Nothing Special   »   [go: up one dir, main page]

WO2021241687A1 - Sputtering target and optical functional film - Google Patents

Sputtering target and optical functional film Download PDF

Info

Publication number
WO2021241687A1
WO2021241687A1 PCT/JP2021/020200 JP2021020200W WO2021241687A1 WO 2021241687 A1 WO2021241687 A1 WO 2021241687A1 JP 2021020200 W JP2021020200 W JP 2021020200W WO 2021241687 A1 WO2021241687 A1 WO 2021241687A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
optical functional
less
component
functional film
Prior art date
Application number
PCT/JP2021/020200
Other languages
French (fr)
Japanese (ja)
Inventor
大亮 金子
啓太 梅本
幸也 杉内
晋 岡野
健志 大友
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021086830A external-priority patent/JP2021188133A/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Publication of WO2021241687A1 publication Critical patent/WO2021241687A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/36Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating being a metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only

Definitions

  • the present invention relates to a sputtering target used for forming an optical functional film that is laminated on a metal thin film or the like to reduce reflection of light from the metal thin film or the like, and an optical functional film.
  • a projection type capacitive touch panel has been adopted as an input means for a mobile terminal device or the like.
  • a sensing electrode is formed for touch position detection.
  • the electrode for sensing is usually formed by patterning, and an X electrode extending in the X direction and a Y electrode extending in the Y direction orthogonal to the X direction are formed on one surface of the transparent substrate. These are provided and arranged in a grid pattern.
  • the pattern of the electrodes is visually recognized from the outside because the metal thin film has a metallic luster. Therefore, it is conceivable to reduce the visibility of the electrode by forming a low-reflectance film having a low reflectance of visible light on the metal thin film.
  • a color filter for color display is adopted.
  • a black member called a black matrix is formed for the purpose of improving contrast and color purity and improving visibility.
  • the above-mentioned low reflectance film can also be used as this black matrix (hereinafter referred to as “BM”).
  • a back electrode of the solar cell when sunlight is incident through a glass substrate or the like, a back electrode of the solar cell is formed on the opposite side thereof.
  • a metal thin film such as molybdenum (Mo) or silver (Ag) is used.
  • Mo molybdenum
  • Ag silver
  • patterning is performed by etching, for example, as described in Patent Documents 1 and 2.
  • patterning is performed using an etching solution containing hydrogen peroxide.
  • the etching property by the etching solution containing hydrogen peroxide is excellent, but the heat resistance is insufficient.
  • the low reflectance film described in Patent Document 2 is a copper oxynitride film (CuNO film) and has excellent heat resistance, but the etching property by an etching solution containing hydrogen peroxide is insufficient. Met.
  • the present invention has been made in view of the above-mentioned circumstances, and is excellent in etching property and heat resistance by an etching solution containing hydrogen peroxide, and can sufficiently suppress reflection of light from a metal thin film or the like. It is an object of the present invention to provide a sputtering target for forming an optical functional film and an optical functional film.
  • the sputtering target according to one aspect of the present invention is a first component composed of one or two kinds of carbides selected from W and Ta, and Si, In, Y, Nb, V and Zn. , Zr, Al, B, Mo, W contains a second component composed of one or more oxides selected from, and the total content of W, Ta in the first component is 10 atomic%. It is characterized in that it is within the range of 35 atomic% or less.
  • the sputtering target having this configuration has a first component and a second component, and the total content of W and Ta in the first component is within the range of 10 atomic% or more and 35 atomic% or less. Therefore, it is possible to form an optical functional film having excellent heat resistance and being able to be satisfactorily etched with an etching solution containing hydrogen peroxide. Further, it is possible to form an optical functional film capable of sufficiently suppressing the reflection of light from a metal thin film or the like.
  • the structure is such that the granular carbides are dispersed in the matrix of the oxide, and the average particle size of the carbides is within the range of 1 ⁇ m or more and 150 ⁇ m or less. It is preferable that In this case, since the average particle size of the carbide is 1 ⁇ m or more, the density of the sputtering target can be increased. Further, since the average particle size of the carbide is 150 ⁇ m or less, it is possible to stably form an optical functional film in which the carbide and the oxide are uniformly mixed by sputtering.
  • the density ratio is preferably 90% or more. In this case, since the density ratio is 90% or more, it is possible to suppress the generation of particles due to abnormal discharge during sputtering, and stable film formation can be achieved.
  • the resistivity is preferably 0.1 ⁇ ⁇ cm or less.
  • the specific resistivity is 0.1 ⁇ ⁇ cm or less, stable film formation can be performed without abnormal discharge by DC sputtering, and an optical functional film can be efficiently formed.
  • the optical functional film according to one aspect of the present invention comprises a first component composed of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B, It contains a second component composed of one or more oxides selected from Mo and W, and the total content of W and Ta in the first component is in the range of 3 atomic% or more and 11 atomic% or less. It is characterized by being inside.
  • the optical functional film having this configuration has a first component and a second component, and the total content of W and Ta in the first component is in the range of 3 atomic% or more and 11 atomic% or less. Since it is inside, it has excellent heat resistance and can be satisfactorily etched with an etching solution containing hydrogen peroxide. In addition, it is possible to sufficiently suppress the reflection of light from a metal thin film or the like.
  • the visible light reflectance is 20% or less when a film is formed on the surface in contact with the Cu film in a thickness range of 25 nm or more and 75 nm or less. ..
  • the above-mentioned visible light reflectance is suppressed to a low level of 20% or less, it is possible to reliably suppress the reflection of light from the laminated metal thin film or the like.
  • the sheet resistance of a thickness 50nm is 10 6 ⁇ / sq.
  • the sheet resistance of a thickness 50nm is 10 6 ⁇ / sq.
  • Conductivity is ensured as follows, and energization can be performed through this optical functional film.
  • the etching rate with the hydrogen peroxide etching solution is 0.3 mm / sec. Above 5.8 mm / sec. It is preferably within the following range. In this case, the etching rate with the hydrogen peroxide etching solution is 0.3 mm / sec. Above 5.8 mm / sec. Since it is within the following range, when the optical functional film according to one aspect of the present invention is laminated on the metal thin film, it can be satisfactorily etched together with the metal thin film, and patterning can be performed efficiently. It will be possible.
