Nothing Special   »   [go: up one dir, main page]

WO2021255982A1 - 運転支援装置 - Google Patents

運転支援装置 Download PDF

Info

Publication number
WO2021255982A1
WO2021255982A1 PCT/JP2021/004259 JP2021004259W WO2021255982A1 WO 2021255982 A1 WO2021255982 A1 WO 2021255982A1 JP 2021004259 W JP2021004259 W JP 2021004259W WO 2021255982 A1 WO2021255982 A1 WO 2021255982A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
oncoming
collision
oncoming vehicle
support device
Prior art date
Application number
PCT/JP2021/004259
Other languages
English (en)
French (fr)
Inventor
寛人 三苫
健 永崎
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to DE112021002185.0T priority Critical patent/DE112021002185T5/de
Priority to JP2022532268A priority patent/JP7406635B2/ja
Publication of WO2021255982A1 publication Critical patent/WO2021255982A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T7/00Brake-action initiating means
    • B60T7/12Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger
    • B60T7/22Brake-action initiating means for automatic initiation; for initiation not subject to will of driver or passenger initiated by contact of vehicle, e.g. bumper, with an external object, e.g. another vehicle, or by means of contactless obstacle detectors mounted on the vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T2201/00Particular use of vehicle brake systems; Special systems using also the brakes; Special software modules within the brake system controller
    • B60T2201/02Active or adaptive cruise control system; Distance control
    • B60T2201/022Collision avoidance systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes

