WO2021261370A1 - Analyzing device, analysis method, and program - Google Patents
Analyzing device, analysis method, and program Download PDFInfo
- Publication number
- WO2021261370A1 WO2021261370A1 PCT/JP2021/023002 JP2021023002W WO2021261370A1 WO 2021261370 A1 WO2021261370 A1 WO 2021261370A1 JP 2021023002 W JP2021023002 W JP 2021023002W WO 2021261370 A1 WO2021261370 A1 WO 2021261370A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- phase
- data
- unit
- error
- phase current
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
Definitions
- the present disclosure relates to analyzers, analytical methods and programs.
- the present application claims priority based on Japanese Patent Application No. 2020-109490 filed on June 25, 2020, the contents of which are incorporated herein by reference.
- the present disclosure is made to solve the above-mentioned problems, and provides an analyzer, an analysis method and a program capable of appropriately analyzing the influence of an abnormality of a motor or an accessory on an electric current.
- the purpose is made to solve the above-mentioned problems, and provides an analyzer, an analysis method and a program capable of appropriately analyzing the influence of an abnormality of a motor or an accessory on an electric current. The purpose.
- the analyzer includes a current data reading unit that reads three-phase current data, which is data obtained by sampling three-phase current supplied to an electric motor, and a three-phase current data.
- a periodic unit dividing unit that divides in AC periodic units, a three-phase two-phase conversion unit that converts the three-phase current data into two-phase current data, and a vector having each phase of the two-phase current data as a horizontal component and a vertical component.
- An error calculation unit that calculates an error from the reference data and outputs it as error data, and a processing output unit that processes the error data in the cycle unit and for a plurality of the cycle units and outputs the processing result. Be prepared.
- the analysis method includes a step of reading the three-phase current data, which is data obtained by sampling the three-phase current supplied to the electric motor, a step of separating the three-phase current data into three-phase AC periodic units, and the above three steps.
- the step includes processing the error data in the cycle unit and for the plurality of cycle units, and outputting the processing result.
- the program according to the present disclosure includes a step of reading three-phase current data, which is data obtained by sampling three-phase current supplied to an electric motor, a step of separating the three-phase current data into three-phase AC periodic units, and the three-phase.
- a step of converting current data into two-phase current data a step of calculating an error from reference data of a vector having each phase of the two-phase current data as a horizontal component and a vertical component, and outputting it as error data.
- the computer is made to perform a step of processing the error data in the cycle unit and for the plurality of cycle units and outputting the processing result.
- phase plane for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure. It is a phase plane for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure. It is a phase plane for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure. It is a phase plane for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure. It is a phase plane for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure. It is a phase plane for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure. It is a waveform diagram for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure. It is a phase plane for demonstrating the operation example of the analyzer which concerns on embodiment of this disclosure.
- FIG. 1 is a block diagram showing a configuration example of the analyzer according to the embodiment of the present disclosure.
- FIG. 2 is a flowchart showing an operation example of the analyzer according to the embodiment of the present disclosure.
- 3 to 11 FIGS. 20, 22, and 24 are waveform diagrams for explaining an operation example of the analyzer according to the embodiment of the present disclosure.
- 12 to 19, 21 and 23 are phase planes for explaining an operation example of the analyzer according to the embodiment of the present disclosure.
- FIG. 25 is a schematic diagram for explaining an operation example of the analyzer according to the embodiment of the present disclosure.
- the same reference numerals are used for the same or corresponding configurations, and the description thereof will be omitted as appropriate.
- the analyzer 1 is composed of, for example, a computer such as a personal computer, peripheral devices of the computer, and the like, hardware such as a computer and peripheral devices, and a program executed by the computer.
- a processing unit 11 a storage unit 12, and a display unit 13 are provided.
- the storage unit 12 stores data and the like used by the processing unit 11.
- the display unit 13 displays characters and figures instructed by the processing unit 11 on a predetermined display screen.
- the analyzer 1 shown in FIG. 1 uses the measured values of the three-phase currents Iu, Iv, and Iw supplied from the power supply panel 5 to the electric motor 3, and analyzes the abnormalities of the electric motor 3 and the auxiliary machine 4 which is a rotating machine such as a pump. And make an abnormality diagnosis.
- the electric motor 3 is supplied with three-phase currents Iu, Iv, and Iw from a power source 51 such as a commercial power source included in the power supply panel 5 via a switch 52 and a three-phase power supply line 53.
- the motor 3 is a three-phase AC motor such as a three-phase induction motor, which is connected to the auxiliary machine 4 via a drive shaft 31 and rotationally drives the auxiliary machine 4.
- the measuring device 2 measures the three-phase currents Iu, Iv, and Iw flowing through the three-phase power supply line 53 using the current sensor 21, samples them at a predetermined cycle, generates three-phase current data, and generates the three-phase current data. Output to.
- the electric motor 3 may be directly driven by a three-phase power supply supplied from the three-phase power supply line 53, or may be driven via an inverter, a converter, or the like. Further, the transfer of the three-phase current data from the measuring device 2 to the analyzer 1 may be a real-time process or a batch process.
- the processing unit 11 includes a current data reading unit 111, a data interpolation unit 112, a periodic unit dividing unit 113, a phase axis normalizing unit 114, a current amplitude normalizing unit 115, a three-phase two-phase conversion unit 116, and a phase plane.
- the error radius calculation unit 117 and the processing output unit 118 are included.
- the processing output unit 118 includes a phase plane error radius expansion unit 1181, an error expansion phase plane drawing unit 1182, a shape strain evaluation value calculation unit 1183, a radius variation evaluation value calculation unit 1184, and a phase plane abnormality degree calculation unit 1185. ..
- the current data reading unit 111 reads the three-phase current data, which is the sampled data of the three-phase currents Iu, Iv, and Iw supplied to the motor 3, into the main memory or the like.
- the current data reading unit 111 may read the three-phase current data from the measuring device 2 or may read the three-phase current data previously stored in the storage unit 12.
- An example of the three-phase currents Iu, Iv and Iw is shown in FIG.
- FIG. 3 shows the time variation of the three-phase currents Iu, Iv, and Iw with the horizontal axis representing the time and the vertical axis representing the current value.
- the data interpolation unit 112 interpolates the three-phase current data read by the current data reading unit 111 to increase the number of samples of the three-phase current data.
- the periodic unit dividing unit 113 divides the three-phase current data into three-phase alternating current periodic units. That is, the cycle unit dividing unit 113 performs a process of separating the current waveform for each cycle. Separation of each period can be performed, for example, by searching for a current zero crossing point of a one-phase current (for example, current Iu) and separating all three-phase currents with the same sampling number (or sampling time). ..
- "separation" means to specify the sampling data at the start or end of each cycle
- "cutting out” means to separate and extract the sampling data for each cycle based on the result of the separation processing. Used as.
- the periodic unit dividing unit 113 can interpolate the three-phase current data into finer sampling by the data interpolation unit 112 and then perform the division.
- the data interpolation process by the data interpolation unit 112 may be omitted.
- continuous smooth interpolation such as linear interpolation or spline interpolation
- the distortion of the current in the original data may be smoothed, so that the shape is maintained. It is desirable to use a method such as piecewise tertiary interpolation.
- FIG. 4 shows the result of dividing the current Iu with the horizontal axis as the time and the vertical axis as the current value.
- the raw data represents the unprocessed three-phase current data
- the broken line represents the three-phase current data in the first cycle after interpolation
- the chain line represents the three-phase current data in the second cycle after interpolation.
- FIGS. 5 and 6 show an example of interpolation of the current Iu with the horizontal axis as the time and the vertical axis as the current value.
- FIG. 7 shows an example (an example of overwriting for 60 cycles) in which the waveform obtained by cutting out the current Iu is overwritten with the horizontal axis as the time and the vertical axis as the current value.
- the AC frequency in the waveform diagram used in the description of this embodiment is 60 Hz.
- the phase axis normalization unit 114 normalizes the three-phase current data so that the number of samples for one cycle becomes a constant value.
- the time axis of the cut out current data includes the original current cycle variation and a slight error in zero cross detection.
- the phase axis normalization unit 114 sets the horizontal axis in the current waveform diagram as the phase of 0 to 360 degrees from the time, and interpolates the data so that the number of samples is fixed.
- the interpolation method the same method as that of the data interpolation unit 112 can be used.
- the current amplitude normalization unit 115 normalizes the three-phase current data so that the current amplitude becomes a predetermined value. Since the current amplitude normalizing unit 115 differs in the current amplitude depending on the data (measurement target), the amplitude is normalized so that each process described later can be standardized. For example, the current amplitude normalizing unit 115 normalizes the current amplitude so that the average amplitude of the three-phase current for the measurement target time (60 cycles for 1 second) becomes 1. If normalization is performed for each phase, it becomes impossible to capture an abnormal event in which the amplitude changes for only one phase, so all three phases are normalized with the same value.
- FIG. 8 shows an example of current Iu (an example of overwriting for 60 cycles) after normalizing the vertical axis and the horizontal axis with the horizontal axis as the phase and the vertical axis as the current value.
- the unit “deg.pu” on the horizontal axis represents the normalized phase (degrees), and the unit “A.pu” on the vertical axis represents the normalized current value (ampere).
- the three-phase two-phase conversion unit 116 converts the sampling values Iu, Iv, and Iw of the three-phase current data into the two-phase current data Id and Iq by the following equation (1) called Park conversion or dq conversion. ..
- the three-phase two-phase conversion unit 116 obtains the Park's Vector Ip by the following equation (2).
- This Ip means the radius of the circle of the phase plane consisting of Id and Iq.
- Ip (hereinafter, referred to as a phase plane radius Ip) represents the magnitude of a vector having a horizontal component and a vertical component as Id and Iq.
- the ideal dq-axis current is expressed by the following equation.
- the phase plane is a graph (figure) in which a plurality of types of data are divided into two combinations and the data at the same time are plotted on the vertical axis and the horizontal axis (Japanese Patent Laid-Open No. 2017-21182).
- the phase plane is a graph in which the two-phase current data Id and Iq are plotted on the horizontal axis and the vertical axis, and the coordinates determined by Id and Iq at the same time are plotted.
- FIG. 9 shows an example of two-phase current data Id and Iq and a phase plane radius Ip with the horizontal axis as the phase and the vertical axis as the current value.
- the phase plane error radius calculation unit 117 calculates the error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component, and uses it as error data. It is output to the phase plane error radius expansion unit 1181 and the like.
- the reference data is data as a comparison reference with respect to a vector having each phase Id and Iq of the two-phase current data as a horizontal component and a vertical component, and is data at the normal time.
- the reference data shall correspond to, for example, the ideal value (calculated value) of the magnitude of the vector (phase plane radius Ip), or the two-phase current data based on the three-phase current data sampled at the normal time. Can be done.
- the phase plane error radius expansion unit 1181 included in the processing output unit 118 expands the error calculated by the phase plane error radius calculation unit 117.
- the phase plane error radius calculation unit 117 calculates the error by subtracting the Ip ideal value (reference data of a constant value) from the phase plane radius Ip calculated by the three-phase two-phase conversion unit 116 from the equation (2). can do. That is, the phase plane error radius calculation unit 117 subtracts the amplitude Im ⁇ ⁇ 6 / 2 shown in the equation (3.3) from the calculated phase plane radius Ip to obtain the phase plane radius Ip and the reference data (Ip ideal).
- the error with the value) (the error in this case is called the phase plane error radius ⁇ Ip) can be calculated. Since the phase plane radius Ip corresponds to the radius of the circle of the phase plane consisting of Id and Iq, the error from the ideal value of Ip corresponds to the radius error in the phase plane.
- phase plane error radius expansion unit 1181 calculates the expansion error radius ⁇ Ipmag by expanding the phase plane error radius ⁇ Ip by a constant multiple Kmag (Kmag is 1 or more) in order to expand the generated phase plane change. do.
- Kmag is 1 or more
- the expansion error radius ⁇ Ipmag is calculated as follows.
- the error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component is not limited to the phase plane error radius ⁇ Ip, and may be, for example, the circumferential angle error ⁇ described later. good.
- the error expansion phase plane drawing unit 1182 expands the error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component, and expands the error from the reference data in a periodic unit on a predetermined unit circle.
- the process of superimposing is performed for a plurality of cycle units, and as the output of the processing result by the processing output unit 118, the unit circle on which the enlarged error is superimposed is superimposed for a plurality of cycle units and drawn on the predetermined display unit 13.
- the error expansion phase plane drawing unit 1182 draws the error expansion phase plane by superimposing the expansion error radius ⁇ Ipmag on the unit circle having the radius 1, for example. Specifically, the points on the dq plane determined by the "Id component" and the "Iq component” obtained by the following equations are drawn by overlapping for a plurality of cycles for each cycle.
- FIG. 10 shows an example of normal data used in this drawing example.
- the horizontal axis is the normalized phase
- the vertical axis is the topological surface error radius ⁇ Ip for the upper waveform and the circumferential angle error ⁇ for the lower waveform.
- the phase plane error radius ⁇ Ip ( ⁇ r) is an error from the Ip ideal value (constant value reference data) of the phase plane radius Ip
- the circumferential angle error ⁇ is the phase value determined from the sampling time (sampling number) (sampling number). It is an error between the reference data) and the phase ⁇ calculated from the equation (5.3).
- FIG. 10 shows an example of normal data used in this drawing example.
- the horizontal axis is the normalized phase
- the vertical axis is the topological surface error radius ⁇ Ip for the upper waveform and the circumferential angle error ⁇ for the lower waveform.
- the phase plane error radius ⁇ Ip ( ⁇ r) is an error from the Ip ideal value (constant value reference data) of
- FIG. 11 shows an example of data at the time of abnormality used in this drawing example. Similar to FIG. 10, the horizontal axis is the normalized phase, and the vertical axis is the topological surface error radius ⁇ Ip for the upper waveform and the circumferential angle error ⁇ for the lower waveform.
- FIG. 12 shows a phase plane in which a three-phase current is directly converted into two phases and taken as it is on two axes without normalization.
