Nothing Special   »   [go: up one dir, main page]

WO2021250904A1 - Film and method for producing same, and roll body and method for producing same - Google Patents

Film and method for producing same, and roll body and method for producing same Download PDF

Info

Publication number
WO2021250904A1
WO2021250904A1 PCT/JP2020/023302 JP2020023302W WO2021250904A1 WO 2021250904 A1 WO2021250904 A1 WO 2021250904A1 JP 2020023302 W JP2020023302 W JP 2020023302W WO 2021250904 A1 WO2021250904 A1 WO 2021250904A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
convex portion
resin composition
resin
strip
Prior art date
Application number
PCT/JP2020/023302
Other languages
French (fr)
Japanese (ja)
Inventor
葉月 中江
里誌 森井
翔太 橋本
崇 南條
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to CN202080101940.3A priority Critical patent/CN116018249A/en
Priority to JP2022530000A priority patent/JP7556386B2/en
Priority to PCT/JP2020/023302 priority patent/WO2021250904A1/en
Priority to TW110121163A priority patent/TWI782570B/en
Publication of WO2021250904A1 publication Critical patent/WO2021250904A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a film and a method for producing the same, a roll body and the method for producing the same.
  • a resin film containing a cycloolefin resin or a (meth) acrylic resin as a main component has good transparency and dimensional stability, and is therefore used as an optical film such as a polarizing plate protective film.
  • such an optical film is usually stored or transported as a roll body obtained by winding a strip-shaped film into a roll shape.
  • both ends in the width direction of the film are usually subjected to uneven processing called embossing.
  • embossing See, for example, Patent Document 1.
  • the embossed portion formed by the embossing process is easily crushed, and the sticking between the films may not be sufficiently suppressed.
  • the shape of the knurled portion 2 (convex portion) in the cross section along the width direction of the film 1 is rectangular (see FIG. 6). Since the surface of such a knurled portion is in close contact with the back surface of the overlapping films when wound into a roll, air can be reliably contained between the films at the time of winding.
  • the present invention has been made in view of the above circumstances, and is capable of producing a film capable of suppressing winding misalignment and sticking when an impact is applied from the outside while appropriately containing air between the films. It is an object of the present invention to provide a method, a roll body and a method for producing the same.
  • the film of the present invention is a film having band-shaped convex portions at both ends in the width direction, and when the maximum height of the convex portions is Tmax, the midpoint of the convex portions (Tmax) with respect to the maximum height Tmax of the convex portions. / 2) When the region of the convex portion above the middle point is S1 and the region of the convex portion below the midpoint is S2, S1 and S2 satisfy the following equation (1). Equation (1): 0.6 ⁇ S1 / S2 ⁇ 0.95
  • the method for producing a film of the present invention is a method for producing a film having band-shaped protrusions at both ends in the width direction, and 1) a step of casting a first resin composition to obtain a band-shaped film base. 2) The step of casting the second resin composition on both ends of the surface of the strip-shaped film base in the width direction to form the strip-shaped convex portion, and during the casting of the step 2).
  • the ratio ⁇ 2 / ⁇ 1 of the viscosity ⁇ 2 of the second resin composition to the viscosity ⁇ 1 of the first resin composition at the time of casting in the step 1) is 0.00003 to 0.02.
  • the roll body of the present invention is a roll body obtained by winding a strip-shaped film having strip-shaped protrusions at both ends in the width direction, and when the maximum height of the convex portions is Tmax, the maximum height of the convex portions is taken.
  • S1 and S2 satisfy the following equation (1).
  • the method for producing a roll body of the present invention is a method for producing a roll body in which a band-shaped film having band-shaped protrusions at both ends in the width direction is wound, and 1) the first resin composition is cast by casting.
  • a step of obtaining a strip-shaped film base and 2) a step of casting a second resin composition on both ends of the surface of the strip-shaped film base in the width direction to form the strip-shaped convex portion are included.
  • the ratio ⁇ 2 / ⁇ 1 of the viscosity ⁇ 2 of the second resin composition at the time of casting in the step 2) to the viscosity ⁇ 1 of the first resin composition at the time of casting in the step 1) is 0.00003 to 0. It is 0.02.
  • the present invention it is possible to provide a roll body of a film capable of suppressing winding misalignment and sticking when an impact is applied from the outside while appropriately containing air between the films, and a method for producing the same. can.
  • FIG. 1A is a plan view of a strip-shaped film according to the present embodiment
  • FIG. 1B is a sectional view taken along line 1B-1B of FIG. 1A
  • FIG. 2 is an enlarged view of the convex portion of FIG. 1B
  • 3A is a plan view of the strip-shaped film in another embodiment
  • FIG. 3B is a sectional view taken along line 3B-3B of FIG. 3A
  • 4A is a plan view of the strip-shaped film in another embodiment
  • FIG. 4B is a sectional view taken along line 4B-4B of FIG. 4A
  • 5A to 5C are cross-sectional views showing the shape of the convex portion according to another embodiment.
  • FIG. 6 is a cross-sectional view of a conventional strip-shaped film.
  • the present inventors make it possible to form an appropriate gap between the convex portion and the back surface of the film base when the strip-shaped film is wound into a roll shape; specifically, in the width direction of the film.
  • the strip-shaped film is wound into a roll by adjusting the ratio S1 / S2 of the area S1 of the upper half region of the convex portion to the area S2 of the lower half region to be 0.95 or less. It was found that it is possible to suppress winding misalignment and sticking at the time.
  • the adjustment of S1 / S2 can be performed by any method, for example, the viscosity and the resin concentration of the resin composition for forming the convex portion, the drying rate (or the solidification rate) of the resin composition, and the surface of the film base. It can be adjusted by processing. For example, from the viewpoint of setting S1 / S2 to 0.95 or less, it is preferable to reduce the contact angle of the resin composition for forming the convex portion with the film base; for that purpose, the viscosity of the resin composition or the like. It is preferable to lower the resin concentration or increase the drying rate (or solidification rate) of the resin composition.
  • the film of the present invention may be a strip-shaped film or a sheet-fed film cut out from the strip-shaped film.
  • the film is a strip-shaped film (roll body of the strip-shaped film) will be described.
  • the roll body of the present invention is a strip-shaped film wound in a roll shape along a direction orthogonal to the width direction thereof.
  • FIG. 1A is a plan view of the strip-shaped film in the present embodiment
  • FIG. 1B is a sectional view taken along line 1B-1B of FIG. 1A
  • FIG. 2 is an enlarged view of the convex portion 12 of FIG. 1B.
  • hatching of the cross section is omitted for the sake of clarity.
  • the strip-shaped film 10 has strip-shaped protrusions 12 at both ends in the width direction.
  • the strip-shaped film 10 has a film base 11 and convex portions 12 provided at both ends in the width direction thereof.
  • Film base 11 The film base 11 is preferably a resin film, and more preferably a resin film that can be used as an optical film.
  • the resin contained in the film base 11 (resin film) is preferably a thermoplastic resin.
  • the thermoplastic resin may be any one suitable for an optical film and is not particularly limited, and examples thereof include a cycloolefin resin, a (meth) acrylic resin, a polyimide, a cellulose ester, a polyester, and a polycarbonate. Among them, cycloolefin resin, (meth) acrylic resin and cellulose ester are preferable from the viewpoint of having good transparency, and cycloolefin resin and (meth) acrylic resin are preferable from the viewpoint of further having low hygroscopicity (high dimensional stability). Is more preferable.
  • the cycloolefin resin is preferably a polymer containing a structural unit derived from a norbornene-based monomer.
  • the norbornene-based monomer may be any compound having a norbornene skeleton, and is not particularly limited. However, when a film is formed by a solution casting method, a norbornene-based monomer having a polar group is preferable.
  • the norbornene-based monomer having a polar group is preferably represented by the formula (1).
  • R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group, respectively. At least one of R 1 to R 4 is a polar group.
  • a polar group is a functional group whose polarization is caused by an atom having a high electronegativity such as an oxygen atom, a sulfur atom and a nitrogen atom.
  • Examples of such polar groups include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, and these groups are attached via a linking group such as an alkylene group. Groups etc. are included.
  • a carboxy group, a hydroxy group, an alkoxycarbonyl group or an aryloxycarbonyl group is preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are more preferable from the viewpoint of ensuring solubility at the time of solution casting.
  • R 1 and R 2 are hydrogen atoms and R 3 and R 4 are groups other than hydrogen atoms.
  • P represents an integer of 0 to 2.
  • Examples of the monomer represented by the formula (1) include the following.
  • the content of the structural unit derived from the norbornene-based monomer having a polar group can be 50 to 100% by mass with respect to all the structural units constituting the cycloolefin resin.
  • the cycloolefin resin having a polar group may further contain a structural unit derived from a copolymerizable monomer copolymerizable with the norbornene-based monomer having the polar group, if necessary.
  • copolymerizable monomers examples include norbornene-based monomers having no polar group and monomers having no norbornene skeleton.
  • monomers having no norbornene skeleton include open-ring copolymerizable copolymerizable monomers (with norbornene-based monomers having polar groups) and (with norbornene-based monomers having polar groups).
  • a copolymerizable monomer capable of addition copolymerization is included.
  • ring-opening copolymerizable copolymerizable monomers include cycloolefins that do not have a norbornene skeleton, such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
  • copolymerizable monomers examples include unsaturated double bond-containing compounds, vinyl cyclic hydrocarbon monomers, and (meth) acrylic acid esters.
  • unsaturated double bond-containing compounds are olefin compounds having 2 to 8 carbon atoms, and examples thereof include ethylene, propylene, and butene.
  • vinyl-based cyclic hydrocarbon monomers examples include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene.
  • (meth) acrylic acid esters examples include (meth) acrylic acid alkyl esters having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylic acid, and cyclohexyl (meth) acrylic acid. included.
  • the weight average molecular weight (Mw) of the cycloolefin resin is preferably 20,000 to 300,000.
  • Mw of the cycloolefin resin is within the above range, the film-forming property is not easily impaired while imparting sufficient mechanical strength to the film.
  • the Mw of the cycloolefin resin is more preferably 40,000 to 200,000.
  • the Mw of the cycloolefin resin can be measured in terms of polystyrene by gel permeation chromatography (GPC). Specifically, it can be measured using a Tosoh HLC8220GPC) and a column (Tosoh TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series).
  • the glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C. ..
  • Tg glass transition temperature
  • the glass transition temperature of the cycloolefin resin is 110 ° C. or higher, deformation due to use under high temperature conditions and secondary processing such as coating and printing is suppressed, which is preferable.
  • Tg is 350 ° C. or lower, resin deterioration due to heat during molding or molding is suppressed, which is preferable.
  • the Tg of the cycloolefin resin can be measured according to JIS K7121-2012 or ASTM D3418-82 using DSC (Differential Scanning Colorimetry).
  • the (meth) acrylic resin is a homopolymer of a (meth) acrylic acid ester, or a copolymer of a (meth) acrylic acid ester and a copolymerizable monomer copolymerizable therewith.
  • the (meth) acrylic acid ester is preferably methyl methacrylate.
  • the copolymerizable monomer may be a copolymerizable monomer copolymerizable with methyl methacrylate, may be a copolymerizable monomer having a ring structure, or may be a copolymerizable monomer having no ring structure. It may be.
  • An example of a copolymerized monomer having a ring structure is It has an alicyclic such as (meth) dicyclopentanyl acrylate, (meth) isobornyl acrylate, (meth) adamantyl acrylate, (meth) cyclohexyl acrylate, and six-membered ring lactone (meth) acrylate ester (meth).
  • Acrylic acid ester Vinyls having an alicyclic such as vinylcyclohexane; Vinyls with aromatic rings such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, ⁇ -methylstyrene; and N-phenylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylmaleimide , NO-Chlorophenylmaleimide and other maleimides (compounds having an imide ring) are included.
  • An example of a copolymerized monomer having no ring structure is Ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) (Meta) acrylic acid alkyl ester having 2 to 20 carbon atoms such as n-octyl acrylate; Unsaturated nitriles such as (meth) acrylonitrile; Unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, (meth) acrylic acid; Olefins such as vinyl acetate, ethylene and propylene; Vinyl halides such as vinyl chloride, vinylidene chloride and vinylidene fluoride; Includes (meth) acrylamides such as (meth) acrylamide, methyl (meth)
  • the copolymerizable monomer may be one kind or a combination of two or more kinds.
  • the Mw of the (meth) acrylic resin is preferably 400,000 to 3 million. When Mw is in the above range, sufficient mechanical strength (toughness) is imparted to the film, and film forming property and drying property are not easily impaired. From the above viewpoint, the Mw of the (meth) acrylic resin is more preferably 500,000 to 2,000,000. The Mw of the (meth) acrylic resin can be measured by the same method as described above.
  • the Tg of the (meth) acrylic resin is preferably 90 ° C. or higher.
  • the Tg is 90 ° C. or higher, not only the heat resistance of the film can be improved, but also the drying property at the time of film formation can be easily improved.
  • the Tg of the (meth) acrylic resin is more preferably 100 to 150 ° C.
  • the Tg of the (meth) acrylic resin can be measured by the same method as described above.
  • Cellulose ester is a compound obtained by esterifying cellulose with a carboxylic acid.
  • the total degree of substitution of the acyl group of the cellulose ester is preferably 2 to 3, and more preferably 2.2 to 2.6.
  • the acyl group can be an acetyl group, a propionyl group or both.
  • the degree of substitution of the acyl group of the cellulose ester can be measured by the method specified in ASTM-D817-96.
  • cellulose esters examples include cellulose triacetate and cellulose acetate propionate.
  • the Mw of the cellulose ester is preferably 100,000 to 500,000, more preferably 150,000 to 300,000 in order to obtain a certain level of mechanical strength or higher. Mw can be measured by the same method as described above.
  • the Tg of the cellulose ester is usually preferably 140 to 200 ° C, more preferably 160 to 190 ° C. Tg can be measured by the same method as described above.
  • the content of the resin is preferably 60% by mass or more, and may be 70 to 100% by mass with respect to the film base 11.
  • the film base 11 may further contain fine particles (matting agent), if necessary. Thereby, an appropriate slipperiness can be imparted to the surface of the resin film.
  • the fine particles may be inorganic fine particles or organic fine particles.
  • inorganic fine particles examples include silica particles.
  • the average primary particle size of the silica particles is not particularly limited, but is preferably, for example, 5 to 100 nm, and more preferably 10 to 50 nm.
  • the polymer fine particles have a refractive index difference of 0.01 or less from the resin.
  • organic fine particles include (meth) acrylic acid esters, vinyl esters, styrenes, and olefins from the viewpoint of having high affinity with resins and easily adjusting the refractive index within the above range.
  • a copolymer containing structural units selected from the above group is preferable, and a copolymer containing (meth) acrylic acid esters and structural units derived from styrenes is more preferable, and the copolymer is derived from (meth) acrylic acid esters.
  • a copolymer containing a structural unit, a structural unit derived from styrenes, and a structural unit derived from a polyfunctional monomer is more preferable.
  • the glass transition temperature (Tg) of the organic fine particles is preferably 80 ° C. or higher.
  • the glass transition temperature (Tg) of the organic fine particles can be measured according to JISK7121-2012 or ASTMD3418-82 in the same manner as described above.
  • the average particle size of the organic fine particles is 0.01 to 0.4 ⁇ m.
  • the average particle size of the organic fine particles is 0.01 ⁇ m or more, unevenness of an appropriate size can be formed on the surface of the obtained film, so that it is easy to impart slipperiness. It is easy to suppress the increase of internal haze. From the above viewpoint, the average particle size of the organic fine particles is more preferably 0.07 to 0.28 ⁇ m.
  • the average primary particle diameter of the inorganic fine particles and the organic fine particles can be measured by the following procedure. 1) TEM observe the cross section of the film parallel to the in-plane slow phase axis. The observation area is the same as described above. 2) The primary particle diameters of any 10 inorganic fine particles or organic fine particles in the obtained TEM image are measured, and the average value thereof is defined as the "average primary particle diameter".
  • the thickness of the film base 11 is constant. That is, since the film base 11 is not embossed, it does not have a thin portion formed by being crushed by an emboss roller.
  • the thickness of the film base 11 is not particularly limited, but is preferably 3 to 40 ⁇ m, more preferably 5 to 30 ⁇ m, and even more preferably 10 to 20 ⁇ m.
  • the length (winding length) of the film base 11 is not particularly limited, but is preferably 2000 to 15000 m, more preferably 3000 to 12000 m.
  • the width of the film base 11 is not particularly limited, but is preferably 950 to 3000 mm.
  • the film base 11 preferably has a phase difference according to the required optical characteristics.
  • the in-plane retardation Ro and the thickness direction retardation Rt measured at a wavelength of 550 nm and 23 ° C. 55% RH have the following equations, respectively. It is preferable to meet.
  • Ro and Rt are defined by the following equations, respectively.
  • Equation (I): Ro (nx-ny) ⁇ d
  • Equation (II): Rt ((nx + ny) /2-nz) ⁇ d
  • nx represents the refractive index of the film base 11 in the in-plane slow phase axial direction (direction in which the refractive index is maximized).
  • ny represents the refractive index in the direction orthogonal to the in-plane slow phase axis of the film base 11.
  • nz represents the refractive index of the film base 11 in the thickness direction.
  • d represents the thickness (nm) of the film base 11.
  • the in-plane slow phase axis of the film base 11 can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
  • Ro and Rt can be measured by the following methods. 1) The film base 11 is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of the film base 11 is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer. 2) The retardation Ro and Rt of the film base 11 after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Matrix Polarimeter). Measure in the environment of.
  • the internal haze of the film base 11 is preferably 1.0% or less, more preferably 0.1% or less, still more preferably 0.05% or less.
  • the internal haze of the film base 11 can be measured in accordance with JIS K-6714 using a haze meter (HGM-2DP, Suga Test Instruments) at 25 ° C. and 60% RH for a sample of 40 mm ⁇ 80 mm.
  • Convex part 12 is a knurling portion obtained by applying a resin composition to both ends of the surface of the film base portion 11 in the width direction.
  • the convex portions 12 are arranged in strips along the longitudinal direction of the film base 11 at both ends of the film base 11 in the width direction (see FIG. 1A).
  • the "strip shape" includes not only a continuously extending shape but also an intermittently extending shape. That is, the convex portions 12 may be continuously arranged in a band shape or may be intermittently arranged in a band shape. In this embodiment, the convex portions 12 are continuously arranged (see FIG. 1A).
  • the convex portion 12 may be integrated with the film base portion 11 or may be a separate body.
  • the height of the convex portion 12 means the height from the surface of the film base 11 (the height of the surface of the film base 11 in the normal direction).
  • the sum of the areas S1 and S2 of the convex portion 12 is preferably 0.0006 ⁇ 0.07 mm 2, and more preferably 0.0013 ⁇ 0.03 mm 2.
  • the total of the areas S1 and S2 of the convex portion 12 is not less than the lower limit value, winding deviation is likely to occur, and when it is not more than the upper limit value, air is likely to be excessively contained.
  • the convex portion 12 is formed intermittently, the total of the above S1 and S2 is calculated as an average value of the total of S1 and S2 measured for each of the plurality of convex portions 12.
  • the areas S1 and S2 of the convex portion 12, the maximum height Tmax of the convex portion, and the maximum width Wmax in the cross section along the width direction of the film 10 can be measured by using a laser microscope.
  • a laser microscope for example, a laser Microscope VK-X1000 manufactured by KEYENCE Corporation can be used.
  • the areas S1 and S2 of the convex portion 12 are measured with the upper half of the convex portion 12 in a region of 100 mm in the length direction of the film and 15 mm in the width direction of the film centered on one row of the convex portions.
  • the area of the lower half can be measured with a laser microscope, and the average value thereof can be obtained as "areas S1 and S2 of the convex portion 12".
  • the values for one row (line) of the convex portions 12 are shown. Further, in the case of dispenser coating or intermittent coating, the average value of the measured values for the plurality of convex portions 12 existing in the above region is used.
  • the ratio (%) of the total area of the convex portions (S1 + S2) to the area of the film base in the cross section in the width direction of the optical film is not particularly limited, but is preferably 0.005 to 0.06%, for example, 0. It is preferably 0.01 to 0.04%.
  • it means the ratio of the total area of these portions to the area of the film base.
  • the shape of the convex portion 12 is such that an appropriate gap can be formed between the convex portion 12 and the back surface of the film base 11 when the film 10 is wound, specifically, S1 / S2 satisfy the above range. Any shape may be used, and the shape is not particularly limited.
  • the height of the central portion of the convex portion 12 (in the width direction of the film base 11) may be higher than the height of both ends of the convex portion 12 (see FIG. 2 and FIG. 5A described later). It may be the same as the height of both ends of the protrusion 12 (see FIG. 5B described later), or may be lower than the height of both ends of the convex portion 12 (see FIG. 5C described later). Above all, it is preferable that the height of the central portion of the convex portion 12 is higher than the height of both ends of the convex portion 12 or is the same as the height of both ends of the convex portion 12. In the present embodiment, the height of the central portion of the convex portion 12 is higher than the height of both end portions of the convex portion 12 (see FIG. 2).
  • the shape of the convex portion 12 may be either a circular segment or a polygon.
  • the bow shape is a shape in which both ends of an arc or an elliptical arc are connected by a straight line, and examples thereof include a semicircle and a semi-elliptical shape.
  • Examples of polygons include trapezoids (see FIG. 5B below) and staircase shapes (see FIG. 5A below).
  • the maximum height Tmax of the convex portion 12 is not particularly limited, but is preferably 0.8 to 35%, more preferably 1.0 to 15%, and 2.5 to 25% of the thickness of the film base 11. It is more preferably 7.0%. Specifically, the maximum height Tmax of the convex portion 12 is preferably 0.3 to 4.0 ⁇ m, and more preferably 0.5 to 2.0 ⁇ m.
  • the maximum width of the convex portion 12 in the width direction of the film base 11 is not particularly limited, but is preferably 0.05 to 5%, preferably 0.05 to 3% of the width of the film base 11. More preferably, it is more preferably 0.05 to 1%. Specifically, the maximum width Wmax of the convex portion 12 is preferably 0.5 to 50 mm, more preferably 1 to 30 mm.
  • the position of the apex of the convex portion 12 in the width direction of the film 10 is not particularly limited, but is preferably within the range of 0.3 Wmax to 0.7 Wmax from one end of the convex portion 12 in the width direction.
  • the convex portion 12 is obtained from the second resin composition described later, and contains a resin.
  • the same resin as that contained in the film base portion 11 can be used. That is, the resin contained in the film base 11 and the resin contained in the convex portion 12 may be of the same type or may be different types. Above all, from the viewpoint of enhancing the adhesion between the convex portion 12 and the film base portion 11, it is preferable that the resin contained in the film base portion 11 and the resin contained in the convex portion 12 are of the same type. That is, when the resin contained in the film base 11 is a cycloolefin resin, it is preferable that the resin contained in the convex portion 12 is also a cycloolefin resin.
  • the Mw of the resin contained in the convex portion 12 is preferably lower than the Mw of the resin contained in the film base 11.
  • the Mw of the cycloolefin resin contained in the convex portion 12 is preferably 10,000 to 50,000.
  • the Mw of the cycloolefin resin is more preferably 20,000 to 40,000.
  • the Mw of the cycloolefin resin can be measured by the same method as described above.
  • the content of the resin is not particularly limited, but is preferably 60% by mass or more, and more preferably 70 to 100% by mass with respect to the entire convex portion 12.
  • the convex portion 12 may further contain the same components (for example, fine particles) as the film base 11 if necessary.
  • the content of the fine particles in the convex portion 12 is the content of the fine particles in the film base 11 from the viewpoint of making it difficult to slip between the convex portion 12 and the back surface of the film base 11 and making it easy to appropriately adhere to the convex portion 12. It is preferably less than the content of fine particles, and more preferably free of fine particles.
  • the roll body of the present invention comprises 1) a step of casting the first resin composition onto a support to obtain a strip-shaped film base 11, and 2) both ends of the strip-shaped film base 11 in the width direction. It can be obtained through a step of casting a second resin composition on the portion to form a convex portion.
  • Step of Obtaining Film Base 11 The first resin composition is cast to obtain a strip-shaped film base 11.
  • the casting of the first resin composition may be carried out by a melt casting method or a solution casting method. Above all, from the viewpoint that a high molecular weight resin can be used, it is preferable that the first resin composition is cast by a solution casting method.
  • the film base 11 has 1A) a step of obtaining a first resin composition (dope) and 1B) a step of casting the obtained dope onto a support, drying and peeling it off to obtain a film-like substance. And 1C) can be obtained through the steps of stretching the obtained film-like material.
  • the resin is dissolved in a solvent to prepare a first resin composition.
  • the solvent used contains at least an organic solvent (good solvent) capable of dissolving the resin.
  • good solvents include chlorine-based organic solvents such as dichloromethane; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Of these, methylene chloride is preferable.
  • the solvent used may further contain a poor solvent.
  • poor solvents include straight-chain or branched-chain aliphatic alcohols having 1 to 4 carbon atoms. The higher the proportion of alcohol in the dope, the easier it is for the film to gel and the easier it is to peel off from the metal support.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, methanol and ethanol are preferable from the viewpoint of stability and drying property.
  • the obtained first resin composition is then cast on the support.
  • the casting of the first resin composition can be carried out by discharging from a casting die.
  • the temperature of the first resin composition at the time of casting is usually 15 to 30 ° C, preferably room temperature (23 ° C).
  • the solvent in the first resin composition cast on the support is appropriately evaporated (after being dried) and then peeled off from the support to obtain a film-like substance.
  • the residual solvent amount of the first resin composition at the time of peeling is, for example, preferably 25% by mass or more, more preferably 30 to 37% by mass, and further preferably 30 to 35% by mass.
  • the amount of the residual solvent at the time of peeling is 25% by mass or more, the solvent is likely to be volatilized at once from the film-like substance after peeling. Further, when the amount of the residual solvent at the time of peeling is 37% by mass or less, it is possible to suppress the film-like material from being excessively stretched due to peeling.
  • the heat treatment for measuring the amount of residual solvent means a heat treatment at 140 ° C. for 15 minutes.
  • the amount of residual solvent at the time of peeling can be adjusted by adjusting the drying temperature and drying time of the first resin composition on the support, the temperature of the support, and the like.
  • step 1C the obtained film-like material is dried. Drying may be performed in one step or in multiple steps. Further, the drying may be carried out while stretching, if necessary.
  • Stretching may be performed according to the required optical characteristics, and it is preferable to stretch in at least one direction, and stretching in two directions orthogonal to each other (for example, the width direction (TD direction) of the film-like material and orthogonal to it. Biaxial stretching in the transport direction (MD direction)) may be performed.
  • the draw ratio can be 1.01 to 2 times, for example, from the viewpoint of using it as a retardation film for IPS.
  • the stretch ratio is defined as (the size of the film after stretching in the stretching direction) / (the size of the film before stretching in the stretching direction).
  • the in-plane slow phase axial direction of the film (the direction in which the refractive index is maximum in the plane) is usually the direction in which the draw ratio is maximum.
  • the drying temperature (stretching temperature) during stretching is preferably (Tg-65) ° C. to (Tg + 60) ° C., preferably (Tg-50) ° C. to (Tg + 50) ° C., where Tg is the glass transition temperature of the resin. Is more preferable.
  • Tg is the glass transition temperature of the resin.
  • the stretching temperature is (a) when drying with a non-contact heating type such as a tenter stretching machine, the ambient temperature such as the temperature inside the stretching machine or the hot air temperature, and (b) when drying with a contact heating type such as a hot roller.
  • a non-contact heating type such as a tenter stretching machine
  • the ambient temperature such as the temperature inside the stretching machine or the hot air temperature
  • a contact heating type such as a hot roller.
  • the temperature of the contact heating portion, or (c) the surface temperature of the film-like material (surface to be dried) can be specified.
  • the amount of residual solvent in the film-like material at the start of stretching is preferably about the same as the amount of residual solvent in the film-like material at the time of peeling, for example, preferably 20 to 30% by mass, and 25 to 30% by mass. % Is more preferable.
  • Stretching of the film-like object in the TD direction can be performed by, for example, fixing both ends of the film-like object with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method). Stretching of the film-like material in the MD direction can be performed, for example, by a method (roll method) in which a peripheral speed difference is applied to a plurality of rolls and the roll peripheral speed difference is used between them.
  • the film-like substance obtained after stretching it is preferable to further dry (post-dry) the film-like substance obtained after stretching.
  • the drying temperature (drying temperature when not stretched or drying temperature after stretching) is preferably (Tg-30) to (Tg + 30) ° C., where Tg is the glass transition temperature of the resin, and is preferably (Tg-20). It is more preferable that the temperature is ⁇ Tg ° C.
  • Tg glass transition temperature of the resin
  • Tg-20 glass transition temperature of the resin
  • Tg-20 glass transition temperature of the resin
  • ⁇ Tg ° C When the drying temperature is above a certain level, it is easy to increase the volatilization rate of the solvent from the film-like material after stretching, so it is easy to increase the drying efficiency. ..
  • the drying temperature can be specified in the same manner as described above.
  • the second resin composition is cast on both ends in the width direction of the obtained film base portion 11 to form the convex portion.
  • the casting of the second resin composition may be a melt casting method or a solution casting method. From the viewpoint of increasing the production efficiency, when the first resin composition is formed by the solution casting method in the step 1) above, it is preferable that the second resin composition is also formed by the solution casting method.
  • the convex portion 12 can be formed by applying a second resin composition (knurling solution) containing a resin and a solvent to both ends in the width direction of the film base portion 11 and then drying the film base portion 11.
  • (Second resin composition) As the resin contained in the second resin composition, the same resin as that contained in the dope can be used.
  • the solvent contained in the second resin composition contains at least an organic solvent (good solvent) capable of dissolving the resin.
  • good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran, cyclopentanone and toluene. Of these, methylene chloride, cyclopentanone, and toluene are preferable from the viewpoint of easily dissolving the cycloolefin resin.
  • ketones such as cyclopentanone and methylene chloride are more preferable from the viewpoint that the volatilization rate is high because the saturated vapor pressure is high and the S1 / S2 of the convex portion can be easily adjusted to the above range.
  • the solvent contained in the second resin composition may further contain a poor solvent.
  • the poor solvent the same solvent as the poor solvent contained in the dope can be used.
  • the viscosity of the second resin composition (knurling solution) at the time of casting is the viscosity of the first resin composition (dope) at the time of casting in the step 1) above from the viewpoint of adjusting S1 / S2 of the convex portion to the above range. It is preferably lower than.
  • the ratio ⁇ 2 / ⁇ 1 of the viscosity ⁇ 2 of the second resin composition at the time of casting in the step 2) to the viscosity ⁇ 1 of the first resin composition at the time of casting in the step 1) is 0.00003. It is preferably ⁇ 0.01.
  • S1 / S2 of the convex portion 12 tends to be 0.6 or more, and when it is 0.02 or less, S1 / S2 of the convex portion 12 tends to be 0.9 or less.
  • the viscosity ⁇ 1 of the first resin composition at the time of casting is preferably, for example, 10,000 to 100,000 mPa ⁇ s, and the viscosity ⁇ 2 of the second resin composition is preferably 1 to 300 mPa ⁇ s.
  • the viscosity can be measured with a viscometer (for example, a viscometer RE-80L manufactured by Toki Sangyo Co., Ltd.).
  • the viscosity at the time of casting can be adjusted, for example, by the resin concentration or the molecular weight of the resin; in the melt casting method, it is preferable to adjust the viscosity by, for example, the melting temperature or the molecular weight of the resin.
  • the resin concentration of the second resin composition is preferably lower than the resin concentration of the first resin composition, and is preferably 50% by mass or less of the resin concentration of the first resin composition.
  • the resin concentration of the second resin composition is preferably more than 2% by mass and 10% by mass or less, and more preferably 3 to 7% by mass.
  • the second resin composition can be applied by any method, for example, casting with a die (preferably a reduced pressure die), coating with a dispenser, or the like.
  • the slit gap may be adjusted according to the thickness of the convex portion, and the slit width may be adjusted according to the width of the convex portion.
  • the gap of the slit is preferably 100 to 300 ⁇ m, for example, and the width of the slit is preferably 3 to 20 mm, for example.
  • the discharge amount is preferably 1 to 100 ⁇ g / shot, and the discharge pitch is preferably 0.2 to 30 mm, for example.
  • the temperature of the second resin composition at the time of casting is, for example, 10 to 30 ° C, preferably room temperature (23 ° C).
  • the second resin composition can be dried by any method, for example, hot air drying, heat drying by electromagnetic waves (for example, heat drying by an infrared (IR) heater), or the like. From the viewpoint of adjusting S1 / S2 of the convex portion 12 to the above range, the drying speed is preferably high, and heat drying by electromagnetic waves is more preferable.
  • IR infrared
  • the second resin composition is dried as soon as possible after being applied to the film base portion 11. Although it depends on the composition of the resin composition, the drying is preferably performed within 5 seconds after the application, for example.
  • the drying temperature is not particularly limited, but is preferably high from the viewpoint of adjusting the convex portion 12 to the above range for S1 / S2.
  • the drying temperature is preferably 40 to (Tg-20) ° C., preferably 80 to (Tg-10) ° C., where the glass transition temperature of the resin contained in the second resin composition is Tg. It is more preferable to do it in.
  • the temperature is preferably 40 to 120 ° C, more preferably 80 to 100 ° C.
  • the obtained film 10 is wound into a roll along the longitudinal direction.
  • the obtained film base 11 is wound in the longitudinal direction (direction orthogonal to the width direction) of the film 10 using a winder. Thereby, a film wound in a roll shape around the winding core, that is, a roll body of the film 10 can be obtained.
  • the winding method is not particularly limited, and may be a constant torque method, a constant tension method, a taper tension method, or the like.
  • the winding tension when winding the film base 11 can be about 50 to 170 N.
  • the longer the winding length the more likely it is that the air stored between the films is released at once when the film is wound into a roll shape, resulting in winding misalignment or sticking.
  • S1 / S2 of the convex portion 12 it is possible to wind up while appropriately discharging excess air (while appropriately storing air between the films). It is possible to suppress winding misalignment and sticking.
  • the film 10 When the film 10 is used, the formed portion of the convex portion 12 is removed, and the film 10 is used as an optical film for a display device such as a liquid crystal display device or an organic EL display device.
  • the optical film include a polarizing plate protective film (including a retardation film and a brightness improving film), a transparent base film, and a light diffusing film.
  • the film 10 is preferably used as a polarizing plate protective film.
  • the film of the present invention may be cut out from a roll of the strip-shaped film 10, and has strip-shaped protrusions at both ends in the width direction.
  • the film has a film base (corresponding to the film base 11) and strip-shaped convex portions (corresponding to the convex 12) provided at both ends in the width direction of the surface thereof. Then, in the cross section of the film orthogonal to the extending direction of the strip-shaped convex portion, S1 and S2 of the convex portion satisfy the relationship of the above formula (1) and satisfy 0.7 ⁇ S1 / S2 ⁇ 0.9. Is more preferable.
  • the shape of the convex portion In the cross section of the film orthogonal to the extending direction of the band-shaped convex portion, the shape of the convex portion, the total area of S1 and S2, the maximum height Tmax and the maximum width Wmax of the convex portion, and the total area of S1 and S2 of the film base.
  • the ratio to the area is as described above.
  • the shape of the film base 11 (without the recess) and the thickness of the film base in the cross section of the film orthogonal to the extending direction of the band-shaped convex portion are also as described above.
  • the film of the roll body does not include, for example, the winding step of 3) above, or further includes a step of cutting out a strip-shaped film unwound from the roll body after the winding step of 3) above. It can be manufactured in the same manner as the manufacturing method.
  • the convex portion 12 is continuously arranged along the longitudinal direction of the film base portion 11, but the present invention is not limited to this.
  • the convex portion 12 may be arranged intermittently along the longitudinal direction of the film base portion 11.
  • FIG. 3A is a plan view of the strip-shaped film in another embodiment, and FIG. 3B is a sectional view taken along line 3B-3B of FIG. 3A.
  • 4A is a plan view of the strip-shaped film in another embodiment, and FIG. 4B is a sectional view taken along line 4B-4B of FIG. 4A.
  • the convex portion 12 may be arranged intermittently along the longitudinal direction of the film base portion 11 (see FIG. 3A).
  • the length of the convex portion 12 (the length in the longitudinal direction of the film base portion 11) can be about 0.04 to 10.0% with respect to the width of the film base portion 11.
  • the gap between the plurality of strip-shaped convex portions 12 can be about 0.02 to 1.0% with respect to the length of the convex portions 12.
  • the convex portion 12 may be arranged in an island shape along the longitudinal direction of the film base portion 11 (see FIG. 4A). Such a convex portion 12 can be formed by intermittently discharging with a dispenser. The discharge conditions may be as described above.
  • the shape of the convex portion 12 is the shape shown in FIG. 2 (see FIG. 2), but the present invention is not limited to this.
  • FIGS. 5A to 5C are views showing an example of deformation of the shape of the convex portion 12 in the cross section along the width direction of the film 10. That is, the shape of the convex portion 12 may be stepped (see FIG. 5A) or trapezoidal (see FIG. 5B). Further, the height of the central portion of the convex portion 12 may be lower than the height of both ends of the convex portion 12 (see FIG. 5C).
  • the convex portions 12 are arranged one by one at both ends in the width direction of the film base portion 11 , but the present invention is not limited to this, and a plurality of convex portions 12 may be arranged one by one.
  • the convex portion 12 is arranged on only one surface of the film base portion 11 is shown, but the present invention is not limited to this, and the convex portion 12 may be arranged on both surfaces.
  • the convex portion 12 is formed by applying a knurling solution containing a resin and a solvent and then drying the convex portion 12 is shown, but the present invention is not limited to this, and the convex portion 12 is melted. After the resin composition is applied, it may be formed by cooling and solidifying to form (melt casting method).
  • the roll body has 1) a step of casting the melted first resin composition and then cooling and solidifying to obtain a strip-shaped film base, and 2) a width of the strip-shaped film base 11. It can be obtained through a step of applying a melted second resin composition to both ends in the direction and then cooling and solidifying to form a convex portion.
  • the first resin composition and the second resin composition are the same as the above-mentioned first resin composition and second resin composition, respectively, except that they do not contain a solvent.
  • the melt viscosity of the second resin composition at the time of casting is preferably lower than the melt viscosity of the first resin composition at the time of film formation of the film base 11.
  • the melt viscosity can be adjusted by adjusting the melt temperature, the weight average molecular weight of the resin, and the like.
  • the Mw of the resin contained in the second resin composition is preferably lower than the Mw of the resin of the first resin composition, and the second resin composition at the time of casting is preferable.
  • the melting temperature of the material may be higher than the melting viscosity of the first resin composition at the time of film formation of the film base 11.
  • both ends may be cut (cut) for adjustment, or the film base 11 may be surface-treated (hydrophilicized or the like) for adjustment.
  • a dope having the following composition was prepared. First, methylene chloride was added to the pressure dissolution tank, and then the following cycloolefin resin was added while stirring. Then, the fine particle dispersion liquid prepared above was further added thereto, heated to 60 ° C., and completely dissolved while stirring. The heating temperature was raised from room temperature at 5 ° C./min, dissolved in 30 minutes, and then lowered at 3 ° C./min. This was converted, using SHP150 manufactured by (Corporation) Rokitekuno, filtered flow rate 300L / m 2 ⁇ h, and filtered through a filtration pressure 1.0 ⁇ 10 6 Pa, to obtain a dope.
  • JSR G7810 cycloolefin resin containing structural units represented by the following formula, weight average molecular weight 40,000, glass transition temperature 170 ° C.: 100 parts by mass Methylene chloride: 150 parts by mass Ethanol: 20 parts by mass Fine particle dispersion: 150 parts by mass
  • the obtained dope was uniformly cast on the stainless belt support of the endless belt casting device at room temperature (23 ° C.).
  • the temperature of the stainless steel belt was 28 ° C., and the transport speed of the stainless steel belt was 20 m / min.
  • the solvent is evaporated on the stainless belt support until the amount of the residual solvent in the cast film becomes 25% by mass, and then the solvent is peeled off from the stainless belt support to form the film.
  • the obtained film-like substance was stretched 1.2 times in the width direction under the condition of (Tg-15) ° C. (Tg: Tg of cycloolefin resin) with a tenter.
  • Cycloolefin resin films 2 to 4 were obtained in the same manner as in cycloolefin resin film 1 except that the draw ratio was changed so that the thickness of the film was 10 ⁇ m, 40 ⁇ m, and 60 ⁇ m.
  • Table 1 shows the compositions and physical properties of the obtained convex protrusion forming solutions 1 to 14.
  • Example 9 The convex portions shown in FIGS. 3A and 3B were formed in the same manner as in Example 1 except that the solution shown in Table 2 was intermittently applied under the conditions shown in Table 2.
  • the length of the convex portions (in the length direction of the cycloolefin resin film) was 100 mm, and the pitch between the convex portions was 10 mm.
  • Example 7 and 13 to 15 The solution shown in Table 2 was applied to both ends of the prepared cycloolefin resin film in the width direction with a dispenser under the conditions shown in the same table, and then dried to form convex portions shown in FIGS. 4A and 4B. .. In Example 12, convex portions were formed on both sides of the film.
  • the dispenser was made by using SUPER HI JET manufactured by Musashi Engineering Co., Ltd.
  • Example 12 The convex portion was formed in the same manner as in Example 3 except that the coating shape of the convex portion was changed as shown in Table 2.
  • a laser beam was irradiated to both ends in the width direction of one side of the prepared cycloolefin resin film with a laser marker to form a laser irradiation portion.
  • the laser irradiation portion had a thin portion thinner than the thickness of the central portion in the width direction of the film.
  • the area ratio S1'/ S2' of the portion above the thin portion was measured and found to be 0.47.
  • Viscosity ratio The viscosities of the dope for the film when the rolls were produced in Examples 1 to 16 and Comparative Examples 1 to 6 at the time of casting and the viscosities of the solution for forming the convex portion at the time of casting were the viscosities manufactured by Toki Sangyo Co., Ltd., respectively. It was measured by a total of RE-80L.
  • the viscosity of the dope (first resin composition) at the time of film formation (23 ° C.) is 27,000 mPa ⁇ s
  • the viscosity of the convex portion forming solution (second resin composition) satisfies the viscosity ratio in Table 3. It was viscosity.
  • the areas S1 and S2 of the convex portions, the maximum height Tmax of the convex portions, and the maximum width Wmax in the widthwise cross section of the film were measured using a laser microscope.
  • a laser microscope a laser Microscope VK-X1000 manufactured by KEYENCE was used.
  • the maximum height and the maximum width of the convex portion are measured in a region of 100 mm in the length direction of the film and a width of 15 mm centered on one row of the convex portions, and the average value thereof is set to "convex portion".
  • Maximum height Tmax and maximum width Wmax ”.
  • the shape of the roll body was formed by Keyence's XG-X2900, CA-HL08MX (line scan camera) and CA-DZW50X (pattern illumination). Specifically, when observing the surface of the roll body, the area of deformation having a size of 200 ⁇ m ⁇ 200 ⁇ m or more is measured and totaled, and the area of the outermost surface of the roll body (the area of one roll of the outermost film) is measured. Judgment was made by area ratio (%).
  • less than 0.3% ⁇ : 0.3% or more and less than 0.5% ⁇ ⁇ : 0.5% or more and less than 1.0% ⁇ : less than 1.0% less than 2.0% ⁇ : 2.0% If it is above ⁇ ⁇ , it is judged to be good.
  • the deformation of the film was evaluated by feeding out a roll body and counting the number of deformation failures by XG-X2900, CA-HL08MX (line scan camera) and CA-DZW50X (pattern illumination) at a line speed of 5 m / min. The number of deformation failures was counted as one deformation having a size of 100 ⁇ m ⁇ 100 ⁇ m or more. Then, the deformation of the film was evaluated based on the following criteria.
  • Table 2 shows the preparation conditions for the rolls of Examples 1 to 16 and Comparative Examples 1 to 6, and Table 3 shows the evaluation results.
  • the deformation of the roll body and the deformation of the film can be reduced by applying the solution for forming the convex portion with the dispenser (comparison between Examples 1 and 14 to 15). It is considered that this is because the application of the dispenser can reduce the curl of the film base due to the heat during drying than the application of the vacuum die.
  • the roll body of Comparative Example 2 which has been embossed and the roll body of Comparative Example 4 in which the convex portion is formed by laser irradiation both cause deformation of the roll body and deformation of the film. It is probable that this is because the area S2 is low, so that the embossed portion or the laser irradiation portion is crushed by stress, the roll shape cannot be maintained, and sticking or the like occurs.
  • Examples 17 to 21 A roll body was formed in the same manner as in Example 3 except that the slit gap was changed as shown in Table 4.
  • Example 22 to 24 A roll body was formed in the same manner as in Example 7 except that the number of rows (number of lines) of the convex portions and the pitch between the convex portions (in the length direction of the film) were changed as shown in Table 4.
  • Examples 25 to 27 A roll body was formed in the same manner as in Example 3 except that the winding length of the film was changed as shown in Table 4.
  • Examples 28 to 30> A roll body was formed in the same manner as in Example 3 except that the thickness of the film was changed as shown in Table 4.
  • Example 31 A roll body was formed in the same manner as in Example 3 except that the discharge width was changed as shown in Table 4.
  • Examples 32 and 33 A roll body was formed in the same manner as in Example 7 except that the discharge amount and the pitch between the protrusions (in the length direction of the film) were changed as shown in Table 4.
  • Table 4 shows the preparation conditions for the rolls of Examples 17 to 33, and Table 5 shows the evaluation results.
  • a roll body of a film which is not easily crushed by a winding pressure and which can suppress winding misalignment and sticking when an impact is applied from the outside by maintaining an appropriate amount of air between the films, and a method for manufacturing the same. Can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Rolls And Other Rotary Bodies (AREA)
  • Machines For Manufacturing Corrugated Board In Mechanical Paper-Making Processes (AREA)
  • Polarising Elements (AREA)