Definitions

  • the present invention relates to a driving support device that detects another vehicle and avoids / reduces a collision with the other vehicle.
  • Patent Document 1 describes that brake control is performed in consideration of a collision site with another vehicle and a collision angle.
  • brake control is performed from the degree of influence of the collision in consideration of the collision site and the collision angle. The same movement is expected, and a collision with an oncoming vehicle existing in an oncoming lane that does not actually collide is expected, and there is a possibility that unnecessary brake control may be performed by mistake.
  • the present invention has been made in consideration of the above situation, and an object of the present invention is to provide a driving support device capable of performing more appropriate brake control.
  • the driving support device has the predicted traveling path of the own vehicle and the said vehicle based on the ground speed of the oncoming vehicle, the relative position between the own vehicle and the oncoming vehicle, and the state of the own vehicle.
  • the predicted travel path of the oncoming vehicle is calculated, the possibility of collision with the oncoming vehicle at the time of right turn or left turn of the own vehicle is determined, and the estimated collision time at which the own vehicle and the oncoming vehicle collide is calculated.
  • the brake of the own vehicle is controlled based on the movement amount of the own vehicle from the expected collision time to a predetermined time before, and the movement amount is at least lateral movement of the own vehicle as seen from the oncoming vehicle. It is characterized by including an amount.
  • the brake can be applied as needed, so that more appropriate brake control can be performed.
  • the whole block diagram of the driving support apparatus which concerns on one Embodiment of this invention.
  • Functional block diagram of a stereo camera An explanatory diagram of the distance measurement principle of the distance calculation processing unit.
  • An explanatory diagram of the distance calculation processing operation of the distance calculation processing unit An explanatory diagram of the image matching degree of the distance calculation processing unit.
  • An explanatory diagram of the image matching degree of the distance calculation processing unit An explanatory drawing of the collision determination processing operation of the collision determination processing unit.
  • Explanatory drawing of the non-operation scene of this embodiment Explanatory drawing of the non-operation scene of this embodiment.
  • FIG. 1 shows a diagram illustrating the overall configuration of the driving support device according to the present embodiment.
  • the driving support device 100 includes a stereo camera 101 as an outside world recognition sensor, a vehicle information unit 102 that acquires vehicle information indicating the state of the own vehicle such as yaw rate and own vehicle speed, a brake control unit 103 as a unit that controls the vehicle, and a brake. It includes an actuator 104, these sensors, and a CAN (Controller Area Network) 105 that transmits information between the units.
  • the driving support device 100 shown in FIG. 1 is mounted on a vehicle, estimates a collision between the own vehicle and another vehicle, and if it is estimated that the collision occurs, brake control is performed to avoid / reduce the collision. Is.
  • the vehicle information unit 102 transmits to the CAN 105 the yaw rate at which the change in the turning angle in the yaw direction applied to the own vehicle is detected and the own vehicle speed detected from the number of rotations of the wheels.
  • the stereo camera 101 is configured as shown in FIG.
  • the cameras 201 and 202 are installed near the rear-view mirror in the vehicle interior at the same height at a certain distance in the horizontal direction so that the front of the vehicle is photographed.
  • These cameras are equipped with image sensors such as CCD and CMOS, are synchronized with each other, and are sampled at the same timing.
  • the image acquisition unit 203 and the image acquisition unit 204 convert the brightness values of the images captured by the camera 201 and the camera 202 into digital so that the subsequent processing units can process the images, and the images are captured by the camera 201 and the camera 202, respectively.
  • the image is corrected so as to eliminate the difference in the imaging environment and imaging characteristics between the two cameras, and the image data is passed to the next process.
  • the distance calculation processing unit 205 divides the image acquired by the image acquisition unit 203 into fixed block sizes (for example, 4 ⁇ 4 [pix]), and calculates the distance in real space for each divided block.
  • FIG. 3 shows a general distance measurement principle using a stereo camera.
  • the symbol D represents the distance from the surface of the lens 302 and the lens 303 to the measurement point 301
  • f represents the distance (focal length) between the lens 302 and the lens 303 and the imaging surface 304 and the imaging surface 305
  • b the distance measurement length
  • the focal length f and the baseline length b are constants determined by the configuration of the camera. Therefore, in order to obtain the distance D, the parallax d, which is the difference in appearance between the left and right lenses, may be obtained.
  • a method for obtaining this parallax d will be described with reference to FIG. FIG. 4 shows an image captured by the camera 201 as a left image (reference image) and an image captured by the camera 202 as a right image (reference image) when the camera 201 is installed on the left and the camera 202 is installed on the right. There is. As shown in FIG.
  • an image 401 having a block size (for example, 4 ⁇ 4 [pix] size) in which the reference image is divided by a fixed size and an image having the same height and size as the image 401 on the reference image.
  • the same target image is found from the right image by shifting from 402 to the image 403, which is a certain pixel away, one pixel at a time, calculating the degree of matching for each pixel, and searching for the block with the highest degree of matching. It is possible to calculate the parallax d of the block 401 of the left image.
  • the degree of matching can be calculated by using the sum of the absolute values of the luminance differences between the pixels (Sum of the Absolute Differences: SAD).
