WO2021256146A1 - Spun-bonded nonwoven fabric and sanitary material - Google Patents
Spun-bonded nonwoven fabric and sanitary material Download PDFInfo
- Publication number
- WO2021256146A1 WO2021256146A1 PCT/JP2021/018742 JP2021018742W WO2021256146A1 WO 2021256146 A1 WO2021256146 A1 WO 2021256146A1 JP 2021018742 W JP2021018742 W JP 2021018742W WO 2021256146 A1 WO2021256146 A1 WO 2021256146A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- nonwoven fabric
- spunbonded nonwoven
- fibers
- fiber
- present
- Prior art date
Links
- 239000004745 nonwoven fabric Substances 0.000 title claims abstract description 176
- 239000000463 material Substances 0.000 title claims abstract description 23
- 239000000835 fiber Substances 0.000 claims abstract description 208
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 76
- 238000005452 bending Methods 0.000 claims description 20
- 238000010521 absorption reaction Methods 0.000 abstract description 35
- 238000001035 drying Methods 0.000 abstract description 22
- 238000000034 method Methods 0.000 description 33
- 239000010410 layer Substances 0.000 description 21
- -1 polytrimethylene terephthalate Polymers 0.000 description 18
- 229920005992 thermoplastic resin Polymers 0.000 description 18
- 239000004743 Polypropylene Substances 0.000 description 12
- 238000005259 measurement Methods 0.000 description 11
- 229920001155 polypropylene Polymers 0.000 description 11
- 239000002131 composite material Substances 0.000 description 10
- 238000011156 evaluation Methods 0.000 description 10
- 230000000694 effects Effects 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 238000009987 spinning Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 230000002209 hydrophobic effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000470 constituent Substances 0.000 description 6
- 238000001816 cooling Methods 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 5
- 229920001038 ethylene copolymer Polymers 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 238000007789 sealing Methods 0.000 description 5
- 206010016322 Feeling abnormal Diseases 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002844 melting Methods 0.000 description 4
- 230000008018 melting Effects 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004952 Polyamide Substances 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical group C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000002736 nonionic surfactant Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 239000002344 surface layer Substances 0.000 description 2
- 210000004243 sweat Anatomy 0.000 description 2
- 239000004753 textile Substances 0.000 description 2
- 239000004953 Aliphatic polyamide Substances 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 229920003231 aliphatic polyamide Polymers 0.000 description 1
- 229920003232 aliphatic polyester Polymers 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920002961 polybutylene succinate Polymers 0.000 description 1
- 239000004631 polybutylene succinate Substances 0.000 description 1
- 229920009537 polybutylene succinate adipate Polymers 0.000 description 1
- 239000004630 polybutylene succinate adipate Substances 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 229920001610 polycaprolactone Polymers 0.000 description 1
- 239000004632 polycaprolactone Substances 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000035807 sensation Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 210000002700 urine Anatomy 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F13/00—Bandages or dressings; Absorbent pads
- A61F13/15—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
- A61F13/51—Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the outer layers of the pads
- A61F13/511—Topsheet, i.e. the permeable cover or layer facing the skin
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/016—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/14—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
Definitions
- the present invention relates to a spunbonded nonwoven fabric that has both excellent water absorption and quick-drying properties and a soft touch, and is particularly suitable for sanitary material applications, and sanitary materials using the same.
- a spunbonded nonwoven fabric having a laminated structure of fiber layers containing long fibers for the purpose of imparting water absorption and quick-drying to the nonwoven fabric, the distance between the hydrophobic layer containing the hydrophobic fibers and the flatness and flatness.
- a spunbonded nonwoven fabric composed of a hydrophilic layer containing hydrophilic fibers having a ratio in a specific range and having the hydrophobic layer arranged on the surface of the nonwoven fabric has been proposed (see Patent Document 1).
- a higher average non-woven fabric diameter is provided between the first and third non-woven fabric constituent layers containing fibers having an average non-woven fabric diameter in a specific range and the first and third non-woven fabric layers.
- An absorbent article containing a spunbonded nonwoven fabric for arranging a second nonwoven fabric constituent layer containing the fine fibers of the above has been proposed (see Patent Document 2).
- Patent Document 2 relates to a spunbonded nonwoven fabric having a structure in which a nonwoven fabric layer composed of fibers having different average single fiber diameters is laminated.
- this non-woven fabric since this non-woven fabric is used for a barrier cuff, it has a structure that prevents fluid from strike through, that is, has a structure that does not allow moisture to pass through, and liquid residue is likely to occur on the surface of the non-woven fabric, so that water absorption and quick-drying are insufficient. Met. In addition, the softness of the surface that touches the skin was not sufficient.
- an object of the present invention has been made in view of the above circumstances, and is a spunbond having sufficient water absorption and quick-drying property to maintain comfort when worn, and having a soft touch. It is an object of the present invention to provide a spunbonded nonwoven fabric which is a nonwoven fabric and is preferably used as a sanitary material.
- the present inventors have a fused portion and a non-fused portion in the spunbonded nonwoven fabric, and the fibers constituting one surface (A). And the ratio of the average single fiber diameters of the fibers constituting the other surface (B), and the contact angle between the surface (A) and the water of the surface (B) within a specific range, and the surface (A). It has been found that by setting the degree of bending of the constituent fibers within a specific range, the non-woven fabric has sufficient water absorption and quick-drying property to maintain comfort when worn, and has a soft touch feeling.
- the spunbonded nonwoven fabric of the present invention has a fused portion and a non-fused portion, and has an average single fiber diameter (Da) of fibers on one surface (A) and an average single fiber of fibers on the other surface (B).
- the ratio (Da / Db) to the diameter (Db) is 1.1 or more, the contact angles of the surface (A) and the surface (B) with water are both 30 ° or less, and the surface ( The degree of bending of the fiber of A) is 1.1 or more.
- the diameter of the maximum inscribed circle of the non-fused portion is 2.0 mm or more.
- the thickness (Tu) of the spunbonded nonwoven fabric in the non-fused portion is 0.5 mm or more.
- the ratio (Tu / Tm) of the thickness (Tu) of the spunbonded nonwoven fabric in the non-fused portion to the thickness (Tm) of the spunbonded nonwoven fabric in the fused portion Is 2.0 or more.
- the tortuosity of the fibers on the surface (B) is 1.1 or less.
- the sanitary material of the present invention is at least partially composed of the above-mentioned spunbonded nonwoven fabric.
- the surface (A) is arranged toward the skin side of the wearer.
- the present invention it is possible to obtain a spunbonded nonwoven fabric which is excellent in water absorption and quick-drying property and soft touch, and which is particularly suitable for sanitary material applications, and sanitary materials using the same.
- FIG. 1 is a top conceptual diagram illustrating a method for determining the maximum inscribed circle of a non-fused portion in one embodiment of the spunbonded nonwoven fabric of the present invention.
- FIG. 2 is a top conceptual diagram illustrating a method for determining the maximum inscribed circle of the non-fused portion in another embodiment of the spunbonded nonwoven fabric of the present invention.
- FIG. 3 is a top conceptual diagram illustrating a method for determining the maximum inscribed circle of the non-fused portion in still another embodiment of the spunbonded nonwoven fabric of the present invention.
- the spunbonded nonwoven fabric of the present invention has a fused portion and a non-fused portion, and has an average single fiber diameter (Da) of fibers on one surface (A) and an average single fiber of fibers on the other surface (B).
- the ratio (Da / Db) to the diameter (Db) is 1.1 or more, the contact angles of the surface (A) and the surface (B) with water are both 30 ° or less, and the surface ( The degree of bending of the fiber of A) is 1.1 or more.
- the spunbonded nonwoven fabric of the present invention is preferably made of a thermoplastic resin.
- the thermoplastic resin may be one kind or may be composed of a plurality of thermoplastic resins.
- thermoplastic resin used for the fiber according to the present invention examples include aromatic polyester polymers such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate” and copolymers thereof, "polylactic acid”.
- a water-insoluble ethylene-vinyl alcohol copolymer polymer containing 25 mol% to 70 mol% of ethylene units Polystyrene-based, polydiene-based, chlorine-based, polyolefin-based, polyester-based, polyurethane-based, polyamide-based, fluorine-based elastomer-based polymers and the like can be selected and used.
- various additives such as titanium oxide, silica, inorganic substances such as barium oxide, carbon black, colorants such as dyes and pigments, flame retardants, fluorescent whitening agents, antioxidants, and ultraviolet absorbers are added.
- the agent may be contained in the polymer.
- the fiber in the present invention may be not only a single component fiber but also a composite fiber in which two or more kinds of resins are composited.
- a composite fiber it is not particularly limited as long as it does not impair the effect of the present invention, and may be appropriately selected from a core sheath type, a sea island type, a side-by-side type, an eccentric core sheath type and the like. Further, it may be a split fiber type composite fiber in which a part or the whole of the fiber is divided into a plurality of fibers from one fiber.
- the cross-sectional shape of the fiber in the present invention is not particularly limited as long as the effect of the present invention is not impaired, and may be a triangular, flat, hexagonal, hollow, or other irregular cross-section as well as a round cross-section.
- all the fibers in the present invention have a contact angle with water of 90 ° or less.
- the contact angle of the fiber with water is an index different from the contact angle with water on the surface of the nonwoven fabric described later, and if the contact angle exceeds 90 °, it becomes hydrophobic, and if it is 90 ° or less, it becomes hydrophilic. Since the fibers have a contact angle with water of 90 ° or less, the contact angle of the surface of the nonwoven fabric with water can be easily set to 30 ° or less.
- the contact angle of the fiber with water in the present invention is, for example, an automatic contact equipped with an inkjet water droplet ejection unit with respect to the fiber taken out from the non-woven fabric left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more. It is obtained by measuring the angle between the air interface of the droplet and the fiber when a very small amount (15 pL) of water droplet is landed on the fiber surface using a horn meter.
- thermoplastic resin constituting the fiber on the surface (A) and the fiber on the surface (B) may have the same or different fiber cross sections.
- the surface (A) of the spunbonded nonwoven fabric of the present invention is composed of the fibers made of the above-mentioned thermoplastic resin.
- the spunbonded nonwoven fabric of the present invention is preferably made of long fibers, and the constituent fibers of the surface (A) are preferably long fibers. This is because it is easy to achieve both high productivity and excellent mechanical characteristics because it is made of long fibers.
- the average single fiber diameter of the fibers constituting the surface (A) of the spunbonded nonwoven fabric of the present invention is preferably 3.0 to 30.0 ⁇ m.
- the average single fiber diameter of the fibers constituting the surface (A) is preferably 3.0 ⁇ m or more, more preferably 5.0 ⁇ m or more, and further preferably 10.0 ⁇ m or more.
- the average single fiber diameter of the fibers constituting the surface (A) is preferably 30.0 ⁇ m or less, more preferably 28.0 ⁇ m or less, and further preferably 25.0 ⁇ m or less.
- the average single fiber diameter referred to here is calculated as follows.
- an image is taken of the cross section of the fibers constituting one surface at a magnification at which one fiber can be observed with a scanning electron microscope.
- image analysis software for example, "WinROOF2015” manufactured by Mitani Corporation
- the area Af ( ⁇ m 2 ) formed by the cross-sectional contour of the single fiber is measured, and this area Af is used.
- the spunbonded nonwoven fabric of the present invention has a bending degree of fibers on the surface (A) of 1.1 or more.
- the bending degree of the fiber on the surface (A) is preferably 1.2 or more, more preferably 1.3 or more. This is because a high water absorption rate can be obtained when the bending degree of the fiber on the surface (A) is 1.1 or more.
- the mechanism by which a high water absorption rate is obtained is not clear, but it is presumed to be the effect of forming various interfiber voids.
- the bending degree of the fiber on the surface (A) is 1.1 or more, it becomes easy to obtain a soft touch feeling.
- the upper limit of the bending degree of the fiber on the surface (A) is not particularly limited, but is preferably 10.0 or less from the viewpoint of process stability and productivity.
- the degree of fiber bending referred to here is obtained as follows.
- an image is taken of one surface with a scanning electron microscope at a magnification that allows one fiber to be observed in a straight line over 500 ⁇ m. Then, using the captured image, using image analysis software (for example, National Institutes of Health "ImageJ"), the apparent length of the fiber was measured between two linear fibrous points of 500 ⁇ m. , The apparent length of this fiber is divided by 500 ⁇ m to calculate the apparent length / linear length. This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple number average is obtained, and the value rounded to the second decimal place is defined as the tortuosity of the fibers on the surface in the present invention.
- image analysis software for example, National Institutes of Health "ImageJ"
- the surface (B) of the spunbonded nonwoven fabric of the present invention is composed of fibers made of the above-mentioned thermoplastic resin, similarly to the surface (A).
- the spunbonded nonwoven fabric of the present invention is preferably made of long fibers, and the constituent fibers of the surface (B) are preferably long fibers as in the surface (A). This is because it is easy to achieve both high productivity and excellent mechanical characteristics because it is made of long fibers.
- the average single fiber diameter of the fibers constituting the surface (B) of the spunbonded nonwoven fabric of the present invention is preferably 1.0 to 25.0 ⁇ m.
- the average single fiber diameter of the fibers constituting the surface (B) is preferably 1.0 ⁇ m or more, more preferably 3.0 ⁇ m or more, still more preferably 5.0 ⁇ m or more. This is because when the size is 1.0 ⁇ m or more, the arrangement of the fibers does not become too dense, and when used as a material for disposable diapers, water easily transfers to the adjacent water absorber.
- the average single fiber diameter of the fibers constituting the surface (B) is preferably 25.0 ⁇ m or less, more preferably 20.0 ⁇ m or less, still more preferably 16.0 ⁇ m or less. This is because when the thickness is 25.0 ⁇ m or less, high capillary force can be easily obtained and excellent water absorption can be obtained.
- the degree of bending of the fibers on the surface (B) of the spunbonded nonwoven fabric of the present invention is preferably 1.1 or less, more preferably 1.0. This is because when the bending degree of the fibers on the surface (B) is 1.1 or less, it is easy to form small interfiber voids and it is easy to obtain a high capillary force.
- the lower limit of the bending degree of the fiber on the surface (B) is 1.0, which is included when the apparent length and the length in a straight line match, which is a preferable embodiment.
- the ratio (Da / Db) of the average single fiber diameter (Da) of one surface (A) to the average single fiber diameter (Db) of the fibers of the other surface (B), hereinafter simply " (Sometimes abbreviated as "average single fiber diameter ratio”) is 1.1 or more.
- the average single fiber diameter ratio referred to here is the average single fiber diameter (Da) of the fibers constituting the surface (A) and the average single fiber diameter (B) of the fibers constituting the surface (B) by using the above-mentioned method. Db) is measured, the ratio (Da / Db) is calculated, and the value is rounded off to the second digit.
- the size of the voids woven by the fibers changes according to the average single fiber diameter of the constituent fibers. Therefore, when layers with different average single fiber diameters are formed, layers with different interfiber void sizes are formed, and when moisture adheres, the layer is made of thick fibers due to the difference in capillary force. The absorbed moisture can be transferred to a layer of fine fibers. Furthermore, as a result of diligent studies, the present inventors have set this average single fiber diameter ratio within a specific range, which not only has an effect of improving water absorption due to the difference in capillary effect, but also has a rapid effect on the surface of a non-woven fabric layer made of thick fibers. It has been found that dryness is imparted.
- the average single fiber diameter ratio (Da / Db) in the present invention is preferably 1.2 or more, more preferably 1.3 or more, and even more preferably 1.4 or more.
- the upper limit of the average single fiber diameter ratio in the present invention is not particularly limited, but is preferably 10.0 or less from the viewpoint of process stability and productivity.
- the spunbonded nonwoven fabric of the present invention has a fused portion and a non-fused portion.
- the fused portion is a portion where the fiber on the surface (A) and the fiber on the surface (B) are fused
- the non-fused portion is a portion other than that on the spunbonded nonwoven fabric. , The area surrounded by the fused part. In the fused portion, since the fiber on the surface (A) and the fiber on the surface (B) are fused, the density around the fused portion tends to be high.
- the presence of a high-density fused portion and a relatively low-density non-fused portion in the plane of the spunbonded non-woven fabric facilitates the movement of water in the plane and is simple in the thickness direction. It is possible to facilitate the development of more efficient water absorption and quick-drying performance than the movement of water.
- the portion is a fused portion in a part of the spunbonded nonwoven fabric, that is, a portion where the fiber on the surface (A) and the fiber on the surface (B) are fused.
- the surface (A) is arbitrarily selected by observing an image of the cross section of the relevant portion of the spunbonded nonwoven fabric as a magnification in which the thickness direction of the spunbonded nonwoven fabric is in the field of view with a scanning electron microscope. If the surface (B) of the fused portion is fused at the same position in the plane direction, it is determined that the portion is the fused portion.
- the diameter of the maximum inscribed circle of the non-fused portion is 2.0 mm or more.
- the diameter of the maximum inscribed circle is more preferably 3.0 mm or more, further preferably 4.0 mm or more. This is because when the diameter of the maximum inscribed circle is 2.0 mm or more, it is easy to form a low-density portion sufficiently distant from the fused portion, so that a high water absorption rate can be easily obtained. It is also preferable in that it is easy to obtain a soft touch.
- the diameter of the maximum inscribed circle is preferably 10.0 mm or less, more preferably 9.0 mm or less, still more preferably 8.0 mm or less. This is because when the diameter of the maximum inscribed circle is 10.0 mm or less, it is easy to suppress fluffing due to friction or the like.
- the diameter of the maximum inscribed circle in the present invention is formed on the fused portion (11) with a microscope when the surface of the spunbonded nonwoven fabric (1) is observed from above. A field of view having a size of 10 mm ⁇ 10 mm or more in which the enclosed non-woven fabric can be observed is photographed. Then, using the captured image, the diameter of the maximum inscribed circle (13) that can be placed on the non-fused portion (12) is measured using image analysis software (for example, "WinROOF2015” manufactured by Mitani Corporation). do. This is arbitrarily extracted and measured at 20 points constituting the same surface, a simple number average is obtained, the unit is mm, and the value rounded to the second decimal place is the maximum inscribed circle of the surface in the present invention. Let it be the diameter.
- image analysis software for example, "WinROOF2015” manufactured by Mitani Corporation
- the spunbonded nonwoven fabric of the present invention has one surface (A) in which the average single fiber diameter of the fiber is Da and the other surface (B) in which the average single fiber diameter of the fiber is Db, as described above.
