent oxycarboxylic acid component is copolymerized.
 脂肪族-芳香族ポリエステル樹脂(B)は、芳香族ジオール単位を含んでいてもよい。すなわち、脂肪族-芳香族ポリエステル樹脂(B)は、芳香族ジオール単位と脂肪族ジカルボン酸単位;芳香族ジオール単位と脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位;脂肪族ジオール単位と芳香族のジオール単位と芳香族ジカルボン酸単位;脂肪族ジオール単位と芳香族のジオール単位と脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位を有するポリエステル樹脂であってもよい。なお、ここで、芳香族ジオール成分の具体例については、上述したとおりである。 The aliphatic-aromatic polyester resin (B) may contain an aromatic diol unit. That is, the aliphatic-aromatic polyester resin (B) has an aromatic diol unit and an aliphatic dicarboxylic acid unit; an aromatic diol unit, an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit; A diol unit and an aromatic dicarboxylic acid unit; a polyester resin having an aliphatic diol unit, an aromatic diol unit, an aliphatic dicarboxylic acid unit and an aromatic dicarboxylic acid unit may be used. Here, specific examples of the aromatic diol component are as described above.
 脂肪族-芳香族ポリエステル樹脂(B)は、芳香族オキシカルボン酸単位を含んでいてもよい。芳香族オキシカルボン酸単位を与える芳香族オキシカルボン酸成分の具体例としては、上述したとおりである。 The aliphatic-aromatic polyester resin (B) may contain an aromatic oxycarboxylic acid unit. Specific examples of the aromatic oxycarboxylic acid component that gives the aromatic oxycarboxylic acid unit are as described above.
 脂肪族-芳香族ポリエステル樹脂(B)としては、芳香族化合物単位を与える成分として、芳香族ジカルボン酸成分を用いることが好ましく、この場合の芳香族ジカルボン酸単位の含有量は、脂肪族ジカルボン酸単位と芳香族ジカルボン酸単位の全量を基準(100モル%)として、10モル%以上、80モル%以下であることが好ましい。
 芳香族ジカルボン酸単位としては、テレフタル酸単位又は2,5-フランジカルボン酸単位を用いることが好ましい。具体的には、脂肪族-芳香族ポリエステル樹脂(B)としては、ポリブチレンアジペートテレフタレート(PBAT)やポリブチレンサクシネートテレフタレート(PBST)、ポリブチレンセバケートテレフタレート(PBSeT)、ポリブチレンアゼレートテレフタレート(PBAzT)等のポリブチレンテレフタレート系樹脂、及びポリブチレンアジペートフラノエート(PBAF)やポリブチレンサクシネートフラノエート(PBSF)、ポリブチレンセバケートフラノエート(PBSeF)、ポリブチレンサクシネートセバケートフラノエート(PBSSeF)等のポリフランジカルボキシレート系樹脂が好ましい。
As the aliphatic-aromatic polyester resin (B), it is preferable to use an aromatic dicarboxylic acid component as a component that gives an aromatic compound unit, and the content of the aromatic dicarboxylic acid unit in this case is the aliphatic dicarboxylic acid. Based on the total amount of the unit and the aromatic dicarboxylic acid unit (100 mol%), it is preferably 10 mol% or more and 80 mol% or less.
As the aromatic dicarboxylic acid unit, it is preferable to use a terephthalic acid unit or a 2,5-furandicarboxylic acid unit. Specifically, examples of the aliphatic-aromatic polyester resin (B) include polybutylene adipate terephthalate (PBAT), polybutylene succinate terephthalate (PBST), polybutylene succinate terephthalate (PBSeT), and polybutylene succinate terephthalate (PBSeT). Polybutylene terephthalate resin such as PBAzT), polybutylene adipate furanoate (PBAF), polybutylene succinate furanoate (PBSF), polybutylene succinate furanoate (PBSeF), polybutylene succinate sebacate furanoate (PBSSeF). ) Etc., a polyfuranite carboxylate-based resin is preferable.
 脂肪族-芳香族ポリエステル樹脂(B)としては、ジカルボン酸単位として、コハク酸、アジピン酸及びセバシン酸を有する樹脂が好ましい。そこで、脂肪族-芳香族ポリエステル樹脂(B)としては、PBST、PBSF、PBSSeFなどのポリブチレンサクシネート系樹脂;PBAT、PBAF、PBASeFなどのポリブチレンアジベート系樹脂及びPBSeT、PBSeFなどのポリブチレンセバシネート系樹脂;PBAzT(ポリブチレンアゼレートテレフタレート)、PBAzF(ポリブチレンアゼレートフラノエート)などのポリブチレンアゼレート系樹脂が好ましく、PBST、PBSF、PBSSeFなどのポリブチレンサクシネート-芳香族ジカルボン酸系樹脂が更に好ましい。 As the aliphatic-aromatic polyester resin (B), a resin having succinic acid, adipic acid and sebacic acid as dicarboxylic acid units is preferable. Therefore, as the aliphatic-aromatic polyester resin (B), polybutylene succinate resins such as PBST, PBSF and PBSSeF; polybutylene adipate resins such as PBAT, PBAF and PBASEF and polybutylene such as PBSeT and PBSeF are used. Sebasinate-based resins; polybutylene succinate-based resins such as PBAzT (polybutylene succinate terephthalate) and PBAzF (polybutylene succinate furanoate) are preferable, and polybutylene succinate-aromatic dicarboxylic acids such as PBST, PBSF, and PBSSeF are preferable. Acidic resins are even more preferred.
(芳香族ポリエステル樹脂(C))
 芳香族ポリエステル樹脂(ポリアリレート)(C)は、上述の脂肪族ポリエステル樹脂(A)の繰り返し単位が、芳香族化合物単位に置き換えられた樹脂である。
 芳香族ポリエステル樹脂(C)としては、上述の脂肪族-芳香族ポリエステル樹脂(B)が含んでいてもよい芳香族ジオール単位とRが芳香族基である上述の式(2)で表される芳香族ジカルボン酸単位を含む芳香族ポリエステル樹脂;脂肪族-芳香族ポリエステル樹脂(B)が含んでいてもよい芳香族ジオール単位、Rが芳香族基である上述の式(2)で表される芳香族ジカルボン酸単位及び脂肪族-芳香族ポリエステル樹脂(B)が含んでいてもよい芳香族オキシカルボン酸単位を含む芳香族ポリエステル樹脂等が好ましい。
(Aromatic polyester resin (C))
The aromatic polyester resin (polyarylate) (C) is a resin in which the repeating unit of the above-mentioned aliphatic polyester resin (A) is replaced with an aromatic compound unit.
The aromatic polyester resin (C) is represented by the above formula (2) in which the aromatic diol unit and R 2 which may be contained in the above-mentioned aliphatic-aromatic polyester resin (B) are aromatic groups. Aromatic polyester resin containing an aromatic dicarboxylic acid unit; an aromatic diol unit that may be contained in the aliphatic-aromatic polyester resin (B), represented by the above formula (2) in which R 2 is an aromatic group. The aromatic dicarboxylic acid unit and the aromatic polyester resin containing the aromatic oxycarboxylic acid unit which may be contained in the aliphatic-aromatic polyester resin (B) are preferable.
 芳香族ポリエステル樹脂(C)に含まれる各単位等については、上述したとおりである。 The units and the like contained in the aromatic polyester resin (C) are as described above.
(3官能以上の単位)
 ポリエステル樹脂は、3官能以上の脂肪族多価アルコールと3官能以上の脂肪族多価カルボン酸若しくはその酸無水物又は3官能以上の脂肪族多価オキシカルボン酸成分とを共重合することによって、溶融粘度が高められた樹脂であってもよい。これらの共重合成分を用いる場合は、1種類を単独で用いても、2種類以上を任意の組み合わせと比率で用いてもよい。
(Unit of 3 or more sensuality)
The polyester resin is obtained by copolymerizing a trifunctional or higher functional aliphatic polyvalent alcohol with a trifunctional or higher functional aliphatic polyvalent carboxylic acid or an acid anhydride thereof, or a trifunctional or higher functional aliphatic polyvalent oxycarboxylic acid component. It may be a resin having an increased melt viscosity. When these copolymerization components are used, one type may be used alone, or two or more types may be used in any combination and ratio.
 3官能の脂肪族多価アルコールの具体例としては、トリメチロールプロパン、グリセリン等が挙げられる。4官能の脂肪族多価アルコールの具体例としては、ペンタエリスリトール等が挙げられる。
 3官能の脂肪族多価カルボン酸又はその酸無水物の具体例としては、プロパントリカルボン酸又はその酸無水物が挙げられる。4官能の多価カルボン酸又はその酸無水物の具体例としては、シクロペンタンテトラカルボン酸又はその酸無水物等が挙げられる。
Specific examples of the trifunctional aliphatic polyhydric alcohol include trimethylolpropane and glycerin. Specific examples of the tetrafunctional aliphatic polyhydric alcohol include pentaerythritol and the like.
Specific examples of the trifunctional aliphatic polyvalent carboxylic acid or its acid anhydride include propanetricarboxylic acid or its acid anhydride. Specific examples of the tetrafunctional polyvalent carboxylic acid or its acid anhydride include cyclopentanetetracarboxylic acid or its acid anhydride.
 また、3官能の脂肪族オキシカルボン酸は、(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプと、(ii)カルボキシル基が1個とヒドロキシル基が2個のタイプとに大別される。何れのタイプも使用可能であるが、成形性、機械強度、成形体外観等の観点からリンゴ酸等の(i)カルボキシル基が2個とヒドロキシル基が1個を同一分子中に有するタイプが好ましく、リンゴ酸がより好ましい。
 また、4官能の脂肪族オキシカルボン酸成分は、(i)3個のカルボキシル基と1個のヒドロキシル基とを同一分子中に共有するタイプ、(ii)2個のカルボキシル基と2個のヒドロキシル基とを同一分子中に共有するタイプ、(iii)3個のヒドロキシル基と1個のカルボキシル基とを同一分子中に共有するタイプに大別される。何れのタイプも使用可能であるが、カルボキシル基を複数有するものが好ましく、クエン酸及び酒石酸がより好ましい。これらは1種類を単独で用いても、2種類以上を任意の組み合わせと比率で用いてもよい。
The trifunctional aliphatic oxycarboxylic acid has (i) a type having two carboxyl groups and one hydroxyl group in the same molecule, and (ii) having one carboxyl group and two hydroxyl groups. It is roughly divided into types. Any type can be used, but from the viewpoint of moldability, mechanical strength, appearance of the molded product, etc., (i) a type having two carboxyl groups and one hydroxyl group such as malic acid in the same molecule is preferable. , Malic acid is more preferred.
The tetrafunctional aliphatic oxycarboxylic acid component is (i) a type in which three carboxyl groups and one hydroxyl group are shared in the same molecule, and (ii) two carboxyl groups and two hydroxyls. It is roughly classified into a type in which a group is shared in the same molecule and a type in which (iii) three hydroxyl groups and one carboxyl group are shared in the same molecule. Any type can be used, but those having a plurality of carboxyl groups are preferable, and citric acid and tartaric acid are more preferable. One of these may be used alone, or two or more thereof may be used in any combination and ratio.
 ポリエステル樹脂が上述の3官能以上の成分由来の構成単位を含む場合、その含有量は、ポリエステル樹脂を構成する全構成単位中に含まれる量は、0.01モル%以上が好ましく、また、一方で、5モル%以下が好ましく、2.5モル%以下が更に好ましい。なお、ポリエステル樹脂は、上述の3官能以上の成分由来の構成単位を含まなくても構わない。 When the polyester resin contains a structural unit derived from the above-mentioned trifunctional or higher functional component, the content thereof is preferably 0.01 mol% or more in all the structural units constituting the polyester resin, and on the other hand. 5 mol% or less is preferable, and 2.5 mol% or less is more preferable. The polyester resin does not have to contain the structural units derived from the above-mentioned trifunctional or higher functional components.
(ポリエステル樹脂の製造方法)
 ジオール単位及びジカルボン酸単位を含むポリエステル樹脂の製造方法は、ポリエステルの製造に関する公知の方法が採用できる。また、この際の重縮合反応は、従来から採用されている適切な条件を設定することができ、特に制限されない。通常、エステル化反応を進行させた後、減圧操作を行うことによって更に重合度を高める方法が採用される。
(Manufacturing method of polyester resin)
As a method for producing a polyester resin containing a diol unit and a dicarboxylic acid unit, a known method for producing a polyester can be adopted. Further, the polycondensation reaction at this time is not particularly limited as appropriate conditions that have been conventionally adopted can be set. Usually, a method of further increasing the degree of polymerization by performing a reduced pressure operation after advancing the esterification reaction is adopted.
 ポリエステル樹脂の製造時に、ジオール単位を形成するジオール成分とジカルボン酸単位を形成するジカルボン酸成分とを反応させる場合には、製造されるポリエステル樹脂が目的とする組成を有するように、ジオール成分及びジカルボン酸成分の使用量を調整する。通常、ジオール成分とジカルボン酸成分とは、実質的に等モル量で反応するが、ジオール成分は、エステル化反応中に留出することから、通常はジカルボン酸成分よりも1モル%~20モル%過剰に用いる。 When the diol component forming the diol unit and the dicarboxylic acid component forming the dicarboxylic acid unit are reacted during the production of the polyester resin, the diol component and the dicarboxylic acid so that the produced polyester resin has the desired composition. Adjust the amount of acid component used. Normally, the diol component and the dicarboxylic acid component react in substantially equal molar amounts, but since the diol component is distilled off during the esterification reaction, it is usually 1 mol% to 20 mol more than the dicarboxylic acid component. % Excessive use.
 ポリエステル樹脂に、オキシカルボン酸単位、多官能成分単位等の成分を共重合させる場合、そのオキシカルボン酸単位及び多官能成分単位についても、それぞれ目的とする組成となるように、それぞれに対応する化合物(モノマー又はオリゴマー)を反応に供すればよい。このとき、これらの成分を反応系に導入する時期及び方法に制限はなく、ポリエステル樹脂を製造できる限り任意である。 When a component such as an oxycarboxylic acid unit or a polyfunctional component unit is copolymerized with a polyester resin, the compound corresponding to each of the oxycarboxylic acid unit and the polyfunctional component unit so as to have the desired composition. (Monomer or oligomer) may be subjected to the reaction. At this time, there is no limitation on the timing and method of introducing these components into the reaction system, and it is arbitrary as long as the polyester resin can be produced.
 例えば、ポリエステル樹脂に、オキシカルボン酸を共重合させる場合には、オキシカルボン酸成分を導入する時期は、ジオール成分とジカルボン酸成分との重縮合反応前であれば特に限定されず、予め触媒をオキシカルボン酸溶液に溶解させた状態で混合する方法、原料仕込み時に触媒を反応系に導入すると同時に混合する方法等が挙げられる。 For example, in the case of copolymerizing an oxycarboxylic acid with a polyester resin, the time for introducing the oxycarboxylic acid component is not particularly limited as long as it is before the polycondensation reaction between the diol component and the dicarboxylic acid component, and a catalyst is used in advance. Examples thereof include a method of mixing in a state of being dissolved in an oxycarboxylic acid solution, a method of introducing a catalyst into a reaction system at the time of charging a raw material, and a method of mixing at the same time.
 多官能成分単位を形成する化合物の導入時期は、重合初期の他のモノマー又はオリゴマーと同時に仕込むようにしても、或いは、エステル交換反応後、減圧を開始する前に仕込むようにしてもよいが、他のモノマー又はオリゴマーと同時に仕込む方が工程の簡略化の点で好ましい。 The compound forming the polyfunctional component unit may be introduced at the same time as other monomers or oligomers in the initial stage of polymerization, or may be charged after the transesterification reaction and before the start of reduced pressure, but other monomers or It is preferable to charge the oligomer at the same time in terms of simplification of the process.
 ポリエステル樹脂は、通常、触媒の存在下で製造される。触媒としては、公知のポリエステル樹脂の製造に用いることのできる触媒を、本発明の効果を著しく損なわない限り任意に選択することができる。その例を挙げると、ゲルマニウム、チタン、ジルコニウム、ハフニウム、アンチモン、スズ、マグネシウム、カルシウム、亜鉛等の金属化合物が好適である。中でもゲルマニウム化合物、チタン化合物が好適である。 Polyester resin is usually manufactured in the presence of a catalyst. As the catalyst, a catalyst that can be used in the production of known polyester resins can be arbitrarily selected as long as the effects of the present invention are not significantly impaired. For example, metal compounds such as germanium, titanium, zirconium, hafnium, antimony, tin, magnesium, calcium and zinc are suitable. Of these, germanium compounds and titanium compounds are preferable.
 触媒として使用できるゲルマニウム化合物としては、例えば、テトラアルコキシゲルマニウム等の有機ゲルマニウム化合物、酸化ゲルマニウム、塩化ゲルマニウム等の無機ゲルマニウム化合物等が挙げられる。中でも、価格、入手の容易さなどから、酸化ゲルマニウム、テトラエトキシゲルマニウム又はテトラブトキシゲルマニウム等が好ましく、特には、酸化ゲルマニウムが好適である。 Examples of the germanium compound that can be used as a catalyst include an organic germanium compound such as tetraalkoxygermanium, an inorganic germanium compound such as germanium oxide and germanium chloride, and the like. Among them, germanium oxide, tetraethoxygermanium, tetrabutoxygermanium and the like are preferable, and germanium oxide is particularly preferable, from the viewpoint of price and availability.
 触媒として使用できるチタン化合物としては、例えば、テトラプロピルチタネート、テトラブチルチタネート、テトラフェニルチタネート等のテトラアルコキシチタン等の有機チタン化合物が挙げられる。中でも、価格、入手の容易さなどから、テトラプロピルチタネート、テトラブチルチタネート等が好ましい。 Examples of the titanium compound that can be used as a catalyst include organic titanium compounds such as tetraalkoxytitanium such as tetrapropyl titanate, tetrabutyl titanate, and tetraphenyl titanate. Among them, tetrapropyl titanate, tetrabutyl titanate and the like are preferable from the viewpoint of price and availability.
 また、本発明の目的を損なわない限り、他の触媒の併用を妨げない。なお、触媒は1種類を単独で用いても、2種類以上を任意の組み合わせと比率で併用してもよい。 Further, as long as the object of the present invention is not impaired, the combined use of other catalysts is not hindered. One type of catalyst may be used alone, or two or more types may be used in any combination and ratio.