  • the graph is as shown in FIG. 5, and the minimum value 501 is the parallax with the highest degree of agreement. From the above, since the parallax d can be obtained, the distance D in the real space for each block can be calculated by using the mathematical formula (1). Also, if there is no texture in the block size image 401 that divides the reference image by a fixed size, or if the same image cannot be found on the left and right (for example, the windshield in front of the camera is on the left and right of the same target due to the influence of raindrops etc.
  • the three-dimensional object extraction processing unit 206 extracts a three-dimensional object using the distance image obtained by the distance for each block over the entire image obtained by the distance calculation processing unit 205.
  • the adjacent block row when there are three-dimensional object candidates and the difference between the representative distances at the peak of the histogram is equal to or less than the threshold value (variable according to the distance), they are grouped as the same three-dimensional object.
  • the width of the grouped three-dimensional object is equal to or larger than the threshold value (variable according to the distance), it is registered as a three-dimensional object.
  • the blocks around the distance of the row that became the same three-dimensional object are grouped on the distance image, and the position on the distance image (lower end, upper end, left end, right end on the image) and grouping.
  • the distance to a three-dimensional object in real space is calculated by averaging the distances.
  • the three-dimensional object obtained as a result is referred to as an extracted three-dimensional object (having parameters such as the relative position, height, and width with the own vehicle).
  • the three-dimensional object tracking processing unit 207 tracks the extracted three-dimensional object obtained by the three-dimensional object extraction processing unit 206 in time series, and subtracts the change in the relative position due to the behavior of the own vehicle, and subtracts the change in the relative position.
  • (Front-back speed, left-right speed) is calculated, and parameters such as relative position, height, width, and ground speed with the own vehicle are filtered, and the tracking solid object (relative to the filtered own vehicle) is performed. It has the position, height, width, ground speed, etc. as parameters). More specifically, it is realized by executing the following processing in each frame.
  • the error variance can be realized by setting the extracted three-dimensional object as an observed value using a Kalman filter, for example, and obtaining the error variance from the actually measured value. Further, the extracted three-dimensional object that does not match any of the tracking three-dimensional objects of the previous processing frame is newly registered in the tracking three-dimensional object as it is as the initial detection three-dimensional object. At this time, since the speed cannot be calculated with only one frame, the ground speed is set to zero.
  • the three-dimensional object tracking processing unit 207 can estimate the traveling path (predicted traveling path) of the tracking three-dimensional object.
  • the expected front-back direction position x_o (t) and the left-right direction position y_o (t) of the tracking three-dimensional object 703 are calculated for 3 seconds in 0.1 second units. do.
  • the ground speed in the front-rear direction as seen from the current coordinate system of the own vehicle 701 is xv_t (0)
  • the ground speed in the left-right direction is yv_o (0).
  • x_o (t) x_o (0) + xv_o (0) ⁇ t ...
  • y_o (t) y_o (0) + yv_o (0) ⁇ t ... (6)
  • the distance d (t) between the own vehicle 701 and the tracking three-dimensional object 703 at each time t is set as follows. It is obtained by the formula (7).
  • d (t) ⁇ ((x_s (t) -x_o (t)) ⁇ 2 + (Y_s (t) -y_o (t)) ⁇ 2) ... (7)
  • t is set as the expected collision time t_hit, and if the estimated collision time exists, the collision with the tracking three-dimensional object 703 is performed. Judge that there is a possibility.
  • the lateral position change amount d_h obtained here is the lateral position change amount (lateral movement amount) of the own vehicle 701 as seen from the tracking three-dimensional object 703 from the expected collision time t_hit to before the predetermined time t_past. It corresponds to the length of the vertical line drawn from the position 706 of the own vehicle 701 before the predetermined time t_past from the estimated collision time t_hit to the estimated traveling path 704 (here, assuming straight running) of the tracking three-dimensional object 703.
  • the control processing unit 212 determines what kind of control is to be performed on the own vehicle 701 by using the lateral position change amount d_h obtained by the lateral movement amount determination processing unit 211.
  • a control command for operating the brake actuator 104 is given to the brake control unit 103 as a unit that controls the vehicle without performing brake control (that is,). (Not transmitted), if it is below a predetermined threshold (only), brake control is performed (that is, a control command is transmitted to the brake control unit 103 as a unit that controls the vehicle to operate the brake actuator 104).
  • the own vehicle 801 turns right on the track of the estimated travel path 802 of the own vehicle 801 and the oncoming vehicle 803, which is a tracking three-dimensional object, turns to the estimated travel path 804 of the oncoming vehicle 803.
  • the lateral position change amount 807 (d_h) is about one lane width (about 3.5 m)
  • the lateral position change amount d_h is equal to or less than a predetermined threshold, so it is necessary. Brake control can be performed.
  • the movement is temporarily the same as that of the right turn as shown in the estimated travel path 902 of the own vehicle 901, and the vehicle actually collides. It is expected that the vehicle will collide with the oncoming vehicle 903 that goes straight on the track of the estimated traveling path 904 that exists in the oncoming lane, but the lateral position change amount 907 (d_h) is a large value of about two lane widths (about 7 m). Therefore, the lateral position change amount d_h is larger than a predetermined threshold value, and erroneous braking control can be prevented.
  • the lateral position change amount 1007 (d_h) is as large as about two lane widths (about 7 m), and the lateral position change amount d_h.