- the solid line is the normal data
- the broken line is the abnormal data.
- the normal data and the abnormal data are almost circular and have no difference.
- FIG. 13 shows the error expansion phase plane in the normal state.
- the currents are overlapped for 60 cycles, but the data for each cycle are almost overlapped.
- the shape is slightly distorted from the circle (due to the original current quality and equipment configuration).
- FIG. 14 shows an error-expanded phase plane at the time of abnormality. There is a variation in the current in 60 cycles. The shape is also distorted compared to normal.
- phase plane error radius calculation unit 117 corresponds to the two-phase current data based on the three-phase current data sampled at the normal time. do.
- the phase plane error radius ⁇ Ip the error from the ideal Ip (fixed value) calculated from the ideal current was calculated, but if the normal data of the target plant can be obtained, the normal data.
- FIG. 15 shows a phase plane (error-enhanced phase plane) in which the error from the phase plane radius Ip obtained from the three-phase current data in the normal state (1) is expanded with the ideal value of the phase plane radius Ip as the reference data.
- FIG. 16 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the normal time (1).
- the error-enhanced phase plane of FIG. 16 is slightly distorted into a hexagonal shape, but as expected, this figure is almost circular.
- FIG. 17 shows a phase plane (error expansion phase) using the average of the normal time (1) as the reference data with respect to the three-phase current data of the normal time (2), which is the data of the normal time different from the normal time (1). Surface) is shown. It is assumed that it will be circular in almost the same manner as in FIG.
- FIG. 18 shows a phase plane (error-enlarged phase plane) using the average of normal time (1) as reference data for abnormal data.
- the shape strain evaluation value calculation unit 1183 (strain evaluation value calculation unit) within the period unit of the error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component.
- the value corresponding to the variation is calculated as a shape strain evaluation value (strain evaluation value).
- the shape strain evaluation value calculation unit 1183 obtains, for example, the average value of each error of a plurality of cycle units at a plurality of points in the cycle unit, and calculates the value corresponding to the standard deviation of each average value as the shape strain evaluation value. ..
- the radius variation evaluation value calculation unit 1184 (variation evaluation value calculation unit) is a plurality of periodic units of errors from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component. The value corresponding to the variation between the two is calculated as the radius variation evaluation value (variation evaluation value).
- the radius variation evaluation value calculation unit 1184 obtains, for example, the standard deviation of each error of a plurality of periodic units at a plurality of points in the periodic unit, and calculates the value corresponding to the average value of each standard deviation as the radius variation evaluation value. ..
- the phase plane abnormality calculation unit 1185 calculates the phase plane abnormality (abnormality) indicating the degree of abnormality based on the shape strain evaluation value and the radius variation evaluation value, and processes the output unit. As the processing result of 118, at least one of the phase surface abnormality degree or the determination result comparing the phase surface abnormality degree and the predetermined threshold value is output.
- the phase plane abnormality calculation unit 1185 calculates, for example, a value obtained by adding a value obtained by multiplying the shape strain evaluation value by the first weighting coefficient and a value obtained by multiplying the radius variation evaluation value by the second weighting coefficient as the phase plane abnormality degree. do.
- the changes in the error expansion phase plane that occur at the time of abnormality are roughly divided into (1) a pattern in which the distortion of the shape becomes large (FIG. 19) and (2) a pattern in which the variation in radius becomes large (FIG. 21). ) And the merged pattern (strain angle deviation) of (3), (1) and (2) (FIG. 23).
- FIG. 19 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the abnormal time (1).
- FIG. 20 has a normalized phase on the horizontal axis and a phase plane error radius ⁇ Ip on the vertical axis, and shows the data at the time of abnormality (1) shown in FIG.
- FIG. 21 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the abnormal time (2).
- FIG. 22 shows the data at the time of abnormality (2) shown in FIG. 21 with the normalized phase on the horizontal axis and the phase plane error radius ⁇ Ip on the vertical axis.
- FIG. 23 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the abnormal time (3).
- FIG. 24 shows the data at the time of abnormality (3) shown in FIG. 23, with the horizontal axis representing the normalized phase and the vertical axis representing the phase plane error radius ⁇ Ip.
- the one-period standard deviation of the average value in each phase of the phase plane error radius ⁇ Ip is evaluated as the shape strain evaluation value. Further, regarding the evaluation of the radius variation, the one-period average of the standard deviation in each phase of the phase plane error radius ⁇ Ip is evaluated as the radius variation evaluation value. Further, these are combined to form weight coefficients K1 and K2 (first weight coefficient, second weight coefficient), and the degree of abnormality is defined by the following equation.
- the shape strain evaluation values are the average of each point d11 and d21, the average of each point d12 and d22, and the average of each point d13 and d23 at each phase P1, P2, P3 and P4. And the average of each point d14 and d24 is calculated, and the standard deviation of the average value obtained in one cycle (0 to 360 degrees) can be used as the shape strain evaluation value.
- the horizontal axis is the normalized phase
- the vertical axis is the phase plane error radius ⁇ Ip
- the phase plane error radius ⁇ Ip for two cycles is shown as data Ip1 and data Ip2.
- the radius variation evaluation values are the standard deviations of the points d11 and d21, the standard deviations of the points d12 and d22, and the points d13 and d23 at each phase P1, P2, P3 and P4.
- the standard deviation and the standard deviation of each point d14 and d24 can be calculated, and the average value obtained in one cycle (0 to 360 degrees) can be used as the radius variation evaluation value.
- the values of the weighting coefficients K1 and K2 can be determined, for example, as follows. That is, for example, abnormal data may be accumulated and manually determined from the data. Since the strain and variation are separated, K1 can be kept small if the power supply quality is known to be poor and the shape is known to be distorted (and vice versa). Further, in the case of the ideal current reference, it is possible to reduce K1 without evaluating the strain and increase K1 to start the evaluation of strain when normal data is accumulated. As a result, it is possible to avoid issuing an abnormality warning due to the occurrence of shape distortion due to power supply quality or the like at the first measurement. Further, the optimum solution of K1 and K2 may be searched by reinforcement learning using the abnormal data as the test data.
- the shape strain evaluation value and the radius variation evaluation value are calculated, respectively. Therefore, the weights of K1 and K2 are automatically searched so that the abnormal data is determined to be abnormal and the normal data is determined to be normal.
- phase plane error radius ⁇ Ip may be included. It may also be calculated based on the area of the circle.
- the current data reading unit 111 reads the three-phase current data (step S11).
- the data interpolation unit 112 and the period unit division unit 113 interpolate the three-phase current data and perform division for each period (step S12).
- the phase axis normalization unit 114 normalizes the three-phase current data with the horizontal axis as the phase (step S13).
- the current amplitude normalization unit 115 normalizes the current amplitude of the three-phase current data (step S14).
- the three-phase two-phase conversion unit 116 converts the three-phase current data into the two-phase current data (step S15).
- the phase plane error radius calculation unit 117 calculates the phase plane error radius, and the phase plane error radius expansion unit 1181 expands the error radius (step S16).
- the error-enhanced phase plane drawing unit 1182 draws the error-enhanced phase plane (step S17).
- the shape strain evaluation value calculation unit 1183 calculates the shape strain evaluation value (step S18).
- the radius variation evaluation value calculation unit 1184 calculates the radius variation evaluation value (step S19).
- phase plane abnormality calculation unit 1185 calculates the phase plane abnormality (step S20), and evaluates the phase plane abnormality by, for example, comparing the calculated phase plane abnormality with a predetermined threshold value (step). S21), the comparison result with the threshold value and the degree of phase plane abnormality are displayed as evaluation results on, for example, the display unit 13 (step S22).
- the phase plane can be drawn by using the three-phase current of the electric motor 3, and the abnormality diagnosis can be performed from the phase plane. Since the three-phase current is out of phase by 120 degrees, if the phase plane is simply drawn with two of them, it becomes an oblique ellipse. Therefore, in the present embodiment, a process of converting a three-phase current into a two-phase current is performed. In addition, by calculating and expanding the error from the ideal current, the change in the phase plane due to the abnormality is expanded. In addition, from the characteristics of the phase plane, the shape strain and radius variation of the phase plane are quantified as feature quantities, and the degree of abnormality is defined as the linear sum thereof, which can be applied to abnormality diagnosis.
- the present embodiment it is possible to visualize a slight change in the current due to an abnormality in the motor 3 and the auxiliary equipment 4. In other words, according to the present embodiment, it is possible to appropriately analyze the influence of abnormalities on the electric motor and auxiliary machinery on the current.
- the original power supply quality is not a clean sine wave, etc.
- it can be used for abnormality diagnosis by quantifying the distortion of the shape and the variation of the radius, which are the changes in the phase plane, and defining it as the degree of abnormality. That is, it is possible to quantitatively grasp the variation within the AC cycle and the variation between a plurality of AC cycles.
- FIG. 26 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
- the computer 90 includes a processor 91, a main memory 92, a storage 93, and an interface 94.
- the diagnostic device 1 described above is mounted on the computer 90.
- the operation of each of the above-mentioned processing units is stored in the storage 93 in the form of a program.
- the processor 91 reads a program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
- the program may be for realizing a part of the functions exerted by the computer 90.
- the program may exert its function in combination with another program already stored in the storage or in combination with another program mounted on another device.
- the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration.
- PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array).
- PLDs Programmable Integrated Circuit
- PAL Programmable Array Logic
- GAL Generic Array Logic
- CPLD Complex Programmable Logic Device
- FPGA Field Programmable Gate Array
- Examples of the storage 93 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory and the like.
- the storage 93 may be an internal medium directly connected to the bus of the computer 90, or an external medium connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 by a communication line, the distributed computer 90 may expand the program to the main memory 92 and execute the above process.
- the storage 93 is a non-temporary tangible storage medium.
- the analyzer 1 has a current data reading unit 111 that reads three-phase current data, which is data obtained by sampling three-phase current supplied to the electric motor 3, and a three-phase current data.
- the periodic unit dividing unit 113 that divides the three-phase current data into two-phase current data
- the three-phase two-phase conversion unit 116 that converts the three-phase current data into two-phase current data, and each phase of the two-phase current data as a horizontal component and a vertical component.
- An error calculation unit (phase surface error radius calculation unit 117) that calculates an error (phase surface error radius ⁇ Ip, circumferential angle error ⁇ ) from the reference data of the vector to be output and outputs the error data, and the error data is described above.
- a processing output unit 118 that processes the periodic units and outputs the processing results. According to this aspect and the following aspects, it is possible to appropriately analyze the influence of the abnormality of the motor and accessories on the current.
- the analysis device 1 is the analysis device 1 of (1), and the processing output unit 118 expands the error and superimposes the error on a predetermined unit circle in the cycle unit.
- the processing is performed for a plurality of the periodic units, and as an output of the processing result, the unit circle on which the enlarged error is superimposed is superimposed for the plurality of the periodic units and drawn on a predetermined display unit 13. According to this configuration, it is possible to visualize a slight change in current due to an abnormality in the motor or auxiliary equipment.
- the analysis device 1 is the analysis device 1 of (1) or (2), and the processing output unit 118 is a strain evaluation value calculation unit (shape strain evaluation value calculation unit 1183). It has a variation evaluation value calculation unit (radiation variation evaluation value calculation unit 1184) and an abnormality degree calculation unit (phase plane abnormality degree calculation unit 1185), and the strain evaluation value calculation unit is the periodic unit of the error.
- the value corresponding to the variation in the above is calculated as a strain evaluation value (shape strain evaluation value), and the variation evaluation value calculation unit sets a value corresponding to the variation between a plurality of the periodic units of the error as a variation evaluation value.
- the abnormality degree calculation unit calculates an abnormality degree (phase plane abnormality degree) indicating the degree of abnormality based on the strain evaluation value and the variation evaluation value, and as the processing result.
- the degree of abnormality or at least one of the determination results comparing the degree of abnormality with a predetermined threshold is output.
- the shape strain and radius variation which are changes in the phase plane, can be quantified, defined as the degree of abnormality, and used for abnormality diagnosis.
- the analyzer 1 according to the fourth aspect is the analyzer 1 of (1) to (3), and the reference data corresponds to an ideal value of the magnitude of the vector, and the error calculation unit. Calculates the difference between the magnitude of the vector and the reference data as the error.
- the analyzer 1 is the analyzer 1 of (1) to (3), and the reference data is the two-phase current based on the three-phase current data sampled at the normal time.
- the error calculation unit calculates the error by comparing the vector and the reference data in the periodic unit.
- the analyzer 1 is the analyzer 1 of (1) to (5), further including a data interpolation unit 112 that interpolates the three-phase current data to increase the number of samples.
- the periodic unit dividing unit 113 divides the three-phase current data interpolated by the data interpolating unit 112 in the periodic unit of the three-phase AC.
- the analyzer 1 according to the seventh aspect is the analyzer 1 of (1) to (6), and the three-phase current data is normalized so that the number of samples for one cycle becomes a constant value.
- the phase axis normalization unit 114 is further provided, and the three-phase two-phase conversion unit 116 converts the three-phase current data normalized by the phase axis normalization unit 114 into the two-phase current data.
- the analyzer 1 is the analyzer 1 of (1) to (7), and the current amplitude normalization normalizes the three-phase current data so that the current amplitude becomes a predetermined value.
- the three-phase two-phase conversion unit 116 further includes a conversion unit 115, and the three-phase two-phase conversion unit 116 converts the three-phase current data normalized by the current amplitude normalization unit 115 into the two-phase current data.
- the analysis device 1 according to the ninth aspect is the analysis device 1 of (3), and the strain evaluation value calculation unit has a plurality of points in the cycle unit and each error of the plurality of cycle units.
- the average value of the above is obtained, the value corresponding to the standard deviation of each of the average values is calculated as the strain evaluation value, and the variation evaluation value calculation unit performs each of the plurality of each of the plurality of cycle units at a plurality of points in the cycle unit.
- the standard deviation of the error is obtained, the value corresponding to the average value of each standard deviation is calculated as the variation evaluation value, and the abnormality degree calculation unit multiplies the strain evaluation value by the first weighting coefficient.