Abstract

The film of the present invention has belt-like convex parts at both end parts in the width direction. When the maximum height of the convex part is denoted by Tmax and when the area of the convex part located above the midpoint (Tmax/2) of the convex part with respect to the maximum height Tmax of the convex part is denoted by S1, and the area of the convex part below said midpoint is denoted by S2, S1 and S2 satisfy formula (1) below. Formula (1): 0.6 ≤ S1/S2 ≤ 0.95

Description

フィルムおよびその製造方法、ロール体およびその製造方法Film and its manufacturing method, roll body and its manufacturing method
 本発明は、フィルムおよびその製造方法、ロール体およびその製造方法に関する。 The present invention relates to a film and a method for producing the same, a roll body and the method for producing the same.
 シクロオレフィン樹脂や(メタ)アクリル樹脂などを主成分とする樹脂フィルムは、良好な透明性や寸法安定性を有することから、例えば偏光板保護フィルムなどの光学フィルムとして用いられている。 A resin film containing a cycloolefin resin or a (meth) acrylic resin as a main component has good transparency and dimensional stability, and is therefore used as an optical film such as a polarizing plate protective film.
 このような光学フィルムは、取り扱い性や製造効率の観点から、通常、帯状のフィルムをロール状に巻き取ったロール体として保管または輸送される。 From the viewpoint of handleability and manufacturing efficiency, such an optical film is usually stored or transported as a roll body obtained by winding a strip-shaped film into a roll shape.
 このようなロール体では、保管または輸送される間に、フィルム同士の貼り付きなどによる品質故障を抑制するために、通常、フィルムの幅方向両端部に、エンボス加工と呼ばれる凹凸加工が施される(例えば特許文献1参照)。一方で、エンボス加工によって形成されるエンボス部は潰れやすく、フィルム同士の貼り付きを十分には抑制できないことがあった。 In such a roll body, in order to suppress quality failure due to sticking between films during storage or transportation, both ends in the width direction of the film are usually subjected to uneven processing called embossing. (See, for example, Patent Document 1). On the other hand, the embossed portion formed by the embossing process is easily crushed, and the sticking between the films may not be sufficiently suppressed.
 これに対し、フィルムの幅方向両端部に、塗布により凸部(ナーリング部)を形成する方法も知られている(例えば特許文献2参照)。塗布形成されたナーリング部は、エンボス部と比べて強度が高く、潰れにくいため、フィルム同士の貼りつきを良好に抑制できるとされている。 On the other hand, a method of forming convex portions (knurled portions) by coating on both ends in the width direction of the film is also known (see, for example, Patent Document 2). It is said that the knurled portion formed by coating has higher strength than the embossed portion and is not easily crushed, so that the adhesion between the films can be satisfactorily suppressed.
特開2012-118238号公報Japanese Unexamined Patent Publication No. 2012-118238 特開2012-206312号公報Japanese Unexamined Patent Publication No. 2012-206312
 特許文献2では、フィルム1の幅方向に沿った断面におけるナーリング部2(凸部)の形状は、矩形状である(図6参照)。そのようなナーリング部の表面は、ロール状に巻き取った時に、重なり合うフィルムの裏面と隙間なく密着するため、巻き取り時に、フィルム同士の間に確実にエアを含ませることができる。 In Patent Document 2, the shape of the knurled portion 2 (convex portion) in the cross section along the width direction of the film 1 is rectangular (see FIG. 6). Since the surface of such a knurled portion is in close contact with the back surface of the overlapping films when wound into a roll, air can be reliably contained between the films at the time of winding.
 しかしながら、フィルムの巻き取りを行う間に外部から衝撃が加わると、フィルム間に蓄えていたエアが一度に放出されて、巻きズレ(ロールの変形)やフィルム同士の貼り付きを生じやすいという問題があった。このような巻きズレやフィルムの貼り付きが生じると、特に光学フィルムにおいては、光学特性が低下しやすい。したがって、フィルムの巻き取り時に、フィルム同士の間にエアを適度に含ませつつも、適度にエアが抜けるようにすることが望まれる。 However, if an impact is applied from the outside during the winding of the film, the air stored between the films is released at once, and there is a problem that winding misalignment (deformation of the roll) and sticking between the films are likely to occur. there were. When such winding misalignment or sticking of the film occurs, the optical characteristics tend to deteriorate, especially in the optical film. Therefore, at the time of winding the film, it is desired that the air is appropriately contained between the films and the air is released appropriately.
 本発明は、上記事情に鑑みてなされたものであり、フィルム同士の間でエアを適度に含ませつつ、外部から衝撃が加わった時などにおける巻きズレや貼り付きを抑制可能なフィルムおよびその製造方法、ロール体およびその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is capable of producing a film capable of suppressing winding misalignment and sticking when an impact is applied from the outside while appropriately containing air between the films. It is an object of the present invention to provide a method, a roll body and a method for producing the same.
 上記課題は、以下の構成によって解決することができる。 The above problem can be solved by the following configuration.
 本発明のフィルムは、幅方向両端部に帯状の凸部を有するフィルムであって、前記凸部の最大高さをTmaxとした時、前記凸部の最大高さTmaxに対する凸部中点(Tmax/2)より上にある凸部の領域をS1、前記中点より下にある凸部の領域をS2としたとき、S1とS2が下記式(1)を満たす。
 式(1):0.6≦S1/S2≦0.95
The film of the present invention is a film having band-shaped convex portions at both ends in the width direction, and when the maximum height of the convex portions is Tmax, the midpoint of the convex portions (Tmax) with respect to the maximum height Tmax of the convex portions. / 2) When the region of the convex portion above the middle point is S1 and the region of the convex portion below the midpoint is S2, S1 and S2 satisfy the following equation (1).
Equation (1): 0.6 ≤ S1 / S2 ≤ 0.95
 本発明のフィルムの製造方法は、幅方向両端部に帯状の凸部を有するフィルムの製造方法であって、1)第1樹脂組成物を流延して、帯状のフィルム基部を得る工程と、2)前記帯状のフィルム基部の表面の幅方向両端部に、第2樹脂組成物を流延して、前記帯状の凸部を形成する工程と、を含み、前記2)の工程の流延時における前記第2樹脂組成物の粘度η2と、前記1)の工程の流延時における前記第1樹脂組成物の粘度η1との比η2/η1は、0.00003~0.02である。 The method for producing a film of the present invention is a method for producing a film having band-shaped protrusions at both ends in the width direction, and 1) a step of casting a first resin composition to obtain a band-shaped film base. 2) The step of casting the second resin composition on both ends of the surface of the strip-shaped film base in the width direction to form the strip-shaped convex portion, and during the casting of the step 2). The ratio η2 / η1 of the viscosity η2 of the second resin composition to the viscosity η1 of the first resin composition at the time of casting in the step 1) is 0.00003 to 0.02.
 本発明のロール体は、幅方向両端部に帯状の凸部を有する帯状のフィルムを巻き取ったロール体であって、前記凸部の最大高さをTmaxとした時、前記凸部の最大高さTmaxに対する凸部中点(Tmax/2)より上にある凸部領域S1、前記中点より下にある凸部の領域をS2としたとき、S1とS2が下記式(1)を満たすことを特徴とするロール体。
 式(1):0.6≦S1/S2≦0.95
The roll body of the present invention is a roll body obtained by winding a strip-shaped film having strip-shaped protrusions at both ends in the width direction, and when the maximum height of the convex portions is Tmax, the maximum height of the convex portions is taken. When the convex region S1 above the midpoint of the convex portion (Tmax / 2) with respect to Tmax and the region of the convex portion below the midpoint are S2, S1 and S2 satisfy the following equation (1). A roll body characterized by.
Equation (1): 0.6 ≤ S1 / S2 ≤ 0.95
 本発明のロール体の製造方法は、幅方向両端部に帯状の凸部を有する帯状のフィルムを巻き取ったロール体の製造方法であって、1)第1樹脂組成物を流延して、帯状のフィルム基部を得る工程と、2)前記帯状のフィルム基部の表面の幅方向両端部に、第2樹脂組成物を流延して、前記帯状の凸部を形成する工程とを含み、前記2)の工程の流延時における前記第2樹脂組成物の粘度η2と、前記1)の工程の流延時における前記第1樹脂組成物の粘度η1との比η2/η1は、0.00003~0.02である。 The method for producing a roll body of the present invention is a method for producing a roll body in which a band-shaped film having band-shaped protrusions at both ends in the width direction is wound, and 1) the first resin composition is cast by casting. A step of obtaining a strip-shaped film base and 2) a step of casting a second resin composition on both ends of the surface of the strip-shaped film base in the width direction to form the strip-shaped convex portion are included. The ratio η2 / η1 of the viscosity η2 of the second resin composition at the time of casting in the step 2) to the viscosity η1 of the first resin composition at the time of casting in the step 1) is 0.00003 to 0. It is 0.02.
 本発明によれば、フィルム同士の間でエアを適度に含ませつつ、外部から衝撃が加わった時などにおける巻きズレや貼り付きを抑制可能なフィルムのロール体およびその製造方法を提供することができる。 According to the present invention, it is possible to provide a roll body of a film capable of suppressing winding misalignment and sticking when an impact is applied from the outside while appropriately containing air between the films, and a method for producing the same. can.
図1Aは、本実施の形態における帯状のフィルムの平面図であり、図1Bは、図1Aの1B-1B線断面図である。1A is a plan view of a strip-shaped film according to the present embodiment, and FIG. 1B is a sectional view taken along line 1B-1B of FIG. 1A. 図2は、図1Bの凸部の拡大図である。FIG. 2 is an enlarged view of the convex portion of FIG. 1B. 図3Aは、他の実施の形態における帯状のフィルムの平面図であり、図3Bは、図3Aの3B-3B線断面図である。3A is a plan view of the strip-shaped film in another embodiment, and FIG. 3B is a sectional view taken along line 3B-3B of FIG. 3A. 図4Aは、他の実施の形態における帯状のフィルムの平面図であり、図4Bは、図4Aの4B-4B線断面図である。4A is a plan view of the strip-shaped film in another embodiment, and FIG. 4B is a sectional view taken along line 4B-4B of FIG. 4A. 図5A~Cは、他の実施の形態に係る凸部の形状を示す断面図である。5A to 5C are cross-sectional views showing the shape of the convex portion according to another embodiment. 図6は、従来の帯状のフィルムの断面図である。FIG. 6 is a cross-sectional view of a conventional strip-shaped film.
 本発明者らは、帯状のフィルムをロール状に巻き取った時に、凸部とフィルム基部の裏面との間に適度な隙間が形成されるようにすること;具体的には、フィルムの幅方向断面において、凸部の上半分の領域の面積S1と下半分の領域の面積S2との比S1/S2が0.95以下となるように調整することで、帯状のフィルムをロール状に巻き取る時の、巻きズレや貼り付きを抑制できることを見出した。 The present inventors make it possible to form an appropriate gap between the convex portion and the back surface of the film base when the strip-shaped film is wound into a roll shape; specifically, in the width direction of the film. In the cross section, the strip-shaped film is wound into a roll by adjusting the ratio S1 / S2 of the area S1 of the upper half region of the convex portion to the area S2 of the lower half region to be 0.95 or less. It was found that it is possible to suppress winding misalignment and sticking at the time.
 このように、凸部とフィルム基部の裏面との間に適度な隙間を形成することで、フィルム同士の間に適度にエアを含ませつつも、エアを適度に放出しながら巻き取ることができる。それにより、巻き取り時に、フィルム同士の間に過度に溜まったエアが一気に放出されることがなく、それによる巻きズレや変形を抑制できると考えられる。 By forming an appropriate gap between the convex portion and the back surface of the film base in this way, it is possible to wind the film while appropriately discharging the air while appropriately containing air between the films. .. As a result, it is considered that the air excessively accumulated between the films is not discharged at once at the time of winding, and the winding deviation and deformation due to the air are not discharged at once.
 S1/S2の調整は、任意の方法で行うことができ、例えば凸部を形成するための樹脂組成物の粘度や樹脂濃度、当該樹脂組成物の乾燥速度(または固化速度)、フィルム基部の表面処理などによって調整することができる。例えば、S1/S2を0.95以下とする観点では、凸部を形成するための樹脂組成物のフィルム基部への接触角を小さくすることが好ましく;そのためには、当該樹脂組成物の粘度や樹脂濃度を低くしたり、樹脂組成物の乾燥速度(または固化速度)を高くしたりすることが好ましい。 The adjustment of S1 / S2 can be performed by any method, for example, the viscosity and the resin concentration of the resin composition for forming the convex portion, the drying rate (or the solidification rate) of the resin composition, and the surface of the film base. It can be adjusted by processing. For example, from the viewpoint of setting S1 / S2 to 0.95 or less, it is preferable to reduce the contact angle of the resin composition for forming the convex portion with the film base; for that purpose, the viscosity of the resin composition or the like. It is preferable to lower the resin concentration or increase the drying rate (or solidification rate) of the resin composition.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 本発明のフィルムは、帯状のフィルムであってもよいし、帯状のフィルムから切り出された枚葉状のフィルムであってもよい。まず、フィルムが、帯状のフィルム(帯状のフィルムのロール体)である例について説明する。 The film of the present invention may be a strip-shaped film or a sheet-fed film cut out from the strip-shaped film. First, an example in which the film is a strip-shaped film (roll body of the strip-shaped film) will be described.
 1.フィルムのロール体
 本発明のロール体は、帯状のフィルムを、その幅方向に直交する方向に沿ってロール状に巻き取ったものである。
1. 1. Roll body of film The roll body of the present invention is a strip-shaped film wound in a roll shape along a direction orthogonal to the width direction thereof.
 図1Aは、本実施の形態における帯状のフィルムの平面図であり、図1Bは、図1Aの1B-1B線断面図である。図2は、図1Bの凸部12の拡大図である。なお、図1Bでは、見やすくするために、断面のハッチングは省略している。 FIG. 1A is a plan view of the strip-shaped film in the present embodiment, and FIG. 1B is a sectional view taken along line 1B-1B of FIG. 1A. FIG. 2 is an enlarged view of the convex portion 12 of FIG. 1B. In FIG. 1B, hatching of the cross section is omitted for the sake of clarity.
 図1AおよびBに示されるように、帯状のフィルム10は、幅方向両端部に帯状の凸部12を有する。本実施の形態では、帯状のフィルム10は、フィルム基部11と、その幅方向両端部に設けられた凸部12を有する。 As shown in FIGS. 1A and 1B, the strip-shaped film 10 has strip-shaped protrusions 12 at both ends in the width direction. In the present embodiment, the strip-shaped film 10 has a film base 11 and convex portions 12 provided at both ends in the width direction thereof.
 1-1.フィルム基部11
 フィルム基部11は、樹脂フィルムであることが好ましく、光学フィルムとして使用可能な樹脂フィルムであることがより好ましい。
1-1. Film base 11
The film base 11 is preferably a resin film, and more preferably a resin film that can be used as an optical film.
 (樹脂)
 フィルム基部11(樹脂フィルム)に含まれる樹脂は、熱可塑性樹脂であることが好ましい。熱可塑性樹脂は、光学フィルムに適したものであればよく、特に限定されないが、その例には、シクロオレフィン樹脂、(メタ)アクリル樹脂、ポリイミド、セルロースエステル、ポリエステル、ポリカーボネートなどが含まれる。中でも、良好な透明性を有する観点では、シクロオレフィン樹脂、(メタ)アクリル樹脂、セルロースエステルが好ましく、低い吸湿性(高い寸法安定性)をさらに有する観点では、シクロオレフィン樹脂および(メタ)アクリル樹脂がより好ましい。
(resin)
The resin contained in the film base 11 (resin film) is preferably a thermoplastic resin. The thermoplastic resin may be any one suitable for an optical film and is not particularly limited, and examples thereof include a cycloolefin resin, a (meth) acrylic resin, a polyimide, a cellulose ester, a polyester, and a polycarbonate. Among them, cycloolefin resin, (meth) acrylic resin and cellulose ester are preferable from the viewpoint of having good transparency, and cycloolefin resin and (meth) acrylic resin are preferable from the viewpoint of further having low hygroscopicity (high dimensional stability). Is more preferable.
 (シクロオレフィン樹脂)
 シクロオレフィン樹脂は、ノルボルネン系単量体に由来する構造単位を含む重合体であることが好ましい。ノルボルネン系単量体は、ノルボルネン骨格を有する化合物であればよく、特に制限されないが、溶液流延法でフィルムを製膜する場合は、極性基を有するノルボルネン系単量体であることが好ましい。
(Cycloolefin resin)
The cycloolefin resin is preferably a polymer containing a structural unit derived from a norbornene-based monomer. The norbornene-based monomer may be any compound having a norbornene skeleton, and is not particularly limited. However, when a film is formed by a solution casting method, a norbornene-based monomer having a polar group is preferable.
 極性基を有するノルボルネン系単量体は、式(1)で表されることが好ましい。 The norbornene-based monomer having a polar group is preferably represented by the formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)中、R~Rは、それぞれ独立に水素原子、炭素原子数1~30の炭化水素基、または極性基を表す。なお、R~Rの少なくとも一つは極性基である。 In the formula (1), R 1 to R 4 independently represent a hydrogen atom, a hydrocarbon group having 1 to 30 carbon atoms, or a polar group, respectively. At least one of R 1 to R 4 is a polar group.
 極性基は、酸素原子、硫黄原子および窒素原子などの電気陰性度の高い原子によって分極が生じている官能基をいう。そのような極性基の例には、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基、アリールオキシカルボニル基、アミノ基、アミド基、シアノ基、およびこれらの基がアルキレン基などの連結基を介して結合した基などが含まれる。中でも、カルボキシ基、ヒドロキシ基、アルコキシカルボニル基またはアリールオキシカルボニル基が好ましく、溶液流延時の溶解性を確保する観点では、アルコキシカルボニル基およびアリールオキシカルボニル基がより好ましい。 A polar group is a functional group whose polarization is caused by an atom having a high electronegativity such as an oxygen atom, a sulfur atom and a nitrogen atom. Examples of such polar groups include a carboxy group, a hydroxy group, an alkoxycarbonyl group, an aryloxycarbonyl group, an amino group, an amide group, a cyano group, and these groups are attached via a linking group such as an alkylene group. Groups etc. are included. Of these, a carboxy group, a hydroxy group, an alkoxycarbonyl group or an aryloxycarbonyl group is preferable, and an alkoxycarbonyl group and an aryloxycarbonyl group are more preferable from the viewpoint of ensuring solubility at the time of solution casting.
 極性基をフィルム表面に局在化させやすくする観点では、RおよびRが水素原子であり、かつRおよびRが水素原子以外の基であることが好ましい。 From the viewpoint of facilitating the localization of polar groups on the film surface, it is preferable that R 1 and R 2 are hydrogen atoms and R 3 and R 4 are groups other than hydrogen atoms.
 pは、0~2の整数を表す。 P represents an integer of 0 to 2.
 式(1)で表される単量体の例には、以下のものが含まれる。
Figure JPOXMLDOC01-appb-C000002
Examples of the monomer represented by the formula (1) include the following.
Figure JPOXMLDOC01-appb-C000002
 極性基を有するノルボルネン系単量体に由来する構造単位の含有量は、シクロオレフィン樹脂を構成する全構造単位に対して50~100質量%としうる。 The content of the structural unit derived from the norbornene-based monomer having a polar group can be 50 to 100% by mass with respect to all the structural units constituting the cycloolefin resin.
 極性基を有するシクロオレフィン樹脂は、必要に応じて上記極性基を有するノルボルネン系単量体と共重合可能な共重合性単量体に由来する構造単位をさらに含んでもよい。 The cycloolefin resin having a polar group may further contain a structural unit derived from a copolymerizable monomer copolymerizable with the norbornene-based monomer having the polar group, if necessary.
 共重合性単量体の例には、極性基を有しないノルボルネン系単量体やノルボルネン骨格を有しない単量体が含まれる。ノルボルネン骨格を有しない単量体の例には、(極性基を有するノルボルネン系単量体と)開環共重合可能な共重合性単量体や(極性基を有するノルボルネン系単量体と)付加共重合可能な共重合性単量体が含まれる。 Examples of copolymerizable monomers include norbornene-based monomers having no polar group and monomers having no norbornene skeleton. Examples of monomers having no norbornene skeleton include open-ring copolymerizable copolymerizable monomers (with norbornene-based monomers having polar groups) and (with norbornene-based monomers having polar groups). A copolymerizable monomer capable of addition copolymerization is included.
 開環共重合可能な共重合性単量体の例には、シクロブテン、シクロペンテン、シクロヘプテン、シクロオクテン、ジシクロペンタジエンなどの、ノルボルネン骨格を有しないシクロオレフィンが含まれる。 Examples of ring-opening copolymerizable copolymerizable monomers include cycloolefins that do not have a norbornene skeleton, such as cyclobutene, cyclopentene, cycloheptene, cyclooctene, and dicyclopentadiene.
 付加共重合可能な共重合性単量体の例には、不飽和二重結合含有化合物、ビニル系環状炭化水素単量体、(メタ)アクリル酸エステルが含まれる。不飽和二重結合含有化合物の例には、炭素原子数2~8のオレフィン系化合物であり、その例には、エチレン、プロピレン、ブテンが含まれる。ビニル系環状炭化水素単量体の例には、4-ビニルシクロペンテン、2-メチル-4-イソプロペニルシクロペンテン等のビニルシクロペンテン系単量体が含まれる。(メタ)アクリル酸エステルの例には、(メタ)アクリル酸メチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸シクロヘキシルなどの炭素原子数1~20の(メタ)アクリル酸アルキルエステルが含まれる。 Examples of copolymerizable monomers include unsaturated double bond-containing compounds, vinyl cyclic hydrocarbon monomers, and (meth) acrylic acid esters. Examples of unsaturated double bond-containing compounds are olefin compounds having 2 to 8 carbon atoms, and examples thereof include ethylene, propylene, and butene. Examples of vinyl-based cyclic hydrocarbon monomers include vinyl cyclopentene-based monomers such as 4-vinylcyclopentene and 2-methyl-4-isopropenylcyclopentene. Examples of (meth) acrylic acid esters include (meth) acrylic acid alkyl esters having 1 to 20 carbon atoms such as methyl (meth) acrylate, 2-ethylhexyl (meth) acrylic acid, and cyclohexyl (meth) acrylic acid. included.
 シクロオレフィン樹脂の重量平均分子量(Mw)は、2万~30万であることが好ましい。シクロオレフィン樹脂のMwが上記範囲内であると、フィルムに十分な機械的強度を付与しつつ、製膜性が損なわれにくい。シクロオレフィン樹脂のMwは、上記観点から、4万~20万であることがより好ましい。 The weight average molecular weight (Mw) of the cycloolefin resin is preferably 20,000 to 300,000. When the Mw of the cycloolefin resin is within the above range, the film-forming property is not easily impaired while imparting sufficient mechanical strength to the film. From the above viewpoint, the Mw of the cycloolefin resin is more preferably 40,000 to 200,000.