  • the brake can be operated appropriately even in a scene where it is difficult to see from the oncoming vehicle. can.
  • the threshold value for the lateral position change amount (lateral movement amount) d_h used for determining whether or not to perform brake control can be arbitrarily set, but considering the scenes shown in FIGS. 8 to 10, the lane is taken into consideration. It is considered desirable that the width is one or more and the lane width is less than two. Alternatively, when the oncoming lane is two or more lanes, it is one or more lane widths of the lane closest to the own vehicle (on the side of the own vehicle's driving lane) among the oncoming lanes, and is closer to the own vehicle among the oncoming lanes. It is considered desirable that the width of the lane (on the side of the driving lane of the own vehicle) is less than two lanes.
  • the driving support device 100 of the present embodiment has the predicted traveling path of the own vehicle and the said vehicle based on the ground speed of the oncoming vehicle, the relative position between the own vehicle and the oncoming vehicle, and the state of the own vehicle.
  • the predicted travel path of the oncoming vehicle is calculated, the possibility of collision with the oncoming vehicle at the time of right turn or left turn of the own vehicle is determined, and the estimated collision time at which the own vehicle and the oncoming vehicle collide is calculated.
  • the brake of the own vehicle is controlled based on the movement amount of the own vehicle from the expected collision time to a predetermined time before, and the movement amount is at least lateral movement of the own vehicle as seen from the oncoming vehicle. Includes quantity.
  • the brake of the own vehicle is activated only when the lateral movement amount of the own vehicle is equal to or less than a predetermined threshold value, and when the lateral movement amount of the own vehicle is larger than the predetermined threshold value, the brake of the own vehicle is activated. Does not work.
  • the brake can be applied as needed, so that the brake control can be performed at a more appropriate timing.
  • the predicted course of the oncoming vehicle is assumed to be a straight line, but the turning radius of the oncoming vehicle may be estimated and used as the predicted course of the curve.
  • the oncoming vehicle 1103 curves to the right on the track of the predicted course 1104 of the oncoming vehicle 1103. If the above is the case, the side of the oncoming vehicle 1103 in the normal direction with respect to the predicted traveling path 1104 at the position 1106 of the own vehicle 1101 a predetermined time before the expected collision position 1105 (the position 1105 of the own vehicle 1101 at the expected collision time t_hit).
  • the position is calculated, and the absolute value is used as the lateral position change amount (lateral movement amount) 1107. That is, the length of the normal line from the position 1106 of the own vehicle 1101 one predetermined time before the predicted collision time t_hit to the predicted traveling path 1104 (here, assuming curve driving) of the oncoming vehicle 1103 is viewed from the oncoming vehicle 1103.
  • the lateral position change amount (lateral movement amount) of the own vehicle 1101 is set to 1107. As a result, an appropriate amount of lateral position change can be calculated even in a scene in a curve, and a more appropriate determination can be made.
  • the predicted traveling path of the own vehicle is simply calculated from the turning radius based on the current parameter, but in order to calculate the amount of lateral position change seen from the oncoming vehicle more accurately, the actual past actual amount is calculated. You may keep the course for a certain period of time and use it to calculate the predicted course of your vehicle.
  • the predicted course of the oncoming vehicle was calculated using a stereo camera (image acquired by) having two cameras, but the sensor information acquired by an external recognition sensor (acquired by) such as a monocular camera, a millimeter wave radar, and a laser radar. ) May be used to calculate the predicted course of the oncoming vehicle.
  • the predicted traveling path of the oncoming vehicle may be calculated by acquiring the oncoming vehicle information (ground speed, position, predicted traveling path, etc.) via communication with an external server or inter-vehicle communication.
  • the presence / absence of the brake control is switched according to the lateral position change amount, but the brake control timing may be changed according to the lateral position change amount.
  • the brake control timing (that is, the brake operation timing) may be delayed as compared with the case where the lateral position change amount is equal to or less than the predetermined threshold value.
  • the above embodiment is assumed to avoid / reduce a collision with an oncoming vehicle when making a right turn at an intersection, but it is of course applicable to the same when making a left turn.
  • the present invention is not limited to the above-described embodiment, but includes various modified forms.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • each of the above configurations, functions, processing units, processing means, etc. may be realized by hardware by designing a part or all of them by, for example, an integrated circuit. Further, each of the above configurations, functions, and the like may be realized by software by the processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files that realize each function can be stored in a memory, a hard disk, a storage device such as an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
  • SSD Solid State Drive
  • control lines and information lines indicate those that are considered necessary for explanation, and do not necessarily indicate all control lines and information lines in the product. In practice, it can be considered that almost all configurations are interconnected.
  • Driving support device 101 Stereo camera 102 Vehicle information unit 103 Brake control unit 104 Brake actuator 105 CAN 201, 202 Camera 203, 204 Image acquisition unit 205 Distance calculation processing unit 206 Three-dimensional object extraction processing unit 207 Three-dimensional object tracking processing unit 208 CAN information acquisition unit 209 Vehicle travel path estimation processing unit 210 Collision detection processing unit 211 Lateral movement amount determination Processing unit 212 Control processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Traffic Control Systems (AREA)