  • the product n ⁇ k ⁇ d of the film thickness d, the refractive index n in the visible light region, and the extinction coefficient k in the visible light region is within the range of 40 or more and 100 or less. It is preferable that In this case, the absorption and interference of visible light makes it possible to more reliably suppress the reflection of visible light.
  • a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, and the visible light reflectance after heat treatment held at 400 ° C. for 10 minutes is high. It is preferably 20% or less. In this case, since the visible light reflectance after the heat treatment held at 400 ° C. for 10 minutes is 20% or less, the optical characteristics do not change significantly even if the heat treatment is performed, and the heat resistance is excellent.
  • sputtering for forming an optical functional film which is excellent in etching property and heat resistance by an etching solution containing hydrogen peroxide and can sufficiently suppress reflection of light from a metal thin film or the like.
  • a target and an optical functional film can be provided.
  • the optical functional film 12 is formed so as to be laminated on the metal wiring film 11 formed on the surface of the substrate 1.
  • the metal wiring film 11 is made of aluminum, an aluminum alloy, copper, a copper alloy, or the like, which are metals having excellent conductivity, and in this embodiment, it is made of copper. Since the metal wiring film 11 has a metallic luster, it reflects visible light and is visually recognized from the outside.
  • the optical functional film 12 of the present embodiment is provided to suppress the reflection of visible light in the laminated metal wiring film 11.
  • the optical functional film 12 of the present embodiment has a first component composed of one or two kinds of carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B and Mo.
  • a second component consisting of one or more oxides selected from W, and the total content of W and Ta in the first component is within the range of 3 atomic% or more and 11 atomic% or less. Has been done.
  • the first component composed of one or two kinds of carbides selected from W and Ta has conductivity, and the conductivity of the optical functional film 12 is ensured by this first component. Further, the heat resistance of the optical functional film 12 is improved by this first component.
  • the second component consisting of one or more oxides selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W is mixed with the above-mentioned first component. This makes it possible to adjust the optical characteristics of the optical functional film 12. Further, by adopting the above-mentioned composition, it is possible to perform an etching treatment satisfactorily with an etching solution containing hydrogen peroxide.
  • the heat resistance and conductivity of the optical functional film 12 may be insufficient. If the total content of W and Ta in the first component exceeds 11 atomic%, the content of oxides such as Si may be insufficient, and the reflection of light from the metal thin film 11 or the like may not be sufficiently suppressed.
  • the lower limit of the total content of W and Ta in the first component in the optical functional film 12 of the present embodiment is more preferably 5.0 atomic% or more, still more preferably 7.0 atomic% or more.
  • the upper limit of the total content of W and Ta in the first component is more preferably 10.0 atomic% or less, still more preferably 9.0 atomic% or less.
  • the total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, and W in the second component is preferably in the range of 15 atomic% or more and 50 atomic% or less.
  • the total content of W and Ta in the first component and the total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W in the second component are O,
  • the total amount of all elements including C is 100 atomic%.
  • the rest other than the above-mentioned elements whose contents are specified are C, O, and unavoidable impurities.
  • the visible light reflectance when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less is the reflectance of the Cu film (about 74). %) Is preferably smaller. Further, it is preferably 30% or less, and further preferably 20% or less.
  • the optical functional film 12 is formed on the Cu film in a thickness range of 25 nm or more and 75 nm or less.
  • the visible light reflectance is 20% or less when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, the reflection of visible light on the metal wiring film 11 can be reliably suppressed.
  • the visible light reflectance is 15% or less when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less. It is more preferably present, and further preferably 10% or less.
  • the sheet resistance of a thickness 50nm is 10 6 ⁇ / sq. It is preferably as follows. This makes it possible to conduct conduction between the metal wiring film 11 and the external wiring via the optical functional film 12.
  • the sheet resistance of a thickness of 50nm is 10 6 ⁇ / sq. If it exceeds, the metal wiring and the outside can be electrically connected to each other by forming a hole in the low reflectance film or the substrate.
  • the sheet resistance of the thick 50nm is 10 5 ⁇ / sq. More preferably to less, 10 4 ⁇ / sq. The following is more preferable.
  • the lower limit of the sheet resistance at a thickness of 50 nm is preferably 10 ⁇ / sq. That is all.
  • the etching rate of the hydrogen peroxide etching solution is 0.3 mm or less of the etching rate of the Cu film (5.8 mm ⁇ sec.), And no undissolved residue is generated. / Sec. Above 5.8 mm / sec. It is preferably within the following range. This makes it possible to form a wiring pattern satisfactorily by etching in a state of being laminated with the metal wiring film 11.
  • the hydrogen peroxide etching solution for example, a hydrogen peroxide-based etching solution GHP-3 manufactured by Kanto Chemical Co., Inc. can be used.
  • the lower limit of the etching rate with the hydrogen peroxide etching solution is 0.4 mm / sec.
  • the above is more preferable, and 0.5 mm / sec. The above is more preferable.
  • the upper limit of the etching rate with the hydrogen peroxide etching solution is 3.0 mm / sec. It is more preferably 2.0 mm / sec. The following is more preferable.
  • the product n ⁇ k ⁇ d of the film thickness d, the refractive index n in the visible light region, and the extinction coefficient k in the visible light region is within the range of 40 or more and 100 or less. Is preferable.
  • reflection of the metal wiring film 11 is suppressed by absorption of visible light (extinction coefficient k) and interference (thickness d and refractive index n).
  • the visible light region is a region having a wavelength of 380 to 780 nm.
  • the visible light region is absorbed and interfered with by the visible light region. It is possible to suppress the reflection of light more reliably.
  • the lower limit of d ⁇ n ⁇ k is more preferably 50 or more, and further preferably 60 or more.
  • the upper limit of d ⁇ n ⁇ k is more preferably 90 or less, and further preferably 80 or less.