- the value obtained by adding the value obtained by multiplying the variation evaluation value by the second weighting coefficient is calculated as the degree of abnormality.
- Analytical device Electric motor 4 Auxiliary machine 11 Processing unit 12 Storage unit 13 Display unit 111 Current data reading unit 112 Data interpolation unit 113 Periodic unit segmentation unit 114 Phase axis normalization unit 115 Current amplitude normalization unit 116 Three-phase two-phase conversion unit 117 Phase plane error radius calculation unit 118 Processing output unit 1181 Phase plane error radius expansion unit 1182 Error expansion Phase plane drawing unit 1183 Shape strain evaluation value calculation unit 1184 Radiation variation evaluation value calculation unit 1185 Phase plane abnormality degree calculation unit
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Control Of Ac Motors In General (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
- Monitoring And Testing Of Transmission In General (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
This analyzing device is provided with: a current data reading unit for reading three-phase current data, which are data obtained by sampling a three-phase current being supplied to an electric motor; a periodic unit dividing unit which divides the three-phase current data into three-phase alternating current periodic units; a three-phase/two-phase converting unit which converts the three-phase current data into two-phase current data; an error calculating unit which calculates the error, from reference data, of a vector in which the phases of the two-phase current data are used as the horizontal component and the vertical component, and outputs the same as error data; and a processing/output unit which processes the error data in periodic units and for a plurality of periodic units, and outputs the processing results.
Description
本開示は、分析装置、分析方法およびプログラムに関する。
本願は、2020年6月25日に出願された特願2020-109490号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to analyzers, analytical methods and programs.
The present application claims priority based on Japanese Patent Application No. 2020-109490 filed on June 25, 2020, the contents of which are incorporated herein by reference.
本願は、2020年6月25日に出願された特願2020-109490号に基づき優先権を主張し、その内容をここに援用する。 The present disclosure relates to analyzers, analytical methods and programs.
The present application claims priority based on Japanese Patent Application No. 2020-109490 filed on June 25, 2020, the contents of which are incorporated herein by reference.
モータ電流を用いた異常診断技術としては、特許文献1に記載のように電流波形(理想は正弦波)の振幅確率密度を理想電流(正弦波)と実測電流で比較する方法や、特許文献2に記載のように電流実効値を監視して閾値比較により異常診断を行う技術がある。
As an abnormality diagnosis technique using a motor current, a method of comparing the amplitude probability density of a current waveform (ideally a sine wave) with an ideal current (sine wave) and an actually measured current as described in Patent Document 1 and Patent Document 2 As described in the above, there is a technique for monitoring the current effective value and performing abnormality diagnosis by comparing the thresholds.
しかしながら、特許文献1や特許文献2に記載の異常診断技術では、モータや補機類の異常が電流へ与える影響が、振幅確率密度や電流実効値という数値としてしか現れないため、例えば異常の有無を視覚的に理解しづらかったりする等、分析が不適切になってしまう場合があるという課題があった。
However, in the abnormality diagnosis technique described in Patent Document 1 and Patent Document 2, the influence of the abnormality of the motor or auxiliary equipment on the current appears only as numerical values such as the amplitude probability density and the current effective value. Therefore, for example, the presence or absence of the abnormality. There is a problem that the analysis may be inappropriate, such as making it difficult to visually understand.
本開示は、上記課題を解決するためになされたものであって、モータや補機類の異常が電流へ与える影響を適切に分析することができる分析装置、分析方法およびプログラムを提供することを目的とする。
The present disclosure is made to solve the above-mentioned problems, and provides an analyzer, an analysis method and a program capable of appropriately analyzing the influence of an abnormality of a motor or an accessory on an electric current. The purpose.
上記課題を解決するために、本開示に係る分析装置は、電動機に供給される三相電流をサンプリングしたデータである三相電流データを読み込む電流データ読込部と、前記三相電流データを三相交流の周期単位で切り分ける周期単位切り分け部と、前記三相電流データを二相電流データに変換する三相二相変換部と、前記二相電流データの各相を水平成分および垂直成分とするベクトルの、基準データからの誤差を算出して誤差データとして出力する誤差算出部と、前記誤差データを前記周期単位でかつ複数の前記周期単位について処理し、処理結果を出力する処理出力部と、を備える。
In order to solve the above problems, the analyzer according to the present disclosure includes a current data reading unit that reads three-phase current data, which is data obtained by sampling three-phase current supplied to an electric motor, and a three-phase current data. A periodic unit dividing unit that divides in AC periodic units, a three-phase two-phase conversion unit that converts the three-phase current data into two-phase current data, and a vector having each phase of the two-phase current data as a horizontal component and a vertical component. An error calculation unit that calculates an error from the reference data and outputs it as error data, and a processing output unit that processes the error data in the cycle unit and for a plurality of the cycle units and outputs the processing result. Be prepared.
本開示に係る分析方法は、電動機に供給される三相電流をサンプリングしたデータである三相電流データを読み込むステップと、前記三相電流データを三相交流の周期単位で切り分けるステップと、前記三相電流データを二相電流データに変換するステップと、前記二相電流データの各相を水平成分および垂直成分とするベクトルの、基準データからの誤差を算出して誤差データとして出力するステップと、前記誤差データを前記周期単位でかつ複数の前記周期単位について処理し、処理結果を出力するステップと、を含む。
The analysis method according to the present disclosure includes a step of reading the three-phase current data, which is data obtained by sampling the three-phase current supplied to the electric motor, a step of separating the three-phase current data into three-phase AC periodic units, and the above three steps. A step of converting phase current data into two-phase current data, a step of calculating an error from reference data of a vector having each phase of the two-phase current data as a horizontal component and a vertical component, and outputting it as error data. The step includes processing the error data in the cycle unit and for the plurality of cycle units, and outputting the processing result.
本開示に係るプログラムは、電動機に供給される三相電流をサンプリングしたデータである三相電流データを読み込むステップと、前記三相電流データを三相交流の周期単位で切り分けるステップと、前記三相電流データを二相電流データに変換するステップと、前記二相電流データの各相を水平成分および垂直成分とするベクトルの、基準データからの誤差を算出して誤差データとして出力するステップと、前記誤差データを前記周期単位でかつ複数の前記周期単位について処理し、処理結果を出力するステップと、をコンピュータに実行させる。
The program according to the present disclosure includes a step of reading three-phase current data, which is data obtained by sampling three-phase current supplied to an electric motor, a step of separating the three-phase current data into three-phase AC periodic units, and the three-phase. A step of converting current data into two-phase current data, a step of calculating an error from reference data of a vector having each phase of the two-phase current data as a horizontal component and a vertical component, and outputting it as error data. The computer is made to perform a step of processing the error data in the cycle unit and for the plurality of cycle units and outputting the processing result.
本開示の分析装置、分析方法およびプログラムによれば、電動機(モータ)や補機類の異常が電流へ与える影響を適切に分析することができる。
According to the analyzer, analysis method and program of the present disclosure, it is possible to appropriately analyze the influence of an abnormality of an electric motor (motor) or auxiliary equipment on an electric current.
(分析装置の構成)
以下、本開示の実施形態に係る分析装置、分析方法およびプログラムについて、図1~図25を参照して説明する。図1は、本開示の実施形態に係る分析装置の構成例を示すブロック図である。図2は、本開示の実施形態に係る分析装置の動作例を示すフローチャートである。図3~図11、図20、図22および図24は、本開示の実施形態に係る分析装置の動作例を説明するための波形図である。図12~図19、図21、および図23は、本開示の実施形態に係る分析装置の動作例を説明するための位相面である。図25は、本開示の実施形態に係る分析装置の動作例を説明するための模式図である。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。 (Configuration of analyzer)
Hereinafter, the analyzer, the analysis method, and the program according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 25. FIG. 1 is a block diagram showing a configuration example of the analyzer according to the embodiment of the present disclosure. FIG. 2 is a flowchart showing an operation example of the analyzer according to the embodiment of the present disclosure. 3 to 11, FIGS. 20, 22, and 24 are waveform diagrams for explaining an operation example of the analyzer according to the embodiment of the present disclosure. 12 to 19, 21 and 23 are phase planes for explaining an operation example of the analyzer according to the embodiment of the present disclosure. FIG. 25 is a schematic diagram for explaining an operation example of the analyzer according to the embodiment of the present disclosure. In each figure, the same reference numerals are used for the same or corresponding configurations, and the description thereof will be omitted as appropriate.
以下、本開示の実施形態に係る分析装置、分析方法およびプログラムについて、図1~図25を参照して説明する。図1は、本開示の実施形態に係る分析装置の構成例を示すブロック図である。図2は、本開示の実施形態に係る分析装置の動作例を示すフローチャートである。図3~図11、図20、図22および図24は、本開示の実施形態に係る分析装置の動作例を説明するための波形図である。図12~図19、図21、および図23は、本開示の実施形態に係る分析装置の動作例を説明するための位相面である。図25は、本開示の実施形態に係る分析装置の動作例を説明するための模式図である。なお、各図において同一または対応する構成には同一の符号を用いて説明を適宜省略する。 (Configuration of analyzer)
Hereinafter, the analyzer, the analysis method, and the program according to the embodiment of the present disclosure will be described with reference to FIGS. 1 to 25. FIG. 1 is a block diagram showing a configuration example of the analyzer according to the embodiment of the present disclosure. FIG. 2 is a flowchart showing an operation example of the analyzer according to the embodiment of the present disclosure. 3 to 11, FIGS. 20, 22, and 24 are waveform diagrams for explaining an operation example of the analyzer according to the embodiment of the present disclosure. 12 to 19, 21 and 23 are phase planes for explaining an operation example of the analyzer according to the embodiment of the present disclosure. FIG. 25 is a schematic diagram for explaining an operation example of the analyzer according to the embodiment of the present disclosure. In each figure, the same reference numerals are used for the same or corresponding configurations, and the description thereof will be omitted as appropriate.
図1に示す本開示の実施形態に係る分析装置1は、例えばパーソナルコンピュータ等のコンピュータ、そのコンピュータの周辺装置等から構成されていて、コンピュータ、周辺装置等のハードウェアと、コンピュータが実行するプログラム等のソフトウェアとの組み合わせで構成される機能的構成として、処理部11と、記憶部12と、表示部13を備える。ここで、記憶部12は、処理部11が使用するデータ等を記憶する。また、表示部13は、所定の表示画面に処理部11によって指示された文字や図形を表示する。
The analyzer 1 according to the embodiment of the present disclosure shown in FIG. 1 is composed of, for example, a computer such as a personal computer, peripheral devices of the computer, and the like, hardware such as a computer and peripheral devices, and a program executed by the computer. As a functional configuration composed of a combination with such software, a processing unit 11, a storage unit 12, and a display unit 13 are provided. Here, the storage unit 12 stores data and the like used by the processing unit 11. Further, the display unit 13 displays characters and figures instructed by the processing unit 11 on a predetermined display screen.
図1に示す分析装置1は、電源盤5から電動機3に供給される三相電流Iu、IvおよびIwの測定値を用いて、電動機3およびポンプ等の回転機械である補機4の異常分析や異常診断を行う。図1に示す例では、電動機3へは、電源盤5が含む商用電源等の電源51から開閉器52と三相電源線53を介して三相電流Iu、IvおよびIwが供給される。電動機3は、例えば三相誘導電動機等の三相交流電動機であり、駆動軸31を介して補機4に接続され、補機4を回転駆動する。また、測定装置2は、電流センサ21を用いて三相電源線53に流れる三相電流Iu、IvおよびIwを測定し、所定の周期でサンプリングして三相電流データを生成し、分析装置1に対して出力する。なお、測定装置2は、三相電流データを、三相電流Iu、IvおよびIwのうちの2相分の測定値と、Iu+Iv+Iw=0の関係式から算出した残りの値から生成してもよい。なお、電動機3は、三相電源線53から供給される三相電源で直接、駆動されるものであってもよいし、インバータやコンバータ等を介して駆動されるものであってもよい。また、測定装置2から分析装置1への三相電流データの転送は、リアルタイム処理としてもよいし、バッチ処理としてもよい。
The analyzer 1 shown in FIG. 1 uses the measured values of the three-phase currents Iu, Iv, and Iw supplied from the power supply panel 5 to the electric motor 3, and analyzes the abnormalities of the electric motor 3 and the auxiliary machine 4 which is a rotating machine such as a pump. And make an abnormality diagnosis. In the example shown in FIG. 1, the electric motor 3 is supplied with three-phase currents Iu, Iv, and Iw from a power source 51 such as a commercial power source included in the power supply panel 5 via a switch 52 and a three-phase power supply line 53. The motor 3 is a three-phase AC motor such as a three-phase induction motor, which is connected to the auxiliary machine 4 via a drive shaft 31 and rotationally drives the auxiliary machine 4. Further, the measuring device 2 measures the three-phase currents Iu, Iv, and Iw flowing through the three-phase power supply line 53 using the current sensor 21, samples them at a predetermined cycle, generates three-phase current data, and generates the three-phase current data. Output to. The measuring device 2 may generate three-phase current data from the measured values of the three-phase currents Iu, Iv, and Iw for two phases and the remaining values calculated from the relational expression of Iu + Iv + Iw = 0. .. The electric motor 3 may be directly driven by a three-phase power supply supplied from the three-phase power supply line 53, or may be driven via an inverter, a converter, or the like. Further, the transfer of the three-phase current data from the measuring device 2 to the analyzer 1 may be a real-time process or a batch process.
分析装置1において処理部11は、電流データ読込部111、データ補間部112、周期単位切り分け部113、位相軸正規化部114、電流振幅正規化部115、三相二相変換部116、位相面誤差半径算出部117、および処理出力部118を含む。また、処理出力部118は、位相面誤差半径拡大部1181、誤差拡大位相面描画部1182、形状ひずみ評価値算出部1183、半径ばらつき評価値算出部1184、および位相面異常度算出部1185を含む。
In the analyzer 1, the processing unit 11 includes a current data reading unit 111, a data interpolation unit 112, a periodic unit dividing unit 113, a phase axis normalizing unit 114, a current amplitude normalizing unit 115, a three-phase two-phase conversion unit 116, and a phase plane. The error radius calculation unit 117 and the processing output unit 118 are included. Further, the processing output unit 118 includes a phase plane error radius expansion unit 1181, an error expansion phase plane drawing unit 1182, a shape strain evaluation value calculation unit 1183, a radius variation evaluation value calculation unit 1184, and a phase plane abnormality degree calculation unit 1185. ..