 シクロオレフィン樹脂のMwは、ゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算にて測定することができる。具体的には、東ソー社製HLC8220GPC)、カラム(東ソー社製 TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL直列)を用いて測定することができる。 The Mw of the cycloolefin resin can be measured in terms of polystyrene by gel permeation chromatography (GPC). Specifically, it can be measured using a Tosoh HLC8220GPC) and a column (Tosoh TSK-GEL G6000HXL-G5000HXL-G5000HXL-G4000HXL-G3000HXL series).
 シクロオレフィン樹脂のガラス転移温度(Tg)は、通常110℃以上であり、110~350℃であることが好ましく、120~250℃であることがより好ましく、120~220℃であることが特に好ましい。シクロオレフィン樹脂のTgが110℃以上であると、高温条件下での使用や、コーティング、印刷などの二次加工による変形が抑制されるため好ましい。また、Tgが350℃以下であると、成形加工や成形加工時の熱による樹脂劣化が抑制されるため好ましい。 The glass transition temperature (Tg) of the cycloolefin resin is usually 110 ° C. or higher, preferably 110 to 350 ° C., more preferably 120 to 250 ° C., and particularly preferably 120 to 220 ° C. .. When the Tg of the cycloolefin resin is 110 ° C. or higher, deformation due to use under high temperature conditions and secondary processing such as coating and printing is suppressed, which is preferable. Further, when Tg is 350 ° C. or lower, resin deterioration due to heat during molding or molding is suppressed, which is preferable.
 シクロオレフィン樹脂のTgは、DSC(Differential Scanning Colorimetry:示差走査熱量法)を用いて、JIS K 7121-2012またはASTM D 3418-82に準拠して測定することができる。 The Tg of the cycloolefin resin can be measured according to JIS K7121-2012 or ASTM D3418-82 using DSC (Differential Scanning Colorimetry).
 ((メタ)アクリル樹脂)
 (メタ)アクリル樹脂は、(メタ)アクリル酸エステルの単独重合体、または(メタ)アクリル酸エステルとそれと共重合可能な共重合性単量体との共重合体である。(メタ)アクリル酸エステルは、好ましくはメタクリル酸メチルである。
((Meta) acrylic resin)
The (meth) acrylic resin is a homopolymer of a (meth) acrylic acid ester, or a copolymer of a (meth) acrylic acid ester and a copolymerizable monomer copolymerizable therewith. The (meth) acrylic acid ester is preferably methyl methacrylate.
 共重合性単量体は、メタクリル酸メチルと共重合可能なものであればよく、環構造を有する共重合性単量体であってもよいし、環構造を有しない共重合性単量体であってもよい。 The copolymerizable monomer may be a copolymerizable monomer copolymerizable with methyl methacrylate, may be a copolymerizable monomer having a ring structure, or may be a copolymerizable monomer having no ring structure. It may be.
 環構造を有する共重合モノマーの例には、
 (メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸シクロヘキシル、六員環ラクトン(メタ)アクリル酸エステルなどの脂環を有する(メタ)アクリル酸エステル;
 ビニルシクロヘキサンなどの脂環を有するビニル類;
 スチレン、o-メチルスチレン、m-メチルスチレン、p-メチルスチレン、α-メチルスチレンなどの芳香環を有するビニル類;および
 N-フェニルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-シクロヘキシルマレイミド、N-o-クロロフェニルマレイミドなどのマレイミド類(イミド環を有する化合物)が含まれる。
An example of a copolymerized monomer having a ring structure is
It has an alicyclic such as (meth) dicyclopentanyl acrylate, (meth) isobornyl acrylate, (meth) adamantyl acrylate, (meth) cyclohexyl acrylate, and six-membered ring lactone (meth) acrylate ester (meth). Acrylic acid ester;
Vinyls having an alicyclic such as vinylcyclohexane;
Vinyls with aromatic rings such as styrene, o-methylstyrene, m-methylstyrene, p-methylstyrene, α-methylstyrene; and N-phenylmaleimide, N-ethylmaleimide, N-propylmaleimide, N-cyclohexylmaleimide , NO-Chlorophenylmaleimide and other maleimides (compounds having an imide ring) are included.
 環構造を有しない共重合モノマーの例には、
 (メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸ヘキシル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチルなどの炭素原子数2~20の(メタ)アクリル酸アルキルエステル;
 (メタ)アクリロニトリルなどの不飽和ニトリル類;
 (メタ)アクリル酸、クロトン酸、(メタ)アクリル酸などの不飽和カルボン酸類;
 酢酸ビニル、エチレンやプロピレンなどのオレフィン類;
 塩化ビニル、塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニル類;
 (メタ)アクリルアミド、メチル(メタ)アクリルアミド、エチル(メタ)アクリルアミド、プロピル(メタ)アクリルアミドなどの(メタ)アクリルアミド類が含まれる。
An example of a copolymerized monomer having no ring structure is
Ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, (meth) (Meta) acrylic acid alkyl ester having 2 to 20 carbon atoms such as n-octyl acrylate;
Unsaturated nitriles such as (meth) acrylonitrile;
Unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, (meth) acrylic acid;
Olefins such as vinyl acetate, ethylene and propylene;
Vinyl halides such as vinyl chloride, vinylidene chloride and vinylidene fluoride;
Includes (meth) acrylamides such as (meth) acrylamide, methyl (meth) acrylamide, ethyl (meth) acrylamide, and propyl (meth) acrylamide.
 共重合性単量体は、1種類であってもよいし、2種類以上を組み合わせてもよい。 The copolymerizable monomer may be one kind or a combination of two or more kinds.
 (メタ)アクリル樹脂のMwは、40万~300万であることが好ましい。Mwが上記範囲であると、フィルムに十分な機械的強度(靱性)を付与しつつ、製膜性や乾燥性も損なわれにくい。(メタ)アクリル樹脂のMwは、上記観点から、50万~200万であることがより好ましい。(メタ)アクリル樹脂のMwは、前述と同様の方法で測定することができる。 The Mw of the (meth) acrylic resin is preferably 400,000 to 3 million. When Mw is in the above range, sufficient mechanical strength (toughness) is imparted to the film, and film forming property and drying property are not easily impaired. From the above viewpoint, the Mw of the (meth) acrylic resin is more preferably 500,000 to 2,000,000. The Mw of the (meth) acrylic resin can be measured by the same method as described above.
 (メタ)アクリル樹脂のTgは、90℃以上であることが好ましい。Tgが90℃以上であると、フィルムの耐熱性を高めうるだけでなく、製膜時の乾燥性を高めやすい。フィルムの靱性を損なわれにくくする観点では、(メタ)アクリル樹脂のTgは、100~150℃であることがより好ましい。(メタ)アクリル樹脂のTgは、前述と同様の方法で測定することができる。 The Tg of the (meth) acrylic resin is preferably 90 ° C. or higher. When the Tg is 90 ° C. or higher, not only the heat resistance of the film can be improved, but also the drying property at the time of film formation can be easily improved. From the viewpoint of making the toughness of the film less likely to be impaired, the Tg of the (meth) acrylic resin is more preferably 100 to 150 ° C. The Tg of the (meth) acrylic resin can be measured by the same method as described above.
 (セルロースエステル)
 セルロースエステルは、セルロースをカルボン酸でエステル化させた化合物である。
(Cellulose ester)
Cellulose ester is a compound obtained by esterifying cellulose with a carboxylic acid.
 セルロースエステルのアシル基の総置換度は、2~3であることが好ましく、2.2~2.6であることがより好ましい。アシル基は、アセチル基、プロピオニル基およびこれらの両方でありうる。セルロースエステルのアシル基の置換度は、ASTM-D817-96に規定の方法で測定することができる。 The total degree of substitution of the acyl group of the cellulose ester is preferably 2 to 3, and more preferably 2.2 to 2.6. The acyl group can be an acetyl group, a propionyl group or both. The degree of substitution of the acyl group of the cellulose ester can be measured by the method specified in ASTM-D817-96.
 セルロースエステルの例には、セルローストリアセテート、セルロースアセテートプロピオネートが含まれる。 Examples of cellulose esters include cellulose triacetate and cellulose acetate propionate.
 セルロースエステルのMwは、一定以上の機械的強度を得るためには、10万~50万であることが好ましく、15万~30万であることがより好ましい。Mwは、前述と同様の方法で測定することができる。 The Mw of the cellulose ester is preferably 100,000 to 500,000, more preferably 150,000 to 300,000 in order to obtain a certain level of mechanical strength or higher. Mw can be measured by the same method as described above.
 セルロースエステルのTgは、通常、140~200℃であることが好ましく、160~190℃であることがより好ましい。Tgは、前述と同様の方法で測定することができる。 The Tg of the cellulose ester is usually preferably 140 to 200 ° C, more preferably 160 to 190 ° C. Tg can be measured by the same method as described above.
 樹脂の含有量は、フィルム基部11に対して60質量%以上であることが好ましく、70~100質量%でありうる。 The content of the resin is preferably 60% by mass or more, and may be 70 to 100% by mass with respect to the film base 11.
 (微粒子)
 フィルム基部11は、必要に応じて微粒子(マット剤)をさらに含んでもよい。それにより、樹脂フィルムの表面に適度な滑り性を付与しうる。
(Fine particles)
The film base 11 may further contain fine particles (matting agent), if necessary. Thereby, an appropriate slipperiness can be imparted to the surface of the resin film.
 微粒子は、無機微粒子であってもよいし、有機微粒子であってもよい。 The fine particles may be inorganic fine particles or organic fine particles.
 無機微粒子の例には、シリカ粒子が含まれる。シリカ粒子の平均一次粒子径は、特に制限されないが、例えば5~100nmであることが好ましく、10~50nmであることがより好ましい。 Examples of inorganic fine particles include silica particles. The average primary particle size of the silica particles is not particularly limited, but is preferably, for example, 5 to 100 nm, and more preferably 10 to 50 nm.
 有機微粒子の例には、樹脂との屈折率差が0.01以下の重合体微粒子であることが好ましい。そのような有機微粒子の例には、樹脂との親和性が高く、かつ屈折率を上記範囲に調整しやすい観点から、(メタ)アクリル酸エステル類、ビニルエステル類、スチレン類、およびオレフィン類からなる群より選ばれる構造単位を含む共重合体が好ましく、(メタ)アクリル酸エステル類とスチレン類に由来する構造単位とを含む共重合体がより好ましく、(メタ)アクリル酸エステル類に由来する構造単位と、スチレン類に由来する構造単位と、多官能モノマーに由来する構造単位とを含む共重合体がさらに好ましい。 As an example of the organic fine particles, it is preferable that the polymer fine particles have a refractive index difference of 0.01 or less from the resin. Examples of such organic fine particles include (meth) acrylic acid esters, vinyl esters, styrenes, and olefins from the viewpoint of having high affinity with resins and easily adjusting the refractive index within the above range. A copolymer containing structural units selected from the above group is preferable, and a copolymer containing (meth) acrylic acid esters and structural units derived from styrenes is more preferable, and the copolymer is derived from (meth) acrylic acid esters. A copolymer containing a structural unit, a structural unit derived from styrenes, and a structural unit derived from a polyfunctional monomer is more preferable.
 有機微粒子のガラス転移温度(Tg)は、80℃以上であることが好ましい。有機微粒子のガラス転移温度(Tg)は、前述と同様に、JISK 7121-2012またはASTMD 3418-82に準拠して測定することができる。 The glass transition temperature (Tg) of the organic fine particles is preferably 80 ° C. or higher. The glass transition temperature (Tg) of the organic fine particles can be measured according to JISK7121-2012 or ASTMD3418-82 in the same manner as described above.
 有機微粒子の平均粒子径は、0.01~0.4μmである。有機微粒子の平均粒子径が0.01μm以上であると、得られるフィルムの表面に適度な大きさの凹凸を形成しうるため、滑り性を付与しやすく、0.4μm以下であると、フィルムの内部ヘイズの増大を抑制しやすい。有機微粒子の平均粒子径は、上記観点から、0.07~0.28μmであることがより好ましい。 The average particle size of the organic fine particles is 0.01 to 0.4 μm. When the average particle size of the organic fine particles is 0.01 μm or more, unevenness of an appropriate size can be formed on the surface of the obtained film, so that it is easy to impart slipperiness. It is easy to suppress the increase of internal haze. From the above viewpoint, the average particle size of the organic fine particles is more preferably 0.07 to 0.28 μm.
 無機微粒子や有機微粒子の平均一次粒子径は、以下の手順で測定することができる。
 1)フィルムの面内遅相軸と平行な断面を、TEM観察する。観察領域は、前述と同様とする。
 2)得られたTEM画像における任意の10個の無機微粒子または有機微粒子の一次粒子径を測定し、それらの平均値を「平均一次粒子径」とする。
The average primary particle diameter of the inorganic fine particles and the organic fine particles can be measured by the following procedure.
1) TEM observe the cross section of the film parallel to the in-plane slow phase axis. The observation area is the same as described above.
2) The primary particle diameters of any 10 inorganic fine particles or organic fine particles in the obtained TEM image are measured, and the average value thereof is defined as the "average primary particle diameter".
 [物性]
 フィルム基部11の厚みは、一定である。すなわち、フィルム基部11は、エンボス加工はされていないため、エンボスローラで潰されることによって形成される肉薄部分を有しない。フィルム基部11の厚みは、特に制限されないが、3~40μmであることが好ましく、5~30μmであることがより好ましく、10~20μmであることがさらに好ましい。
[Physical characteristics]
The thickness of the film base 11 is constant. That is, since the film base 11 is not embossed, it does not have a thin portion formed by being crushed by an emboss roller. The thickness of the film base 11 is not particularly limited, but is preferably 3 to 40 μm, more preferably 5 to 30 μm, and even more preferably 10 to 20 μm.
 フィルム基部11の長さ(巻き長)は、特に制限されないが、2000~15000mであることが好ましく、3000~12000mであることがより好ましい。フィルム基部11の幅は、特に制限されないが、950~3000mmであることが好ましい。 The length (winding length) of the film base 11 is not particularly limited, but is preferably 2000 to 15000 m, more preferably 3000 to 12000 m. The width of the film base 11 is not particularly limited, but is preferably 950 to 3000 mm.
 (位相差RoおよびRt)
 フィルム基部11は、求められる光学特性に応じた位相差を有することが好ましい。保護フィルムは、例えば、IPSモード用の位相差フィルムとして用いる観点では、波長550nm、23℃55%RHで測定される面内方向の位相差Roおよび厚み方向の位相差Rtは、それぞれ下記式を満たすことが好ましい。
 |Ro|≦10nm
 |Rt|≦10nm
(Phase difference Ro and Rt)
The film base 11 preferably has a phase difference according to the required optical characteristics. From the viewpoint of using the protective film as a retardation film for IPS mode, for example, the in-plane retardation Ro and the thickness direction retardation Rt measured at a wavelength of 550 nm and 23 ° C. 55% RH have the following equations, respectively. It is preferable to meet.
| Ro | ≦ 10nm
| Rt | ≦ 10nm
 RoおよびRtは、それぞれ下記式で定義される。
 式(I):Ro=(nx-ny)×d
 式(II):Rt=((nx+ny)/2-nz)×d
 (式中、
 nxは、フィルム基部11の面内遅相軸方向(屈折率が最大となる方向)の屈折率を表し、
 nyは、フィルム基部11の面内遅相軸に直交する方向の屈折率を表し、
 nzは、フィルム基部11の厚み方向の屈折率を表し、
 dは、フィルム基部11の厚み(nm)を表す。)
Ro and Rt are defined by the following equations, respectively.
Equation (I): Ro = (nx-ny) × d
Equation (II): Rt = ((nx + ny) /2-nz) × d
(During the ceremony,
nx represents the refractive index of the film base 11 in the in-plane slow phase axial direction (direction in which the refractive index is maximized).
ny represents the refractive index in the direction orthogonal to the in-plane slow phase axis of the film base 11.
nz represents the refractive index of the film base 11 in the thickness direction.
d represents the thickness (nm) of the film base 11. )
 フィルム基部11の面内遅相軸は、自動複屈折率計アクソスキャン(AxoScan Mueller Matrix Polarimeter:アクソメトリックス社製)により確認することができる。 The in-plane slow phase axis of the film base 11 can be confirmed by an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Polarimeter: manufactured by Axometrics).
 RoおよびRtは、以下の方法で測定することができる。
 1)フィルム基部11を23℃55%RHの環境下で24時間調湿する。このフィルム基部11の平均屈折率をアッベ屈折計で測定し、厚みdを市販のマイクロメーターを用いて測定する。
 2)調湿後のフィルム基部11の、測定波長550nmにおけるリターデーションRoおよびRtを、それぞれ自動複屈折率計アクソスキャン(AxoScan Mueller Matrix Polarimeter:アクソメトリックス社製)を用いて、23℃55%RHの環境下で測定する。
Ro and Rt can be measured by the following methods.
1) The film base 11 is humidity-controlled for 24 hours in an environment of 23 ° C. and 55% RH. The average refractive index of the film base 11 is measured with an Abbe refractometer, and the thickness d is measured with a commercially available micrometer.
2) The retardation Ro and Rt of the film base 11 after humidity control at a measurement wavelength of 550 nm were measured at 23 ° C. and 55% RH using an automatic birefringence meter Axoscan (AxoScan Mueller Matrix Matrix Polarimeter). Measure in the environment of.
 (内部ヘイズ)
 フィルム基部11の内部ヘイズは、1.0%以下であることが好ましく、0.1%以下であることがより好ましく、0.05%以下であることがさらに好ましい。フィルム基部11の内部ヘイズは、試料40mm×80mmを25℃、60%RH下、ヘイズメーター(HGM-2DP、スガ試験機)を用いてJISK-6714に準拠して測定することができる。
(Internal haze)
The internal haze of the film base 11 is preferably 1.0% or less, more preferably 0.1% or less, still more preferably 0.05% or less. The internal haze of the film base 11 can be measured in accordance with JIS K-6714 using a haze meter (HGM-2DP, Suga Test Instruments) at 25 ° C. and 60% RH for a sample of 40 mm × 80 mm.
 1-2.凸部12
 凸部12は、フィルム基部11の表面の幅方向両端部に樹脂組成物を付与して得られるナーリング部である。
1-2. Convex part 12
The convex portion 12 is a knurling portion obtained by applying a resin composition to both ends of the surface of the film base portion 11 in the width direction.
 凸部12は、フィルム基部11の幅方向両端部に、フィルム基部11の長手方向に沿って帯状に配置されている(図1A参照)。「帯状」には、連続的に延在した形状に限らず、間欠的に延在した形状も含まれる。すなわち、凸部12は、帯状に連続的に配置されてもよいし、帯状に間欠的に配置されてもよい。本実施の形態では、凸部12は、連続的に配置されている(図1A参照)。凸部12は、フィルム基部11と一体であってもよいし、別体であってもよい。 The convex portions 12 are arranged in strips along the longitudinal direction of the film base 11 at both ends of the film base 11 in the width direction (see FIG. 1A). The "strip shape" includes not only a continuously extending shape but also an intermittently extending shape. That is, the convex portions 12 may be continuously arranged in a band shape or may be intermittently arranged in a band shape. In this embodiment, the convex portions 12 are continuously arranged (see FIG. 1A). The convex portion 12 may be integrated with the film base portion 11 or may be a separate body.
 フィルム10の幅方向に沿った断面(凸部12の延在方向と直交する断面)において、凸部12の最大高さをTmaxとしたとき、凸部12の面積のうち、Tmax/2の高さよりもフィルム基部11から遠い領域(凸部12の中点Tmax/2より上にある領域)の面積をS1(図2の上部分)、Tmax/2の高さよりもフィルム基部11に近い領域(凸部12の中点より下にある領域)の面積をS2(図2の下部分)としたとき、S1は、S2よりも小さい。具体的には、S1とS2は、下記式(1)を満たすことが好ましい。
 式(1):0.6≦S1/S2≦0.95
In the cross section along the width direction of the film 10 (cross section orthogonal to the extending direction of the convex portion 12), when the maximum height of the convex portion 12 is Tmax, the height of Tmax / 2 in the area of the convex portion 12 The area of the region farther from the film base 11 (the region above the midpoint Tmax / 2 of the convex portion 12) is S1 (upper part of FIG. 2), and the region closer to the film base 11 than the height of Tmax / 2 (the upper part of FIG. 2). When the area of the region below the midpoint of the convex portion 12 is S2 (lower portion of FIG. 2), S1 is smaller than S2. Specifically, it is preferable that S1 and S2 satisfy the following formula (1).
Equation (1): 0.6 ≤ S1 / S2 ≤ 0.95
 S1/S2が0.6以上であると、凸部12とフィルム基部11の裏面との接触面積が確保できるため、重なり合うフィルム基部11同士の間にエアを適度に蓄えることができる。S1/S2が0.95以下であると、凸部12とフィルム基部11の裏面とが密着しすぎず、適度な隙間を形成できる。それにより、フィルムの巻き取り時に、重なり合うフィルム基部11同士の間にエアを含ませつつも、エアを適度に抜くことができる。それにより、重なり合うフィルム基部11同士の間にエアが過度に含まれるのを抑制できるため、外部から衝撃などが加わったときに、フィルム基部11同士の間に蓄積されたエアが一気に放出されて、巻きズレや貼り付きを生じるのを抑制できる。同様の観点から、0.7≦S1/S2≦0.9を満たすことがより好ましい。 When S1 / S2 is 0.6 or more, the contact area between the convex portion 12 and the back surface of the film base 11 can be secured, so that air can be appropriately stored between the overlapping film bases 11. When S1 / S2 is 0.95 or less, the convex portion 12 and the back surface of the film base 11 do not come into close contact with each other, and an appropriate gap can be formed. As a result, when the film is wound, the air can be appropriately evacuated while the air is contained between the overlapping film bases 11. As a result, it is possible to suppress excessive inclusion of air between the overlapping film bases 11, so that when an impact or the like is applied from the outside, the air accumulated between the film bases 11 is released at once. It is possible to suppress winding misalignment and sticking. From the same viewpoint, it is more preferable to satisfy 0.7 ≦ S1 / S2 ≦ 0.9.
 凸部12の高さとは、フィルム基部11の表面からの高さ(フィルム基部11の表面の法線方向の高さ)をいう。 The height of the convex portion 12 means the height from the surface of the film base 11 (the height of the surface of the film base 11 in the normal direction).
 凸部12の面積S1とS2の合計は、0.0006~0.07mmであることが好ましく、0.0013~0.03mmであることがより好ましい。凸部12の面積S1とS2の合計が下限値以上であると、巻ズレしやすく、上限値以下であると、エアが過度含まれやすい。なお、凸部12を断続的に形成する場合、上記S1とS2の合計は、複数の凸部12のそれぞれについてS1およびS2の合計を測定し、それらの平均値として算出される。 The sum of the areas S1 and S2 of the convex portion 12 is preferably 0.0006 ~ 0.07 mm 2, and more preferably 0.0013 ~ 0.03 mm 2. When the total of the areas S1 and S2 of the convex portion 12 is not less than the lower limit value, winding deviation is likely to occur, and when it is not more than the upper limit value, air is likely to be excessively contained. When the convex portion 12 is formed intermittently, the total of the above S1 and S2 is calculated as an average value of the total of S1 and S2 measured for each of the plurality of convex portions 12.
