Nothing Special   »   [go: up one dir, main page]

WO2021260772A1 - Aluminum phosphate compound and method for producing same, carrier for purifying protein and method for purifying protein which uses same - Google Patents

Aluminum phosphate compound and method for producing same, carrier for purifying protein and method for purifying protein which uses same Download PDF

Info

Publication number
WO2021260772A1
WO2021260772A1 PCT/JP2020/024422 JP2020024422W WO2021260772A1 WO 2021260772 A1 WO2021260772 A1 WO 2021260772A1 JP 2020024422 W JP2020024422 W JP 2020024422W WO 2021260772 A1 WO2021260772 A1 WO 2021260772A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum phosphate
phosphate compound
protein
aqueous solution
aluminum
Prior art date
Application number
PCT/JP2020/024422
Other languages
French (fr)
Japanese (ja)
Inventor
一気 鎌井
明人 板東
Original Assignee
富田製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富田製薬株式会社 filed Critical 富田製薬株式会社
Priority to JP2020563728A priority Critical patent/JP6882816B1/en
Priority to PCT/JP2020/024422 priority patent/WO2021260772A1/en
Publication of WO2021260772A1 publication Critical patent/WO2021260772A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/36Aluminium phosphates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification

Definitions

  • the present invention relates to an aluminum phosphate compound and a method for producing the same, a carrier for protein purification, and a protein purification method using the same.
  • purification methods such as salting out method, centrifugation method, and column chromatography method have been widely used.
  • purification methods such as salting out method, centrifugation method, and column chromatography method have been widely used.
  • antibody proteins for pharmaceuticals and antigen proteins for vaccines require particularly advanced purification technology due to the reduction of side effects when inoculated to humans and the stricter formulation standards in recent years.
  • Patent Document 1 focuses on aluminum phosphate from among inorganic compounds as a carrier for purifying proteins useful for purifying proteins such as vaccines, and uses an aqueous solution further containing specific ions that are not constituent elements of aluminum phosphate. A method for producing an aluminum phosphate compound is disclosed.
  • the aluminum phosphate compound obtained by using the production method disclosed in Patent Document 1 has a strong adsorption power to the protein, but it is difficult to purify the protein with a high recovery rate. It was found that further improvement of purification ability is required for use as a carrier for protein purification.
  • an object of the present invention is to provide an aluminum phosphate compound having excellent purification ability and a method for producing the same, a carrier for protein purification, and a protein purification method using the same.
  • An embodiment of the present invention (hereinafter referred to as “the present embodiment”) is, for example, as follows.
  • the pore mode diameter corresponding to the peak in which the pore diameter (D) appears in the range of 2000 nm or less is in the range of 100 nm to 300 nm.
  • the aluminum phosphate compound according to [1] or [2], wherein the average particle size (D 50) is in the range of 50 ⁇ m to 80 ⁇ m.
  • [4] The aluminum phosphate compound according to [1] or [2], wherein the average particle size (D 50) is in the range of 55 ⁇ m to 70 ⁇ m.
  • [5] The aluminum phosphate compound according to any one of [1] to [4], which is amorphous.
  • [6] The aluminum phosphate compound according to any one of [1] to [5], which contains sulfur and potassium.
  • [7] The aluminum phosphate compound according to any one of [1] to [6], wherein magnesium is not contained, or if it is contained, the content thereof is less than 0.01% by mass.
  • a protein purification carrier used in a protein purification method comprising a step of filtering a solution containing the protein purification carrier according to [8] on which a protein is adsorbed using a column, a cross-flow filter or a dead-end filter.
  • the protein-containing solution is brought into contact with the protein purification carrier according to [8] or [9], and the protein is adsorbed on the protein purification carrier.
  • Protein purification method including.
  • a method for producing an aluminum phosphate compound which comprises mixing an aqueous solution A containing a phosphate ion and an aqueous solution B containing an aluminum ion, a sulfate ion and a potassium ion to obtain a mixed solution containing an aluminum phosphate compound. Therefore, the concentration of the phosphate ion in the aqueous solution A is more than 0.6 mol / L, the concentration of the aluminum ion in the aqueous solution B is more than 0.3 mol / L, and the concentration of the potassium ion is more than 0.3 mol / L.
  • a manufacturing method in which the amount is more than 0.2 mol / L.
  • FIG. 1 is a graph showing the Log differential pore volume distribution of the aluminum phosphate compounds of Examples 1 and 2 and Comparative Examples 1 and 2 by the mercury intrusion method.
  • FIG. 2 is a graph showing a powder X-ray diffraction spectrum of the aluminum phosphate compound of Example 1.
  • FIG. 3 is a scanning electron microscope (SEM) image of the aluminum phosphate compound of Example 1.
  • FIG. 4 is a scanning electron microscope (SEM) image of the aluminum phosphate compound of Comparative Example 1.
  • the aluminum phosphate compound according to this embodiment is amorphous having a specific pore distribution in which the pore mode diameter of the Log differential pore volume distribution (dV / dlogD) is in the range of 100 nm to 300 nm. It is a quality aluminum phosphate compound.
  • the pore mode diameter of the Log differential pore volume distribution is measured by the mercury intrusion method. Specifically, based on the measurement result by the mercury intrusion method, a distribution curve is obtained by plotting the pore diameter (D) of the sample on the horizontal axis and the Log differential pore volume (dV / dlogD) on the vertical axis.
  • the Log differential pore volume (dV / dlogD) on the vertical axis is the logarithmic value (dlogD) of the difference in pore volume between measurement points (differential pore volume (dV)) and the difference in pore diameter (D). The value divided.
  • the pore diameter corresponding to the peak top (the maximum value of dV / dlogD, which represents the maximum frequency) of the peak appearing in the pore diameter range of 2000 nm or less is the pore mode diameter. It is called.
  • Comparative Example 1 and Comparative Example 2 described later are retests of the methods for producing an aluminum phosphate compound described in Examples 1 and 2 of Patent Document 1 under substantially the same conditions, but the obtained aluminum phosphate was obtained.
  • the pore mode diameters of the compounds are as small as 42.9 nm and 48.3 nm, respectively.
  • the aluminum phosphate compound obtained by using the production method disclosed in Patent Document 1 through diligent research by the present inventors has a small pore mode diameter, so that it has a strong adsorptive power to the protein, and the protein from the carrier can be obtained. It was found that it is difficult to purify the protein with a high recovery rate because the target protein cannot be eluted with the general elution agent used for elution.
  • the aluminum phosphate compound according to the present embodiment has a specific pore distribution in which the pore diameter is controlled, and as described above, the pore mode diameter of the Log differential pore volume distribution (dV / dlogD) is
  • the first feature is that it is in the range of 100 nm to 300 nm.
  • the pore mode diameter of the aluminum phosphate compound is in the range of 100 nm to 300 nm, the adsorptive power to the object to be purified such as protein is optimized, and both the adsorptive power to the object to be purified and the elution property to the eluent are excellent. Since the aluminum phosphate compound is obtained, the target product to be purified can be purified with a high recovery rate.
  • the pore mode diameter of the aluminum phosphate compound is preferably 200 nm to 300 nm.
  • the aluminum phosphate compound according to the present embodiment has an average particle size (D 50 ) of preferably 50 ⁇ m to 80 ⁇ m, and more preferably 55 ⁇ m to 70 ⁇ m.
  • the average particle diameter (D 50 ) is the particle diameter (volume median diameter) with respect to the integrated frequency of 50% by volume in the integrated distribution curve showing the relationship between the particle diameter and the integrated frequency from the small particle side. Obtained by the laser diffraction scattering method.
  • the aluminum phosphate compound to which the protein is adsorbed by contact with the protein in the solution is separated from other components. To be filtered.
  • the average particle size (D 50 ) of the aluminum phosphate compound is in the above range, the filterability of the aluminum phosphate compound on which the protein is adsorbed is improved, and the productivity is also improved.
  • the aluminum phosphate compound according to this embodiment has better adsorptivity to objects to be purified such as proteins.
  • the cumulative pore volume is preferably 1.5 to 3.0 mL / g, more preferably 2.0 to 2.5 mL / g, and the average pore diameter is preferably 150 to 500 nm, more preferably 250. It is about 400 nm
  • the bulk density is preferably 0.2 to 1.0 g / mL, more preferably 0.3 to 0.5 g / mL
  • the apparent density (true density) is preferably 0.3 to 1.
  • the porosity is preferably 30 to 70%, more preferably 40 to 50%
  • the skeletal density is preferably 1.0 to 3. It is 0 g / mL, more preferably 1.5 to 2.5 g / mL. Cumulative pore volume, average pore diameter, bulk density, apparent density, porosity, and skeletal density can be measured by the mercury intrusion method as well as the pore mode diameter.
  • the aluminum phosphate compound according to the present embodiment is produced by a production method using an aqueous solution A containing a phosphate ion described later and an aqueous solution B containing a sulfate ion, an aluminum ion and a potassium ion. Therefore, it contains not only aluminum phosphate but also sulfur and potassium. Since the aluminum phosphate compound is composed of sulfur and potassium, its adsorptivity to a substance to be purified such as protein is improved, and it becomes a useful substance as a carrier for purification.
  • the content of sulfur (sulfur atom) in the aluminum phosphate compound is not particularly limited, but is preferably 0.3 to 5.0% by mass, more preferably from the viewpoint of improving protein adsorptivity. It is 1.0 to 2.0% by mass.
  • the content of potassium (potassium atom) in the aluminum phosphate compound is preferably 0.3 to 5.0% by mass, more preferably 0.5 to 5.0% by mass, from the viewpoint of improving protein adsorption. It is 2.0% by mass.
  • the aluminum phosphate compound may further contain other components.
  • examples of other components include water and calcium.
  • an aqueous solution containing magnesium ions as an essential component in addition to the above ions is used as the aqueous solution B, and the obtained aluminum phosphate compound contains 0.01% by mass or more of magnesium.
  • the aluminum phosphate compound according to the present embodiment does not substantially contain magnesium. The mechanism is not clear, but the presence of magnesium adversely affects the purification ability of the aluminum phosphate compound according to the present embodiment.
  • the aluminum phosphate compound according to the present embodiment does not contain magnesium, or if it contains magnesium, it is preferably less than 0.01% by mass, and more preferably 0.003% by mass or less. preferable.
  • the content of aluminum in the aluminum phosphate compound is not particularly limited as long as it contains the above-mentioned other components, but is preferably 8 to 35% by mass from the viewpoint of improving protein adsorption. , More preferably 10 to 16% by mass.
  • the molar ratio of aluminum to phosphorus in the aluminum phosphate compound (Al (mol) / P (mol)) is preferably 0.3 to 1.5, more preferably 0.5 to 1.0. ..
  • the aluminum phosphate compound of the present embodiment having a pore mode diameter in the range of 100 nm to 300 nm and having a specific pore distribution is an aqueous solution A containing phosphate ion and an aqueous solution containing sulfate ion, aluminum ion and potassium ion.
  • the method for producing an aluminum phosphate compound including mixing with B it can be obtained by setting the phosphate ion concentration in the aqueous solution A and the aluminum ion concentration and the potassium ion concentration in the aqueous solution B to high concentrations. can.
  • Aqueous solution A contains phosphate ions.
  • the aqueous solution A can be prepared as an aqueous solution in which the phosphoric acid-containing compound is dissolved.
  • the phosphoric acid-containing compound include phosphoric acid, phosphoric acid-free salt, phosphoric acid monohydrogen salt, and phosphoric acid dihydrogen salt.
  • Phosphoric acid is orthophosphoric acid.
  • Phosphate-free salts are phosphates that are not hydrogen salts, such as ammonium phosphate ((NH 4 ) 3 PO 4 ), trisodium phosphate (Na 3 PO 4 ), and tripotassium phosphate (K 3 PO 4). ), Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) and the like.
  • Dicalcium phosphate is a phosphate of monohydrogen salt, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), dipotassium hydrogen phosphate ((NH 4) 2 HPO 4).
  • Dihydrogen phosphate is a phosphate dihydrogen, ammonium dihydrogen phosphate (NH 4 H 2 PO 4) , sodium dihydrogen phosphate (NaH 2 PO 4), potassium dihydrogen phosphate (KH 2 PO 4 ) and the like can be mentioned.
  • the phosphoric acid-containing compound may be anhydrous or a hydrate. Further, the hydration number of the hydrate is not particularly limited. These phosphoric acid-containing compounds may be used alone or in combination of two or more.
  • monohydrogen phosphate is preferably mentioned, and disodium hydrogen phosphate (Na 2 HPO) is more preferable, from the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound. 4 ) can be mentioned.
  • the phosphate ion concentration in the aqueous solution A is 0.6 mol / mol / mol as the total amount of the phosphate ions constituting the above-mentioned phosphate-containing compound used in the preparation of the aqueous solution A from the viewpoint of controlling the pore mode diameter within the above range. It is more than L, preferably 0.7 mol / L or more, and more preferably 0.8 mol / L or more.
  • the upper limit of the phosphate ion concentration in the aqueous solution A may be, for example, 1.5 mol / L or less as the total amount of phosphate ions.
  • the liquid property of the aqueous solution A is not particularly limited, but can be prepared, for example, as a basic solution.
  • the aqueous solution A as a basic solution may be prepared by dissolving the above-mentioned phosphoric acid-containing compound in water, or by dissolving the above-mentioned phosphoric acid compound in water, sodium hydroxide, potassium hydroxide, and water. It may be prepared by adjusting the pH using one or more kinds of metal hydroxides such as calcium oxide, or the above-mentioned phosphoric acid compound is dissolved in a pre-prepared basic aqueous solution of the above-mentioned metal hydroxide. It may be prepared by letting it.
  • the specific pH of the aqueous solution A (23 ° C., the same applies hereinafter) is preferably such that the pH of the mixture obtained by mixing with the aqueous solution B described later is 2.0 to 4.0. It can be determined in consideration of pH. Specifically, the pH of the aqueous solution A may be, for example, 7.5 to 10.5 and may be 8.5 to 9.5.
  • the method for dissolving the phosphoric acid-containing compound is not particularly limited, and examples thereof include stirring, shaking, and ultrasonic dissolution.
  • the temperature and pressure conditions for dissolving the phosphoric acid-containing compound are not particularly limited, and examples thereof include conditions such as normal temperature and normal pressure and warming and normal pressure.
  • the aqueous solution A is preferably a prepared solution filtered through a filter.
  • the pore diameter of the filter used may be, for example, 0.2 to 3 ⁇ m, or 0.45 to 1 ⁇ m.
  • Aqueous solution B contains aluminum ions, sulfate ions, and potassium ions.
  • the obtained aluminum phosphate compound can be obtained as a useful substance as a carrier for protein purification which has an excellent adsorptive action on proteins. can.
  • Aqueous solution B can be prepared as an aqueous solution in which one or more salts containing aluminum ion, sulfate ion and potassium ion are dissolved.
  • the salt may be a single salt or a double salt.
  • each salt has a sulfate ion as an anion from the viewpoint of obtaining better protein adsorption of the aluminum phosphate compound. ..
  • Examples of the salt containing aluminum ions include aluminum hydroxide (Al (OH) 3 ), aluminum oxide (Al 2 O 3 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), aluminum chloride (AlCl 3 ), and nitrate.
  • Examples thereof include aluminum (Al (NO 3 ) 3 ), potassium aluminum sulfate (AlK (SO 4 ) 2 ), and the like, preferably aluminum sulfate (Al 2 (SO 4 ) 3 ), potassium aluminum sulfate (AlK (SO 4 )). 2 ) is mentioned, and more preferably, potassium aluminum sulfate (AlK (SO 4 ) 2 ) is mentioned.
  • Examples of the salt containing sulfate ion include potassium sulfate and the like in addition to the above-mentioned aluminum sulfate (Al 2 (SO 4 ) 3 ) and potassium aluminum sulfate (AlK (SO 4 ) 2), and more preferably, sulfate.
  • Potassium aluminum (AlK (SO 4 ) 2 ) can be mentioned.
  • Examples of the salt containing potassium ion include potassium hydroxide (KOH), potassium chloride (KCl), potassium nitrate (KNO 3 ) and the like in addition to the above-mentioned potassium aluminum sulfate (AlK (SO 4 ) 2) and potassium sulfate.
  • KOH potassium hydroxide
  • KCl potassium chloride
  • KNO 3 potassium nitrate
  • Preferred are potassium aluminum sulfate (AlK (SO 4 ) 2 ), potassium sulfate, and more preferably potassium aluminum sulfate (AlK (SO 4 ) 2 ).
  • the above-mentioned salt may be anhydrous or a hydrate. Further, the hydration number of the hydrate is not particularly limited.
  • the aluminum ion concentration in the aqueous solution B is more than 0.3 mol / L as the total amount of aluminum ions constituting the above-mentioned salt used in the preparation of the aqueous solution B from the viewpoint of controlling the pore mode diameter within the above range. It is preferably 0.4 mol / L or more, and more preferably 0.5 mol / L or more.
  • the upper limit of the aluminum ion concentration in the aqueous solution B may be, for example, 2.4 mol / L or less as the total amount of aluminum ions.
  • the amount of aluminum ions in the aqueous solution B is set as the lower limit of the total amount of aluminum ions constituting the above-mentioned salt used in the preparation of the aqueous solution B from the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound. , 0.1 mol or more, more preferably 0.2 mol or more, per 1 mol of the phosphate ion constituting the phosphoric acid-containing compound used in the preparation of the aqueous solution A. As an upper limit, it is preferably 0.5 mol or less, more preferably 0.3 mol or less, per 1 mol of the phosphate ion constituting the phosphoric acid-containing compound used in the preparation of the aqueous solution A.
  • the potassium ion concentration in the aqueous solution B is more than 0.2 mol / L as the lower limit of the total amount of potassium ions constituting the above-mentioned salt used in the preparation of the aqueous solution B from the viewpoint of controlling the pore mode diameter within the above range. Yes, preferably 0.3 mol / L or more, and more preferably 0.5 mol / L or more.