  • a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, and the visible light reflectance after heat treatment held at 400 ° C. for 10 minutes is high. It is preferably 20% or less. As a result, the optical characteristics do not deteriorate even after the heat treatment is performed, and the heat resistance is definitely excellent.
  • the visible light reflectance is more preferably 15% or less after heat treatment in which a film is formed on the surface in contact with the Cu film in a thickness of 25 nm or more and 75 nm or less and held at 400 ° C. for 10 minutes. Is more preferable.
  • the optical functional film 12 is formed on the Cu film in a thickness range of 25 nm or more and 75 nm or less.
  • the sputtering target of this embodiment is used for forming the above-mentioned optical functional film 12.
  • the sputtering target of this embodiment has a first component consisting of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W. It contains a second component composed of one or more kinds of oxides selected from the above, and the total content of W and Ta in the first component is within the range of 10 atomic% or more and 35 atomic% or less. There is.
  • the first component composed of one or two kinds of carbides selected from W and Ta has conductivity, and the first component ensures the conductivity of the sputtering target of the present embodiment.
  • the second component which consists of one or more oxides selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, and W, is more sinterable than the first component. Since it is excellent, the density ratio of the sputtering target according to the present embodiment is improved. Further, by adopting the above-mentioned composition, it is possible to form an optical functional film 12 that can be satisfactorily etched with an etching solution containing hydrogen peroxide.
  • the total content of W and Ta in the first component of the sputtering target is 3 atomic% or more and 11
  • the optical functional film of the present embodiment within the range of atomic% or less can be formed.
  • the lower limit of the total content of W and Ta in the first component in the sputtering target of the present embodiment is more preferably 12.0 atomic% or more, still more preferably 14.0 atomic% or more.
  • the upper limit of the total content of W and Ta in the first component is more preferably 32.0 atomic% or less, still more preferably 29.0 atomic% or less.
  • the total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, and W in the second component is preferably in the range of 7 atomic% or more and 41 atomic% or less.
  • the total content of W and Ta in the first component and the total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W in the second component are O,
  • the total amount of all elements including C is 100 atomic%.
  • the rest other than the above-mentioned elements whose contents are specified are C, O, and unavoidable impurities.
  • the structure is such that carbides are dispersed in an island shape in the matrix phase of the above-mentioned oxide, and the average particle size of the carbides is within the range of 1 ⁇ m or more and 150 ⁇ m or less. It is preferable that it is.
  • the average particle size of the carbide is the average number of circle-equivalent diameters.
  • the average particle size of the carbide is 1 ⁇ m or more, the density of the sputtering target can be increased.
  • the average particle size of the carbide is 150 ⁇ m or less, it is possible to stably form an optical functional film in which the carbide and the oxide are uniformly mixed by sputtering.
  • the lower limit of the average particle size of the carbide is more preferably 2 ⁇ m or more, further preferably 8 ⁇ m or more.
  • the upper limit of the average particle size of the carbide is more preferably 120 ⁇ m or less, and further preferably 80 ⁇ m or less.
  • the upper limit of the average particle size of the carbide may be 30 ⁇ m or less, or 15 ⁇ m or less.
  • the density ratio is preferably 90% or more. By setting the density ratio to 90% or more, it is possible to suppress the generation of particles during sputtering.
  • the density ratio is preferably 92% or more, more preferably 93% or more.
  • the upper limit of the density ratio is preferably 100% or less.
  • the resistivity is preferably 0.1 ⁇ ⁇ cm or less.
  • the optical functional film 12 can be stably formed by DC sputtering.
  • the resistivity is preferably 5 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less, and more preferably 1 ⁇ 10 ⁇ 2 ⁇ ⁇ cm or less.
  • the lower limit of the specific resistivity is preferably 1 ⁇ 10 -6 ⁇ ⁇ cm or more.
  • a first component powder composed of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, A second component powder composed of one or more oxides selected from Al, B, Mo, and W is weighed and mixed to obtain a sintered raw material powder.
  • the mixing method is not particularly limited, but in the present embodiment, a ball mill device is used.
  • the average particle size of the first component powder composed of one or two kinds of carbides selected from W and Ta is preferably in the range of 1 ⁇ m or more and 150 ⁇ m or less.
  • the average particle size of the second component powder consisting of one or more oxides selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W is 0.05 ⁇ m or more and 0. It is preferably within the range of .3 ⁇ m or less.
  • the average particle size of the first component powder and the second component powder described above is the volume-based D50 diameter.
  • the above-mentioned sintered raw material powder is sintered by heating while pressurizing to obtain a sintered body.
  • sintering is performed using a hot press device or a hot isotropic pressure pressurizing device (HIP).
  • the sintering temperature is in the range of 650 ° C. or higher and 1000 ° C. or lower
  • the holding time at the sintering temperature is in the range of 0.5 hours or more and 15 hours or less
  • the pressurizing pressure is in the range of 10 MPa or more and 200 MPa or less. Be inside.
  • the first component composed of one or two kinds of carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn. , Zr, Al, B, Mo, W contains a second component consisting of one or more oxides selected from, and the total content of W, Ta in the first component is 10 atomic% or more. Since it is within the range of 35 atomic% or less, it is possible to form an optical functional film 12 which is excellent in heat resistance and can be satisfactorily etched with an etching solution containing hydrogen peroxide. Further, it is possible to form an optical functional film 12 capable of sufficiently suppressing the reflection of light from a metal thin film or the like.
  • the sputtering target of the present embodiment when the structure is such that granular carbides are dispersed in the matrix of the oxide and the average particle size of the carbides is within the range of 1 ⁇ m or more and 150 ⁇ m or less, the sputtering target of this sputtering target. It is possible to increase the density and to stably form an optical functional film 12 in which carbides and oxides are uniformly mixed by sputtering.
  • the sputtering target of the present embodiment when the density ratio is 90% or more, the generation of particles at the time of sputtering can be suppressed, and the optical functional film 12 can be stably formed by sputtering. .. Further, in the sputtering target of the present embodiment, when the specific resistivity is 0.1 ⁇ ⁇ cm or less, stable film formation can be performed by DC sputtering, and the optical functional film 12 can be efficiently formed. can do.