 フィルム10の幅方向に沿った断面における、凸部12の面積S1やS2、凸部の最大高さTmax、最大幅Wmaxは、レーザー顕微鏡を用いて測定することができる。レーザー顕微鏡としては、例えばキーエンス社製laser Microscope VK-X1000を用いることができる。具体的には、凸部12の面積S1およびS2の測定は、フィルムの長さ方向に100mm、凸部の1列を中心とするフィルムの幅方向15mmの領域について、凸部12の上半分と下半分の面積をレーザー顕微鏡によりそれぞれ測定し、それらの平均値を「凸部12の面積S1およびS2」として求めることができる。
 なお、凸部12の列(ライン)が複数ある場合は、1つの凸部12の列(ライン)についての値を示す。また、ディスペンサー塗布や間欠塗布の場合、上記領域内に存在する複数の凸部12についての測定値の平均値とする。
The areas S1 and S2 of the convex portion 12, the maximum height Tmax of the convex portion, and the maximum width Wmax in the cross section along the width direction of the film 10 can be measured by using a laser microscope. As the laser microscope, for example, a laser Microscope VK-X1000 manufactured by KEYENCE Corporation can be used. Specifically, the areas S1 and S2 of the convex portion 12 are measured with the upper half of the convex portion 12 in a region of 100 mm in the length direction of the film and 15 mm in the width direction of the film centered on one row of the convex portions. The area of the lower half can be measured with a laser microscope, and the average value thereof can be obtained as "areas S1 and S2 of the convex portion 12".
When there are a plurality of rows (lines) of the convex portions 12, the values for one row (line) of the convex portions 12 are shown. Further, in the case of dispenser coating or intermittent coating, the average value of the measured values for the plurality of convex portions 12 existing in the above region is used.
 光学フィルムの幅方向の断面における、フィルム基部の面積に対する凸部の合計面積(S1+S2)の比(%)は、特に制限されないが、例えば0.005~0.06%であることが好ましく、0.01~0.04%であることが好ましい。光学フィルムの幅方向の断面において、凸部が複数ある場合は、それらの面積の合計の、フィルム基部の面積に対する比をいう。 The ratio (%) of the total area of the convex portions (S1 + S2) to the area of the film base in the cross section in the width direction of the optical film is not particularly limited, but is preferably 0.005 to 0.06%, for example, 0. It is preferably 0.01 to 0.04%. When there are a plurality of convex portions in the cross section in the width direction of the optical film, it means the ratio of the total area of these portions to the area of the film base.
 凸部12の形状は、フィルム10を巻き取った時に、凸部12とフィルム基部11の裏面との間に適度な隙間を形成できるような形状、具体的にはS1/S2が上記範囲を満たすような形状であればよく、特に制限されない。 The shape of the convex portion 12 is such that an appropriate gap can be formed between the convex portion 12 and the back surface of the film base 11 when the film 10 is wound, specifically, S1 / S2 satisfy the above range. Any shape may be used, and the shape is not particularly limited.
 例えば、凸部12の(フィルム基部11の幅方向における)中央部の高さは、凸部12の両端部の高さよりも高くてもよいし(図2や後述の図5A参照)、凸部12の両端部の高さと同じであってもよいし(後述の図5B参照)、凸部12の両端部の高さよりも低くてもよい(後述の図5C参照)。中でも、凸部12の中央部の高さは、凸部12の両端部の高さよりも高いか、または、凸部12の両端部の高さと同じであることが好ましい。本実施の形態では、凸部12の中央部の高さは、凸部12の両端部の高さよりも高くなっている(図2参照)。 For example, the height of the central portion of the convex portion 12 (in the width direction of the film base 11) may be higher than the height of both ends of the convex portion 12 (see FIG. 2 and FIG. 5A described later). It may be the same as the height of both ends of the protrusion 12 (see FIG. 5B described later), or may be lower than the height of both ends of the convex portion 12 (see FIG. 5C described later). Above all, it is preferable that the height of the central portion of the convex portion 12 is higher than the height of both ends of the convex portion 12 or is the same as the height of both ends of the convex portion 12. In the present embodiment, the height of the central portion of the convex portion 12 is higher than the height of both end portions of the convex portion 12 (see FIG. 2).
 具体的には、フィルム10の幅方向に沿った断面において、凸部12の形状は、弓形(circular segment)、多角形のいずれであってもよい。弓形とは、円弧または楕円弧の両端部を直線で結んだ形状であり、その例には、半円形、半楕円形などが含まれる。多角形の例には、台形(後述の図5B参照)や階段形状(後述の図5A参照)が含まれる。 Specifically, in the cross section along the width direction of the film 10, the shape of the convex portion 12 may be either a circular segment or a polygon. The bow shape is a shape in which both ends of an arc or an elliptical arc are connected by a straight line, and examples thereof include a semicircle and a semi-elliptical shape. Examples of polygons include trapezoids (see FIG. 5B below) and staircase shapes (see FIG. 5A below).
 凸部12の最大高さTmaxは、特に制限されないが、フィルム基部11の厚みの0.8~35%であることが好ましく、1.0~15%であることがより好ましく、2.5~7.0%であることがさらに好ましい。具体的には、凸部12の最大高さTmaxは、0.3~4.0μmであることが好ましく、0.5~2.0μmであることがより好ましい。 The maximum height Tmax of the convex portion 12 is not particularly limited, but is preferably 0.8 to 35%, more preferably 1.0 to 15%, and 2.5 to 25% of the thickness of the film base 11. It is more preferably 7.0%. Specifically, the maximum height Tmax of the convex portion 12 is preferably 0.3 to 4.0 μm, and more preferably 0.5 to 2.0 μm.
 凸部12のフィルム基部11の幅方向の最大幅をWmaxは、特に制限されないが、フィルム基部11の幅の0.05~5%であることが好ましく、0.05~3%であることがより好ましく、0.05~1%であることがさらに好ましい。具体的には、凸部12の最大幅Wmaxは、0.5~50mmであることが好ましく、1~30mmであることがより好ましい。 The maximum width of the convex portion 12 in the width direction of the film base 11 is not particularly limited, but is preferably 0.05 to 5%, preferably 0.05 to 3% of the width of the film base 11. More preferably, it is more preferably 0.05 to 1%. Specifically, the maximum width Wmax of the convex portion 12 is preferably 0.5 to 50 mm, more preferably 1 to 30 mm.
 凸部12の、フィルム10の幅方向における頂点の位置は、特に制限されないが、凸部12の幅方向の一方の端部から0.3Wmax~0.7Wmaxの範囲内にあることが好ましい。 The position of the apex of the convex portion 12 in the width direction of the film 10 is not particularly limited, but is preferably within the range of 0.3 Wmax to 0.7 Wmax from one end of the convex portion 12 in the width direction.
 凸部12は、後述する第2樹脂組成物から得られるものであり、樹脂を含む。 The convex portion 12 is obtained from the second resin composition described later, and contains a resin.
 凸部12に含まれる樹脂は、フィルム基部11に含まれる樹脂と同様のものを用いることができる。すなわち、フィルム基部11に含まれる樹脂と、凸部12に含まれる樹脂とは、同じ種類であってもよいし、異なる種類であってもよい。中でも、凸部12とフィルム基部11との密着性を高める観点では、フィルム基部11に含まれる樹脂と、凸部12に含まれる樹脂とは同じ種類であることが好ましい。すなわち、フィルム基部11に含まれる樹脂がシクロオレフィン樹脂である場合、凸部12に含まれる樹脂もシクロオレフィン樹脂であることが好ましい。 As the resin contained in the convex portion 12, the same resin as that contained in the film base portion 11 can be used. That is, the resin contained in the film base 11 and the resin contained in the convex portion 12 may be of the same type or may be different types. Above all, from the viewpoint of enhancing the adhesion between the convex portion 12 and the film base portion 11, it is preferable that the resin contained in the film base portion 11 and the resin contained in the convex portion 12 are of the same type. That is, when the resin contained in the film base 11 is a cycloolefin resin, it is preferable that the resin contained in the convex portion 12 is also a cycloolefin resin.
 凸部12に含まれる樹脂のMwは、フィルム基部11に含まれる樹脂のMwよりも低いことが好ましい。具体的には、凸部12に含まれるシクロオレフィン樹脂のMwは、1万~5万であることが好ましい。シクロオレフィン樹脂のMwが上記範囲内であると、ナーリング溶液の粘度を過剰に高めにくく、凸部の最大高さTmaxを上記範囲内に調整しやすい。シクロオレフィン樹脂のMwは、上記観点から、2万~4万であることがより好ましい。シクロオレフィン樹脂のMwは、前述と同様の方法で測定することができる。 The Mw of the resin contained in the convex portion 12 is preferably lower than the Mw of the resin contained in the film base 11. Specifically, the Mw of the cycloolefin resin contained in the convex portion 12 is preferably 10,000 to 50,000. When the Mw of the cycloolefin resin is within the above range, it is difficult to excessively increase the viscosity of the knurling solution, and it is easy to adjust the maximum height Tmax of the convex portion within the above range. From the above viewpoint, the Mw of the cycloolefin resin is more preferably 20,000 to 40,000. The Mw of the cycloolefin resin can be measured by the same method as described above.
 樹脂の含有量は、特に制限されないが、凸部12全体に対して60質量%以上であることが好ましく、70~100質量%であることがより好ましい。 The content of the resin is not particularly limited, but is preferably 60% by mass or more, and more preferably 70 to 100% by mass with respect to the entire convex portion 12.
 凸部12は、必要に応じてフィルム基部11と同様の成分(例えば微粒子など)をさらに含んでもよい。ただし、フィルム10を巻き取った時に、凸部12とフィルム基部11の裏面との間で滑りにくくし、適度に密着させやすくする観点では、凸部12における微粒子の含有量は、フィルム基部11における微粒子の含有量よりも少ないことが好ましく、微粒子を含まないことがより好ましい。 The convex portion 12 may further contain the same components (for example, fine particles) as the film base 11 if necessary. However, when the film 10 is wound, the content of the fine particles in the convex portion 12 is the content of the fine particles in the film base 11 from the viewpoint of making it difficult to slip between the convex portion 12 and the back surface of the film base 11 and making it easy to appropriately adhere to the convex portion 12. It is preferably less than the content of fine particles, and more preferably free of fine particles.
 2.ロール体の製造方法
 本発明のロール体は、1)第1樹脂組成物を支持体上に流延して、帯状のフィルム基部11を得る工程と、2)帯状のフィルム基部11の幅方向両端部に、第2樹脂組成物を流延して、凸部を形成する工程とを経て得ることができる。
2. 2. Method for Producing Roll Body The roll body of the present invention comprises 1) a step of casting the first resin composition onto a support to obtain a strip-shaped film base 11, and 2) both ends of the strip-shaped film base 11 in the width direction. It can be obtained through a step of casting a second resin composition on the portion to form a convex portion.
 1)フィルム基部11を得る工程について
 第1樹脂組成物を流延して、帯状のフィルム基部11を得る。
1) Step of Obtaining Film Base 11 The first resin composition is cast to obtain a strip-shaped film base 11.
 第1樹脂組成物の流延は、溶融流延法で行ってもよいし、溶液流延法で行ってもよい。中でも、高分子量の樹脂を使用できるなどの観点では、第1樹脂組成物の流延は、溶液流延法で行うことが好ましい。 The casting of the first resin composition may be carried out by a melt casting method or a solution casting method. Above all, from the viewpoint that a high molecular weight resin can be used, it is preferable that the first resin composition is cast by a solution casting method.
 すなわち、フィルム基部11は、1A)第1樹脂組成物(ドープ)を得る工程と、1B)得られたドープを支持体上に流延した後、乾燥および剥離して、膜状物を得る工程と、1C)得られた膜状物を延伸する工程とを経て得ることができる。 That is, the film base 11 has 1A) a step of obtaining a first resin composition (dope) and 1B) a step of casting the obtained dope onto a support, drying and peeling it off to obtain a film-like substance. And 1C) can be obtained through the steps of stretching the obtained film-like material.
 1A)の工程について
 樹脂を溶媒に溶解させて、第1樹脂組成物を調製する。
Regarding the step 1A), the resin is dissolved in a solvent to prepare a first resin composition.
 用いられる溶媒は、少なくとも樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、ジクロロメタンなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフランなどの非塩素系有機溶媒が含まれる。中でも、メチレンクロライドが好ましい。 The solvent used contains at least an organic solvent (good solvent) capable of dissolving the resin. Examples of good solvents include chlorine-based organic solvents such as dichloromethane; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone and tetrahydrofuran. Of these, methylene chloride is preferable.
 用いられる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒の例には、炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールが含まれる。ドープ中のアルコールの比率が高くなると、膜状物がゲル化しやすく、金属支持体からの剥離が容易になりやすい。炭素原子数1~4の直鎖または分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。中でも、安定性や乾燥性の観点から、メタノールおよびエタノールが好ましい。 The solvent used may further contain a poor solvent. Examples of poor solvents include straight-chain or branched-chain aliphatic alcohols having 1 to 4 carbon atoms. The higher the proportion of alcohol in the dope, the easier it is for the film to gel and the easier it is to peel off from the metal support. Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Of these, methanol and ethanol are preferable from the viewpoint of stability and drying property.
 1B)の工程について
 次いで、得られた第1樹脂組成物を、支持体上に流延する。第1樹脂組成物の流延は、流延ダイから吐出させて行うことができる。流延時の第1樹脂組成物の温度は、通常、15~30℃であり、好ましくは室温(23℃)である。
Regarding the step 1B), the obtained first resin composition is then cast on the support. The casting of the first resin composition can be carried out by discharging from a casting die. The temperature of the first resin composition at the time of casting is usually 15 to 30 ° C, preferably room temperature (23 ° C).
 次いで、支持体上に流延された第1樹脂組成物中の溶媒を適度に蒸発させた後(乾燥させた後)、支持体から剥離して、膜状物を得る。 Next, the solvent in the first resin composition cast on the support is appropriately evaporated (after being dried) and then peeled off from the support to obtain a film-like substance.
 剥離時の第1樹脂組成物の残留溶媒量は、例えば25質量%以上であることが好ましく、30~37質量%であることがより好ましく、30~35質量%であることがさらに好ましい。剥離時の残留溶媒量が25質量%以上であると、剥離後の膜状物から溶媒を一気に揮発させやすい。また、剥離時の残留溶媒量が37質量%以下であると、剥離による膜状物が伸びすぎるのを抑制できる。 The residual solvent amount of the first resin composition at the time of peeling is, for example, preferably 25% by mass or more, more preferably 30 to 37% by mass, and further preferably 30 to 35% by mass. When the amount of the residual solvent at the time of peeling is 25% by mass or more, the solvent is likely to be volatilized at once from the film-like substance after peeling. Further, when the amount of the residual solvent at the time of peeling is 37% by mass or less, it is possible to suppress the film-like material from being excessively stretched due to peeling.
 剥離時の第1樹脂組成物の残留溶媒量は、下記式で定義される。以下においても同様である。
 残留溶媒量(質量%)=(第1樹脂組成物の加熱処理前質量-第1樹脂組成物の加熱処理後質量)/第1樹脂組成物の加熱処理後質量×100
 なお、残留溶媒量を測定する際の加熱処理とは、140℃15分の加熱処理をいう。
The amount of residual solvent in the first resin composition at the time of peeling is defined by the following formula. The same applies to the following.
Residual solvent amount (% by mass) = (mass before heat treatment of first resin composition-mass after heat treatment of first resin composition) / mass after heat treatment of first resin composition × 100
The heat treatment for measuring the amount of residual solvent means a heat treatment at 140 ° C. for 15 minutes.
 剥離時の残留溶媒量は、支持体上での第1樹脂組成物の乾燥温度や乾燥時間、支持体の温度などによって調整することができる。 The amount of residual solvent at the time of peeling can be adjusted by adjusting the drying temperature and drying time of the first resin composition on the support, the temperature of the support, and the like.
 1C)の工程について
 そして、得られた膜状物を乾燥させる。乾燥は、一段階で行ってもよいし、多段階で行ってもよい。また、乾燥は、必要に応じて延伸しながら行ってもよい。
About step 1C) Then, the obtained film-like material is dried. Drying may be performed in one step or in multiple steps. Further, the drying may be carried out while stretching, if necessary.
 延伸は、求められる光学特性に応じて行えばよく、少なくとも一方の方向に延伸することが好ましく、互いに直交する二方向に延伸(例えば、膜状物の幅方向(TD方向)と、それと直交する搬送方向(MD方向)の二軸延伸)してもよい。 Stretching may be performed according to the required optical characteristics, and it is preferable to stretch in at least one direction, and stretching in two directions orthogonal to each other (for example, the width direction (TD direction) of the film-like material and orthogonal to it. Biaxial stretching in the transport direction (MD direction)) may be performed.
 延伸倍率は、例えばIPS用の位相差フィルムとして用いる観点では、1.01~2倍とすることができる。延伸倍率は、(延伸後のフィルムの延伸方向大きさ)/(延伸前のフィルムの延伸方向大きさ)として定義される。なお、二軸延伸を行う場合は、TD方向とMD方向のそれぞれについて、上記延伸倍率とすることが好ましい。 The draw ratio can be 1.01 to 2 times, for example, from the viewpoint of using it as a retardation film for IPS. The stretch ratio is defined as (the size of the film after stretching in the stretching direction) / (the size of the film before stretching in the stretching direction). When biaxial stretching is performed, it is preferable to set the stretching ratio in each of the TD direction and the MD direction.
 なお、フィルムの面内遅相軸方向(面内において屈折率が最大となる方向)は、通常、延伸倍率が最大となる方向である。 The in-plane slow phase axial direction of the film (the direction in which the refractive index is maximum in the plane) is usually the direction in which the draw ratio is maximum.
 延伸時の乾燥温度(延伸温度)は、樹脂のガラス転移温度をTgとしたとき、(Tg-65)℃~(Tg+60)℃であることが好ましく、(Tg-50)℃~(Tg+50)℃であることがより好ましい。延伸温度が一定以上であると、溶媒を適度に揮発させやすいため、延伸張力を適切な範囲に調整しやすく、一定以下であると、溶媒が揮発しすぎないため、延伸性が損なわれにくい。 The drying temperature (stretching temperature) during stretching is preferably (Tg-65) ° C. to (Tg + 60) ° C., preferably (Tg-50) ° C. to (Tg + 50) ° C., where Tg is the glass transition temperature of the resin. Is more preferable. When the stretching temperature is above a certain level, the solvent is easily volatilized appropriately, so that the stretching tension can be easily adjusted within an appropriate range.
 延伸温度は、(a)テンター延伸機などのように非接触加熱型で乾燥させる場合は、延伸機内温度または熱風温度などの雰囲気温度、(b)熱ローラーなどの接触加熱型で乾燥させる場合は、接触加熱部の温度、あるいは(c)膜状物(被乾燥面)の表面温度のいずれかの温度として特定されうる。 The stretching temperature is (a) when drying with a non-contact heating type such as a tenter stretching machine, the ambient temperature such as the temperature inside the stretching machine or the hot air temperature, and (b) when drying with a contact heating type such as a hot roller. , The temperature of the contact heating portion, or (c) the surface temperature of the film-like material (surface to be dried) can be specified.
 延伸開始時の膜状物中の残留溶媒量は、剥離時の膜状物中の残留溶媒量と同程度であることが好ましく、例えば20~30質量%であることが好ましく、25~30質量%であることがより好ましい。 The amount of residual solvent in the film-like material at the start of stretching is preferably about the same as the amount of residual solvent in the film-like material at the time of peeling, for example, preferably 20 to 30% by mass, and 25 to 30% by mass. % Is more preferable.
 膜状物のTD方向(幅方向)の延伸は、例えば膜状物の両端をクリップやピンで固定し、クリップやピンの間隔を進行方向に広げる方法(テンター法)で行うことができる。膜状物のMD方向の延伸は、例えば複数のロールに周速差をつけ、その間でロール周速差を利用する方法(ロール法)で行うことができる。 Stretching of the film-like object in the TD direction (width direction) can be performed by, for example, fixing both ends of the film-like object with clips or pins and widening the distance between the clips or pins in the traveling direction (tenter method). Stretching of the film-like material in the MD direction can be performed, for example, by a method (roll method) in which a peripheral speed difference is applied to a plurality of rolls and the roll peripheral speed difference is used between them.
 残留溶媒量をより低減させる観点から、延伸後に得られた膜状物をさらに乾燥(後乾燥)させることが好ましい。例えば、延伸後に得られた膜状物を、ロールなどで(一定の張力を付与した状態で)搬送しながらさらに乾燥させることが好ましい。 From the viewpoint of further reducing the amount of residual solvent, it is preferable to further dry (post-dry) the film-like substance obtained after stretching. For example, it is preferable to further dry the film-like material obtained after stretching while transporting it with a roll or the like (with a constant tension applied).
 乾燥温度(延伸しない場合の乾燥温度または延伸後の乾燥温度)は、樹脂のガラス転移温度をTgとしたとき、(Tg-30)~(Tg+30)℃であることが好ましく、(Tg-20)~Tg℃であることがより好ましい。乾燥温度が一定以上であると、延伸後の膜状物から溶媒の揮発速度を高めやすいため、乾燥効率を高めやすく、一定以下であると、膜状物が伸びることによる変形などを抑制しやすい。乾燥温度は、前述と同様にして特定することができる。 The drying temperature (drying temperature when not stretched or drying temperature after stretching) is preferably (Tg-30) to (Tg + 30) ° C., where Tg is the glass transition temperature of the resin, and is preferably (Tg-20). It is more preferable that the temperature is ~ Tg ° C. When the drying temperature is above a certain level, it is easy to increase the volatilization rate of the solvent from the film-like material after stretching, so it is easy to increase the drying efficiency. .. The drying temperature can be specified in the same manner as described above.
 2)凸部を形成する工程について
 次いで、得られたフィルム基部11の幅方向両端部に、第2樹脂組成物を流延して、凸部を形成する。
2) About the step of forming the convex portion Next, the second resin composition is cast on both ends in the width direction of the obtained film base portion 11 to form the convex portion.