  • the upper limit of the potassium ion concentration in the aqueous solution B may be, for example, 2.4 mol / L or less as the total amount of potassium ions.
  • the concentration of sulfate ion in the aqueous solution B from the viewpoint of controlling the pore mode diameter within the above range, and / or from the viewpoint of reacting with the aqueous solution A to efficiently obtain an aluminum phosphate compound, and / or phosphoric acid.
  • the lower limit of the total amount of sulfate ions constituting the above-mentioned salt used in the preparation of the aqueous solution B is, for example, 1.0 mol / L or more, preferably 1. It is 0.3 mol / L or more, and the upper limit is, for example, 4.8 mol / L or less, preferably 3.0 mol / L or less, and more preferably 2.0 mol / L or less.
  • the liquid property of the aqueous solution B is not particularly limited, but can be prepared, for example, as an acidic solution.
  • the aqueous solution B as an acidic solution may be prepared by dissolving the above-mentioned salt in water, or the above-mentioned salt may be dissolved in water and one of mineral acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid. Alternatively, it may be prepared by adjusting the pH using a plurality of types, or it may be prepared by dissolving the above-mentioned salt in an acidic aqueous solution of the above-mentioned mineral acid prepared in advance.
  • the specific pH of the aqueous solution B is preferably determined in consideration of the pH of the aqueous solution A so that the pH of the mixture obtained by mixing with the above-mentioned aqueous solution A is 2.0 to 4.0. Can be done.
  • the pH of the aqueous solution B may be, for example, 1.5 to 4.0, and may be 2.0 to 3.5.
  • the method for dissolving the above-mentioned salt is not particularly limited, and examples thereof include stirring, shaking, and ultrasonic dissolution.
  • the temperature and pressure conditions for dissolving the above-mentioned salt are not particularly limited, and examples thereof include conditions such as normal temperature and normal pressure and warming and normal pressure.
  • the aqueous solution B is preferably a prepared solution filtered through a filter.
  • the pore diameter of the filter used may be, for example, 0.2 to 3 ⁇ m, or 0.4 to 1 ⁇ m.
  • Aqueous solution A and aqueous solution B produce an aluminum phosphate compound by mixing.
  • it can be preferably mixed by adding the aqueous solution B to the aqueous solution A.
  • the method of addition is not particularly limited, and examples thereof include batch addition, drop addition, partial addition, and any combination thereof.
  • examples thereof include dripping addition, divided addition, and combinations thereof, and more preferably dripping addition.
  • the pH of the obtained mixture of the aqueous solution A and the aqueous solution B is not particularly limited, but is preferably 2.0 to 4.0 from the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound.
  • the produced aluminum phosphate compound is subjected to post-treatment such as separation from the mixture, washing and drying.
  • the method of separation from the mixture, washing, and drying is not particularly limited. Examples of the method of separation from the mixture include filtration and centrifugation.
  • the separated aluminum phosphate compound can be obtained in the form of a precipitate or a gel.
  • Examples of the washing method include washing with water, suspension in an aqueous solution, and centrifugation. Such a cleaning operation can be performed once or a plurality of times.
  • the washed aluminum phosphate compound can be obtained in the form of a precipitate or a gel.
  • Examples of the drying method include a method using a spray dryer and a shelf-type dryer.
  • the aluminum phosphate compound can be granulated into a substantially spherical shape having an average particle diameter (D 50 ) of 50 ⁇ m to 80 ⁇ m, which is preferable because the filtering ability described later is improved.
  • the aluminum phosphate compound according to this embodiment can be suitably used in a wide range of fields as a material such as a solid catalyst, a catalyst carrier, an adsorbent, and a separating material.
  • the aluminum phosphate compound according to this embodiment is suitably used as a carrier for protein purification.
  • the aluminum phosphate compound according to the present embodiment has an optimized adsorption power to the protein and is excellent in both the adsorption power to the protein and the elution property to the eluent. Therefore, the target protein should be purified with a high recovery rate. Can be done.
  • the aluminum phosphate compound according to the present embodiment is, for example, a protein synthesized by a cell-free system and / or a protein expressed using bacteria, yeast, algae, insect cells, mammalian cells, cultured animal cells and the like as hosts. It can be used as a carrier for purification.
  • the type of protein is not particularly limited, and examples thereof include antibody proteins for pharmaceuticals and antigen proteins for vaccines.
  • the antibody protein for pharmaceuticals include antitumor antibodies (eg, trussumab, beltzumab, rituximab, ofatsumumab, setuximab, vanitummab, alemtuzumab, gemtuzumab, ibritsumomab, brentuximab), immunomodulatory antibodies (eg, infliximab, adalimumab, adalimumab).
  • antitumor antibodies eg, trussumab, beltzumab, rituximab, ofatsumumab, setuximab, vanitummab, alemtuzumab, gemtuzumab, ibritsumomab, brentuximab
  • immunomodulatory antibodies eg, infliximab, adalimum
  • Sertrizumab tosirizumab, omalizumab, ecrizumab, basiliximab, natalyzumab, mogamurizumab, nibolumab
  • anti-interleukin antibodies eg, ustequinumab, canaquinumab, sekkinumab
  • anti-cardiovascular regulatory antibodies eg, bebasimab
  • Denosumab anti-viral antibody
  • antigen protein for vaccine examples include those for the following vaccines. Specifically, influenza vaccine, cholera vaccine, mad dog disease vaccine, diphtheria vaccine, meningitis vaccine, tick-mediated encephalitis vaccine, carbon bacillus vaccine, intestinal typhoid vaccine, pneumonia vaccine, tetanus vaccine, human papillomavirus vaccine, pertussis vaccine, Examples thereof include a polio vaccine, a hepatitis A virus vaccine, a hepatitis B virus vaccine, and a corona virus vaccine.
  • proteins used in pharmaceuticals include, for example, albumin, antithrombin, insulins, interferons, interleukins, erythropoetins, granulocyte colony stimulating factors, granulocyte macrophage colony stimulating factors, glucagon, blood coagulation factor VII, etc.
  • proteins include blood coagulation factor VIII, blood coagulation factor IX, growth factors, thrombin, thrombomodulin, uric acid degrading enzyme, fibrinogen, fibrin, parathyroid hormone, follicular stimulating hormone, lysosome enzyme, leptin, DNA degrading enzyme and the like.
  • proteins used for other research purposes include CBD tags, CBP tags, FLAG tags, GFP tags, GST tags, HA tags, His tags, MBP tags, myc tags, RFP tags, and Thioredoxin tags.
  • the aluminum phosphate compound according to the present embodiment can be suitably used as a carrier for protein purification.
  • a known method can be used as a method for purifying a protein using the carrier for purifying a protein according to this embodiment.
  • the protein purification method using the protein purification carrier according to the present embodiment is, in one embodiment, contacting a solution containing a protein with the protein purification carrier to adsorb the protein to the protein purification carrier. Separation of the protein purification carrier adsorbed by the protein by filtration using a column, a cross-flow filter or a dead-end filter, and elution of the protein from the separated protein purification carrier with an eluent. including.
  • the carrier for protein purification according to the present embodiment has an optimized adsorption power for proteins and is excellent not only in adsorption power but also in elution property for eluents, a protein that is widely used as an eluent is used in the protein purification method. be able to. Further, since a commercially available column, cross-flow filter or dead-end filter can be used in the filtration step included in the protein purification method, the protein purification method using the protein purification carrier according to the present embodiment is simple. Has excellent protein purification ability.
  • Example 1 Purified water is added to 56.4 kg of disodium hydrogen phosphate dodecahydrate, stirred, heated to 60 ° C. to dissolve, and a total of 135 L of aqueous solution (phosphate ion concentration: 1.2 mol / L) is prepared. did. This aqueous solution was filtered through a filter having a pore size of 1 ⁇ m to obtain a disodium hydrogen phosphate aqueous solution (aqueous solution A).
  • purified water was added to 44.8 kg of potassium aluminum sulfate dodecahydrate, stirred, heated to 60 ° C. to dissolve, and a total of 123 L of aqueous solution (aluminum ion concentration: 0.77 mol / L, sulfate ion concentration). : 1.5 mol / L, potassium ion concentration: 0.77 mol / L) was prepared.
  • This liquid was filtered through a filter having a pore size of 1 ⁇ m to obtain an aqueous potassium alum sulfate solution (aqueous solution B).
  • aqueous solution A disodium hydrogen phosphate aqueous solution
  • aqueous solution B potassium aluminum sulfate aqueous solution
  • the obtained cake is suspended so as to have a solid content of 10% by mass, and dried and granulated with a spray dryer (OOLD-16 manufactured by Okawara Kakoki) under the conditions of an inlet temperature of 250 ° C., an outlet temperature of 100 ° C., and an atomizer rotation speed of 11000 rpm. Then, the aluminum phosphate compound a was obtained.
  • a spray dryer OOLD-16 manufactured by Okawara Kakoki
  • Example 2 The phosphate ion concentration in the disodium hydrogen phosphate aqueous solution (aqueous solution A) was changed (phosphate ion concentration: 0.82 mol / L) with respect to the production method shown in Example 1, and the potassium aluminum sulfate aqueous solution (aqueous solution B) was changed. ), Other than changing the aluminum ion concentration, sulfate ion concentration, and potassium ion concentration (aluminum ion concentration: 0.52 mol / L, sulfate ion concentration: 1.0 mol / L, potassium ion concentration: 0.52 mol / L) Obtained an aluminum phosphate compound b in the same manner as in Example 1.
  • Comparative Example 1 Water was added to 35.9 g of disodium hydrogen phosphate dodecahydrate and dissolved by stirring to prepare a 1000 mL aqueous solution (phosphate ion concentration: 0.25 mol / L) in total. This aqueous solution was filtered through a filter having a pore size of 0.22 ⁇ m to obtain a disodium hydrogen phosphate aqueous solution (aqueous solution A).
  • aqueous solution of disodium hydrogen phosphate (aqueous solution A) having the above composition was added dropwise over 1 hour while stirring at 700 rpm.
  • the resulting mixture was centrifuged at 2070 xg for 15 minutes and a gelled precipitate was collected.
  • the recovered gel-like substance was put into 0.9 mass / v% physiological saline, suspended using an ultrasonic generator, and washed. Then, centrifugation was performed at 2070 ⁇ g for 15 minutes, and the gel-like substance was recovered.
  • the gel was suspended in physiological saline and centrifuged again under the same conditions.
  • the obtained gel was spread on a tray and dried at 60 ° C. overnight. As a result, a dry gel which is a white crystal was obtained.
  • the dried gel was manually crushed and pulverized to obtain aluminum phosphate compound c.
  • Comparative Example 2 Water was added to 35.9 g of disodium hydrogen phosphate dodecahydrate and dissolved by stirring to prepare a 1000 mL aqueous solution (phosphate ion concentration: 0.25 mol / L) in total. This aqueous solution was filtered through a filter having a pore size of 0.22 ⁇ m to obtain a disodium hydrogen phosphate aqueous solution (aqueous solution A).
  • aqueous solution A disodium hydrogen phosphate aqueous solution
  • aqueous solution B aqueous solution having the above composition
  • the resulting mixture was centrifuged at 2070 xg for 15 minutes and a gelled precipitate was collected.
  • the recovered gel-like substance is put into 0.9 mass / v% physiological saline, suspended and washed using an ultrasonic generator, and then centrifuged at 2070 ⁇ g for 15 minutes to carry out the gel-like substance.
  • the gel was suspended in physiological saline and centrifuged again under the same conditions.
  • the obtained gel was spread on a tray and dried at 60 ° C. overnight. As a result, a dry gel which is a white crystal was obtained.
  • the dried gel was manually crushed and pulverized to obtain aluminum phosphate compound d.
  • Comparative Examples 1 and 2 described above are retests of the methods for producing an aluminum phosphate compound described in Examples 1 and 2 of Patent Document 1 (Japanese Patent No. 66774428) under substantially the same conditions. be.
  • Example 1 and Comparative Example 1 The physical properties of the aluminum phosphate compounds a to d obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the methods shown below, and the performance was evaluated. The appearance of Example 1 and Comparative Example 1 was also observed.
  • ⁇ Pore characteristics by mercury injection method> The aluminum phosphate compounds a to d obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were used as measurement samples of pore characteristics by the mercury intrusion method.
  • the pore distribution of each sample was measured in the range of pore diameter of about 3.6 nm to 200,000 nm by the mercury intrusion method, and the pore mode diameter, cumulative pore volume, average pore diameter, bulk density, apparent density, and porosity were measured. , And skeletal density were obtained.
  • a Polemaster 60GT manufactured by Quantachrome
  • FIG. 1 shows a Log differential pore volume distribution plotted with the horizontal axis as the pore diameter (D) (nm) and the vertical axis as the Log differential pore volume distribution (dV / dragD) (cc / g). In the Log differential pore volume distribution shown in FIG.
  • the mode diameter corresponding to the peak top of the second peak in which the pore diameter D appears in the range of more than 2000 nm to 200,000 nm is the gap between particles.
  • Table 2 shows the measurement results of the pore mode diameter, cumulative pore volume, average pore diameter, bulk density, apparent density, porosity and skeletal density of each aluminum phosphate compound.
  • Each aluminum phosphate compound was used as a measurement sample of the average particle size (D 50) by the laser diffraction method.
  • Each sample was put into a laser diffraction type particle size distribution meter (MT3300EXII: manufactured by Microtrac) so as to have a DV value of 0.1 to 0.6, circulated at a flow rate of 32.5 mL / sec for 10 seconds, and then measured for 20 seconds. sec as measured number two conditions, was measured in purified water, the average of two measured D 50 value was calculated as the average particle size.
  • the measurement results of the average particle size (D 50 ) are shown in Table 2 below.
  • ⁇ Powder X-ray diffraction (XRD)> The aluminum phosphate compound a of Example 1 was pulverized in an agate mortar, filled in a sample cell (made of glass), and the powder X-ray diffraction spectrum was measured under the following measurement conditions. A graph showing the obtained powder X-ray diffraction spectrum is shown in FIG. From FIG. 2, the aluminum phosphate compound a is determined to be amorphous.
  • X-ray tube CuK ⁇
  • Optical system Centralized method
  • Tube voltage / tube current 40kV-30mA
  • Scan range 5-90deg
  • Scan step 0.02 deg
  • Scan speed 40 deg / min
  • Detector 1-dimensional semiconductor detector
  • Measuring device X-ray diffraction analyzer SmartLab (manufactured by Rigaku)
  • the particle shape of the aluminum phosphate compound a of Example 1 is substantially spherical, whereas as shown in FIG. 4, the particles of the aluminum phosphate compound c of Comparative Example 1 which is a pulverized product. It was confirmed that the shape was irregular (non-spherical).
  • Elemental analysis was performed on the aluminum phosphate compound a of Example 1, the aluminum phosphate c of Comparative Example 1 and the aluminum phosphate d of Comparative Example 2 by the acid decomposition / ICP-OES method.
  • SPECTRO ARCOS manufactured by SPECTRO Analytical Instruments was used for the device. The measurement results are shown in Table 1.
  • Test Example 1 [Evaluation of purification ability of GFP protein] After expressing GFP (Green Fluorescent protein) in Escherichia coli (E. coli HB101 K-12 strain: manufactured by BIO-RAD), suspend it in BactYast Lysis Buffer (manufactured by ATTO) to dissolve the cells, and centrifuge. Qing was recovered. As a result, a crude protein solution was obtained. 50 ⁇ L of this crude protein solution was mixed with 6.5 mg of each aluminum phosphate compound prepared in Examples 1 and 2 and Comparative Examples 1 and 2 as a carrier, and the protein was adsorbed.
  • GFP Green Fluorescent protein
  • Escherichia coli E. coli HB101 K-12 strain: manufactured by BIO-RAD
  • BactYast Lysis Buffer manufactured by ATTO
  • the protein solution in which each carrier was suspended was separated into a carrier and a supernatant by centrifugation at 2000 ⁇ g for 5 minutes, and the supernatant was removed.
  • Each carrier was washed 3 times with 50 ⁇ L of a washing solution (BactYast Lysis Buffer). Then, each carrier was washed twice with 50 ⁇ L of an eluate (BactYeast Lysis Buffer to which 80 mM EDTA-2NA was added), and the solution was collected and used as an eluate fraction.
  • the protein concentration of the crude protein solution and the recovered eluted fraction was quantified by the BCA method.
  • the crude protein solution and the recovered eluted fraction were mixed with the same amount of 2 ⁇ sample buffer and boiled at 95 ° C. for 3 minutes. This solution was separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). As the gel, a gel having a uniform concentration of acrylamide (15% gel) was used, and 4 ⁇ L of a crude protein solution and 8 ⁇ L of an elution fraction were applied.
  • GFP recovery rate (%) [GFP concentration of eluted fraction x 2 / GFP concentration of crude protein solution] x 100
  • Test Example 2 [Evaluation of filterability] 5 g of each aluminum phosphate compound prepared in Examples 1 and 2 was suspended in 500 mL of water. To set the membrane filter (Mixed Cellulose Ester ⁇ 47 mm pore diameter 0.2 ⁇ m manufactured by Advantec) in the filter holder and suction filter the suspension using a suction filtration bell and an aspirator (PSA152AB manufactured by Advantec) to filter the entire amount. I recorded the time it took. The results are shown in Table 2.
  • the membrane filter Mated Cellulose Ester ⁇ 47 mm pore diameter 0.2 ⁇ m manufactured by Advantec
  • Examples 1 and 2 having a pore mode diameter in the range of 100 nm to 300 nm have a higher GPF recovery rate (%) than Comparative Examples 1 and 2 having a pore mode diameter of less than 100 nm. It turns out to be expensive.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained.
  • the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Provided are an aluminum phosphate compound exhibiting an excellent ability to purify, a method for producing the same, a carrier for purifying protein, and a method for purifying protein which uses the same. This aluminum phosphate compound exhibits a pore mode diameter in the range of 100-300nm, said pore mode diameter corresponding to the peaks appearing when the pore diameter (D) is in the range of 2,000nm or less in a Log differential pore volume distribution (dV/dlogD) obtained by the mercury press-in method.