- the average single fiber diameter ratio (Da / Db) is 1.1 or more.
- the contact angles of the surfaces (A) and the surface (B) of the spunbonded nonwoven fabric with water are both 30 ° or less.
- the contact angles of the front and back surfaces of the spunbonded nonwoven fabric with water are both 30 ° or less, preferably 20 ° or less, more preferably 10 ° or less, the water in contact with the surface of the spunbonded nonwoven fabric is easily absorbed by the nonwoven fabric. ..
- the lower limit of the contact angle with water in the present invention is 0 °, but the contact angle with water of 0 ° means a state in which all the water is absorbed by the non-woven fabric in the measurement method described later.
- the contact angle of the surface of the spunbonded nonwoven fabric with water can be controlled by the hydrophilicity of the thermoplastic resin used for the fibers constituting the spunbonded nonwoven fabric and the addition of a hydrophilic oil agent in a subsequent process.
- the higher the hydrophilicity of the thermoplastic resin and the larger the amount of the hydrophilic oil agent adhered to the resin the smaller the contact angle with water tends to be.
- the contact angle of the surface of the spunbonded nonwoven fabric of the present invention with water refers to a value measured and calculated by the following method.
- the spunbonded nonwoven fabric is left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more.
- the spunbonded nonwoven fabric subjected to the above treatment is set on the stage of the contact angle meter installed in the same room so that the surface (A) becomes the measurement surface.
- a 2 ⁇ L droplet composed of ion-exchanged water is prepared at the needle tip and landed on a non-woven fabric.
- the contact angle with the droplet is obtained from the image 2 seconds after the droplet has landed on the non-woven fabric.
- the contact angle with water is defined as 0 °. .. (5)
- the measurement position is changed for each level, and the measurement is performed 5 times, and the arithmetic mean value is taken as the contact angle between the surface (A) and water.
- (6) Set the spunbonded non-woven fabric subjected to the same treatment as (1) so that the front surface (A) is the back surface, repeat the above operations (2) to (5), and calculate the arithmetic mean value.
- the contact angle between the surface (B) and water is calculated.
- the spunbonded non-woven fabric of the present invention has the highest breaking strength with respect to the lowest breaking strength ⁇ min measured by rotating in the plane of the spunbonded non-woven fabric up to 180 ° every 22.5 ° with 0 ° in any one direction.
- the ratio of breaking strength ⁇ max ( ⁇ max / ⁇ min , hereinafter may be simply abbreviated as breaking strength ratio) is preferably 1.2 to 4.0.
- breaking strength ratio is preferably 1.2 or more, more preferably 1.3 or more, the fibers are easily oriented in the non-woven fabric surface, and high capillary force is easily developed. Therefore, the in-plane fibers are easily developed. It is possible to obtain higher water absorption and quick-drying property by causing the movement of the fiber.
- the breaking strength ratio to preferably 4.0 or less, more preferably 3.5 or less, an extremely low angle of breaking strength is eliminated, so that tearing of the non-woven fabric during process passage or product processing is suppressed. be able to.
- the breaking strength ratio of the spunbonded nonwoven fabric of the present invention was measured and calculated by the following method based on "6.3 Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General nonwoven fabric test method". Point to a value.
- ISO method Tensile strength and elongation
- a tensile test is carried out at a tensile speed of 100 m / min, the strength [N] at break is obtained for the three collected test pieces, and the arithmetic mean value thereof is defined as the breaking strength ⁇ .
- the axis is the direction rotated clockwise by 22.5 ° in the plane of the spunbonded nonwoven fabric with respect to any one direction set to 0 °, and the vertical direction is 300 mm in length so as to coincide with the above axial direction.
- ⁇ Cut out a test piece with a width of 25 mm, change the location, and collect 3 test pieces. After that, the above operations (2) to (3) are performed to calculate the breaking strength ⁇ .
- the spunbonded nonwoven fabric layer (S) and the melt blow nonwoven fabric layer (M) can be arranged according to the purpose as long as the effects of the present invention are not impaired. Examples of these arrangements include aspects such as SMS, SMMS, SMSMS, SMSMS, and the like. In these cases, one surface of the laminated nonwoven fabric is regarded as the surface (A) of the spunbonded nonwoven fabric, and the other surface is regarded as the surface (B).
- the spunbonded nonwoven fabric of the present invention preferably has a water absorption rate of 20 seconds or less as measured on the surface (A).
- the non-woven fabric has good performance of removing water adhering to the surface, that is, has excellent water absorption.
- the water absorption rate referred to here is measured based on "7.1.1 Drop method” of JIS L1907: 2010 "Water absorption test method for textile products”. Drop one drop of water on the spunbonded non-woven fabric, measure the time until it is absorbed and the mirror reflection on the surface disappears, calculate the simple average of the values measured at 10 different points, and use the decimal point as the unit. The value rounded to the first decimal place is taken as the water absorption rate in the present invention.
- the basis weight of the spunbonded nonwoven fabric of the present invention is preferably 10 to 100 g / m 2.
- a spunbonded nonwoven fabric having mechanical strength that can be put into practical use can be obtained.
- a spunbonded nonwoven fabric having appropriate flexibility suitable for use as a nonwoven fabric for sanitary materials can be obtained. ..
- the spunbonded nonwoven fabric of the present invention has a texture (g / m 2 ), which is a 20 cm ⁇ 25 cm test piece based on “6.2 Mass per unit area” of JIS L1913: 2010 “General nonwoven fabric test method”. , 3 samples are taken per 1 m of width of the sample, each mass (g) in the standard state is weighed, and the mass per 1 m 2 calculated from the average value is referred to.
- the spunbonded nonwoven fabric of the present invention may be provided with a hydrophilic agent for the purpose of increasing water absorption.
- a hydrophilic agent for the purpose of increasing water absorption.
- examples of the type of the hydrophilizing agent include surfactants, and among them, nonionic surfactants are preferable.
- the spunbonded nonwoven fabric of the present invention preferably has a non-fused portion thickness (Tu) of 0.5 mm or more.
- Tu is 0.5 mm or more, more preferably 0.7 mm or more, still more preferably 0.9 mm or more
- the spunbonded nonwoven fabric has an appropriate cushioning property.
- the size is 1.50 mm or less, more preferably 1.40 mm or less, still more preferably 1.30 mm or less, the spunbonded nonwoven fabric has excellent bending flexibility.
- the thickness (Tu) of the non-fused portion of the spunbonded nonwoven fabric of the present invention is not particularly limited, but is, for example, the thickness under no load measured by a shape measuring machine (for example, "VR3050" manufactured by KEYENCE CORPORATION). To say.
- the ratio (Tu / Tm) of the thickness of the non-fused portion (Tu) to the thickness of the fused portion (Tm) is preferably 2.0 or more, preferably 5.0 or more. Is more preferable, and 10.0 or more is further preferable.
- Tu / Tm is 2.0 or more, the difference in density between the periphery of the fused portion and the position separated from the fused portion becomes large, and the circumference of the fused portion becomes large. This is because it is easy to achieve both high water absorption in the high-density part in the above and excellent softness in the low-density part in the remote position.
- the upper limit is not particularly limited, but is usually 50 or less.
- the thickness (Tm) of the fused portion of the spunbonded nonwoven fabric of the present invention is not particularly limited, but for example, a field of view in which a cross section can be observed with a microscope is photographed. Subsequently, using the captured image, the thickness is measured using image analysis software (for example, "WinROOF2015” manufactured by Mitani Corporation). This is measured at 10 arbitrarily extracted points, a simple number average is obtained, the unit is mm, and the value rounded to the third decimal place is the thickness (Tm) of the fused portion of the spunbonded nonwoven fabric in the present invention. be.
- image analysis software for example, "WinROOF2015” manufactured by Mitani Corporation
- the ratio (Tu / Tm) of the thickness of the non-fused portion (Tu) to the thickness of the fused portion (Tm) is obtained by dividing Tu (mm) measured and calculated by the above by Tm (mm). It shall be calculated by rounding off the second decimal place.
- the sanitary material of the present invention is at least partially composed of the above-mentioned spunbonded nonwoven fabric. By doing so, a sanitary material having excellent water absorption and quick-drying property can be obtained.
- the sanitary material of the present invention is mainly a disposable article used for health-related purposes such as medical treatment and long-term care, and examples thereof include disposable diapers, sanitary napkins, gauze, bandages, masks, gloves, adhesive plasters, and the like.
- the components include, for example, top sheets, back sheets, side gathers and the like of disposable diapers.
- the sanitary material in which the surface (A) of the spunbonded nonwoven fabric is arranged toward the skin side of the wearer can immediately absorb the moisture adhering to the skin surface side into the inside of the spunbonded nonwoven fabric. , It is more preferable because it can reduce discomfort to the wearer.
- the sanitary material is a disposable diaper and the spunbonded non-woven fabric is placed inside the disposable diaper
- the surface (A) is arranged toward the wearer's skin side
- sweat or excretion generated during wearing is discharged.
- the diaper is quickly absorbed and the liquid is rapidly transferred to the surface (B), so that the surface can be kept smooth without excessive dampness.
- the sanitary material is a mask and the spunbonded non-woven fabric is used inside the mask
- the surface (A) is arranged toward the wearer's skin side
- sweat and exhalation are condensed and the skin is exposed.
- Even if moisture adheres to the surface side it is immediately absorbed inside the spunbonded non-woven fabric and then rapidly transferred to the surface (B), leaving the skin surface smooth without excessive dampness. Can be kept.
- the spunbonded nonwoven fabric of the present invention melts a thermoplastic resin as a raw material, spins it from a spinneret, and then cools and solidifies the yarns obtained by pulling and stretching them with an ejector on a moving net. It is manufactured by the spunbond method, which requires a step of collecting, forming a non-woven fiber web, and then heat-sealing.
- the shape of the spinneret and ejector used various shapes such as a round shape and a rectangular shape can be adopted. Above all, from the viewpoint that the amount of compressed air used is relatively small and the threads are less likely to be fused or scratched, it is preferable to use a combination of a rectangular base and a rectangular ejector.
- the spinning temperature is preferably (melting temperature of the raw material thermoplastic resin + 10 ° C.) or more (melting temperature of the raw material thermoplastic resin + 100 ° C.) or less.
- the spun yarn is cooled next, but as a method of cooling the spun yarn, for example, a method of forcibly blowing cold air onto the yarn, or natural cooling at the ambient temperature around the yarn.
- a method of adjusting the distance between the spinneret and the ejector, and the like, or a method of combining these methods can be adopted.
- the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
- the cooled and solidified yarn is towed and stretched by the compressed air ejected from the ejector.
- the spunbonded nonwoven fabric of the present invention it is important to control the average single fiber diameter of the fibers constituting the surface (A) and the surface (B).
- the average single fiber diameter of the fiber is determined by the discharge amount and the traction speed per the discharge hole of the spinneret, that is, the spinning speed. Therefore, it is preferable to determine the discharge amount and the spinning speed according to the desired average single fiber diameter.
- the spinning speed is preferably 2000 m / min or more, more preferably 3000 m / min or more. By setting the spinning speed to 2000 m / min or more, high productivity can be obtained, and the orientation and crystallization of the fibers can be advanced to obtain high-strength long fibers.
- the long fiber yarns stretched by traction in this way are collected by a moving net to form a sheet, and then subjected to a heat fusion process.
- a composite spun fiber using a thermoplastic resin having different characteristics may be used, or depending on the degree of cooling. It is possible to control the degree of bending by forming regions with different stresses on the fiber cross section.
- the tortuosity can be increased to 1.1 or more by using a thermoplastic resin having a large melting point difference or a thermoplastic resin having a large viscosity difference.
- the bending degree can be made 1.1 or more by increasing the difference in cooling conditions between one side surface of the fiber and the opposite side surface.
- a composite spun fiber using a thermoplastic resin having different properties, a single fiber, or a single fiber is used. Even for single-component spun fibers produced by blending, it is important to equalize the stress borne by the fiber cross section depending on the degree of cooling. Therefore, in the case of a composite spun fiber, the tortuosity can be reduced to 1.1 or less by using a thermoplastic resin having a small melting point difference or a thermoplastic resin having a small viscosity difference. It is also important to cool the fibers uniformly in order to reduce the bending degree to 1.1 or less.
- the spunbonded nonwoven fabric of the present invention has a surface (A) and a surface (B) having different fiber diameters. Further, the tortuosity of the fibers constituting the surface (A) is 1.1 or more.
- a method for obtaining such a spunbonded nonwoven fabric for example, from the spinneret for the surface (A), on the fiber web obtained by collecting on the collection net as described above, the downstream side of the collection net. It is possible to adopt a method of depositing fiber webs from the spinneret for the surface (B) arranged in the above and heat-sealing them at once to fix them.
- a heat embossed roll having an engraving (uneven portion) on the surface of one roll and a flat without engraving on the surface of the other roll.
- Thermal fusion methods using various rolls such as thermal embossing rolls consisting of a combination of (smooth) rolls and thermal calendar rolls consisting of a combination of upper and lower flat (smooth) rolls, and ultrasonic vibration of the horn.
- a method by heat fusion such as ultrasonic fusion can be adopted.
- the spunbonded nonwoven fabric of the present invention is produced by heat-sealing with an embossed roll
- the fibers on the surface (A) and the surface (B) are fused together at the positions corresponding to the convex portions of the embossed roll. It is preferable because it is easy. Further, by designing the position of the convex portion of the embossed roll, the maximum inscribed circle of the unfused portion can be controlled, which is also a preferable embodiment.
- a hydrophilic agent may be added to the spunbonded nonwoven fabric thus obtained before winding.
- Examples of the method for applying the hydrophilizing agent to the spunbonded non-woven fabric include coating with kiss roll or spray, dip coating, etc., but coating with kiss roll is preferable from the viewpoint of uniformity and ease of controlling the amount of adhesion.
- the present invention will be described in detail based on examples. However, the present invention is not limited to these examples.
- the one without any special description is the one obtained by the measurement based on the above-mentioned method.
- the average single fiber diameter (Da) of the fibers constituting the surface (A) and the average single fiber diameter (Db) of the fibers constituting the surface (B) are measured, the ratio (Da / Db) is calculated, and the decimal point is calculated. The value is rounded off to the second decimal place.
- Example 1 (Fiber web forming surface (A)) Polypropylene (PP) and ethylene copolymerized polypropylene (copolymerized PP) are melted by different extruders to form side-by-side composite fibers (mass ratio 1: 1), and round holes having a hole diameter of 0.4 mm are formed. A single-hole ejection amount of 0.9 g / min was spun from the rectangular cap.
- the average single fiber diameter of the fibers constituting the obtained surface (A) was 18.4 ⁇ m.
- Fiber web forming surface (B) Polypropylene was melted by an extruder and spun from a rectangular mouthpiece having a round hole having a hole diameter of 0.4 mm ⁇ at a single hole discharge rate of 0.3 g / min. After the spun yarn is cooled and solidified by cold air, it is pulled and stretched by compressed air having a pressure at the ejector of 0.08 MPa in a rectangular ejector to form a surface (A) on a moving net. Collected on the textile web. The average single fiber diameter of the fibers constituting the obtained surface (B) was 10.6 ⁇ m.
- the laminated fiber web thus obtained is made of metal on the lower roll by using a metal embossed roll arranged in a so-called quilting pattern, which is a lattice pattern in which a straight line pattern formed by a perfect circular convex portion is orthogonal to the upper roll.
- a metal embossed roll arranged in a so-called quilting pattern, which is a lattice pattern in which a straight line pattern formed by a perfect circular convex portion is orthogonal to the upper roll.
- heat fusion is performed at a linear pressure of 300 N / cm and a heat fusion temperature of 125 ° C., and a grain size of 40 g / m 2 .
- a spunbonded non-woven material was obtained.
- a nonionic surfactant was applied to the nonwoven fabric using kissroll so that the active ingredient was 0.5 wt% with respect to the weight of the spunbonded nonwoven fabric.
- Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
- Example 2 A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that a metal embossed roll in which regular circular protrusions were staggered at the same pitch in both directions of MD and CD was used for the upper roll.
- Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
- Example 3 A spunbonded nonwoven fabric was obtained in the same manner as in Example 2 except that the single-hole discharge rate of the fiber web forming the surface (A) was 0.53 g / min.
- Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
- Example 4 A spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that the linear pressure was heat-sealed at 10 N / cm using an embossed roll.
- Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
- Example 5 Examples except that the fiber web forming the surface (B) was melted with polypropylene and ethylene copolymer polypropylene by different extruders and spun out as side-by-side composite fibers (mass ratio 1: 1). A spunbonded nonwoven fabric was obtained in the same manner as in 1.
- Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
- the fiber web constituting the surface (A) and the fibers and fiber webs constituting the surface (B) each have a single-hole discharge rate of 0.6 g / min, and ethylene copolymer polypropylene and the same ethylene copolymer polypropylene are used.
- a spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that it was melted and spun by another extruder.
- Table 2 shows the evaluation results of the obtained spunbonded non-woven fabric.
- Example 2 instead of heat-sealing using an embossed roll, a spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that the obtained fiber web was heated with hot air at 150 ° C. and heat-sealed. In the fusion with hot air, although the adjacent fibers are fused to each other, the "fused portion" in which the fibers on the surface (A) and the fibers on the surface (B) are fused is not formed.
- Table 2 shows the evaluation results of the obtained spunbonded non-woven fabric.
- Table 2 shows the evaluation results of the obtained spunbonded non-woven fabric.
- the average single fiber diameter ratio (Da / Db) is large, the bending degree of the surface (A) is large, and the fibers of the surface (A) and the fibers of the surface (B) are fused together. It can be seen that it has an excellent water absorption and quick-drying property and an excellent soft feeling because it has a place where it is used.
- Comparative Example 1 since the average single fiber diameter ratio is small, moisture is not transferred to the surface (B) side in the non-woven fabric, and the water absorption and quick-drying property are inferior. Further, in Comparative Example 2, since the fibers on the surface (A) and the fibers on the surface (B) do not have a place where both of them are fused, it is difficult for water to move into the surface, and the water absorption and quick-drying performance. Is inferior. In Comparative Example 3, since the bending degree of the surface (A) was small, it was difficult to obtain a water absorption rate, the water absorption and quick-drying performance was not sufficient, and the soft feeling was also inferior.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Textile Engineering (AREA)
- Vascular Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Epidemiology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nonwoven Fabrics (AREA)
- Absorbent Articles And Supports Therefor (AREA)
Abstract
The present invention provides a spun-bonded nonwoven fabric which has water absorption and quick-drying properties that are sufficient to maintain comfort when worn, and which has a texture that feels soft. This spun-bonded nonwoven fabric is suitable for use in a sanitary material. A spun-bonded nonwoven fabric which has a fused part and a non-fused part, wherein: the ratio of the average single fiber diameter (Da) of the fibers in one surface (A) to the average single fiber diameter (Db) of the fibers in the other surface (B), namely Da/Db is 1.1 or more; the contact angles with water of the surface (A) and the surface (B) are both 30° or less; and the tortuosity of the fibers in the surface (A) is 1.1 or more.