Abstract

より適切なブレーキ制御を行うことのできる運転支援装置を提供する。対向車の対地速度、自車と対向車との相対位置、および自車の状態に基づき、自車の予測進行路および対向車の予測進行路を算出し、自車の右折時または左折時の対向車との衝突可能性を判定し、自車と対向車とが衝突する衝突予想時刻を計算し、衝突予想時刻から所定時間前までの間の少なくとも前記対向車から見た前記自車の横方向移動量を含む移動量に基づいて、自車のブレーキを制御する。

Description

運転支援装置
 本発明は、他車両を検出し、当該他車両との衝突を回避/軽減する運転支援装置に関する。
 他車両との衝突を回避/軽減する運転支援装置として、例えば特許文献1に開示されたものがある。特許文献1では、他車両との衝突部位、および、衝突角度を考慮して、ブレーキ制御を行うことが記載されている。
特開2009-208560号公報
 上記特許文献1では、衝突部位、および、衝突角度を考慮して、衝突の影響度合からブレーキ制御を行うが、例えば交差点手前において、右折レーンに車線変更して進入する場合、一時的に右折と同様な動きとなり、実際には衝突しない対向車線に存在する対向車との衝突が予想され、間違って不必要なブレーキ制御を行う可能性がある。
 本発明は、上記の状況を考慮したものであり、より適切なブレーキ制御を行うことのできる運転支援装置を提供することを目的とする。
 前記課題を解決するために、本発明に係る運転支援装置は、対向車の対地速度、自車と対向車との相対位置、および自車の状態に基づき、前記自車の予測進行路および前記対向車の予測進行路を算出し、前記自車の右折時または左折時の前記対向車との衝突可能性を判定し、前記自車と前記対向車とが衝突する衝突予想時刻を計算し、前記衝突予想時刻から所定時間前までの間の前記自車の移動量に基づいて、前記自車のブレーキを制御し、前記移動量は、少なくとも前記対向車から見た前記自車の横方向移動量を含むことを特徴とする。
 本発明によれば、必要に応じてブレーキをかけることができるため、より適切なブレーキ制御を行うことができる。
 上記した以外の課題、構成及び効果は以下の実施形態の説明により明らかにされる。
本発明の一実施形態に係る運転支援装置の全体構成図。 ステレオカメラの機能ブロック図。 距離算出処理部の距離計測原理の説明図。 距離算出処理部の距離算出処理動作の説明図。 距離算出処理部の画像一致度の説明図。 距離算出処理部の画像一致度の説明図。 衝突判定処理部の衝突判定処理動作の説明図。 本実施形態の作動シーンの説明図。 本実施形態の不作動シーンの説明図。 本実施形態の不作動シーンの説明図。 対向車カーブ時の処理動作の説明図。
 以下、本発明の実施形態について、図面を参照し、詳細に説明する。
 図1に、本実施形態に係る運転支援装置の全体構成を説明する図を示す。運転支援装置100は、外界認識センサとしてのステレオカメラ101、ヨーレート・自車速等の自車両の状態を示す車両情報を取得する車両情報ユニット102、車両制御を行うユニットとしてのブレーキコントロールユニット103、ブレーキアクチュエータ104、これらセンサ、ユニット間の情報を伝達するCAN(Controller Area Network)105を備える。図1に示す運転支援装置100は、車両に搭載され、自車両と他車両との衝突を推定し、衝突すると推定された場合には、ブレーキ制御を行うことによって、衝突を回避/軽減するものである。
 車両情報ユニット102は、自車にかかるヨー方向の旋回角度変化を検出したヨーレート、車輪の回転数から検出した自車速を、CAN105に送信する。
 ステレオカメラ101は、図2に示すように構成されている。カメラ201、202は、車両前方が撮影されるように水平方向に一定距離を置いて、同じ高さで車室内ルームミラー付近に設置される。これらのカメラは、CCDやCMOS等のイメージセンサを備え、それぞれ同期しており、同じタイミングでサンプリングされる。
 画像取得部203と画像取得部204は、それぞれカメラ201とカメラ202で撮像された画像を以降の処理部で画像処理ができるように輝度値をデジタルに変換、また、カメラ201とカメラ202で撮像された画像を2つのカメラ間での撮像環境や撮像特性の差異をなくすよう補正し、次の処理に画像データを渡す。
 距離算出処理部205では、画像取得部203で取得された画像を固定のブロックサイズ(例えば、4×4[pix])で分割し、分割されたブロック毎に実空間での距離を算出する。図3に、ステレオカメラを用いた一般的な距離計測原理を示す。図中の記号Dは、レンズ302、レンズ303の面から計測点301までの距離を表し、fはレンズ302およびレンズ303と撮像面304および撮像面305との距離(焦点距離)を表し、bはレンズ302とレンズ303の中心間の距離(基線長)を表し、dは計測点301がレンズ302を通して撮像面304に撮像される位置と、計測点301がレンズ303を通して撮像面305に撮像される位置との差(視差)を示す。これらの記号の間には、三角形の相似の関係より以下の数式(1)が成り立つ。
(数1) D=b×f/d …(1)
 数式(1)より、焦点距離fと基線長bは、カメラの構成により決まる定数であるので、距離Dを求めるには、左右のレンズでの見え方のズレである視差dを求めれば良い。この視差dを求める方法を、図4を用いて説明する。図4は、カメラ201を左に、カメラ202を右に設置した場合に、カメラ201で撮像した画像を左画像(基準画像)、カメラ202で撮像した画像を右画像(参照画像)として表している。図4に示されるように、基準画像を固定サイズで区切ったブロックサイズ(例えば、4×4[pix]サイズ)の画像401と、参照画像上で画像401と同じ高さ、同じ大きさの画像402から、一定の画素離れた画像403までを1画素ずつずらし、1画素毎に一致度を算出し、最も一致度の高いブロックを探索することで、右画像の中から同じ対象の画像を見つけることができ、左画像のブロック401の視差dを算出することができる。一致度に関しては、各画素同士の輝度差の絶対値の総和(Sum of the Absolute Differences : SAD)を用いることで算出できる。このとき、横軸を視差[pix]、縦軸を一致度(SAD)とすると、図5のようなグラフになり、最小値501が最も一致度の高い視差となる。以上より、視差dが求まるので、数式(1)を用いて、ブロック毎の実空間での距離Dを算出することができる。また、基準画像を固定サイズで区切ったブロックサイズの画像401にテクスチャが無い場合、もしくは、左右で同じ画像が見つからない場合(例えば、カメラ正面のフロントガラスが雨滴等の影響で同じ対象の左右の画像が異なってしまった場合)は、図6に示すように、最小値601は存在するものの、一致度が相対的に低くならず、信頼度が低いため、無効視差として扱う。有効視差とするか無効視差とするかは、一致度の最小値が閾値を下回り、かつ、周辺の一致度平均と最小値の差が閾値を上回るかどうかで決定する。