Description

リン酸アルミニウム化合物およびその製造方法、並びに、タンパク質精製用担体およびそれを用いたタンパク質精製方法Aluminum phosphate compound and its production method, protein purification carrier and protein purification method using it
 本発明は、リン酸アルミニウム化合物およびその製造方法、並びに、タンパク質精製用担体およびそれを用いたタンパク質精製方法に関する。 The present invention relates to an aluminum phosphate compound and a method for producing the same, a carrier for protein purification, and a protein purification method using the same.
 タンパク質の精製技術として、従来より、塩析法、遠心法、カラムクロマトグラフィー法等の精製法が広く用いられている。タンパク質の中でも医薬品用抗体タンパク質やワクチン用抗原タンパク質については、ヒトに接種した場合の副作用の軽減や昨今の製剤基準の厳格化により、特に高度な精製技術が要求される。 As a protein purification technique, purification methods such as salting out method, centrifugation method, and column chromatography method have been widely used. Among proteins, antibody proteins for pharmaceuticals and antigen proteins for vaccines require particularly advanced purification technology due to the reduction of side effects when inoculated to humans and the stricter formulation standards in recent years.
 特許文献1では、ワクチン等のタンパク質の精製に有用なタンパク質精製用担体として、無機化合物の中からリン酸アルミニウムに着目し、リン酸アルミニウムの構成元素ではない特定のイオンを更に含む水溶液を用いてリン酸アルミニウム化合物を製造する方法を開示している。 Patent Document 1 focuses on aluminum phosphate from among inorganic compounds as a carrier for purifying proteins useful for purifying proteins such as vaccines, and uses an aqueous solution further containing specific ions that are not constituent elements of aluminum phosphate. A method for producing an aluminum phosphate compound is disclosed.
日本国特許第6677428号公報Japanese Patent No. 66774428
 本発明者等による鋭意研究の結果、特許文献1に開示された製造方法を用いて得られるリン酸アルミニウム化合物は、タンパク質に対する吸着力は強いものの、高い回収率においてタンパク質を精製することは困難であり、タンパク質精製用担体として用いるためには精製能力の更なる改善が必要なことがわかった。 As a result of diligent research by the present inventors, the aluminum phosphate compound obtained by using the production method disclosed in Patent Document 1 has a strong adsorption power to the protein, but it is difficult to purify the protein with a high recovery rate. It was found that further improvement of purification ability is required for use as a carrier for protein purification.
 そこで本発明は、精製能力に優れたリン酸アルミニウム化合物およびその製造方法、並びに、タンパク質精製用担体およびそれを用いたタンパク質精製方法を提供することを目的とする。 Therefore, an object of the present invention is to provide an aluminum phosphate compound having excellent purification ability and a method for producing the same, a carrier for protein purification, and a protein purification method using the same.
 本発明の実施形態(以下において、「本実施形態」という。)は、例えば、以下の通りである。
 [1] 水銀圧入法により得られるLog微分細孔容積分布(dV/dlogD)において、細孔直径(D)が2000nm以下の範囲に現れるピークに対応する細孔モード径が100nm~300nmの範囲にあるリン酸アルミニウム化合物。
 [2] 上記細孔モード径が100nm~200nmの範囲にある、[1]に記載のリン酸アルミニウム化合物。
 [3] 平均粒子径(D50)が50μm~80μmの範囲にある、[1]又は[2]に記載のリン酸アルミニウム化合物。
An embodiment of the present invention (hereinafter referred to as “the present embodiment”) is, for example, as follows.
[1] In the Log differential pore volume distribution (dV / dlogD) obtained by the mercury intrusion method, the pore mode diameter corresponding to the peak in which the pore diameter (D) appears in the range of 2000 nm or less is in the range of 100 nm to 300 nm. An aluminum phosphate compound.
[2] The aluminum phosphate compound according to [1], wherein the pore mode diameter is in the range of 100 nm to 200 nm.
[3] The aluminum phosphate compound according to [1] or [2], wherein the average particle size (D 50) is in the range of 50 μm to 80 μm.
 [4] 平均粒子径(D50)が55μm~70μmの範囲にある、[1]又は[2]に記載のリン酸アルミニウム化合物。
 [5] 非晶質である、[1]~[4]のいずれか1項に記載のリン酸アルミニウム化合物。
 [6] 硫黄とカリウムを含有する、[1]~[5]のいずれか1項に記載のリン酸アルミニウム化合物。
 [7] マグネシウムを含有しないか、含有する場合にはその含有率が0.01質量%未満である、[1]~[6]のいずれか1項に記載のリン酸アルミニウム化合物。
[4] The aluminum phosphate compound according to [1] or [2], wherein the average particle size (D 50) is in the range of 55 μm to 70 μm.
[5] The aluminum phosphate compound according to any one of [1] to [4], which is amorphous.
[6] The aluminum phosphate compound according to any one of [1] to [5], which contains sulfur and potassium.
[7] The aluminum phosphate compound according to any one of [1] to [6], wherein magnesium is not contained, or if it is contained, the content thereof is less than 0.01% by mass.
 [8] [1]~[7]のいずれか1項に記載のリン酸アルミニウム化合物を含むタンパク質精製用担体。
 [9] タンパク質が吸着した[8]に記載のタンパク質精製用担体を含む溶液をカラム、クロスフローフィルターまたはデッドエンドフィルターを用いて濾過する工程を含むタンパク質精製方法において用いられるタンパク質精製用担体。
 [10] タンパク質を含む溶液を[8]又は[9]に記載のタンパク質精製用担体に接触させて、上記タンパク質を上記タンパク質精製用担体に吸着させること、
 タンパク質が吸着した上記タンパク質精製用担体をカラム、クロスフローフィルターおよびデッドエンドフィルターのいずれかを用いた濾過により分離すること、および
 分離された上記タンパク質精製用担から上記タンパク質を溶出剤で溶出すること
を含むタンパク質精製方法。
[8] A carrier for purifying a protein containing the aluminum phosphate compound according to any one of [1] to [7].
[9] A protein purification carrier used in a protein purification method comprising a step of filtering a solution containing the protein purification carrier according to [8] on which a protein is adsorbed using a column, a cross-flow filter or a dead-end filter.
[10] The protein-containing solution is brought into contact with the protein purification carrier according to [8] or [9], and the protein is adsorbed on the protein purification carrier.
Separation of the protein-adsorbed carrier for protein purification by filtration using a column, a cross-flow filter or a dead-end filter, and elution of the protein from the separated protein purification carrier with an eluent. Protein purification method including.
 [11] リン酸イオンを含む水溶液Aと、アルミニウムイオン、硫酸イオンおよびカリウムイオンを含む水溶液Bとを混合し、リン酸アルミニウム化合物を含む混合液を得ることを含むリン酸アルミニウム化合物の製造方法であって、上記水溶液A中の前記リン酸イオンの濃度が0.6mol/L超であり、上記水溶液B中の前記アルミニウムイオンの濃度が0.3mol/L超であり、上記カリウムイオンの濃度が0.2mol/L超である製造方法。
 [12] 上記リン酸アルミニウム化合物が[1]~[7]のいずれか1項に記載のリン酸アルミニウム化合物である、[11]に記載の製造方法。
 [13] 前記混合液から前記リン酸アルミニウム化合物を分離すること、分離した前記リン酸アルミニウム化合物を洗浄すること、および、洗浄した前記リン酸アルミニウム化合物をスプレードライヤーを用いて乾燥することを更に含む、[11]または[12]に記載の製造方法。
[11] A method for producing an aluminum phosphate compound, which comprises mixing an aqueous solution A containing a phosphate ion and an aqueous solution B containing an aluminum ion, a sulfate ion and a potassium ion to obtain a mixed solution containing an aluminum phosphate compound. Therefore, the concentration of the phosphate ion in the aqueous solution A is more than 0.6 mol / L, the concentration of the aluminum ion in the aqueous solution B is more than 0.3 mol / L, and the concentration of the potassium ion is more than 0.3 mol / L. A manufacturing method in which the amount is more than 0.2 mol / L.
[12] The production method according to [11], wherein the aluminum phosphate compound is the aluminum phosphate compound according to any one of [1] to [7].
[13] Further comprising separating the aluminum phosphate compound from the mixture, washing the separated aluminum phosphate compound, and drying the washed aluminum phosphate compound using a spray dryer. , [11] or [12].
 本発明により、精製能力に優れたリン酸アルミニウム化合物およびその製造方法、並びに、タンパク質精製用担体およびそれを用いたタンパク質精製方法を提供することが可能となった。 INDUSTRIAL APPLICABILITY According to the present invention, it has become possible to provide an aluminum phosphate compound having excellent purification ability and a method for producing the same, a carrier for protein purification, and a protein purification method using the same.
図1は、実施例1、2及び比較例1、2のリン酸アルミニウム化合物の水銀圧入法によるLog微分細孔容積分布を示すグラフである。FIG. 1 is a graph showing the Log differential pore volume distribution of the aluminum phosphate compounds of Examples 1 and 2 and Comparative Examples 1 and 2 by the mercury intrusion method. 図2は、実施例1のリン酸アルミニウム化合物の粉末X線回折スペクトルを示すグラフである。FIG. 2 is a graph showing a powder X-ray diffraction spectrum of the aluminum phosphate compound of Example 1. 図3は、実施例1のリン酸アルミニウム化合物の走査型電子顕微鏡(SEM)画像である。FIG. 3 is a scanning electron microscope (SEM) image of the aluminum phosphate compound of Example 1. 図4は、比較例1のリン酸アルミニウム化合物の走査型電子顕微鏡(SEM)画像である。FIG. 4 is a scanning electron microscope (SEM) image of the aluminum phosphate compound of Comparative Example 1.
 以下、本発明の実施形態について詳細に説明する。 
 <第1実施形態:リン酸アルミニウム化合物>
 ・細孔モード径
 本実施形態に係るリン酸アルミニウム化合物は、Log微分細孔容積分布(dV/dlogD)の細孔モード径が100nm~300nmの範囲にあるという特定の細孔分布を有する非晶質のリン酸アルミニウム化合物である。
Hereinafter, embodiments of the present invention will be described in detail.
<First Embodiment: Aluminum Phosphate Compound>
-Pore mode diameter The aluminum phosphate compound according to this embodiment is amorphous having a specific pore distribution in which the pore mode diameter of the Log differential pore volume distribution (dV / dlogD) is in the range of 100 nm to 300 nm. It is a quality aluminum phosphate compound.
 本実施形態において、Log微分細孔容積分布の細孔モード径は、水銀圧入法により測定する。具体的には、水銀圧入法による測定結果に基づき、試料の細孔直径(D)を横軸に、Log微分細孔容積(dV/dlogD)を縦軸にプロットした分布曲線を得る。縦軸のLog微分細孔容積(dV/dlogD)は、測定点間の細孔容積の差分(差分細孔容積(dV))が、細孔直径(D)の差分の対数値(dlogD)で除された値である。このLog微分細孔容積分布において、細孔直径が2000nm以下の範囲に現れるピークのピークトップ(dV/dlogDの最大値であり、最大頻度を表す。)に対応する細孔直径を細孔モード径と称する。 In the present embodiment, the pore mode diameter of the Log differential pore volume distribution is measured by the mercury intrusion method. Specifically, based on the measurement result by the mercury intrusion method, a distribution curve is obtained by plotting the pore diameter (D) of the sample on the horizontal axis and the Log differential pore volume (dV / dlogD) on the vertical axis. The Log differential pore volume (dV / dlogD) on the vertical axis is the logarithmic value (dlogD) of the difference in pore volume between measurement points (differential pore volume (dV)) and the difference in pore diameter (D). The value divided. In this Log differential pore volume distribution, the pore diameter corresponding to the peak top (the maximum value of dV / dlogD, which represents the maximum frequency) of the peak appearing in the pore diameter range of 2000 nm or less is the pore mode diameter. It is called.
 後述の比較例1および比較例2はそれぞれ、特許文献1の実施例1および2に記載のリン酸アルミニウム化合物の製造方法をほぼ同様の条件で追試したものであるが、得られたリン酸アルミニウム化合物における細孔モード径はそれぞれ42.9nm、48.3nmと小さい。本発明者等による鋭意研究により、特許文献1に開示された製造方法を用いて得られるリン酸アルミニウム化合物は、細孔モード径が小さいために、タンパク質に対する吸着力が強く、担体からのタンパク質の溶出に用いられる一般的な溶出剤では目的タンパク質を溶出できないため、高い回収率においてタンパク質を精製することが困難であることが見いだされた。 Comparative Example 1 and Comparative Example 2 described later are retests of the methods for producing an aluminum phosphate compound described in Examples 1 and 2 of Patent Document 1 under substantially the same conditions, but the obtained aluminum phosphate was obtained. The pore mode diameters of the compounds are as small as 42.9 nm and 48.3 nm, respectively. The aluminum phosphate compound obtained by using the production method disclosed in Patent Document 1 through diligent research by the present inventors has a small pore mode diameter, so that it has a strong adsorptive power to the protein, and the protein from the carrier can be obtained. It was found that it is difficult to purify the protein with a high recovery rate because the target protein cannot be eluted with the general elution agent used for elution.
 本実施形態に係るリン酸アルミニウム化合物は、細孔直径が制御された特定の細孔分布を有するものであり、前述のとおり、Log微分細孔容積分布(dV/dlogD)の細孔モード径が100nm~300nmの範囲にあることを第一の特徴とする。リン酸アルミニウム化合物の細孔モード径が100nm~300nmの範囲にあるとき、タンパク質などの被精製物に対する吸着力が適正化され、被精製物に対する吸着力と、溶出剤に対する溶出性の双方に優れたリン酸アルミニウム化合物が得られるため、高い回収率で目的被精製物を精製することができる。リン酸アルミニウム化合物の細孔モード径は、好ましくは200nm~300nmである。 The aluminum phosphate compound according to the present embodiment has a specific pore distribution in which the pore diameter is controlled, and as described above, the pore mode diameter of the Log differential pore volume distribution (dV / dlogD) is The first feature is that it is in the range of 100 nm to 300 nm. When the pore mode diameter of the aluminum phosphate compound is in the range of 100 nm to 300 nm, the adsorptive power to the object to be purified such as protein is optimized, and both the adsorptive power to the object to be purified and the elution property to the eluent are excellent. Since the aluminum phosphate compound is obtained, the target product to be purified can be purified with a high recovery rate. The pore mode diameter of the aluminum phosphate compound is preferably 200 nm to 300 nm.
 ・平均粒子径(D50
 本実施形態に係るリン酸アルミニウム化合物は、平均粒子径(D50)が好ましくは50μm~80μmであり、より好ましくは55μm~70μmである。平均粒子径(D50)は、粒子径と小粒子側からの積算頻度との関係を示す積算分布曲線において、積算頻度50体積%に対する粒子直径(体積メジアン径)であり、本実施形態においてはレーザー回折散乱法により求められる。
-Average particle size (D 50 )
The aluminum phosphate compound according to the present embodiment has an average particle size (D 50 ) of preferably 50 μm to 80 μm, and more preferably 55 μm to 70 μm. The average particle diameter (D 50 ) is the particle diameter (volume median diameter) with respect to the integrated frequency of 50% by volume in the integrated distribution curve showing the relationship between the particle diameter and the integrated frequency from the small particle side. Obtained by the laser diffraction scattering method.
 本実施形態に係るリン酸アルミニウム化合物をタンパク質精製用担体として用いた後述するタンパク質精製方法においては、溶液中のタンパク質との接触によりタンパク質が吸着したリン酸アルミニウム化合物は、他の成分からの分離のために濾過される。リン酸アルミニウム化合物の平均粒子径(D50)が上記範囲にある場合、タンパク質が吸着したリン酸アルミニウム化合物の濾過性が向上し、生産性も向上する。 In the protein purification method described later using the aluminum phosphate compound according to the present embodiment as a carrier for protein purification, the aluminum phosphate compound to which the protein is adsorbed by contact with the protein in the solution is separated from other components. To be filtered. When the average particle size (D 50 ) of the aluminum phosphate compound is in the above range, the filterability of the aluminum phosphate compound on which the protein is adsorbed is improved, and the productivity is also improved.
 ・累積細孔容積、平均細孔直径、嵩密度、見かけ密度、気孔率、および骨格密度
 本実施形態に係るリン酸アルミニウム化合物は、タンパク質等の被精製物に対する吸着性をより良好にするなどの観点から、累積細孔容積が好ましくは1.5~3.0mL/g、より好ましくは2.0~2.5mL/gであり、平均細孔直径が好ましくは150~500nm、より好ましくは250~400nmであり、嵩密度が好ましくは0.2~1.0g/mL、より好ましくは0.3~0.5g/mLであり、見かけ密度(真密度)が好ましくは0.3~1.0g/mL、より好ましくは0.5~0.7g/mLであり、気孔率が好ましくは30~70%、より好ましくは40~50%であり、骨格密度が好ましくは1.0~3.0g/mL、より好ましくは1.5~2.5g/mLである。累積細孔容積、平均細孔直径、嵩密度、見かけ密度、気孔率、および骨格密度は、細孔モード径と同様、水銀圧入法によって測定することができる。
-Cumulative pore volume, average pore diameter, bulk density, apparent density, pore ratio, and skeletal density The aluminum phosphate compound according to this embodiment has better adsorptivity to objects to be purified such as proteins. From the viewpoint, the cumulative pore volume is preferably 1.5 to 3.0 mL / g, more preferably 2.0 to 2.5 mL / g, and the average pore diameter is preferably 150 to 500 nm, more preferably 250. It is about 400 nm, the bulk density is preferably 0.2 to 1.0 g / mL, more preferably 0.3 to 0.5 g / mL, and the apparent density (true density) is preferably 0.3 to 1. It is 0 g / mL, more preferably 0.5 to 0.7 g / mL, the porosity is preferably 30 to 70%, more preferably 40 to 50%, and the skeletal density is preferably 1.0 to 3. It is 0 g / mL, more preferably 1.5 to 2.5 g / mL. Cumulative pore volume, average pore diameter, bulk density, apparent density, porosity, and skeletal density can be measured by the mercury intrusion method as well as the pore mode diameter.
 ・リン酸アルミニウム化合物の組成
 本実施形態に係るリン酸アルミニウム化合物は、後述するリン酸イオンを含む水溶液Aと、硫酸イオン、アルミニウムイオンおよびカリウムイオンを含む水溶液Bとを用いた製造方法により製造されるため、リン酸アルミニウムだけでなく、硫黄とカリウムを更に含む。リン酸アルミニウム化合物が硫黄とカリウムを含んで構成されることでタンパク質等の被精製物に対する吸着性が向上し、精製用担体として有用な物質となる。
-Composition of Aluminum Phosphate Compound The aluminum phosphate compound according to the present embodiment is produced by a production method using an aqueous solution A containing a phosphate ion described later and an aqueous solution B containing a sulfate ion, an aluminum ion and a potassium ion. Therefore, it contains not only aluminum phosphate but also sulfur and potassium. Since the aluminum phosphate compound is composed of sulfur and potassium, its adsorptivity to a substance to be purified such as protein is improved, and it becomes a useful substance as a carrier for purification.