Description
本発明は、優れた吸水速乾性とソフトな触感を両立し、特に衛生材料用途に好適なスパンボンド不織布、およびそれを使用した衛生材料に関するものである。
The present invention relates to a spunbonded nonwoven fabric that has both excellent water absorption and quick-drying properties and a soft touch, and is particularly suitable for sanitary material applications, and sanitary materials using the same.
近年、使い捨ておむつや生理用ナプキン、マスクなどの衛生材料用途に用いられる不織布に対して、更に着用快適性を向上させるための様々な検討がなされている。特に、直接肌に触れる表面部材においては、水分を素早く吸収する吸水性と、吸収した水分を最表面層から移行させ表面を過度な湿り気がなくサラサラした状態にする速乾性の両立、すなわち「吸水速乾性」が要求される。これと同時に、肌に対してソフトな触感も必要である。
In recent years, various studies have been conducted to further improve the wearing comfort of non-woven fabrics used for sanitary materials such as disposable diapers, sanitary napkins, and masks. In particular, for surface members that come into direct contact with the skin, both water absorption that quickly absorbs moisture and quick-drying that transfers the absorbed moisture from the outermost surface layer to make the surface smooth without excessive dampness, that is, "water absorption". "Quick drying" is required. At the same time, a soft touch to the skin is also required.
不織布に吸水性を付与する手段としては、親水性の繊維からなる不織布を用いることや、不織布に親水性処理を施すことが効果的であるものの、これらの技術は吸水した水分を最表面層から移行させる機能がないため、速乾性が十分でなかった。
Although it is effective to use a non-woven fabric made of hydrophilic fibers or to apply a hydrophilic treatment to the non-woven fabric as a means for imparting water absorption to the non-woven fabric, these techniques allow water absorbed from the outermost layer. The quick-drying property was not sufficient because there was no migration function.
このような背景から、不織布への吸水速乾性の付与を目的に、長繊維を含む繊維層の積層構造を有するスパンボンド不織布であって、疎水性繊維を含む疎水性層と繊維間距離や扁平率が特定の範囲にある親水性繊維を含む親水性層から構成され、上記疎水性層を不織布表面に配置してなるスパンボンド不織布が提案されている(特許文献1参照)。
Against this background, a spunbonded nonwoven fabric having a laminated structure of fiber layers containing long fibers for the purpose of imparting water absorption and quick-drying to the nonwoven fabric, the distance between the hydrophobic layer containing the hydrophobic fibers and the flatness and flatness. A spunbonded nonwoven fabric composed of a hydrophilic layer containing hydrophilic fibers having a ratio in a specific range and having the hydrophobic layer arranged on the surface of the nonwoven fabric has been proposed (see Patent Document 1).
また別に、不織布を積層する技術として、特定の範囲の平均単繊維直径を有する繊維を含む第1および第3不織布構成層と、上記第1および第3不織布層の間に、より平均単繊維直径の細い繊維を含む第2不織布構成層を配するスパンボンド不織布を含む吸収性物品が提案されている(特許文献2参照)。
Separately, as a technique for laminating a non-woven fabric, a higher average non-woven fabric diameter is provided between the first and third non-woven fabric constituent layers containing fibers having an average non-woven fabric diameter in a specific range and the first and third non-woven fabric layers. An absorbent article containing a spunbonded nonwoven fabric for arranging a second nonwoven fabric constituent layer containing the fine fibers of the above has been proposed (see Patent Document 2).
特許文献1の技術では、不織布の厚み方向に親水性勾配が形成されることにより、最表層に疎水性層を配した面であっても一定の吸水性能が発現する。しかしながら、最表面が疎水性層であるため、尿などの多量の水分を吸水するためには性能が十分でなく、また液残りが生じやすいために速乾性も不十分なものであった。また、肌に触れる面のソフトさが十分ではなかった。
In the technique of Patent Document 1, a hydrophilic gradient is formed in the thickness direction of the nonwoven fabric, so that a certain water absorption performance is exhibited even on a surface in which a hydrophobic layer is arranged on the outermost surface layer. However, since the outermost surface is a hydrophobic layer, the performance is not sufficient for absorbing a large amount of water such as urine, and the quick-drying property is also insufficient because liquid residue is likely to occur. In addition, the softness of the surface that touches the skin was not sufficient.
一方、特許文献2の技術は、平均単繊維直径の異なる繊維から構成される不織布層を積層した構造を有したスパンボンド不織布に関するものである。しかしながら、この不織布はバリアカフに使用されるために流体の裏抜けを防止する、すなわち水分を通さない構造であり、不織布表面に液残りが生じやすいために、吸水性および速乾性が不十分なものであった。また、肌に触れる面のソフトさが十分ではなかった。
On the other hand, the technique of Patent Document 2 relates to a spunbonded nonwoven fabric having a structure in which a nonwoven fabric layer composed of fibers having different average single fiber diameters is laminated. However, since this non-woven fabric is used for a barrier cuff, it has a structure that prevents fluid from strike through, that is, has a structure that does not allow moisture to pass through, and liquid residue is likely to occur on the surface of the non-woven fabric, so that water absorption and quick-drying are insufficient. Met. In addition, the softness of the surface that touches the skin was not sufficient.
そこで、本発明の目的は、上記の事情を鑑みてなされたものであって、着用時の快適性を保つために十分な吸水性および速乾性を有し、かつ、ソフトな触感を有するスパンボンド不織布であって、衛生材料に好適に使用されるスパンボンド不織布を提供することにある。
Therefore, an object of the present invention has been made in view of the above circumstances, and is a spunbond having sufficient water absorption and quick-drying property to maintain comfort when worn, and having a soft touch. It is an object of the present invention to provide a spunbonded nonwoven fabric which is a nonwoven fabric and is preferably used as a sanitary material.
本発明者らが検討を進めたところ、不織布の吸水性を高めるためには不織布自体の親水性を高めることが有効であるものの、親水性のみを高めた不織布を用いた場合、表面が水分を含んだまま乾かず、着用時の快適性に劣るといった課題が生じることを確認した。一方、速乾性を高める目的で、不織布の一部に疎水性繊維を用いた場合や厚み方向に親水度勾配を付与した場合は、結果的に不織布表面の吸水性を低下させることとなり、液残りなどの課題が生じることも判明した。
As a result of the study by the present inventors, it is effective to increase the hydrophilicity of the non-woven fabric itself in order to increase the water absorption of the non-woven fabric. It was confirmed that the product did not dry as it was contained, causing problems such as inferior comfort when worn. On the other hand, when hydrophobic fibers are used for a part of the nonwoven fabric for the purpose of improving quick-drying, or when a hydrophilicity gradient is given in the thickness direction, the water absorption of the nonwoven fabric surface is lowered as a result, and the liquid remains. It was also found that problems such as these occur.
そこで、本発明者らは、上記の課題を達成するため、さらに鋭意検討した結果、スパンボンド不織布において、融着部と非融着部とを有させ、一方の表面(A)を構成する繊維と、他方の表面(B)を構成する繊維の平均単繊維直径の比、そして、表面(A)と表面(B)の水との接触角を特定の範囲とし、かつ、表面(A)を構成する繊維の屈曲度を特定の範囲とすることで、着用時の快適性を保つために十分な吸水性および速乾性を有し、かつ、ソフトな触感を有する不織布となることを見出した。
Therefore, as a result of further diligent studies in order to achieve the above-mentioned problems, the present inventors have a fused portion and a non-fused portion in the spunbonded nonwoven fabric, and the fibers constituting one surface (A). And the ratio of the average single fiber diameters of the fibers constituting the other surface (B), and the contact angle between the surface (A) and the water of the surface (B) within a specific range, and the surface (A). It has been found that by setting the degree of bending of the constituent fibers within a specific range, the non-woven fabric has sufficient water absorption and quick-drying property to maintain comfort when worn, and has a soft touch feeling.
本発明は、これら知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
The present invention has been completed based on these findings, and the following inventions are provided according to the present invention.
本発明のスパンボンド不織布は、融着部と非融着部とを有し、一方の表面(A)の繊維の平均単繊維直径(Da)の他方の表面(B)の繊維の平均単繊維直径(Db)に対する比(Da/Db)が1.1以上であって、前記の表面(A)および表面(B)の、水との接触角がともに30°以下であり、かつ、表面(A)の繊維の屈曲度が1.1以上である。
The spunbonded nonwoven fabric of the present invention has a fused portion and a non-fused portion, and has an average single fiber diameter (Da) of fibers on one surface (A) and an average single fiber of fibers on the other surface (B). The ratio (Da / Db) to the diameter (Db) is 1.1 or more, the contact angles of the surface (A) and the surface (B) with water are both 30 ° or less, and the surface ( The degree of bending of the fiber of A) is 1.1 or more.
本発明のスパンボンド不織布の好ましい態様によれば、前記の非融着部の最大内接円の直径が2.0mm以上である。
According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the diameter of the maximum inscribed circle of the non-fused portion is 2.0 mm or more.
本発明のスパンボンド不織布の好ましい態様によれば、前記の非融着部におけるスパンボンド不織布の厚み(Tu)が0.5mm以上である。
According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the thickness (Tu) of the spunbonded nonwoven fabric in the non-fused portion is 0.5 mm or more.
本発明のスパンボンド不織布の好ましい態様によれば、前記の非融着部におけるスパンボンド不織布の厚み(Tu)と前記の融着部におけるスパンボンド不織布の厚み(Tm)との比(Tu/Tm)が、2.0以上である。
According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the ratio (Tu / Tm) of the thickness (Tu) of the spunbonded nonwoven fabric in the non-fused portion to the thickness (Tm) of the spunbonded nonwoven fabric in the fused portion. ) Is 2.0 or more.
本発明のスパンボンド不織布の好ましい態様によれば、前記の表面(B)の繊維の屈曲度が1.1以下である。
According to a preferred embodiment of the spunbonded nonwoven fabric of the present invention, the tortuosity of the fibers on the surface (B) is 1.1 or less.
また、本発明の衛生材料は、少なくとも一部が前記のスパンボンド不織布で構成されてなる。
Further, the sanitary material of the present invention is at least partially composed of the above-mentioned spunbonded nonwoven fabric.
本発明の衛生材料の好ましい態様によれば、前記の表面(A)が着用者の肌側に向けて配されてなる。
According to a preferred embodiment of the sanitary material of the present invention, the surface (A) is arranged toward the skin side of the wearer.
本発明によれば、吸水速乾性とソフトな触感に優れ、特に衛生材料用途に好適なスパンボンド不織布、およびそれを使用した衛生材料を得ることができる。
According to the present invention, it is possible to obtain a spunbonded nonwoven fabric which is excellent in water absorption and quick-drying property and soft touch, and which is particularly suitable for sanitary material applications, and sanitary materials using the same.
本発明のスパンボンド不織布は、融着部と非融着部とを有し、一方の表面(A)の繊維の平均単繊維直径(Da)の他方の表面(B)の繊維の平均単繊維直径(Db)に対する比(Da/Db)が1.1以上であって、前記の表面(A)および表面(B)の、水との接触角がともに30°以下であり、かつ、表面(A)の繊維の屈曲度が1.1以上である。以下に、その構成要素について詳細に説明するが、本発明はその要旨を超えない限り、以下に説明する範囲に何ら限定されるものではない。
The spunbonded nonwoven fabric of the present invention has a fused portion and a non-fused portion, and has an average single fiber diameter (Da) of fibers on one surface (A) and an average single fiber of fibers on the other surface (B). The ratio (Da / Db) to the diameter (Db) is 1.1 or more, the contact angles of the surface (A) and the surface (B) with water are both 30 ° or less, and the surface ( The degree of bending of the fiber of A) is 1.1 or more. The components thereof will be described in detail below, but the present invention is not limited to the scope described below as long as the gist thereof is not exceeded.
[繊維]
本発明のスパンボンド不織布は、熱可塑性樹脂からなることが好ましい。熱可塑性樹脂は1種類であってもよいし、複数の熱可塑性樹脂からなるものであってもよい。 [fiber]
The spunbonded nonwoven fabric of the present invention is preferably made of a thermoplastic resin. The thermoplastic resin may be one kind or may be composed of a plurality of thermoplastic resins.
本発明のスパンボンド不織布は、熱可塑性樹脂からなることが好ましい。熱可塑性樹脂は1種類であってもよいし、複数の熱可塑性樹脂からなるものであってもよい。 [fiber]
The spunbonded nonwoven fabric of the present invention is preferably made of a thermoplastic resin. The thermoplastic resin may be one kind or may be composed of a plurality of thermoplastic resins.
本発明に係る繊維に用いられる熱可塑性樹脂の例としては、「ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリヘキサメチレンテレフタレート」等の芳香族ポリエステル系ポリマーおよびその共重合体、「ポリ乳酸、ポリエチレンサクシネート、ポリブチレンサクシネート、ポリブチレンサクシネートアジペート、ポリヒドロキシブチレート-ポリヒドロキシバリレート共重合体、ポリカプロラクトン」等の脂肪族ポリエステル系ポリマーおよびその共重合体、「ポリアミド6、ポリアミド66、ポリアミド610、ポリアミド10、ポリアミド12、ポリアミド6-12」等の脂肪族ポリアミド系ポリマーおよびその共重合体、「ポリプロピレン、ポリエチレン、ポリブテン、ポリメチルペンテン」等のポリオレフィン系ポリマーおよびその共重合体、
エチレン単位を25モル%から70モル%含有する水不溶性のエチレン-ビニルアルコール共重合体系ポリマー、
ポリスチレン系、ポリジエン系、塩素系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系、フッ素系のエラストマー系ポリマー等であり、これらの中から選んで用いることができる。また、上記のポリマーにおいては、酸化チタン、シリカ、酸化バリウムなどの無機質、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤をポリマー中に含んでいてもよい。 Examples of the thermoplastic resin used for the fiber according to the present invention include aromatic polyester polymers such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate" and copolymers thereof, "polylactic acid". , Polyethylene succinate, Polybutylene succinate, Polybutylene succinate adipate, Polyhydroxybutyrate-Polyhydroxyvariate copolymer, Polycaprolactone "and other aliphatic polyester polymers and copolymers thereof," Polyethylene 6, Polyamide An aliphatic polyamide polymer such as "66, polyamide 610, polyamide 10,polyamide 12, polyamide 6-12" and its copolymer, and a polyolefin polymer such as "polypropylene, polyethylene, polybutene, polymethylpentene" and its copolymer. ,
A water-insoluble ethylene-vinyl alcohol copolymer polymer containing 25 mol% to 70 mol% of ethylene units,
Polystyrene-based, polydiene-based, chlorine-based, polyolefin-based, polyester-based, polyurethane-based, polyamide-based, fluorine-based elastomer-based polymers and the like can be selected and used. In the above polymers, various additives such as titanium oxide, silica, inorganic substances such as barium oxide, carbon black, colorants such as dyes and pigments, flame retardants, fluorescent whitening agents, antioxidants, and ultraviolet absorbers are added. The agent may be contained in the polymer.
エチレン単位を25モル%から70モル%含有する水不溶性のエチレン-ビニルアルコール共重合体系ポリマー、
ポリスチレン系、ポリジエン系、塩素系、ポリオレフィン系、ポリエステル系、ポリウレタン系、ポリアミド系、フッ素系のエラストマー系ポリマー等であり、これらの中から選んで用いることができる。また、上記のポリマーにおいては、酸化チタン、シリカ、酸化バリウムなどの無機質、カーボンブラック、染料や顔料などの着色剤、難燃剤、蛍光増白剤、酸化防止剤、あるいは紫外線吸収剤などの各種添加剤をポリマー中に含んでいてもよい。 Examples of the thermoplastic resin used for the fiber according to the present invention include aromatic polyester polymers such as "polyethylene terephthalate, polytrimethylene terephthalate, polybutylene terephthalate, polyhexamethylene terephthalate" and copolymers thereof, "polylactic acid". , Polyethylene succinate, Polybutylene succinate, Polybutylene succinate adipate, Polyhydroxybutyrate-Polyhydroxyvariate copolymer, Polycaprolactone "and other aliphatic polyester polymers and copolymers thereof," Polyethylene 6, Polyamide An aliphatic polyamide polymer such as "66, polyamide 610, polyamide 10,
A water-insoluble ethylene-vinyl alcohol copolymer polymer containing 25 mol% to 70 mol% of ethylene units,
Polystyrene-based, polydiene-based, chlorine-based, polyolefin-based, polyester-based, polyurethane-based, polyamide-based, fluorine-based elastomer-based polymers and the like can be selected and used. In the above polymers, various additives such as titanium oxide, silica, inorganic substances such as barium oxide, carbon black, colorants such as dyes and pigments, flame retardants, fluorescent whitening agents, antioxidants, and ultraviolet absorbers are added. The agent may be contained in the polymer.
本発明における繊維は、単成分繊維はもとより、2種類以上の樹脂を複合した複合繊維であってもよい。上記の繊維が複合繊維の場合、本発明の効果を損ねない限り特に限定されるものではなく、芯鞘型や海島型、サイドバイサイド型、偏心芯鞘型、などから適宜選択すればよい。さらには、繊維の一部もしくは全体が一本の繊維から複数本の繊維に分割される割繊型複合繊維であってもよい。
The fiber in the present invention may be not only a single component fiber but also a composite fiber in which two or more kinds of resins are composited. When the above fiber is a composite fiber, it is not particularly limited as long as it does not impair the effect of the present invention, and may be appropriately selected from a core sheath type, a sea island type, a side-by-side type, an eccentric core sheath type and the like. Further, it may be a split fiber type composite fiber in which a part or the whole of the fiber is divided into a plurality of fibers from one fiber.
本発明における繊維の断面形状は、本発明の効果を損ねない限り特に限定されるものではなく、丸断面はもとより、三角や扁平、六角形、中空などの異形断面であっても良い。
The cross-sectional shape of the fiber in the present invention is not particularly limited as long as the effect of the present invention is not impaired, and may be a triangular, flat, hexagonal, hollow, or other irregular cross-section as well as a round cross-section.