 触媒の使用量は、本発明の効果を著しく損なわない限り任意であるが、使用するモノマー量に対して、通常0.0005重量%以上、より好ましくは0.001重量%以上、また、通常3重量%以下、好ましくは1.5重量%以下である。触媒量を上記範囲内とすることで、製造コストを抑えつつ十分な触媒効果が得られ、かつ、得られるポリマーの着色又は耐加水分解性の低下を抑制することができる。 The amount of the catalyst used is arbitrary as long as the effect of the present invention is not significantly impaired, but is usually 0.0005% by weight or more, more preferably 0.001% by weight or more, and usually 3 with respect to the amount of the monomer used. By weight or less, preferably 1.5% by weight or less. By setting the amount of the catalyst within the above range, a sufficient catalytic effect can be obtained while suppressing the production cost, and the coloring or the decrease in hydrolysis resistance of the obtained polymer can be suppressed.
 触媒の導入時期は、重縮合反応以前であれば特に限定されず、原料仕込み時に導入しておいてもよく、減圧開始時に導入してもよい。脂肪族オキシカルボン酸単位を導入する場合は、原料仕込み時に乳酸、グリコール酸等の脂肪族オキシカルボン酸単位を形成するモノマー又はオリゴマーと同時に導入するか、又は脂肪族オキシカルボン酸水溶液に触媒を溶解して導入する方法が好ましく、特に、重合速度が大きくなるという点で脂肪族オキシカルボン酸水溶液に触媒を溶解して導入する方法が好ましい。 The introduction time of the catalyst is not particularly limited as long as it is before the polycondensation reaction, and it may be introduced at the time of raw material preparation or at the start of depressurization. When introducing an aliphatic oxycarboxylic acid unit, it is introduced at the same time as a monomer or oligomer forming an aliphatic oxycarboxylic acid unit such as lactic acid or glycolic acid at the time of raw material preparation, or the catalyst is dissolved in an aqueous aliphatic oxycarboxylic acid solution. In particular, the method of dissolving the catalyst in an aliphatic oxycarboxylic acid aqueous solution and introducing it is preferable in terms of increasing the polymerization rate.
 ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応する際の温度、重合時間、圧力等の反応条件は、本発明の効果を著しく損なわない限り任意である。但し、ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応の反応温度は、通常150℃以上、好ましくは180℃以上であり、通常260℃以下、好ましくは250℃以下である。また、反応雰囲気は、通常、窒素、アルゴン等の不活性雰囲気下で反応させる。反応圧力は、通常、常圧~10kPaであるが、中でも常圧が好ましい。また、反応時間は、通常1時間以上であり、通常10時間以下、好ましくは6時間以下、より好ましくは4時間以下である。反応条件を上記範囲内とすることで、不飽和結合の過剰生成によるゲル化が抑制され、重合度をコントロールすることができる。 Reaction conditions such as temperature, polymerization time, and pressure during the esterification reaction and / or transesterification reaction between the dicarboxylic acid component and the diol component are arbitrary as long as the effects of the present invention are not significantly impaired. However, the reaction temperature of the esterification reaction and / or transesterification reaction between the dicarboxylic acid component and the diol component is usually 150 ° C. or higher, preferably 180 ° C. or higher, and usually 260 ° C. or lower, preferably 250 ° C. or lower. The reaction atmosphere is usually an inert atmosphere such as nitrogen or argon. The reaction pressure is usually normal pressure to 10 kPa, but normal pressure is particularly preferable. The reaction time is usually 1 hour or more, usually 10 hours or less, preferably 6 hours or less, and more preferably 4 hours or less. By setting the reaction conditions within the above range, gelation due to excessive formation of unsaturated bonds can be suppressed, and the degree of polymerization can be controlled.
 また、ジカルボン酸成分とジオール成分とのエステル化反応及び/又はエステル交換反応後の重縮合反応における圧力は、通常0.01×10Pa以上、好ましくは0.03×10Pa以上であり、通常1.4×10Pa以下、好ましくは0.4×10Pa以下の真空度下で行うことが望ましい。また、この時の反応温度は、通常150℃以上、好ましくは180℃以上であり、通常260℃以下、好ましくは250℃以下である。反応時間は、通常2時間以上であり、通常15時間以下、好ましくは10時間以下である。反応条件を上記範囲内とすることで、不飽和結合の過剰生成によるゲル化が抑制され、重合度をコントロールすることができる。 The pressure in the polycondensation reaction after the esterification reaction and / or transesterification reaction between the dicarboxylic acid component and the diol component is usually 0.01 × 10 3 Pa or more, preferably 0.03 × 10 3 Pa or more. , Usually 1.4 × 10 3 Pa or less, preferably 0.4 × 10 3 Pa or less. The reaction temperature at this time is usually 150 ° C. or higher, preferably 180 ° C. or higher, and usually 260 ° C. or lower, preferably 250 ° C. or lower. The reaction time is usually 2 hours or more, usually 15 hours or less, preferably 10 hours or less. By setting the reaction conditions within the above range, gelation due to excessive formation of unsaturated bonds can be suppressed, and the degree of polymerization can be controlled.
 ポリエステル樹脂の製造時には、カーボネート化合物、ジイソシアネート化合物等の鎖延長剤を使用することもできる。この場合、鎖延長剤の量は、ポリエステル樹脂を構成する全構成単位に対する、カーボネート結合又はウレタン結合の割合として、通常10モル%以下、好ましくは5モル%以下、より好ましくは3モル%以下である。本実施形態に係る生分解性樹脂組成物の生分解性の観点から、ポリエステル樹脂を構成する全構成単位に対し、カーボネート結合は1モル%未満であることが好ましく、0.5モル%以下であることがより好ましく、0.1モル%以下であることが更に好ましい。ウレタン結合は0.55モル%以下であることが好ましく、0.3モル%以下であることがより好ましく、0.12モル%以下であることが更に好ましく、0.05モル%以下であるのが特に好ましい。この量を、ポリエステル樹脂組成物に対する重量%に換算すると、0.9重量%以下が好ましく、0.5重量%以下がより好ましく、0.2重量%以下がさらに好ましく、0.1重量%以下が特に好ましい。特に、ウレタン結合量を上記範囲内とすることで、成膜工程等において、ウレタン結合分解に起因する発煙及び臭気が抑制され、また、溶融膜中の発泡による膜切れが抑制されるため成形安定性を確保することができる。なお、ポリエステル樹脂中のカーボネート結合量又はウレタン結合量は、H-NMR及び13C-NMR等のNMR(核磁気共鳴スペクトル装置)による測定結果から算出することができる。 When producing the polyester resin, a chain extender such as a carbonate compound or a diisocyanate compound can also be used. In this case, the amount of the chain extender is usually 10 mol% or less, preferably 5 mol% or less, more preferably 3 mol% or less, as the ratio of carbonate bond or urethane bond to all the constituent units constituting the polyester resin. be. From the viewpoint of biodegradability of the biodegradable resin composition according to the present embodiment, the carbonate bond is preferably less than 1 mol% and 0.5 mol% or less with respect to all the constituent units constituting the polyester resin. More preferably, it is more preferably 0.1 mol% or less. The urethane bond is preferably 0.55 mol% or less, more preferably 0.3 mol% or less, further preferably 0.12 mol% or less, and 0.05 mol% or less. Is particularly preferable. When this amount is converted to% by weight with respect to the polyester resin composition, it is preferably 0.9% by weight or less, more preferably 0.5% by weight or less, further preferably 0.2% by weight or less, and 0.1% by weight or less. Is particularly preferable. In particular, by setting the urethane bond amount within the above range, smoke generation and odor caused by urethane bond decomposition are suppressed in the film forming process and the like, and film breakage due to foaming in the molten film is suppressed, so that molding is stable. Sex can be ensured. The amount of carbonate bond or urethane bond in the polyester resin can be calculated from the measurement results by NMR (nuclear magnetic resonance spectrum apparatus) such as 1 H-NMR and 13 C-NMR.
 鎖延長剤としてのカーボネート化合物としては、具体的には、ジフェニルカーボネート、ジトリールカーボネート、ビス(クロロフェニル)カーボネート、m-クレジルカーボネート、ジナフチルカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、エチレンカーボネート、ジアミルカーボネート、ジシクロヘキシルカーボネート等が例示される。その他、フェノール類、アルコール類のようなヒドロキシ化合物から誘導されるカーボネート化合物も使用可能である。 Specific examples of the carbonate compound as a chain extender include diphenyl carbonate, ditril carbonate, bis (chlorophenyl) carbonate, m-cresyl carbonate, dinaphthyl carbonate, dimethyl carbonate, diethyl carbonate, dibutyl carbonate, ethylene carbonate, and the like. Examples thereof include diamyl carbonate and dicyclohexyl carbonate. In addition, carbonate compounds derived from hydroxy compounds such as phenols and alcohols can also be used.
 ジイソシアネート化合物としては、具体的には、2,4-トリレンジイソシアネート、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートとの混合体、1,5-ナフチレンジイソシアネート、キシリレンジイソシアネート、水素化キシリレンジイソシアネート、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、4,4’-ジシクロヘキシルメタンジイソシアネート、テトラメチルキシリレンジイソシアネート、2,4,6-トリイソプロピルフェニルジイソシアネート、4,4’-ジフェニルメタンジイソシアネート、トリジンジイソシアネート等の公知のジイソシアネート等が例示される。 Specific examples of the diisocyanate compound include 2,4-tolylene diisocyanate, a mixture of 2,4-tolylene diisocyanate and 2,6-tolylene diisocyanate, 1,5-naphthylene diisocyanate, and xylylene diisocyanate. Xylylene diisocyanate hydride, hexamethylene diisocyanate, isophorone diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, tetramethylxylylene diisocyanate, 2,4,6-triisopropylphenyldiisocyanate, 4,4'-diphenylmethane diisocyanate, trizine diisocyanate, etc. Examples of known diisocyanates and the like.
 また、その他の鎖延長剤として、ジオキサゾリン、珪酸エステル等を使用してもよい。
 珪酸エステルとしては、具体的には、テトラメトキシシラン、ジメトキシジフェニルシラン、ジメトキシジメチルシラン、ジフェニルジヒドロキシシラン等が例示される。
Moreover, dioxazoline, silicic acid ester and the like may be used as other chain extenders.
Specific examples of the silicic acid ester include tetramethoxysilane, dimethoxydiphenylsilane, dimethoxydimethylsilane, and diphenyldihydroxysilane.
 これらの鎖延長剤(カップリング剤)を用いた高分子量ポリエステル樹脂についても、従来公知の技術を用いて製造することが可能である。鎖延長剤は、通常、重縮合終了後、均一な溶融状態で無溶媒にて反応系に添加し、重縮合により得られたポリエステルと反応させる。 High molecular weight polyester resins using these chain extenders (coupling agents) can also be produced using conventionally known techniques. The chain extender is usually added to the reaction system in a uniform molten state without solvent after the completion of polycondensation, and is reacted with the polyester obtained by polycondensation.
 より具体的には、ジオール成分とジカルボン酸成分とを触媒反応させて得られる、末端基が実質的にヒドロキシル基を有するポリエステル樹脂に、鎖延長剤を反応させることにより、より高分子量化したポリエステル樹脂を得ることができる。重量平均分子量が20,000以上のプレポリマーは、少量の鎖延長剤の使用により、溶融状態のような苛酷な条件下でも、残存触媒の影響を受けないので反応中にゲルを生ずることなく、高分子量のポリエステル樹脂を製造することができる。ここで、ポリエステル樹脂の重量平均分子量(Mw)は、溶媒をクロロホルムとし、測定温度40℃でゲルパーミエーションクロマトグラフィー(GPC)による測定値から単分散ポリスチレンによる換算値として求められる。 More specifically, a polyester resin having a substantially hydroxyl group as a terminal group, which is obtained by catalytically reacting a diol component and a dicarboxylic acid component, is reacted with a chain extender to increase the molecular weight of the polyester. Resin can be obtained. Prepolymers with a weight average molecular weight of 20,000 or more are not affected by the residual catalyst even under harsh conditions such as in a molten state due to the use of a small amount of chain extender, so that gel is not formed during the reaction. A high molecular weight polyester resin can be produced. Here, the weight average molecular weight (Mw) of the polyester resin is obtained as a conversion value using monodisperse polystyrene from a value measured by gel permeation chromatography (GPC) at a measurement temperature of 40 ° C. using chloroform as a solvent.
 そこで、例えば、鎖延長剤として上述のジイソシアネート化合物を用いて、ポリエステル樹脂を更に高分子量化する場合におけるプレポリマーの重量平均分子量は、20,000以上が好ましく、40,000以上がより好ましい。重量平均分子量が高いと、高分子量化するためのジイソシアネート化合物の使用量が少量で済むため、耐熱性が低下し難い。このようにして、ジイソシアネート化合物に由来するウレタン結合を介して連鎖した線状構造を有するウレタン結合を有するポリエステル樹脂が製造される。 Therefore, for example, when the polyester resin is further increased in molecular weight by using the above-mentioned diisocyanate compound as a chain extender, the weight average molecular weight of the prepolymer is preferably 20,000 or more, more preferably 40,000 or more. When the weight average molecular weight is high, the amount of the diisocyanate compound used for increasing the molecular weight can be small, so that the heat resistance is unlikely to decrease. In this way, a polyester resin having a urethane bond having a linear structure linked via a urethane bond derived from a diisocyanate compound is produced.
 鎖延長時の圧力は、0.01MPa以上が好ましく、0.05MPa以上がより好ましく、0.07MPa以上が更に好ましい。また、一方で、鎖延長時の圧力は、1MPa以下が好ましく、は0.5MPa以下がより好ましく、0.3MPa以下が更に好ましい。そして、鎖延長時の圧力は、常圧が最も好ましい。 The pressure at the time of chain extension is preferably 0.01 MPa or more, more preferably 0.05 MPa or more, and even more preferably 0.07 MPa or more. On the other hand, the pressure at the time of chain extension is preferably 1 MPa or less, more preferably 0.5 MPa or less, and even more preferably 0.3 MPa or less. The pressure at the time of chain extension is most preferably normal pressure.
 鎖延長時の反応温度は、100℃以上が好ましく、150℃以上がより好ましく、190℃以上が更に好ましく、200℃以上が特に好ましい。また、一方で、鎖延長時の反応温度は、250℃以下が好ましく、240℃以下がより好ましく、230℃以下が更に好ましい。反応温度を上記範囲内とすることで、反応液が適切な粘度に維持されるため、均一な反応が可能となり、高い攪拌動力を要することなく十分に反応液を攪拌することができ、また、ポリエステル樹脂のゲル化又は分解の併発を抑制することができる。 The reaction temperature at the time of chain extension is preferably 100 ° C. or higher, more preferably 150 ° C. or higher, further preferably 190 ° C. or higher, and particularly preferably 200 ° C. or higher. On the other hand, the reaction temperature at the time of chain extension is preferably 250 ° C. or lower, more preferably 240 ° C. or lower, and even more preferably 230 ° C. or lower. By keeping the reaction temperature within the above range, the reaction solution is maintained at an appropriate viscosity, so that a uniform reaction is possible, the reaction solution can be sufficiently agitated without requiring high stirring power, and the reaction solution can be sufficiently agitated. It is possible to suppress the coexistence of gelation or decomposition of the polyester resin.
 鎖延長反応を行う時間は、0.1分以上が好ましく、1分以上がより好ましく、5分以上が更に好ましい。また、一方で、鎖延長反応を行う時間は、5時間以下が好ましく、1時間以下がより好ましく、30分以下が更に好ましく、15分以下が特に好ましい。鎖延長時間を上記範囲内とすることで、所望の分子量に鎖延長させることができ、また、ポリエステル樹脂のゲル化又は分解の併発を抑制することができる。
<オキシカルボン酸単位を含む樹脂>
 オキシカルボン酸単位を含むポリエステル樹脂について詳述する。
 ポリエステル樹脂に含まれるオキシカルボン酸単位は、下記一般式(3)で表される脂肪族オキシカルボン酸単位が好ましい。
 -O-R-CO-   (3)
 式(3)中、Rは炭素数1以上20以下の脂肪族炭化水素基を表す。
The time for carrying out the chain extension reaction is preferably 0.1 minutes or longer, more preferably 1 minute or longer, and even more preferably 5 minutes or longer. On the other hand, the time for carrying out the chain extension reaction is preferably 5 hours or less, more preferably 1 hour or less, further preferably 30 minutes or less, and particularly preferably 15 minutes or less. By setting the chain extension time within the above range, the chain can be extended to a desired molecular weight, and the coexistence of gelation or decomposition of the polyester resin can be suppressed.
<Resin containing oxycarboxylic acid unit>
The polyester resin containing the oxycarboxylic acid unit will be described in detail.
The oxycarboxylic acid unit contained in the polyester resin is preferably an aliphatic oxycarboxylic acid unit represented by the following general formula (3).
-OR 3- CO- (3)
In formula (3), R 3 represents an aliphatic hydrocarbon group having 1 or more carbon atoms and 20 or less carbon atoms.
 Rで表される脂肪族炭化水素基の炭素数は、好ましくは1以上、より好ましくは2以上であり、特に好ましくは5以上である。また、一方で、好ましくは16以下、より好ましくは12以下、さらに好ましくは8以下である。 The number of carbon atoms of the aliphatic hydrocarbon group represented by R 3 is preferably 1 or more, more preferably 2 or more, and particularly preferably 5 or more. On the other hand, it is preferably 16 or less, more preferably 12 or less, and further preferably 8 or less.