 第2樹脂組成物の流延は、溶融流延法であってもよいし、溶液流延法であってもよい。製造効率を高める観点では、上記1)の工程で第1樹脂組成物を溶液流延法で行う場合、第2樹脂組成物も溶液流延法で形成することが好ましい。 The casting of the second resin composition may be a melt casting method or a solution casting method. From the viewpoint of increasing the production efficiency, when the first resin composition is formed by the solution casting method in the step 1) above, it is preferable that the second resin composition is also formed by the solution casting method.
 すなわち、凸部12は、樹脂と溶媒とを含む第2樹脂組成物(ナーリング溶液)を、フィルム基部11の幅方向両端部に付与した後、乾燥させて、形成することができる。 That is, the convex portion 12 can be formed by applying a second resin composition (knurling solution) containing a resin and a solvent to both ends in the width direction of the film base portion 11 and then drying the film base portion 11.
 (第2樹脂組成物)
 第2樹脂組成物に含まれる樹脂は、ドープに含まれる樹脂と同様のものを使用できる。
(Second resin composition)
As the resin contained in the second resin composition, the same resin as that contained in the dope can be used.
 第2樹脂組成物に含まれる溶媒は、少なくとも樹脂を溶解させうる有機溶媒(良溶媒)を含む。良溶媒の例には、メチレンクロライドなどの塩素系有機溶媒や;酢酸メチル、酢酸エチル、アセトン、テトラヒドロフラン、シクロペンタノン、トルエンなどの非塩素系有機溶媒が含まれる。中でも、シクロオレフィン樹脂を溶解させやすい観点では、メチレンクロライド、シクロペンタノン、トルエンが好ましい。中でも、飽和蒸気圧が高いことから揮発速度が高く、凸部のS1/S2を上記範囲に調整しやすい観点では、シクロペンタノンなどのケトン類やメチレンクロライドがより好ましい。 The solvent contained in the second resin composition contains at least an organic solvent (good solvent) capable of dissolving the resin. Examples of good solvents include chlorine-based organic solvents such as methylene chloride; non-chlorine-based organic solvents such as methyl acetate, ethyl acetate, acetone, tetrahydrofuran, cyclopentanone and toluene. Of these, methylene chloride, cyclopentanone, and toluene are preferable from the viewpoint of easily dissolving the cycloolefin resin. Among them, ketones such as cyclopentanone and methylene chloride are more preferable from the viewpoint that the volatilization rate is high because the saturated vapor pressure is high and the S1 / S2 of the convex portion can be easily adjusted to the above range.
 第2樹脂組成物に含まれる溶媒は、貧溶媒をさらに含んでいてもよい。貧溶媒としては、ドープに含まれる貧溶媒と同様のものを使用することができる。 The solvent contained in the second resin composition may further contain a poor solvent. As the poor solvent, the same solvent as the poor solvent contained in the dope can be used.
 流延時における第2樹脂組成物(ナーリング溶液)の粘度は、凸部のS1/S2を上記範囲に調整する観点では、上記1)の工程の流延時における第1樹脂組成物(ドープ)の粘度よりも低いことが好ましい。具体的には、2)の工程の流延時における第2樹脂組成物の粘度η2と、1)の工程の流延時における第1樹脂組成物の粘度η1との比η2/η1は、0.00003~0.01であることが好ましい。η2/η1が0.00003以上であると、凸部12のS1/S2が0.6以上となりやすく、0.02以下であると、凸部12のS1/S2が0.9以下となりやすい。 The viscosity of the second resin composition (knurling solution) at the time of casting is the viscosity of the first resin composition (dope) at the time of casting in the step 1) above from the viewpoint of adjusting S1 / S2 of the convex portion to the above range. It is preferably lower than. Specifically, the ratio η2 / η1 of the viscosity η2 of the second resin composition at the time of casting in the step 2) to the viscosity η1 of the first resin composition at the time of casting in the step 1) is 0.00003. It is preferably ~ 0.01. When η2 / η1 is 0.00003 or more, S1 / S2 of the convex portion 12 tends to be 0.6 or more, and when it is 0.02 or less, S1 / S2 of the convex portion 12 tends to be 0.9 or less.
 流延時における第1樹脂組成物の粘度η1は、例えば10000~100000mPa・sであることが好ましく、第2樹脂組成物の粘度η2は、1~300mPa・sであることが好ましい。粘度は、粘度計(例えば東機産業株式会社製、粘度計RE-80L)により測定することができる。 The viscosity η1 of the first resin composition at the time of casting is preferably, for example, 10,000 to 100,000 mPa · s, and the viscosity η2 of the second resin composition is preferably 1 to 300 mPa · s. The viscosity can be measured with a viscometer (for example, a viscometer RE-80L manufactured by Toki Sangyo Co., Ltd.).
 流延時の粘度は、溶液流延法では、例えば樹脂濃度や樹脂の分子量で調整することができ;溶融流延法では、例えば溶融温度や樹脂の分子量で調整することが好ましい。 In the solution casting method, the viscosity at the time of casting can be adjusted, for example, by the resin concentration or the molecular weight of the resin; in the melt casting method, it is preferable to adjust the viscosity by, for example, the melting temperature or the molecular weight of the resin.
 溶液流延法では、第2樹脂組成物の樹脂濃度は、第1樹脂組成物の樹脂濃度よりも低いことが好ましく、第1樹脂組成物の樹脂濃度の50質量%以下であることが好ましい。具体的には、第2樹脂組成物の樹脂濃度は、2質量%超10質量%以下であることが好ましく、3~7質量%であることがより好ましい。 In the solution casting method, the resin concentration of the second resin composition is preferably lower than the resin concentration of the first resin composition, and is preferably 50% by mass or less of the resin concentration of the first resin composition. Specifically, the resin concentration of the second resin composition is preferably more than 2% by mass and 10% by mass or less, and more preferably 3 to 7% by mass.
 (付与)
 第2樹脂組成物の付与は、任意の方法で行うことができ、例えばダイ(好ましくは減圧ダイ)による流延や、ディスペンサーによる塗布などで行うことができる。
(assignment)
The second resin composition can be applied by any method, for example, casting with a die (preferably a reduced pressure die), coating with a dispenser, or the like.
 減圧ダイを用いる場合、スリットのギャップは、凸部の厚みに応じて、スリットの幅は、凸部の幅に応じて、それぞれ調整すればよい。スリットのギャップは、例えば100~300μmであることが好ましく、スリットの幅は、例えば3~20mmであることが好ましい。ディスペンサーを用いる場合、吐出量は、例えば1~100μg/1ショットであることが好ましく、吐出ピッチは、例えば0.2~30mmであることが好ましい。 When using a decompression die, the slit gap may be adjusted according to the thickness of the convex portion, and the slit width may be adjusted according to the width of the convex portion. The gap of the slit is preferably 100 to 300 μm, for example, and the width of the slit is preferably 3 to 20 mm, for example. When a dispenser is used, the discharge amount is preferably 1 to 100 μg / shot, and the discharge pitch is preferably 0.2 to 30 mm, for example.
 流延時の第2樹脂組成物の温度は、例えば10~30℃であり、好ましくは室温(23℃)である。 The temperature of the second resin composition at the time of casting is, for example, 10 to 30 ° C, preferably room temperature (23 ° C).
 (乾燥)
 第2樹脂組成物の乾燥は、任意の方法で行うことができ、例えば熱風乾燥や、電磁波による加熱乾燥(例えば赤外線(IR)ヒーターによる加熱乾燥)などで行うことができる。凸部12のS1/S2を上記範囲に調整する観点では、乾燥速度は高いことが好ましく、電磁波による加熱乾燥がより好ましい。
(Dry)
The second resin composition can be dried by any method, for example, hot air drying, heat drying by electromagnetic waves (for example, heat drying by an infrared (IR) heater), or the like. From the viewpoint of adjusting S1 / S2 of the convex portion 12 to the above range, the drying speed is preferably high, and heat drying by electromagnetic waves is more preferable.
 凸部12のS1/S2を上記範囲に調整する観点では、第2樹脂組成物の乾燥は、フィルム基部11に付与した後、できるだけ速やかに行うことが好ましい。乾燥は、樹脂組成物の組成にもよるが、例えば付与後5秒以内に行うことが好ましい。 From the viewpoint of adjusting S1 / S2 of the convex portion 12 to the above range, it is preferable that the second resin composition is dried as soon as possible after being applied to the film base portion 11. Although it depends on the composition of the resin composition, the drying is preferably performed within 5 seconds after the application, for example.
 乾燥温度は、特に制限されないが、凸部12をS1/S2を上記範囲に調整する観点では、高いことが好ましい。具体的には、乾燥温度は、第2樹脂組成物に含まれる樹脂のガラス転移温度をTgとしたとき、40~(Tg-20)℃で行うことが好ましく、80~(Tg-10)℃で行うことがより好ましい。具体的には、40~120℃であることが好ましく、80~100℃であることがより好ましい。 The drying temperature is not particularly limited, but is preferably high from the viewpoint of adjusting the convex portion 12 to the above range for S1 / S2. Specifically, the drying temperature is preferably 40 to (Tg-20) ° C., preferably 80 to (Tg-10) ° C., where the glass transition temperature of the resin contained in the second resin composition is Tg. It is more preferable to do it in. Specifically, the temperature is preferably 40 to 120 ° C, more preferably 80 to 100 ° C.
 そして、得られたフィルム10を、長手方向に沿ってロール状に巻き取る。 Then, the obtained film 10 is wound into a roll along the longitudinal direction.
 3)巻き取り工程について
 得られたフィルム基部11を、巻き取り機を用いて、フィルム10の長手方向(幅方向に対して直交する方向)に巻き取る。それにより、巻き芯の周りにロール状に巻き取られたフィルム、すなわち、フィルム10のロール体を得ることができる。
3) Winding step The obtained film base 11 is wound in the longitudinal direction (direction orthogonal to the width direction) of the film 10 using a winder. Thereby, a film wound in a roll shape around the winding core, that is, a roll body of the film 10 can be obtained.
 巻き取り方法は、特に制限されず、定トルク法、定テンション法、テーパーテンション法などでありうる。 The winding method is not particularly limited, and may be a constant torque method, a constant tension method, a taper tension method, or the like.
 フィルム基部11を巻き取る際の、巻き取り張力は、50~170N程度としうる。このように、巻き取り長さが長いほど、ロール状に巻き取る際に、フィルム同士の間に蓄えられたエアが一気に放出されることによる、巻きズレや貼り付きが生じやすい。そのような場合であっても、凸部12のS1/S2を上記範囲に調整することで、(フィルム間にエアを適度に蓄えつつも)余分なエアを適度に放出しながら巻き取ることができ、巻きズレや貼り付きを抑制することができる。 The winding tension when winding the film base 11 can be about 50 to 170 N. As described above, the longer the winding length, the more likely it is that the air stored between the films is released at once when the film is wound into a roll shape, resulting in winding misalignment or sticking. Even in such a case, by adjusting S1 / S2 of the convex portion 12 to the above range, it is possible to wind up while appropriately discharging excess air (while appropriately storing air between the films). It is possible to suppress winding misalignment and sticking.
 得られるフィルム10は、使用時には、凸部12の形成部分が除去されて、液晶表示装置や有機EL表示装置などの表示装置の光学フィルムとして用いられる。光学フィルムの例には、偏光板保護フィルム(位相差フィルムや輝度向上フィルムなどを含む)、透明基材フィルム、光拡散フィルムが含まれる。中でも、フィルム10は、偏光板保護フィルムとして用いられることが好ましい。 When the film 10 is used, the formed portion of the convex portion 12 is removed, and the film 10 is used as an optical film for a display device such as a liquid crystal display device or an organic EL display device. Examples of the optical film include a polarizing plate protective film (including a retardation film and a brightness improving film), a transparent base film, and a light diffusing film. Above all, the film 10 is preferably used as a polarizing plate protective film.
 3.フィルムおよびその製造方法
 本発明のフィルムは、前述の通り、帯状のフィルム10のロール体から切り出されたものであってもよく、幅方向両端部に帯状の凸部を有する。
3. 3. Film and Method for Producing The Film As described above, the film of the present invention may be cut out from a roll of the strip-shaped film 10, and has strip-shaped protrusions at both ends in the width direction.
 具体的には、当該フィルムは、(上記フィルム基部11に対応する)フィルム基部と、その表面の幅方向両端部に設けられた(上記凸部12に対応する)帯状の凸部とを有する。そして、帯状の凸部の延在方向と直交するフィルムの断面において、凸部のS1とS2は、上記式(1)の関係を満たし、0.7≦S1/S2≦0.9を満たすことがより好ましい。 Specifically, the film has a film base (corresponding to the film base 11) and strip-shaped convex portions (corresponding to the convex 12) provided at both ends in the width direction of the surface thereof. Then, in the cross section of the film orthogonal to the extending direction of the strip-shaped convex portion, S1 and S2 of the convex portion satisfy the relationship of the above formula (1) and satisfy 0.7 ≦ S1 / S2 ≦ 0.9. Is more preferable.
 帯状の凸部の延在方向と直交するフィルムの断面における、凸部の形状、S1とS2の合計面積、凸部の最大高さTmaxおよび最大幅Wmax、S1とS2の合計面積のフィルム基部の面積に対する比は、上記の通りである。また、帯状の凸部の延在方向と直交するフィルムの断面における、フィルム基部11の形状(凹部を有さないこと)やフィルム基部の厚みも、上記の通りである。 In the cross section of the film orthogonal to the extending direction of the band-shaped convex portion, the shape of the convex portion, the total area of S1 and S2, the maximum height Tmax and the maximum width Wmax of the convex portion, and the total area of S1 and S2 of the film base. The ratio to the area is as described above. Further, the shape of the film base 11 (without the recess) and the thickness of the film base in the cross section of the film orthogonal to the extending direction of the band-shaped convex portion are also as described above.
 当該フィルムは、例えば上記3)の巻き取り工程を含まないか、または、上記3)の巻き取り工程後、ロール体から巻き出した帯状のフィルムを切り出す工程をさらに含む以外は上記のロール体の製造方法と同様にして製造されうる。 The film of the roll body does not include, for example, the winding step of 3) above, or further includes a step of cutting out a strip-shaped film unwound from the roll body after the winding step of 3) above. It can be manufactured in the same manner as the manufacturing method.
 [変形例]
 なお、上記実施の形態では、凸部12が、フィルム基部11の長手方向に沿って連続的に配置される例を示したが、これに限定されない。例えば、凸部12は、フィルム基部11の長手方向に沿って間欠的に配置されてもよい。
[Modification example]
In the above embodiment, the convex portion 12 is continuously arranged along the longitudinal direction of the film base portion 11, but the present invention is not limited to this. For example, the convex portion 12 may be arranged intermittently along the longitudinal direction of the film base portion 11.
 図3Aは、他の実施の形態における帯状のフィルムの平面図であり、図3Bは、図3Aの3B-3B線断面図である。図4Aは、他の実施の形態における帯状のフィルムの平面図であり、図4Bは、図4Aの4B-4B線断面図である。 FIG. 3A is a plan view of the strip-shaped film in another embodiment, and FIG. 3B is a sectional view taken along line 3B-3B of FIG. 3A. 4A is a plan view of the strip-shaped film in another embodiment, and FIG. 4B is a sectional view taken along line 4B-4B of FIG. 4A.
 すなわち、凸部12は、フィルム基部11の長手方向に沿って間欠的に配置されてもよい(図3A参照)。凸部12の長さ(フィルム基部11の長手方向の長さ)は、フィルム基部11の幅に対して0.04~10.0%程度としうる。複数の帯状の凸部12同士のギャップは、凸部12の長さに対して0.02~1.0%程度としうる。 That is, the convex portion 12 may be arranged intermittently along the longitudinal direction of the film base portion 11 (see FIG. 3A). The length of the convex portion 12 (the length in the longitudinal direction of the film base portion 11) can be about 0.04 to 10.0% with respect to the width of the film base portion 11. The gap between the plurality of strip-shaped convex portions 12 can be about 0.02 to 1.0% with respect to the length of the convex portions 12.
 また、凸部12は、フィルム基部11の長手方向に沿って島状に配置されてもよい(図4A参照)。そのような凸部12は、ディスペンサーにより間欠的に吐出して形成することができる。吐出条件は、前述の通りとしうる。 Further, the convex portion 12 may be arranged in an island shape along the longitudinal direction of the film base portion 11 (see FIG. 4A). Such a convex portion 12 can be formed by intermittently discharging with a dispenser. The discharge conditions may be as described above.
 また、上記実施の形態では、凸部12の形状が図2に示される形状である例を示したが(図2参照)、これに限定されない。 Further, in the above embodiment, an example is shown in which the shape of the convex portion 12 is the shape shown in FIG. 2 (see FIG. 2), but the present invention is not limited to this.
 図5A~Cは、フィルム10の幅方向に沿った断面における、凸部12の形状の変形例を示す図である。すなわち、凸部12の形状は、階段状であってもよいし(図5A参照)、台形であってもよい(図5B参照)。また、凸部12の中央部の高さが、凸部12の両端部の高さよりも低くなるような形状であってもよい(図5C参照)。 FIGS. 5A to 5C are views showing an example of deformation of the shape of the convex portion 12 in the cross section along the width direction of the film 10. That is, the shape of the convex portion 12 may be stepped (see FIG. 5A) or trapezoidal (see FIG. 5B). Further, the height of the central portion of the convex portion 12 may be lower than the height of both ends of the convex portion 12 (see FIG. 5C).
 また、上記実施の形態では、凸部12が、フィルム基部11の幅方向両端部に1つずつ配置される例を示したが、これに限定されず、複数ずつ配置されてもよい。 Further, in the above embodiment, the example in which the convex portions 12 are arranged one by one at both ends in the width direction of the film base portion 11 is shown, but the present invention is not limited to this, and a plurality of convex portions 12 may be arranged one by one.
 また、上記実施の形態では、凸部12が、フィルム基部11の一方の面のみに配置される例を示したが、これに限定されず、両方の面に配置されてもよい。 Further, in the above embodiment, the example in which the convex portion 12 is arranged on only one surface of the film base portion 11 is shown, but the present invention is not limited to this, and the convex portion 12 may be arranged on both surfaces.
 また、上記実施の形態では、凸部12を、樹脂と溶媒とを含むナーリング溶液を付与した後、乾燥させて形成する例(溶液流延法)を示したが、これに限定されず、溶融した樹脂組成物を付与した後、冷却固化させて形成する方法(溶融流延法)で形成してもよい。 Further, in the above embodiment, an example (solution casting method) in which the convex portion 12 is formed by applying a knurling solution containing a resin and a solvent and then drying the convex portion 12 is shown, but the present invention is not limited to this, and the convex portion 12 is melted. After the resin composition is applied, it may be formed by cooling and solidifying to form (melt casting method).
 すなわち、溶融流延法では、ロール体は、1)溶融した第1樹脂組成物を流延した後、冷却固化して、帯状のフィルム基部を得る工程と、2)帯状のフィルム基部11の幅方向両端部に、溶融した第2樹脂組成物を付与した後、冷却固化して、凸部を形成する工程とを経て得ることができる。この場合、第1樹脂組成物および第2樹脂組成物は、溶媒を含まない以外は前述の第1樹脂組成物および第2樹脂組成物とそれぞれと同様である。 That is, in the melt casting method, the roll body has 1) a step of casting the melted first resin composition and then cooling and solidifying to obtain a strip-shaped film base, and 2) a width of the strip-shaped film base 11. It can be obtained through a step of applying a melted second resin composition to both ends in the direction and then cooling and solidifying to form a convex portion. In this case, the first resin composition and the second resin composition are the same as the above-mentioned first resin composition and second resin composition, respectively, except that they do not contain a solvent.
 そして、流延時の第2樹脂組成物の溶融粘度は、フィルム基部11の製膜時の第1樹脂組成物の溶融粘度よりも低いことが好ましい。溶融粘度は、溶融温度や樹脂の重量平均分子量などで調整することができる。例えば、S1/S2を上記範囲に調整する観点では、第2樹脂組成物に含まれる樹脂のMwは、第1樹脂組成物の樹脂のMwよりも低いことが好ましく、流延時の第2樹脂組成物の溶融温度を、フィルム基部11の製膜時の第1樹脂組成物の溶融粘度よりも高くしたりしてもよい。 The melt viscosity of the second resin composition at the time of casting is preferably lower than the melt viscosity of the first resin composition at the time of film formation of the film base 11. The melt viscosity can be adjusted by adjusting the melt temperature, the weight average molecular weight of the resin, and the like. For example, from the viewpoint of adjusting S1 / S2 to the above range, the Mw of the resin contained in the second resin composition is preferably lower than the Mw of the resin of the first resin composition, and the second resin composition at the time of casting is preferable. The melting temperature of the material may be higher than the melting viscosity of the first resin composition at the time of film formation of the film base 11.
 また、上記実施の形態では、凸部12の形状の調整方法として、第2樹脂組成物の粘度または樹脂濃度、付与方法、乾燥条件などを調整する方法を示したが、これに限定されない。例えば、第2樹脂組成物を流延した後、両端部をカット(切削)して調整してもよいし、フィルム基部11を表面処理(親水化処理など)して調整してもよい。 Further, in the above embodiment, as a method for adjusting the shape of the convex portion 12, a method for adjusting the viscosity or the resin concentration of the second resin composition, the application method, the drying conditions, and the like is shown, but the method is not limited thereto. For example, after casting the second resin composition, both ends may be cut (cut) for adjustment, or the film base 11 may be surface-treated (hydrophilicized or the like) for adjustment.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described with reference to Examples, but the present invention is not limited thereto.
 1.シクロオレフィン樹脂フィルム(フィルム基部)の作製
 <シクロオレフィン樹脂フィルム1の作製>
 (微粒子分散液の調製)
 10質量部のR218と、80質量部のエタノールとをディゾルバーで30分間撹拌混合した後、マントンゴーリンで分散を行った。得られた溶液に、80質量部のジクロロメタンを撹拌しながら投入し、ディゾルバーで30分間撹拌混合した後、濾過器(アドバンテック東洋(株):ポリプロピレンワインドカートリッジフィルターTCW-PPS-1N)で濾過して、微粒子分散液を得た。
1. 1. Preparation of cycloolefin resin film (film base) <Preparation of cycloolefin resin film 1>
(Preparation of fine particle dispersion)
10 parts by mass of R218 and 80 parts by mass of ethanol were stirred and mixed with a dissolver for 30 minutes, and then dispersed with menton gorin. 80 parts by mass of dichloromethane is added to the obtained solution with stirring, and the mixture is stirred and mixed with a dissolver for 30 minutes, and then filtered through a filter (Advantech Toyo Co., Ltd .: polypropylene wind cartridge filter TCW-PPS-1N). , A fine particle dispersion was obtained.