  • the first component composed of one or two kinds of carbides selected from W and Ta, Si, In, Y, Nb, V, Zn, Zr, Al and B , Mo, W contains a second component consisting of one or more oxides selected from, and the total content of W, Ta in the first component is in the range of 3 atomic% or more and 11 atomic% or less. Since it is inside, it has excellent heat resistance and can be satisfactorily etched with an etching solution containing hydrogen peroxide. In addition, it is possible to sufficiently suppress the reflection of light from a metal thin film or the like.
  • the metal wiring film 11 when the visible light reflectance is 20% or less when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, the metal wiring film 11 is used. It is possible to reliably suppress the reflection of light.
  • the sheet resistance of a thickness 50nm is 10 6 ⁇ / sq. In the following cases, conductivity is ensured and energization can be performed through the optical functional film 12.
  • the etching rate with the hydrogen peroxide etching solution is 0.3 mm / sec. Above 5.8 mm / sec. When it is within the following range, when it is laminated on the metal wiring film 11, it can be satisfactorily etched together with the metal wiring film 11, and patterning can be efficiently performed.
  • the product n ⁇ k ⁇ d of the film thickness d, the refractive index n in the visible light region, and the extinction coefficient k in the visible light region is set to be within the range of 40 or more and 100 or less. If so, the absorption and interference of visible light makes it possible to more reliably suppress the reflection of visible light. Further, in the optical functional film 12 of the present embodiment, a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, and the visible light reflectance after heat treatment held at 400 ° C. for 10 minutes is 20% or less. In the case of, the optical characteristics do not change significantly even if the heat treatment is performed, and the heat resistance is excellent.
  • the optical functional film 12 of the present embodiment is an optical functional film 12 formed on a metal wiring film 11 containing Al or Cu, or between a substrate and the metal wiring film 11, and W.
  • the first component consisting of one or two carbides selected from Ta and the oxidation of one or more selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, W. It is characterized in that it contains a second component made of a substance and has a visible light reflectance of 20% or less when a film is formed in a thickness range of 25 nm or more and 75 nm or less.
  • the present invention is not limited to this, and can be appropriately changed without departing from the technical requirements of the invention.
  • the laminated film having the structure shown in FIG. 1 has been described as an example, but the present invention is not limited to this, and the optical functional film 12 of the present embodiment is formed between the substrate and the metal wiring. It may be a laminated film having a structure of a glass substrate / optical functional film / metal wiring formed. In this case, the light from the glass substrate will be reflected. Further, with this structure, the optical functional film does not need to have conductivity.
  • the first component powder consisting of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo
  • a second component powder consisting of one or more oxides selected from W was weighed. 1 kg of the weighed raw material powder and 1.3 kg of a ⁇ 5 mm ball were put into a 3 L pot. Next, the raw material powder was mixed with a ball mill device to obtain a raw material powder for sintering. All powders having a purity of 99.9% by mass or more were used.
  • the average particle size of the first component powder and the second component powder was measured as follows. Prepare 100 mL of an aqueous solution having a sodium hexametaphosphate concentration of 0.2 vol%, add 10 mg of each raw material powder to this aqueous solution, and use a laser diffraction / scattering method (measuring device: Microtrac MT3000 manufactured by Nikkiso Co., Ltd.) to distribute the particle size (volume). Reference) was measured. From the obtained particle size distribution (volume basis), the average particle size of the first component powder and the average particle size of the second component powder (D50 diameter) were determined.
  • sintering was performed by hot pressing or HIP to obtain a sintered body.
  • the raw material powder for sintering is filled in a carbon hot press mold ( ⁇ 135 mm), and the hot press is performed at 830 ° C. at the pressures shown in Tables 1 and 2 for 3 hours in a vacuum to bake. A bunch was made.
  • HIP hot pressing
  • a mixed powder raw material powder for sintering
  • CIP cold hydrostatic pressure
  • the molded body was set in the can of SPCC (rolled steel material), and the SPCC was welded. Then, the vacuum was evacuated to 0.001 Pa or less, and then the can was sealed. Sintering was performed at 850 ° C. at the pressures shown in Tables 1 and 2 for 2 hours to prepare a sintered body.
  • SPCC rolled steel material
  • These sintered bodies were machined to a diameter of 125 mm and a thickness of 5 mm, and then attached to a backing plate made of Cu with In solder to prepare a sputtering target. If it is desired to reduce impurity elements, it is preferable to use a raw material powder having a higher purity. Indium oxide powder and zinc oxide powder may be reduced during hot pressing and HIP to precipitate In and Zn, respectively. Therefore, it is preferable to sufficiently apply boron nitride to the carbon mold so that the carbon mold does not come into direct contact with the indium oxide powder and the zinc oxide powder.
  • the obtained sputtering target and the optical functional film formed by using this sputtering target were evaluated for the following items.
  • composition of sputtering target Quantitative analysis of the EPMA device was performed to quantify each metal component and C and O components, and quantification results were obtained. It was confirmed that there was no significant change in the composition at the time of blending the raw materials. For those containing both the carbide of W and the oxide of W, the ratio of the carbide of W and the oxide of W was obtained by performing XPS analysis, and the W in the first component was obtained using the obtained ratio and the quantitative result. And the amount of W in the second component were determined respectively.
  • the volume of the sputtering target was calculated from the dimensions of the obtained processed sputtering target, and the dimensional density of the sputtering target was calculated by dividing the measured weight value by the volume.
  • the ratio of the dimensional density divided by the calculated density is shown in Tables 3 and 4 as the "density ratio".
  • each metal component and C and O components were quantified and quantification results were obtained.
  • the ratio of the carbide of W and the oxide of W was obtained by performing XPS analysis, and the W in the first component was obtained using the obtained ratio and the quantitative result. And the amount of W in the second component were determined respectively. From the obtained results, the ratio of each component was calculated when the total value of the detected metal component and the C and O components was 100 atomic%. Further, in Comparative Example 4, each metal component and the C, O, N components were quantified, and the ratio of each component was calculated when the total value of the metal component and the C, O, N components was 100 atomic%. ..