 リン酸アルミニウム化合物中の硫黄(硫黄原子)の含有率は特に限定されないが、タンパク質吸着性をより良好にするなどの観点から、好ましくは0.3~5.0質量%であり、より好ましくは1.0~2.0質量%である。 The content of sulfur (sulfur atom) in the aluminum phosphate compound is not particularly limited, but is preferably 0.3 to 5.0% by mass, more preferably from the viewpoint of improving protein adsorptivity. It is 1.0 to 2.0% by mass.
 リン酸アルミニウム化合物中のカリウム(カリウム原子)の含有率は、タンパク質吸着性をより良好にするなどの観点から、好ましくは0.3~5.0質量%であり、より好ましくは0.5~2.0質量%である。 The content of potassium (potassium atom) in the aluminum phosphate compound is preferably 0.3 to 5.0% by mass, more preferably 0.5 to 5.0% by mass, from the viewpoint of improving protein adsorption. It is 2.0% by mass.
 リン酸アルミニウム化合物は、更に他の成分を含んでいてもよい。他の成分としては、水分およびカルシウム等が挙げられる。 The aluminum phosphate compound may further contain other components. Examples of other components include water and calcium.
 ただし、特許文献1に開示された製造方法では、水溶液Bとして上記イオンに加え更にマグネシウムイオンを必須成分として含有する水溶液が使用され、得られるリン酸アルミニウム化合物はマグネシウムを0.01質量%以上の含有率において含有するが(特許文献1の請求項1、3、6等参照)、本実施形態に係るリン酸アルミニウム化合物はマグネシウムを実質的に含有しないことが好ましい。そのメカニズムは定かではないが、マグネシウムが存在すると本実施形態に係るリン酸アルミニウム化合物の精製能力に悪影響を及ぼすためである。 However, in the production method disclosed in Patent Document 1, an aqueous solution containing magnesium ions as an essential component in addition to the above ions is used as the aqueous solution B, and the obtained aluminum phosphate compound contains 0.01% by mass or more of magnesium. Although it is contained in terms of content (see claims 1, 3, 6, etc. of Patent Document 1), it is preferable that the aluminum phosphate compound according to the present embodiment does not substantially contain magnesium. The mechanism is not clear, but the presence of magnesium adversely affects the purification ability of the aluminum phosphate compound according to the present embodiment.
 ここで「マグネシウムを実質的に含有しない」とは、リン酸アルミニウム化合物を製造する過程で不可避的に不純物として混入するマグネシウムを含有する場合まで除くものではないことを意味する。具体的には、本実施形態に係るリン酸アルミニウム化合物は、マグネシウムを含有しないか、含有する場合には0.01質量%未満であることが好ましく、0.003質量%以下であることがより好ましい。 Here, "substantially free of magnesium" means that it does not exclude the case where magnesium is inevitably mixed as an impurity in the process of producing the aluminum phosphate compound. Specifically, the aluminum phosphate compound according to the present embodiment does not contain magnesium, or if it contains magnesium, it is preferably less than 0.01% by mass, and more preferably 0.003% by mass or less. preferable.
 リン酸アルミニウム化合物中のアルミニウムの含有率は、上述の他の成分を含むことを限度として特に限定されないが、タンパク質吸着性をより良好にするなどの観点から、好ましくは8~35質量%であり、より好ましくは10~16質量%である。 The content of aluminum in the aluminum phosphate compound is not particularly limited as long as it contains the above-mentioned other components, but is preferably 8 to 35% by mass from the viewpoint of improving protein adsorption. , More preferably 10 to 16% by mass.
 リン酸アルミニウム化合物中のリンに対するアルミニウムのモル比(Al(mol)/P(mol))としては、好ましくは0.3~1.5であり、より好ましくは0.5~1.0である。 The molar ratio of aluminum to phosphorus in the aluminum phosphate compound (Al (mol) / P (mol)) is preferably 0.3 to 1.5, more preferably 0.5 to 1.0. ..
 <第2実施形態:リン酸アルミニウム化合物の製造方法>
 細孔モード径が100nm~300nmの範囲にあり、特定の細孔分布を有する本実施形態のリン酸アルミニウム化合物は、リン酸イオンを含む水溶液Aと、硫酸イオン、アルミニウムイオンおよびカリウムイオンを含む水溶液Bとを混合することを含むリン酸アルミニウム化合物の製造方法において、水溶液A中のリン酸イオン濃度、および、水溶液B中のアルミニウムイオン濃度およびカリウムイオン濃度を高濃度に設定することにより得ることができる。
<Second Embodiment: Method for producing aluminum phosphate compound>
The aluminum phosphate compound of the present embodiment having a pore mode diameter in the range of 100 nm to 300 nm and having a specific pore distribution is an aqueous solution A containing phosphate ion and an aqueous solution containing sulfate ion, aluminum ion and potassium ion. In the method for producing an aluminum phosphate compound including mixing with B, it can be obtained by setting the phosphate ion concentration in the aqueous solution A and the aluminum ion concentration and the potassium ion concentration in the aqueous solution B to high concentrations. can.
 ・水溶液A
 水溶液Aは、リン酸イオンを含む。水溶液Aは、リン酸含有化合物が溶解された水性溶液として調製することができる。リン酸含有化合物としては、リン酸、リン酸無水素塩、リン酸一水素塩、リン酸二水素塩等が挙げられる。
・ Aqueous solution A
Aqueous solution A contains phosphate ions. The aqueous solution A can be prepared as an aqueous solution in which the phosphoric acid-containing compound is dissolved. Examples of the phosphoric acid-containing compound include phosphoric acid, phosphoric acid-free salt, phosphoric acid monohydrogen salt, and phosphoric acid dihydrogen salt.
 リン酸は、オルトリン酸である。リン酸無水素塩は、水素塩ではないリン酸塩であり、リン酸アンモニウム((NHPO)、リン酸三ナトリウム(NaPO)、リン酸三カリウム(KPO)、ヒドロキシアパタイト(Ca10(PO(OH))等が挙げられる。リン酸一水素塩は、一水素塩のリン酸塩であり、リン酸水素二アンモニウム((NHHPO)、リン酸水素二ナトリウム(NaHPO)、リン酸水素二カリウム(KHPO)、リン酸一水素カルシウム(CaHPO)等が挙げられる。リン酸二水素塩は、二水素塩のリン酸塩であり、リン酸二水素アンモニウム(NHPO)、リン酸二水素ナトリウム(NaHPO)、リン酸二水素カリウム(KHPO)等が挙げられる。 Phosphoric acid is orthophosphoric acid. Phosphate-free salts are phosphates that are not hydrogen salts, such as ammonium phosphate ((NH 4 ) 3 PO 4 ), trisodium phosphate (Na 3 PO 4 ), and tripotassium phosphate (K 3 PO 4). ), Hydroxyapatite (Ca 10 (PO 4 ) 6 (OH) 2 ) and the like. Dicalcium phosphate is a phosphate of monohydrogen salt, diammonium hydrogen phosphate ((NH 4 ) 2 HPO 4 ), disodium hydrogen phosphate (Na 2 HPO 4 ), dipotassium hydrogen phosphate ((NH 4) 2 HPO 4). Examples thereof include K 2 HPO 4 ) and calcium monohydrogen phosphate (CaHPO 4 ). Dihydrogen phosphate is a phosphate dihydrogen, ammonium dihydrogen phosphate (NH 4 H 2 PO 4) , sodium dihydrogen phosphate (NaH 2 PO 4), potassium dihydrogen phosphate (KH 2 PO 4 ) and the like can be mentioned.
 リン酸含有化合物は、無水和物であってもよいし、水和物であってもよい。また、水和物の水和数は特に限定されない。これらリン酸含有化合物は、一種を単独で用いてもよいし、複数種を組み合わせて用いてもよい。 The phosphoric acid-containing compound may be anhydrous or a hydrate. Further, the hydration number of the hydrate is not particularly limited. These phosphoric acid-containing compounds may be used alone or in combination of two or more.
 上述のリン酸含有化合物の中でも、リン酸アルミニウム化合物のタンパク質吸着性をより良好にするなどの観点から、好ましくはリン酸一水素塩が挙げられ、より好ましくはリン酸水素二ナトリウム(NaHPO)が挙げられる。 Among the above-mentioned phosphoric acid-containing compounds, monohydrogen phosphate is preferably mentioned, and disodium hydrogen phosphate (Na 2 HPO) is more preferable, from the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound. 4 ) can be mentioned.
 水溶液A中のリン酸イオン濃度は、細孔モード径を上記範囲に制御する観点から、水溶液Aの調製に用いた上述のリン酸含有化合物を構成するリン酸イオンの総量として、0.6mol/L超であり、好ましくは0.7mol/L以上であり、より好ましくは0.8mol/L以上である。水溶液A中のリン酸イオン濃度の上限値は、リン酸イオンの総量として、例えば1.5mol/L以下であってよい。 The phosphate ion concentration in the aqueous solution A is 0.6 mol / mol / mol as the total amount of the phosphate ions constituting the above-mentioned phosphate-containing compound used in the preparation of the aqueous solution A from the viewpoint of controlling the pore mode diameter within the above range. It is more than L, preferably 0.7 mol / L or more, and more preferably 0.8 mol / L or more. The upper limit of the phosphate ion concentration in the aqueous solution A may be, for example, 1.5 mol / L or less as the total amount of phosphate ions.
 水溶液Aの液性としては特に限定されないが、例えば塩基性溶液として調製することができる。塩基性溶液としての水溶液Aは、上述のリン酸含有化合物を水に溶解させることで調製してもよいし、上述のリン酸化合物を水に溶解させるとともに、水酸化ナトリウム、水酸化カリウム、水酸化カルシウムなどの金属水酸化物の1種又は複数種を用いてpHを調整することにより調製してもよいし、あらかじめ調製した上記金属水酸化物の塩基性水溶液に上述のリン酸化合物を溶解させることで調製してもよい。 The liquid property of the aqueous solution A is not particularly limited, but can be prepared, for example, as a basic solution. The aqueous solution A as a basic solution may be prepared by dissolving the above-mentioned phosphoric acid-containing compound in water, or by dissolving the above-mentioned phosphoric acid compound in water, sodium hydroxide, potassium hydroxide, and water. It may be prepared by adjusting the pH using one or more kinds of metal hydroxides such as calcium oxide, or the above-mentioned phosphoric acid compound is dissolved in a pre-prepared basic aqueous solution of the above-mentioned metal hydroxide. It may be prepared by letting it.
 水溶液Aの具体的なpH(23℃、以下において同様)としては、好ましくは、後述の水溶液Bと混合して得られる混合物のpHが2.0~4.0となるように、水溶液BのpHを考慮して決定することができる。具体的には、水溶液AのpHは、例えば7.5~10.5であってよく、8.5~9.5であってよい。 The specific pH of the aqueous solution A (23 ° C., the same applies hereinafter) is preferably such that the pH of the mixture obtained by mixing with the aqueous solution B described later is 2.0 to 4.0. It can be determined in consideration of pH. Specifically, the pH of the aqueous solution A may be, for example, 7.5 to 10.5 and may be 8.5 to 9.5.
 リン酸含有化合物を溶解させる方法としては、特に限定されず、例えば、撹拌、振とう、超音波溶解等が挙げられる。また、リン酸含有化合物を溶解させるときの温度及び圧力の条件も特に限定されず、例えば、常温常圧下及び加温常圧下等の条件が挙げられる。 The method for dissolving the phosphoric acid-containing compound is not particularly limited, and examples thereof include stirring, shaking, and ultrasonic dissolution. Further, the temperature and pressure conditions for dissolving the phosphoric acid-containing compound are not particularly limited, and examples thereof include conditions such as normal temperature and normal pressure and warming and normal pressure.
 水溶液Aは、調製された溶液をフィルターろ過したものであることが好ましい。用いるフィルターの孔径としては、例えば0.2~3μmであってよく、0.45~1μmであってよい。 The aqueous solution A is preferably a prepared solution filtered through a filter. The pore diameter of the filter used may be, for example, 0.2 to 3 μm, or 0.45 to 1 μm.
 ・水溶液B
 水溶液Bは、アルミニウムイオン、硫酸イオン、およびカリウムイオンを含む。このように、リン酸アルミニウムの構成元素でないカリウムイオンを含む水溶液を用いることによって、得られるリン酸アルミニウム化合物を、特にタンパク質に対する優れた吸着作用を有するタンパク質精製用担体として有用な物質として得ることができる。
・ Aqueous solution B
Aqueous solution B contains aluminum ions, sulfate ions, and potassium ions. As described above, by using an aqueous solution containing potassium ion which is not a constituent element of aluminum phosphate, the obtained aluminum phosphate compound can be obtained as a useful substance as a carrier for protein purification which has an excellent adsorptive action on proteins. can.
 水溶液Bは、アルミニウムイオン、硫酸イオンおよびカリウムイオンを含む1種または2種以上の塩が溶解された水溶液として調製することができる。当該塩としては、単塩であってもよいし複塩であってもよい。 Aqueous solution B can be prepared as an aqueous solution in which one or more salts containing aluminum ion, sulfate ion and potassium ion are dissolved. The salt may be a single salt or a double salt.
 水溶液Bを調製するための塩としては、アルミニウムイオン、硫酸イオンおよびカリウムイオンをそれぞれ単独で含む塩が複数種組み合わされてもよいし、複数種のイオンを含む塩が単独又は複数種組み合わされてもよい。水溶液Bを調製するための塩を2種以上用いる場合、リン酸アルミニウム化合物のタンパク質吸着性をより良好に得る等の観点から、いずれの塩も、硫酸イオンをアニオンとして有するものであることが好ましい。 As the salt for preparing the aqueous solution B, a plurality of types of salts containing aluminum ions, sulfate ions and potassium ions alone may be combined, or salts containing a plurality of types of ions may be used alone or in combination of a plurality of types. May be good. When two or more salts for preparing the aqueous solution B are used, it is preferable that each salt has a sulfate ion as an anion from the viewpoint of obtaining better protein adsorption of the aluminum phosphate compound. ..
 アルミニウムイオンを含む塩としては、例えば、水酸化アルミニウム(Al(OH))、酸化アルミニウム(Al)、硫酸アルミニウム(Al(SO)、塩化アルミニウム(AlCl)、硝酸アルミニウム(Al(NO)、硫酸カリウムアルミニウム(AlK(SO)等が挙げられ、好ましくは、硫酸アルミニウム(Al(SO)、硫酸カリウムアルミニウム(AlK(SO)が挙げられ、より好ましくは、硫酸カリウムアルミニウム(AlK(SO)が挙げられる。 Examples of the salt containing aluminum ions include aluminum hydroxide (Al (OH) 3 ), aluminum oxide (Al 2 O 3 ), aluminum sulfate (Al 2 (SO 4 ) 3 ), aluminum chloride (AlCl 3 ), and nitrate. Examples thereof include aluminum (Al (NO 3 ) 3 ), potassium aluminum sulfate (AlK (SO 4 ) 2 ), and the like, preferably aluminum sulfate (Al 2 (SO 4 ) 3 ), potassium aluminum sulfate (AlK (SO 4 )). 2 ) is mentioned, and more preferably, potassium aluminum sulfate (AlK (SO 4 ) 2 ) is mentioned.
 硫酸イオンを含む塩としては、例えば、上述の硫酸アルミニウム(Al(SO)、硫酸カリウムアルミニウム(AlK(SO)に加え、硫酸カリウム等が挙げられ、より好ましくは、硫酸カリウムアルミニウム(AlK(SO)が挙げられる。 Examples of the salt containing sulfate ion include potassium sulfate and the like in addition to the above-mentioned aluminum sulfate (Al 2 (SO 4 ) 3 ) and potassium aluminum sulfate (AlK (SO 4 ) 2), and more preferably, sulfate. Potassium aluminum (AlK (SO 4 ) 2 ) can be mentioned.
 カリウムイオンを含む塩としては、上述の硫酸カリウムアルミニウム(AlK(SO)、硫酸カリウムに加え、水酸化カリウム(KOH)、塩化カリウム(KCl)、硝酸カリウム(KNO)等が挙げられ、好ましくは、硫酸カリウムアルミニウム(AlK(SO)、硫酸カリウムが挙げられ、より好ましくは、硫酸カリウムアルミニウム(AlK(SO)が挙げられる。 Examples of the salt containing potassium ion include potassium hydroxide (KOH), potassium chloride (KCl), potassium nitrate (KNO 3 ) and the like in addition to the above-mentioned potassium aluminum sulfate (AlK (SO 4 ) 2) and potassium sulfate. Preferred are potassium aluminum sulfate (AlK (SO 4 ) 2 ), potassium sulfate, and more preferably potassium aluminum sulfate (AlK (SO 4 ) 2 ).
 上述の塩は、無水和物であってもよいし、水和物であってもよい。また、水和物の水和数は特に限定されない。 The above-mentioned salt may be anhydrous or a hydrate. Further, the hydration number of the hydrate is not particularly limited.
 水溶液B中のアルミニウムイオン濃度は、細孔モード径を上記範囲に制御する観点から、水溶液Bの調製に用いた上述の塩を構成するアルミニウムイオンの総量として、0.3mol/L超であり、好ましくは0.4mol/L以上であり、より好ましくは0.5mol/L以上である。水溶液B中のアルミニウムイオン濃度の上限値は、アルミニウムイオンの総量として、例えば2.4mol/L以下であってよい。 The aluminum ion concentration in the aqueous solution B is more than 0.3 mol / L as the total amount of aluminum ions constituting the above-mentioned salt used in the preparation of the aqueous solution B from the viewpoint of controlling the pore mode diameter within the above range. It is preferably 0.4 mol / L or more, and more preferably 0.5 mol / L or more. The upper limit of the aluminum ion concentration in the aqueous solution B may be, for example, 2.4 mol / L or less as the total amount of aluminum ions.
 また、水溶液Bにおけるアルミニウムイオンの量としては、リン酸アルミニウム化合物のタンパク質吸着性をより良好にするなどの観点から、水溶液Bの調製に用いた上述の塩を構成するアルミニウムイオンの総量の下限として、水溶液Aの調製に用いたリン酸含有化合物を構成するリン酸イオン1mol当たり、好ましくは0.1mol以上であり、より好ましくは0.2mol以上である。上限として、水溶液Aの調製に用いたリン酸含有化合物を構成するリン酸イオン1mol当たり、好ましくは0.5mol以下であり、より好ましくは0.3mol以下である。 The amount of aluminum ions in the aqueous solution B is set as the lower limit of the total amount of aluminum ions constituting the above-mentioned salt used in the preparation of the aqueous solution B from the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound. , 0.1 mol or more, more preferably 0.2 mol or more, per 1 mol of the phosphate ion constituting the phosphoric acid-containing compound used in the preparation of the aqueous solution A. As an upper limit, it is preferably 0.5 mol or less, more preferably 0.3 mol or less, per 1 mol of the phosphate ion constituting the phosphoric acid-containing compound used in the preparation of the aqueous solution A.
 水溶液B中のカリウムイオン濃度は、細孔モード径を上記範囲に制御する観点から、水溶液Bの調製に用いた上述の塩を構成するカリウムイオンの総量の下限として、0.2mol/L超であり、好ましくは0.3mol/L以上であり、より好ましくは0.5mol/L以上である。水溶液B中のカリウムイオン濃度の上限値は、カリウムイオンの総量として、例えば2.4mol/L以下であってよい。 The potassium ion concentration in the aqueous solution B is more than 0.2 mol / L as the lower limit of the total amount of potassium ions constituting the above-mentioned salt used in the preparation of the aqueous solution B from the viewpoint of controlling the pore mode diameter within the above range. Yes, preferably 0.3 mol / L or more, and more preferably 0.5 mol / L or more. The upper limit of the potassium ion concentration in the aqueous solution B may be, for example, 2.4 mol / L or less as the total amount of potassium ions.