本発明における繊維は、いずれも水との接触角が90°以下であることが好ましい。繊維における水との接触角は、後述する不織布表面における水との接触角とは異なる指標であり、該接触角が90°を超えれば疎水性、90°以下であれば親水性となる。繊維の水との接触角が90°以下の繊維で構成されることによって、不織布表面の水との接触角を容易に30°以下とすることができる。
It is preferable that all the fibers in the present invention have a contact angle with water of 90 ° or less. The contact angle of the fiber with water is an index different from the contact angle with water on the surface of the nonwoven fabric described later, and if the contact angle exceeds 90 °, it becomes hydrophobic, and if it is 90 ° or less, it becomes hydrophilic. Since the fibers have a contact angle with water of 90 ° or less, the contact angle of the surface of the nonwoven fabric with water can be easily set to 30 ° or less.
なお、本発明における繊維の水との接触角は、例えば、室温20℃、相対湿度65%の室内に24時間以上放置した不織布から取り出した繊維に対し、インクジェット方式水滴吐出部を搭載した自動接触角計を用いて極少量(15pL)の水滴を繊維表面に着液させた際の、液滴の空気界面と繊維のなす角を測定することにより求められる。
The contact angle of the fiber with water in the present invention is, for example, an automatic contact equipped with an inkjet water droplet ejection unit with respect to the fiber taken out from the non-woven fabric left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more. It is obtained by measuring the angle between the air interface of the droplet and the fiber when a very small amount (15 pL) of water droplet is landed on the fiber surface using a horn meter.
なお、表面(A)の繊維と表面(B)の繊維とで、構成する熱可塑性樹脂の種類や、繊維断面が同一であっても、異なっていてもよい。
It should be noted that the type of the thermoplastic resin constituting the fiber on the surface (A) and the fiber on the surface (B) may have the same or different fiber cross sections.
[表面(A)]
本発明のスパンボンド不織布に係る表面(A)は、前記の熱可塑性樹脂からなる繊維で構成される。 [Surface (A)]
The surface (A) of the spunbonded nonwoven fabric of the present invention is composed of the fibers made of the above-mentioned thermoplastic resin.
本発明のスパンボンド不織布に係る表面(A)は、前記の熱可塑性樹脂からなる繊維で構成される。 [Surface (A)]
The surface (A) of the spunbonded nonwoven fabric of the present invention is composed of the fibers made of the above-mentioned thermoplastic resin.
本発明のスパンボンド不織布は、長繊維からなることが好ましく、表面(A)の構成繊維が長繊維であることが好ましい。長繊維からなることにより、高い生産性と優れた力学物性を両立し易いためである。
The spunbonded nonwoven fabric of the present invention is preferably made of long fibers, and the constituent fibers of the surface (A) are preferably long fibers. This is because it is easy to achieve both high productivity and excellent mechanical characteristics because it is made of long fibers.
本発明のスパンボンド不織布の表面(A)を構成する繊維の平均単繊維直径は、3.0~30.0μmであることが好ましい。表面(A)を構成する繊維の平均単繊維直径は、好ましくは3.0μm以上、より好ましくは5.0μm以上、さらに好ましくは10.0μm以上である。表面(A)を構成する繊維の平均単繊維直径を3.0μm以上とすることにより、衛生材料として使用した場合、隣接する吸水体に水分が移行しやすくなる。また、表面(A)を構成する繊維の平均単繊維直径は、好ましくは30.0μm以下、より好ましくは28.0μm以下、さらに好ましくは25.0μm以下である。表面(A)を構成する繊維の平均単繊維直径を30.0μm以下とすることにより、ソフトな風合いを得やすい。
The average single fiber diameter of the fibers constituting the surface (A) of the spunbonded nonwoven fabric of the present invention is preferably 3.0 to 30.0 μm. The average single fiber diameter of the fibers constituting the surface (A) is preferably 3.0 μm or more, more preferably 5.0 μm or more, and further preferably 10.0 μm or more. By setting the average single fiber diameter of the fibers constituting the surface (A) to 3.0 μm or more, when used as a sanitary material, moisture is easily transferred to the adjacent water absorber. The average single fiber diameter of the fibers constituting the surface (A) is preferably 30.0 μm or less, more preferably 28.0 μm or less, and further preferably 25.0 μm or less. By setting the average single fiber diameter of the fibers constituting the surface (A) to 30.0 μm or less, it is easy to obtain a soft texture.
ここで言う平均単繊維直径とは、以下のようにして求めるものである。
The average single fiber diameter referred to here is calculated as follows.
まず、一方の表面を構成する繊維の横断面を、走査型電子顕微鏡で1本の繊維が観察できる倍率として画像を撮影する。続いて、撮影した画像を用い、画像解析ソフト(例えば三谷商事株式会社製「WinROOF2015」など)を用いて、単繊維の断面輪郭が形成する面積Af(μm2)を計測し、この面積Afと同一の面積となる真円の直径を算出する。これを任意に抽出した同じ表面を構成する繊維20本について測定し、単純な数平均を求め、単位をμmとして、小数点第2位を四捨五入した値を、本発明で言うその表面の平均単繊維直径とする。
First, an image is taken of the cross section of the fibers constituting one surface at a magnification at which one fiber can be observed with a scanning electron microscope. Subsequently, using the captured image, using image analysis software (for example, "WinROOF2015" manufactured by Mitani Corporation), the area Af (μm 2 ) formed by the cross-sectional contour of the single fiber is measured, and this area Af is used. Calculate the diameter of a perfect circle with the same area. This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple number average is obtained, the unit is μm, and the value rounded to the second decimal place is the average single fiber on the surface referred to in the present invention. Let it be the diameter.
本発明のスパンボンド不織布は、表面(A)の繊維の屈曲度が1.1以上である。表面(A)の繊維の屈曲度は、1.2以上が好ましく、1.3以上がより好ましい。表面(A)の繊維の屈曲度は、1.1以上であることによって、高い吸水速度を得られるためである。高い吸水速度が得られるメカニズムは明らかではないが、多様な繊維間空隙が形成されている効果だと推定している。さらに、表面(A)の繊維の屈曲度は、1.1以上であることによって、ソフトな触感が得やすくなる。表面(A)の繊維の屈曲度の上限は、特に制限されないが、工程安定性や生産性の観点から10.0以下が好ましい。
The spunbonded nonwoven fabric of the present invention has a bending degree of fibers on the surface (A) of 1.1 or more. The bending degree of the fiber on the surface (A) is preferably 1.2 or more, more preferably 1.3 or more. This is because a high water absorption rate can be obtained when the bending degree of the fiber on the surface (A) is 1.1 or more. The mechanism by which a high water absorption rate is obtained is not clear, but it is presumed to be the effect of forming various interfiber voids. Further, when the bending degree of the fiber on the surface (A) is 1.1 or more, it becomes easy to obtain a soft touch feeling. The upper limit of the bending degree of the fiber on the surface (A) is not particularly limited, but is preferably 10.0 or less from the viewpoint of process stability and productivity.
ここで言う繊維の屈曲度とは、以下のようにして求めるものである。
The degree of fiber bending referred to here is obtained as follows.
まず、一方の表面を、走査型電子顕微鏡で1本の繊維を、直線で500μm以上にわたって観察できる倍率として画像を撮影する。続いて、撮影した画像を用い、画像解析ソフト(例えばアメリカ国立衛生研究所「ImageJ」など)を用いて、直線で500μmの繊維状の2点間について、繊維の見掛け上の長さを測定し、この繊維の見掛け上の長さを500μmで除して、見掛け上の長さ/直線での長さを算出する。これを任意に抽出した同じ表面を構成する繊維20本について測定し、単純な数平均を求め、小数点第2位を四捨五入した値を本発明で言うその表面の繊維の屈曲度とする。
First, an image is taken of one surface with a scanning electron microscope at a magnification that allows one fiber to be observed in a straight line over 500 μm. Then, using the captured image, using image analysis software (for example, National Institutes of Health "ImageJ"), the apparent length of the fiber was measured between two linear fibrous points of 500 μm. , The apparent length of this fiber is divided by 500 μm to calculate the apparent length / linear length. This is arbitrarily extracted and measured for 20 fibers constituting the same surface, a simple number average is obtained, and the value rounded to the second decimal place is defined as the tortuosity of the fibers on the surface in the present invention.
[表面(B)]
本発明のスパンボンド不織布に係る表面(B)は、表面(A)と同様に、前記の熱可塑性樹脂からなる繊維で構成される。 [Surface (B)]
The surface (B) of the spunbonded nonwoven fabric of the present invention is composed of fibers made of the above-mentioned thermoplastic resin, similarly to the surface (A).
本発明のスパンボンド不織布に係る表面(B)は、表面(A)と同様に、前記の熱可塑性樹脂からなる繊維で構成される。 [Surface (B)]
The surface (B) of the spunbonded nonwoven fabric of the present invention is composed of fibers made of the above-mentioned thermoplastic resin, similarly to the surface (A).
本発明のスパンボンド不織布は、長繊維からなることが好ましく、表面(B)の構成繊維が、表面(A)と同様に、長繊維であることが好ましい。長繊維からなることにより、高い生産性と優れた力学物性を両立し易いためである。
The spunbonded nonwoven fabric of the present invention is preferably made of long fibers, and the constituent fibers of the surface (B) are preferably long fibers as in the surface (A). This is because it is easy to achieve both high productivity and excellent mechanical characteristics because it is made of long fibers.
本発明のスパンボンド不織布の表面(B)を構成する繊維の平均単繊維直径は、1.0~25.0μmであることが好ましい。表面(B)を構成する繊維の平均単繊維直径は、好ましくは1.0μm以上、より好ましくは3.0μm以上、さらに好ましくは5.0μm以上である。1.0μm以上とすることにより、繊維の配置が緻密になり過ぎず、紙おむつ用材料として使用した場合、隣接する吸水体に水分が移行しやすいためである。また、表面(B)を構成する繊維の平均単繊維直径は、好ましくは25.0μm以下、より好ましくは20.0μm以下、さらに好ましくは16.0μm以下である。25.0μm以下とすることにより、高い毛細管力を得やすく、優れた吸水性となるためである。
The average single fiber diameter of the fibers constituting the surface (B) of the spunbonded nonwoven fabric of the present invention is preferably 1.0 to 25.0 μm. The average single fiber diameter of the fibers constituting the surface (B) is preferably 1.0 μm or more, more preferably 3.0 μm or more, still more preferably 5.0 μm or more. This is because when the size is 1.0 μm or more, the arrangement of the fibers does not become too dense, and when used as a material for disposable diapers, water easily transfers to the adjacent water absorber. The average single fiber diameter of the fibers constituting the surface (B) is preferably 25.0 μm or less, more preferably 20.0 μm or less, still more preferably 16.0 μm or less. This is because when the thickness is 25.0 μm or less, high capillary force can be easily obtained and excellent water absorption can be obtained.
本発明のスパンボンド不織布の表面(B)の繊維の屈曲度は、1.1以下であることが好ましく、1.0であることがより好ましい。表面(B)の繊維の屈曲度は、1.1以下であることによって、小さい繊維間空隙を形成し易く、高い毛細管力が得易いためである。表面(B)の繊維の屈曲度の下限は、見掛けの長さと直線での長さの一致した場合の含まれる1.0であり、好ましい態様である。
The degree of bending of the fibers on the surface (B) of the spunbonded nonwoven fabric of the present invention is preferably 1.1 or less, more preferably 1.0. This is because when the bending degree of the fibers on the surface (B) is 1.1 or less, it is easy to form small interfiber voids and it is easy to obtain a high capillary force. The lower limit of the bending degree of the fiber on the surface (B) is 1.0, which is included when the apparent length and the length in a straight line match, which is a preferable embodiment.
[表面(A)および表面(B)の平均単繊維直径]
本発明のスパンボンド不織布は、一方の表面(A)の平均単繊維直径(Da)の他方の表面(B)の繊維の平均単繊維直径(Db)に対する比(Da/Db、以下、単に「平均単繊維直径比」と略することがある)が1.1以上である。 [Average single fiber diameter of surface (A) and surface (B)]
In the spunbonded nonwoven fabric of the present invention, the ratio (Da / Db) of the average single fiber diameter (Da) of one surface (A) to the average single fiber diameter (Db) of the fibers of the other surface (B), hereinafter simply " (Sometimes abbreviated as "average single fiber diameter ratio") is 1.1 or more.
本発明のスパンボンド不織布は、一方の表面(A)の平均単繊維直径(Da)の他方の表面(B)の繊維の平均単繊維直径(Db)に対する比(Da/Db、以下、単に「平均単繊維直径比」と略することがある)が1.1以上である。 [Average single fiber diameter of surface (A) and surface (B)]
In the spunbonded nonwoven fabric of the present invention, the ratio (Da / Db) of the average single fiber diameter (Da) of one surface (A) to the average single fiber diameter (Db) of the fibers of the other surface (B), hereinafter simply " (Sometimes abbreviated as "average single fiber diameter ratio") is 1.1 or more.
ここで言う平均単繊維直径比とは、前述の手法を用いて、表面(A)を構成する繊維の平均単繊維直径(Da)と、表面(B)を構成する繊維の平均単繊維直径(Db)を測定し、その比(Da/Db)を算出し、小数点第2位を四捨五入した値である。
The average single fiber diameter ratio referred to here is the average single fiber diameter (Da) of the fibers constituting the surface (A) and the average single fiber diameter (B) of the fibers constituting the surface (B) by using the above-mentioned method. Db) is measured, the ratio (Da / Db) is calculated, and the value is rounded off to the second digit.
一般に、不織布においては、構成する繊維の平均単繊維直径に応じて、繊維同士が織りなす空隙サイズが変化する。このため、平均単繊維直径が異なる層が形成した場合には繊維間空隙サイズが異なる層が形成されることとなり、水分が付着した場合には、毛細管力の差により、太い繊維からなる層に吸収された水分を、細い繊維からなる層に移行させることができる。さらに、本発明者らは鋭意検討の結果、この平均単繊維直径比を特定の範囲とすることで、毛細管効果の差による吸水性向上効果のみならず、太い繊維からなる不織布層の表面に速乾性が付与されることを見出した。
Generally, in a non-woven fabric, the size of the voids woven by the fibers changes according to the average single fiber diameter of the constituent fibers. Therefore, when layers with different average single fiber diameters are formed, layers with different interfiber void sizes are formed, and when moisture adheres, the layer is made of thick fibers due to the difference in capillary force. The absorbed moisture can be transferred to a layer of fine fibers. Furthermore, as a result of diligent studies, the present inventors have set this average single fiber diameter ratio within a specific range, which not only has an effect of improving water absorption due to the difference in capillary effect, but also has a rapid effect on the surface of a non-woven fabric layer made of thick fibers. It has been found that dryness is imparted.
本発明における平均単繊維直径比(Da/Db)は、1.2以上が好ましく、1.3以上がより好ましく、1.4以上がさらに好ましい。平均単繊維直径比(Da/Db)を1.1以上にすることによって、上述の毛細管効果が作用し、良好な吸水性および表面(A)における速乾性を得ることができる。なお、本発明における平均単繊維直径比の上限は特に制限されないが、工程安定性や生産性の観点から10.0以下が好ましい。
The average single fiber diameter ratio (Da / Db) in the present invention is preferably 1.2 or more, more preferably 1.3 or more, and even more preferably 1.4 or more. By setting the average single fiber diameter ratio (Da / Db) to 1.1 or more, the above-mentioned capillary effect acts, and good water absorption and quick-drying on the surface (A) can be obtained. The upper limit of the average single fiber diameter ratio in the present invention is not particularly limited, but is preferably 10.0 or less from the viewpoint of process stability and productivity.
[スパンボンド不織布]
本発明のスパンボンド不織布は、前記のとおり、融着部と非融着部とを有する。この融着部とは、表面(A)の繊維と表面(B)の繊維とが融着している箇所のことであり、非融着部とはスパンボンド不織布上のそれ以外の箇所のうち、融着部に囲まれている領域のことである。融着部においては、表面(A)の繊維と、表面(B)の繊維とが融着している箇所であるため、その周囲は密度が高くなりやすい。スパンボンド不織布の面内に高密度となる融着部と、相対的に低密度となる非融着部とがあることによって、面内での水の移動が容易になり、単純な厚み方向の水の移動よりも効率的な吸水速乾性能を発現しやすくすることができる。 [Spanbond non-woven fabric]
As described above, the spunbonded nonwoven fabric of the present invention has a fused portion and a non-fused portion. The fused portion is a portion where the fiber on the surface (A) and the fiber on the surface (B) are fused, and the non-fused portion is a portion other than that on the spunbonded nonwoven fabric. , The area surrounded by the fused part. In the fused portion, since the fiber on the surface (A) and the fiber on the surface (B) are fused, the density around the fused portion tends to be high. The presence of a high-density fused portion and a relatively low-density non-fused portion in the plane of the spunbonded non-woven fabric facilitates the movement of water in the plane and is simple in the thickness direction. It is possible to facilitate the development of more efficient water absorption and quick-drying performance than the movement of water.
本発明のスパンボンド不織布は、前記のとおり、融着部と非融着部とを有する。この融着部とは、表面(A)の繊維と表面(B)の繊維とが融着している箇所のことであり、非融着部とはスパンボンド不織布上のそれ以外の箇所のうち、融着部に囲まれている領域のことである。融着部においては、表面(A)の繊維と、表面(B)の繊維とが融着している箇所であるため、その周囲は密度が高くなりやすい。スパンボンド不織布の面内に高密度となる融着部と、相対的に低密度となる非融着部とがあることによって、面内での水の移動が容易になり、単純な厚み方向の水の移動よりも効率的な吸水速乾性能を発現しやすくすることができる。 [Spanbond non-woven fabric]
As described above, the spunbonded nonwoven fabric of the present invention has a fused portion and a non-fused portion. The fused portion is a portion where the fiber on the surface (A) and the fiber on the surface (B) are fused, and the non-fused portion is a portion other than that on the spunbonded nonwoven fabric. , The area surrounded by the fused part. In the fused portion, since the fiber on the surface (A) and the fiber on the surface (B) are fused, the density around the fused portion tends to be high. The presence of a high-density fused portion and a relatively low-density non-fused portion in the plane of the spunbonded non-woven fabric facilitates the movement of water in the plane and is simple in the thickness direction. It is possible to facilitate the development of more efficient water absorption and quick-drying performance than the movement of water.