  • a Cu film having a thickness of 200 nm was formed on a glass substrate.
  • Ar is flowed in the sputtering chamber at 50 sccm so that the above-mentioned optical functional film has an appropriate film thickness d (25 nm or more and 75 nm or less) on the surface in contact with the Cu film, and the total pressure in the chamber is 0.67 Pa.
  • a film was formed with the outputs shown in Tables 5 and 6 at DC with a TS distance of 70 mm to prepare a laminated film.
  • the reflectance of the laminated film formed on the glass substrate as described above was measured.
  • a spectrophotometer U-4100 manufactured by Hitachi, Ltd.
  • the laminated film prepared by measuring the reflectance was heat-treated at 400 ° C. in a nitrogen atmosphere for 10 minutes.
  • the reflectance after the heat treatment was measured in the same manner as immediately after the film formation.
  • Comparative Example 1 the sputtering target, ZnO is WC and the second component is a first component, but contains Y 2 O 3, the content of W are 8.0 atomic%, the deposition The W content in the obtained optical functional film was 2.8 atomic%. In this optical functional film, the reflectance was greatly increased after the heat treatment at 400 ° C., and the heat resistance was insufficient.
  • the sputtering target contained WC as the first component and Y 2 O 3 as the second component, but the W content was 39.0 atomic%, and the film was formed.
  • the W content in the optical functional film was 13.6 atomic%.
  • the reflectance before heat treatment was relatively large at 35%, and the reflection of visible light of the metal thin film could not be sufficiently suppressed.
  • the sputtering target was made of metallic Cu, and oxygen was introduced during sputtering to form an optical functional film made of copper oxide (CuO).
  • the reflectance was greatly increased after the heat treatment at 400 ° C., and the heat resistance was insufficient.
  • the sputtering target was made of metallic Cu, and an optical functional film made of copper oxynitride (CuNO) was formed by introducing nitrogen and oxygen during sputtering.
  • the sheet resistance became very high.
  • it was insoluble in the hydrogen peroxide etching solution and could not be etched.
  • the sputtering target contains the first component and the second component, and the total content of W and Ta in the first component is 10 atomic% or more and 35 atomic% or less. It is within the range, and the total content of W and Ta in the first component in the formed optical functional film is within the range of 3 atomic% or more and 11 atomic% or less.
  • the reflectance of visible light before the heat treatment was low, and the reflection of visible light of the metal thin film could be sufficiently suppressed.
  • the reflectance of visible light did not change significantly even after the heat treatment, and the heat resistance was excellent.
  • the etching treatment could be performed satisfactorily with the hydrogen peroxide etching solution.
  • an optical functional film having excellent etching properties and heat resistance due to an etching solution containing hydrogen peroxide and capable of sufficiently suppressing reflection of light from a metal thin film or the like is formed. It was confirmed that it is possible to provide a sputtering target to be filmed and an optical functional film.
  • the sputtering target of the present embodiment is suitably applied to a step of forming a low reflectance film provided on an electrode (metal film) for sensing in a projected capacitive touch panel and a black matrix in a flat panel display. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A sputtering target comprising a first component including a carbide of at least one selected from W and Ta and a second component of an oxide of at least one selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, and W, wherein the total contained amount of W and Ta in the first component is within a range of 10-35 atom%.

Description

スパッタリングターゲット、および、光学機能膜Sputtering target and optical functional film
 本発明は、金属薄膜等に積層されて、金属薄膜等からの光の反射を低減する光学機能膜を成膜するために用いられるスパッタリングターゲット、および、光学機能膜に関するものである。
 本願は、2020年5月28日に、日本に出願された特願2020-093236号、及び2021年5月24日に、日本に出願された特願2021-086830号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a sputtering target used for forming an optical functional film that is laminated on a metal thin film or the like to reduce reflection of light from the metal thin film or the like, and an optical functional film.
This application claims priority under Japanese Patent Application No. 2020-093236 filed in Japan on May 28, 2020 and Japanese Patent Application No. 2021-08638 filed in Japan on May 24, 2021. , The contents are used here.
 近年、携帯端末装置などの入力手段として、投影型静電容量方式のタッチパネルが採用されている。この方式のタッチパネルでは、タッチ位置検出のために、センシング用の電極が形成されている。このセンシング用の電極は、パターニングによって形成するのが通常であり、透明基板の一方の面に、X方向に延びたX電極と、X方向に対して直交するY方向に延びたY電極とを設け、これらを格子状に配置している。
 ここで、タッチパネルの電極に金属薄膜を用いた場合には、金属薄膜が金属光沢を有することから、電極のパターンが外部から視認されてしまう。このため、金属薄膜の上に、可視光の反射率の低い低反射率膜を成膜することで、電極の視認性を低下させることが考えられる。
In recent years, a projection type capacitive touch panel has been adopted as an input means for a mobile terminal device or the like. In this type of touch panel, a sensing electrode is formed for touch position detection. The electrode for sensing is usually formed by patterning, and an X electrode extending in the X direction and a Y electrode extending in the Y direction orthogonal to the X direction are formed on one surface of the transparent substrate. These are provided and arranged in a grid pattern.
Here, when a metal thin film is used for the electrodes of the touch panel, the pattern of the electrodes is visually recognized from the outside because the metal thin film has a metallic luster. Therefore, it is conceivable to reduce the visibility of the electrode by forming a low-reflectance film having a low reflectance of visible light on the metal thin film.
 また、液晶表示装置やプラズマディスプレイに代表されるフラットパネルディスプレイでは、カラー表示を目的としたカラーフィルタが採用されている。このカラーフィルタでは、コントラストや色純度を良くし、視認性を向上させることを目的として、ブラックマトリクスと称される黒色の部材が形成されている。
 上述の低反射率膜は、このブラックマトリクス(以下“BM”と記す)としても利用可能である。
Further, in a flat panel display represented by a liquid crystal display device or a plasma display, a color filter for color display is adopted. In this color filter, a black member called a black matrix is formed for the purpose of improving contrast and color purity and improving visibility.