 (ドープの調製)
 次いで、下記組成のドープを調製した。まず、加圧溶解タンクにメチレンクロライドを添加した後、下記シクロオレフィン樹脂を撹拌しながら投入した。次いで、これに、上記調製した微粒子分散液をさらに投入して、60℃に加熱し、撹拌しながら、完全に溶解させた。加熱温度は、室温から5℃/minで昇温し、30分間で溶解した後、3℃/minで降温した。これを、(株)ロキテクノ製のSHP150を使用して、濾過流量300L/m・h、濾圧1.0×10Paにて濾過し、ドープを得た。
 JSR社製G7810(下記式で表される構造単位を含むシクロオレフィン樹脂、重量平均分子量4万、ガラス転移温度170℃):100質量部
 メチレンクロライド:150質量部
 エタノール:20質量部
 微粒子分散液:150質量部
Figure JPOXMLDOC01-appb-C000003
(Preparation of doping)
Then, a dope having the following composition was prepared. First, methylene chloride was added to the pressure dissolution tank, and then the following cycloolefin resin was added while stirring. Then, the fine particle dispersion liquid prepared above was further added thereto, heated to 60 ° C., and completely dissolved while stirring. The heating temperature was raised from room temperature at 5 ° C./min, dissolved in 30 minutes, and then lowered at 3 ° C./min. This was converted, using SHP150 manufactured by (Corporation) Rokitekuno, filtered flow rate 300L / m 2 · h, and filtered through a filtration pressure 1.0 × 10 6 Pa, to obtain a dope.
JSR G7810 (cycloolefin resin containing structural units represented by the following formula, weight average molecular weight 40,000, glass transition temperature 170 ° C.): 100 parts by mass Methylene chloride: 150 parts by mass Ethanol: 20 parts by mass Fine particle dispersion: 150 parts by mass
Figure JPOXMLDOC01-appb-C000003
 (製膜)
 得られたドープを、室温(23℃)にて、無端ベルト流延装置のステンレスベルト支持体上に均一に流延した。ステンレスベルトの温度は28℃、ステンレスベルトの搬送速度は20m/minとした。次いで、ステンレスベルト支持体上で、流延(キャスト)した膜状物中の残留溶媒量が25質量%になるまで溶剤を蒸発させた後、ステンレスベルト支持体上から剥離して、膜状物を得た。
 次いで、得られた膜状物を、テンターにて(Tg-15)℃(Tg:シクロオレフィン樹脂のTg)の条件下で幅方向に1.2倍延伸した。
 次いで、延伸した膜状物をロールで搬送しながら、(Tg-10)℃で、前述のヘッドスペースガスクロマトグラフィーにより測定される残留溶媒量が30~600質量ppmの範囲内となるまでさらに乾燥させた後、テンタークリップで挟んだ端部をレーザーカッターでスリットして巻き取り、幅1450mm、長さ4000m、厚み20μmのシクロオレフィン樹脂フィルムを得た。
(Film formation)
The obtained dope was uniformly cast on the stainless belt support of the endless belt casting device at room temperature (23 ° C.). The temperature of the stainless steel belt was 28 ° C., and the transport speed of the stainless steel belt was 20 m / min. Next, the solvent is evaporated on the stainless belt support until the amount of the residual solvent in the cast film becomes 25% by mass, and then the solvent is peeled off from the stainless belt support to form the film. Got
Then, the obtained film-like substance was stretched 1.2 times in the width direction under the condition of (Tg-15) ° C. (Tg: Tg of cycloolefin resin) with a tenter.
Then, while transporting the stretched film-like material by a roll, it is further dried at (Tg-10) ° C. until the amount of residual solvent measured by the above-mentioned headspace gas chromatography is within the range of 30 to 600 mass ppm. After that, the end portion sandwiched between the tenter clips was slit by a laser cutter and wound up to obtain a cycloolefin resin film having a width of 1450 mm, a length of 4000 m and a thickness of 20 μm.
 <シクロオレフィン樹脂フィルム2~4の作製>
 フィルムの厚みが、10μm、40μm、60μmとなるように延伸倍率を変更した以外はシクロオレフィン樹脂フィルム1と同様にしてシクロオレフィン樹脂フィルム2~4を得た。
<Preparation of cycloolefin resin films 2 to 4>
Cycloolefin resin films 2 to 4 were obtained in the same manner as in cycloolefin resin film 1 except that the draw ratio was changed so that the thickness of the film was 10 μm, 40 μm, and 60 μm.
 2.凸部形成用溶液(第2樹脂組成物)の調製
 <溶液1~3、6~9および11~14の調製>
 表1に示される樹脂と溶剤とを、表1に示される樹脂濃度となるように混合して、凸部形成用溶液1~3、6~9および11~14を得た。このうち、溶液12は、シリカ粒子(R218)を、フィルム中のシリカ粒子と同量となるように添加した。
2. 2. Preparation of solution for forming protrusions (second resin composition) <Preparation of solutions 1 to 3, 6 to 9 and 11 to 14>
The resin shown in Table 1 and the solvent were mixed so as to have the resin concentration shown in Table 1 to obtain solutions 1 to 3, 6 to 9 and 11 to 14 for forming convex portions. Of these, silica particles (R218) were added to the solution 12 in the same amount as the silica particles in the film.
 <溶液4の調製>
 ポリメチルメタクリレート(PMMA、重量平均分子量100万)を、表1に示される溶剤に35℃で溶解させて、凸部形成用溶液4を得た。
<Preparation of solution 4>
Polymethylmethacrylate (PMMA, weight average molecular weight 1 million) was dissolved in the solvent shown in Table 1 at 35 ° C. to obtain a convex portion forming solution 4.
 <溶液5および10の調製>
 セルローストリアセテート(TAC、重量平均分子量13万)を、表1に示される溶剤に溶解させて、凸部形成用溶液5および10を得た。
<Preparation of solutions 5 and 10>
Cellulose triacetate (TAC, weight average molecular weight 130,000) was dissolved in the solvent shown in Table 1 to obtain solutions 5 and 10 for forming protrusions.
 得られた凸部形成用溶液1~14の組成および物性を、表1に示す。 Table 1 shows the compositions and physical properties of the obtained convex protrusion forming solutions 1 to 14.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 3.ロール体の作製
 <実施例1~6、8、10、11、16、比較例1、3、5および6>
 上記作製したシクロオレフィン樹脂フィルムの幅方向両端部に、表2に示される溶液を、室温(23℃)にて、減圧ダイ(比較例ではダイ)から表2の条件で連続的に塗布した後、乾燥させて、図1AおよびBに示される凸部を形成した。
3. 3. Preparation of roll body <Examples 1 to 6, 8, 10, 11, 16 and Comparative Examples 1, 3, 5 and 6>
After the solution shown in Table 2 was continuously applied to both ends of the prepared cycloolefin resin film in the width direction from a reduced pressure die (die in the comparative example) under the conditions of Table 2 at room temperature (23 ° C.). , Dried to form the protrusions shown in FIGS. 1A and 1B.
 <実施例9>
 表2に示される溶液を表2の条件で間欠的に塗布した以外は実施例1と同様にして、図3AおよびBに示される凸部を形成した。(シクロオレフィン樹脂フィルムの長さ方向における)凸部の長さは100mmとし、凸部間のピッチは10mmとした。
<Example 9>
The convex portions shown in FIGS. 3A and 3B were formed in the same manner as in Example 1 except that the solution shown in Table 2 was intermittently applied under the conditions shown in Table 2. The length of the convex portions (in the length direction of the cycloolefin resin film) was 100 mm, and the pitch between the convex portions was 10 mm.
 <実施例7および13~15>
 上記作製したシクロオレフィン樹脂フィルムの幅方向両端部に、表2に示される溶液を、同表に示される条件でディスペンサー塗布した後、乾燥させて、図4AおよびBに示される凸部を形成した。なお、実施例12では、フィルムの両面に凸部を形成した。ディスペンサーは武蔵エンジニアリング社製、SUPER HI JETを用いて行った。
<Examples 7 and 13 to 15>
The solution shown in Table 2 was applied to both ends of the prepared cycloolefin resin film in the width direction with a dispenser under the conditions shown in the same table, and then dried to form convex portions shown in FIGS. 4A and 4B. .. In Example 12, convex portions were formed on both sides of the film. The dispenser was made by using SUPER HI JET manufactured by Musashi Engineering Co., Ltd.
 <実施例12>
 凸部の塗布形状を表2に示されるように変更した以外は実施例3と同様にして凸部を形成した。
<Example 12>
The convex portion was formed in the same manner as in Example 3 except that the coating shape of the convex portion was changed as shown in Table 2.
 <比較例2>
 上記作製したシクロオレフィン樹脂フィルムの片面の幅方向両端部にエンボス加工を施して、エンボス部を形成した。エンボス加工は、加熱した凸凹のパターン(凹凸が幅方向に9個連なった形状)を有する金属リングを加圧して行った。金属リングの加工圧は200kPa、温度は230℃とした。得られたエンボス部は、フィルムの幅方向中央部の厚みよりも薄い肉薄部を有していた。肉薄部よりも上の部分(凸部に相当する部分)の面積比S1’/S2’を測定したところ、0.48であった。
<Comparative Example 2>
Both ends of the cycloolefin resin film produced above in the width direction on one side were embossed to form an embossed portion. The embossing was performed by pressurizing a metal ring having a heated uneven pattern (a shape in which nine irregularities are continuous in the width direction). The processing pressure of the metal ring was 200 kPa, and the temperature was 230 ° C. The obtained embossed portion had a thin portion thinner than the thickness of the central portion in the width direction of the film. The area ratio S1'/ S2' of the portion above the thin portion (the portion corresponding to the convex portion) was measured and found to be 0.48.
 <比較例4>
 上記作製したシクロオレフィン樹脂フィルムの片面の幅方向両端部に、レーザーマーカーによりレーザー光を照射して、レーザー照射部を形成した。レーザー照射部は、フィルムの幅方向中央部の厚みよりも薄い肉薄部を有していた。肉薄部よりも上の部分(凸部に相当する部分)の面積比S1’/S2’を測定したところ、0.47であった。
<Comparative Example 4>
A laser beam was irradiated to both ends in the width direction of one side of the prepared cycloolefin resin film with a laser marker to form a laser irradiation portion. The laser irradiation portion had a thin portion thinner than the thickness of the central portion in the width direction of the film. The area ratio S1'/ S2' of the portion above the thin portion (the portion corresponding to the convex portion) was measured and found to be 0.47.
 <評価>
 (粘度の比)
 実施例1~16および比較例1~6でロール体を作製するときのフィルム用のドープの流延時の粘度と、凸部形成用溶液の流延時の粘度とをそれぞれ東機産業株式会社製粘度計RE-80Lにより測定した。フィルム製膜時(23℃)のドープ(第1樹脂組成物)の粘度は、27000mPa・sであり、凸部形成用溶液(第2樹脂組成物)の粘度は、表3の粘度比を満たす粘度であった。
<Evaluation>
(Viscosity ratio)
The viscosities of the dope for the film when the rolls were produced in Examples 1 to 16 and Comparative Examples 1 to 6 at the time of casting and the viscosities of the solution for forming the convex portion at the time of casting were the viscosities manufactured by Toki Sangyo Co., Ltd., respectively. It was measured by a total of RE-80L. The viscosity of the dope (first resin composition) at the time of film formation (23 ° C.) is 27,000 mPa · s, and the viscosity of the convex portion forming solution (second resin composition) satisfies the viscosity ratio in Table 3. It was viscosity.
 また、実施例1~16および比較例1~6で得られたロール体の凸部の物性、ロール体の形状およびフィルムの変形の有無を、以下の方法で評価した。 Further, the physical characteristics of the convex portion of the roll body, the shape of the roll body, and the presence or absence of deformation of the film obtained in Examples 1 to 16 and Comparative Examples 1 to 6 were evaluated by the following methods.
 <凸部の物性>
 フィルムの幅方向断面における、凸部の面積S1およびS2、凸部の最大高さTmax、最大幅Wmaxを、レーザー顕微鏡を用いて測定した。レーザー顕微鏡としては、キーエンス社製laser Microscope VK-X1000を用いた。
 具体的には、フィルムの長さ方向に100mm、凸部の1列を中心とする幅15mmの領域について、凸部の最大高さおよび最大幅を測定し、それらの平均値を「凸部の最大高さTmaxおよび最大幅Wmax」とした。
 同様に、フィルムの長さ方向に100mm、凸部の1列を中心とする幅15mmの領域について、凸部の面積のうち、Tmax/2の高さを境に下半分の面積と上半分の面積とをレーザー顕微鏡によりそれぞれ測定し、それらの平均値を「凸部12の面積S1およびS2」とした。なお、凸部の列(ライン)が複数ある場合は、1つの凸部の列(ライン)についての値を示す。また、ディスペンサー塗布や間欠塗布の場合、上記領域内に存在する複数の凸部についての測定値の平均値とした。
<Physical characteristics of convex parts>
The areas S1 and S2 of the convex portions, the maximum height Tmax of the convex portions, and the maximum width Wmax in the widthwise cross section of the film were measured using a laser microscope. As a laser microscope, a laser Microscope VK-X1000 manufactured by KEYENCE was used.
Specifically, the maximum height and the maximum width of the convex portion are measured in a region of 100 mm in the length direction of the film and a width of 15 mm centered on one row of the convex portions, and the average value thereof is set to "convex portion". Maximum height Tmax and maximum width Wmax ”.
Similarly, for a region of 100 mm in the length direction of the film and a width of 15 mm centered on one row of convex portions, the lower half area and the upper half of the convex portion area with the height of Tmax / 2 as a boundary. The area was measured with a laser microscope, and the average value thereof was defined as "areas S1 and S2 of the convex portion 12". When there are a plurality of convex rows (lines), the values for one convex row (line) are shown. Further, in the case of dispenser coating or intermittent coating, the average value of the measured values for the plurality of convex portions existing in the above region was used.
 (ロール体の形状)
 ロール体の形状は、キーエンス社のXG-X2900およびCA-HL08MX(ラインスキャンカメラ)とCA-DZW50X(パターン照明)により行った。具体的には、ロール体の表面を観察したときに、200μm×200μm以上の大きさの変形の面積を測定および合計し、ロール体の最表面(最表面のフィルムの1巻き分の面積)に対する面積比(%)で判断した。
 ◎:0.3%未満
 ○:0.3%以上0.5%未満
 ○△:0.5%以上1.0%未満
 △:1.0%未満2.0%未満
 ×:2.0%以上
 〇△以上であれば良好と判断した
(Shape of roll body)
The shape of the roll body was formed by Keyence's XG-X2900, CA-HL08MX (line scan camera) and CA-DZW50X (pattern illumination). Specifically, when observing the surface of the roll body, the area of deformation having a size of 200 μm × 200 μm or more is measured and totaled, and the area of the outermost surface of the roll body (the area of one roll of the outermost film) is measured. Judgment was made by area ratio (%).
⊚: less than 0.3% ○: 0.3% or more and less than 0.5% ○ △: 0.5% or more and less than 1.0% △: less than 1.0% less than 2.0% ×: 2.0% If it is above 〇 △, it is judged to be good.
 (フィルムの変形)
 フィルムの変形は、ロール体を繰り出し、ライン速度5m/分にてXG-X2900およびCA-HL08MX(ラインスキャンカメラ)とCA-DZW50X(パターン照明)により変形故障の数をカウントして評価した。変形故障の数は、100μm×100μm以上の大きさの変形を1個としてカウントした。そして、以下の基準に基づいてフィルムの変形を評価した。
 ◎:10個/1000m未満
 ○:50個/1000m未満
 ○△:100個/1000m未満
 △:200個/1000m未満
 ×:200個/1000m以上
 〇△以上であれば良好と判断した。
(Deformation of film)
The deformation of the film was evaluated by feeding out a roll body and counting the number of deformation failures by XG-X2900, CA-HL08MX (line scan camera) and CA-DZW50X (pattern illumination) at a line speed of 5 m / min. The number of deformation failures was counted as one deformation having a size of 100 μm × 100 μm or more. Then, the deformation of the film was evaluated based on the following criteria.
⊚: 10 pieces / less than 1000 m ○: 50 pieces / less than 1000 m ○ Δ: 100 pieces / less than 1000 m Δ: 200 pieces / less than 1000 m ×: 200 pieces / 1000 m or more 〇 △ or more is judged to be good.
 実施例1~16および比較例1~6のロール体の作製条件を表2に示し、評価結果を表3に示す。 Table 2 shows the preparation conditions for the rolls of Examples 1 to 16 and Comparative Examples 1 to 6, and Table 3 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表3に示されるように、実施例1~16のロール体は、いずれも巻きズレや貼り付きが少なく、ロール体の形状の変化が少ないことがわかる。また、フィルムの変形も少ないことがわかる。 As shown in Table 3, it can be seen that the roll bodies of Examples 1 to 16 have less winding deviation and sticking, and less change in the shape of the roll body. It can also be seen that the film is less deformed.
 特に、凸部形成用溶液の樹脂濃度を低くすることで、S1/S2を適度に小さくすることができ、ロール体の変形やフィルムの変形をより少なくできることがわかる(実施例3と9の対比、実施例8と11の対比)。 In particular, it can be seen that by lowering the resin concentration of the convex portion forming solution, S1 / S2 can be appropriately reduced, and the deformation of the roll body and the deformation of the film can be further reduced (comparison between Examples 3 and 9). , Comparison of Examples 8 and 11).
 また、凸部形成用溶液の溶剤組成をシクロペンタンなどのケトン類とすることで、S1/S2を適度に小さくすることができ、ロール体の変形やフィルムの変形をより少なくできることがわかる(実施例2、3および10の対比)。これは、飽和蒸気圧が高く、蒸発速度が高いからであると考えられる。 Further, it can be seen that by setting the solvent composition of the convex portion forming solution to ketones such as cyclopentane, S1 / S2 can be appropriately reduced, and the deformation of the roll body and the deformation of the film can be further reduced (implementation). Comparison of Examples 2, 3 and 10). It is considered that this is because the saturated vapor pressure is high and the evaporation rate is high.
 また、凸部形成用溶液の付与をディスペンサーで行うことで、減圧ダイで行うよりもロール体の変形やフィルムの変形をより少なくできることがわかる(実施例1と14~15との対比)。これは、ディスペンサー塗布のほうが、減圧ダイ塗布よりも乾燥時の熱によるフィルム基部のカールを少なくしうるためであると考えられる。 Further, it can be seen that the deformation of the roll body and the deformation of the film can be reduced by applying the solution for forming the convex portion with the dispenser (comparison between Examples 1 and 14 to 15). It is considered that this is because the application of the dispenser can reduce the curl of the film base due to the heat during drying than the application of the vacuum die.
 これに対し、S1/S2が0.95を超える比較例1および3は、いずれもロール体の変形やフィルムの変形が生じた。これは、巻き取る際に、凸部がフィルム基部の裏面と密着しすぎてエアが抜けないこと、それにより、溜まったエアが周期的に放出されることにより巻きズレやフィルムの貼り付きが周期的に生じることによると考えられる。 On the other hand, in Comparative Examples 1 and 3 in which S1 / S2 exceeded 0.95, the roll body was deformed and the film was deformed. This is because when winding, the convex part is too close to the back surface of the film base and air does not escape, and as a result, the accumulated air is periodically released, causing winding misalignment and film sticking. It is thought that this is due to the fact that it occurs.
 また、エンボス加工を行った比較例2のロール体やレーザー照射により凸部を形成した比較例4のロール体は、いずれもロール体の変形が生じ、フィルムの変形が生じることがわかる。これは、面積S2が低いため、エンボス部またはレーザー照射部が応力で潰れて、ロール形状を保つことできず、貼り付きなどを生じたためと考えられる。 Further, it can be seen that the roll body of Comparative Example 2 which has been embossed and the roll body of Comparative Example 4 in which the convex portion is formed by laser irradiation both cause deformation of the roll body and deformation of the film. It is probable that this is because the area S2 is low, so that the embossed portion or the laser irradiation portion is crushed by stress, the roll shape cannot be maintained, and sticking or the like occurs.
 <実施例17~21>
 スリットのギャップを表4に示されるように変更した以外は実施例3と同様にしてロール体を形成した。
<Examples 17 to 21>
A roll body was formed in the same manner as in Example 3 except that the slit gap was changed as shown in Table 4.
 <実施例22~24>
 凸部の列数(ライン数)および(フィルムの長さ方向における)凸部間ピッチを表4に示されるように変更した以外は実施例7と同様にしてロール体を形成した。
<Examples 22 to 24>
A roll body was formed in the same manner as in Example 7 except that the number of rows (number of lines) of the convex portions and the pitch between the convex portions (in the length direction of the film) were changed as shown in Table 4.
 <実施例25~27>
 フィルムの巻き長を表4に示されるように変更した以外は実施例3と同様にしてロール体を形成した。
<Examples 25 to 27>
A roll body was formed in the same manner as in Example 3 except that the winding length of the film was changed as shown in Table 4.
 <実施例28~30>
 フィルムの厚みを表4に示されるように変更した以外は実施例3と同様にしてロール体を形成した。
<Examples 28 to 30>
A roll body was formed in the same manner as in Example 3 except that the thickness of the film was changed as shown in Table 4.
 <実施例31>
 吐出幅を表4に示されるように変更した以外は実施例3と同様にしてロール体を形成した。
<Example 31>
A roll body was formed in the same manner as in Example 3 except that the discharge width was changed as shown in Table 4.
 <実施例32および33>
 吐出量および(フィルムの長さ方向における)凸部間ピッチを表4に示されるように変更した以外は実施例7と同様にしてロール体を形成した。
<Examples 32 and 33>
A roll body was formed in the same manner as in Example 7 except that the discharge amount and the pitch between the protrusions (in the length direction of the film) were changed as shown in Table 4.
 そして、実施例17~33のロール体の形状およびフィルムの変形を、前述と同様にして評価した。 Then, the shape of the roll body and the deformation of the film of Examples 17 to 33 were evaluated in the same manner as described above.
 実施例17~33のロール体の作製条件を表4に、評価結果を表5に示す。 Table 4 shows the preparation conditions for the rolls of Examples 17 to 33, and Table 5 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 表5に示されるように、実施例17~33のロール体は、いずれも巻きズレや貼り付きが少なく、ロール体の形状の変化が少ないことがわかる。 As shown in Table 5, it can be seen that the roll bodies of Examples 17 to 33 have less winding deviation and sticking, and less change in the shape of the roll body.
 本発明によれば、巻き圧によって潰れにくく、かつフィルム同士のエアを適量に維持することで、外部から衝撃が加わったときの巻きズレや貼り付きを抑制可能なフィルムのロール体およびその製造方法を提供することができる。 According to the present invention, a roll body of a film which is not easily crushed by a winding pressure and which can suppress winding misalignment and sticking when an impact is applied from the outside by maintaining an appropriate amount of air between the films, and a method for manufacturing the same. Can be provided.
 10 帯状のフィルム
 11 フィルム基部
 12 凸部
10 Strip-shaped film 11 Film base 12 Convex part