 水溶液B中の硫酸イオンの濃度としては、細孔モード径を上記範囲に制御する観点、及び/又は、水溶液Aと反応させて効率的にリン酸アルミニウム化合物を得る観点、及び/又は、リン酸アルミニウム化合物のタンパク質吸着性をより良好に得る等の観点から、水溶液Bの調製に用いた上述の塩を構成する硫酸イオンの総量の下限として、例えば1.0mol/L以上であり、好ましくは1.3mol/L以上であり、上限として、例えば4.8mol/L以下であり、好ましくは3.0mol/L以下であり、より好ましくは2.0mol/L以下である。 Regarding the concentration of sulfate ion in the aqueous solution B, from the viewpoint of controlling the pore mode diameter within the above range, and / or from the viewpoint of reacting with the aqueous solution A to efficiently obtain an aluminum phosphate compound, and / or phosphoric acid. From the viewpoint of obtaining better protein adsorption of the aluminum compound, the lower limit of the total amount of sulfate ions constituting the above-mentioned salt used in the preparation of the aqueous solution B is, for example, 1.0 mol / L or more, preferably 1. It is 0.3 mol / L or more, and the upper limit is, for example, 4.8 mol / L or less, preferably 3.0 mol / L or less, and more preferably 2.0 mol / L or less.
 水溶液Bの液性としては特に限定されないが、例えば酸性溶液として調製することができる。酸性溶液としての水溶液Bは、上述の塩を水に溶解させることで調製してもよいし、上述の塩を水に溶解させるとともに、塩酸、硝酸、硫酸、リン酸等の鉱酸の1種又は複数種を用いてpHを調整することにより調製してもよいし、あらかじめ調製した上記鉱酸の酸性水溶液に上述の塩を溶解させることで調製してもよい。水溶液Bの具体的なpHとしては、好ましくは、前述の水溶液Aと混合して得られる混合物のpHが2.0~4.0となるように、水溶液AのpHを考慮して決定することができる。具体的には、水溶液BのpHは、例えば1.5~4.0であってよく、2.0~3.5であってよい。 The liquid property of the aqueous solution B is not particularly limited, but can be prepared, for example, as an acidic solution. The aqueous solution B as an acidic solution may be prepared by dissolving the above-mentioned salt in water, or the above-mentioned salt may be dissolved in water and one of mineral acids such as hydrochloric acid, nitric acid, sulfuric acid and phosphoric acid. Alternatively, it may be prepared by adjusting the pH using a plurality of types, or it may be prepared by dissolving the above-mentioned salt in an acidic aqueous solution of the above-mentioned mineral acid prepared in advance. The specific pH of the aqueous solution B is preferably determined in consideration of the pH of the aqueous solution A so that the pH of the mixture obtained by mixing with the above-mentioned aqueous solution A is 2.0 to 4.0. Can be done. Specifically, the pH of the aqueous solution B may be, for example, 1.5 to 4.0, and may be 2.0 to 3.5.
 上述の塩を溶解させる方法としては、特に限定されず、例えば、撹拌、振とう、超音波溶解等が挙げられる。また、上述の塩を溶解させるときの温度及び圧力の条件も特に限定されず、例えば、常温常圧下及び加温常圧下等の条件が挙げられる。 The method for dissolving the above-mentioned salt is not particularly limited, and examples thereof include stirring, shaking, and ultrasonic dissolution. Further, the temperature and pressure conditions for dissolving the above-mentioned salt are not particularly limited, and examples thereof include conditions such as normal temperature and normal pressure and warming and normal pressure.
 水溶液Bは、調製された溶液をフィルターろ過したものであることが好ましい。用いるフィルターの孔径としては、例えば0.2~3μmであってよく、0.4~1μmであってよい。 The aqueous solution B is preferably a prepared solution filtered through a filter. The pore diameter of the filter used may be, for example, 0.2 to 3 μm, or 0.4 to 1 μm.
 ・混合
 水溶液A及び水溶液Bは、混合することで、リン酸アルミニウム化合物を生じる。リン酸アルミニウム化合物のタンパク質吸着性をより良好にするなどの観点から、好ましくは、水溶液Aに対して水溶液Bを添加することで混合することができる。添加方法としては特に限定されず、一括添加、滴下添加、分割添加、及びそれらの任意の組み合わせが挙げられるが、リン酸アルミニウム化合物のタンパク質吸着性をより良好にするなどの観点から、好ましくは、滴下添加、分割添加、及びそれらの組み合わせが挙げられ、より好ましくは滴下添加が挙げられる。
-Mixing Aqueous solution A and aqueous solution B produce an aluminum phosphate compound by mixing. From the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound, it can be preferably mixed by adding the aqueous solution B to the aqueous solution A. The method of addition is not particularly limited, and examples thereof include batch addition, drop addition, partial addition, and any combination thereof. However, from the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound, it is preferable. Examples thereof include dripping addition, divided addition, and combinations thereof, and more preferably dripping addition.
 得られた水溶液Aと水溶液Bとの混合物のpHは特に限定されないが、リン酸アルミニウム化合物のタンパク質吸着性をより良好にするなどの観点から、好ましくは2.0~4.0である。水溶液Aと水溶液Bとの混合によって、リン酸アルミニウム化合物は、沈殿物またはゲルとして得ることができる。 The pH of the obtained mixture of the aqueous solution A and the aqueous solution B is not particularly limited, but is preferably 2.0 to 4.0 from the viewpoint of improving the protein adsorptivity of the aluminum phosphate compound. By mixing the aqueous solution A and the aqueous solution B, the aluminum phosphate compound can be obtained as a precipitate or a gel.
 ・後処理
 生成したリン酸アルミニウム化合物は、混合物からの分離、洗浄、乾燥等の後処理に供される。混合物からの分離、洗浄、乾燥の方法としては特に限定されない。混合物からの分離の方法としては、例えば、ろ過や遠心分離が挙げられる。分離されたリン酸アルミニウム化合物は、沈殿物またはゲルの状態で得ることができる。洗浄の方法としては、水洗、あるいは水溶液への懸濁および遠心分離が挙げられる。このような洗浄操作は、1回又は複数回行うことができる。洗浄されたリン酸アルミニウム化合物は、沈殿物またはゲルの状態で得ることができる。乾燥の方法としては、スプレードライヤー、棚式乾燥機を用いた方法等が挙げられる。なかでもスプレードライヤーによれば、リン酸アルミニウム化合物を、50μm~80μmの平均粒子径(D50)を有する略球状に造粒することができ、後述のろ過性能力が向上するため好ましい。
-Post-treatment The produced aluminum phosphate compound is subjected to post-treatment such as separation from the mixture, washing and drying. The method of separation from the mixture, washing, and drying is not particularly limited. Examples of the method of separation from the mixture include filtration and centrifugation. The separated aluminum phosphate compound can be obtained in the form of a precipitate or a gel. Examples of the washing method include washing with water, suspension in an aqueous solution, and centrifugation. Such a cleaning operation can be performed once or a plurality of times. The washed aluminum phosphate compound can be obtained in the form of a precipitate or a gel. Examples of the drying method include a method using a spray dryer and a shelf-type dryer. Among them, according to the spray dryer, the aluminum phosphate compound can be granulated into a substantially spherical shape having an average particle diameter (D 50 ) of 50 μm to 80 μm, which is preferable because the filtering ability described later is improved.
 本実施形態に係るリン酸アルミニウム化合物は、例えば固体触媒、触媒担体、吸着材、分離材などの材料として幅広い分野において好適に使用することができる。 The aluminum phosphate compound according to this embodiment can be suitably used in a wide range of fields as a material such as a solid catalyst, a catalyst carrier, an adsorbent, and a separating material.
 <第3実施形態:タンパク質精製用担体>
 本実施形態に係るリン酸アルミニウム化合物は、タンパク質精製用担体として好適に用いられる。上述の通り、本実施形態に係るリン酸アルミニウム化合物はタンパク質に対する吸着力が適正化され、タンパク質に対する吸着力と、溶出剤に対する溶出性の双方に優れるため、高い回収率で目的タンパク質を精製することができる。
<Third Embodiment: Carrier for protein purification>
The aluminum phosphate compound according to this embodiment is suitably used as a carrier for protein purification. As described above, the aluminum phosphate compound according to the present embodiment has an optimized adsorption power to the protein and is excellent in both the adsorption power to the protein and the elution property to the eluent. Therefore, the target protein should be purified with a high recovery rate. Can be done.
 本実施形態に係るリン酸アルミニウム化合物は、例えば、無細胞系により合成したタンパク質、及び/又は、細菌、酵母、藻類、昆虫細胞、哺乳類細胞、及び動物培養細胞等を宿主として発現させたタンパク質の精製用担体として用いることができる。 The aluminum phosphate compound according to the present embodiment is, for example, a protein synthesized by a cell-free system and / or a protein expressed using bacteria, yeast, algae, insect cells, mammalian cells, cultured animal cells and the like as hosts. It can be used as a carrier for purification.
 タンパク質の種類としては特に限定されないが、例えば、医薬品用抗体タンパク質、ワクチン用抗原タンパク質等が挙げられる。
 医薬品用抗体タンパク質としては、例えば、抗腫瘍抗体(例えば、トラスツズマブ、ベルツズマブ、リツキシマブ、オファツムマブ、セツキシマブ、バニツムマブ、アレムツズマブ、ゲムツズマブ、イブリツモマブ、ブレンツキシマブ)、免疫調節抗体(例えば、インフリキシマブ、アダリムマブ、ゴリムマブ、セルトリズマブ、トシリズマブ、オマリズマブ、エクリズマブ、バシリキシマブ、ナタリズマブ、モガムリズマブ、ニボルマブ)、抗インターロイキン抗体(例えば、ウステキヌマブ、カナキヌマブ、セクキヌマブ)、抗心血管系調節抗体(例えば、ベバシズマブ)、抗骨関連分子抗体(例えば、デノスマブ)、抗ウイルス抗体(例えば、バリビズマブ)等が挙げられる。
The type of protein is not particularly limited, and examples thereof include antibody proteins for pharmaceuticals and antigen proteins for vaccines.
Examples of the antibody protein for pharmaceuticals include antitumor antibodies (eg, trussumab, beltzumab, rituximab, ofatsumumab, setuximab, vanitummab, alemtuzumab, gemtuzumab, ibritsumomab, brentuximab), immunomodulatory antibodies (eg, infliximab, adalimumab, adalimumab). Sertrizumab, tosirizumab, omalizumab, ecrizumab, basiliximab, natalyzumab, mogamurizumab, nibolumab), anti-interleukin antibodies (eg, ustequinumab, canaquinumab, sekkinumab), anti-cardiovascular regulatory antibodies (eg, bebasimab) , Denosumab), anti-viral antibody (eg, basiliximab) and the like.
 ワクチン用抗原タンパク質としては、例えば以下のワクチン向けのものが挙げられる。具体的には、インフルエンザワクチン、コレラワクチン、狂犬病ワクチン、ジフテリアワクチン、髄膜炎菌ワクチン、ダニ媒介性脳炎ワクチン、炭素菌ワクチン、腸チフスワクチン、肺炎球菌ワクチン、破傷風ワクチン、ヒトパピローマウイルスワクチン、百日咳ワクチン、ポリオワクチン、A型肝炎ウイルスワクチン、B型肝炎ウイルスワクチン、コロナウイルスワクチン等が挙げられる。 Examples of the antigen protein for vaccine include those for the following vaccines. Specifically, influenza vaccine, cholera vaccine, mad dog disease vaccine, diphtheria vaccine, meningitis vaccine, tick-mediated encephalitis vaccine, carbon bacillus vaccine, intestinal typhoid vaccine, pneumonia vaccine, tetanus vaccine, human papillomavirus vaccine, pertussis vaccine, Examples thereof include a polio vaccine, a hepatitis A virus vaccine, a hepatitis B virus vaccine, and a corona virus vaccine.
 その他医薬品等に用いられるタンパク質としては、例えばアルブミン、アンチトロンビン、インスリン類、インターフェロン類、インターロイキン、エリスロポエチン類、顆粒球コロニー刺激因子類、顆粒球マクロファージコロニー刺激因子、グルカゴン、血液凝固第VII因子、血液凝固第VIII因子、血液凝固第IX因子、成長因子類、トロンビン、トロンボモジュリン、尿酸分解酵素、フィブリノゲン、フィブリン、副甲状腺ホルモン、卵胞刺激ホルモン、リソソーム酵素、レプチン、DNA分解酵素等が挙げられる。 Other proteins used in pharmaceuticals include, for example, albumin, antithrombin, insulins, interferons, interleukins, erythropoetins, granulocyte colony stimulating factors, granulocyte macrophage colony stimulating factors, glucagon, blood coagulation factor VII, etc. Examples thereof include blood coagulation factor VIII, blood coagulation factor IX, growth factors, thrombin, thrombomodulin, uric acid degrading enzyme, fibrinogen, fibrin, parathyroid hormone, follicular stimulating hormone, lysosome enzyme, leptin, DNA degrading enzyme and the like.
 また、その他研究用途に用いられるタンパク質としては、例えばCBDタグ、CBPタグ、FLAGタグ、GFPタグ、GSTタグ、HAタグ、Hisタグ、MBPタグ、mycタグ、RFPタグ、Thioredoxinタグが挙げられる。 Examples of proteins used for other research purposes include CBD tags, CBP tags, FLAG tags, GFP tags, GST tags, HA tags, His tags, MBP tags, myc tags, RFP tags, and Thioredoxin tags.
 <第4実施形態:タンパク質の精製方法>
 本実施形態に係るリン酸アルミニウム化合物は、上述の通り、タンパク質精製用担体として好適に用いることができる。この本実施形態に係るタンパク質精製用担体を用いたタンパク質の精製方法としては、公知の方法を用いることができる。
<Fourth Embodiment: Protein purification method>
As described above, the aluminum phosphate compound according to the present embodiment can be suitably used as a carrier for protein purification. As a method for purifying a protein using the carrier for purifying a protein according to this embodiment, a known method can be used.
 本実施形態に係るタンパク質精製用担体を用いたタンパク質精製方法は、一形態において、タンパク質を含有する溶液をタンパク質精製用担体に接触させて、上記タンパク質を上記タンパク質精製用担体に吸着させること、タンパク質が吸着した上記タンパク質精製用担体をカラム、クロスフローフィルターおよびデッドエンドフィルターのいずれかを用いた濾過により分離すること、および、分離された上記タンパク質精製用担から上記タンパク質を溶出剤で溶出することを含む。 The protein purification method using the protein purification carrier according to the present embodiment is, in one embodiment, contacting a solution containing a protein with the protein purification carrier to adsorb the protein to the protein purification carrier. Separation of the protein purification carrier adsorbed by the protein by filtration using a column, a cross-flow filter or a dead-end filter, and elution of the protein from the separated protein purification carrier with an eluent. including.
 本実施形態に係るタンパク質精製用担体はタンパク質に対する吸着力が適正化され、吸着力だけでなく溶出剤に対する溶出性にも優れるため、タンパク質精製方法においては溶出剤として汎用されているものを使用することができる。また、タンパク質精製方法が含む濾過工程では、市販のカラム、クロスフローフィルター又はデッドエンドフィルターを使用することができるため、本実施形態に係るタンパク質精製用担体を用いたタンパク質精製方法は簡便でありながらタンパク質の精製能力に優れている。 Since the carrier for protein purification according to the present embodiment has an optimized adsorption power for proteins and is excellent not only in adsorption power but also in elution property for eluents, a protein that is widely used as an eluent is used in the protein purification method. be able to. Further, since a commercially available column, cross-flow filter or dead-end filter can be used in the filtration step included in the protein purification method, the protein purification method using the protein purification carrier according to the present embodiment is simple. Has excellent protein purification ability.
 <リン酸アルミニウム化合物の製造>
 実施例1
 リン酸水素二ナトリウム12水和物56.4kgに精製水を加えて撹拌し、60℃に加温して溶解し、全体で135Lの水溶液(リン酸イオン濃度:1.2mol/L)を調製した。この水溶液を孔径1μmのフィルターでろ過し、リン酸水素二ナトリウム水溶液(水溶液A)を得た。
<Manufacturing of aluminum phosphate compound>
Example 1
Purified water is added to 56.4 kg of disodium hydrogen phosphate dodecahydrate, stirred, heated to 60 ° C. to dissolve, and a total of 135 L of aqueous solution (phosphate ion concentration: 1.2 mol / L) is prepared. did. This aqueous solution was filtered through a filter having a pore size of 1 μm to obtain a disodium hydrogen phosphate aqueous solution (aqueous solution A).
 次に硫酸カリウムアルミニウム12水和物44.8kgに精製水を加えて撹拌し、60℃に加温して溶解し、全体で123Lの水溶液(アルミニウムイオン濃度:0.77mol/L、硫酸イオン濃度:1.5mol/L、カリウムイオン濃度:0.77mol/L)を調製した。この液を孔径1μmのフィルターでろ過し、硫酸カリウムアルミニウム水溶液(水溶液B)を得た。 Next, purified water was added to 44.8 kg of potassium aluminum sulfate dodecahydrate, stirred, heated to 60 ° C. to dissolve, and a total of 123 L of aqueous solution (aluminum ion concentration: 0.77 mol / L, sulfate ion concentration). : 1.5 mol / L, potassium ion concentration: 0.77 mol / L) was prepared. This liquid was filtered through a filter having a pore size of 1 μm to obtain an aqueous potassium alum sulfate solution (aqueous solution B).
 上記リン酸水素二ナトリウム水溶液(水溶液A)を60℃に維持し150rpmで撹拌しながら、上記硫酸カリウムアルミニウム水溶液(水溶液B)を1時間かけて滴下した。得られた混合物をフィルタープレスでろ過した。さらにろ過ケーキを、ろ液導電率が5mS/cmになるまで精製水で水洗した。 While maintaining the disodium hydrogen phosphate aqueous solution (aqueous solution A) at 60 ° C. and stirring at 150 rpm, the potassium aluminum sulfate aqueous solution (aqueous solution B) was added dropwise over 1 hour. The resulting mixture was filtered through a filter press. Further, the filtered cake was washed with purified water until the filtrate conductivity became 5 mS / cm.
 得られたケーキを固形分率10質量%になるよう懸濁し、スプレードライヤー(大川原化工機製OUDL‐16)にて入口温度250℃、出口温度100℃、アトマイザー回転数11000rpmの条件で乾燥・造粒し、リン酸アルミニウム化合物aを得た。 The obtained cake is suspended so as to have a solid content of 10% by mass, and dried and granulated with a spray dryer (OOLD-16 manufactured by Okawara Kakoki) under the conditions of an inlet temperature of 250 ° C., an outlet temperature of 100 ° C., and an atomizer rotation speed of 11000 rpm. Then, the aluminum phosphate compound a was obtained.
 実施例2
 実施例1に示した製造方法に対し、リン酸水素二ナトリウム水溶液(水溶液A)中のリン酸イオン濃度を変更し(リン酸イオン濃度:0.82mol/L)、硫酸カリウムアルミニウム水溶液(水溶液B)中のアルミニウムイオン濃度、硫酸イオン濃度、およびカリウムイオン濃度を変更(アルミニウムイオン濃度:0.52mol/L、硫酸イオン濃度:1.0mol/L、カリウムイオン濃度:0.52mol/L)した以外は、実施例1と同様の方法でリン酸アルミニウム化合物bを得た。
Example 2
The phosphate ion concentration in the disodium hydrogen phosphate aqueous solution (aqueous solution A) was changed (phosphate ion concentration: 0.82 mol / L) with respect to the production method shown in Example 1, and the potassium aluminum sulfate aqueous solution (aqueous solution B) was changed. ), Other than changing the aluminum ion concentration, sulfate ion concentration, and potassium ion concentration (aluminum ion concentration: 0.52 mol / L, sulfate ion concentration: 1.0 mol / L, potassium ion concentration: 0.52 mol / L) Obtained an aluminum phosphate compound b in the same manner as in Example 1.
 比較例1
 リン酸水素二ナトリウム12水和物35.9gに水を加えて撹拌して溶解し、全体で1000mLの水溶液(リン酸イオン濃度:0.25mol/L)を調製した。この水溶液を孔径0.22μmのフィルターでろ過し、リン酸水素二ナトリウム水溶液(水溶液A)を得た。
Comparative Example 1
Water was added to 35.9 g of disodium hydrogen phosphate dodecahydrate and dissolved by stirring to prepare a 1000 mL aqueous solution (phosphate ion concentration: 0.25 mol / L) in total. This aqueous solution was filtered through a filter having a pore size of 0.22 μm to obtain a disodium hydrogen phosphate aqueous solution (aqueous solution A).