 立体物抽出処理部206では、距離算出処理部205で求めた画像全体に渡りブロック毎に距離の求まった距離画像を用いて、立体物を抽出する。まず、距離画像のブロック列毎に、一定距離単位で分割したヒストグラムを作成し、頻度が高くピークとなった距離(代表距離)のヒストグラムの数が閾値(距離に応じて可変)以上であれば、そのブロック列には立体物候補有りとする。次に、隣接するブロック列において、立体物候補有りで、ヒストグラムのピークとなった代表距離同士の差が閾値(距離に応じて可変)以下の場合、同じ立体物としてグルーピングする。最終的に、グルーピングされた立体物の幅が閾値(距離に応じて可変)以上の場合、立体物として登録する。立体物として登録された後、同じ立体物となった列の距離周辺のブロックを距離画像上でグルーピングし、距離画像上での位置(画像上での下端、上端、左端、右端)と、グルーピングされた距離の平均により立体物までの実空間での距離を算出する。以降、この結果求まった立体物を抽出立体物(自車との相対位置、高さ、幅などをパラメータとして持つ)と呼ぶ。
 立体物追跡処理部207では、立体物抽出処理部206で求まった抽出立体物を時系列で追跡し、自車の挙動による相対位置の変化を差し引いた抽出立体物の位置の変化量より対地速度(前後方向速度、左右方向速度)を算出し、さらには、自車との相対位置、高さ、幅、対地速度等のパラメータのフィルタリングを行い、追跡立体物(フィルタされた自車との相対位置、高さ、幅、対地速度等をパラメータとして持つ)として出力する。より詳細には、以下の処理を各フレームで実行することで実現する。1つ前の処理フレームの追跡立体物がある場合は、自車挙動による変化(ヨーレートと自車速から相対的に移動する位置変化量)と、追跡立体物の持っている対地速度パラメータから、今回の処理フレームで存在するであろう予測位置を算出する。この予測位置と、今回の処理フレームで検出された抽出立体物とを比較し、各パラメータの差分が閾値以下の場合には、同一物体と判断して、前回の処理フレームの追跡立体物のパラメータを、今回の処理フレームの抽出立体物のパラメータを用いて更新する。更新の方法についての詳細は述べないが、例えばカルマンフィルタを用いて観測値として抽出立体物を設定し、誤差分散は実際に計測される値から求めることで実現できる。また、1つ前の処理フレームの追跡立体物のどれともマッチングしない抽出立体物は、初期検知の立体物として、そのまま追跡立体物に新規で登録する。この際、1つのフレームだけだと速度が算出できないため、対地速度をゼロとして設定する。
 上記追跡立体物の情報を基に、立体物追跡処理部207では、追跡立体物の進行路(予測進行路)を推定することができる。
 CAN情報取得部208では、車両情報ユニット102からCAN105を介して送信されたヨーレート、自車速を取得する。この取得された情報を基に、自車進行路推定処理部209では、自車の進行路(予測進行路)を推定する。具体的には、取得された自車速V[m/s]とヨーレートr[rad/s]から、以下の式(2)を用いて、自車の旋回半径R[m]を求め、これを自車の推定進行路(予測進行路)として用いる。
(数2) R=V/r …(2)
 衝突判定処理部210では、図7に示すように自車701の旋回半径Rから算出される自車701の推定進行路702と、追跡立体物703の対地速度から算出される追跡立体物703の推定進行路704から、自車701と追跡立体物703が衝突するか否かを判定する。具体的には、以下の式(3)、(4)を用いて、自車701の予測される前後方向位置x_s(t)と左右方向位置y_s(t)を0.1秒単位で3秒間分(t=0.1、0.2、0.3、…、2.9、3.0)算出する。
(数3) x_s(t)=Rsin(r×t) …(3)
(数4) y_s(t)=R(1-cos(r×t)) …(4)
 また、以下の式(5)、(6)を用いて、追跡立体物703の予想される前後方向位置x_o(t)と左右方向位置y_o(t)を0.1秒単位で3秒間分計算する。ただし、現在の自車701の座標系から見た前後方向の対地速度をxv_t(0)、左右方向の対地速度をyv_o(0)とする。
(数5) x_o(t)=x_o(0)+xv_o(0)×t …(5)
(数6) y_o(t)=y_o(0)+yv_o(0)×t …(6)
 次に、式(3)、(4)、(5)、(6)で得られた値を用いて、各時間tにおける自車701と追跡立体物703との距離d(t)を以下の式(7)により求める。
(数7) d(t)=√((x_s(t)-x_o(t))^2
+(y_s(t)-y_o(t))^2) …(7)
 得られた距離d(t)の最小値が所定の閾値(例えば、1m)以下となったときのtを衝突予想時刻t_hitとし、衝突予想時刻が存在する場合は、追跡立体物703との衝突可能性ありと判断する。
 横移動量判定処理部211では、衝突判定処理部210で衝突可能性ありと判断された場合に、求まった衝突予想時刻t_hitを用いて、自車701に対してどのような制御をするかを判断するための横移動量を判定する。具体的には、衝突予想時刻t_hitのときの自車701の位置705と、衝突予想時刻t_hitから所定時間t_past(例えば、2秒)前の自車701の位置706を、式(3)、(4)を用いて、t=t_hit、t_hit-t_pastとしてそれぞれ算出する。このとき、自車701の座標系から見た追跡立体物703の進行方向角度θ_oを以下の式(8)により求める。
(数8) θ_o=π/2-atan(xv_o(0)/yv_o(0)) …(8)
 この角度を用いた以下の式(9)により、衝突予想時刻t_hitから所定時間t_past前の追跡立体物703から見た自車701の横位置y_so(t_hit-t_past)を算出し、以下の式(10)により、その絶対値d_h[m]を横位置変化量(横方向移動量とも呼ぶ)707として算出する。
(数9) y_so(t)=y_s(t)cos(θ_o)-x_s(t)sin(θ_o) …(9)
(数10) d_h=|y_so(t_hit-t_past)| …(10)
 すなわち、ここで求まった横位置変化量d_hは、衝突予想時刻t_hitから所定時間t_past前までの間の追跡立体物703から見た自車701の横位置変化量(横方向移動量)であり、衝突予想時刻t_hitから所定時間t_past前の自車701の位置706から、追跡立体物703の推定進行路704(ここでは、直進走行を想定)へ引いた垂線の長さに相当する。
 制御処理部212では、横移動量判定処理部211で求まった横位置変化量d_hを用いて、自車701に対してどのような制御をするかを判断する。求まった横位置変化量d_hが所定の閾値(例えば、5m)より大きい場合は、ブレーキ制御を行わず(すなわち、車両制御を行うユニットとしてのブレーキコントロールユニット103へブレーキアクチュエータ104を作動させる制御指令を送信せず)、所定の閾値以下の場合は(のみ)、ブレーキ制御を行う(すなわち、車両制御を行うユニットとしてのブレーキコントロールユニット103へ制御指令を送信してブレーキアクチュエータ104を作動させる)。