 式(3)で表される脂肪族オキシカルボン酸単位を与える脂肪族オキシカルボン酸成分としては、特に限定されず、例えば、グリコール酸、3-ヒドロキシ酪酸、2-ヒドロキシ-n-酪酸、2-ヒドロキシカプロン酸、6-ヒドロキシカプロン酸、2-ヒドロキシ-3,3-ジメチル酪酸、2-ヒドロキシ-3-メチル酪酸、2-ヒドロキシイソカプロン酸、3-ヒドロキシプロピオン酸、4-ヒドロキシ酪酸、5-ヒドロキシ吉草酸、6-ヒドロキシカプロン酸等のヒドロキシ酸又はこれらの低級アルキルエステル若しくは分子内エステル等の誘導体等が挙げられる。これらに光学異性体が存在する場合には、D体、L体のいずれでもよい。これらの中で好ましいものは、グリコール酸及び3-ヒドロキシ酪酸である。 The aliphatic oxycarboxylic acid component that gives the aliphatic oxycarboxylic acid unit represented by the formula (3) is not particularly limited, and is, for example, glycolic acid, 3-hydroxybutyric acid, 2-hydroxy-n-butyric acid, 2-. Hydroxycaproic acid, 6-hydroxycaproic acid, 2-hydroxy-3,3-dimethylbutyric acid, 2-hydroxy-3-methylbutyric acid, 2-hydroxyisocaproic acid, 3-hydroxypropionic acid, 4-hydroxybutyric acid, 5- Examples thereof include hydroxy acids such as hydroxyvaleric acid and 6-hydroxycaproic acid, or derivatives such as lower alkyl esters or intramolecular esters thereof. When optical isomers are present in these, either D-form or L-form may be used. Of these, glycolic acid and 3-hydroxybutyric acid are preferred.
 ポリエステル樹脂がこれらの脂肪族オキシカルボン酸単位を含む場合、その含有量は、成形性の観点から、ポリエステル樹脂を構成する全構成単位に対して、20モル%以下であることが好ましく、より好ましくは10モル%以下、更に好ましくは5モル%以下である。なお、ポリエステル樹脂は、オキシカルボン酸を含まなくても構わない。 When the polyester resin contains these aliphatic oxycarboxylic acid units, the content thereof is preferably 20 mol% or less, more preferably 20 mol% or less, based on all the constituent units constituting the polyester resin from the viewpoint of moldability. Is 10 mol% or less, more preferably 5 mol% or less. The polyester resin does not have to contain oxycarboxylic acid.
 ポリエステル樹脂に含まれるオキシカルボン酸単位は、芳香族オキシカルボン酸単位を含んでいてもよい。
 芳香族オキシカルボン酸単位を与える芳香族オキシカルボン酸成分の具体例としては、例えば、p-ヒドロキシ安息香酸、p-β-ヒドロキシエトキシ安息香酸等が挙げられる。芳香族オキシカルボン酸成分は、芳香族オキシカルボン酸化合物の誘導体でもよい。また、複数の芳香族オキシカルボン酸化合物及び/又は芳香族オキシカルボン酸化合物が互いに脱水縮合した構造を有する化合物(オリゴマー)であってもよい。すなわち、原料物質としてオリゴマーを用いてもよい。
The oxycarboxylic acid unit contained in the polyester resin may contain an aromatic oxycarboxylic acid unit.
Specific examples of the aromatic oxycarboxylic acid component that gives the aromatic oxycarboxylic acid unit include p-hydroxybenzoic acid and p-β-hydroxyethoxybenzoic acid. The aromatic oxycarboxylic acid component may be a derivative of the aromatic oxycarboxylic acid compound. Further, it may be a compound (oligomer) having a structure in which a plurality of aromatic oxycarboxylic acid compounds and / or aromatic oxycarboxylic acid compounds are dehydrated and condensed with each other. That is, an oligomer may be used as a raw material.
(脂肪族オキシカルボン酸樹脂(D))
 本実施形態に係る生分解性樹脂組成物に含有される樹脂としては、脂肪族オキシカルボン酸樹脂も好ましく用いられる。脂肪族オキシカルボン酸樹脂(D)は、脂肪族オキシカルボン酸単位を主構成単位とするものである。脂肪族オキシカルボン酸樹脂(D)としては、例えば、上述の式(3)で表される脂肪族オキシカルボン酸単位を含む脂肪族オキシカルボン酸樹脂等が挙げられる。
(Aliphatic oxycarboxylic acid resin (D))
As the resin contained in the biodegradable resin composition according to the present embodiment, an aliphatic oxycarboxylic acid resin is also preferably used. The aliphatic oxycarboxylic acid resin (D) contains an aliphatic oxycarboxylic acid unit as a main constituent unit. Examples of the aliphatic oxycarboxylic acid resin (D) include an aliphatic oxycarboxylic acid resin containing an aliphatic oxycarboxylic acid unit represented by the above formula (3).
 脂肪族オキシカルボン酸樹脂(D)における、脂肪族オキシカルボン酸単位及び当該単位を与える成分は、上述の脂肪族ポリエステル樹脂(A)における脂肪族オキシカルボン酸単位及び脂肪族オキシカルボン酸成分と同様に定義され、好ましい態様も同様である。 The aliphatic oxycarboxylic acid unit and the component giving the unit in the aliphatic oxycarboxylic acid resin (D) are the same as the aliphatic oxycarboxylic acid unit and the aliphatic oxycarboxylic acid component in the above-mentioned aliphatic polyester resin (A). The same applies to the preferred embodiment defined in.
 脂肪族オキシカルボン酸樹脂(D)としては、具体的には、ポリカプロラクトン(PCL)及びポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)(PHBH)が好ましく、ポリカプロラクトンがより好ましい。 Specifically, as the aliphatic oxycarboxylic acid resin (D), polycaprolactone (PCL) and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBH) are preferable, and polycaprolactone is more preferable. preferable.
 また、生分解性に影響を与えない範囲であれば、脂肪族オキシカルボン酸樹脂(D)には、ウレタン結合、アミド結合、カーボネート結合、エーテル結合等を導入してもよい。 Further, a urethane bond, an amide bond, a carbonate bond, an ether bond or the like may be introduced into the aliphatic oxycarboxylic acid resin (D) as long as it does not affect the biodegradability.
 脂肪族オキシカルボン酸樹脂(D)の製造方法は、特に限定されるものではなく、オキシカルボン酸の直接重合法、あるいは環状体の開環重合法等公知の方法で製造することができる。 The method for producing the aliphatic oxycarboxylic acid resin (D) is not particularly limited, and it can be produced by a known method such as a direct polymerization method of oxycarboxylic acid or a ring-opening polymerization method of a cyclic substance.
 脂肪族オキシカルボン酸樹脂(D)としては、以下に説明するポリヒドロキシアルカノエート(E)が好ましい。
(ポリヒドロキシアルカノエート(E))
 本実施形態において好適に用いられるポリヒドロキシアルカノエート(E)は、一般式:[-CHR-CH-CO-O-](式中、Rは炭素数1以上15以下のアルキル基である。)で示される繰り返し単位を含む脂肪族ポリエステルであり、3-ヒドロキシブチレート単位と3-ヒドロキシヘキサノエート単位を主たる構成単位として含む共重合体である。
As the aliphatic oxycarboxylic acid resin (D), the polyhydroxyalkanoate (E) described below is preferable.
(Polyhydroxy alkanoate (E))
The polyhydroxyalkanoate (E) preferably used in this embodiment has a general formula: [-CHR-CH 2- CO-O-] (in the formula, R is an alkyl group having 1 to 15 carbon atoms. ) Is an aliphatic polyester containing a repeating unit, and is a copolymer containing a 3-hydroxybutyrate unit and a 3-hydroxyhexanoate unit as main constituent units.
 ポリヒドロキシアルカノエート(E)は、成形性、熱安定性の観点から、構成成分として3-ヒドロキシブチレート単位を80モル%以上含むことが好ましく、85モル%以上含むことがより好ましい。また、ポリヒドロキシアルカノエート(E)は、微生物によって生産されたものが好ましい。ポリヒドロキシアルカノエート(E)の具体例としては、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシバレレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂等が挙げられる。
 特に、成形加工性及び得られる成形体の物性の観点から、ポリ(3-ヒドロキシブチレート-コ-3-ヒドロキシヘキサノエート)共重合樹脂、すなわち、PHBHが好ましい。
From the viewpoint of moldability and thermal stability, the polyhydroxyalkanoate (E) preferably contains 80 mol% or more of 3-hydroxybutyrate units as a constituent component, and more preferably 85 mol% or more. Further, the polyhydroxyalkanoate (E) is preferably produced by a microorganism. Specific examples of the polyhydroxy alkanoate (E) include poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin and poly (3-hydroxybutyrate-co-3-hydroxyvalerate-). Co-3-hydroxyhexanoate) Copolymerized resin and the like can be mentioned.
In particular, a poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) copolymer resin, that is, PHBH is preferable from the viewpoint of molding processability and physical properties of the obtained molded product.
 ポリヒドロキシアルカノエート(E)において、3-ヒドロキシブチレート(以下、3HBと称する場合がある)と、共重合している3-ヒドロキシヘキサノエート(以下、3HHと称する場合がある)等のコモノマーとの構成比、すなわち、共重合樹脂中のモノマーのモル比は、成形加工性及び成形体品質等の観点から、3-ヒドロキシブチレート/コモノマーは、97/3以上であることが好ましく、95/5以上であることがより好ましく、また、一方で、80/20以下であることが好ましく、85/15であることがより好ましい。モノマー比率を上記範囲内とすることにより、成形加工温度と熱分解温度との開きが大きくなるため、成形加工が容易となり、また、結晶化速度が適切な範囲となり、生産性を確保することができる。 In polyhydroxyalkanoate (E), a comonomer such as 3-hydroxybutyrate (hereinafter, may be referred to as 3HB) and 3-hydroxyhexanoate copolymerized (hereinafter, may be referred to as 3HH). The composition ratio of 3-hydroxybutyrate / comonomer is preferably 97/3 or more, that is, the molar ratio of the monomer in the copolymer resin is 97/3 or more from the viewpoint of molding processability, molded product quality, and the like. It is more preferably / 5 or more, and on the other hand, it is preferably 80/20 or less, and more preferably 85/15. By setting the monomer ratio within the above range, the difference between the molding processing temperature and the thermal decomposition temperature becomes large, so that the molding process becomes easy, the crystallization rate becomes an appropriate range, and productivity can be ensured. can.
 ポリヒドロキシアルカノエート(E)中の各モノマー比率は、以下のようにガスクロマトグラフィーによって測定できる。
 乾燥させた20mgのポリヒドロキシアルカノエートを試料容器に入れ、これに2mlの硫酸/メタノール混液(15/85(重量比))と2mlのクロロホルムを添加して密栓し、100℃で140分間加熱して、ポリヒドロキシアルカノエートを分解させることにより、メチルエステルを得る。冷却後、これに1.5gの炭酸水素ナトリウムを少しずつ加えて中和し、炭酸ガスの発生が止まるまで放置する。4mlのジイソプロピルエーテルを添加して、しっかりと混合した後、上清中の試料分解物のモノマーユニット組成をキャピラリーガスクロマトグラフィーにより分析することによって、共重合樹脂中の各モノマーの比率を求めることができる。
The ratio of each monomer in the polyhydroxy alkanoate (E) can be measured by gas chromatography as follows.
20 mg of dried polyhydroxyalkanoate is placed in a sample container, 2 ml of sulfuric acid / methanol mixed solution (15/85 (weight ratio)) and 2 ml of chloroform are added thereto, the mixture is sealed, and heated at 100 ° C. for 140 minutes. Then, the polyhydroxyalkanoate is decomposed to obtain a methyl ester. After cooling, 1.5 g of sodium hydrogen carbonate is added little by little to neutralize the mixture, and the mixture is left to stand until the generation of carbon dioxide gas stops. After adding 4 ml of diisopropyl ether and mixing thoroughly, the ratio of each monomer in the copolymer resin can be determined by analyzing the monomer unit composition of the sample decomposition product in the supernatant by capillary gas chromatography. can.
 ポリヒドロキシアルカノエート(E)は、例えば、Alcaligenes eutrophusにAeromonas caviae由来のポリヒドロキシアルカノエート合成酵素遺伝子を導入したAlcaligenes eutrophus AC32株(ブダペスト条約に基づく国際寄託、国際寄託当局:独立行政法人産業技術総合研究所特許生物寄託センター(日本国茨城県つくば市東1丁目1番地1中央第6)、原寄託日:平成8年8月12日、平成9年8月7日に移管、寄託番号FERM BP-6038(原寄託FERM P-15786より移管))(J.Bacteriol.,179,4821(1997))等の微生物によって産生させることができる。 Polyhydroxyalkanoate (E) is, for example, Alcaligenes europhos AC32 strain (international deposit based on the Budapest Treaty, international deposit authority: Independent Administrative Institution Industrial Technology General Institute Patent Organism Deposit Center (1-1-1, Higashi, Ibaraki-shi, Japan, Central 6), Hara Deposit date: Transferred on August 12, 1996, August 7, 1997, Deposit number FERM BP- It can be produced by microorganisms such as 6038 (transferred from the original deposit FERM P-15786)) (J. Bacteriol., 179, 4821 (1997)).
 ポリヒドロキシアルカノエート(E)としては、市販品を用いることもできる。3-ヒドロキシブチレート単位及び3-ヒドロキシヘキサノエート単位を主構成単位として含むポリヒドロキシアルカノエート(E)の市販品としては、カネカ社製「PHBH X331N」、「PHBH X131A」、「PHBH X151A」、「PHBH 151C」等を用いることができる As the polyhydroxy alkanoate (E), a commercially available product can also be used. Commercially available products of polyhydroxyalkanoate (E) containing 3-hydroxybutyrate unit and 3-hydroxyhexanoate unit as main constituent units include "PHBH X331N", "PHBH X131A", and "PHBH X151A" manufactured by Kaneka Corporation. , "PHBH 151C" etc. can be used
 本実施形態においては、上述のポリヒドロキシアルカノエート(E)を含め、脂肪族オキシカルボン酸樹脂(D)は1種類に限らず、構成単位の種類、構成単位比、製造方法、物性等の異なる2種類以上の脂肪族オキシカルボン酸樹脂(D)をブレンドして用いることができる。 In the present embodiment, the aliphatic oxycarboxylic acid resin (D) including the above-mentioned polyhydroxyalkanoate (E) is not limited to one type, but the type of the constituent unit, the constituent unit ratio, the production method, the physical properties, and the like are different. Two or more kinds of aliphatic oxycarboxylic acid resins (D) can be blended and used.
 本実施形態に係る生分解性樹脂組成物に含有されるポリエステル樹脂としては、上述のとおり、上記一般式(1)で表されるジオール単位及び上記一般式(2)で表されるジカルボン酸単位を含むポリエステル樹脂;上記一般式(1)で表されるジオール単位、上記一般式(2)で表されるジカルボン酸単位及び上記一般式(3)で表されるオキシカルボン酸単位を含むポリエステル樹脂;上記一般式(3)で表されるオキシカルボン酸単位を含むポリエステル樹脂等が好ましい。 As described above, the polyester resin contained in the biodegradable resin composition according to the present embodiment includes a diol unit represented by the general formula (1) and a dicarboxylic acid unit represented by the general formula (2). Polyester resin containing the above; diol unit represented by the general formula (1), dicarboxylic acid unit represented by the general formula (2), and oxycarboxylic acid unit represented by the general formula (3). A polyester resin or the like containing an oxycarboxylic acid unit represented by the above general formula (3) is preferable.
 本実施形態に係る生分解性樹脂組成物に含有されるポリエステル樹脂は、各構成単位として、1種類を単独で用いても、2種類以上を任意の組み合わせと比率で用いてもよい。また、ジオール単位、ジカルボン酸単位及び脂肪族オキシカルボン酸単位は、石油から誘導された化合物由来であっても、植物原料から誘導された化合物由来であってもかまわないが、植物原料から誘導された化合物由来であることが環境問題に配慮できることから望ましい。 As the polyester resin contained in the biodegradable resin composition according to the present embodiment, one type may be used alone or two or more types may be used in any combination and ratio as each structural unit. Further, the diol unit, the dicarboxylic acid unit and the aliphatic oxycarboxylic acid unit may be derived from a compound derived from petroleum or a compound derived from a plant material, but are derived from a plant material. It is desirable that it is derived from a compound because it can consider environmental problems.
 なお、これらの芳香族化合物単位を与える芳香族化合物成分に光学異性体が存在する場合には、D体、L体、及びラセミ体のいずれを用いてもよい。また、芳香族化合物成分としては、芳香族化合物単位を与えることができれば、上記の例に限定されるものではない。芳香族化合物成分は1種類を単独で用いてもよく、2種類以上を任意の組み合わせ及び比率で併用してもよい。 If an optical isomer is present in the aromatic compound component that gives these aromatic compound units, any of the D-form, L-form, and racemic form may be used. Further, the aromatic compound component is not limited to the above example as long as an aromatic compound unit can be given. One type of aromatic compound component may be used alone, or two or more types may be used in any combination and ratio.
(その他の樹脂)
 本実施形態に係る生分解性樹脂組成物は、ポリエステル樹脂以外のその他の樹脂が含まれていてもよい。
 その他の樹脂としては、特に限定されず、公知の樹脂を使用することができる。例えば、ポリウレタン樹脂;ポリイミド樹脂;ポリアクリル樹脂;アクリロニトリル-ブタジエン-スチレン樹脂;アクリロニトリル-スチレン樹脂;ポリカーボネート樹脂;LDPE、MDPE、HDPE、LLDPE、カルボキシル変性ポリエチレン等のポリエチレン、ポリプロピレン、ポリブテン、ポリペンテン、エチレン-プロピレン共重合体、エチレン-ブチレン共重合体等のポリオレフィン樹脂;ポリ酢酸ビニル樹脂;ポリ塩化ビニル樹脂;ポリ塩化ビニリデン樹脂;ポリスチレン樹脂;エポキシ樹脂;メラミン樹脂;ナイロン6、ナイロン11、ナイロン66、ナイロン12、ナイロン610、ナイロン6T等のポリアミド樹脂等が挙げられる。これらの樹脂は、1種類のみでも、2種類以上であっても構わない。
(Other resins)
The biodegradable resin composition according to the present embodiment may contain a resin other than the polyester resin.
The other resin is not particularly limited, and a known resin can be used. For example, polyurethane resin; polyimide resin; polyacrylic resin; acrylonitrile-butadiene-styrene resin; acrylonitrile-styrene resin; polycarbonate resin; LDPE, MDPE, HDPE, LLDPE, carboxyl-modified polyethylene and other polyethylene, polypropylene, polybutene, polypentene, ethylene- Polyolefin resins such as propylene copolymers and ethylene-butylene copolymers; polyvinyl acetate resin; polyvinyl chloride resin; polyvinylidene chloride resin; polystyrene resin; epoxy resin; melamine resin; nylon 6, nylon 11, nylon 66, nylon 12. Polyamide resin such as nylon 610 and nylon 6T can be mentioned. These resins may be of only one type or of two or more types.
 本実施形態に係る生分解性樹脂組成物がその他の樹脂を含む場合、生分解性樹脂組成物には、生分解性に優れることから、上述の好ましい樹脂が5重量%以上であることが好ましく、10重量%以上であることがより好ましい。本実施形態に係る生分解性樹脂組成物に含まれる樹脂は、上述の好ましい樹脂のみであることが好ましい。但し、上述のとおり、本実施形態に係る生分解性樹脂組成物に含有される樹脂は、上述のアミノ糖を含む多糖類との樹脂組成物とすることにより、生分解性が向上すれば、特に限定されるものではなく、上述の好ましい樹脂以外の樹脂からなる樹脂でも構わない。 When the biodegradable resin composition according to the present embodiment contains other resins, the above-mentioned preferable resin is preferably 5% by weight or more because the biodegradable resin composition is excellent in biodegradability. More preferably, it is 10% by weight or more. The resin contained in the biodegradable resin composition according to the present embodiment is preferably only the above-mentioned preferable resin. However, as described above, if the resin contained in the biodegradable resin composition according to the present embodiment is a resin composition with the above-mentioned polysaccharide containing amino sugar, the biodegradability is improved. The resin is not particularly limited, and a resin made of a resin other than the above-mentioned preferable resin may be used.