Claims (15)

  1.  幅方向両端部に帯状の凸部を有するフィルムであって、
     前記凸部の最大高さをTmaxとした時、前記凸部の最大高さTmaxに対する凸部中点(Tmax/2)より上にある凸部領域S1、前記中点より下にある凸部の領域をS2としたとき、S1とS2が下記式(1)を満たすことを特徴とするフィルム。
     式(1):0.6≦S1/S2≦0.95
    A film having strip-shaped protrusions at both ends in the width direction.
    When the maximum height of the convex portion is Tmax, the convex portion region S1 above the convex midpoint (Tmax / 2) with respect to the maximum height Tmax of the convex portion, and the convex portion below the midpoint. A film characterized in that S1 and S2 satisfy the following formula (1) when the region is S2.
    Equation (1): 0.6 ≤ S1 / S2 ≤ 0.95
  2.  前記凸部の中央部の高さは、前記凸部の両端部の高さよりも高いか、または、前記凸部の両端部の高さと同じである、
     請求項1に記載のフィルム。
    The height of the central portion of the convex portion is higher than the height of both ends of the convex portion, or is the same as the height of both ends of the convex portion.
    The film according to claim 1.
  3.  前記帯状の凸部の延在方向と直交するフィルムの断面において、
     前記凸部の形状は、弓形または台形である、
     請求項1または2に記載のフィルム。
    In the cross section of the film orthogonal to the extending direction of the strip-shaped convex portion,
    The shape of the convex portion is a bow shape or a trapezoidal shape.
    The film according to claim 1 or 2.
  4.  Tmaxは、0.3~4.0μmである、
     請求項1~3のいずれか一項に記載のフィルム。
    Tmax is 0.3-4.0 μm,
    The film according to any one of claims 1 to 3.
  5.  前記フィルムは、フィルム基部と、前記フィルム基部の表面の幅方向両端部に配置された前記帯状の凸部とを有し、
     前記フィルム基部は、凹部を有さない、
     請求項1~4のいずれか一項に記載のフィルム。
    The film has a film base and strip-shaped protrusions arranged at both ends of the surface of the film base in the width direction.
    The film base has no recesses.
    The film according to any one of claims 1 to 4.
  6.  前記フィルム基部の厚みは、3~40μmである、
     請求項5に記載のフィルム。
    The thickness of the film base is 3 to 40 μm.
    The film according to claim 5.
  7.  前記フィルム基部は、樹脂フィルムである、
     請求項5または6のいずれか一項に記載のフィルム。
    The film base is a resin film.
    The film according to any one of claims 5 or 6.
  8.  前記樹脂フィルムは、光学フィルムである、
     請求項7に記載のフィルム。
    The resin film is an optical film.
    The film according to claim 7.
  9.  幅方向両端部に帯状の凸部を有するフィルムの製造方法であって、
     1)第1樹脂組成物を流延して、帯状のフィルム基部を得る工程と、
     2)前記帯状のフィルム基部の表面の幅方向両端部に、第2樹脂組成物を流延して、前記帯状の凸部を形成する工程とを含み、
     前記2)の工程の流延時における前記第2樹脂組成物の粘度η2と、前記1)の工程の流延時における前記第1樹脂組成物の粘度η1との比η2/η1は、0.00003~0.02である、
     フィルムの製造方法。
    A method for manufacturing a film having band-shaped protrusions at both ends in the width direction.
    1) A step of casting the first resin composition to obtain a strip-shaped film base, and
    2) A step of casting a second resin composition on both ends of the surface of the strip-shaped film base in the width direction to form the strip-shaped convex portions is included.
    The ratio η2 / η1 of the viscosity η2 of the second resin composition at the time of casting in the step 2) to the viscosity η1 of the first resin composition at the time of casting in the step 1) is 0.00003 to. 0.02,
    How to make a film.
  10.  前記第1樹脂組成物および前記第2樹脂組成物のそれぞれは、樹脂と溶媒とを含み、
     前記第2樹脂組成物の樹脂濃度は、前記第1樹脂組成物の樹脂濃度よりも低い、
     請求項9に記載のフィルムの製造方法。
    Each of the first resin composition and the second resin composition contains a resin and a solvent, and contains a resin and a solvent.
    The resin concentration of the second resin composition is lower than the resin concentration of the first resin composition.
    The film manufacturing method according to claim 9.
  11.  前記第2樹脂組成物の樹脂濃度は、2質量%超10質量%以下である、
     請求項10に記載のフィルムの製造方法。
    The resin concentration of the second resin composition is more than 2% by mass and 10% by mass or less.
    The method for producing a film according to claim 10.
  12.  前記フィルム基部の厚みは、3~40μmである、
     請求項9~11のいずれか一項に記載のフィルムの製造方法。
    The thickness of the film base is 3 to 40 μm.
    The film manufacturing method according to any one of claims 9 to 11.
  13.  前記フィルム基部は、光学フィルムである、
     請求項9~12のいずれか一項に記載のフィルムの製造方法。
    The film base is an optical film.
    The method for producing a film according to any one of claims 9 to 12.
  14.  幅方向両端部に帯状の凸部を有する帯状のフィルムを巻き取ったロール体であって、
     前記凸部の最大高さをTmaxとした時、前記凸部の最大高さTmaxに対する凸部中点(Tmax/2)より上にある凸部領域S1、前記中点より下にある凸部の領域をS2としたとき、S1とS2が下記式(1)を満たすことを特徴とするロール体。
     式(1):0.6≦S1/S2≦0.95
    A roll body obtained by winding a strip-shaped film having strip-shaped protrusions at both ends in the width direction.
    When the maximum height of the convex portion is Tmax, the convex portion region S1 above the convex midpoint (Tmax / 2) with respect to the maximum height Tmax of the convex portion, and the convex portion below the midpoint. A roll body characterized in that S1 and S2 satisfy the following formula (1) when the region is S2.
    Equation (1): 0.6 ≤ S1 / S2 ≤ 0.95
  15.  幅方向両端部に帯状の凸部を有する帯状のフィルムを巻き取ったロール体の製造方法であって、
     1)第1樹脂組成物を流延して、帯状のフィルム基部を得る工程と、
     2)前記帯状のフィルム基部の表面の幅方向両端部に、第2樹脂組成物を流延して、前記帯状の凸部を形成する工程と、
     を含み、
     前記2)の工程の流延時における前記第2樹脂組成物の粘度η2と、前記1)の工程の流延時における前記第1樹脂組成物の粘度η1との比η2/η1は、0.00003~0.02である、
     ロール体の製造方法。
    A method for manufacturing a roll body in which a strip-shaped film having strip-shaped protrusions at both ends in the width direction is wound.
    1) A step of casting the first resin composition to obtain a strip-shaped film base, and
    2) A step of casting the second resin composition on both ends of the surface of the strip-shaped film base in the width direction to form the strip-shaped convex portions.
    Including
    The ratio η2 / η1 of the viscosity η2 of the second resin composition at the time of casting in the step 2) to the viscosity η1 of the first resin composition at the time of casting in the step 1) is 0.00003 to. 0.02,
    A method for manufacturing a roll body.
PCT/JP2020/023302 2020-06-12 2020-06-12 Film and method for producing same, and roll body and method for producing same WO2021250904A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080101940.3A CN116018249A (en) 2020-06-12 2020-06-12 Film and method for producing same, roll and method for producing same
JP2022530000A JP7556386B2 (en) 2020-06-12 2020-06-12 Film and manufacturing method thereof, roll body and manufacturing method thereof
PCT/JP2020/023302 WO2021250904A1 (en) 2020-06-12 2020-06-12 Film and method for producing same, and roll body and method for producing same
TW110121163A TWI782570B (en) 2020-06-12 2021-06-10 Film and its manufacturing method, roll body and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/023302 WO2021250904A1 (en) 2020-06-12 2020-06-12 Film and method for producing same, and roll body and method for producing same