 これにより、図8に示すような片側一車線の交差点において自車801が自車801の推定進行路802の軌道で右折し、追跡立体物である対向車803が対向車803の推定進行路804の軌道で直進するシーンにおいては、横位置変化量807(d_h)が車線幅1つ分程度(3.5m程度)の大きさとなり、横位置変化量d_hが所定の閾値以下となるため、必要なブレーキ制御を行うことができる。
 逆に、図9に示すような交差点手前において、右折レーンに車線変更して進入する場合、自車901の推定進行路902に示すように一時的に右折と同様な動きとなり、実際には衝突しない対向車線に存在する推定進行路904の軌道で直進する対向車903との衝突が予想されるが、横位置変化量907(d_h)は車線幅2つ分程度(7m程度)の大きな値となるため、横位置変化量d_hは所定の閾値よりも大きく、間違ったブレーキ制御を防ぐことができる。
 また、図10に示す自車1001が自車1001の推定進行路1002の軌道で右折し、対向車1003が対向車1003の推定進行路1004で直進するシーン(対向車線が2車線で、自車1001の車線から離れた側の車線を対向車1003が走行するシーン)においては、横位置変化量1007(d_h)が車線幅2つ分程度(7m程度)の大きさとなり、横位置変化量d_hが所定の閾値よりも大きくなるため、本シーンにおいてもブレーキ制御がされなくなるが、対向車1003から見た横位置変化量1007(d_h)が大きい場合は、対向車1003から自車1001が移動していると視認されやすく、対向車1003もブレーキをかける可能性も高く、システムによるブレーキをかける必要がないと考えられる。また、対向車1003から見た横位置変化量1007(d_h)が小さい場合は、自車1001が移動しているかどうかを視認しにくく、対向車1003がブレーキをかける可能性が低いため、システムによるブレーキをかける必要があると考えられる。上記した本実施形態は、本シーンにおいても適切なブレーキ制御を行うことが可能である。
 一方、白線を検知して、その後の自車両の動きを予測することも可能であるが、実環境においては、積雪や降雨により白線が見えない場合があるため、白線検知を用いない本実施形態は有効と考えられる。
 また、衝突予想時刻から所定時間前の時間までの間の対向車から見た自車の横位置変化量を用いることで、例えば、右折レーンで車両が右に傾いている状態で一度停車してから動き出した場合にも、横方向移動量は(自車から見た横方向移動量よりも)小さく算出されるため、対向車から見て視認されにくいシーンにおいてもブレーキを適切に作動させることができる。
 なお、ブレーキ制御を行うか否かの判断に用いる横位置変化量(横方向移動量)d_hに対する閾値は、任意に設定可能であるが、図8~図10等に示すシーンを考慮すると、車線幅1つ分以上であり、車線幅2つ分未満であることが望ましいと考えられる。あるいは、対向車線が2車線以上の場合には、対向車線のうち最も自車に近い(自車の走行車線側の)車線の車線幅1つ分以上であり、対向車線のうち自車に近い(自車の走行車線側の)車線の車線幅2つ分未満であることが望ましいと考えられる。
 以上で説明したように、本実施形態の運転支援装置100は、対向車の対地速度、自車と対向車との相対位置、および自車の状態に基づき、前記自車の予測進行路および前記対向車の予測進行路を算出し、前記自車の右折時または左折時の前記対向車との衝突可能性を判定し、前記自車と前記対向車とが衝突する衝突予想時刻を計算し、前記衝突予想時刻から所定時間前までの間の前記自車の移動量に基づいて、前記自車のブレーキを制御し、前記移動量は、少なくとも前記対向車から見た前記自車の横方向移動量を含む。
 また、前記自車の横方向移動量が所定の閾値以下の場合のみ、前記自車のブレーキを作動させ、前記自車の横方向移動量が所定の閾値より大きい場合は、前記自車のブレーキを作動させない。
 以上で説明した本実施形態により、必要に応じてブレーキをかけることができるため、より適切なタイミングでブレーキ制御を行うことができる。
 上記実施形態では、対向車の予測進行路を直線と仮定したが、対向車の旋回半径を推定して曲線の予測進行路としても良い。具体的には、図11に示すように、自車1101が自車1101の予測進行路1102の軌道で右折中に、対向車1103が対向車1103の予測進行路1104の軌道で右にカーブしている場合、衝突予想位置1105(衝突予想時刻t_hitのときの自車1101の位置1105)から所定時間前の自車1101の位置1106における、対向車1103の予測進行路1104に対する法線方向の横位置を算出し、その絶対値を横位置変化量(横方向移動量)1107として用いる。つまり、衝突予想時刻t_hitから所定時間前の自車1101の位置1106から、対向車1103の予測進行路1104(ここでは、カーブ走行を想定)への法線の長さを、対向車1103から見た自車1101の横位置変化量(横方向移動量)1107とする。これにより、カーブ中のシーンにおいても適切な横位置変化量を算出することができ、より適切な判定を行うことができる。
 また、上記実施形態では、自車の予測進行路を単純に現在のパラメータに基づく旋回半径から算出したが、より正確な対向車から見た横位置変化量を算出するために、過去の実際の進行路を一定時間保持しておき、それを用いて自車の予測進行路を算出しても良い。
 また、対向車の予測進行路を2台のカメラを有するステレオカメラ(で取得した画像)を用いて算出したが、単眼カメラ、ミリ波レーダー、レーザーレーダー等の外界認識センサ(で取得したセンサ情報)を用いて対向車の予測進行路を算出してもよい。また、外部サーバとの通信または車々間通信を介して、対向車情報(対地速度、位置、予測進行路等)を取得することで対向車の予測進行路を算出してもよい。
 さらには、上記実施形態では、横位置変化量に応じてブレーキ制御の実施の有無を切り替えたが、横位置変化量に応じてブレーキ制御のタイミングを変えても良い。例えば、横位置変化量が所定の閾値より大きい場合は、横位置変化量が所定の閾値以下の場合と比べて、ブレーキ制御のタイミング(すなわち、ブレーキの作動タイミング)を遅らせても良い。
 上記実施形態は、例えば交差点での右折時の対向車との衝突を回避/軽減することを想定したが、左折時においても同様に適用可能であることは勿論である。
 なお、本発明は上記した実施形態に限定されるものではなく、様々な変形形態が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記憶装置、または、ICカード、SDカード、DVD等の記録媒体に置くことができる。
 また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしも全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。
100 運転支援装置
101 ステレオカメラ
102車両情報ユニット
103 ブレーキコントロールユニット
104 ブレーキアクチュエータ
105 CAN
201、202 カメラ
203、204 画像取得部
205 距離算出処理部
206 立体物抽出処理部
207 立体物追跡処理部
208 CAN情報取得部
209 自車進行路推定処理部
210 衝突判定処理部
211 横移動量判定処理部
212 制御処理部