 次に硫酸カリウムアルミニウム12水和物28.4g及び硫酸マグネシウム7水和物9.86gに水を加えて撹拌して溶解し、全体で1000mLの水溶液(アルミニウムイオン濃度:0.06mol/L、硫酸イオン濃度:0.2mol/L、カリウムイオン濃度:0.06mol/L、マグネシウムイオン濃度:0.08mol/L)を調製した。この水溶液を孔径0.22μmのフィルターでろ過し、上記組成の水溶液(水溶液B)を得た。 Next, water was added to 28.4 g of potassium aluminum sulfate dodecahydrate and 9.86 g of magnesium sulfate heptahydrate and stirred to dissolve them, and a total of 1000 mL of an aqueous solution (aluminum ion concentration: 0.06 mol / L, sulfuric acid) was added. Ion concentration: 0.2 mol / L, potassium ion concentration: 0.06 mol / L, magnesium ion concentration: 0.08 mol / L) were prepared. This aqueous solution was filtered through a filter having a pore size of 0.22 μm to obtain an aqueous solution (aqueous solution B) having the above composition.
 上記リン酸水素二ナトリウム水溶液(水溶液A)を700rpmで撹拌しながら、上記組成の水溶液(水溶液B)を1時間かけて滴下した。得られた混合物を2070×gで15分間遠心分離し、ゲル状の沈殿物を回収した。回収したゲル状物を0.9mass/v%生理食塩水に投入し、超音波発生装置を用いて懸濁させて洗浄した。その後、2070×gで15分間遠心分離を行って、ゲル状物を回収した。ゲル状物の生理食塩水への懸濁及び遠心分離を同じ条件でもう1回行った。得られたゲル状物をトレーに広げて1晩、60℃で乾燥させた。これによって、白色結晶である乾燥ゲルを得た。乾燥ゲルを、手作業で破砕・粉末化し、リン酸アルミニウム化合物cを得た。 The aqueous solution of disodium hydrogen phosphate (aqueous solution A) having the above composition was added dropwise over 1 hour while stirring at 700 rpm. The resulting mixture was centrifuged at 2070 xg for 15 minutes and a gelled precipitate was collected. The recovered gel-like substance was put into 0.9 mass / v% physiological saline, suspended using an ultrasonic generator, and washed. Then, centrifugation was performed at 2070 × g for 15 minutes, and the gel-like substance was recovered. The gel was suspended in physiological saline and centrifuged again under the same conditions. The obtained gel was spread on a tray and dried at 60 ° C. overnight. As a result, a dry gel which is a white crystal was obtained. The dried gel was manually crushed and pulverized to obtain aluminum phosphate compound c.
 比較例2
 リン酸水素二ナトリウム12水和物35.9gに水を加えて撹拌して溶解し、全体で1000mLの水溶液(リン酸イオン濃度:0.25mol/L)を調製した。この水溶液を孔径0.22μmのフィルターでろ過し、リン酸水素二ナトリウム水溶液(水溶液A)を得た。
 次に硫酸カリウムアルミニウム12水和物28.4g及び硫酸マグネシウム7水和物9.86gに水を加えて撹拌して溶解し、全体で1000mLの水溶液(アルミニウムイオン濃度:0.06mol/L、硫酸イオン濃度:0.2mol/L、カリウムイオン濃度:0.06mol/L、マグネシウムイオン濃度:0.08mol/L)を調製した。この水溶液を孔径0.22μmのフィルターでろ過し、上記組成の水溶液(水溶液B)を得た。
Comparative Example 2
Water was added to 35.9 g of disodium hydrogen phosphate dodecahydrate and dissolved by stirring to prepare a 1000 mL aqueous solution (phosphate ion concentration: 0.25 mol / L) in total. This aqueous solution was filtered through a filter having a pore size of 0.22 μm to obtain a disodium hydrogen phosphate aqueous solution (aqueous solution A).
Next, water was added to 28.4 g of potassium aluminum sulfate dodecahydrate and 9.86 g of magnesium sulfate heptahydrate and stirred to dissolve them, and a total of 1000 mL of an aqueous solution (aluminum ion concentration: 0.06 mol / L, sulfuric acid) was added. Ion concentration: 0.2 mol / L, potassium ion concentration: 0.06 mol / L, magnesium ion concentration: 0.08 mol / L) were prepared. This aqueous solution was filtered through a filter having a pore size of 0.22 μm to obtain an aqueous solution (aqueous solution B) having the above composition.
 上記リン酸水素二ナトリウム水溶液(水溶液A)を200rpmで撹拌しながら、約2秒で上記組成の水溶液(水溶液B)を添加した。得られた混合物を2070×gで15分間遠心分離し、ゲル状の沈殿物を回収した。回収したゲル状物を0.9mass/v%生理食塩水に投入し、超音波発生装置を用いて懸濁させて洗浄し、その後、2070×gで15分間遠心分離を行って、ゲル状物を回収した。ゲル状物の生理食塩水への懸濁及び遠心分離を同じ条件でもう1回行った。得られたゲル状物をトレーに広げて1晩、60℃で乾燥させた。これによって、白色結晶である乾燥ゲルを得た。乾燥ゲルを、手作業で破砕・粉末化し、リン酸アルミニウム化合物dを得た。 While stirring the disodium hydrogen phosphate aqueous solution (aqueous solution A) at 200 rpm, the aqueous solution (aqueous solution B) having the above composition was added in about 2 seconds. The resulting mixture was centrifuged at 2070 xg for 15 minutes and a gelled precipitate was collected. The recovered gel-like substance is put into 0.9 mass / v% physiological saline, suspended and washed using an ultrasonic generator, and then centrifuged at 2070 × g for 15 minutes to carry out the gel-like substance. Was recovered. The gel was suspended in physiological saline and centrifuged again under the same conditions. The obtained gel was spread on a tray and dried at 60 ° C. overnight. As a result, a dry gel which is a white crystal was obtained. The dried gel was manually crushed and pulverized to obtain aluminum phosphate compound d.
 なお、上掲の比較例1および2はそれぞれ、特許文献1(日本国特許第6677428号)の実施例1および2に記載のリン酸アルミニウム化合物の製造方法をほぼ同様の条件で追試したものである。 In addition, Comparative Examples 1 and 2 described above are retests of the methods for producing an aluminum phosphate compound described in Examples 1 and 2 of Patent Document 1 (Japanese Patent No. 66774428) under substantially the same conditions. be.
 実施例1、2、および比較例1、2で得られたリン酸アルミニウム化合物a~dについて、以下に示す方法で物性を測定し、性能を評価した。実施例1及び比較例1については外観も観察した。 The physical properties of the aluminum phosphate compounds a to d obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were measured by the methods shown below, and the performance was evaluated. The appearance of Example 1 and Comparative Example 1 was also observed.
 <水銀圧入法による細孔特性>
 実施例1、2および比較例1、2で得られたリン酸アルミニウム化合物a~dを、水銀圧入法による細孔特性の測定サンプルとして用いた。水銀圧入法により、細孔直径約3.6nm~200000nmの範囲について各サンプルの細孔分布を測定し、細孔モード径、累積細孔容積、平均細孔直径、嵩密度、見かけ密度、気孔率、および骨格密度を得た。装置には、Poremaster60GT(Quantachrome社製)を使用した。
<Pore characteristics by mercury injection method>
The aluminum phosphate compounds a to d obtained in Examples 1 and 2 and Comparative Examples 1 and 2 were used as measurement samples of pore characteristics by the mercury intrusion method. The pore distribution of each sample was measured in the range of pore diameter of about 3.6 nm to 200,000 nm by the mercury intrusion method, and the pore mode diameter, cumulative pore volume, average pore diameter, bulk density, apparent density, and porosity were measured. , And skeletal density were obtained. A Polemaster 60GT (manufactured by Quantachrome) was used as an apparatus.
 [細孔モード径]
 各サンプル0.1~0.3gを正確に量り、測定セルに封入し、水銀の接触角を140°、水銀の表面張力を480dyn/cmとして、水銀圧入法により得られた各サンプルの測定結果に基づき、横軸を細孔直径(D)(nm)、縦軸をLog微分細孔容積分布(dV/dlogD)(cc/g)としてプロットしたLog微分細孔容積分布を図1に示す。図1に示されるLog微分細孔容積分布において、細孔直径(D)が3.6nm~2000nm以下の範囲に現れる第1ピークのピークトップ(dV/dlogDの最大値)に対応するモード径を、リン酸アルミニウム化合物の細孔モード径として求めた。結果を後掲の表2に示す。
[Pore mode diameter]
Accurately weigh 0.1 to 0.3 g of each sample, enclose it in a measurement cell, set the contact angle of mercury to 140 °, and set the surface tension of mercury to 480 dyn / cm, and the measurement results of each sample obtained by the mercury intrusion method. FIG. 1 shows a Log differential pore volume distribution plotted with the horizontal axis as the pore diameter (D) (nm) and the vertical axis as the Log differential pore volume distribution (dV / dragD) (cc / g). In the Log differential pore volume distribution shown in FIG. 1, the mode diameter corresponding to the peak top (maximum value of dV / dlogD) of the first peak appearing in the range of the pore diameter (D) of 3.6 nm to 2000 nm or less is set. , Determined as the pore mode diameter of the aluminum phosphate compound. The results are shown in Table 2 below.
 なお、図1に示す細Log微分細孔容積分布(dV/dlogD)において、細孔直径Dが2000nm超~200000nmの範囲に現れる第2ピークのピークトップに対応するモード径は、粒子間の隙間の空隙モード径である。 In the fine Log differential pore volume distribution (dV / dlogD) shown in FIG. 1, the mode diameter corresponding to the peak top of the second peak in which the pore diameter D appears in the range of more than 2000 nm to 200,000 nm is the gap between particles. The void mode diameter of.
 各リン酸アルミニウム化合物の細孔モード径、累積細孔容積、平均細孔直径、嵩密度、見かけ密度、気孔率および骨格密度の測定結果を後掲の表2に示す。 Table 2 below shows the measurement results of the pore mode diameter, cumulative pore volume, average pore diameter, bulk density, apparent density, porosity and skeletal density of each aluminum phosphate compound.
 <平均粒子径(D50)>
 各リン酸アルミニウム化合物を、レーザー回折法による平均粒子径(D50)の測定サンプルとして用いた。各サンプルをレーザー回折式粒度分布計(MT3300EXII:Microtrac社製)にDV値0.1~0.6になるように投入し、流速32.5mL/秒で10秒間循環させた後、測定時間20秒、測定回数2回の条件で、精製水中で測定を行い、2回測定したD50値の平均を平均粒子径として算出した。平均粒子径(D50)の測定結果を後掲の表2に示す。
<Average particle size (D 50 )>
Each aluminum phosphate compound was used as a measurement sample of the average particle size (D 50) by the laser diffraction method. Each sample was put into a laser diffraction type particle size distribution meter (MT3300EXII: manufactured by Microtrac) so as to have a DV value of 0.1 to 0.6, circulated at a flow rate of 32.5 mL / sec for 10 seconds, and then measured for 20 seconds. sec as measured number two conditions, was measured in purified water, the average of two measured D 50 value was calculated as the average particle size. The measurement results of the average particle size (D 50 ) are shown in Table 2 below.
 <粉末X線回折(XRD)>
 実施例1のリン酸アルミニウム化合物aをメノウ乳鉢で粉砕した後、試料セル(ガラス製)に充填し、以下の測定条件で粉末X線回折スペクトルを測定した。得られた粉末X線回折スペクトルを表すグラフを図2に示す。図2からリン酸アルミニウム化合物aは非晶質と判断される。
<Powder X-ray diffraction (XRD)>
The aluminum phosphate compound a of Example 1 was pulverized in an agate mortar, filled in a sample cell (made of glass), and the powder X-ray diffraction spectrum was measured under the following measurement conditions. A graph showing the obtained powder X-ray diffraction spectrum is shown in FIG. From FIG. 2, the aluminum phosphate compound a is determined to be amorphous.
 [測定条件]
 X線管球    :CuKα
 光学系     :集中法
 管電圧・管電流 :40kV-30mA
 スキャン範囲  :5-90deg
 スキャンステップ:0.02deg
 スキャンスピード:40deg/分
 検出器     :1次元半導体検出器
 測定装置:X線回折分析装置 SmartLab(Rigaku製)
[Measurement condition]
X-ray tube: CuKα
Optical system: Centralized method Tube voltage / tube current: 40kV-30mA
Scan range: 5-90deg
Scan step: 0.02 deg
Scan speed: 40 deg / min Detector: 1-dimensional semiconductor detector Measuring device: X-ray diffraction analyzer SmartLab (manufactured by Rigaku)
 <電子顕微鏡観察>
 実施例1のリン酸アルミニウム化合物a及び比較例1のリン酸アルミニウムcについて、電界放出型走査電子顕微鏡(FE-SEM)法により外観を観察した。各試料を採取し、1000倍視野をFE-SEMにて観察及び撮影した。装置には、FE-SEM SU8220(日立ハイテク製)を使用した。実施例1のリン酸アルミニウム化合物aのSEM写真を図3に、比較例1のリン酸アルミニウム化合物cのSEM写真を図4に示す。
<Electron microscope observation>
The appearance of the aluminum phosphate compound a of Example 1 and the aluminum phosphate c of Comparative Example 1 was observed by a field emission scanning electron microscope (FE-SEM) method. Each sample was collected, and a 1000x field of view was observed and photographed by FE-SEM. As an apparatus, FE-SEM SU8220 (manufactured by Hitachi High-Tech) was used. The SEM photograph of the aluminum phosphate compound a of Example 1 is shown in FIG. 3, and the SEM photograph of the aluminum phosphate compound c of Comparative Example 1 is shown in FIG.
 図3に示される通り、実施例1のリン酸アルミニウム化合物aの粒子形状は略球形であるのに対し、図4に示される通り、粉砕物である比較例1のリン酸アルミニウム化合物cの粒子形状は不定形(非球形)であることが確認された。 As shown in FIG. 3, the particle shape of the aluminum phosphate compound a of Example 1 is substantially spherical, whereas as shown in FIG. 4, the particles of the aluminum phosphate compound c of Comparative Example 1 which is a pulverized product. It was confirmed that the shape was irregular (non-spherical).
 <元素分析>
 実施例1のリン酸アルミニウム化合物a、比較例1のリン酸アルミニウムcおよび比較例2のリン酸アルミニウムdについて、酸分解/ICP-OES法により元素分析を行った。装置にはSPECTRO ARCOS(SPECTRO Analytical Instruments社製)を使用した。測定結果を表1に示す。
<Elemental analysis>
Elemental analysis was performed on the aluminum phosphate compound a of Example 1, the aluminum phosphate c of Comparative Example 1 and the aluminum phosphate d of Comparative Example 2 by the acid decomposition / ICP-OES method. SPECTRO ARCOS (manufactured by SPECTRO Analytical Instruments) was used for the device. The measurement results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 試験例1 [GFPタンパク質の精製能力評価]
 大腸菌(E.coli HB101 K-12株:BIO‐RAD社製)にGFP(Green Fluorescent protein)を発現させた後、BactYeast Lysis Buffer(ATTO社製)に懸濁して菌体を溶解し、遠心上清を回収した。これによって、粗タンパク質液を得た。この粗タンパク質液50μLと、担体として実施例1、2および比較例1、2で作製した各リン酸アルミニウム化合物6.5mgを混合して、タンパク質を吸着させた。
Test Example 1 [Evaluation of purification ability of GFP protein]
After expressing GFP (Green Fluorescent protein) in Escherichia coli (E. coli HB101 K-12 strain: manufactured by BIO-RAD), suspend it in BactYast Lysis Buffer (manufactured by ATTO) to dissolve the cells, and centrifuge. Qing was recovered. As a result, a crude protein solution was obtained. 50 μL of this crude protein solution was mixed with 6.5 mg of each aluminum phosphate compound prepared in Examples 1 and 2 and Comparative Examples 1 and 2 as a carrier, and the protein was adsorbed.
 各担体を懸濁したタンパク質液を2000×gで5分の遠心操作で担体と上清に分離し、上清を取り除いた。各担体を、洗浄液(BactYeast Lysis Buffer)を50μLずつ用いて3回洗浄した。その後、各担体を、溶出液(80mM EDTA-2NAを添加したBactYeast Lysis Buffer)を50μLずつ用いて2回洗浄し、その液を回収し、溶出画分とした。粗タンパク質液及び回収した溶出画分のタンパク質濃度を、BCA法により定量した。さらに、粗タンパク質液及び回収した溶出画分を、同量の2×サンプルバッファーと混和し、95℃で3分ボイリングした。この液をSDS-ポリアクリルアミド電気泳動法(SDS-PAGE)で分離した。ゲルとしては、アクリルアミドの濃度が均一なゲル(15%ゲル)を用い、粗タンパク質液4μLおよび溶出画分8μLをそれぞれアプライした。 The protein solution in which each carrier was suspended was separated into a carrier and a supernatant by centrifugation at 2000 × g for 5 minutes, and the supernatant was removed. Each carrier was washed 3 times with 50 μL of a washing solution (BactYast Lysis Buffer). Then, each carrier was washed twice with 50 μL of an eluate (BactYeast Lysis Buffer to which 80 mM EDTA-2NA was added), and the solution was collected and used as an eluate fraction. The protein concentration of the crude protein solution and the recovered eluted fraction was quantified by the BCA method. Further, the crude protein solution and the recovered eluted fraction were mixed with the same amount of 2 × sample buffer and boiled at 95 ° C. for 3 minutes. This solution was separated by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). As the gel, a gel having a uniform concentration of acrylamide (15% gel) was used, and 4 μL of a crude protein solution and 8 μL of an elution fraction were applied.
 得られたゲルをCBB染色液で染色した後脱色し、デンシトメトリーによって各レーンのGFP濃度を算出し、以下の計算式によってGFPの回収率を計算した。結果を表2に示す。
 GFPの回収率(%)=[溶出画分のGFP濃度×2/粗タンパク質液のGFP濃度]×100
The obtained gel was stained with a CBB staining solution and then decolorized, the GFP concentration in each lane was calculated by densitometry, and the GFP recovery rate was calculated by the following formula. The results are shown in Table 2.
GFP recovery rate (%) = [GFP concentration of eluted fraction x 2 / GFP concentration of crude protein solution] x 100
 試験例2 [ろ過性評価]
 実施例1および2で作製した各リン酸アルミニウム化合物5gを、500mLの水に懸濁した。メンブレンフィルター(Advantec社製Mixed Cellulose Ester φ47mm 孔径0.2μm)をフィルターホルダーにセットし、吸引ろ過鐘とアスピレーター(Advantec社製 PSA152AB)を用いて懸濁液を吸引ろ過し、全量をろ過するのにかかった時間を記録した。結果を表2に示す。
Test Example 2 [Evaluation of filterability]
5 g of each aluminum phosphate compound prepared in Examples 1 and 2 was suspended in 500 mL of water. To set the membrane filter (Mixed Cellulose Ester φ47 mm pore diameter 0.2 μm manufactured by Advantec) in the filter holder and suction filter the suspension using a suction filtration bell and an aspirator (PSA152AB manufactured by Advantec) to filter the entire amount. I recorded the time it took. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2から、例えば、細孔モード径が100nm~300nmの範囲にある実施例1及び2は、細孔モード径が100nm未満である比較例1及び2に比べ、GPFの回収率(%)が高いことがわかる。 From Table 2, for example, Examples 1 and 2 having a pore mode diameter in the range of 100 nm to 300 nm have a higher GPF recovery rate (%) than Comparative Examples 1 and 2 having a pore mode diameter of less than 100 nm. It turns out to be expensive.
 なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. In addition, each embodiment may be carried out in combination as appropriate, in which case the combined effect can be obtained. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent elements are deleted from all the constituent elements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent elements are deleted can be extracted as an invention.