Publications (1)

Publication Number Publication Date
WO2021250904A1 true WO2021250904A1 (en) 2021-12-16

Family

ID=78847165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/023302 WO2021250904A1 (en) 2020-06-12 2020-06-12 Film and method for producing same, and roll body and method for producing same

Country Status (4)

Country Link
JP (1) JP7556386B2 (en)
CN (1) CN116018249A (en)
TW (1) TWI782570B (en)
WO (1) WO2021250904A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184136A (en) * 2008-02-04 2009-08-20 Fujifilm Corp Casting apparatus, solution film forming equipment, and solution film forming method
JP2009234169A (en) * 2008-03-28 2009-10-15 Konica Minolta Opto Inc Manufacturing method for optical film
WO2013140433A1 (en) * 2012-03-19 2013-09-26 コニカミノルタ株式会社 Roll of optical film and process for producing polarizer using same
WO2014091921A1 (en) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 Optical film roll, method for producing same, polarizing plate, and display device
JP2014115473A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Roll body of optical film, manufacturing method therefor, package, polarization plate and liquid crystal display device
JP2014149325A (en) * 2013-01-31 2014-08-21 Konica Minolta Inc Method for manufacturing optical film, method for manufacturing polarizing plate and method for manufacturing liquid crystal display device
WO2014132691A1 (en) * 2013-02-26 2014-09-04 コニカミノルタ株式会社 Polarizing sheet, polarizing sheet production method and liquid crystal display device

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4479260B2 (en) * 2004-02-04 2010-06-09 コニカミノルタオプト株式会社 Manufacturing method of optical film
JP2017114027A (en) * 2015-12-25 2017-06-29 コニカミノルタ株式会社 Resin film roll, method for producing resin film roll, polarizing plate and image display device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009184136A (en) * 2008-02-04 2009-08-20 Fujifilm Corp Casting apparatus, solution film forming equipment, and solution film forming method
JP2009234169A (en) * 2008-03-28 2009-10-15 Konica Minolta Opto Inc Manufacturing method for optical film
WO2013140433A1 (en) * 2012-03-19 2013-09-26 コニカミノルタ株式会社 Roll of optical film and process for producing polarizer using same
JP2014115473A (en) * 2012-12-10 2014-06-26 Konica Minolta Inc Roll body of optical film, manufacturing method therefor, package, polarization plate and liquid crystal display device
WO2014091921A1 (en) * 2012-12-13 2014-06-19 コニカミノルタ株式会社 Optical film roll, method for producing same, polarizing plate, and display device
JP2014149325A (en) * 2013-01-31 2014-08-21 Konica Minolta Inc Method for manufacturing optical film, method for manufacturing polarizing plate and method for manufacturing liquid crystal display device
WO2014132691A1 (en) * 2013-02-26 2014-09-04 コニカミノルタ株式会社 Polarizing sheet, polarizing sheet production method and liquid crystal display device

Also Published As

Publication number Publication date
JP7556386B2 (en) 2024-09-26
JPWO2021250904A1 (en) 2021-12-16
TW202146203A (en) 2021-12-16
TWI782570B (en) 2022-11-01
CN116018249A (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP5510459B2 (en) Manufacturing method of optical film
JP2010083092A (en) Resin film roll and process for producing the same
JPWO2007015369A1 (en) Method for producing cellulose ester film and liquid crystal display device using the same
US9784897B2 (en) Optical film, polarizing plate and liquid crystal display device
CN115308821A (en) Polyester film for protecting polarizer
KR20110082138A (en) Phase difference film
KR100473665B1 (en) Optical films and process for producing the same
TWI407157B (en) Optical compensatory film, process for producing the same, and polarizing plate and liquid crystal display employing the same
JP2008063536A (en) Cyclic olefin-based resin film
JP7427897B2 (en) Film roll and its manufacturing method
WO2021250904A1 (en) Film and method for producing same, and roll body and method for producing same
JP2010026097A (en) Retardation film, composite sheet polarizer, sheet polarizer and liquid crystal display device
TW201315760A (en) Optical resin material, manufacturing method of optical resin material, manufacturing method of optical film, optical film of display, optical film of lcd, polarizing plate protective film, optical film, light source of polarization surface, lens, screen
JP2007062055A (en) Cellulose ester film, its manufacturing method and liquid display device using cellulose ester film
JP7460019B2 (en) Film roll and film roll manufacturing method
TWI831260B (en) Film manufacturing method and film
JP7314942B2 (en) Optical films, protective films for polarizers and polarizers
WO2022163131A1 (en) Film, film roll, and method for producing film
WO2023248896A1 (en) Film roll and method for manufacturing film roll
WO2023248894A1 (en) Film roll and method for manufacturing film roll
JP2023176991A (en) Film roll and manufacturing method for the same
KR20240158789A (en) Film roll
JP2023173157A (en) Film roll, method for manufacture thereof, polarizer, and display device
JP2022103719A (en) Optical film, method for producing the same and use thereof
TW202118624A (en) Multilayer body, method for producing multilayer body and method for producing polarizing plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939992

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530000

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939992

Country of ref document: EP

Kind code of ref document: A1