<樹脂の物性>
 本発明に係る樹脂のガラス転移温度(Tg)は40℃以下である。樹脂を生分解する場合、海洋中などの樹脂の置かれた環境の温度よりガラス転移温度が低いことにより、樹脂の結晶構造が緩み、分子主鎖が回転や振動ができるようになり、生分解が進みやすいと考えられる。従って、樹脂のガラス転移温度は好ましくは30℃以下、さらに好ましくは25℃以下、特に好ましくは20℃以下である。なお、ガラス転移温度の測定は、以下の方法により測定することができる。アルミニウム製の試料容器に各樹脂を10mg入れ、測定サンプルとする。次いで、DSCを用いて、窒素雰囲気下で、-100℃から160℃まで、10℃/minの速度で昇温し、DSCチャートを得る。このチャートで融点を示すピークよりも低温側に存在するベースラインシフトからガラス転移温度を求める。具体的には、低温側のベースラインと変曲点の接点の交点をガラス転移温度とする。
<Physical characteristics of resin>
The glass transition temperature (Tg) of the resin according to the present invention is 40 ° C. or lower. When biodegrading a resin, the glass transition temperature is lower than the temperature of the environment in which the resin is placed, such as in the ocean, so that the crystal structure of the resin loosens and the molecular main chain can rotate and vibrate, resulting in biodegradation. Is considered to be easy to proceed. Therefore, the glass transition temperature of the resin is preferably 30 ° C. or lower, more preferably 25 ° C. or lower, and particularly preferably 20 ° C. or lower. The glass transition temperature can be measured by the following method. Put 10 mg of each resin in an aluminum sample container and use it as a measurement sample. Then, using DSC, the temperature is raised from −100 ° C. to 160 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere to obtain a DSC chart. In this chart, the glass transition temperature is obtained from the baseline shift existing on the lower temperature side than the peak showing the melting point. Specifically, the intersection of the contact point between the baseline on the low temperature side and the inflection point is defined as the glass transition temperature.
 本発明に係る樹脂の30℃における還元粘度ηsp/cは、0.5dL/g以上、4.0dL/g以下であることが好ましい。樹脂の還元粘度は、この範囲内で、用途、加工方法等に応じて適宜選択すればよい。具体的には、樹脂の30℃における還元粘度は、0.8dL/g以上であることがより好ましく、1.0dL/g以上であることが更に好ましく、1.2dL/g以上であることが特に好ましく、また、一方で、3.0dL/g以下であることがより好ましく、2.5dL/g以下であることが更に好ましく、2.3dL/g以下であることが特に好ましい。
 樹脂の還元粘度を上記範囲内とすることにより、成形体に加工した際の機械物性を確保することができ、また、成形加工時の生分解性樹脂組成物の溶融粘度が、押出機、射出機等の成形機に過度な負荷をかけない程度となり、生産性を確保することができる。
The reduced viscosity ηsp / c of the resin according to the present invention at 30 ° C. is preferably 0.5 dL / g or more and 4.0 dL / g or less. The reduced viscosity of the resin may be appropriately selected within this range according to the application, processing method, and the like. Specifically, the reducing viscosity of the resin at 30 ° C. is more preferably 0.8 dL / g or more, further preferably 1.0 dL / g or more, and 1.2 dL / g or more. It is particularly preferable, and on the other hand, it is more preferably 3.0 dL / g or less, further preferably 2.5 dL / g or less, and particularly preferably 2.3 dL / g or less.
By setting the reducing viscosity of the resin within the above range, it is possible to secure the mechanical properties when the molded product is processed, and the melt viscosity of the biodegradable resin composition during the molding process is determined by the extruder and injection. Productivity can be ensured by not imposing an excessive load on a molding machine such as a machine.
 樹脂の還元粘度は、通常、以下の方法により測定することができる。先ず、樹脂を溶媒に溶解させ、濃度c(g/dL)の樹脂溶液を調製する。次いで、毛細管粘度計(ウベローデ粘度計)を用いて、温度30.0℃±0.1℃の条件で溶媒の通過時間t0と樹脂溶液の通過時間tを測定し、次式(i)に基づいて相対粘度ηrelを算出する。そして、相対粘度ηrelから、次式(ii)に基づいて比粘度ηspを求める。
  ηrel=t/t0  ・・・(i)
  ηsp=ηrel-1  ・・・(ii)
 得られた比粘度ηspを濃度c(g/dL)で割ることにより、還元粘度ηsp/cを求めることができる。なお、通常、この値が高いほど分子量が大きい。
The reduced viscosity of the resin can usually be measured by the following method. First, the resin is dissolved in a solvent to prepare a resin solution having a concentration of c (g / dL). Next, using a capillary viscometer (Ubbelohde viscometer), the solvent passage time t0 and the resin solution passage time t were measured under the condition of a temperature of 30.0 ° C. ± 0.1 ° C., and based on the following equation (i). The relative viscosity ηrel is calculated. Then, the specific viscosity ηsp is obtained from the relative viscosity ηrel based on the following equation (ii).
ηrel = t / t0 ・ ・ ・ (i)
ηsp = ηrel-1 ・ ・ ・ (ii)
The reduced viscosity ηsp / c can be obtained by dividing the obtained specific viscosity ηsp by the concentration c (g / dL). Generally, the higher this value, the larger the molecular weight.
 樹脂の分子量は、通常、ゲルパーミエーションクロマトグラフィー(GPC)により測定する。本実施形態に係る生分解性樹脂組成物に含有される樹脂は、成形性と機械強度の観点から、単分散ポリスチレンを標準物質とした重量平均分子量(Mw)が以下の範囲であることが好ましい。すなわち、樹脂の分子量は、10,000以上であることが好ましく、20,000以上であることがより好ましく、30,000以上であることが更に好ましく、50,000以上であることが特に好ましい。また、一方で、2,500,000以下であることが好ましく、1,000,000以下であることがより好ましく、800,000以下であることが更に好ましく、600,000以下であることが特に好ましく、500,000以下であることが殊更好ましく、400,000以下であることが最も好ましい。 The molecular weight of the resin is usually measured by gel permeation chromatography (GPC). From the viewpoint of moldability and mechanical strength, the resin contained in the biodegradable resin composition according to the present embodiment preferably has a weight average molecular weight (Mw) of monodisperse polystyrene as a standard substance in the following range. .. That is, the molecular weight of the resin is preferably 10,000 or more, more preferably 20,000 or more, further preferably 30,000 or more, and particularly preferably 50,000 or more. On the other hand, it is preferably 2,500,000 or less, more preferably 1,000,000 or less, further preferably 800,000 or less, and particularly preferably 600,000 or less. It is more preferably 500,000 or less, and most preferably 400,000 or less.
 また、特に、ポリヒドロキシアルカノエート樹脂の重量平均分子量(Mw)については、200,000以上であることが好ましく、250,000以上であることがより好ましく、300,000以上であることが更に好ましい。また、一方で、ポリヒドロキシアルカノエート樹脂の重量平均分子量(Mw)は、2,500,000以下であることが好ましく、2,000,000以下であることがより好ましく、1,000,000以下であることが更に好ましい。 In particular, the weight average molecular weight (Mw) of the polyhydroxyalkanoate resin is preferably 200,000 or more, more preferably 250,000 or more, and even more preferably 300,000 or more. .. On the other hand, the weight average molecular weight (Mw) of the polyhydroxyalkanoate resin is preferably 2500,000 or less, more preferably 2,000,000 or less, and 1,000,000 or less. Is more preferable.
 樹脂のメルトフローレート(MFR)は、JIS K 7210(1999年)に基づいて、190℃、荷重2.16kgで測定した値で評価できる。本実施形態に係る生分解性樹脂組成物に含有される樹脂のMFRは、成形性と機械強度の観点から、以下の範囲であることが好ましい。すなわち、0.1g/10分以上であることが好ましく、1g/10分以上であることがより好ましい。また、一方で、樹脂のMFRは、100g/10分以下であることが好ましく、80g/10分以下であることがより好ましく、50g/10分以下であることが更に好ましく、40g/10分以下であることが特に好ましく、30g/10分以下であることが最も好ましい。なお、樹脂のMFRは、分子量等により調整することが可能である。 The melt flow rate (MFR) of the resin can be evaluated based on JIS K 7210 (1999) with a value measured at 190 ° C. and a load of 2.16 kg. The MFR of the resin contained in the biodegradable resin composition according to the present embodiment is preferably in the following range from the viewpoint of moldability and mechanical strength. That is, it is preferably 0.1 g / 10 minutes or more, and more preferably 1 g / 10 minutes or more. On the other hand, the MFR of the resin is preferably 100 g / 10 minutes or less, more preferably 80 g / 10 minutes or less, further preferably 50 g / 10 minutes or less, and 40 g / 10 minutes or less. Is particularly preferable, and 30 g / 10 minutes or less is most preferable. The MFR of the resin can be adjusted by the molecular weight and the like.
 樹脂の融点は、以下の範囲内とすることにより、良好な成形性を確保することができる。すなわち、樹脂の融点は、60℃以上が好ましく、70℃以上がより好ましく、75℃以上が更に好ましく、80℃以上が特に好ましく、また、一方で、270℃以下が好ましく、200℃以下がより好ましく、160℃以下がさらに好ましく、150℃以下が特に好ましく、140℃以下が殊更に好ましく、130℃以下が最も好ましい。なお、樹脂に融点が複数存在する場合には、少なくとも1つの融点が上記範囲内にあることが好ましい。 Good moldability can be ensured by setting the melting point of the resin within the following range. That is, the melting point of the resin is preferably 60 ° C. or higher, more preferably 70 ° C. or higher, further preferably 75 ° C. or higher, particularly preferably 80 ° C. or higher, and on the other hand, preferably 270 ° C. or lower, more preferably 200 ° C. or lower. Preferably, 160 ° C. or lower is further preferable, 150 ° C. or lower is particularly preferable, 140 ° C. or lower is particularly preferable, and 130 ° C. or lower is most preferable. When the resin has a plurality of melting points, it is preferable that at least one melting point is within the above range.
 また、特に、ポリヒドロキシアルカノエート樹脂の融点については、100℃以上が好ましく、110℃以上がより好ましく、また、一方で、180℃以下が好ましく、170℃以下がより好ましく、160℃未満が特に好ましい。 In particular, the melting point of the polyhydroxyalkanoate resin is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and on the other hand, 180 ° C. or lower, more preferably 170 ° C. or lower, and particularly less than 160 ° C. preferable.
 樹脂の引張弾性率は、良好な成形加工性及び耐衝撃強度を確保することができることから、10MPa以上であることが好ましく、100MPa以上がより好ましく、180MPa以上がさらに好ましい。また、一方で、2500MPa以下であることが好ましく、2000MPa以下であることがより好ましい。引張弾性率は、以下の方法により測定することができる。
 各樹脂の熱プレスシートを作製し、8号ダンベル型に打ち抜いて試験片を作製する。具体的には、150mm×150mmのPTFEテープの上に、表面離型処理された金枠を置き、この金枠の内側に各樹脂を1.6g測り採り、その上に更に150mm×150mmのPTFEテープを載せる。鉄板(160mm×160mm、厚み3mm)2枚の間に、このPTFFテープで挟まれた各樹脂を挟持させた状態で、熱プレス機を用いて熱プレスし、続けて冷却プレス機を用いて冷却プレスして、70mm×70mm×厚み0.2mmの熱プレスシートを得る。熱プレス温度は180℃、熱プレス時間は予熱2分間、プレス2分間とする。また、冷却プレス温度は20℃、冷却プレス時間は2分間とする。この熱プレスシートを50mm/minの速度で一軸伸長し、得られた応力ひずみ曲線の初期勾配を引張弾性率として求める。
The tensile elastic modulus of the resin is preferably 10 MPa or more, more preferably 100 MPa or more, still more preferably 180 MPa or more, because good molding processability and impact resistance can be ensured. On the other hand, it is preferably 2500 MPa or less, and more preferably 2000 MPa or less. The tensile elastic modulus can be measured by the following method.
A hot press sheet of each resin is prepared and punched into a No. 8 dumbbell mold to prepare a test piece. Specifically, a surface-released gold frame is placed on a 150 mm × 150 mm PTFE tape, 1.6 g of each resin is measured inside the gold frame, and a 150 mm × 150 mm PTFE is further placed on the metal frame. Place the tape. With each resin sandwiched between the PTFF tapes sandwiched between two iron plates (160 mm x 160 mm, thickness 3 mm), heat press using a hot press machine, and then cool using a cooling press machine. Press to obtain a hot press sheet of 70 mm × 70 mm × thickness 0.2 mm. The hot press temperature is 180 ° C., and the hot press time is preheating for 2 minutes and pressing for 2 minutes. The cooling press temperature is 20 ° C., and the cooling press time is 2 minutes. This hot press sheet is uniaxially elongated at a speed of 50 mm / min, and the initial gradient of the obtained stress-strain curve is obtained as the tensile elastic modulus.
 樹脂の融点や引張弾性率の調整法は、特に限定されない。共重合成分の種類やその共重合比などにより、調整することができる。
 樹脂の酸価は、加水分解が起こり難くなり、保存安定性に優れる点から低いことが好ましい。そこで、具体的には、250eq/t以下であることが好ましく、150eq/t以下であることがより好ましく、100eq/t以下であることがさらに好ましく、50eq/t以下が特に好ましい。なお、酸価は、以下の方法により測定することができる。
 樹脂を0.4g精秤し、これにベンジルアルコール25mLを加え、195℃に加熱して撹拌することにより溶解させる。樹脂が溶解したら、樹脂溶液が入った容器を氷浴で冷却し、この容器内にエタノール2mLを加える。0.01Nの水酸化ナトリウムのベンジルアルコール溶液を用いて滴定を行う(滴定量をA(ml)とする。)。
 次にベンジルアルコールのみで同様の測定を行い、ブランク値(B(ml))とする。酸価を以下の式から算出する。
末端酸価(μeq/g)=(A-B)×F×10/W
A(ml):測定滴定量
B(ml):ブランク滴定量
F:0.01N NaOHベンジルアルコールyour期のファクター
W(g):サンプル重量
The method for adjusting the melting point and tensile elastic modulus of the resin is not particularly limited. It can be adjusted according to the type of copolymerization component and its copolymerization ratio.
The acid value of the resin is preferably low from the viewpoint that hydrolysis is less likely to occur and storage stability is excellent. Therefore, specifically, it is preferably 250 eq / t or less, more preferably 150 eq / t or less, further preferably 100 eq / t or less, and particularly preferably 50 eq / t or less. The acid value can be measured by the following method.
0.4 g of the resin is precisely weighed, 25 mL of benzyl alcohol is added thereto, and the resin is dissolved by heating to 195 ° C. and stirring. When the resin has melted, the container containing the resin solution is cooled in an ice bath, and 2 mL of ethanol is added into the container. Titration is performed using a benzyl alcohol solution of 0.01 N sodium hydroxide (the titration amount is A (ml)).
Next, the same measurement is performed only with benzyl alcohol to obtain a blank value (B (ml)). The acid value is calculated from the following formula.
Terminal acid value (μeq / g) = (AB) × F × 10 / W
A (ml): Measurement titer B (ml): Blank titration F: 0.01N NaOH benzyl alcohol Your phase factor W (g): Sample weight
[その他の成分]
 本実施形態に係る生分解性樹脂組成物は、本発明の効果を大幅に損なわない限りにおいて、フィラー(充填剤)、可塑剤、帯電防止剤、酸化防止剤、光安定剤、紫外線吸収剤、染料、顔料、加水分解防止剤、結晶核剤、アンチブロッキング剤、耐候剤、熱安定剤、難燃剤、離型剤、防曇剤、表面ぬれ改善剤、焼却補助剤、分散助剤、各種界面活性剤、スリップ剤、鮮度保持剤、抗菌剤等の各種添加剤等のその他の成分を含んでいてもよい。これらの成分を含む場合、その成分は、1種類のみでも、2種類以上を含んでもよい。
[Other ingredients]
The biodegradable resin composition according to the present embodiment is a filler (filler), a plasticizer, an antistatic agent, an antioxidant, a light stabilizer, an ultraviolet absorber, as long as the effects of the present invention are not significantly impaired. Dyes, pigments, antioxidants, crystal nucleating agents, anti-blocking agents, weathering agents, heat stabilizers, flame retardants, mold release agents, antifogging agents, surface wetting improvers, incineration aids, dispersion aids, various interfaces It may contain other components such as various additives such as activators, slip agents, freshness preservatives and antibacterial agents. When these components are contained, the components may contain only one type or two or more types.
 生分解性樹脂組成物中にその他の成分が含まれる場合の含有量は、生分解性樹脂組成物の特性を損なわない観点から、生分解性樹脂組成物の総量に対して、40重量%以下であることが好ましく、20重量%以下であることがより好ましく、10重量%以下であることが更に好ましく、5重量%以下であることが特に好ましい。なお、その他の成分の含有量の下限は特に限定されない。 When the biodegradable resin composition contains other components, the content thereof is 40% by weight or less based on the total amount of the biodegradable resin composition from the viewpoint of not impairing the characteristics of the biodegradable resin composition. It is preferably 20% by weight or less, more preferably 10% by weight or less, and particularly preferably 5% by weight or less. The lower limit of the content of other components is not particularly limited.
[生分解性樹脂組成物の製造方法]
 本実施形態に係る生分解性樹脂組成物の製造方法は、特に限定されない。本実施形態に係る生分解性樹脂組成物は、樹脂、アミノ糖を含む多糖類及び必要に応じてその他の樹脂やその他の成分を混練することにより得られる。生分解性樹脂組成物の製造は、例えば、各成分を、所定の割合で同時に又は任意の順序で配合し、タンブラー、V型ブレンダー、ナウターミキサー、バンバリーミキサー、混練ロール、押出機等の機械により混合又は混練し、好ましくは溶融混練することにより行うことができる。或いは、樹脂とアミノ糖を含む多糖類とを溶媒中に溶解又は分散させ、溶媒を除去することにより、製造することもできる。
[Manufacturing method of biodegradable resin composition]