Claims (10)

  1.  水銀圧入法により得られるLog微分細孔容積分布(dV/dlogD)において、細孔直径(D)が2000nm以下の範囲に現れるピークに対応する細孔モード径が100nm~300nmの範囲にあるリン酸アルミニウム化合物。 Phosphorus having a pore mode diameter in the range of 100 nm to 300 nm corresponding to a peak in which the pore diameter (D) appears in the range of 2000 nm or less in the Log differential pore volume distribution (dV / dlogD) obtained by the mercury intrusion method. Aluminum compound.
  2.  前記細孔モード径が100nm~200nmの範囲にある、請求項1に記載のリン酸アルミニウム化合物。 The aluminum phosphate compound according to claim 1, wherein the pore mode diameter is in the range of 100 nm to 200 nm.
  3.  平均粒子径(D50)が50μm~80μmの範囲にある、請求項1又は2に記載のリン酸アルミニウム化合物。 The aluminum phosphate compound according to claim 1 or 2, wherein the average particle size (D 50) is in the range of 50 μm to 80 μm.
  4.  平均粒子径(D50)が55μm~70μmの範囲にある、請求項1又は2に記載のリン酸アルミニウム化合物。 The aluminum phosphate compound according to claim 1 or 2, wherein the average particle size (D 50) is in the range of 55 μm to 70 μm.
  5.  非晶質である、請求項1~4のいずれか1項に記載のリン酸アルミニウム化合物。 The aluminum phosphate compound according to any one of claims 1 to 4, which is amorphous.
  6.  請求項1~5のいずれか1項に記載のリン酸アルミニウム化合物を含むタンパク質精製用担体。 A carrier for protein purification containing the aluminum phosphate compound according to any one of claims 1 to 5.
  7.  タンパク質が吸着した請求項6に記載のタンパク質精製用担体を含む溶液をカラム、クロスフローフィルターまたはデッドエンドフィルターを用いて濾過する工程を含むタンパク質精製方法において用いられるタンパク質精製用担体。 A protein purification carrier used in a protein purification method comprising a step of filtering a solution containing the protein purification carrier according to claim 6 on which a protein is adsorbed using a column, a cross-flow filter or a dead-end filter.
  8.  タンパク質を含む溶液を請求項6又は7に記載のタンパク質精製用担体に接触させて、前記タンパク質を前記タンパク質精製用担体に吸着させること、
     タンパク質が吸着した前記タンパク質精製用担体をカラム、クロスフローフィルターおよびデッドエンドフィルターのいずれかを用いた濾過により分離すること、および
     分離された前記タンパク質精製用担から前記タンパク質を溶出剤で溶出すること
    を含むタンパク質精製方法。
    Contacting the protein-containing solution with the protein purification carrier according to claim 6 or 7, and adsorbing the protein on the protein purification carrier.
    Separation of the protein-adsorbed carrier for protein purification by filtration using a column, a cross-flow filter or a dead-end filter, and elution of the protein from the separated protein purification carrier with an eluent. Protein purification method including.
  9.  リン酸イオンを含む水溶液Aと、アルミニウムイオン、硫酸イオンおよびカリウムイオンを含む水溶液Bとを混合し、リン酸アルミニウム化合物を含む混合液を得ることを含むリン酸アルミニウム化合物の製造方法であって、前記水溶液A中の前記リン酸イオンの濃度が0.6mol/L超であり、前記水溶液B中の前記アルミニウムイオンの濃度が0.3mol/L超であり、前記カリウムイオンの濃度が0.2mol/L超である製造方法。 A method for producing an aluminum phosphate compound, which comprises mixing an aqueous solution A containing a phosphate ion and an aqueous solution B containing an aluminum ion, a sulfate ion and a potassium ion to obtain a mixed solution containing an aluminum phosphate compound. The concentration of the phosphate ion in the aqueous solution A is more than 0.6 mol / L, the concentration of the aluminum ion in the aqueous solution B is more than 0.3 mol / L, and the concentration of the potassium ion is 0.2 mol. A manufacturing method that exceeds / L.
  10.  前記リン酸アルミニウム化合物が請求項1~5のいずれか1項に記載のリン酸アルミニウム化合物である、請求項9に記載の製造方法。 The production method according to claim 9, wherein the aluminum phosphate compound is the aluminum phosphate compound according to any one of claims 1 to 5.
PCT/JP2020/024422 2020-06-22 2020-06-22 Aluminum phosphate compound and method for producing same, carrier for purifying protein and method for purifying protein which uses same WO2021260772A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020563728A JP6882816B1 (en) 2020-06-22 2020-06-22 Aluminum phosphate compound and its production method, protein purification carrier and protein purification method using it
PCT/JP2020/024422 WO2021260772A1 (en) 2020-06-22 2020-06-22 Aluminum phosphate compound and method for producing same, carrier for purifying protein and method for purifying protein which uses same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024422 WO2021260772A1 (en) 2020-06-22 2020-06-22 Aluminum phosphate compound and method for producing same, carrier for purifying protein and method for purifying protein which uses same