The above-mentioned low reflectance film can also be used as this black matrix (hereinafter referred to as “BM”).
 さらに、太陽電池パネルにおいて、ガラス基板等を介して太陽光が入射される場合、その反対側には、太陽電池の裏面電極が形成されている。この裏面電極としては、モリブデン(Mo)、銀(Ag)などの金属薄膜が用いられている。このような態様の太陽電池パネルを裏面側から見たとき、その裏面電極である金属薄膜が視認されてしまう。
 このため、裏面電極の上に、上述の低反射率膜を成膜することで、裏面電極の視認性を低下させることが考えられる。
Further, in the solar cell panel, when sunlight is incident through a glass substrate or the like, a back electrode of the solar cell is formed on the opposite side thereof. As the back surface electrode, a metal thin film such as molybdenum (Mo) or silver (Ag) is used. When the solar cell panel of such an aspect is viewed from the back surface side, the metal thin film which is the back surface electrode is visually recognized.
Therefore, it is conceivable to reduce the visibility of the back surface electrode by forming the above-mentioned low reflectance film on the back surface electrode.
 ここで、上述の配線膜と低反射率膜の積層膜においては、例えば特許文献1、2に記載されているように、エッチングによってパターニングを行っている。
 なお、特許文献1においては、過酸化水素を含むエッチング液を用いてパターニングを実施している。
Here, in the laminated film of the wiring film and the low reflectance film described above, patterning is performed by etching, for example, as described in Patent Documents 1 and 2.
In Patent Document 1, patterning is performed using an etching solution containing hydrogen peroxide.
 ところで、上述の配線膜と低反射率膜の積層膜においては、その後の工程において例えば400℃程度の熱処理が施されることがある。このため、400℃程度の熱処理によっても光学性能が劣化しない耐熱性が要求される。
 また、上述のように、配線膜と低反射率膜の積層膜はエッチングによってパターニングされるため、エッチング性にも優れていることが要求される。
By the way, in the above-mentioned laminated film of the wiring film and the low reflectance film, heat treatment of, for example, about 400 ° C. may be applied in the subsequent steps. Therefore, heat resistance is required so that the optical performance does not deteriorate even by the heat treatment at about 400 ° C.
Further, as described above, since the laminated film of the wiring film and the low reflectance film is patterned by etching, it is required to have excellent etching property.
 ここで、特許文献1に記載された低反射率膜においては、過酸化水素を含むエッチング液によるエッチング性に優れているが、耐熱性が不十分であった。
 また、特許文献2に記載された低反射率膜においては、酸窒化銅膜(CuNO膜)とされており、耐熱性に優れているが、過酸化水素を含むエッチング液によるエッチング性が不十分であった。
Here, in the low reflectance film described in Patent Document 1, the etching property by the etching solution containing hydrogen peroxide is excellent, but the heat resistance is insufficient.
Further, the low reflectance film described in Patent Document 2 is a copper oxynitride film (CuNO film) and has excellent heat resistance, but the etching property by an etching solution containing hydrogen peroxide is insufficient. Met.
特開2015-130007号公報Japanese Unexamined Patent Publication No. 2015-130007 特開2016-186928号公報Japanese Unexamined Patent Publication No. 2016-186928
 この発明は、前述した事情に鑑みてなされたものであって、過酸化水素を含むエッチング液によるエッチング性および耐熱性に優れ、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜を成膜するスパッタリングターゲット、および、光学機能膜を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and is excellent in etching property and heat resistance by an etching solution containing hydrogen peroxide, and can sufficiently suppress reflection of light from a metal thin film or the like. It is an object of the present invention to provide a sputtering target for forming an optical functional film and an optical functional film.
 上記課題を解決するために、本発明の一態様に係るスパッタリングターゲットは、W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、前記第1成分内のW,Taの合計含有量が10原子%以上35原子%以下の範囲内とされていることを特徴としている。 In order to solve the above problems, the sputtering target according to one aspect of the present invention is a first component composed of one or two kinds of carbides selected from W and Ta, and Si, In, Y, Nb, V and Zn. , Zr, Al, B, Mo, W contains a second component composed of one or more oxides selected from, and the total content of W, Ta in the first component is 10 atomic%. It is characterized in that it is within the range of 35 atomic% or less.
 この構成のスパッタリングターゲットによれば、上述のように第1成分と第2成分とを有し、前記第1成分内のW,Taの合計含有量が10原子%以上35原子%以下の範囲内とされているので、耐熱性に優れ、かつ、過酸化水素を含むエッチング液によって良好にエッチング処理することが可能な光学機能膜を成膜することができる。また、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜を成膜することが可能となる。 According to the sputtering target having this configuration, as described above, it has a first component and a second component, and the total content of W and Ta in the first component is within the range of 10 atomic% or more and 35 atomic% or less. Therefore, it is possible to form an optical functional film having excellent heat resistance and being able to be satisfactorily etched with an etching solution containing hydrogen peroxide. Further, it is possible to form an optical functional film capable of sufficiently suppressing the reflection of light from a metal thin film or the like.
 ここで、本発明の一態様に係るスパッタリングターゲットにおいては、前記酸化物の母相中に粒状の前記炭化物が分散した組織とされており、前記炭化物の平均粒径が1μm以上150μm以下の範囲内とされていることが好ましい。
 この場合、前記炭化物の平均粒径が1μm以上とされているので、このスパッタリングターゲットの高密度化を図ることができる。また、前記炭化物の平均粒径が150μm以下とされているので、スパッタにより炭化物と酸化物が均一に混合された光学機能膜を安定して成膜することが可能となる。
Here, in the sputtering target according to one aspect of the present invention, the structure is such that the granular carbides are dispersed in the matrix of the oxide, and the average particle size of the carbides is within the range of 1 μm or more and 150 μm or less. It is preferable that
In this case, since the average particle size of the carbide is 1 μm or more, the density of the sputtering target can be increased. Further, since the average particle size of the carbide is 150 μm or less, it is possible to stably form an optical functional film in which the carbide and the oxide are uniformly mixed by sputtering.