The method for producing the biodegradable resin composition according to the present embodiment is not particularly limited. The biodegradable resin composition according to the present embodiment can be obtained by kneading a resin, a polysaccharide containing an amino sugar, and if necessary, another resin and other components. The biodegradable resin composition is produced, for example, by blending each component at a predetermined ratio at the same time or in an arbitrary order, and using a machine such as a tumbler, a V-type blender, a Nauter mixer, a Banbury mixer, a kneading roll, or an extruder. It can be carried out by mixing or kneading, preferably by melt-kneading. Alternatively, it can also be produced by dissolving or dispersing a resin and a polysaccharide containing an amino sugar in a solvent and removing the solvent.
 生分解性樹脂組成物の生分解度及び生分解速度、特に初期生分解速度を向上させる観点からは、生分解性樹脂組成物中、アミノ糖を含む多糖類が均一に分散していることが好ましい。そこで、生分解性樹脂組成物は、混練により製造することが好ましく、溶融混錬により製造することがより好ましい。 From the viewpoint of improving the degree of biodegradation and the biodegradation rate of the biodegradable resin composition, particularly the initial biodegradation rate, it is necessary that polysaccharides including amino sugars are uniformly dispersed in the biodegradable resin composition. preferable. Therefore, the biodegradable resin composition is preferably produced by kneading, and more preferably by melt kneading.
 混練に使用する混練機は溶融混練機であってもよい。また、押出機は、二軸押出機、単軸押出機のいずれでもよいが、二軸押出機がより好ましい。 The kneader used for kneading may be a melt kneader. The extruder may be either a twin-screw extruder or a single-screw extruder, but a twin-screw extruder is more preferable.
 溶融混練を行う場合、溶融混練温度は、好ましくは80℃以上、より好ましくは100℃以上がよく、また、一方で、好ましくは220℃以下、より好ましくは210℃以下がよい。この温度範囲であると、短時間で溶融混練することができ、樹脂の劣化やアミノ糖を含む多糖類の炭化に伴う色調の悪化等が起こり難く、また、耐衝撃性、耐湿熱性等の実用面での物理特性がより優れた樹脂組成物となりやすい。
 溶融混練時間は、アミノ糖を含む多糖類が生分解性樹脂中に均一に分散し得る限り特に限定されないが、同様に、樹脂の劣化等が起こり難いことから、短時間で行うことが望ましい。具体的には、溶融混練時間は、好ましくは10秒以上、より好ましくは30秒以上であり、また、一方で、好ましくは20分以下、より好ましくは15分以下である。
When melt-kneading is performed, the melt-kneading temperature is preferably 80 ° C. or higher, more preferably 100 ° C. or higher, and on the other hand, preferably 220 ° C. or lower, more preferably 210 ° C. or lower. Within this temperature range, melt-kneading can be performed in a short time, deterioration of the color tone due to deterioration of the resin and carbonization of polysaccharides including amino sugars is unlikely to occur, and practical use such as impact resistance and moisture heat resistance. It tends to be a resin composition having better physical characteristics on the surface.
The melt-kneading time is not particularly limited as long as the polysaccharide containing amino sugar can be uniformly dispersed in the biodegradable resin, but similarly, deterioration of the resin is unlikely to occur, so that it is desirable to carry out the melt-kneading time in a short time. Specifically, the melt-kneading time is preferably 10 seconds or more, more preferably 30 seconds or more, and on the other hand, preferably 20 minutes or less, more preferably 15 minutes or less.
[生分解性樹脂組成物の生分解度]
 本実施形態に係る生分解性樹脂組成物は、生分解性を有する。本発明の樹脂組成物は、特に、樹脂が生分解し難いとされる海水中で生分解性を有すること(海洋生分解性樹脂組成物)が好ましい。本発明の樹脂組成物が海水中でも生分解性を発現する理由は、以下のように推定される。通常、海水中では、微生物量や種類が少ない。このため、海水中ではカビなどが繁殖し難く、海水中での生分解にはバイオフィルムの形成が重要と推測される。さらに海水中では、生命維持に必須な元素である窒素が乏しい環境にある。そのため、アミノ糖を含む多糖類の存在により、海水中における微生物の細胞増殖や活性化させ、バイオフィルムの形成が促され、生分解性が促進されると推測される。
 また、樹脂は、ガラス転移温度以上の温度になると分子鎖が運動しやすくなる。このため、ガラス転移温度が低い樹脂は、生分解されやすいと推定される。特に、樹脂のガラス転移温度が40℃以下であると、海水中でアミノ糖を含む多糖類によって、より生分解されやすくなると考えらえる。
 本明細書において、生分解度は、理論的酸素要求量(ThOD)に対する生物学的酸素要求量(BOD)の比率として算出される。
 例えば、海水中での生分解に関しては、ISO 14851:1999(プラスチック-水系培養液中の好気的究極生分解度の求め方-発生二酸化炭素量の測定による方法)に準拠して測定され;土壌中の生分解に関してはISO 17556:2003(プラスチック-呼吸計を用いた酸素消費量又は発生した二酸化炭素量の測定による土壌中での好気的究極生分解度の求め方)に準拠して測定される。
 本実施形態に係る生分解性樹脂組成物は、生分解性試験開始後任意の時点における生分解度が、本実施形態に係る生分解性樹脂組成物から上述のアミノ糖を含む多糖類を除いた組成物(以下、「基準組成物」と称することがある。)の生分解度の1.0倍を超えることが好ましい(以下、基準組成物の生分解度に対する生分解度の上昇倍率を「生分解向上度」と称することがある。)。具体的には、上記規格に準拠した生分解性試験開始後28日目において、本実施形態に係る生分解性樹脂組成物の生分解向上度は、1.1倍以上であることがより好ましく、1.2倍以上であることが更に好ましく、2.0倍以上であることが特に好ましく、2.5倍以上であることが最も好ましい。
 なお、本明細書において、生分解度が高いとは、生分解性試験開始後任意の時点における生分解性樹脂組成物の生分解向上度が上述の好ましい向上度であることを意味する。
[Biodegradability of biodegradable resin composition]
The biodegradable resin composition according to the present embodiment has biodegradability. The resin composition of the present invention is particularly preferably biodegradable in seawater, where the resin is difficult to biodegrade (ocean biodegradable resin composition). The reason why the resin composition of the present invention exhibits biodegradability even in seawater is presumed as follows. Usually, in seawater, the amount and type of microorganisms are small. Therefore, it is difficult for molds and the like to grow in seawater, and it is presumed that the formation of a biofilm is important for biodegradation in seawater. Furthermore, in seawater, nitrogen, which is an essential element for life support, is scarce. Therefore, it is presumed that the presence of polysaccharides including amino sugars promotes cell proliferation and activation of microorganisms in seawater, promotes biofilm formation, and promotes biodegradability.
Further, in the resin, the molecular chain tends to move when the temperature becomes higher than the glass transition temperature. Therefore, it is presumed that a resin having a low glass transition temperature is easily biodegraded. In particular, when the glass transition temperature of the resin is 40 ° C. or lower, it is considered that the resin is more easily biodegraded by polysaccharides containing amino sugars in seawater.
In the present specification, the degree of biodegradation is calculated as the ratio of the biological oxygen demand (BOD) to the theoretical oxygen demand (ThOD).
For example, biodegradation in seawater was measured in accordance with ISO 14851: 1999 (Plastic-How to determine the ultimate aerobic biodegradability in aquatic culture solution-Method by measuring the amount of carbon dioxide generated); Regarding biodegradation in soil, it complies with ISO 17556: 2003 (Plastic-How to determine the aerobic ultimate biodegradability in soil by measuring oxygen consumption or carbon dioxide generated using a respiratory meter). Be measured.
The biodegradable resin composition according to the present embodiment has a degree of biodegradation at an arbitrary time point after the start of the biodegradability test, excluding the above-mentioned polysaccharides containing aminosaccharides from the biodegradable resin composition according to the present embodiment. It is preferable that the degree of biodegradation of the composition (hereinafter, may be referred to as “reference composition”) exceeds 1.0 times (hereinafter, the rate of increase in the degree of biodegradation with respect to the degree of biodegradation of the reference composition). Sometimes referred to as "biodegradation improvement"). Specifically, on the 28th day after the start of the biodegradability test conforming to the above standard, the degree of improvement in biodegradation of the biodegradable resin composition according to the present embodiment is more preferably 1.1 times or more. , 1.2 times or more, more preferably 2.0 times or more, and most preferably 2.5 times or more.
In the present specification, a high degree of biodegradation means that the degree of improvement in biodegradation of the biodegradable resin composition at an arbitrary time after the start of the biodegradability test is the above-mentioned preferable degree of improvement.
[生分解性樹脂組成物の還元粘度]
 本実施形態に係る樹脂組成物の30℃における還元粘度ηsp/cは、0.5dL/g以上、4.0dL/g以下であることが好ましい。樹脂組成物の還元粘度は、この範囲内で、用途、加工方法等に応じて適宜選択すればよい。具体的には、樹脂組成物の30℃における還元粘度は、0.8dL/g以上であることが好ましく、1.0dL/g以上であることが更に好ましく、1.2dL/g以上であることが特に好ましく、また、一方で、3.0dL/g以下であることがより好ましく、2.5dL/g以下であることが更に好ましく、2.3dL/g以下であることが特に好ましい。
 樹脂組成物の還元粘度を上記範囲内とすることにより、成形体に加工した際の機械物性を確保することができ、また、成形加工時の溶融粘度が、押出機、射出機等の成形機に過度な負荷をかけない程度となり、生産性を確保することができる。
[Reducing viscosity of biodegradable resin composition]
The reduced viscosity ηsp / c of the resin composition according to the present embodiment at 30 ° C. is preferably 0.5 dL / g or more and 4.0 dL / g or less. The reduced viscosity of the resin composition may be appropriately selected within this range according to the application, processing method and the like. Specifically, the reducing viscosity of the resin composition at 30 ° C. is preferably 0.8 dL / g or more, more preferably 1.0 dL / g or more, and 1.2 dL / g or more. On the other hand, it is more preferably 3.0 dL / g or less, further preferably 2.5 dL / g or less, and particularly preferably 2.3 dL / g or less.
By setting the reducing viscosity of the resin composition within the above range, it is possible to secure the mechanical properties when the molded product is processed, and the melt viscosity during the molding process is a molding machine such as an extruder or an injection machine. It is possible to secure productivity by not applying an excessive load to the plastic.
[ポリエステル樹脂の生分解方法]
 上述のとおり、アミノ糖を含む多糖類により、ガラス転移温度が40℃以下の樹脂の生分解を促進することができることから、本実施形態に係る生分解樹脂組成物は、樹脂の生分解方法に適用することができる。また、特にポリエステル樹脂の海水中における生分解を促進することができることから、本実施形態に係る生分解樹脂組成物は、ポリエステル樹脂の生分解方法に適用することができる。すなわち、海水中で、アミノ糖を含む多糖類の存在下でポリエステル樹脂を生分解させる方法に適用することができる。ここで、この方法に好適なポリエステル樹脂、アミノ糖を含む多糖類等については、先述のとおりである。
[Biodegradation method of polyester resin]
As described above, since the biodegradation of the resin having a glass transition temperature of 40 ° C. or lower can be promoted by the polysaccharide containing aminosaccharide, the biodegradable resin composition according to the present embodiment can be used as a method for biodegrading the resin. Can be applied. Further, since the biodegradation of the polyester resin in seawater can be promoted in particular, the biodegradable resin composition according to the present embodiment can be applied to the biodegradation method of the polyester resin. That is, it can be applied to a method of biodegrading a polyester resin in seawater in the presence of a polysaccharide containing an amino sugar. Here, the polyester resin suitable for this method, polysaccharides containing amino sugars, and the like are as described above.
[成形体]
 本実施形態に係る生分解性樹脂組成物は、汎用プラスチックに適用される各種成形法により成形することができる。成形法としては、例えば、圧縮成形(圧縮成形、積層成形、スタンパブル成形)、射出成形、押出成形、共押出成形(インフレ法又はTダイ法によるフィルム成形、ラミネート成形、パイプ成形、電線/ケーブル成形、異形材の成形)、熱プレス成形、中空成形(各種ブロー成形)、カレンダー成形、固体成形(一軸延伸成形、二軸延伸成形、ロール圧延成形、延伸配向不織布成形)、熱成形(真空成形、圧空成形)、塑性加工、粉末成形(回転成形)、各種不織布成形(乾式法、接着法、絡合法、スパンボンド法等)等が挙げられる。中でも、好適には、射出成形、押出成形、圧縮成形又は熱プレス成形が適用され、より好適には射出成形又は押出成形が適用される。具体的な形状としては、シート、フィルム、容器への適用が好ましい。
[Molded product]
The biodegradable resin composition according to the present embodiment can be molded by various molding methods applied to general-purpose plastics. Examples of the molding method include compression molding (compression molding, laminate molding, stampable molding), injection molding, extrusion molding, co-extrusion molding (film molding by inflation method or T-die method, laminate molding, pipe molding, electric wire / cable molding). , Deformed material molding), hot press molding, hollow molding (various blow molding), calendar molding, solid molding (uniaxial stretching molding, biaxial stretching molding, roll rolling molding, stretch orientation non-woven molding), thermal molding (vacuum molding, vacuum molding, Pneumatic molding), plastic processing, powder molding (rotary molding), various non-woven molding (dry method, bonding method, entanglement method, spunbond method, etc.) and the like. Among them, injection molding, extrusion molding, compression molding or hot press molding is preferably applied, and injection molding or extrusion molding is more preferably applied. As a specific shape, it is preferably applied to a sheet, a film, and a container.
 また、本実施形態に係る生分解性樹脂組成物を成形してなる成形体には、化学的機能、電気的機能、磁気的機能、力学的機能、摩擦/摩耗/潤滑機能、光学的機能、熱的機能、生体適合性等の表面機能等の付与を目的として、各種の二次加工を施すことも可能である。二次加工の例としては、エンボス加工、塗装、接着、印刷、メタライジング(めっき等)、機械加工、表面処理(帯電防止処理、コロナ放電処理、プラズマ処理、フォトクロミズム処理、物理蒸着、化学蒸着、コーティング等)等が挙げられる。 Further, the molded body formed by molding the biodegradable resin composition according to the present embodiment has a chemical function, an electrical function, a magnetic function, a mechanical function, a friction / wear / lubrication function, and an optical function. It is also possible to perform various secondary processes for the purpose of imparting thermal functions, surface functions such as biocompatibility, and the like. Examples of secondary processing include embossing, painting, bonding, printing, metallizing (plating, etc.), machining, surface treatment (antistatic treatment, corona discharge treatment, plasma treatment, photochromism treatment, physical vapor deposition, chemical vapor deposition, etc.) Coating, etc.) and the like.
[用途]
 本実施形態に係る生分解性樹脂組成物は、各種食品、薬品、雑貨等の液状物、粉粒物、固形物等を包装するための包装用資材、農業用資材、建築資材等幅広い用途において好適に用いられる。具体的用途としては、射出成形体(例えば、生鮮食品のトレー、ファーストフードの容器、コーヒーカプセルの容器、カトラリー、野外レジャー製品等)、押出成形体(例えば、フィルム、シート、釣り糸、漁網、植生ネット、2次加工用シート、保水シート等)、中空成形体(ボトル等)等が挙げられる。更に、その他農業用のフィルム、コーティング資材、肥料用コーティング材、育苗ポット、ラミネートフィルム、板、延伸シート、モノフィラメント、不織布、フラットヤーン、ステープル、捲縮繊維、筋付きテープ、スプリットヤーン、複合繊維、ブローボトル、ショッピングバッグ、ゴミ袋、コンポスト袋、化粧品容器、洗剤容器、漂白剤容器、ロープ、結束材、衛生用カバーストック材、保冷箱、クッション材フィルム、マルチフィラメント、合成紙、医療用として手術糸、縫合糸、人工骨、人工皮膚、マイクロカプセル等のDDS、創傷被覆材等が挙げられる。当該成形体は、食品包装用フィルム、生鮮食品のトレー、ファーストフードの容器、弁当箱等の食品用向けの容器として特に好適である。
[Use]
The biodegradable resin composition according to the present embodiment is used in a wide range of applications such as packaging materials for packaging various foods, chemicals, liquids such as miscellaneous goods, powders and solids, agricultural materials, and building materials. It is preferably used. Specific applications include injection molded products (eg, fresh food trays, fast food containers, coffee capsule containers, cutlery, outdoor leisure products, etc.), extruded molded products (eg, films, sheets, fishing threads, fishing nets, vegetation, etc.). Examples include nets, secondary processing sheets, water retention sheets, etc.), hollow molded bodies (bottles, etc.), and the like. In addition, other agricultural films, coating materials, fertilizer coating materials, seedling raising pots, laminated films, boards, stretched sheets, monofilaments, non-woven fabrics, flat yarns, staples, crimped fibers, streaked tapes, split yarns, composite fibers, Blow bottle, shopping bag, trash bag, compost bag, cosmetic container, detergent container, bleaching agent container, rope, binding material, sanitary cover stock material, cold storage box, cushioning material film, multifilament, synthetic paper, surgery for medical use Examples thereof include threads, sutures, artificial bones, artificial skins, DDSs such as microcapsules, and wound covering materials. The molded product is particularly suitable as a container for food such as a film for food packaging, a tray for fresh food, a container for fast food, and a lunch box.