電流データ読込部111は、電動機3に供給される三相電流Iu、IvおよびIwをサンプリングしたデータである三相電流データをメインメモリ等へ読み込む。電流データ読込部111は、測定装置2から三相電流データを読み込んでもよいし、前もって記憶部12に保存された三相電流データを読み込んでもよい。三相電流Iu、IvおよびIwの一例を図3に示す。図3は、横軸を時刻、縦軸を電流値として、三相電流Iu、IvおよびIwの時間変化を示す。
The current data reading unit 111 reads the three-phase current data, which is the sampled data of the three-phase currents Iu, Iv, and Iw supplied to the motor 3, into the main memory or the like. The current data reading unit 111 may read the three-phase current data from the measuring device 2 or may read the three-phase current data previously stored in the storage unit 12. An example of the three-phase currents Iu, Iv and Iw is shown in FIG. FIG. 3 shows the time variation of the three-phase currents Iu, Iv, and Iw with the horizontal axis representing the time and the vertical axis representing the current value.
次に、データ補間部112は、電流データ読込部111が読み込んだ三相電流データを補間して三相電流データのサンプル数を増加させる。また、周期単位切り分け部113は、三相電流データを三相交流の周期単位で切り分ける。すなわち、周期単位切り分け部113は、電流波形を1周期毎に切り分ける処理を行う。周期単位の切り分けは、例えば、1相の電流(例えば電流Iu)の電流ゼロクロス点を探索して、同一のサンプリング番号(あるいはサンプリング時刻)で三相分すべての電流を切り分けることで行うことができる。なお、本実施形態において、「切り分け」は各周期の開始あるいは終了のサンプリングデータを特定すること、「切り出し」は切り分け処理の結果に基づき周期毎にサンプリングデータを分離して取り出すことを意味する用語として用いる。
Next, the data interpolation unit 112 interpolates the three-phase current data read by the current data reading unit 111 to increase the number of samples of the three-phase current data. Further, the periodic unit dividing unit 113 divides the three-phase current data into three-phase alternating current periodic units. That is, the cycle unit dividing unit 113 performs a process of separating the current waveform for each cycle. Separation of each period can be performed, for example, by searching for a current zero crossing point of a one-phase current (for example, current Iu) and separating all three-phase currents with the same sampling number (or sampling time). .. In the present embodiment, "separation" means to specify the sampling data at the start or end of each cycle, and "cutting out" means to separate and extract the sampling data for each cycle based on the result of the separation processing. Used as.
なお、切り分けの際、電流のデータサンプリング(保存周期)が粗いと、切り分けの位置が電流ゼロクロス点に揃わなくなる場合がある。そのような場合、周期単位切り分け部113は、データ補間部112によって三相電流データをより細かいサンプリングに補間してから切り分けることができる。ただし、このデータ補間部112によるデータ補間処理は省略してもよい。また、データ補間部112によるデータ補間では、線形補間やスプライン(Spline)補間のような連続的な滑らかな補間を行うと、元データにおける電流のひずみが平滑化される恐れがあるため、形状維持区分的3次内挿法等の手法を用いることが望ましい。図4は、横軸を時刻、縦軸を電流値として、電流Iuの切り分けの結果を示す。生データが未処理の状態の三相電流データ、破線が補間後1周期目の三相電流データ、鎖線が補間後2周期目の三相電流データを表す。また、図5および図6は、横軸を時刻、縦軸を電流値として、電流Iuの補間の例を示す。また、図7は、横軸を時刻、縦軸を電流値として、電流Iuを切り出した波形を重ね書きした例(60周期分重ね書きした例)を示す。なお、本実施形態の説明で用いる波形図における交流周波数は60Hzである。
At the time of separation, if the current data sampling (storage cycle) is rough, the separation position may not be aligned with the current zero crossing point. In such a case, the periodic unit dividing unit 113 can interpolate the three-phase current data into finer sampling by the data interpolation unit 112 and then perform the division. However, the data interpolation process by the data interpolation unit 112 may be omitted. Further, in the data interpolation by the data interpolation unit 112, if continuous smooth interpolation such as linear interpolation or spline interpolation is performed, the distortion of the current in the original data may be smoothed, so that the shape is maintained. It is desirable to use a method such as piecewise tertiary interpolation. FIG. 4 shows the result of dividing the current Iu with the horizontal axis as the time and the vertical axis as the current value. The raw data represents the unprocessed three-phase current data, the broken line represents the three-phase current data in the first cycle after interpolation, and the chain line represents the three-phase current data in the second cycle after interpolation. Further, FIGS. 5 and 6 show an example of interpolation of the current Iu with the horizontal axis as the time and the vertical axis as the current value. Further, FIG. 7 shows an example (an example of overwriting for 60 cycles) in which the waveform obtained by cutting out the current Iu is overwritten with the horizontal axis as the time and the vertical axis as the current value. The AC frequency in the waveform diagram used in the description of this embodiment is 60 Hz.
次に、位相軸正規化部114は、1周期分のサンプル数が一定値となるように三相電流データを正規化する。切り出した電流データの時間軸には、もともとの電流の周期ばらつきとゼロクロス検出のわずかな誤差が含まれる。また、電源の50Hz/60Hzの違いもあるため、様々なデータを統一的に評価するためには横軸を正規化する必要がある。そこで、位相軸正規化部114は、電流波形図における横軸を時刻から0~360度の位相とし、決まったサンプル数となるように、データを補間する。補間手法としては、データ補間部112と同様の手法を用いることができる。
Next, the phase axis normalization unit 114 normalizes the three-phase current data so that the number of samples for one cycle becomes a constant value. The time axis of the cut out current data includes the original current cycle variation and a slight error in zero cross detection. In addition, since there is a difference of 50 Hz / 60 Hz in the power supply, it is necessary to normalize the horizontal axis in order to evaluate various data in a unified manner. Therefore, the phase axis normalization unit 114 sets the horizontal axis in the current waveform diagram as the phase of 0 to 360 degrees from the time, and interpolates the data so that the number of samples is fixed. As the interpolation method, the same method as that of the data interpolation unit 112 can be used.
次に、電流振幅正規化部115は、電流振幅が所定値となるように三相電流データを正規化する。電流振幅正規化部115は、データ(測定対象)によって電流振幅が異なるため、後述する各処理を画一化できるようにするため、振幅を正規化する。例えば、電流振幅正規化部115は、測定対象時間分(1秒間なら60周期分)の三相電流の平均振幅が1となるように電流振幅を正規化する。なお、相毎に正規化すると、1相だけ振幅が変化するような異常事象を捉えられなくなるため、三相全て同じ値で正規化する。
Next, the current amplitude normalization unit 115 normalizes the three-phase current data so that the current amplitude becomes a predetermined value. Since the current amplitude normalizing unit 115 differs in the current amplitude depending on the data (measurement target), the amplitude is normalized so that each process described later can be standardized. For example, the current amplitude normalizing unit 115 normalizes the current amplitude so that the average amplitude of the three-phase current for the measurement target time (60 cycles for 1 second) becomes 1. If normalization is performed for each phase, it becomes impossible to capture an abnormal event in which the amplitude changes for only one phase, so all three phases are normalized with the same value.
図8は、横軸を位相、縦軸を電流値として、縦軸と横軸を正規化した後の電流Iuの例(60周期分重ね書きした例)を示す。横軸の単位「deg.pu」は正規化した位相(度)を表し、縦軸の単位「A.pu」は正規化した電流値(アンペア)を表す。
FIG. 8 shows an example of current Iu (an example of overwriting for 60 cycles) after normalizing the vertical axis and the horizontal axis with the horizontal axis as the phase and the vertical axis as the current value. The unit "deg.pu" on the horizontal axis represents the normalized phase (degrees), and the unit "A.pu" on the vertical axis represents the normalized current value (ampere).
次に、三相二相変換部116は、Park変換またはdq変換と呼ばれる以下の式(1)で三相電流データの各サンプリング値Iu、Iv、Iwを二相電流データId、Iqに変換する。
Next, the three-phase two-phase conversion unit 116 converts the sampling values Iu, Iv, and Iw of the three-phase current data into the two-phase current data Id and Iq by the following equation (1) called Park conversion or dq conversion. ..
また、三相二相変換部116は、以下の式(2)で、Park’s Vector Ipを求める。このIpは、Id、Iqからなる位相面の円の半径を意味する。また、Ip(以下、位相面半径Ipという。)は、水平成分および垂直成分をIdおよびIqとするベクトルの大きさを表す。
Further, the three-phase two-phase conversion unit 116 obtains the Park's Vector Ip by the following equation (2). This Ip means the radius of the circle of the phase plane consisting of Id and Iq. Further, Ip (hereinafter, referred to as a phase plane radius Ip) represents the magnitude of a vector having a horizontal component and a vertical component as Id and Iq.
以上から、三相電流が振幅Imで位相が120度ずつずれた理想正弦波の場合に、理想的なdq軸電流は以下の式で表される。
From the above, when the three-phase current is an ideal sine wave with an amplitude Im and the phase is shifted by 120 degrees, the ideal dq-axis current is expressed by the following equation.
なお、位相面とは、複数種類のデータを2つの組み合わせに分け、縦軸と横軸に同一時刻毎のデータをプロットしたグラフ(図)である(特開2017-211829号公報)。本実施形態において、位相面は、二相電流データIdとIqを横軸と縦軸にとり、同一時刻のIdとIqで決まる座標をプロットしたグラフである。データにわずかな変化が生じたとき、時間応答における変化では同じような応答波形になり、見分けることが困難なケースは多いが、位相面上ではわずかな変化でも図形的に拡大できる効果があり、形状の違いから特性変化を捉えることができる。
The phase plane is a graph (figure) in which a plurality of types of data are divided into two combinations and the data at the same time are plotted on the vertical axis and the horizontal axis (Japanese Patent Laid-Open No. 2017-21182). In the present embodiment, the phase plane is a graph in which the two-phase current data Id and Iq are plotted on the horizontal axis and the vertical axis, and the coordinates determined by Id and Iq at the same time are plotted. When a slight change occurs in the data, the change in the time response results in a similar response waveform, which is often difficult to distinguish, but on the phase plane, even a slight change has the effect of being able to expand graphically. Changes in characteristics can be captured from the difference in shape.
図9は、横軸を位相、縦軸を電流値として、二相電流データIdおよびIqと位相面半径Ipの例を示す。
FIG. 9 shows an example of two-phase current data Id and Iq and a phase plane radius Ip with the horizontal axis as the phase and the vertical axis as the current value.
次に、位相面誤差半径算出部117(誤差算出部)は、二相電流データの各相IdおよびIqを水平成分および垂直成分とするベクトルの、基準データからの誤差を算出して誤差データとして位相面誤差半径拡大部1181等へ出力する。ここで、基準データは、二相電流データの各相IdおよびIqを水平成分および垂直成分とするベクトルに対して比較基準となるデータであって、正常時のデータである。基準データは、例えば、ベクトルの大きさ(位相面半径Ip)の理想値(計算値)に対応するものとしたり、正常時にサンプリングされた三相電流データに基づく二相電流データに対応するものとしたりすることができる。また、処理出力部118が含む位相面誤差半径拡大部1181は、位相面誤差半径算出部117が算出した誤差を拡大する。
Next, the phase plane error radius calculation unit 117 (error calculation unit) calculates the error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component, and uses it as error data. It is output to the phase plane error radius expansion unit 1181 and the like. Here, the reference data is data as a comparison reference with respect to a vector having each phase Id and Iq of the two-phase current data as a horizontal component and a vertical component, and is data at the normal time. The reference data shall correspond to, for example, the ideal value (calculated value) of the magnitude of the vector (phase plane radius Ip), or the two-phase current data based on the three-phase current data sampled at the normal time. Can be done. Further, the phase plane error radius expansion unit 1181 included in the processing output unit 118 expands the error calculated by the phase plane error radius calculation unit 117.
例えば、位相面誤差半径算出部117は、三相二相変換部116が式(2)から算出した位相面半径Ipから、Ip理想値(一定値の基準データ)を減算することで誤差を算出することができる。すなわち、位相面誤差半径算出部117は、算出された位相面半径Ipから式(3.3)に示す振幅Im×√6/2を減算することで、位相面半径Ipと基準データ(Ip理想値)との誤差(この場合の誤差を位相面誤差半径δIpと呼ぶ)を算出することができる。位相面半径Ipは、IdおよびIqからなる位相面の円の半径に相当しているため、Ipの理想値との誤差は、位相面での半径誤差に相当する。
For example, the phase plane error radius calculation unit 117 calculates the error by subtracting the Ip ideal value (reference data of a constant value) from the phase plane radius Ip calculated by the three-phase two-phase conversion unit 116 from the equation (2). can do. That is, the phase plane error radius calculation unit 117 subtracts the amplitude Im × √6 / 2 shown in the equation (3.3) from the calculated phase plane radius Ip to obtain the phase plane radius Ip and the reference data (Ip ideal). The error with the value) (the error in this case is called the phase plane error radius δIp) can be calculated. Since the phase plane radius Ip corresponds to the radius of the circle of the phase plane consisting of Id and Iq, the error from the ideal value of Ip corresponds to the radius error in the phase plane.
さらに、位相面誤差半径拡大部1181は、発生した位相面変化を拡大するために、位相面誤差半径δIpを定数倍Kmagして拡大することで(Kmagは1以上)、拡大誤差半径δIpmagを算出する。拡大誤差半径δIpmagは、以下で算出される。
Further, the phase plane error radius expansion unit 1181 calculates the expansion error radius δIpmag by expanding the phase plane error radius δIp by a constant multiple Kmag (Kmag is 1 or more) in order to expand the generated phase plane change. do. The expansion error radius δIpmag is calculated as follows.