なお、本発明において、スパンボンド不織布上のある一部分において、その箇所が融着部であるかどうか、すなわち、表面(A)の繊維と、表面(B)の繊維とが融着している箇所であるかどうかは、スパンボンド不織布の当該部分の横断面を、走査型電子顕微鏡でスパンボンド不織布の厚さ方向が視野に入る倍率として画像を観察し、任意に選んだ、表面(A)が融着している部位について、面方向における同じ位置で表面(B)が融着していれば、その箇所が融着部であると判断する。
In the present invention, whether or not the portion is a fused portion in a part of the spunbonded nonwoven fabric, that is, a portion where the fiber on the surface (A) and the fiber on the surface (B) are fused. Whether or not the surface (A) is arbitrarily selected by observing an image of the cross section of the relevant portion of the spunbonded nonwoven fabric as a magnification in which the thickness direction of the spunbonded nonwoven fabric is in the field of view with a scanning electron microscope. If the surface (B) of the fused portion is fused at the same position in the plane direction, it is determined that the portion is the fused portion.
また、本発明のスパンボンド不織布は、前記の非融着部の最大内接円の直径が2.0mm以上であることが好ましい。最大内接円の直径は、3.0mm以上がより好ましく、4.0mm以上が更に好ましい。最大内接円の直径が2.0mm以上であると、融着している箇所から十分離れた低密度の部分を形成し易いため、高い吸水速度を得やすいためである。また、ソフトな触感を得やすい点でも好ましい。最大内接円の直径は、10.0mm以下が好ましく、9.0mm以下がより好ましく、8.0mm以下が更に好ましい。最大内接円の直径が10.0mm以下であると、摩擦などでの毛羽立ちを抑制し易いためである。
Further, in the spunbonded nonwoven fabric of the present invention, it is preferable that the diameter of the maximum inscribed circle of the non-fused portion is 2.0 mm or more. The diameter of the maximum inscribed circle is more preferably 3.0 mm or more, further preferably 4.0 mm or more. This is because when the diameter of the maximum inscribed circle is 2.0 mm or more, it is easy to form a low-density portion sufficiently distant from the fused portion, so that a high water absorption rate can be easily obtained. It is also preferable in that it is easy to obtain a soft touch. The diameter of the maximum inscribed circle is preferably 10.0 mm or less, more preferably 9.0 mm or less, still more preferably 8.0 mm or less. This is because when the diameter of the maximum inscribed circle is 10.0 mm or less, it is easy to suppress fluffing due to friction or the like.
本発明における最大内接円の直径は、図1~図3に例示されるように、スパンボンド不織布(1)の表面をその上方から観察した際に、マイクロスコープで融着部(11)に囲まれた非融着部が観察できる10mm×10mm以上の大きさの視野を撮影する。続いて、撮影した画像を用い、画像解析ソフト(例えば三谷商事株式会社製「WinROOF2015」など)を用いて、非融着部(12)上に配置できる最大内接円(13)の直径を測定する。これを任意に抽出した同じ表面を構成する20箇所について測定し、単純な数平均を求め、単位をmmとして、小数点第2位を四捨五入した値が本発明で言うその表面の最大内接円の直径とする。
As illustrated in FIGS. 1 to 3, the diameter of the maximum inscribed circle in the present invention is formed on the fused portion (11) with a microscope when the surface of the spunbonded nonwoven fabric (1) is observed from above. A field of view having a size of 10 mm × 10 mm or more in which the enclosed non-woven fabric can be observed is photographed. Then, using the captured image, the diameter of the maximum inscribed circle (13) that can be placed on the non-fused portion (12) is measured using image analysis software (for example, "WinROOF2015" manufactured by Mitani Corporation). do. This is arbitrarily extracted and measured at 20 points constituting the same surface, a simple number average is obtained, the unit is mm, and the value rounded to the second decimal place is the maximum inscribed circle of the surface in the present invention. Let it be the diameter.
本発明のスパンボンド不織布は、繊維の平均単繊維直径がDaである一方の表面(A)と、繊維の平均単繊維直径がDbである他方の表面(B)を有し、前記のとおり、平均単繊維直径比(Da/Db)が1.1以上である。このようにすることで、平均単繊維直径が大きく、不織布層内の繊維間空隙が大きくなり易い表面(A)が最表層となり、表面(A)側で水分を吸水した場合には、速やかに表面(B)側に水分が移行されるため、表面(A)側の最表面で速乾性を得ることができるのである。
The spunbonded nonwoven fabric of the present invention has one surface (A) in which the average single fiber diameter of the fiber is Da and the other surface (B) in which the average single fiber diameter of the fiber is Db, as described above. The average single fiber diameter ratio (Da / Db) is 1.1 or more. By doing so, the surface (A) in which the average single fiber diameter is large and the interfiber voids in the nonwoven fabric layer are likely to be large becomes the outermost layer, and when water is absorbed on the surface (A) side, the surface (A) is promptly absorbed. Since the water is transferred to the surface (B) side, quick-drying can be obtained on the outermost surface on the surface (A) side.
さらに、本発明のスパンボンド不織布は、スパンボンド不織布の表面(A)および表面(B)の、水との接触角がともに30°以下である。スパンボンド不織布の表裏面の水との接触角がともに30°以下、好ましくは20°以下、より好ましくは10°以下であることにより、スパンボンド不織布表面に接触した水が不織布に吸水されやすく好ましい。また、本発明における水との接触角の下限は0°であるが、水との接触角が0°とは、後述の測定方法においてすべての水が不織布に吸水された状態をいう。
Further, in the spunbonded nonwoven fabric of the present invention, the contact angles of the surfaces (A) and the surface (B) of the spunbonded nonwoven fabric with water are both 30 ° or less. When the contact angles of the front and back surfaces of the spunbonded nonwoven fabric with water are both 30 ° or less, preferably 20 ° or less, more preferably 10 ° or less, the water in contact with the surface of the spunbonded nonwoven fabric is easily absorbed by the nonwoven fabric. .. Further, the lower limit of the contact angle with water in the present invention is 0 °, but the contact angle with water of 0 ° means a state in which all the water is absorbed by the non-woven fabric in the measurement method described later.
なお、スパンボンド不織布の表面の水との接触角は、スパンボンド不織布を構成する繊維に用いられる熱可塑性樹脂の親水性や後工程による親水性油剤付与によって制御することができる。例えば、上記熱可塑性樹脂の親水性が高いほど、また親水性油剤の付着量が多いほど、水との接触角は小さくなる傾向にある。
The contact angle of the surface of the spunbonded nonwoven fabric with water can be controlled by the hydrophilicity of the thermoplastic resin used for the fibers constituting the spunbonded nonwoven fabric and the addition of a hydrophilic oil agent in a subsequent process. For example, the higher the hydrophilicity of the thermoplastic resin and the larger the amount of the hydrophilic oil agent adhered to the resin, the smaller the contact angle with water tends to be.
本発明のスパンボンド不織布の表面の水との接触角は、以下の方法で測定、算出された値を指す。
(1)スパンボンド不織布を、室温20℃、相対湿度65%の室内に24時間以上放置する。
(2)上記処理を施したスパンボンド不織布を、同室に設置した接触角計のステージ上に、表面(A)が測定面となるようにセットする。
(3)イオン交換水からなる2μLの液滴を針先に作製し、不織布に着液させる。
(4)不織布に液滴が着液してから2秒後の画像より、液滴との接触角を求める。なお、2秒以内にすべての水が不織布に吸水された場合は、液滴の空気との界面が不織布層の表面と同一面に存在すると判断し、水との接触角を0°と定義する。
(5)1水準につき測定位置を変更して5回測定を行い、その算術平均値を表面(A)と水との接触角とする。
(6)(1)と同様の処理を施したスパンボンド不織布を、表面(A)が裏面となるようにセットし、上記(2)~(5)の操作を繰り返し行い、その算術平均値を表面(B)と水との接触角とする。 The contact angle of the surface of the spunbonded nonwoven fabric of the present invention with water refers to a value measured and calculated by the following method.
(1) The spunbonded nonwoven fabric is left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more.
(2) The spunbonded nonwoven fabric subjected to the above treatment is set on the stage of the contact angle meter installed in the same room so that the surface (A) becomes the measurement surface.
(3) A 2 μL droplet composed of ion-exchanged water is prepared at the needle tip and landed on a non-woven fabric.
(4) The contact angle with the droplet is obtained from the image 2 seconds after the droplet has landed on the non-woven fabric. If all the water is absorbed by the non-woven fabric within 2 seconds, it is judged that the interface of the droplet with air is on the same surface as the surface of the non-woven fabric layer, and the contact angle with water is defined as 0 °. ..
(5) The measurement position is changed for each level, and the measurement is performed 5 times, and the arithmetic mean value is taken as the contact angle between the surface (A) and water.
(6) Set the spunbonded non-woven fabric subjected to the same treatment as (1) so that the front surface (A) is the back surface, repeat the above operations (2) to (5), and calculate the arithmetic mean value. The contact angle between the surface (B) and water.
(1)スパンボンド不織布を、室温20℃、相対湿度65%の室内に24時間以上放置する。
(2)上記処理を施したスパンボンド不織布を、同室に設置した接触角計のステージ上に、表面(A)が測定面となるようにセットする。
(3)イオン交換水からなる2μLの液滴を針先に作製し、不織布に着液させる。
(4)不織布に液滴が着液してから2秒後の画像より、液滴との接触角を求める。なお、2秒以内にすべての水が不織布に吸水された場合は、液滴の空気との界面が不織布層の表面と同一面に存在すると判断し、水との接触角を0°と定義する。
(5)1水準につき測定位置を変更して5回測定を行い、その算術平均値を表面(A)と水との接触角とする。
(6)(1)と同様の処理を施したスパンボンド不織布を、表面(A)が裏面となるようにセットし、上記(2)~(5)の操作を繰り返し行い、その算術平均値を表面(B)と水との接触角とする。 The contact angle of the surface of the spunbonded nonwoven fabric of the present invention with water refers to a value measured and calculated by the following method.
(1) The spunbonded nonwoven fabric is left in a room at room temperature of 20 ° C. and relative humidity of 65% for 24 hours or more.
(2) The spunbonded nonwoven fabric subjected to the above treatment is set on the stage of the contact angle meter installed in the same room so that the surface (A) becomes the measurement surface.
(3) A 2 μL droplet composed of ion-exchanged water is prepared at the needle tip and landed on a non-woven fabric.
(4) The contact angle with the droplet is obtained from the image 2 seconds after the droplet has landed on the non-woven fabric. If all the water is absorbed by the non-woven fabric within 2 seconds, it is judged that the interface of the droplet with air is on the same surface as the surface of the non-woven fabric layer, and the contact angle with water is defined as 0 °. ..
(5) The measurement position is changed for each level, and the measurement is performed 5 times, and the arithmetic mean value is taken as the contact angle between the surface (A) and water.
(6) Set the spunbonded non-woven fabric subjected to the same treatment as (1) so that the front surface (A) is the back surface, repeat the above operations (2) to (5), and calculate the arithmetic mean value. The contact angle between the surface (B) and water.
本発明のスパンボンド不織布は、任意の一方向を0°とし22.5°毎に180°まで、スパンボンド不織布の面内で回転させて測定した破断強力の内、最低破断強力σminに対する最高破断強力σmaxの比(σmax/σmin、以下、単に破断強力比と略することがある)が1.2~4.0であることが好ましい。破断強力比を好ましくは1.2以上、より好ましくは1.3以上とすることにより、不織布面内で繊維が配向し易くなっており、高い毛細管力を発現し易いことから、面内の繊維の移動を生じてより高い吸水速乾性を得ることが可能となる。また、破断強力比を好ましくは4.0以下、より好ましくは3.5以下とすることにより、極端に破断強力の低い角度がなくなるため、工程通過時や製品加工時の不織布の破れを抑制することができる。
The spunbonded non-woven fabric of the present invention has the highest breaking strength with respect to the lowest breaking strength σ min measured by rotating in the plane of the spunbonded non-woven fabric up to 180 ° every 22.5 ° with 0 ° in any one direction. The ratio of breaking strength σ max (σ max / σ min , hereinafter may be simply abbreviated as breaking strength ratio) is preferably 1.2 to 4.0. By setting the breaking strength ratio to preferably 1.2 or more, more preferably 1.3 or more, the fibers are easily oriented in the non-woven fabric surface, and high capillary force is easily developed. Therefore, the in-plane fibers are easily developed. It is possible to obtain higher water absorption and quick-drying property by causing the movement of the fiber. Further, by setting the breaking strength ratio to preferably 4.0 or less, more preferably 3.5 or less, an extremely low angle of breaking strength is eliminated, so that tearing of the non-woven fabric during process passage or product processing is suppressed. be able to.
本発明のスパンボンド不織布の破断強力比は、JIS L1913:2010「一般不織布試験方法」の「6.3 引張強さ及び伸び率(ISO法)」に基づき、以下の方法で測定、算出された値を指す。
(1)スパンボンド不織布の任意の一方向を0°とし、縦方向が上記の方向と一致するよう縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取する。
(2)試験片をつかみ間隔200mmで引張試験機にセットする。
(3)引張速度100m/分で引張試験を実施し、採取した3枚の試験片について破断時の強力〔N〕を求め、その算術平均値を破断強力σとする。
(4)0°とした任意の一方向に対してスパンボンド不織布の面内で時計回りに22.5°回転させた方向を軸とし、縦方向が上記の軸方向と一致するように縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取する。その後、上記(2)~(3)の操作を行い、破断強力σを算出する。
(5)スパンボンド不織布の面内での回転角度が180°になるまで上記(4)の操作を繰り返し行い、それぞれの角度における破断強力σを算出する。
(6)上記の方法で算出された破断強力σの内、最低破断強力σminに対する最高破断強力σmaxの比(σmax/σmin)を算出し、スパンボンド不織布の破断強力比とする。 The breaking strength ratio of the spunbonded nonwoven fabric of the present invention was measured and calculated by the following method based on "6.3 Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General nonwoven fabric test method". Point to a value.
(1) Set any one direction of the spunbonded nonwoven fabric to 0 °, cut out a test piece having a length of 300 mm and a width of 25 mm so that the vertical direction coincides with the above direction, change the location, and collect three test pieces.
(2) Grasp the test piece and set it in the tensile tester with an interval of 200 mm.
(3) A tensile test is carried out at a tensile speed of 100 m / min, the strength [N] at break is obtained for the three collected test pieces, and the arithmetic mean value thereof is defined as the breaking strength σ.
(4) The axis is the direction rotated clockwise by 22.5 ° in the plane of the spunbonded nonwoven fabric with respect to any one direction set to 0 °, and the vertical direction is 300 mm in length so as to coincide with the above axial direction. × Cut out a test piece with a width of 25 mm, change the location, and collect 3 test pieces. After that, the above operations (2) to (3) are performed to calculate the breaking strength σ.
(5) The operation of (4) above is repeated until the rotation angle of the spunbonded nonwoven fabric in the plane becomes 180 °, and the breaking strength σ at each angle is calculated.
(6) Of the breaking strength σ calculated by the above method, the ratio of the maximum breaking strength σ max to the lowest breaking strength σ min (σ max / σ min ) is calculated and used as the breaking strength ratio of the spunbonded non-woven fabric.
(1)スパンボンド不織布の任意の一方向を0°とし、縦方向が上記の方向と一致するよう縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取する。
(2)試験片をつかみ間隔200mmで引張試験機にセットする。
(3)引張速度100m/分で引張試験を実施し、採取した3枚の試験片について破断時の強力〔N〕を求め、その算術平均値を破断強力σとする。
(4)0°とした任意の一方向に対してスパンボンド不織布の面内で時計回りに22.5°回転させた方向を軸とし、縦方向が上記の軸方向と一致するように縦300mm×横25mmの試験片を切り出し、場所を変更して試験片を3枚採取する。その後、上記(2)~(3)の操作を行い、破断強力σを算出する。
(5)スパンボンド不織布の面内での回転角度が180°になるまで上記(4)の操作を繰り返し行い、それぞれの角度における破断強力σを算出する。
(6)上記の方法で算出された破断強力σの内、最低破断強力σminに対する最高破断強力σmaxの比(σmax/σmin)を算出し、スパンボンド不織布の破断強力比とする。 The breaking strength ratio of the spunbonded nonwoven fabric of the present invention was measured and calculated by the following method based on "6.3 Tensile strength and elongation (ISO method)" of JIS L1913: 2010 "General nonwoven fabric test method". Point to a value.
(1) Set any one direction of the spunbonded nonwoven fabric to 0 °, cut out a test piece having a length of 300 mm and a width of 25 mm so that the vertical direction coincides with the above direction, change the location, and collect three test pieces.
(2) Grasp the test piece and set it in the tensile tester with an interval of 200 mm.
(3) A tensile test is carried out at a tensile speed of 100 m / min, the strength [N] at break is obtained for the three collected test pieces, and the arithmetic mean value thereof is defined as the breaking strength σ.
(4) The axis is the direction rotated clockwise by 22.5 ° in the plane of the spunbonded nonwoven fabric with respect to any one direction set to 0 °, and the vertical direction is 300 mm in length so as to coincide with the above axial direction. × Cut out a test piece with a width of 25 mm, change the location, and collect 3 test pieces. After that, the above operations (2) to (3) are performed to calculate the breaking strength σ.
(5) The operation of (4) above is repeated until the rotation angle of the spunbonded nonwoven fabric in the plane becomes 180 °, and the breaking strength σ at each angle is calculated.
(6) Of the breaking strength σ calculated by the above method, the ratio of the maximum breaking strength σ max to the lowest breaking strength σ min (σ max / σ min ) is calculated and used as the breaking strength ratio of the spunbonded non-woven fabric.
本発明のスパンボンド不織布は、本発明の効果を損なわない範囲で、目的に応じてスパンボンド不織布の層(S)とメルトブロー不織布の層(M)とを配置することができる。これらの配置の例としては、SMS、SMMS、SSMMS、およびSMSMSなどのような態様が挙げられる。これらの場合は、積層した不織布の一方の表面をスパンボンド不織布の表面(A)、もう一方の表面を、表面(B)とみなす。
In the spunbonded nonwoven fabric of the present invention, the spunbonded nonwoven fabric layer (S) and the melt blow nonwoven fabric layer (M) can be arranged according to the purpose as long as the effects of the present invention are not impaired. Examples of these arrangements include aspects such as SMS, SMMS, SMSMS, SMSMS, and the like. In these cases, one surface of the laminated nonwoven fabric is regarded as the surface (A) of the spunbonded nonwoven fabric, and the other surface is regarded as the surface (B).