 また、本発明の一態様に係るスパッタリングターゲットにおいては、密度比が90%以上であることが好ましい。
 この場合、密度比が90%以上とされているので、スパッタ時における異常放電によるパーティクルの発生を抑制することができ、安定して成膜することができる。
Further, in the sputtering target according to one aspect of the present invention, the density ratio is preferably 90% or more.
In this case, since the density ratio is 90% or more, it is possible to suppress the generation of particles due to abnormal discharge during sputtering, and stable film formation can be achieved.
 さらに、本発明の一態様に係るスパッタリングターゲットにおいては、比抵抗率が0.1Ω・cm以下とされていることが好ましい。
 この場合、比抵抗率が0.1Ω・cm以下とされているので、DCスパッタによって異常放電なく安定して成膜することができ、光学機能膜を効率良く成膜することができる。
Further, in the sputtering target according to one aspect of the present invention, the resistivity is preferably 0.1 Ω · cm or less.
In this case, since the specific resistivity is 0.1 Ω · cm or less, stable film formation can be performed without abnormal discharge by DC sputtering, and an optical functional film can be efficiently formed.
 本発明の一態様に係る光学機能膜は、W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、前記第1成分内のW,Taの合計含有量が3原子%以上11原子%以下の範囲内とされていることを特徴としている。 The optical functional film according to one aspect of the present invention comprises a first component composed of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B, It contains a second component composed of one or more oxides selected from Mo and W, and the total content of W and Ta in the first component is in the range of 3 atomic% or more and 11 atomic% or less. It is characterized by being inside.
 この構成の光学機能膜によれば、上述のように第1成分と第2成分とを有し、前記第1成分内のW,Taの合計含有量が3原子%以上11原子%以下の範囲内とされているので、耐熱性に優れており、かつ、過酸化水素を含むエッチング液によって良好にエッチング処理することが可能となる。また、金属薄膜等からの光の反射を十分に抑制することが可能となる。 According to the optical functional film having this configuration, as described above, it has a first component and a second component, and the total content of W and Ta in the first component is in the range of 3 atomic% or more and 11 atomic% or less. Since it is inside, it has excellent heat resistance and can be satisfactorily etched with an etching solution containing hydrogen peroxide. In addition, it is possible to sufficiently suppress the reflection of light from a metal thin film or the like.
 ここで、本発明の一態様に係る光学機能膜においては、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜した際の可視光反射率が20%以下であることが好ましい。
 この場合、上述の可視光反射率が20%以下と低く抑えられているので、積層した金属薄膜等からの光の反射を確実に抑制することが可能となる。
Here, in the optical functional film according to one aspect of the present invention, it is preferable that the visible light reflectance is 20% or less when a film is formed on the surface in contact with the Cu film in a thickness range of 25 nm or more and 75 nm or less. ..
In this case, since the above-mentioned visible light reflectance is suppressed to a low level of 20% or less, it is possible to reliably suppress the reflection of light from the laminated metal thin film or the like.
 また、本発明の一態様に係る光学機能膜においては、厚さ50nmでのシート抵抗が10Ω/sq.以下であることが好ましい。
 この場合、厚さ50nmでのシート抵抗が10Ω/sq.以下であって導電性が確保されており、この光学機能膜を介して通電を行うことができる。
In the optical functional film according to one embodiment of the present invention, the sheet resistance of a thickness 50nm is 10 6 Ω / sq. The following is preferable.
In this case, the sheet resistance of a thickness 50nm is 10 6 Ω / sq. Conductivity is ensured as follows, and energization can be performed through this optical functional film.
 さらに、本発明の一態様に係る光学機能膜においては、過酸化水素エッチング液によるエッチングレートが0.3mm/sec.以上5.8mm/sec.以下の範囲内であることが好ましい。
 この場合、過酸化水素エッチング液によるエッチングレートが0.3mm/sec.以上5.8mm/sec.以下の範囲内とされているので、本発明の一態様に係る光学機能膜を金属薄膜の上に積層した際に、金属薄膜とともに良好にエッチング処理することができ、パターニングを効率良く行うことが可能となる。
Further, in the optical functional film according to one aspect of the present invention, the etching rate with the hydrogen peroxide etching solution is 0.3 mm / sec. Above 5.8 mm / sec. It is preferably within the following range.
In this case, the etching rate with the hydrogen peroxide etching solution is 0.3 mm / sec. Above 5.8 mm / sec. Since it is within the following range, when the optical functional film according to one aspect of the present invention is laminated on the metal thin film, it can be satisfactorily etched together with the metal thin film, and patterning can be performed efficiently. It will be possible.
 また、本発明の一態様に係る光学機能膜においては、膜厚dと可視光領域の屈折率nと可視光領域の消衰係数kの積n×k×dが40以上100以下の範囲内とされていることが好ましい。
 この場合、可視光の吸収と干渉によって、可視光の反射をさらに確実に抑制することが可能となる。
Further, in the optical functional film according to one aspect of the present invention, the product n × k × d of the film thickness d, the refractive index n in the visible light region, and the extinction coefficient k in the visible light region is within the range of 40 or more and 100 or less. It is preferable that
In this case, the absorption and interference of visible light makes it possible to more reliably suppress the reflection of visible light.
 さらに、本発明の一態様に係る光学機能膜においては、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜し、400℃で10分保持の熱処理後における可視光反射率が20%以下であることが好ましい。
 この場合、400℃で10分保持の熱処理後における可視光反射率が20%以下とされているので、熱処理を行っても光学特性が大きく変化せず、耐熱性に優れている。
Further, in the optical functional film according to one aspect of the present invention, a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, and the visible light reflectance after heat treatment held at 400 ° C. for 10 minutes is high. It is preferably 20% or less.
In this case, since the visible light reflectance after the heat treatment held at 400 ° C. for 10 minutes is 20% or less, the optical characteristics do not change significantly even if the heat treatment is performed, and the heat resistance is excellent.