 以下、実施例及び比較例を用いて、本発明の内容を更に具体的に説明する。本発明はその要旨を超えない限り、以下の実施例によって限定されるものではない。以下の実施例における各種の製造条件又は評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。 Hereinafter, the contents of the present invention will be described in more detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. The values of various production conditions or evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable ranges are the above-mentioned upper limit or lower limit values and the following. It may be in the range specified by the value of Examples or the combination of the values of Examples.
<樹脂の合成>
(PBSSeの合成)
 1,4-ブタンジオール(100.1g)、コハク酸(75.0g)、セバシン酸(32.1g)、トリメチロールプロパン(0.34g)及びチタンテトラブトキシド(0.50g)を窒素下で、200℃で2時間攪拌しながら加熱した。続けて、減圧しながら250℃まで昇温し、5時間15分反応させて得られたポリマーをストランド状に水中に抜き出し、カッティングすることにより、ペレット状のPBSSeを得た。
 H-NMR(核磁気共鳴スペクトル装置)により求めたPBSSeのコハク酸由来の単位/セバシン酸由来の単位のモル比は、80/20であった。また、下記測定方法に従って測定したPBSSeの還元粘度は、2.05dL/gであり、ガラス転移温度は-50℃であり、引張弾性率は280MPaであり、酸価は28μeq/gであった。
<Synthesis of resin>
(Synthesis of PBSSe)
1,4-Butanediol (100.1 g), succinic acid (75.0 g), sebacic acid (32.1 g), trimethylolpropane (0.34 g) and titanium tetrabutoxide (0.50 g) under nitrogen. It was heated at 200 ° C. for 2 hours with stirring. Subsequently, the temperature was raised to 250 ° C. while reducing the pressure, and the polymer obtained by reacting for 5 hours and 15 minutes was extracted into water in the form of strands and cut to obtain pelletized PBSSe.
1 The molar ratio of succinic acid-derived units / sebacic acid-derived units of PBSSe determined by 1 H-NMR (Nuclear Magnetic Resonance Spectrum Device) was 80/20. The reducing viscosity of PBSSe measured according to the following measuring method was 2.05 dL / g, the glass transition temperature was −50 ° C., the tensile elastic modulus was 280 MPa, and the acid value was 28 μeq / g.
(PBSeTの合成)
 1,4-ブタンジオール(83.8g)、セバシン酸(75.24g)、テレフタル酸(41.2g)、トリメチロールプロパン(0.27g)及びチタンテトラブトキシド(0.53g)を窒素下で、220℃で2時間攪拌しながら加熱した。続けて、減圧しながら240℃まで昇温し、3時間15分反応させて得られたポリマーをストランド状に水中に抜き出し、カッティングすることにより、ペレット状のPBSeTを得た。1H-NMR(核磁気共鳴スペクトル)法により求めたPBSeTのセバシン酸由来の単位/テレフタル酸由来の単位のモル比は、60/40であった。また、下記測定方法に従ってPBSeTの還元粘度を測定したところ、1.41dL/gであり、ガラス転移温度は-45℃であり、引張弾性率は30MPaであり、酸価は28μeq/gであった。
(Synthesis of PBSeT)
1,4-Butanediol (83.8 g), sebacic acid (75.24 g), terephthalic acid (41.2 g), trimethylolpropane (0.27 g) and titanium tetrabutoxide (0.53 g) under nitrogen. It was heated at 220 ° C. for 2 hours with stirring. Subsequently, the temperature was raised to 240 ° C. while reducing the pressure, and the polymer obtained by reacting for 3 hours and 15 minutes was extracted into water in the form of strands and cut to obtain pellet-shaped PBSeT. The molar ratio of the sebacic acid-derived unit / terephthalic acid-derived unit of PBSeT determined by 1 H-NMR (Nuclear Magnetic Resonance Spectrum) was 60/40. Further, when the reducing viscosity of PBSeT was measured according to the following measuring method, it was 1.41 dL / g, the glass transition temperature was −45 ° C., the tensile elastic modulus was 30 MPa, and the acid value was 28 μeq / g. ..
<市販の樹脂>
(PCL)
 Sigma-Aldrich社製PCL。還元粘度1.28dL/g、ガラス転移温度は-60℃、引張弾性率は430MPa。
(PHBH)
 カネカ社製PHBH「151C」。ガラス転移温度は0℃(カタログ値)、引張弾性率は950MPa。
(PLA)
 Nature Works社製PLA「4032D」。ガラス転移温度は55-60℃(カタログ値)、還元粘度2.18dL/g、引張弾性率は3450MPa。
<Commercial resin>
(PCL)
PCL manufactured by Sigma-Aldrich. The reduction viscosity is 1.28 dL / g, the glass transition temperature is -60 ° C, and the tensile elastic modulus is 430 MPa.
(PHBH)
PHBH "151C" manufactured by Kaneka Corporation. The glass transition temperature is 0 ° C. (catalog value), and the tensile elastic modulus is 950 MPa.
(PLA)
PLA "4032D" manufactured by Nature Works. The glass transition temperature is 55-60 ° C. (catalog value), the reducing viscosity is 2.18 dL / g, and the tensile elastic modulus is 3450 MPa.
(ガラス転移温度の測定方法)
 アルミニウム製の試料容器に各樹脂を10mg入れ、測定サンプルとした。次いで、日立ハイテクサイエンス(株)社製「DSC6220」を用いて、窒素雰囲気下で、-100℃から160℃まで、10℃/minの速度で昇温し、DSCチャートを得た。このチャートで融点を示すピークよりも低温側に存在するベースラインシフトからガラス転移温度を求めた。具体的には、低温側のベースラインと変曲点の接点の交点をガラス転移温度とした。
(Measurement method of glass transition temperature)
10 mg of each resin was placed in an aluminum sample container to prepare a measurement sample. Next, using "DSC6220" manufactured by Hitachi High-Tech Science Corporation, the temperature was raised from −100 ° C. to 160 ° C. at a rate of 10 ° C./min under a nitrogen atmosphere to obtain a DSC chart. In this chart, the glass transition temperature was obtained from the baseline shift existing on the lower temperature side than the peak showing the melting point. Specifically, the intersection of the contact point between the baseline on the low temperature side and the inflection point was defined as the glass transition temperature.
(還元粘度の測定方法)
 フェノールとテトラクロロエタンとの1:1(重量比)混合溶媒に、各樹脂を0.5g/dLとなるように溶解させ、樹脂溶液を調製した。次いで、ウベローデ粘度管を用い、30℃における樹脂溶液の通過時間を測定し、その結果に基づいて還元粘度を算出した。
(Measuring method of reduced viscosity)
Each resin was dissolved in a 1: 1 (weight ratio) mixed solvent of phenol and tetrachloroethane so as to be 0.5 g / dL to prepare a resin solution. Next, using a Ubbelohde viscous tube, the passage time of the resin solution at 30 ° C. was measured, and the reduced viscosity was calculated based on the result.
(引張弾性率の測定方法)
 各樹脂の熱プレスシートを作製し、8号ダンベル型に打ち抜いて試験片を作製した。具体的には、150mm×150mmのPTFEテープ(ニチアス株式会社製 ナフロンテープ(登録商標)BTOMBO No.9001、厚さ0.05mm)の上に、表面離型処理された金枠(SUS304、外径110mm、内径70mm、厚み0.2mm)を置き、この金枠の内側に各樹脂を1.6g測り採り、その上に更に150mm×150mmのPTFEテープを載せた。鉄板(160mm×160mm、厚み3mm)2枚の間に、このPTFFテープで挟まれた各樹脂を挟持させた状態で、熱プレス機(株式会社井元製作所製「IMC-180C型」)を用いて熱プレスし、続けて冷却プレス機(株式会社井元製作所製「IMC-181B型」)を用いて冷却プレスして、70mm×70mm×厚み0.2mmの熱プレスシートを得た。熱プレス温度は180℃、熱プレス時間は予熱2分間、プレス2分間とした。また、冷却プレス温度は20℃、冷却プレス時間は2分間とした。この熱プレスシートを、オリエンテック社製「STB-1225L」を用いて50mm/minの速度で一軸伸長し、得られた応力ひずみ曲線の初期勾配を引張弾性率として求めた。
(Measuring method of tensile elastic modulus)
A hot press sheet of each resin was prepared and punched into a No. 8 dumbbell mold to prepare a test piece. Specifically, a gold frame (SUS304, outer diameter) that has been surface-demolded on a 150 mm × 150 mm PTFE tape (Nachias Corporation Naflon tape (registered trademark) BTOMBO No. 9001, thickness 0.05 mm). (110 mm, inner diameter 70 mm, thickness 0.2 mm) was placed, 1.6 g of each resin was weighed inside the metal frame, and a 150 mm × 150 mm PTFE tape was further placed on it. Using a heat press machine (“IMC-180C type” manufactured by Imoto Seisakusho Co., Ltd.) with each resin sandwiched between the PTFF tapes sandwiched between two iron plates (160 mm × 160 mm, thickness 3 mm). The heat press was performed, and then the cooling press was performed using a cooling press machine (“IMC-181B type” manufactured by Imoto Seisakusho Co., Ltd.) to obtain a heat press sheet having a thickness of 70 mm × 70 mm × thickness 0.2 mm. The hot press temperature was 180 ° C., and the hot press time was preheating for 2 minutes and pressing for 2 minutes. The cooling press temperature was 20 ° C., and the cooling press time was 2 minutes. This hot press sheet was uniaxially elongated at a speed of 50 mm / min using "STB-1225L" manufactured by Orientec, and the initial gradient of the obtained stress-strain curve was determined as the tensile elastic modulus.
(酸価の測定方法)
 樹脂を0.4g精秤し、これにベンジルアルコール25mLを加え、195℃に加熱して撹拌することにより溶解させた。樹脂が溶解したら、樹脂溶液が入った容器を氷浴で冷却し、この容器内にエタノール2mLを加えた。三菱化学(株)製自動的低装置「GT100」で0.01Nの水酸化ナトリウムのベンジルアルコール溶液を用いて滴定を行った(滴定量をA(ml)とする。)。
 次にベンジルアルコールのみで同様の測定を行い、ブランク値(B(ml))とした。酸価を以下の式から算出した。
末端酸価(μeq/g)=(A-B)×F×10/W
A(ml):測定滴定量
B(ml):ブランク滴定量
F:0.01N NaOHベンジルアルコールyour期のファクター
W(g):サンプル重量
(Measuring method of acid value)
0.4 g of the resin was precisely weighed, 25 mL of benzyl alcohol was added thereto, and the resin was dissolved by heating to 195 ° C. and stirring. When the resin was dissolved, the container containing the resin solution was cooled in an ice bath, and 2 mL of ethanol was added into the container. Titration was performed using an automatic low device "GT100" manufactured by Mitsubishi Chemical Corporation using a benzyl alcohol solution of 0.01 N sodium hydroxide (the titration amount is A (ml)).
Next, the same measurement was carried out using only benzyl alcohol to obtain a blank value (B (ml)). The acid value was calculated from the following formula.
Terminal acid value (μeq / g) = (AB) × F × 10 / W
A (ml): Measurement titer B (ml): Blank titration F: 0.01N NaOH benzyl alcohol Your phase factor W (g): Sample weight
<実施例1>
 PBSSe:キチン(東京化成工業社製)を重量比90:10でブレンドし、小型二軸混練機(DSM社製「Xplore MC15 Micro Compounder」)に投入し、窒素雰囲気下、150℃で3分間溶融混練した。得られた混練物を粉砕し、粒子径が250μm以下の粒子を分級して、キチン含有量10重量%の生分解性樹脂組成物を得た。
<Example 1>
PBSSe: Chitin (manufactured by Tokyo Chemical Industry Co., Ltd.) is blended at a weight ratio of 90:10, put into a small twin-screw kneader (“Xplore MC15 Micro Composer” manufactured by DSM), and melted at 150 ° C. for 3 minutes in a nitrogen atmosphere. Kneaded. The obtained kneaded product was pulverized, and particles having a particle size of 250 μm or less were classified to obtain a biodegradable resin composition having a chitin content of 10% by weight.
<実施例2>
 実施例1において、キチンの代わりにヘパリンナトリウム(ナカライテスク社製)を用いて、実施例1と同様に、ヘパリンナトリウム含有量10重量%の粒径250μm以下の生分解性樹脂組成物を得た。
<Example 2>
In Example 1, heparin sodium (manufactured by Nacalai Tesque) was used instead of chitin to obtain a biodegradable resin composition having a heparin sodium content of 10% by weight and a particle size of 250 μm or less, as in Example 1. ..
<実施例3>
 実施例1において、キチンの代わりにコンドロイチン硫酸Cナトリウム(ナカライテスク社製)を用いて、実施例1と同様に、コンドロイチン硫酸Cナトリウム含有量10重量%の粒径250μm以下の生分解性樹脂組成物を得た。
<Example 3>
In Example 1, using sodium chondroitin sulfate (manufactured by Nacalai Tesque) instead of chitin, a biodegradable resin composition having a chondroitin sulfate C sodium content of 10% by weight and a particle size of 250 μm or less was used in the same manner as in Example 1. I got something.
<実施例4>
 実施例1において、キチンの代わりにヒアルロン酸ナトリウム(ナカライテスク社製)を用いて、実施例1と同様に、ヒアルロン酸ナトリウム含有量10重量%の粒径250μm以下の生分解性樹脂組成物を得た。
<Example 4>
In Example 1, sodium hyaluronate (manufactured by Nacalai Tesque, Inc.) was used instead of chitin to prepare a biodegradable resin composition having a sodium hyaluronate content of 10% by weight and a particle size of 250 μm or less, as in Example 1. Obtained.
<比較例1>
 PBSSeを粉砕し、粒子径が250μm以下の粒子を分級して、試料を得た。
<Comparative example 1>
PBSSe was pulverized, and particles having a particle size of 250 μm or less were classified to obtain a sample.
<比較例2>
 実施例1において、キチンの代わりにセルロース(Sigma-Aldrich社製)を用いて、実施例1と同様に、セルロース含有量10重量%の粒径250μm以下の生分解性樹脂組成物を得た。
<Comparative example 2>
In Example 1, cellulose (manufactured by Sigma-Aldrich) was used instead of chitin to obtain a biodegradable resin composition having a cellulose content of 10% by weight and a particle size of 250 μm or less, as in Example 1.
<実施例5>
 PBSeTおよびキチンを各々粉砕し、それぞれ粒子径250μm以下に分級して粉末にした。PBSeT粉末27mgおよびキチン粉末3mgを量り取り、510mLの褐色瓶に入れた。
<Example 5>
PBSeT and chitin were each pulverized and classified into powders having a particle size of 250 μm or less. 27 mg of PBSeT powder and 3 mg of chitin powder were weighed and placed in a 510 mL brown bottle.
<比較例3>
 PBSeT粉末30mを量り取り、510mLの褐色瓶に入れた。
<Comparative example 3>
30 m of PBSeT powder was weighed and placed in a 510 mL brown bottle.
<実施例6>
 PCLを粉砕し、250μm以下に分級して粉末にした。PCL粉末27mgおよびキチン粉末3mgを量り取り、510mLの褐色瓶に入れた。
<Example 6>
The PCL was pulverized and classified into 250 μm or less into a powder. 27 mg of PCL powder and 3 mg of chitin powder were weighed and placed in a 510 mL brown bottle.
<比較例4>
 PCL粉末30mgを量り取り、510mLの褐色瓶に入れた。
<Comparative example 4>
30 mg of PCL powder was weighed and placed in a 510 mL brown bottle.
<実施例7>
 PHBHを粉砕し、250μm以下に分級して粉末にした。PHBH粉末27mgおよびキチン粉末3mgを量り取り、510mLの褐色瓶に入れた。
<Example 7>
PHBH was pulverized and classified into 250 μm or less into a powder. 27 mg of PHBH powder and 3 mg of chitin powder were weighed and placed in a 510 mL brown bottle.
<比較例5>
 PHBH粉末30mgを量り取り、510mLの褐色瓶に入れた。
<Comparative example 5>
30 mg of PHBH powder was weighed and placed in a 510 mL brown bottle.
<比較例6>
 PLAを粉砕し、250μm以下に分級して粉末にした。PLA粉末27mgおよびキチン粉末3mgを量り取り、510mLの褐色瓶に入れた。
<Comparative Example 6>
The PLA was pulverized and classified into 250 μm or less into a powder. 27 mg of PLA powder and 3 mg of chitin powder were weighed and placed in a 510 mL brown bottle.
<比較例7>
 PLAの粉末試料30mgを量り取り、510mLの褐色瓶に入れた。
<Comparative Example 7>
A 30 mg powder sample of PLA was weighed and placed in a 510 mL brown bottle.
<生分解性試験>
 実施例1~7及び比較例1~7で得た試料の生分解度を、ISO 14851に準拠した方法により、以下の通り測定した。
 試料30mgを入れた510mLの褐色瓶に、ISO 14851に準拠した方法で調整した標準試験培養液と海水の混合液100mLを加えた。褐色瓶に圧力センサー(WTW社製、OxiTop(登録商標)-C型)を取り付け、25℃の恒温環境下、所定の期間(実施例1~7および比較例1~5は28日間、比較例6と7は42日間)試験液をスターラーで攪拌し、BOD測定に基づいて生分解度(%)を算出した。結果を表1に示す。
<Biodegradability test>
The degree of biodegradation of the samples obtained in Examples 1 to 7 and Comparative Examples 1 to 7 was measured as follows by a method based on ISO 14851.
To a 510 mL brown bottle containing 30 mg of the sample, 100 mL of a mixture of standard test culture solution and seawater prepared by a method conforming to ISO 14851 was added. A pressure sensor (WTW, OxiTop®-C type) was attached to the brown bottle, and the temperature was constant at 25 ° C. for a predetermined period (Examples 1 to 7 and Comparative Examples 1 to 5 were 28 days, Comparative Example. The test solution was stirred with a stirrer (for 42 days for 6 and 7), and the degree of biodegradation (%) was calculated based on the BOD measurement. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
*1 比較例1の試料の生分解度1.0に対する生分解度の倍率
*2 比較例3の試料の生分解度1.0に対する生分解度の倍率
*3 比較例4の試料の生分解度1.0に対する生分解度の倍率
*4 比較例5の試料の生分解度1.0に対する生分解度の倍率
*5 比較例7の試料の生分解度1.0に対する生分解度の倍率
* 1 Magnification of biodegradation of the sample of Comparative Example 1 with respect to 1.0 biodegradation * 2 Magnification of biodegradation of sample of Comparative Example 3 with respect to 1.0 biodegradation * 3 Biodegradation of sample of Comparative Example 4 Magnification of biodegradation degree with respect to degree 1.0 * 4 Magnification of biodegradation degree with respect to biodegradation degree 1.0 of sample of Comparative Example 5 * 5 Magnification of biodegradation degree with respect to biodegradation degree 1.0 of sample of Comparative Example 7
 表1より、生分解性試験開始後28日経過した時点で、樹脂とアミノ糖を含む多糖類とを含む生分解性樹脂組成物(実施例1~7)は、樹脂そのもの(比較例1、3~5)の2倍以上の生分解度を示すことが確認された。
 これに対し、樹脂とセルロースを含む組成物(比較例2)は、樹脂そのものに対し、1.04倍しか生分解度が向上しなかった。
 また、ガラス転移点が40℃より高い樹脂については、生分解性試験を長期間行ったにもかかわらず、アミノ糖を含む多糖類を用いることにより、生分解度がむしろ低下してしまうことが判明した。
 これらの結果より、アミノ糖を含む多糖類により、ガラス転移温度が40℃以下である樹脂の生分解度が著しく向上していることが裏付けられた。