本発明のスパンボンド不織布は、表面(A)で測定された吸水速度が20秒以下であることが好ましい。吸水速度を好ましくは20秒以下、より好ましくは15秒以下、さらに好ましくは10秒以下とすることにより、表面に付着した水分を取り除く性能が良好である、すなわち吸水性に優れる不織布となる。
The spunbonded nonwoven fabric of the present invention preferably has a water absorption rate of 20 seconds or less as measured on the surface (A). By setting the water absorption rate to preferably 20 seconds or less, more preferably 15 seconds or less, and further preferably 10 seconds or less, the non-woven fabric has good performance of removing water adhering to the surface, that is, has excellent water absorption.
ここで言う吸水速度とは、JIS L1907:2010「繊維製品の吸水性試験方法」の「7.1.1 滴下法」に基づき測定されるものである。スパンボンド不織布に水滴を1滴滴下し、吸収されて表面の鏡面反射が消失するまでの時間を測定し、これを異なる10箇所で測定した値の単純平均を算出し、単位を秒として、小数点第1位を四捨五入した値を、本発明で言う吸水速度とする。
The water absorption rate referred to here is measured based on "7.1.1 Drop method" of JIS L1907: 2010 "Water absorption test method for textile products". Drop one drop of water on the spunbonded non-woven fabric, measure the time until it is absorbed and the mirror reflection on the surface disappears, calculate the simple average of the values measured at 10 different points, and use the decimal point as the unit. The value rounded to the first decimal place is taken as the water absorption rate in the present invention.
本発明のスパンボンド不織布の目付は、10~100g/m2とすることが好ましい。目付を好ましくは10g/m2以上、より好ましくは13g/m2以上、さらに好ましくは15g/m2以上とすることにより、実用に供し得る機械的強度のスパンボンド不織布を得ることができる。また、目付を好ましくは100g/m2以下、より好ましくは50g/m2以下とすることにより、衛生材料用の不織布としての使用に適した適度な柔軟性を有するスパンボンド不織布とすることができる。
The basis weight of the spunbonded nonwoven fabric of the present invention is preferably 10 to 100 g / m 2. By setting the basis weight to preferably 10 g / m 2 or more, more preferably 13 g / m 2 or more, and further preferably 15 g / m 2 or more, a spunbonded nonwoven fabric having mechanical strength that can be put into practical use can be obtained. Further, by setting the basis weight to preferably 100 g / m 2 or less, more preferably 50 g / m 2 or less, a spunbonded nonwoven fabric having appropriate flexibility suitable for use as a nonwoven fabric for sanitary materials can be obtained. ..
なお、本発明のスパンボンド不織布の目付(g/m2)とは、JIS L1913:2010「一般不織布試験方法」の「6.2 単位面積当たりの質量」に基づき、20cm×25cmの試験片を、試料の幅1m当たり3枚採取し、標準状態におけるそれぞれの質量(g)を量り、その平均値から算出する1m2当たりの質量を指すこととする。
The spunbonded nonwoven fabric of the present invention has a texture (g / m 2 ), which is a 20 cm × 25 cm test piece based on “6.2 Mass per unit area” of JIS L1913: 2010 “General nonwoven fabric test method”. , 3 samples are taken per 1 m of width of the sample, each mass (g) in the standard state is weighed, and the mass per 1 m 2 calculated from the average value is referred to.
なお、本発明のスパンボンド不織布は、吸水性をより高くすることを目的として、親水化剤を付与しても良い。親水化剤の種類としては、界面活性剤などが挙げられるが、中でも非イオン性界面活性剤が好ましい。
The spunbonded nonwoven fabric of the present invention may be provided with a hydrophilic agent for the purpose of increasing water absorption. Examples of the type of the hydrophilizing agent include surfactants, and among them, nonionic surfactants are preferable.
本発明のスパンボンド不織布は、非融着部の厚み(Tu)が0.5mm以上であることが好ましい。Tuが0.5mm以上、より好ましくは0.7mm以上、さらに好ましくは0.9mm以上であることによって、スパンボンド不織布が適度なクッション性を有するものとなる。一方、1.50mm以下、より好ましくは1.40mm以下、さらに好ましくは1.30mm以下であることによって、スパンボンド不織布が曲げ柔軟性に優れたものとなる。
The spunbonded nonwoven fabric of the present invention preferably has a non-fused portion thickness (Tu) of 0.5 mm or more. When the Tu is 0.5 mm or more, more preferably 0.7 mm or more, still more preferably 0.9 mm or more, the spunbonded nonwoven fabric has an appropriate cushioning property. On the other hand, when the size is 1.50 mm or less, more preferably 1.40 mm or less, still more preferably 1.30 mm or less, the spunbonded nonwoven fabric has excellent bending flexibility.
本発明のスパンボンド不織布の非融着部の厚み(Tu)は、特に限定するものではないが、例えば、形状測定機(例えば、キーエンス社製「VR3050」)で測定した、無荷重での厚みをいう。
The thickness (Tu) of the non-fused portion of the spunbonded nonwoven fabric of the present invention is not particularly limited, but is, for example, the thickness under no load measured by a shape measuring machine (for example, "VR3050" manufactured by KEYENCE CORPORATION). To say.
本発明のスパンボンド不織布は、非融着部の厚み(Tu)と融着部の厚み(Tm)との比(Tu/Tm)が、2.0以上であることが好ましく、5.0以上がより好ましく、10.0以上がさらに好ましい。Tu/Tmが2.0以上であることによって、融着している箇所の周囲と、融着している箇所からはなれた位置との密度の差が大きくなり、融着している箇所の周囲にある高密度部での高い吸水性と、はなれた位置にある低密度部での優れたソフトさを両立し易いためである。上限は特に限定するものでは無いが、通常50以下である。
In the spunbonded nonwoven fabric of the present invention, the ratio (Tu / Tm) of the thickness of the non-fused portion (Tu) to the thickness of the fused portion (Tm) is preferably 2.0 or more, preferably 5.0 or more. Is more preferable, and 10.0 or more is further preferable. When Tu / Tm is 2.0 or more, the difference in density between the periphery of the fused portion and the position separated from the fused portion becomes large, and the circumference of the fused portion becomes large. This is because it is easy to achieve both high water absorption in the high-density part in the above and excellent softness in the low-density part in the remote position. The upper limit is not particularly limited, but is usually 50 or less.
本発明のスパンボンド不織布の融着部の厚み(Tm)は、特に限定するものではないが、例えば、マイクロスコープで断面が観察できる視野を撮影する。続いて、撮影した画像を用い、画像解析ソフト(例えば三谷商事株式会社製「WinROOF2015」など)を用いて、厚みを測定する。これを任意に抽出した10箇所について測定し、単純な数平均を求め、単位をmmとして、小数点第3位を四捨五入した値が本発明で言うスパンボンド不織布の融着部の厚み(Tm)である。
The thickness (Tm) of the fused portion of the spunbonded nonwoven fabric of the present invention is not particularly limited, but for example, a field of view in which a cross section can be observed with a microscope is photographed. Subsequently, using the captured image, the thickness is measured using image analysis software (for example, "WinROOF2015" manufactured by Mitani Corporation). This is measured at 10 arbitrarily extracted points, a simple number average is obtained, the unit is mm, and the value rounded to the third decimal place is the thickness (Tm) of the fused portion of the spunbonded nonwoven fabric in the present invention. be.
また、非融着部の厚み(Tu)と融着部の厚み(Tm)との比(Tu/Tm)は、前記によって測定・算出されたTu(mm)をTm(mm)で除し、小数点以下第2位を四捨五入して算出することとする。
Further, the ratio (Tu / Tm) of the thickness of the non-fused portion (Tu) to the thickness of the fused portion (Tm) is obtained by dividing Tu (mm) measured and calculated by the above by Tm (mm). It shall be calculated by rounding off the second decimal place.
[衛生材料]
本発明の衛生材料は、少なくとも一部が前記のスパンボンド不織布で構成されてなる。このようにすることで、吸水性と速乾性とに優れた衛生材料が得られる。なお、本発明の衛生材料は、医療・介護など健康に関わる目的で使用される、主に使い捨ての物品であり、紙おむつ、生理用ナプキン、ガーゼ、包帯、マスク、手袋、絆創膏等が挙げられ、その構成部材、例えば、紙おむつのトップシート、バックシート、サイドギャザー等も含まれる。 [Sanitary material]
The sanitary material of the present invention is at least partially composed of the above-mentioned spunbonded nonwoven fabric. By doing so, a sanitary material having excellent water absorption and quick-drying property can be obtained. The sanitary material of the present invention is mainly a disposable article used for health-related purposes such as medical treatment and long-term care, and examples thereof include disposable diapers, sanitary napkins, gauze, bandages, masks, gloves, adhesive plasters, and the like. The components include, for example, top sheets, back sheets, side gathers and the like of disposable diapers.
本発明の衛生材料は、少なくとも一部が前記のスパンボンド不織布で構成されてなる。このようにすることで、吸水性と速乾性とに優れた衛生材料が得られる。なお、本発明の衛生材料は、医療・介護など健康に関わる目的で使用される、主に使い捨ての物品であり、紙おむつ、生理用ナプキン、ガーゼ、包帯、マスク、手袋、絆創膏等が挙げられ、その構成部材、例えば、紙おむつのトップシート、バックシート、サイドギャザー等も含まれる。 [Sanitary material]
The sanitary material of the present invention is at least partially composed of the above-mentioned spunbonded nonwoven fabric. By doing so, a sanitary material having excellent water absorption and quick-drying property can be obtained. The sanitary material of the present invention is mainly a disposable article used for health-related purposes such as medical treatment and long-term care, and examples thereof include disposable diapers, sanitary napkins, gauze, bandages, masks, gloves, adhesive plasters, and the like. The components include, for example, top sheets, back sheets, side gathers and the like of disposable diapers.
中でも、前記のスパンボンド不織布の表面(A)が、着用者の肌側に向けて配されてなる衛生材料は、肌面側に付着した水分をスパンボンド不織布の内部へ直ちに吸収することができ、着用者に不快感を低減できるため、より好ましい。
Above all, the sanitary material in which the surface (A) of the spunbonded nonwoven fabric is arranged toward the skin side of the wearer can immediately absorb the moisture adhering to the skin surface side into the inside of the spunbonded nonwoven fabric. , It is more preferable because it can reduce discomfort to the wearer.
例えば、衛生材料が紙おむつであって、スパンボンド不織布が紙おむつの内側に配置される場合において、表面(A)が着用者の肌側に向けて配されてなるときには、着用時に生じる汗や排泄された尿を素早く吸収し、表面(B)に迅速に液移行されることとなり、表面を過度な湿り気がなくサラサラした状態に保つことができる。
For example, when the sanitary material is a disposable diaper and the spunbonded non-woven fabric is placed inside the disposable diaper, when the surface (A) is arranged toward the wearer's skin side, sweat or excretion generated during wearing is discharged. The diaper is quickly absorbed and the liquid is rapidly transferred to the surface (B), so that the surface can be kept smooth without excessive dampness.
また、衛生材料がマスクであって、スパンボンド不織布がマスクの内側に用いられる場合において、表面(A)が着用者の肌側に向けて配されてなるときには、汗や呼気が結露し、肌面側に水分が付着しても、スパンボンド不織布内部にすぐに吸収され、続いて表面(B)に迅速に液移行されることとなり、やはり、肌面を過度な湿り気がなくサラサラした状態に保つことができる。
Further, when the sanitary material is a mask and the spunbonded non-woven fabric is used inside the mask, when the surface (A) is arranged toward the wearer's skin side, sweat and exhalation are condensed and the skin is exposed. Even if moisture adheres to the surface side, it is immediately absorbed inside the spunbonded non-woven fabric and then rapidly transferred to the surface (B), leaving the skin surface smooth without excessive dampness. Can be kept.
[スパンボンド不織布の製造方法]
次に、本発明のスパンボンド不織布を製造する好ましい態様を、具体的に説明する。 [Manufacturing method of spunbonded non-woven fabric]
Next, a preferred embodiment for producing the spunbonded nonwoven fabric of the present invention will be specifically described.
次に、本発明のスパンボンド不織布を製造する好ましい態様を、具体的に説明する。 [Manufacturing method of spunbonded non-woven fabric]
Next, a preferred embodiment for producing the spunbonded nonwoven fabric of the present invention will be specifically described.
本発明のスパンボンド不織布は、原料である熱可塑性樹脂を溶融し、紡糸口金から紡糸した後、冷却固化して得られた糸条に対し、エジェクターで牽引し延伸して、移動するネット上に捕集して不織繊維ウェブ化した後、熱融着する工程を要する、スパンボンド法によって製造される。
The spunbonded nonwoven fabric of the present invention melts a thermoplastic resin as a raw material, spins it from a spinneret, and then cools and solidifies the yarns obtained by pulling and stretching them with an ejector on a moving net. It is manufactured by the spunbond method, which requires a step of collecting, forming a non-woven fiber web, and then heat-sealing.
用いられる紡糸口金やエジェクターの形状としては、丸形や矩形等種々のものを採用することができる。中でも、圧縮エアの使用量が比較的少なく、糸条同士の融着や擦過が起こりにくいという観点から、矩形口金と矩形エジェクターの組み合わせを用いることが好ましい態様である。
As the shape of the spinneret and ejector used, various shapes such as a round shape and a rectangular shape can be adopted. Above all, from the viewpoint that the amount of compressed air used is relatively small and the threads are less likely to be fused or scratched, it is preferable to use a combination of a rectangular base and a rectangular ejector.
本発明における、紡糸温度は、(原料である熱可塑性樹脂の融解温度+10℃)以上(原料である熱可塑性樹脂の融解温度+100℃)以下とすることが好ましい。紡糸温度を上記範囲内とすることにより、安定した溶融状態とし、優れた紡糸安定性を得ることができる。
In the present invention, the spinning temperature is preferably (melting temperature of the raw material thermoplastic resin + 10 ° C.) or more (melting temperature of the raw material thermoplastic resin + 100 ° C.) or less. By setting the spinning temperature within the above range, a stable molten state can be obtained and excellent spinning stability can be obtained.
紡出された糸条は、次に冷却されるが、紡出された糸条を冷却する方法としては、例えば、冷風を強制的に糸条に吹き付ける方法、糸条周りの雰囲気温度で自然冷却する方法、および紡糸口金とエジェクター間の距離を調整する方法等が挙げられ、またはこれらの方法を組み合わせる方法を採用することができる。また、冷却条件は、紡糸口金の単孔あたりの吐出量、紡糸する温度および雰囲気温度等を考慮して適宜調整して採用することができる。
The spun yarn is cooled next, but as a method of cooling the spun yarn, for example, a method of forcibly blowing cold air onto the yarn, or natural cooling at the ambient temperature around the yarn. A method of adjusting the distance between the spinneret and the ejector, and the like, or a method of combining these methods can be adopted. Further, the cooling conditions can be appropriately adjusted and adopted in consideration of the discharge amount per single hole of the spinneret, the spinning temperature, the atmospheric temperature and the like.
次に、冷却固化された糸条は、エジェクターから噴射される圧縮エアによって牽引され、延伸される。
Next, the cooled and solidified yarn is towed and stretched by the compressed air ejected from the ejector.
本発明のスパンボンド不織布では、表面(A)および表面(B)を構成する繊維の平均単繊維直径の制御が肝要となる。
In the spunbonded nonwoven fabric of the present invention, it is important to control the average single fiber diameter of the fibers constituting the surface (A) and the surface (B).
繊維の平均単繊維直径は、紡糸口金の吐出孔当たりの吐出量と牽引速度、すなわち紡糸速度によって決定される。このため、所望の平均単繊維直径に応じて、吐出量と紡糸速度を決定することが好ましい。
The average single fiber diameter of the fiber is determined by the discharge amount and the traction speed per the discharge hole of the spinneret, that is, the spinning speed. Therefore, it is preferable to determine the discharge amount and the spinning speed according to the desired average single fiber diameter.
紡糸速度においては、2000m/分以上であることが好ましく、より好ましくは3000m/分以上である。紡糸速度を2000m/分以上とすることにより、高い生産性を有することになり、また繊維の配向結晶化が進み高い強度の長繊維を得ることができる。
The spinning speed is preferably 2000 m / min or more, more preferably 3000 m / min or more. By setting the spinning speed to 2000 m / min or more, high productivity can be obtained, and the orientation and crystallization of the fibers can be advanced to obtain high-strength long fibers.
このように牽引により延伸された長繊維糸条は、移動するネットに捕集されることでシート化された後に、熱融着する工程に供される。
The long fiber yarns stretched by traction in this way are collected by a moving net to form a sheet, and then subjected to a heat fusion process.
本発明のスパンボンド不織布の表面(A)の屈曲度が1.1以上の繊維を得る方法としては、異なる特性を有する熱可塑性樹脂を用いた複合紡糸繊維を用いることや、冷却の程度によって、繊維断面で負担する応力の異なる領域を形成し、屈曲度を制御することができる。複合紡糸繊維とする場合は、融点差の大きい熱可塑性樹脂や、粘度差の大きい熱可塑性樹脂を用いることで、屈曲度を1.1以上にすることができる。また、繊維の一方の側面と、反対側の側面の冷却条件差を大きくすることで、屈曲度を1.1以上にすることができる。
As a method for obtaining a fiber having a tortuosity of 1.1 or more on the surface (A) of the spunbonded nonwoven fabric of the present invention, a composite spun fiber using a thermoplastic resin having different characteristics may be used, or depending on the degree of cooling. It is possible to control the degree of bending by forming regions with different stresses on the fiber cross section. In the case of a composite spun fiber, the tortuosity can be increased to 1.1 or more by using a thermoplastic resin having a large melting point difference or a thermoplastic resin having a large viscosity difference. Further, the bending degree can be made 1.1 or more by increasing the difference in cooling conditions between one side surface of the fiber and the opposite side surface.