Claims (5)

  1.  対向車の対地速度、自車と対向車との相対位置、および自車の状態に基づき、前記自車の予測進行路および前記対向車の予測進行路を算出し、
     前記自車の右折時または左折時の前記対向車との衝突可能性を判定し、
     前記自車と前記対向車とが衝突する衝突予想時刻を計算し、
     前記衝突予想時刻から所定時間前までの間の前記自車の移動量に基づいて、前記自車のブレーキを制御する運転支援装置であって、
     前記移動量は、少なくとも前記対向車から見た前記自車の横方向移動量を含むことを特徴とする、運転支援装置。
  2.  前記対向車から見た前記自車の横方向移動量は、前記衝突予想時刻から前記所定時間前の前記自車の位置から、前記対向車の予測進行路への垂線もしくは法線の長さであることを特徴とする、請求項1に記載の運転支援装置。
  3.  前記自車の横方向移動量が所定の閾値以下の場合のみ、前記自車のブレーキを作動させ、前記自車の横方向移動量が所定の閾値より大きい場合は、前記自車のブレーキを作動させないことを特徴とする、請求項1に記載の運転支援装置。
  4.  前記所定の閾値は、車線幅1つ分以上かつ車線幅2つ分未満であることを特徴とする、請求項3に記載の運転支援装置。
  5.  前記自車の横方向移動量に応じて、前記自車のブレーキの作動タイミングを変更することを特徴とする、請求項1に記載の運転支援装置。
PCT/JP2021/004259 2020-06-18 2021-02-05 運転支援装置 WO2021255982A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112021002185.0T DE112021002185T5 (de) 2020-06-18 2021-02-05 Fahrassistenzvorrichtung
JP2022532268A JP7406635B2 (ja) 2020-06-18 2021-02-05 運転支援装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-105409 2020-06-18
JP2020105409 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021255982A1 true WO2021255982A1 (ja) 2021-12-23

Family

ID=79267770

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004259 WO2021255982A1 (ja) 2020-06-18 2021-02-05 運転支援装置

Country Status (3)

Country Link
JP (1) JP7406635B2 (ja)
DE (1) DE112021002185T5 (ja)
WO (1) WO2021255982A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157652A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 走行支援用車載情報提供装置
JP2018154174A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4873186B2 (ja) 2008-03-03 2012-02-08 トヨタ自動車株式会社 衝突軽減装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005157652A (ja) * 2003-11-25 2005-06-16 Nissan Motor Co Ltd 走行支援用車載情報提供装置
JP2018154174A (ja) * 2017-03-16 2018-10-04 トヨタ自動車株式会社 衝突回避装置

Also Published As

Publication number Publication date
JP7406635B2 (ja) 2023-12-27
DE112021002185T5 (de) 2023-04-06
JPWO2021255982A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
US10242576B2 (en) Obstacle detection device
CN106428209B (zh) 转向辅助装置
JP6795027B2 (ja) 情報処理装置、物体認識装置、機器制御システム、移動体、画像処理方法およびプログラム
WO2010032523A1 (ja) 道路境界検出判断装置
JP6054777B2 (ja) ステレオカメラ装置
CN109997148B (zh) 信息处理装置、成像装置、设备控制系统、移动对象、信息处理方法和计算机可读记录介质
JP6787157B2 (ja) 車両制御装置
JP2005038407A (ja) 車両用外界認識装置
JP2021510227A (ja) 衝突前アラートを提供するためのマルチスペクトルシステム
JP6816401B2 (ja) 画像処理装置、撮像装置、移動体機器制御システム、画像処理方法、及びプログラム
US9524645B2 (en) Filtering device and environment recognition system
EP1236126B1 (en) System for detecting obstacles to vehicle motion
WO2021255982A1 (ja) 運転支援装置
EP3889946A1 (en) External environment recognition device
JP6531689B2 (ja) 移動軌跡検出装置、移動物体検出装置、移動軌跡検出方法
JP6174884B2 (ja) 車外環境認識装置および車外環境認識方法
US20090074247A1 (en) Obstacle detection method
JPH1011585A (ja) 物体検出装置
JP7522616B2 (ja) 車外環境認識装置
JP4144464B2 (ja) 車載用距離算出装置
JP7436331B2 (ja) 画像処理装置
CN112513573B (zh) 立体摄像机装置
JP6254866B2 (ja) 車両制御装置
JP2003237509A (ja) 車両用外界認識装置
JP6759461B2 (ja) 車両運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825433

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532268

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 21825433

Country of ref document: EP

Kind code of ref document: A1