なお、二相電流データの各相IdおよびIqを水平成分および垂直成分とするベクトルの、基準データからの誤差は、位相面誤差半径δIpに限らず、例えば、後述する周方向角度誤差δθとしてもよい。
The error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component is not limited to the phase plane error radius δIp, and may be, for example, the circumferential angle error δθ described later. good.
次に、誤差拡大位相面描画部1182は、二相電流データの各相IdおよびIqを水平成分および垂直成分とするベクトルの、基準データからの誤差を拡大し、所定の単位円上に周期単位で重畳させる処理を複数の周期単位分行い、処理出力部118による処理結果の出力として、拡大した誤差を重畳させた単位円を複数の周期単位分重ねて、所定の表示部13に描画する。誤差拡大位相面描画部1182は、例えば、半径1の単位円上に拡大誤差半径δIpmagを重畳させることで、誤差拡大位相面を描画する。具体的には、以下の式で求めた「Id成分」と「Iq成分」で決まるdq平面上の点を1周期毎に複数周期分重ねて描画する。
Next, the error expansion phase plane drawing unit 1182 expands the error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component, and expands the error from the reference data in a periodic unit on a predetermined unit circle. The process of superimposing is performed for a plurality of cycle units, and as the output of the processing result by the processing output unit 118, the unit circle on which the enlarged error is superimposed is superimposed for a plurality of cycle units and drawn on the predetermined display unit 13. The error expansion phase plane drawing unit 1182 draws the error expansion phase plane by superimposing the expansion error radius δIpmag on the unit circle having the radius 1, for example. Specifically, the points on the dq plane determined by the "Id component" and the "Iq component" obtained by the following equations are drawn by overlapping for a plurality of cycles for each cycle.
図10~図14を参照して、誤差拡大位相面描画部1182による誤差拡大位相面の描画例について説明する。図10は、この描画例で用いる正常時のデータの例を示す。横軸は正規化された位相であり、縦軸は上の波形が位相面誤差半径δIp、下の波形が周方向角度誤差δθである。位相面誤差半径δIp(δr)は、位相面半径IpのIp理想値(一定値の基準データ)からの誤差であり、周方向角度誤差δθは、サンプリング時刻(サンプリング番号)から決まる位相の値(基準データ)と式(5.3)から算出される位相θとの誤差である。図11は、この描画例で用いる異常時のデータの例を示す。図10と同様に、横軸は正規化された位相であり、縦軸は上の波形が位相面誤差半径δIp、下の波形が周方向角度誤差δθである。
An example of drawing an error-enlarged phase plane by the error-enhanced phase plane drawing unit 1182 will be described with reference to FIGS. 10 to 14. FIG. 10 shows an example of normal data used in this drawing example. The horizontal axis is the normalized phase, and the vertical axis is the topological surface error radius δIp for the upper waveform and the circumferential angle error δθ for the lower waveform. The phase plane error radius δIp (δr) is an error from the Ip ideal value (constant value reference data) of the phase plane radius Ip, and the circumferential angle error δθ is the phase value determined from the sampling time (sampling number) (sampling number). It is an error between the reference data) and the phase θ calculated from the equation (5.3). FIG. 11 shows an example of data at the time of abnormality used in this drawing example. Similar to FIG. 10, the horizontal axis is the normalized phase, and the vertical axis is the topological surface error radius δIp for the upper waveform and the circumferential angle error δθ for the lower waveform.
図12は、正規化をせずに、三相電流をそのまま二相変換してそのまま2軸に取ってグラフ化した位相面を示す。実線が正常時のデータであり、破線が異常時のデータである。図12に示す電流位相面では、正常データも異常データもほぼ円で違いがない。
FIG. 12 shows a phase plane in which a three-phase current is directly converted into two phases and taken as it is on two axes without normalization. The solid line is the normal data, and the broken line is the abnormal data. On the current phase plane shown in FIG. 12, the normal data and the abnormal data are almost circular and have no difference.
図13は、正常時の誤差拡大位相面を示す。電流を60周期重ねているが各周期のデータはほぼ重なっている。形状はわずかに円からひずんでいる(元の電流品質や装置構成に起因するものである)。
FIG. 13 shows the error expansion phase plane in the normal state. The currents are overlapped for 60 cycles, but the data for each cycle are almost overlapped. The shape is slightly distorted from the circle (due to the original current quality and equipment configuration).
図14は、異常時の誤差拡大位相面を示す。電流の60周期でのばらつきがある。形状も正常時よりもひずんでいる。
FIG. 14 shows an error-expanded phase plane at the time of abnormality. There is a variation in the current in 60 cycles. The shape is also distorted compared to normal.
本実施形態によれば、単純に位相面を描いただけではわからないような電流の変化を、位相面上のばらつきや形状ひずみとして可視化することが可能となっている。
According to this embodiment, it is possible to visualize changes in current that cannot be understood by simply drawing the phase plane as variations on the phase plane and shape distortion.
次に、図15~図18を参照して、位相面誤差半径算出部117が、基準データを、正常時にサンプリングされた三相電流データに基づく二相電流データに対応するものとする例について説明する。上述した例では、位相面誤差半径δIpを計算する際に、理想電流から計算される理想Ip(固定値)との誤差を計算したが、対象プラントの正常データを取得できていれば、正常データの平均的な二相電流データId、Iqを記憶し、そこから計算される位相面半径Ipを基準データとして誤差計算に用いることで、理想との差ではなく、正常との差を可視化可能となる。
Next, with reference to FIGS. 15 to 18, an example in which the phase plane error radius calculation unit 117 corresponds to the two-phase current data based on the three-phase current data sampled at the normal time will be described. do. In the above example, when calculating the phase plane error radius δIp, the error from the ideal Ip (fixed value) calculated from the ideal current was calculated, but if the normal data of the target plant can be obtained, the normal data. By storing the average two-phase current data Id and Iq of the above and using the phase plane radius Ip calculated from them for error calculation as reference data, it is possible to visualize the difference from the normal, not the difference from the ideal. Become.
図15は、位相面半径Ipの理想値を基準データとして、正常時(1)の三相電流データから求めた位相面半径Ipとの誤差を拡大した位相面(誤差拡大位相面)を示す。
FIG. 15 shows a phase plane (error-enhanced phase plane) in which the error from the phase plane radius Ip obtained from the three-phase current data in the normal state (1) is expanded with the ideal value of the phase plane radius Ip as the reference data.
図16は、正常時(1)の三相電流データに対し、正常時(1)の平均を基準データとした位相面(誤差拡大位相面)を示す。図16の誤差拡大位相面はやや六角形状にひずんでいるが、想定される通り本図はほぼ円形となっている。
FIG. 16 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the normal time (1). The error-enhanced phase plane of FIG. 16 is slightly distorted into a hexagonal shape, but as expected, this figure is almost circular.
図17は、正常時(1)とは別の正常時のデータである正常時(2)の三相電流データに対し、正常時(1)の平均を基準データとした位相面(誤差拡大位相面)を示す。図16とほぼ同様に円形となることが想定される。
FIG. 17 shows a phase plane (error expansion phase) using the average of the normal time (1) as the reference data with respect to the three-phase current data of the normal time (2), which is the data of the normal time different from the normal time (1). Surface) is shown. It is assumed that it will be circular in almost the same manner as in FIG.
図18は、異常データに対し、正常時(1)の平均を基準データとした位相面(誤差拡大位相面)を示す。
FIG. 18 shows a phase plane (error-enlarged phase plane) using the average of normal time (1) as reference data for abnormal data.
次に、形状ひずみ評価値算出部1183(ひずみ評価値算出部)は、二相電流データの各相IdおよびIqを水平成分および垂直成分とするベクトルの、基準データからの誤差の周期単位内のばらつきに対応する値を、形状ひずみ評価値(ひずみ評価値)として算出する。形状ひずみ評価値算出部1183は、例えば、周期単位内の複数点で複数の周期単位の各誤差の平均値を求め、各平均値の標準偏差に対応する値を、形状ひずみ評価値として算出する。
Next, the shape strain evaluation value calculation unit 1183 (strain evaluation value calculation unit) within the period unit of the error from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component. The value corresponding to the variation is calculated as a shape strain evaluation value (strain evaluation value). The shape strain evaluation value calculation unit 1183 obtains, for example, the average value of each error of a plurality of cycle units at a plurality of points in the cycle unit, and calculates the value corresponding to the standard deviation of each average value as the shape strain evaluation value. ..
次に、半径ばらつき評価値算出部1184(ばらつき評価値算出部)は、二相電流データの各相IdおよびIqを水平成分および垂直成分とするベクトルの、基準データからの誤差の複数の周期単位間のばらつきに対応する値を、半径ばらつき評価値(ばらつき評価値)として算出する。半径ばらつき評価値算出部1184は、例えば、周期単位内の複数点で複数の周期単位の各誤差の標準偏差を求め、各標準偏差の平均値に対応する値を、半径ばらつき評価値として算出する。
Next, the radius variation evaluation value calculation unit 1184 (variation evaluation value calculation unit) is a plurality of periodic units of errors from the reference data of the vector having each phase Id and Iq of the two-phase current data as the horizontal component and the vertical component. The value corresponding to the variation between the two is calculated as the radius variation evaluation value (variation evaluation value). The radius variation evaluation value calculation unit 1184 obtains, for example, the standard deviation of each error of a plurality of periodic units at a plurality of points in the periodic unit, and calculates the value corresponding to the average value of each standard deviation as the radius variation evaluation value. ..
次に、位相面異常度算出部1185(異常度算出部)は、形状ひずみ評価値と半径ばらつき評価値に基づいて異常の度合いを表す位相面異常度(異常度)を算出し、処理出力部118の処理結果として位相面異常度または位相面異常度と所定の閾値とを比較した判定結果の少なくとも一方を出力する。位相面異常度算出部1185は、例えば、形状ひずみ評価値に第1重み係数を乗じた値と半径ばらつき評価値に第2重み係数を乗じた値とを加算した値を位相面異常度として算出する。
Next, the phase plane abnormality calculation unit 1185 (abnormality calculation unit) calculates the phase plane abnormality (abnormality) indicating the degree of abnormality based on the shape strain evaluation value and the radius variation evaluation value, and processes the output unit. As the processing result of 118, at least one of the phase surface abnormality degree or the determination result comparing the phase surface abnormality degree and the predetermined threshold value is output. The phase plane abnormality calculation unit 1185 calculates, for example, a value obtained by adding a value obtained by multiplying the shape strain evaluation value by the first weighting coefficient and a value obtained by multiplying the radius variation evaluation value by the second weighting coefficient as the phase plane abnormality degree. do.
本実施形態において、異常時に発生する誤差拡大位相面における変化は、大きく分けて、(1)形状のひずみが大きくなるパターン(図19)と、(2)半径のばらつきが大きくなるパターン(図21)と、(3)(1)と(2)の併合パターン(ひずみの角度ずれ)(図23)とに分類することができる。
In the present embodiment, the changes in the error expansion phase plane that occur at the time of abnormality are roughly divided into (1) a pattern in which the distortion of the shape becomes large (FIG. 19) and (2) a pattern in which the variation in radius becomes large (FIG. 21). ) And the merged pattern (strain angle deviation) of (3), (1) and (2) (FIG. 23).
図19は、異常時(1)の三相電流データに対し、正常時(1)の平均を基準データとした位相面(誤差拡大位相面)を示す。また、図20は、横軸に正規化された位相をとり、縦軸に位相面誤差半径δIpをとり、図19に示す異常時(1)のデータを示す。
FIG. 19 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the abnormal time (1). Further, FIG. 20 has a normalized phase on the horizontal axis and a phase plane error radius δIp on the vertical axis, and shows the data at the time of abnormality (1) shown in FIG.
図21は、異常時(2)の三相電流データに対し、正常時(1)の平均を基準データとした位相面(誤差拡大位相面)を示す。また、図22は、横軸に正規化された位相をとり、縦軸に位相面誤差半径δIpをとり、図21に示す異常時(2)のデータを示す。
FIG. 21 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the abnormal time (2). Further, FIG. 22 shows the data at the time of abnormality (2) shown in FIG. 21 with the normalized phase on the horizontal axis and the phase plane error radius δIp on the vertical axis.
図23は、異常時(3)の三相電流データに対し、正常時(1)の平均を基準データとした位相面(誤差拡大位相面)を示す。また、図24は、横軸に正規化された位相をとり、縦軸に位相面誤差半径δIpをとり、図23に示す異常時(3)のデータを示す。
FIG. 23 shows a phase plane (error expansion phase plane) using the average of the normal time (1) as the reference data with respect to the three-phase current data in the abnormal time (3). Further, FIG. 24 shows the data at the time of abnormality (3) shown in FIG. 23, with the horizontal axis representing the normalized phase and the vertical axis representing the phase plane error radius δIp.
また、位相面誤差半径δIpに着目すると、「1」周期による変化はないが位相面誤差半径δIpの振れがある場合、「2」位相面誤差半径δIpのオフセットが変化する場合、「3」「1」と「2」の併合のパターンがある。
Focusing on the phase plane error radius δIp, if there is no change due to the “1” period but there is a fluctuation in the phase plane error radius δIp, or if the offset of the “2” phase plane error radius δIp changes, then “3” “ There is a pattern of merging "1" and "2".
「1」は、横軸の各位相で平均値を計算したときに、360度の間でばらつきがある。「2」は、横軸の各位相で標準偏差を計算したときに、それが平均的に大きい。
"1" has a variation between 360 degrees when the average value is calculated for each phase on the horizontal axis. "2" is large on average when the standard deviation is calculated for each phase on the horizontal axis.