本発明のスパンボンド不織布の表面(B)の好ましい態様である、屈曲度が1.1以下の繊維を得る方法としては、異なる特性を有する熱可塑性樹脂を用いた複合紡糸繊維や、単一またはブレンドによる単成分紡糸繊維でも冷却の程度によって、繊維断面で負担する応力を均一化することが重要である。したがって、複合紡糸繊維とする場合は、融点差の小さい熱可塑性樹脂や、粘度差の小さい熱可塑性樹脂を用いることで、屈曲度を1.1以下にすることができる。また、繊維を均一に冷却することも、屈曲度を1.1以下にするために重要である。
As a method for obtaining a fiber having a bending degree of 1.1 or less, which is a preferred embodiment of the surface (B) of the spunbonded nonwoven fabric of the present invention, a composite spun fiber using a thermoplastic resin having different properties, a single fiber, or a single fiber is used. Even for single-component spun fibers produced by blending, it is important to equalize the stress borne by the fiber cross section depending on the degree of cooling. Therefore, in the case of a composite spun fiber, the tortuosity can be reduced to 1.1 or less by using a thermoplastic resin having a small melting point difference or a thermoplastic resin having a small viscosity difference. It is also important to cool the fibers uniformly in order to reduce the bending degree to 1.1 or less.
本発明のスパンボンド不織布は、繊維径の異なる表面(A)と表面(B)を有する。また、表面(A)を構成する繊維の屈曲度は、1.1以上である。このようなスパンボンド不織布を得る方法としては、例えば、表面(A)用の紡糸口金から、前記のとおり捕集ネット上に捕集して得た繊維ウェブの上に、捕集ネットの下流側に配された、表面(B)用の紡糸口金から、繊維ウェブを堆積させ、これらを一気に熱融着させて、固定する方法などを採用することができる。
The spunbonded nonwoven fabric of the present invention has a surface (A) and a surface (B) having different fiber diameters. Further, the tortuosity of the fibers constituting the surface (A) is 1.1 or more. As a method for obtaining such a spunbonded nonwoven fabric, for example, from the spinneret for the surface (A), on the fiber web obtained by collecting on the collection net as described above, the downstream side of the collection net. It is possible to adopt a method of depositing fiber webs from the spinneret for the surface (B) arranged in the above and heat-sealing them at once to fix them.
本発明のスパンボンド不織布を熱融着する方法としては、上下一対のロールにおいて、一方のロールの表面に彫刻(凹凸部)が施された熱エンボスロール、もう一方のロール表面に彫刻の無いフラット(平滑)なロールの組み合わせからなる熱エンボスロール、および上下一対のフラット(平滑)ロールの組み合わせからなる熱カレンダーロールなど、各種ロールにより熱融着する方法や、ホーンの超音波振動により融着させる超音波融着などの熱融着による方法を採用することができる。
As a method for heat-sealing the spunbonded non-woven fabric of the present invention, in a pair of upper and lower rolls, a heat embossed roll having an engraving (uneven portion) on the surface of one roll and a flat without engraving on the surface of the other roll. Thermal fusion methods using various rolls, such as thermal embossing rolls consisting of a combination of (smooth) rolls and thermal calendar rolls consisting of a combination of upper and lower flat (smooth) rolls, and ultrasonic vibration of the horn. A method by heat fusion such as ultrasonic fusion can be adopted.
エンボスロールで熱融着することにより本発明のスパンボンド不織布を製造した場合には、エンボスロールの凸部に対応する位置で、表面(A)と表面(B)の繊維を、ともに融着させやすいため好ましい。また、エンボスロールの凸部の位置を設計することによって、融着していない箇所の最大内接円が制御できる点でも、好ましい態様である。
When the spunbonded nonwoven fabric of the present invention is produced by heat-sealing with an embossed roll, the fibers on the surface (A) and the surface (B) are fused together at the positions corresponding to the convex portions of the embossed roll. It is preferable because it is easy. Further, by designing the position of the convex portion of the embossed roll, the maximum inscribed circle of the unfused portion can be controlled, which is also a preferable embodiment.
このようにして得られたスパンボンド不織布に対し、巻取り前に親水化剤を付与しても良い。スパンボンド不織布への親水化剤の付与方法としては、キスロールやスプレーによる塗布やディップコーティングなどが挙げられるが、均一性や付着量制御の容易さからキスロールによる塗布が好ましい。
A hydrophilic agent may be added to the spunbonded nonwoven fabric thus obtained before winding. Examples of the method for applying the hydrophilizing agent to the spunbonded non-woven fabric include coating with kiss roll or spray, dip coating, etc., but coating with kiss roll is preferable from the viewpoint of uniformity and ease of controlling the amount of adhesion.
次に、実施例に基づき本発明を詳細に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。なお、各物性の測定において、特段の記載がないものは、前述の方法に基づいて測定を行ったものである。
Next, the present invention will be described in detail based on examples. However, the present invention is not limited to these examples. In addition, in the measurement of each physical property, the one without any special description is the one obtained by the measurement based on the above-mentioned method.
(1) 厚み
前述の通り測定を行った。 (1) Thickness The measurement was performed as described above.
前述の通り測定を行った。 (1) Thickness The measurement was performed as described above.
(2) 目付
前述の通り測定を行った。 (2) Metsuke Measurement was performed as described above.
前述の通り測定を行った。 (2) Metsuke Measurement was performed as described above.
(3) 表面(A)の平均単繊維直径(Da)に対する表面(B)の平均単繊維直径(Db)の比(Da/Db)
それぞれの繊維について、ネット上に捕集した不織繊維ウェブからランダムに繊維サンプル採取し、繊維の横断面を株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡「S-5500」で1本の繊維が観察できる倍率として画像を撮影した。その後、画像解析ソフトとして、三谷商事株式会社製「WinROOF2015」を用い、前述のとおり測定を行った。 (3) The ratio (Da / Db) of the average single fiber diameter (Db) of the surface (B) to the average single fiber diameter (Da) of the surface (A).
For each fiber, fiber samples were randomly collected from the non-woven fiber web collected on the net, and the cross section of the fiber was measured with a scanning electron microscope "S-5500" manufactured by Hitachi High-Technologies Co., Ltd. to obtain one fiber. The image was taken at an observable magnification. Then, as the image analysis software, "WinROOF2015" manufactured by Mitani Corporation was used, and the measurement was performed as described above.
それぞれの繊維について、ネット上に捕集した不織繊維ウェブからランダムに繊維サンプル採取し、繊維の横断面を株式会社日立ハイテクノロジーズ製の走査型電子顕微鏡「S-5500」で1本の繊維が観察できる倍率として画像を撮影した。その後、画像解析ソフトとして、三谷商事株式会社製「WinROOF2015」を用い、前述のとおり測定を行った。 (3) The ratio (Da / Db) of the average single fiber diameter (Db) of the surface (B) to the average single fiber diameter (Da) of the surface (A).
For each fiber, fiber samples were randomly collected from the non-woven fiber web collected on the net, and the cross section of the fiber was measured with a scanning electron microscope "S-5500" manufactured by Hitachi High-Technologies Co., Ltd. to obtain one fiber. The image was taken at an observable magnification. Then, as the image analysis software, "WinROOF2015" manufactured by Mitani Corporation was used, and the measurement was performed as described above.
表面(A)を構成する繊維の平均単繊維直径(Da)と、表面(B)を構成する繊維の平均単繊維直径(Db)を測定し、その比(Da/Db)を算出し、小数点第2位を四捨五入した値である。
The average single fiber diameter (Da) of the fibers constituting the surface (A) and the average single fiber diameter (Db) of the fibers constituting the surface (B) are measured, the ratio (Da / Db) is calculated, and the decimal point is calculated. The value is rounded off to the second decimal place.
(4)屈曲度
前述の通り測定を行った。 (4) Tortuosity The measurement was performed as described above.
前述の通り測定を行った。 (4) Tortuosity The measurement was performed as described above.
(5) スパンボンド不織布の水との接触角
協和界面科学株式会社製の接触角計「DMo-501」を用い、前述のとおり測定を行った。 (5) Contact angle of spunbonded non-woven fabric with water The measurement was carried out as described above using a contact angle meter "DMo-501" manufactured by Kyowa Interface Science Co., Ltd.
協和界面科学株式会社製の接触角計「DMo-501」を用い、前述のとおり測定を行った。 (5) Contact angle of spunbonded non-woven fabric with water The measurement was carried out as described above using a contact angle meter "DMo-501" manufactured by Kyowa Interface Science Co., Ltd.
(6) 融着部の有無
前述の通り観察、測定を行った。 (6) Presence or absence of fused portion Observation and measurement were performed as described above.
前述の通り観察、測定を行った。 (6) Presence or absence of fused portion Observation and measurement were performed as described above.
(7) 吸水速乾性
スパンボンド不織布において、表面(A)の面に水滴を1滴滴下し、1分間経過した後の表面の触感について、健康な一般成人(男女15名ずつ計30名)が手で触り、次の3段階で評価した。各不織布について評価結果の平均点を算出し、そのスパンボンド不織布の肌触りとした。
5: 表面がサラサラしており、水分を感じない
3: 表面に水分はないが、しっとりしている
1: 表面に水分があり、しっとりしている
(8) ソフト感
スパンボンド不織布を健康な一般成人(男女15名ずつ計30名)が手で触り、表面の触感を次の3段階で評価した。各不織布について評価結果の平均点を算出し、その不織布のソフト感とした。 (7) In the water-absorbing and quick-drying spunbonded non-woven fabric, one drop of water is dropped on the surface (A), and after 1 minute has passed, a healthy general adult (15 men and women, 30 people in total) feels the surface. It was touched by hand and evaluated in the following three stages. The average score of the evaluation results was calculated for each non-woven fabric, and the texture of the spunbonded non-woven fabric was used.
5: The surface is smooth and does not feel moisture 3: There is no moisture on the surface, but it is moist 1: The surface is moist and moist (8) Soft feeling Spunbond non-woven fabric is healthy in general Adults (15 males and 15 females, 30 in total) touched it by hand, and the tactile sensation on the surface was evaluated in the following three stages. The average score of the evaluation results was calculated for each non-woven fabric, and the soft feeling of the non-woven fabric was used.
スパンボンド不織布において、表面(A)の面に水滴を1滴滴下し、1分間経過した後の表面の触感について、健康な一般成人(男女15名ずつ計30名)が手で触り、次の3段階で評価した。各不織布について評価結果の平均点を算出し、そのスパンボンド不織布の肌触りとした。
5: 表面がサラサラしており、水分を感じない
3: 表面に水分はないが、しっとりしている
1: 表面に水分があり、しっとりしている
(8) ソフト感
スパンボンド不織布を健康な一般成人(男女15名ずつ計30名)が手で触り、表面の触感を次の3段階で評価した。各不織布について評価結果の平均点を算出し、その不織布のソフト感とした。 (7) In the water-absorbing and quick-drying spunbonded non-woven fabric, one drop of water is dropped on the surface (A), and after 1 minute has passed, a healthy general adult (15 men and women, 30 people in total) feels the surface. It was touched by hand and evaluated in the following three stages. The average score of the evaluation results was calculated for each non-woven fabric, and the texture of the spunbonded non-woven fabric was used.
5: The surface is smooth and does not feel moisture 3: There is no moisture on the surface, but it is moist 1: The surface is moist and moist (8) Soft feeling Spunbond non-woven fabric is healthy in general Adults (15 males and 15 females, 30 in total) touched it by hand, and the tactile sensation on the surface was evaluated in the following three stages. The average score of the evaluation results was calculated for each non-woven fabric, and the soft feeling of the non-woven fabric was used.
5: 非常にソフトである(表面を撫でたときの触り心地がスムーズで、かつ、厚み方向に適度な弾力を感じる触感)
3: ソフトとまでは言えない
1: ソフトさを感じられない(表面を撫でたときに引っ掛かりを感じ、押圧した時に強い反発感を感じるか、へたってしまう)
[実施例1]
(表面(A)を形成する繊維ウェブ)
ポリプロピレン(PP)と、エチレン共重合ポリプロピレン(共重合PP)を、それぞれ別の押出機で溶融し、サイドバイサイド型複合繊維(質量比率は1:1)として、孔径φが0.4mmの丸孔を有した矩形口金から、単孔吐出量が0.9g/分で紡出した。紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.08MPaとした圧縮エアによって、牽引・延伸し、移動するネット上に捕集して不織繊維ウェブを得た。得られた表面(A)を構成する繊維の平均単繊維直径は18.4μmであった。 5: Very soft (feels smooth when stroking the surface and feels moderate elasticity in the thickness direction)
3: Not soft 1: I can't feel the softness (I feel a catch when stroking the surface, and I feel a strong repulsion when I press it, or it becomes flat)
[Example 1]
(Fiber web forming surface (A))
Polypropylene (PP) and ethylene copolymerized polypropylene (copolymerized PP) are melted by different extruders to form side-by-side composite fibers (mass ratio 1: 1), and round holes having a hole diameter of 0.4 mm are formed. A single-hole ejection amount of 0.9 g / min was spun from the rectangular cap. After the spun yarn was cooled and solidified, it was pulled and stretched by compressed air having a pressure at the ejector of 0.08 MPa in a rectangular ejector, and collected on a moving net to obtain a non-woven fiber web. .. The average single fiber diameter of the fibers constituting the obtained surface (A) was 18.4 μm.
3: ソフトとまでは言えない
1: ソフトさを感じられない(表面を撫でたときに引っ掛かりを感じ、押圧した時に強い反発感を感じるか、へたってしまう)
[実施例1]
(表面(A)を形成する繊維ウェブ)
ポリプロピレン(PP)と、エチレン共重合ポリプロピレン(共重合PP)を、それぞれ別の押出機で溶融し、サイドバイサイド型複合繊維(質量比率は1:1)として、孔径φが0.4mmの丸孔を有した矩形口金から、単孔吐出量が0.9g/分で紡出した。紡出した糸条を、冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.08MPaとした圧縮エアによって、牽引・延伸し、移動するネット上に捕集して不織繊維ウェブを得た。得られた表面(A)を構成する繊維の平均単繊維直径は18.4μmであった。 5: Very soft (feels smooth when stroking the surface and feels moderate elasticity in the thickness direction)
3: Not soft 1: I can't feel the softness (I feel a catch when stroking the surface, and I feel a strong repulsion when I press it, or it becomes flat)
[Example 1]
(Fiber web forming surface (A))
Polypropylene (PP) and ethylene copolymerized polypropylene (copolymerized PP) are melted by different extruders to form side-by-side composite fibers (mass ratio 1: 1), and round holes having a hole diameter of 0.4 mm are formed. A single-hole ejection amount of 0.9 g / min was spun from the rectangular cap. After the spun yarn was cooled and solidified, it was pulled and stretched by compressed air having a pressure at the ejector of 0.08 MPa in a rectangular ejector, and collected on a moving net to obtain a non-woven fiber web. .. The average single fiber diameter of the fibers constituting the obtained surface (A) was 18.4 μm.
(表面(B)を形成する繊維ウェブ)
ポリプロピレンを押出機で溶融し、孔径が0.4mmφの丸孔を有した矩形口金から、単孔吐出量が0.3g/分で紡出した。紡出した糸条を、冷風にて冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.08MPaとした圧縮エアによって、牽引・延伸し、移動するネット上で、表面(A)を形成する繊維ウェブ上に捕集した。得られた表面(B)を構成する繊維の平均単繊維直径は10.6μmであった。 (Fiber web forming surface (B))
Polypropylene was melted by an extruder and spun from a rectangular mouthpiece having a round hole having a hole diameter of 0.4 mmφ at a single hole discharge rate of 0.3 g / min. After the spun yarn is cooled and solidified by cold air, it is pulled and stretched by compressed air having a pressure at the ejector of 0.08 MPa in a rectangular ejector to form a surface (A) on a moving net. Collected on the textile web. The average single fiber diameter of the fibers constituting the obtained surface (B) was 10.6 μm.
ポリプロピレンを押出機で溶融し、孔径が0.4mmφの丸孔を有した矩形口金から、単孔吐出量が0.3g/分で紡出した。紡出した糸条を、冷風にて冷却固化した後、矩形エジェクターにおいてエジェクターでの圧力を0.08MPaとした圧縮エアによって、牽引・延伸し、移動するネット上で、表面(A)を形成する繊維ウェブ上に捕集した。得られた表面(B)を構成する繊維の平均単繊維直径は10.6μmであった。 (Fiber web forming surface (B))
Polypropylene was melted by an extruder and spun from a rectangular mouthpiece having a round hole having a hole diameter of 0.4 mmφ at a single hole discharge rate of 0.3 g / min. After the spun yarn is cooled and solidified by cold air, it is pulled and stretched by compressed air having a pressure at the ejector of 0.08 MPa in a rectangular ejector to form a surface (A) on a moving net. Collected on the textile web. The average single fiber diameter of the fibers constituting the obtained surface (B) was 10.6 μm.
(スパンボンド不織布)
このようにして得た積層繊維ウェブを、上ロールに正円形の凸部が形成する直線のパターンが直交する格子柄の、いわゆるキルティングパターンに配置された金属製エンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の加熱機構を有するエンボスロールを用いて、線圧が300N/cmで、熱融着温度が125℃の温度で熱融着し、目付が40g/m2のスパンボンド不織布を得た。その後、親水加工として非イオン性界面活性剤をスパンボンド不織布重量に対して有効成分が0.5wt%となるよう、キスロールを用いて不織布に塗布した。 (Spanbond non-woven fabric)
The laminated fiber web thus obtained is made of metal on the lower roll by using a metal embossed roll arranged in a so-called quilting pattern, which is a lattice pattern in which a straight line pattern formed by a perfect circular convex portion is orthogonal to the upper roll. Using an embossed roll having a pair of upper and lower heating mechanisms composed of flat rolls, heat fusion is performed at a linear pressure of 300 N / cm and a heat fusion temperature of 125 ° C., and a grain size of 40 g / m 2 . A spunbonded non-woven material was obtained. Then, as a hydrophilic treatment, a nonionic surfactant was applied to the nonwoven fabric using kissroll so that the active ingredient was 0.5 wt% with respect to the weight of the spunbonded nonwoven fabric.