Publications (1)

Publication Number Publication Date
WO2021260772A1 true WO2021260772A1 (en) 2021-12-30

Family

ID=76083915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024422 WO2021260772A1 (en) 2020-06-22 2020-06-22 Aluminum phosphate compound and method for producing same, carrier for purifying protein and method for purifying protein which uses same

Country Status (2)

Country Link
JP (1) JP6882816B1 (en)
WO (1) WO2021260772A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219717A (en) * 1992-11-04 1994-08-09 Grace Gmbh Aluminum phosphate composition with high fine pore volume and large pore diameter, preparation thereof and use thereof
JP2008184368A (en) * 2007-01-30 2008-08-14 Tokuyama Corp Crystalline aluminum phosphate porous structure and its manufacturing method
CN102249207A (en) * 2010-12-21 2011-11-23 王莉 Method for preparing aluminium phosphate coproduct calcium phosphate through alum mud hydrolysis filter cakes
CN103663400A (en) * 2013-12-15 2014-03-26 浙江大学 Preparation method of porous aluminum phosphate block
WO2019225667A1 (en) * 2018-05-23 2019-11-28 一般財団法人阪大微生物病研究会 Aluminum phosphate compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06219717A (en) * 1992-11-04 1994-08-09 Grace Gmbh Aluminum phosphate composition with high fine pore volume and large pore diameter, preparation thereof and use thereof
JP2008184368A (en) * 2007-01-30 2008-08-14 Tokuyama Corp Crystalline aluminum phosphate porous structure and its manufacturing method
CN102249207A (en) * 2010-12-21 2011-11-23 王莉 Method for preparing aluminium phosphate coproduct calcium phosphate through alum mud hydrolysis filter cakes
CN103663400A (en) * 2013-12-15 2014-03-26 浙江大学 Preparation method of porous aluminum phosphate block
WO2019225667A1 (en) * 2018-05-23 2019-11-28 一般財団法人阪大微生物病研究会 Aluminum phosphate compound

Also Published As

Publication number Publication date
JPWO2021260772A1 (en) 2021-12-30
JP6882816B1 (en) 2021-06-02

Similar Documents

Publication Publication Date Title
JP6677428B1 (en) Aluminum phosphate compound
KR100898218B1 (en) Ceramic Particle Group and Method for Production Thereof and Use Thereof
JPS6270212A (en) Calcium phosphate based hydroxyapatite and production thereof
Brečević et al. Influence of gelatin on the precipitation of amorphous calcium phosphate
JPH0524844A (en) Production of hydrated zirconia sol and zirconia powder
JP6882816B1 (en) Aluminum phosphate compound and its production method, protein purification carrier and protein purification method using it
JP2007314359A (en) Calcium carbonate/zeolite-based compound composite, its production method and article using the same
JP2004330113A (en) Production method of adsorbent and adsorbent
Puvvada et al. Effect of temperature on morphology of triethanolamine-assisted synthesized hydroxyapatite nanoparticles
US5073357A (en) Process for producing hydroxylapatites
JP5544813B2 (en) Method for producing spherical hydroxyapatite
JPWO2004065306A1 (en) Composite particle and method for producing the same
JP4257412B2 (en) Preparation method of particle size controlled carbonate apatite fine particles
RU2780217C1 (en) Method for obtaining a fine suspension of hydroxyapatite
RU2588525C1 (en) Method of producing nano-sized calcium-deficient carbonate-containing hydroxyapatite
CN101104526A (en) Amino magnetic nano particle with metal ion fixed on surface of the same and preparation method thereof
CN1066453C (en) Process for producing ascorbic acid derivative
JPH0832552B2 (en) Hydroxyapatite fine single crystal and method for producing the same
JP2959111B2 (en) Acicular hydroxyapatite
JPH04243902A (en) Production of flocculate of fluoride fine particle
JP3032814B2 (en) Manufacturing method of acid resistant filter aid
JP4366105B2 (en) Granular apatite aiming at DDS and its production method
JP3892651B2 (en) Basic protein adsorbent and method for producing the same
JPH04182306A (en) Hydroxyapatite aggregate
JP2000336174A (en) Production of globular polymer beads coated with hydroxyapatite

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020563728

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941837

Country of ref document: EP

Kind code of ref document: A1