このため、本実施形態では、形状ひずみの評価については、位相面誤差半径δIpの各位相での平均値の1周期標準偏差を形状ひずみ評価値として評価する。また、半径ばらつきの評価については、位相面誤差半径δIpの各位相での標準偏差の1周期平均を半径ばらつき評価値として評価する。また、これを組み合わせて、重み係数K1、K2(第1重み係数、第2重み係数)とし、以下の式で異常度を定義する。
Therefore, in the present embodiment, for the evaluation of the shape strain, the one-period standard deviation of the average value in each phase of the phase plane error radius δIp is evaluated as the shape strain evaluation value. Further, regarding the evaluation of the radius variation, the one-period average of the standard deviation in each phase of the phase plane error radius δIp is evaluated as the radius variation evaluation value. Further, these are combined to form weight coefficients K1 and K2 (first weight coefficient, second weight coefficient), and the degree of abnormality is defined by the following equation.
なお、形状ひずみ評価値は、図25に示す例では、各位相P1、P2、P3およびP4で、各点d11とd21の平均、各点d12とd22の平均、各点d13とd23の平均、および各点d14とd24の平均を計算し、1周期(0~360度)で求めた平均値の標準偏差を、形状ひずみ評価値とすることができる。なお、図25は、横軸に正規化された位相をとり、縦軸に位相面誤差半径δIpをとり、2周期分の位相面誤差半径δIpをデータIp1およびデータIp2として示す。
In the example shown in FIG. 25, the shape strain evaluation values are the average of each point d11 and d21, the average of each point d12 and d22, and the average of each point d13 and d23 at each phase P1, P2, P3 and P4. And the average of each point d14 and d24 is calculated, and the standard deviation of the average value obtained in one cycle (0 to 360 degrees) can be used as the shape strain evaluation value. In FIG. 25, the horizontal axis is the normalized phase, the vertical axis is the phase plane error radius δIp, and the phase plane error radius δIp for two cycles is shown as data Ip1 and data Ip2.
また、半径ばらつき評価値は、図25に示す例では、各位相P1、P2、P3およびP4で、各点d11とd21の標準偏差、各点d12とd22の標準偏差、各点d13とd23の標準偏差、および各点d14とd24の標準偏差を計算し、1周期(0~360度)で求めた平均値を半径ばらつき評価値とすることができる。
Further, in the example shown in FIG. 25, the radius variation evaluation values are the standard deviations of the points d11 and d21, the standard deviations of the points d12 and d22, and the points d13 and d23 at each phase P1, P2, P3 and P4. The standard deviation and the standard deviation of each point d14 and d24 can be calculated, and the average value obtained in one cycle (0 to 360 degrees) can be used as the radius variation evaluation value.
また、重み係数K1およびK2の値は、例えば次のようにして決定することができる。すなわち、例えば、異常データを溜めて、そこから人手で決定してもよい。ひずみとばらつきが分かれているため、電源品質が悪いことがわかっている場合で形状がひずむことがわかっている場合にはK1を小さくしておくことができる(逆も可)。また、理想電流基準の場合はひずみの評価をせずにK1を小さくし、正常データがたまったらひずみの評価を開始するためにK1を大きくする、といった使い方が可能である。これにより、測定初回時に電源品質等による形状ひずみの発生による異常警告発報を回避することができる。また、異常データを供試データとして、強化学習によりK1、K2の最適解を探索してもよい。例えば、正常とわかっているデータ10個、異常とわかっているデータ30個がある場合に、それぞれの形状ひずみ評価値、半径ばらつき評価値が計算される。そこで、異常データを異常と判別し、正常データを正常と判別するように、K1、K2の重みを自動的に探索させる。
Further, the values of the weighting coefficients K1 and K2 can be determined, for example, as follows. That is, for example, abnormal data may be accumulated and manually determined from the data. Since the strain and variation are separated, K1 can be kept small if the power supply quality is known to be poor and the shape is known to be distorted (and vice versa). Further, in the case of the ideal current reference, it is possible to reduce K1 without evaluating the strain and increase K1 to start the evaluation of strain when normal data is accumulated. As a result, it is possible to avoid issuing an abnormality warning due to the occurrence of shape distortion due to power supply quality or the like at the first measurement. Further, the optimum solution of K1 and K2 may be searched by reinforcement learning using the abnormal data as the test data. For example, when there are 10 pieces of data known to be normal and 30 pieces of data known to be abnormal, the shape strain evaluation value and the radius variation evaluation value are calculated, respectively. Therefore, the weights of K1 and K2 are automatically searched so that the abnormal data is determined to be abnormal and the normal data is determined to be normal.
なお、その他の異常度として、位相面誤差半径δIpのばらつきだけでなく、図10等を参照して説明した周方向角度誤差δθを含めてもよい。また、円の面積に基づいて算出してもよい。
As other anomalies, not only the variation in the phase plane error radius δIp but also the circumferential angle error δθ described with reference to FIG. 10 and the like may be included. It may also be calculated based on the area of the circle.
(分析装置の動作例)
次に、図2を参照して、図1に示す分析装置1の動作例について説明する。図2に示す処理は、例えば操作者の所定の指示操作に応じて開始される。図2に示す処理では、まず、電流データ読込部111が、三相電流データの読込を行う(ステップS11)。次に、データ補間部112と周期単位切り分け部113が、三相電流データの補間と周期毎の切り分けを行う(ステップS12)。次に、位相軸正規化部114が、三相電流データの横軸を位相にして正規化する(ステップS13)。次に、電流振幅正規化部115が、三相電流データの電流振幅を正規化する(ステップS14)。次に、三相二相変換部116が、三相電流データを二相電流データに変換する(ステップS15)。次に、位相面誤差半径算出部117が位相面誤差半径を算出し、位相面誤差半径拡大部1181が誤差半径を拡大する(ステップS16)。次に、誤差拡大位相面描画部1182が、誤差拡大位相面を描画する(ステップS17)。次に、形状ひずみ評価値算出部1183が形状ひずみ評価値を算出する(ステップS18)。次に、半径ばらつき評価値算出部1184が、半径ばらつき評価値を算出する(ステップS19)。次に、位相面異常度算出部1185が、位相面異常度を算出し(ステップS20)、例えば算出した位相面異常度と所定の閾値と比較することで、位相面異常度を評価し(ステップS21)、閾値との比較結果や位相面異常度を評価結果として例えば表示部13に表示することで出力する(ステップS22)。 (Operation example of analyzer)
Next, an operation example of theanalyzer 1 shown in FIG. 1 will be described with reference to FIG. The process shown in FIG. 2 is started, for example, in response to a predetermined instruction operation by the operator. In the process shown in FIG. 2, first, the current data reading unit 111 reads the three-phase current data (step S11). Next, the data interpolation unit 112 and the period unit division unit 113 interpolate the three-phase current data and perform division for each period (step S12). Next, the phase axis normalization unit 114 normalizes the three-phase current data with the horizontal axis as the phase (step S13). Next, the current amplitude normalization unit 115 normalizes the current amplitude of the three-phase current data (step S14). Next, the three-phase two-phase conversion unit 116 converts the three-phase current data into the two-phase current data (step S15). Next, the phase plane error radius calculation unit 117 calculates the phase plane error radius, and the phase plane error radius expansion unit 1181 expands the error radius (step S16). Next, the error-enhanced phase plane drawing unit 1182 draws the error-enhanced phase plane (step S17). Next, the shape strain evaluation value calculation unit 1183 calculates the shape strain evaluation value (step S18). Next, the radius variation evaluation value calculation unit 1184 calculates the radius variation evaluation value (step S19). Next, the phase plane abnormality calculation unit 1185 calculates the phase plane abnormality (step S20), and evaluates the phase plane abnormality by, for example, comparing the calculated phase plane abnormality with a predetermined threshold value (step). S21), the comparison result with the threshold value and the degree of phase plane abnormality are displayed as evaluation results on, for example, the display unit 13 (step S22).
次に、図2を参照して、図1に示す分析装置1の動作例について説明する。図2に示す処理は、例えば操作者の所定の指示操作に応じて開始される。図2に示す処理では、まず、電流データ読込部111が、三相電流データの読込を行う(ステップS11)。次に、データ補間部112と周期単位切り分け部113が、三相電流データの補間と周期毎の切り分けを行う(ステップS12)。次に、位相軸正規化部114が、三相電流データの横軸を位相にして正規化する(ステップS13)。次に、電流振幅正規化部115が、三相電流データの電流振幅を正規化する(ステップS14)。次に、三相二相変換部116が、三相電流データを二相電流データに変換する(ステップS15)。次に、位相面誤差半径算出部117が位相面誤差半径を算出し、位相面誤差半径拡大部1181が誤差半径を拡大する(ステップS16)。次に、誤差拡大位相面描画部1182が、誤差拡大位相面を描画する(ステップS17)。次に、形状ひずみ評価値算出部1183が形状ひずみ評価値を算出する(ステップS18)。次に、半径ばらつき評価値算出部1184が、半径ばらつき評価値を算出する(ステップS19)。次に、位相面異常度算出部1185が、位相面異常度を算出し(ステップS20)、例えば算出した位相面異常度と所定の閾値と比較することで、位相面異常度を評価し(ステップS21)、閾値との比較結果や位相面異常度を評価結果として例えば表示部13に表示することで出力する(ステップS22)。 (Operation example of analyzer)
Next, an operation example of the
(作用・効果)
以上のように本実施形態によれば、電動機3の三相電流を用いて位相面を描き、そこから異常診断を行うことができる。三相電流は120度ずつ位相がずれているため、その内の二相で単純に位相面を描くと、斜めの楕円となる。そこで、本実施形態では、三相電流を二相電流へ変換する処理を行う。また、理想電流との誤差を計算し、拡大することで、異常による位相面の変化を拡大する。また、位相面の特徴から、位相面の形状ひずみ・半径ばらつきを特徴量として定量化し、その線形和として異常度を定義し、異常診断へ適用可能とする。 (Action / effect)
As described above, according to the present embodiment, the phase plane can be drawn by using the three-phase current of theelectric motor 3, and the abnormality diagnosis can be performed from the phase plane. Since the three-phase current is out of phase by 120 degrees, if the phase plane is simply drawn with two of them, it becomes an oblique ellipse. Therefore, in the present embodiment, a process of converting a three-phase current into a two-phase current is performed. In addition, by calculating and expanding the error from the ideal current, the change in the phase plane due to the abnormality is expanded. In addition, from the characteristics of the phase plane, the shape strain and radius variation of the phase plane are quantified as feature quantities, and the degree of abnormality is defined as the linear sum thereof, which can be applied to abnormality diagnosis.
以上のように本実施形態によれば、電動機3の三相電流を用いて位相面を描き、そこから異常診断を行うことができる。三相電流は120度ずつ位相がずれているため、その内の二相で単純に位相面を描くと、斜めの楕円となる。そこで、本実施形態では、三相電流を二相電流へ変換する処理を行う。また、理想電流との誤差を計算し、拡大することで、異常による位相面の変化を拡大する。また、位相面の特徴から、位相面の形状ひずみ・半径ばらつきを特徴量として定量化し、その線形和として異常度を定義し、異常診断へ適用可能とする。 (Action / effect)
As described above, according to the present embodiment, the phase plane can be drawn by using the three-phase current of the
すなわち、本実施形態によれば、電動機3や補機4類の異常による電流のわずかな変化を可視化可能となる。いいかえれば、本実施形態によれば、電動機や補機類の異常が電流へ与える影響を適切に分析することができる。また、可視化により、異常だけでなく、正常状態の正常具合も可視化できる(元の電源品質がきれいな正弦波になっていない等)。また、位相面の変化である、形状のひずみ、半径のばらつきを定量化して異常度と定義し異常診断に活用できる。すなわち、交流周期内のばらつきや複数の交流周期間のばらつきを定量的にとらえることができる。
That is, according to the present embodiment, it is possible to visualize a slight change in the current due to an abnormality in the motor 3 and the auxiliary equipment 4. In other words, according to the present embodiment, it is possible to appropriately analyze the influence of abnormalities on the electric motor and auxiliary machinery on the current. In addition, by visualization, not only the abnormality but also the normal condition of the normal state can be visualized (the original power supply quality is not a clean sine wave, etc.). In addition, it can be used for abnormality diagnosis by quantifying the distortion of the shape and the variation of the radius, which are the changes in the phase plane, and defining it as the degree of abnormality. That is, it is possible to quantitatively grasp the variation within the AC cycle and the variation between a plurality of AC cycles.
(その他の実施形態)
以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。 (Other embodiments)
Although the embodiment of the present disclosure has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like within a range not deviating from the gist of the present disclosure. ..
以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。 (Other embodiments)
Although the embodiment of the present disclosure has been described in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes and the like within a range not deviating from the gist of the present disclosure. ..
〈コンピュータ構成〉
図26は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
上述の診断装置1は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。 <Computer configuration>
FIG. 26 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
Thecomputer 90 includes a processor 91, a main memory 92, a storage 93, and an interface 94.
Thediagnostic device 1 described above is mounted on the computer 90. The operation of each of the above-mentioned processing units is stored in the storage 93 in the form of a program. The processor 91 reads a program from the storage 93, expands it into the main memory 92, and executes the above processing according to the program. Further, the processor 91 secures a storage area corresponding to each of the above-mentioned storage units in the main memory 92 according to the program.
図26は、少なくとも1つの実施形態に係るコンピュータの構成を示す概略ブロック図である。
コンピュータ90は、プロセッサ91、メインメモリ92、ストレージ93、インタフェース94を備える。
上述の診断装置1は、コンピュータ90に実装される。そして、上述した各処理部の動作は、プログラムの形式でストレージ93に記憶されている。プロセッサ91は、プログラムをストレージ93から読み出してメインメモリ92に展開し、当該プログラムに従って上記処理を実行する。また、プロセッサ91は、プログラムに従って、上述した各記憶部に対応する記憶領域をメインメモリ92に確保する。 <Computer configuration>
FIG. 26 is a schematic block diagram showing the configuration of a computer according to at least one embodiment.