 
From Table 1, when 28 days have passed since the start of the biodegradability test, the biodegradable resin compositions (Examples 1 to 7) containing the resin and the polysaccharide containing aminosaccharides are the resin itself (Comparative Example 1, It was confirmed that the degree of biodegradation was more than twice that of 3 to 5).
On the other hand, the composition containing the resin and cellulose (Comparative Example 2) improved the degree of biodegradation only 1.04 times as much as that of the resin itself.
In addition, for resins with a glass transition point higher than 40 ° C, the degree of biodegradation may rather decrease by using polysaccharides containing amino sugars, even though the biodegradability test has been conducted for a long period of time. found.
From these results, it was confirmed that the degree of biodegradation of the resin having a glass transition temperature of 40 ° C. or lower was significantly improved by the polysaccharide containing amino sugar.

Claims (10)

  1.  ガラス転移温度が40℃以下である樹脂と、アミノ糖を含む多糖類を含有する生分解性樹脂組成物であって、アミノ糖を含む多糖類の含有量が0.01重量%以上30重量%以下である生分解性樹脂組成物。 A biodegradable resin composition containing a resin having a glass transition temperature of 40 ° C. or lower and a polysaccharide containing an amino sugar, wherein the content of the polysaccharide containing an amino sugar is 0.01% by weight or more and 30% by weight. The following biodegradable resin composition.
  2.  前記樹脂がポリエステル樹脂である、請求項1に記載の生分解性樹脂組成物。 The biodegradable resin composition according to claim 1, wherein the resin is a polyester resin.
  3.  前記ポリエステル樹脂が、ジオール単位として、1,4-ブタンジオール、1,3-プロパンジオール及びエチレングリコールよりなる群から選ばれる1種類以上を有する、請求項2に記載の生分解性樹脂組成物。 The biodegradable resin composition according to claim 2, wherein the polyester resin has at least one selected from the group consisting of 1,4-butanediol, 1,3-propanediol and ethylene glycol as a diol unit.
  4.  前記ポリエステル樹脂が、ジカルボン酸単位として、炭素数2~22のジカルボン酸を有する、請求項2又は3に記載の生分解性樹脂組成物。 The biodegradable resin composition according to claim 2 or 3, wherein the polyester resin has a dicarboxylic acid having 2 to 22 carbon atoms as a dicarboxylic acid unit.
  5.  前記樹脂が生分解性樹脂である、請求項1~4の何れか1項に記載の生分解性樹脂組成物。 The biodegradable resin composition according to any one of claims 1 to 4, wherein the resin is a biodegradable resin.
  6.  前記ポリエステル樹脂の引張弾性率が10~2500MPaである、請求項2~5の何れか1項に記載の生分解性樹脂組成物。 The biodegradable resin composition according to any one of claims 2 to 5, wherein the polyester resin has a tensile elastic modulus of 10 to 2500 MPa.
  7.  前記多糖類が、グルコサミン類を含む多糖類である、請求項1~6の何れか1項に記載の生分解性樹脂組成物。 The biodegradable resin composition according to any one of claims 1 to 6, wherein the polysaccharide is a polysaccharide containing glucosamines.
  8.  前記多糖類が、キチンである、請求項7に記載の生分解性樹脂組成物。 The biodegradable resin composition according to claim 7, wherein the polysaccharide is chitin.
  9.  請求項1~8の何れか1項に記載の生分解性樹脂組成物を含む、成形体。 A molded product containing the biodegradable resin composition according to any one of claims 1 to 8.
  10.  ポリエステル樹脂を生分解させる方法であって、海水中で、ガラス転移温度が40℃以下のポリエステル樹脂を、アミノ糖を含む多糖類の存在下で生分解させる、ポリエステル樹脂の生分解方法。