このようにして得た積層繊維ウェブを、上ロールに正円形の凸部が形成する直線のパターンが直交する格子柄の、いわゆるキルティングパターンに配置された金属製エンボスロールを用い、下ロールに金属製フラットロールで構成される上下一対の加熱機構を有するエンボスロールを用いて、線圧が300N/cmで、熱融着温度が125℃の温度で熱融着し、目付が40g/m2のスパンボンド不織布を得た。その後、親水加工として非イオン性界面活性剤をスパンボンド不織布重量に対して有効成分が0.5wt%となるよう、キスロールを用いて不織布に塗布した。 (Spanbond non-woven fabric)
The laminated fiber web thus obtained is made of metal on the lower roll by using a metal embossed roll arranged in a so-called quilting pattern, which is a lattice pattern in which a straight line pattern formed by a perfect circular convex portion is orthogonal to the upper roll. Using an embossed roll having a pair of upper and lower heating mechanisms composed of flat rolls, heat fusion is performed at a linear pressure of 300 N / cm and a heat fusion temperature of 125 ° C., and a grain size of 40 g / m 2 . A spunbonded non-woven material was obtained. Then, as a hydrophilic treatment, a nonionic surfactant was applied to the nonwoven fabric using kissroll so that the active ingredient was 0.5 wt% with respect to the weight of the spunbonded nonwoven fabric.
得られたスパンボンド不織布の評価結果を表1に示す。
Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
[実施例2]
上ロールに正円形の凸部がMDおよびCDの両方向に同じピッチで千鳥配置された金属製エンボスロールを用いた以外は、実施例1と同様の方法でスパンボンド不織布を得た。 [Example 2]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that a metal embossed roll in which regular circular protrusions were staggered at the same pitch in both directions of MD and CD was used for the upper roll.
上ロールに正円形の凸部がMDおよびCDの両方向に同じピッチで千鳥配置された金属製エンボスロールを用いた以外は、実施例1と同様の方法でスパンボンド不織布を得た。 [Example 2]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that a metal embossed roll in which regular circular protrusions were staggered at the same pitch in both directions of MD and CD was used for the upper roll.
得られたスパンボンド不織布の評価結果を表1に示す。
Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
[実施例3]
表面(A)を形成する繊維ウェブの単孔吐出量が0.53g/分である以外は、実施例2と同様の方法でスパンボンド不織布を得た。 [Example 3]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 2 except that the single-hole discharge rate of the fiber web forming the surface (A) was 0.53 g / min.
表面(A)を形成する繊維ウェブの単孔吐出量が0.53g/分である以外は、実施例2と同様の方法でスパンボンド不織布を得た。 [Example 3]
A spunbonded nonwoven fabric was obtained in the same manner as in Example 2 except that the single-hole discharge rate of the fiber web forming the surface (A) was 0.53 g / min.
得られたスパンボンド不織布の評価結果を表1に示す。
Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
[実施例4]
エンボスロールを用いて、線圧が10N/cmで熱融着した以外は、実施例1と同様の方法でスパンボンド不織布を得た。 [Example 4]
A spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that the linear pressure was heat-sealed at 10 N / cm using an embossed roll.
エンボスロールを用いて、線圧が10N/cmで熱融着した以外は、実施例1と同様の方法でスパンボンド不織布を得た。 [Example 4]
A spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that the linear pressure was heat-sealed at 10 N / cm using an embossed roll.
得られたスパンボンド不織布の評価結果を表1に示す。
Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
[実施例5]
表面(B)を形成する繊維ウェブを、ポリプロピレンと、エチレン共重合ポリプロピレンを、それぞれ別の押出機で溶融し、サイドバイサイド型複合繊維(質量比率は1:1)として紡出した以外は、実施例1と同様の方法でスパンボンド不織布を得た。 [Example 5]
Examples except that the fiber web forming the surface (B) was melted with polypropylene and ethylene copolymer polypropylene by different extruders and spun out as side-by-side composite fibers (mass ratio 1: 1). A spunbonded nonwoven fabric was obtained in the same manner as in 1.
表面(B)を形成する繊維ウェブを、ポリプロピレンと、エチレン共重合ポリプロピレンを、それぞれ別の押出機で溶融し、サイドバイサイド型複合繊維(質量比率は1:1)として紡出した以外は、実施例1と同様の方法でスパンボンド不織布を得た。 [Example 5]
Examples except that the fiber web forming the surface (B) was melted with polypropylene and ethylene copolymer polypropylene by different extruders and spun out as side-by-side composite fibers (mass ratio 1: 1). A spunbonded nonwoven fabric was obtained in the same manner as in 1.
得られたスパンボンド不織布の評価結果を表1に示す。
Table 1 shows the evaluation results of the obtained spunbonded non-woven fabric.
[比較例1]
表面(A)を構成する繊維ウェブと表面(B)を構成する繊維、繊維ウェブのいずれも、単孔吐出量0.6g/分を、エチレン共重合ポリプロピレンと、同じエチレン共重合ポリプロピレンを、それぞれ別の押出機で溶融して紡出した以外は実施例1と同様の方法でスパンボンド不織布を得た。 [Comparative Example 1]
The fiber web constituting the surface (A) and the fibers and fiber webs constituting the surface (B) each have a single-hole discharge rate of 0.6 g / min, and ethylene copolymer polypropylene and the same ethylene copolymer polypropylene are used. A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that it was melted and spun by another extruder.
表面(A)を構成する繊維ウェブと表面(B)を構成する繊維、繊維ウェブのいずれも、単孔吐出量0.6g/分を、エチレン共重合ポリプロピレンと、同じエチレン共重合ポリプロピレンを、それぞれ別の押出機で溶融して紡出した以外は実施例1と同様の方法でスパンボンド不織布を得た。 [Comparative Example 1]
The fiber web constituting the surface (A) and the fibers and fiber webs constituting the surface (B) each have a single-hole discharge rate of 0.6 g / min, and ethylene copolymer polypropylene and the same ethylene copolymer polypropylene are used. A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except that it was melted and spun by another extruder.
得られたスパンボンド不織布の評価結果を表2に示す。
Table 2 shows the evaluation results of the obtained spunbonded non-woven fabric.
[比較例2]
エンボスロールを用いた熱融着の代わりに、得られた繊維ウェブを150℃の熱風で加熱して熱融着した以外は実施例1と同様の方法でスパンボンド不織布を得た。熱風での融着は、隣り合う繊維同士は融着しているものの、表面(A)の繊維と表面(B)の繊維とが融着した「融着部」は形成しない。 [Comparative Example 2]
Instead of heat-sealing using an embossed roll, a spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that the obtained fiber web was heated with hot air at 150 ° C. and heat-sealed. In the fusion with hot air, although the adjacent fibers are fused to each other, the "fused portion" in which the fibers on the surface (A) and the fibers on the surface (B) are fused is not formed.
エンボスロールを用いた熱融着の代わりに、得られた繊維ウェブを150℃の熱風で加熱して熱融着した以外は実施例1と同様の方法でスパンボンド不織布を得た。熱風での融着は、隣り合う繊維同士は融着しているものの、表面(A)の繊維と表面(B)の繊維とが融着した「融着部」は形成しない。 [Comparative Example 2]
Instead of heat-sealing using an embossed roll, a spunbonded nonwoven fabric was obtained by the same method as in Example 1 except that the obtained fiber web was heated with hot air at 150 ° C. and heat-sealed. In the fusion with hot air, although the adjacent fibers are fused to each other, the "fused portion" in which the fibers on the surface (A) and the fibers on the surface (B) are fused is not formed.
得られたスパンボンド不織布の評価結果を表2に示す。
Table 2 shows the evaluation results of the obtained spunbonded non-woven fabric.
[比較例3]
表面(A)を形成する繊維ウェブを、エチレン共重合ポリプロピレンと、同じエチレン共重合ポリプロピレンを、それぞれ別の押出機で溶融し、サイドバイサイド型複合繊維(質量比率は1:1)として、紡出した以外は実施例1と同様の方法でスパンボンド不織布を得た。 [Comparative Example 3]
The fiber web forming the surface (A) was melted with ethylene copolymer polypropylene and the same ethylene copolymer polypropylene with different extruders, and spun out as side-by-side composite fibers (mass ratio 1: 1). A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except for the above.
表面(A)を形成する繊維ウェブを、エチレン共重合ポリプロピレンと、同じエチレン共重合ポリプロピレンを、それぞれ別の押出機で溶融し、サイドバイサイド型複合繊維(質量比率は1:1)として、紡出した以外は実施例1と同様の方法でスパンボンド不織布を得た。 [Comparative Example 3]
The fiber web forming the surface (A) was melted with ethylene copolymer polypropylene and the same ethylene copolymer polypropylene with different extruders, and spun out as side-by-side composite fibers (mass ratio 1: 1). A spunbonded nonwoven fabric was obtained in the same manner as in Example 1 except for the above.
得られたスパンボンド不織布の評価結果を表2に示す。
Table 2 shows the evaluation results of the obtained spunbonded non-woven fabric.
実施例1~5は、平均単繊維直径比(Da/Db)が大きく、表面(A)の屈曲度が大きく、かつ、表面(A)の繊維と表面(B)の繊維がともに融着している場所を有していることから、優れた吸水速乾性と、優れたソフト感を有していることが分かる。
In Examples 1 to 5, the average single fiber diameter ratio (Da / Db) is large, the bending degree of the surface (A) is large, and the fibers of the surface (A) and the fibers of the surface (B) are fused together. It can be seen that it has an excellent water absorption and quick-drying property and an excellent soft feeling because it has a place where it is used.
一方、比較例1は、平均単繊維直径比が小さいため不織布内で水分が表面(B)側に移行されず、吸水速乾性に劣る。また、比較例2は、表面(A)の繊維と表面(B)の繊維がともに融着している場所を有していないため、面内への水の移動を生じにくく、吸水速乾性能が劣っている。比較例3は、表面(A)の屈曲度が小さいため、吸水速度が得にくく、吸水速乾性能は十分でなく、また、ソフト感にも劣るものであった。
On the other hand, in Comparative Example 1, since the average single fiber diameter ratio is small, moisture is not transferred to the surface (B) side in the non-woven fabric, and the water absorption and quick-drying property are inferior. Further, in Comparative Example 2, since the fibers on the surface (A) and the fibers on the surface (B) do not have a place where both of them are fused, it is difficult for water to move into the surface, and the water absorption and quick-drying performance. Is inferior. In Comparative Example 3, since the bending degree of the surface (A) was small, it was difficult to obtain a water absorption rate, the water absorption and quick-drying performance was not sufficient, and the soft feeling was also inferior.
1:スパンボンド不織布
11:融着部
12:非融着部
13:非融着部の最大内接円
1: Spun-bonded non-woven fabric 11: Fused portion 12: Non-fused portion 13: Maximum inscribed circle of non-fused portion
11:融着部
12:非融着部
13:非融着部の最大内接円
1: Spun-bonded non-woven fabric 11: Fused portion 12: Non-fused portion 13: Maximum inscribed circle of non-fused portion
Claims (7)
- 融着部と非融着部とを有し、一方の表面(A)の繊維の平均単繊維直径(Da)の他方の表面(B)の繊維の平均単繊維直径(Db)に対する比(Da/Db)が1.1以上であって、前記表面(A)および表面(B)の、水との接触角がともに30°以下であり、かつ、表面(A)の繊維の屈曲度が1.1以上であるスパンボンド不織布。 It has a fused portion and a non-fused portion, and the ratio (Da) of the average single fiber diameter (Da) of the fibers on one surface (A) to the average single fiber diameter (Db) of the fibers on the other surface (B). / Db) is 1.1 or more, the contact angle between the surface (A) and the surface (B) with water is both 30 ° or less, and the bending degree of the fiber on the surface (A) is 1. .Spunbonded non-woven fabric that is 1 or more.
- 前記非融着部の最大内接円の直径が2.0mm以上である、請求項1に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1, wherein the diameter of the maximum inscribed circle of the non-fused portion is 2.0 mm or more.
- 前記非融着部におけるスパンボンド不織布の厚み(Tu)が0.5mm以上である、請求項1または2に記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to claim 1 or 2, wherein the thickness (Tu) of the spunbonded nonwoven fabric in the non-fused portion is 0.5 mm or more.
- 前記非融着部におけるスパンボンド不織布の厚み(Tu)と前記融着部におけるスパンボンド不織布の厚み(Tm)との比(Tu/Tm)が、2.0以上である、請求項1~3のいずれかに記載のスパンボンド不織布。 Claims 1 to 3 in which the ratio (Tu / Tm) of the thickness (Tu) of the spunbonded nonwoven fabric in the non-fused portion to the thickness (Tm) of the spunbonded nonwoven fabric in the fused portion is 2.0 or more. The spunbonded non-woven fabric described in any of the above.
- 前記表面(B)の繊維の屈曲度が1.1以下である、請求項1~4のいずれかに記載のスパンボンド不織布。 The spunbonded nonwoven fabric according to any one of claims 1 to 4, wherein the fiber of the surface (B) has a tortuosity of 1.1 or less.
- 少なくとも一部が請求項1~5のいずれかに記載のスパンボンド不織布で構成されてなる、衛生材料。 A sanitary material that is at least partially composed of the spunbonded nonwoven fabric according to any one of claims 1 to 5.
- 前記表面(A)が着用者の肌側に向けて配されてなる、請求項6に記載の衛生材料。
The sanitary material according to claim 6, wherein the surface (A) is arranged toward the skin side of the wearer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021527875A JPWO2021256146A1 (en) | 2020-06-15 | 2021-05-18 | |
KR1020227038388A KR20230024256A (en) | 2020-06-15 | 2021-05-18 | Spunbond nonwovens and sanitary materials |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-102791 | 2020-06-15 | ||
JP2020102791 | 2020-06-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021256146A1 true WO2021256146A1 (en) | 2021-12-23 |
Family
ID=79267812
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/018742 WO2021256146A1 (en) | 2020-06-15 | 2021-05-18 | Spun-bonded nonwoven fabric and sanitary material |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2021256146A1 (en) |
KR (1) | KR20230024256A (en) |
TW (1) | TW202210677A (en) |
WO (1) | WO2021256146A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7226659B1 (en) * | 2021-09-15 | 2023-02-21 | 東レ株式会社 | Spunbond nonwovens and sanitary materials |
WO2023042540A1 (en) * | 2021-09-15 | 2023-03-23 | 東レ株式会社 | Spunbonded nonwoven fabric and sanitary material |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0742057A (en) * | 1993-07-30 | 1995-02-10 | New Oji Paper Co Ltd | Nonwoven fabric to be used as surface material of sanitary material |
WO2002061192A1 (en) * | 2001-01-29 | 2002-08-08 | Mitsui Chemicals, Inc. | Non-woven fabrics of wind-shrink fiber and laminates thereof |
JP2016141929A (en) * | 2015-02-04 | 2016-08-08 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | Method for producing laminate and laminate |
WO2019146726A1 (en) * | 2018-01-24 | 2019-08-01 | 旭化成株式会社 | Composite long-fiber non-woven fabric using eccentric sheath/core composite fibers at one or both surfaces |
JP2020502386A (en) * | 2016-12-14 | 2020-01-23 | ピーエフノンウーヴンズ リミテッド ライアビリティ カンパニー | Hydraulic non-woven fabric and method for producing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5591955B2 (en) | 2010-02-10 | 2014-09-17 | ザ プロクター アンド ギャンブル カンパニー | Web material for absorbent articles |
WO2018167881A1 (en) | 2017-03-15 | 2018-09-20 | 花王株式会社 | Laminated nonwoven fabric, method for manufacturing same, absorptive article, and sweat absorbing sheet |
-
2021
- 2021-05-18 KR KR1020227038388A patent/KR20230024256A/en unknown
- 2021-05-18 WO PCT/JP2021/018742 patent/WO2021256146A1/en active Application Filing
- 2021-05-18 JP JP2021527875A patent/JPWO2021256146A1/ja active Pending
- 2021-05-21 TW TW110118473A patent/TW202210677A/en unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0742057A (en) * | 1993-07-30 | 1995-02-10 | New Oji Paper Co Ltd | Nonwoven fabric to be used as surface material of sanitary material |
WO2002061192A1 (en) * | 2001-01-29 | 2002-08-08 | Mitsui Chemicals, Inc. | Non-woven fabrics of wind-shrink fiber and laminates thereof |
JP2016141929A (en) * | 2015-02-04 | 2016-08-08 | ライフェンホイザー・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング・ウント・コンパニー・コマンデイトゲゼルシャフト・マシイネンファブリーク | Method for producing laminate and laminate |
JP2020502386A (en) * | 2016-12-14 | 2020-01-23 | ピーエフノンウーヴンズ リミテッド ライアビリティ カンパニー | Hydraulic non-woven fabric and method for producing the same |
WO2019146726A1 (en) * | 2018-01-24 | 2019-08-01 | 旭化成株式会社 | Composite long-fiber non-woven fabric using eccentric sheath/core composite fibers at one or both surfaces |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7226659B1 (en) * | 2021-09-15 | 2023-02-21 | 東レ株式会社 | Spunbond nonwovens and sanitary materials |
WO2023042540A1 (en) * | 2021-09-15 | 2023-03-23 | 東レ株式会社 | Spunbonded nonwoven fabric and sanitary material |
Also Published As
Publication number | Publication date |
---|---|
TW202210677A (en) | 2022-03-16 |
JPWO2021256146A1 (en) | 2021-12-23 |
KR20230024256A (en) | 2023-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10669660B2 (en) | Method for producing a mixed fiber spunbonded nonwoven web | |
WO2021256146A1 (en) | Spun-bonded nonwoven fabric and sanitary material | |
JP2020007697A (en) | Hydrophilic bulky nonwoven fabric | |
JP7124972B2 (en) | Laminated nonwovens and sanitary materials | |
WO2021065446A1 (en) | Layered stretchable nonwoven fabric, hygenic material, and layered stretchable nonwoven fabric production method | |
JPH0288058A (en) | Surface material for sanitary good | |
CN115151689B (en) | Laminated nonwoven fabric and sanitary material | |
TWI843872B (en) | Spunbond nonwovens and laminated nonwovens | |
JP4605653B2 (en) | Surface material and absorbent article using the same | |
CN115003872B (en) | Laminated nonwoven fabric and sanitary material | |
JP7226659B1 (en) | Spunbond nonwovens and sanitary materials | |
WO2023042540A1 (en) | Spunbonded nonwoven fabric and sanitary material | |
WO2022113711A1 (en) | Spunbond nonwoven fabric, and hygienic material equipped therewith | |
TWI868321B (en) | Laminated nonwovens and sanitary materials | |
JP2023132020A (en) | Laminated nonwoven fabric and absorbent article | |
JP2001248057A (en) | Porous sheet | |
JP2023000510A (en) | clothing | |
JP2022184296A (en) | mask | |
JP2022100819A (en) | Stretchable sheet for absorbent article and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021527875 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21826155 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21826155 Country of ref document: EP Kind code of ref document: A1 |