The
The
プログラムは、コンピュータ90に発揮させる機能の一部を実現するためのものであってもよい。例えば、プログラムは、ストレージに既に記憶されている他のプログラムとの組み合わせ、または他の装置に実装された他のプログラムとの組み合わせによって機能を発揮させるものであってもよい。なお、他の実施形態においては、コンピュータは、上記構成に加えて、または上記構成に代えてPLD(Programmable Logic Device)などのカスタムLSI(Large Scale Integrated Circuit)を備えてもよい。PLDの例としては、PAL(Programmable Array Logic)、GAL(Generic Array Logic)、CPLD(Complex Programmable Logic Device)、FPGA(Field Programmable Gate Array)が挙げられる。この場合、プロセッサによって実現される機能の一部または全部が当該集積回路によって実現されてよい。
The program may be for realizing a part of the functions exerted by the computer 90. For example, the program may exert its function in combination with another program already stored in the storage or in combination with another program mounted on another device. In another embodiment, the computer may include a custom LSI (Large Scale Integrated Circuit) such as a PLD (Programmable Logic Device) in addition to or instead of the above configuration. Examples of PLDs include PAL (Programmable Array Logic), GAL (Generic Array Logic), CPLD (Complex Programmable Logic Device), and FPGA (Field Programmable Gate Array). In this case, some or all of the functions realized by the processor may be realized by the integrated circuit.
ストレージ93の例としては、HDD(Hard Disk Drive)、SSD(Solid State Drive)、磁気ディスク、光磁気ディスク、CD-ROM(Compact Disc Read Only Memory)、DVD-ROM(Digital Versatile Disc Read Only Memory)、半導体メモリ等が挙げられる。ストレージ93は、コンピュータ90のバスに直接接続された内部メディアであってもよいし、インタフェース94または通信回線を介してコンピュータ90に接続される外部メディアであってもよい。また、このプログラムが通信回線によってコンピュータ90に配信される場合、配信を受けたコンピュータ90が当該プログラムをメインメモリ92に展開し、上記処理を実行してもよい。少なくとも1つの実施形態において、ストレージ93は、一時的でない有形の記憶媒体である。
Examples of the storage 93 include HDD (Hard Disk Drive), SSD (Solid State Drive), magnetic disk, optical magnetic disk, CD-ROM (Compact Disc Read Only Memory), DVD-ROM (Digital Versatile Disc Read Only Memory). , Semiconductor memory and the like. The storage 93 may be an internal medium directly connected to the bus of the computer 90, or an external medium connected to the computer 90 via the interface 94 or a communication line. When this program is distributed to the computer 90 by a communication line, the distributed computer 90 may expand the program to the main memory 92 and execute the above process. In at least one embodiment, the storage 93 is a non-temporary tangible storage medium. The
<付記>
上記実施形態に記載の分析装置1は、例えば以下のように把握される。 <Additional Notes>
Theanalyzer 1 described in the above embodiment is grasped as follows, for example.
上記実施形態に記載の分析装置1は、例えば以下のように把握される。 <Additional Notes>
The
(1)第1の態様に係る分析装置1は、電動機3に供給される三相電流をサンプリングしたデータである三相電流データを読み込む電流データ読込部111と、前記三相電流データを三相交流の周期単位で切り分ける周期単位切り分け部113と、前記三相電流データを二相電流データに変換する三相二相変換部116と、前記二相電流データの各相を水平成分および垂直成分とするベクトルの、基準データからの誤差(位相面誤差半径δIp、周方向角度誤差δθ)を算出して誤差データとして出力する誤差算出部(位相面誤差半径算出部117)と、前記誤差データを前記周期単位でかつ複数の前記周期単位について処理し、処理結果を出力する処理出力部118と、を備える。この態様および以下の態様によれば、電動機や補機類の異常が電流へ与える影響を適切に分析することができる。
(1) The analyzer 1 according to the first aspect has a current data reading unit 111 that reads three-phase current data, which is data obtained by sampling three-phase current supplied to the electric motor 3, and a three-phase current data. The periodic unit dividing unit 113 that divides the three-phase current data into two-phase current data, the three-phase two-phase conversion unit 116 that converts the three-phase current data into two-phase current data, and each phase of the two-phase current data as a horizontal component and a vertical component. An error calculation unit (phase surface error radius calculation unit 117) that calculates an error (phase surface error radius δIp, circumferential angle error δθ) from the reference data of the vector to be output and outputs the error data, and the error data is described above. It is provided with a processing output unit 118 that processes the periodic units and outputs the processing results. According to this aspect and the following aspects, it is possible to appropriately analyze the influence of the abnormality of the motor and accessories on the current.
(2)第2の態様に係る分析装置1は、(1)の分析装置1であって、前記処理出力部118は、前記誤差を拡大し、所定の単位円上に前記周期単位で重畳させる処理を複数の前記周期単位分行い、前記処理結果の出力として、拡大した前記誤差を重畳させた前記単位円を複数の前記周期単位分重ねて、所定の表示部13に描画する。この構成によれば、電動機や補機類の異常による電流のわずかな変化を可視化することができる。
(2) The analysis device 1 according to the second aspect is the analysis device 1 of (1), and the processing output unit 118 expands the error and superimposes the error on a predetermined unit circle in the cycle unit. The processing is performed for a plurality of the periodic units, and as an output of the processing result, the unit circle on which the enlarged error is superimposed is superimposed for the plurality of the periodic units and drawn on a predetermined display unit 13. According to this configuration, it is possible to visualize a slight change in current due to an abnormality in the motor or auxiliary equipment.
(3)第3の態様に係る分析装置1は、(1)または(2)の分析装置1であって、前記処理出力部118は、ひずみ評価値算出部(形状ひずみ評価値算出部1183)と、ばらつき評価値算出部(半径ばらつき評価値算出部1184)と、異常度算出部(位相面異常度算出部1185)とを有し、前記ひずみ評価値算出部が、前記誤差の前記周期単位内のばらつきに対応する値を、ひずみ評価値(形状ひずみ評価値)として算出し、前記ばらつき評価値算出部が、前記誤差の複数の前記周期単位間のばらつきに対応する値を、ばらつき評価値(半径ばらつき評価値)として算出し、前記異常度算出部が、前記ひずみ評価値と前記ばらつき評価値に基づいて異常の度合いを表す異常度(位相面異常度)を算出し、前記処理結果として前記異常度または前記異常度と所定の閾値とを比較した判定結果の少なくとも一方を出力する。この構成によれば、位相面の変化である、形状ひずみおよび半径ばらつきを定量化して異常度と定義し異常診断に活用することができる。
(3) The analysis device 1 according to the third aspect is the analysis device 1 of (1) or (2), and the processing output unit 118 is a strain evaluation value calculation unit (shape strain evaluation value calculation unit 1183). It has a variation evaluation value calculation unit (radiation variation evaluation value calculation unit 1184) and an abnormality degree calculation unit (phase plane abnormality degree calculation unit 1185), and the strain evaluation value calculation unit is the periodic unit of the error. The value corresponding to the variation in the above is calculated as a strain evaluation value (shape strain evaluation value), and the variation evaluation value calculation unit sets a value corresponding to the variation between a plurality of the periodic units of the error as a variation evaluation value. It is calculated as (radial variation evaluation value), and the abnormality degree calculation unit calculates an abnormality degree (phase plane abnormality degree) indicating the degree of abnormality based on the strain evaluation value and the variation evaluation value, and as the processing result. The degree of abnormality or at least one of the determination results comparing the degree of abnormality with a predetermined threshold is output. According to this configuration, the shape strain and radius variation, which are changes in the phase plane, can be quantified, defined as the degree of abnormality, and used for abnormality diagnosis.
(4)第4の態様に係る分析装置1は、(1)~(3)の分析装置1であって、前記基準データは、前記ベクトルの大きさの理想値に対応し、前記誤差算出部は、前記ベクトルの大きさと前記基準データとの差を前記誤差として算出する。
(4) The analyzer 1 according to the fourth aspect is the analyzer 1 of (1) to (3), and the reference data corresponds to an ideal value of the magnitude of the vector, and the error calculation unit. Calculates the difference between the magnitude of the vector and the reference data as the error.
(5)第5の態様に係る分析装置1は、(1)~(3)の分析装置1であって、前記基準データは、正常時にサンプリングされた前記三相電流データに基づく前記二相電流データに対応し、前記誤差算出部は、前記ベクトルと前記基準データとを前記周期単位で比較することで前記誤差を算出する。
(5) The analyzer 1 according to the fifth aspect is the analyzer 1 of (1) to (3), and the reference data is the two-phase current based on the three-phase current data sampled at the normal time. Corresponding to the data, the error calculation unit calculates the error by comparing the vector and the reference data in the periodic unit.
(6)第6の態様に係る分析装置1は、(1)~(5)の分析装置1であって、前記三相電流データを補間してサンプル数を増やすデータ補間部112をさらに備え、前記周期単位切り分け部113が、前記データ補間部112によって補間された前記三相電流データを前記三相交流の周期単位で切り分ける。
(6) The analyzer 1 according to the sixth aspect is the analyzer 1 of (1) to (5), further including a data interpolation unit 112 that interpolates the three-phase current data to increase the number of samples. The periodic unit dividing unit 113 divides the three-phase current data interpolated by the data interpolating unit 112 in the periodic unit of the three-phase AC.
(7)第7の態様に係る分析装置1は、(1)~(6)の分析装置1であって、1周期分のサンプル数が一定値となるように前記三相電流データを正規化する位相軸正規化部114をさらに備え、前記三相二相変換部116が、前記位相軸正規化部114によって正規化された前記三相電流データを前記二相電流データに変換する。
(7) The analyzer 1 according to the seventh aspect is the analyzer 1 of (1) to (6), and the three-phase current data is normalized so that the number of samples for one cycle becomes a constant value. The phase axis normalization unit 114 is further provided, and the three-phase two-phase conversion unit 116 converts the three-phase current data normalized by the phase axis normalization unit 114 into the two-phase current data.
(8)第8の態様に係る分析装置1は、(1)~(7)の分析装置1であって、電流振幅が所定値となるように前記三相電流データを正規化する電流振幅正規化部115をさらに備え、前記三相二相変換部116が、前記電流振幅正規化部115によって正規化された前記三相電流データを前記二相電流データに変換する。
(8) The analyzer 1 according to the eighth aspect is the analyzer 1 of (1) to (7), and the current amplitude normalization normalizes the three-phase current data so that the current amplitude becomes a predetermined value. The three-phase two-phase conversion unit 116 further includes a conversion unit 115, and the three-phase two-phase conversion unit 116 converts the three-phase current data normalized by the current amplitude normalization unit 115 into the two-phase current data.
(9)第9の態様に係る分析装置1は、(3)の分析装置1であって、前記ひずみ評価値算出部が、前記周期単位内の複数点で複数の前記周期単位の各前記誤差の平均値を求め、前記各平均値の標準偏差に対応する値を、前記ひずみ評価値として算出し、前記ばらつき評価値算出部が、前記周期単位内の複数点で複数の前記周期単位の各前記誤差の標準偏差を求め、前記各標準偏差の平均値に対応する値を、前記ばらつき評価値として算出し、前記異常度算出部が、前記ひずみ評価値に第1重み係数を乗じた値と前記ばらつき評価値に第2重み係数を乗じた値とを加算した値を前記異常度として算出する。
(9) The analysis device 1 according to the ninth aspect is the analysis device 1 of (3), and the strain evaluation value calculation unit has a plurality of points in the cycle unit and each error of the plurality of cycle units. The average value of the above is obtained, the value corresponding to the standard deviation of each of the average values is calculated as the strain evaluation value, and the variation evaluation value calculation unit performs each of the plurality of each of the plurality of cycle units at a plurality of points in the cycle unit. The standard deviation of the error is obtained, the value corresponding to the average value of each standard deviation is calculated as the variation evaluation value, and the abnormality degree calculation unit multiplies the strain evaluation value by the first weighting coefficient. The value obtained by adding the value obtained by multiplying the variation evaluation value by the second weighting coefficient is calculated as the degree of abnormality.
上記分析装置、分析方法およびプログラムによれば、電動機(モータ)や補機類の異常が電流へ与える影響を適切に分析することができる。
According to the above-mentioned analyzer, analysis method and program, it is possible to appropriately analyze the influence of an abnormality of an electric motor (motor) or auxiliary equipment on an electric current.
1 分析装置
3 電動機
4 補機
11 処理部
12 記憶部
13 表示部
111 電流データ読込部
112 データ補間部
113 周期単位切り分け部
114 位相軸正規化部
115 電流振幅正規化部
116 三相二相変換部
117 位相面誤差半径算出部
118 処理出力部
1181 位相面誤差半径拡大部
1182 誤差拡大位相面描画部
1183 形状ひずみ評価値算出部
1184 半径ばらつき評価値算出部
1185 位相面異常度算出部 1Analytical device 3 Electric motor 4 Auxiliary machine 11 Processing unit 12 Storage unit 13 Display unit 111 Current data reading unit 112 Data interpolation unit 113 Periodic unit segmentation unit 114 Phase axis normalization unit 115 Current amplitude normalization unit 116 Three-phase two-phase conversion unit 117 Phase plane error radius calculation unit 118 Processing output unit 1181 Phase plane error radius expansion unit 1182 Error expansion Phase plane drawing unit 1183 Shape strain evaluation value calculation unit 1184 Radiation variation evaluation value calculation unit 1185 Phase plane abnormality degree calculation unit
3 電動機
4 補機
11 処理部
12 記憶部
13 表示部
111 電流データ読込部
112 データ補間部
113 周期単位切り分け部
114 位相軸正規化部
115 電流振幅正規化部
116 三相二相変換部
117 位相面誤差半径算出部
118 処理出力部
1181 位相面誤差半径拡大部
1182 誤差拡大位相面描画部
1183 形状ひずみ評価値算出部
1184 半径ばらつき評価値算出部
1185 位相面異常度算出部 1
Claims (11)
- 電動機に供給される三相電流をサンプリングしたデータである三相電流データを読み込む電流データ読込部と、
前記三相電流データを三相交流の周期単位で切り分ける周期単位切り分け部と、
前記三相電流データを二相電流データに変換する三相二相変換部と、
前記二相電流データの各相を水平成分および垂直成分とするベクトルの、基準データからの誤差を算出して誤差データとして出力する誤差算出部と、
前記誤差データを前記周期単位でかつ複数の前記周期単位について処理し、処理結果を出力する処理出力部と、
を備える分析装置。 A current data reading unit that reads three-phase current data, which is data obtained by sampling the three-phase current supplied to the motor,
A periodic unit dividing unit that divides the three-phase current data into three-phase alternating current periodic units,
A three-phase two-phase converter that converts the three-phase current data into two-phase current data,
An error calculation unit that calculates an error from the reference data and outputs it as error data for a vector having each phase of the two-phase current data as a horizontal component and a vertical component.