     
    A method for biodegrading a polyester resin, which comprises biodegrading a polyester resin having a glass transition temperature of 40 ° C. or lower in seawater in the presence of a polysaccharide containing an amino sugar.

PCT/JP2021/014071 2020-03-31 2021-03-31 Biodegradable resin composition and molded article WO2021201186A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022512672A JPWO2021201186A1 (en) 2020-03-31 2021-03-31

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-061809 2020-03-31
JP2020061809 2020-03-31

Publications (1)

Publication Number Publication Date
WO2021201186A1 true WO2021201186A1 (en) 2021-10-07

Family

ID=77929197

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/014071 WO2021201186A1 (en) 2020-03-31 2021-03-31 Biodegradable resin composition and molded article

Country Status (2)

Country Link
JP (1) JPWO2021201186A1 (en)
WO (1) WO2021201186A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543747A (en) * 1991-08-12 1993-02-23 Ricoh Co Ltd Bio-degradable container
JPH08246243A (en) * 1995-03-08 1996-09-24 Unitika Ltd Biodegradable core-sheath conjugate filament and its production
JPH101855A (en) * 1996-04-15 1998-01-06 Unitika Ltd Biodegradable short fiber nonwoven fabric and its production
JPH10328685A (en) * 1997-05-29 1998-12-15 Omikenshi Co Ltd Environmental improvement method by chitin and chitosan
JPH11269359A (en) * 1998-03-25 1999-10-05 Unitika Ltd Biodegradable molded product
JP2000160466A (en) * 1998-11-30 2000-06-13 Unitika Ltd Nonwoven fabric comprising biodegradable core-sheath conjugate fiber
JP2007077232A (en) * 2005-09-13 2007-03-29 Tokyo Institute Of Technology Biodegradable polyester-based resin composition
CN106492273A (en) * 2016-11-24 2017-03-15 暨南大学 Dual enhancing Biodegradable polyester fibrous composite of a kind of chitin whisker/chitosan nano fiber and preparation method and application
CN110549717A (en) * 2019-08-27 2019-12-10 广西华沃特生态肥业股份有限公司 packaging material of environment-friendly forest fertilizer, preparation method and packaging method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543747A (en) * 1991-08-12 1993-02-23 Ricoh Co Ltd Bio-degradable container
JPH08246243A (en) * 1995-03-08 1996-09-24 Unitika Ltd Biodegradable core-sheath conjugate filament and its production
JPH101855A (en) * 1996-04-15 1998-01-06 Unitika Ltd Biodegradable short fiber nonwoven fabric and its production
JPH10328685A (en) * 1997-05-29 1998-12-15 Omikenshi Co Ltd Environmental improvement method by chitin and chitosan
JPH11269359A (en) * 1998-03-25 1999-10-05 Unitika Ltd Biodegradable molded product
JP2000160466A (en) * 1998-11-30 2000-06-13 Unitika Ltd Nonwoven fabric comprising biodegradable core-sheath conjugate fiber
JP2007077232A (en) * 2005-09-13 2007-03-29 Tokyo Institute Of Technology Biodegradable polyester-based resin composition
CN106492273A (en) * 2016-11-24 2017-03-15 暨南大学 Dual enhancing Biodegradable polyester fibrous composite of a kind of chitin whisker/chitosan nano fiber and preparation method and application
CN110549717A (en) * 2019-08-27 2019-12-10 广西华沃特生态肥业股份有限公司 packaging material of environment-friendly forest fertilizer, preparation method and packaging method thereof

Also Published As

Publication number Publication date
JPWO2021201186A1 (en) 2021-10-07

Similar Documents

Publication Publication Date Title
CN111801385B (en) Molded body, sheet, container, tubular body, straw, cotton swab, and stem for balloon
Briassoulis et al. Alternative optimization routes for improving the performance of poly (3-hydroxybutyrate)(PHB) based plastics
JP5233390B2 (en) Method for producing polyester resin containing furan structure
WO2021241712A1 (en) Biodegradable resin composition and biodegradable resin molded articles
JP5200208B2 (en) Aliphatic aromatic polyester and resin composition
JP2011153275A (en) Polyester resin, resin composition and molded body using the same
JP2019077823A (en) Polyester resin composition and molded body thereof
WO2021201185A1 (en) Biodegradable resin composition and molded body
US20240279388A1 (en) Biodegradable resin composition, molded article, and biological degradation method
JP5167502B2 (en) Aliphatic aromatic polyester and resin composition thereof
JP2022157778A (en) Biodegradable resin composition and molding
JP2000327847A (en) Resin composition
JP7435041B2 (en) Degradation accelerator for biodegradable resin, biodegradable resin composition and biodegradable resin molded article
JP2021191845A (en) Biodegradable resin composition, and biodegradable resin molded body
JP7218650B2 (en) Polyester resin composition and molded article
WO2021201186A1 (en) Biodegradable resin composition and molded article
JP7552198B2 (en) film
JP2022021326A (en) Biodegradation promoter, biodegradable resin composition and biodegradable resin molded body
JP7106936B2 (en) Molded body, sheet and container
JP2022145493A (en) Biodegradable resin composition, biodegradable resin molding, and method for producing biodegradable resin composition
JP2023110156A (en) Biodegradable resin composition
Al-Ashor Sustainable food packaging based on polyhydroxyalkanoate
JP2024037690A (en) Laminate and packaging material
JP2022031161A (en) Film, laminate, packaging material, and method of producing film
JP2019172742A (en) Resin composition and resin-molded article

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21781041

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022512672

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21781041

Country of ref document: EP

Kind code of ref document: A1