A processing output unit that processes the error data in the cycle unit and for a plurality of the cycle units and outputs the processing result.
An analyzer equipped with. - 前記処理出力部は、前記誤差を拡大し、所定の単位円上に前記周期単位で重畳させる処理を複数の前記周期単位分行い、前記処理結果の出力として、拡大した前記誤差を重畳させた前記単位円を複数の前記周期単位分重ねて、所定の表示部に描画する
請求項1に記載の分析装置。 The processing output unit expands the error, performs a process of superimposing the error on a predetermined unit circle in the cycle units for a plurality of the cycle units, and superimposes the enlarged error on the output of the processing result. The analyzer according to claim 1, wherein the unit circles are overlapped by a plurality of the periodic units and drawn on a predetermined display unit. - 前記処理出力部は、ひずみ評価値算出部と、ばらつき評価値算出部と、異常度算出部とを有し、
前記ひずみ評価値算出部が、前記誤差の前記周期単位内のばらつきに対応する値を、ひずみ評価値として算出し、
前記ばらつき評価値算出部が、前記誤差の複数の前記周期単位間のばらつきに対応する値を、ばらつき評価値として算出し、
前記異常度算出部が、前記ひずみ評価値と前記ばらつき評価値に基づいて異常の度合いを表す異常度を算出し、前記処理結果として前記異常度または前記異常度と所定の閾値とを比較した判定結果の少なくとも一方を出力する
請求項1または2に記載の分析装置。 The processing output unit has a strain evaluation value calculation unit, a variation evaluation value calculation unit, and an abnormality degree calculation unit.
The strain evaluation value calculation unit calculates a value corresponding to the variation of the error within the period unit as a strain evaluation value.
The variation evaluation value calculation unit calculates a value corresponding to the variation between the plurality of cycle units of the error as a variation evaluation value.
The abnormality degree calculation unit calculates an abnormality degree indicating the degree of abnormality based on the strain evaluation value and the variation evaluation value, and determines that the abnormality degree or the abnormality degree is compared with a predetermined threshold value as the processing result. The analyzer according to claim 1 or 2, which outputs at least one of the results. - 前記基準データは、前記ベクトルの大きさの理想値に対応し、
前記誤差算出部は、前記ベクトルの大きさと前記基準データとの差を前記誤差として算出する
請求項1から3のいずれか1項に記載の分析装置。 The reference data corresponds to an ideal value of the magnitude of the vector.
The analyzer according to any one of claims 1 to 3, wherein the error calculation unit calculates the difference between the magnitude of the vector and the reference data as the error. - 前記基準データは、正常時にサンプリングされた前記三相電流データに基づく前記二相電流データに対応し、
前記誤差算出部は、前記ベクトルと前記基準データとを前記周期単位で比較することで前記誤差を算出する
請求項1から3のいずれか1項に記載の分析装置。 The reference data corresponds to the two-phase current data based on the three-phase current data sampled at normal times.
The analyzer according to any one of claims 1 to 3, wherein the error calculation unit calculates the error by comparing the vector and the reference data in the periodic unit. - 前記三相電流データを補間してサンプル数を増やすデータ補間部をさらに備え、
前記周期単位切り分け部が、前記データ補間部によって補間された前記三相電流データを前記三相交流の周期単位で切り分ける
請求項1から5のいずれか1項に記載の分析装置。 A data interpolation unit that interpolates the three-phase current data to increase the number of samples is further provided.
The analyzer according to any one of claims 1 to 5, wherein the periodic unit dividing unit divides the three-phase current data interpolated by the data interpolation unit into the periodic units of the three-phase alternating current. - 1周期分のサンプル数が一定値となるように前記三相電流データを正規化する位相軸正規化部をさらに備え、
前記三相二相変換部が、前記位相軸正規化部によって正規化された前記三相電流データを前記二相電流データに変換する
請求項1から6のいずれか1項に記載の分析装置。 Further provided with a phase axis normalization unit that normalizes the three-phase current data so that the number of samples for one cycle becomes a constant value.
The analyzer according to any one of claims 1 to 6, wherein the three-phase two-phase conversion unit converts the three-phase current data normalized by the phase axis normalization unit into the two-phase current data. - 電流振幅が所定値となるように前記三相電流データを正規化する電流振幅正規化部をさらに備え、
前記三相二相変換部が、前記電流振幅正規化部によって正規化された前記三相電流データを前記二相電流データに変換する
請求項1から7のいずれか1項に記載の分析装置。 Further provided with a current amplitude normalization unit that normalizes the three-phase current data so that the current amplitude becomes a predetermined value.
The analyzer according to any one of claims 1 to 7, wherein the three-phase two-phase conversion unit converts the three-phase current data normalized by the current amplitude normalization unit into the two-phase current data. - 前記ひずみ評価値算出部が、前記周期単位内の複数点で複数の前記周期単位の各前記誤差の平均値を求め、前記各平均値の標準偏差に対応する値を、前記ひずみ評価値として算出し、
前記ばらつき評価値算出部が、前記周期単位内の複数点で複数の前記周期単位の各前記誤差の標準偏差を求め、前記各標準偏差の平均値に対応する値を、前記ばらつき評価値として算出し、
前記異常度算出部が、前記ひずみ評価値に第1重み係数を乗じた値と前記ばらつき評価値に第2重み係数を乗じた値とを加算した値を前記異常度として算出する
請求項3に記載の分析装置。 The strain evaluation value calculation unit obtains the average value of each of the errors in the plurality of periodic units at a plurality of points in the periodic unit, and calculates the value corresponding to the standard deviation of each average value as the strain evaluation value. death,
The variation evaluation value calculation unit obtains the standard deviation of each of the errors in the plurality of periodic units at a plurality of points in the periodic unit, and calculates the value corresponding to the average value of the standard deviations as the variation evaluation value. death,
According to claim 3, the abnormality degree calculation unit calculates the value obtained by adding the value obtained by multiplying the strain evaluation value by the first weighting coefficient and the value obtained by multiplying the variation evaluation value by the second weighting coefficient as the abnormality degree. The analyzer described. - 電動機に供給される三相電流をサンプリングしたデータである三相電流データを読み込むステップと、
前記三相電流データを三相交流の周期単位で切り分けるステップと、
前記三相電流データを二相電流データに変換するステップと、
前記二相電流データの各相を水平成分および垂直成分とするベクトルの、基準データからの誤差を算出して誤差データとして出力するステップと、
前記誤差データを前記周期単位でかつ複数の前記周期単位について処理し、処理結果を出力するステップと、
を含む分析方法。 The step of reading the three-phase current data, which is the data obtained by sampling the three-phase current supplied to the motor,
The step of separating the three-phase current data in units of three-phase alternating current cycles,
The step of converting the three-phase current data into two-phase current data,
A step of calculating an error from the reference data of a vector having each phase of the two-phase current data as a horizontal component and a vertical component and outputting it as error data.
A step of processing the error data in the cycle unit and for a plurality of the cycle units and outputting the processing result.
Analytical methods including. - 電動機に供給される三相電流をサンプリングしたデータである三相電流データを読み込むステップと、
前記三相電流データを三相交流の周期単位で切り分けるステップと、
前記三相電流データを二相電流データに変換するステップと、
前記二相電流データの各相を水平成分および垂直成分とするベクトルの、基準データからの誤差を算出して誤差データとして出力するステップと、
前記誤差データを前記周期単位でかつ複数の前記周期単位について処理し、処理結果を出力するステップと、
をコンピュータに実行させるプログラム。 The step of reading the three-phase current data, which is the data obtained by sampling the three-phase current supplied to the motor,
The step of separating the three-phase current data in units of three-phase alternating current cycles,
The step of converting the three-phase current data into two-phase current data,
A step of calculating an error from the reference data of a vector having each phase of the two-phase current data as a horizontal component and a vertical component and outputting it as error data.
A step of processing the error data in the cycle unit and for a plurality of the cycle units and outputting the processing result.
A program that causes a computer to run.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-109490 | 2020-06-25 | ||
JP2020109490A JP7460465B2 (en) | 2020-06-25 | 2020-06-25 | Analytical device, analytical method, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021261370A1 true WO2021261370A1 (en) | 2021-12-30 |
Family
ID=79281297
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/023002 WO2021261370A1 (en) | 2020-06-25 | 2021-06-17 | Analyzing device, analysis method, and program |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7460465B2 (en) |
TW (1) | TWI787875B (en) |
WO (1) | WO2021261370A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024127624A1 (en) * | 2022-12-16 | 2024-06-20 | Dmg森精機株式会社 | Misalignment detection method, misalignment detection device, and machine tool equipped with misalignment detection device |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004064864A (en) * | 2002-07-26 | 2004-02-26 | Toshiba Elevator Co Ltd | Controller of elevator |
JP2009195106A (en) * | 2009-05-29 | 2009-08-27 | Toshiba Schneider Inverter Corp | Speed sensorless vector control apparatus |
JP2014113026A (en) * | 2012-11-01 | 2014-06-19 | Denso Corp | Controller of ac motor |
JP2015080344A (en) * | 2013-10-17 | 2015-04-23 | 株式会社荏原製作所 | Driving device for motor |
JP2018153028A (en) * | 2017-03-14 | 2018-09-27 | 株式会社東芝 | Integrated circuit |
JP2019075868A (en) * | 2017-10-13 | 2019-05-16 | ルネサスエレクトロニクス株式会社 | Motor control device and motor system |
JP2021023042A (en) * | 2019-07-29 | 2021-02-18 | 株式会社アドヴィックス | Motor control device |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI315602B (en) * | 2006-04-07 | 2009-10-01 | Ming Tsan Lin | A current controlled inverter switching method for three phase ac permanent magnet synchronous motors and synchronous reluctance motors |
JP6622452B2 (en) * | 2014-10-14 | 2019-12-18 | 日立グローバルライフソリューションズ株式会社 | Motor control device, compressor, air conditioner and program |
-
2020
- 2020-06-25 JP JP2020109490A patent/JP7460465B2/en active Active
-
2021
- 2021-06-17 WO PCT/JP2021/023002 patent/WO2021261370A1/en active Application Filing
- 2021-06-22 TW TW110122748A patent/TWI787875B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004064864A (en) * | 2002-07-26 | 2004-02-26 | Toshiba Elevator Co Ltd | Controller of elevator |
JP2009195106A (en) * | 2009-05-29 | 2009-08-27 | Toshiba Schneider Inverter Corp | Speed sensorless vector control apparatus |
JP2014113026A (en) * | 2012-11-01 | 2014-06-19 | Denso Corp | Controller of ac motor |
JP2015080344A (en) * | 2013-10-17 | 2015-04-23 | 株式会社荏原製作所 | Driving device for motor |
JP2018153028A (en) * | 2017-03-14 | 2018-09-27 | 株式会社東芝 | Integrated circuit |
JP2019075868A (en) * | 2017-10-13 | 2019-05-16 | ルネサスエレクトロニクス株式会社 | Motor control device and motor system |
JP2021023042A (en) * | 2019-07-29 | 2021-02-18 | 株式会社アドヴィックス | Motor control device |
Also Published As
Publication number | Publication date |
---|---|
JP7460465B2 (en) | 2024-04-02 |
TWI787875B (en) | 2022-12-21 |
JP2022006911A (en) | 2022-01-13 |
TW202220363A (en) | 2022-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7270773B2 (en) | Method for Estimating Bearing Fault Severity in Induction Motors | |
EP1427082B1 (en) | Method and apparatus of detecting internal motor faults in an induction machine | |
US7509862B2 (en) | System and method for providing vibration detection in turbomachinery | |
Yin et al. | Statistical modeling of gear vibration signals and its application to detecting and diagnosing gear faults | |
Contreras-Medina et al. | FPGA-based multiple-channel vibration analyzer for industrial applications in induction motor failure detection | |
EP2761315B1 (en) | A method of determining stationary signals for the diagnostics of an electromechanical system | |
WO2021261370A1 (en) | Analyzing device, analysis method, and program | |
Pineda-Sanchez et al. | Transient motor current signature analysis via modulus of the continuous complex wavelet: A pattern approach | |
Cheng | A novel approach of information visualization for machine operation states in industrial 4.0 | |
Choudhury et al. | A methodology to handle spectral smearing in gearboxes using adaptive mode decomposition and dynamic time warping | |
Chen et al. | A time-varying instantaneous frequency fault features extraction method of rolling bearing under variable speed | |
JP5985158B2 (en) | Electrical equipment quality diagnosis system | |
Eggers, BL, Heyns, PS & Stander | Using computed order tracking to detect gear condition aboard a dragline | |
JP3561151B2 (en) | Abnormality diagnosis device and abnormality diagnosis method | |
J Faiz et al. | Application of signal processing tools for fault diagnosis in induction motors-A Review-Part II | |
CN111880095A (en) | Induction motor fault analysis method and system based on three-phase current signal square sum | |
JP7213211B2 (en) | Inverter deterioration monitoring diagnosis method | |
da Silva et al. | Current Signature Analysis for Diagnostics in Motor Bars under Locked Rotor Condition | |
Zhou et al. | Multivariate intrinsic wave-characteristic decomposition and its application in gear fault diagnosis | |
JP7580210B2 (en) | Premonition determination device, premonition determination method, and program | |
JP7319345B2 (en) | Rotating machinery diagnostic device and method | |
Gazzana et al. | A system for incipient fault detection and fault diagnosis based on MCSA | |
JPH0450731A (en) | Rotary machine fault diagnostic system | |
EP4235197A1 (en) | Method and system for diagnosing a machine | |
CN116148662A (en) | Motor three-phase unbalance analysis method based on current instantaneous information |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21828423 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21828423 Country of ref document: EP Kind code of ref document: A1 |