 本発明の一態様によれば、過酸化水素を含むエッチング液によるエッチング性および耐熱性に優れ、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜を成膜するスパッタリングターゲット、および、光学機能膜を提供することができる。 According to one aspect of the present invention, sputtering for forming an optical functional film which is excellent in etching property and heat resistance by an etching solution containing hydrogen peroxide and can sufficiently suppress reflection of light from a metal thin film or the like. A target and an optical functional film can be provided.
本発明の一実施形態に係る光学機能膜を備えた積層膜の断面説明図である。It is sectional drawing explanatory drawing of the laminated film provided with the optical functional film which concerns on one Embodiment of this invention. 本発明の一実施形態に係るスパッタリングターゲットの製造方法を示すフロー図である。It is a flow figure which shows the manufacturing method of the sputtering target which concerns on one Embodiment of this invention. 本発明例1のスパッタリングターゲットの組織の観察結果である。It is an observation result of the structure of the sputtering target of the present invention example 1. 本発明例2のスパッタリングターゲットの組織の観察結果である。It is the observation result of the structure of the sputtering target of the present invention example 2.
 以下に、本発明の実施形態であるスパッタリングターゲット、および、光学機能膜について、添付した図面を参照して説明する。 Hereinafter, the sputtering target and the optical functional film according to the embodiment of the present invention will be described with reference to the attached drawings.
 本実施形態に係る光学機能膜12は、図1に示すように、基板1の表面に成膜された金属配線膜11の上に積層するように成膜されている。
 ここで、金属配線膜11は、導電性に優れた金属であるアルミニウム、アルミニウム合金、銅又は銅合金等で構成されており、本実施形態では、銅によって構成されている。この金属配線膜11は、金属光沢を有することから、可視光を反射し、外部から視認されてしまう。
As shown in FIG. 1, the optical functional film 12 according to the present embodiment is formed so as to be laminated on the metal wiring film 11 formed on the surface of the substrate 1.
Here, the metal wiring film 11 is made of aluminum, an aluminum alloy, copper, a copper alloy, or the like, which are metals having excellent conductivity, and in this embodiment, it is made of copper. Since the metal wiring film 11 has a metallic luster, it reflects visible light and is visually recognized from the outside.
 本実施形態である光学機能膜12においては、積層した金属配線膜11における可視光の反射を抑えるために設けられたものである。
 本実施形態である光学機能膜12は、W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、第1成分内のW,Taの合計含有量が3原子%以上11原子%以下の範囲内とされている。
The optical functional film 12 of the present embodiment is provided to suppress the reflection of visible light in the laminated metal wiring film 11.
The optical functional film 12 of the present embodiment has a first component composed of one or two kinds of carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B and Mo. , A second component consisting of one or more oxides selected from W, and the total content of W and Ta in the first component is within the range of 3 atomic% or more and 11 atomic% or less. Has been done.
 W,Taから選択される一種又は二種の炭化物からなる第1成分は、導電性を有しており、この第1成分によって光学機能膜12の導電性が確保される。また、この第1成分により、光学機能膜12の耐熱性が向上することになる。
 Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分は、上述の第1成分に混合されることにより、光学機能膜12の光学特性を調整することが可能となる。
 また、上述の組成とすることで、過酸化水素を含むエッチング液によって良好にエッチング処理することが可能となる。
The first component composed of one or two kinds of carbides selected from W and Ta has conductivity, and the conductivity of the optical functional film 12 is ensured by this first component. Further, the heat resistance of the optical functional film 12 is improved by this first component.
The second component consisting of one or more oxides selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W is mixed with the above-mentioned first component. This makes it possible to adjust the optical characteristics of the optical functional film 12.
Further, by adopting the above-mentioned composition, it is possible to perform an etching treatment satisfactorily with an etching solution containing hydrogen peroxide.
 第1成分内のW,Taの合計含有量が3原子%未満であると、光学機能膜12の耐熱性、導電性が不足するおそれがある。第1成分内のW,Taの合計含有量が11原子%を超えると、Si等の酸化物の含有量が不足し、金属薄膜11等からの光の反射を十分に抑制できないおそれがある。
 本実施形態の光学機能膜12における第1成分内のW,Taの合計含有量の下限は、より好ましくは5.0原子%以上であり、さらに好ましくは7.0原子%以上である。第1成分内のW,Taの合計含有量の上限は、より好ましくは10.0原子%以下であり、さらに好ましくは9.0原子%以下である。
 第2成分内のSi,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wの合計含有量は、好ましくは15原子%以上50原子%以下の範囲内である。
 上述の第1成分内のW,Taの合計含有量、及び第2成分内のSi,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wの合計含有量は、O,Cを含む全ての元素の合計量を100原子%とした量である。
 上述の含有量が特定された元素以外の残部は、C,O,及び不可避不純物である。
If the total content of W and Ta in the first component is less than 3 atomic%, the heat resistance and conductivity of the optical functional film 12 may be insufficient. If the total content of W and Ta in the first component exceeds 11 atomic%, the content of oxides such as Si may be insufficient, and the reflection of light from the metal thin film 11 or the like may not be sufficiently suppressed.
The lower limit of the total content of W and Ta in the first component in the optical functional film 12 of the present embodiment is more preferably 5.0 atomic% or more, still more preferably 7.0 atomic% or more. The upper limit of the total content of W and Ta in the first component is more preferably 10.0 atomic% or less, still more preferably 9.0 atomic% or less.
The total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, and W in the second component is preferably in the range of 15 atomic% or more and 50 atomic% or less.
The total content of W and Ta in the first component and the total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W in the second component are O, The total amount of all elements including C is 100 atomic%.
The rest other than the above-mentioned elements whose contents are specified are C, O, and unavoidable impurities.
 ここで、本実施形態である光学機能膜12においては、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜した際の可視光反射率が、Cu膜の反射率(約74%)よりも小さいことが好ましい。さらに、30%以下が好ましく、さらに、20%以下であることが好ましい。例えば、光学機能膜12は、Cu膜の上に厚さ25nm以上75nm以下の範囲内で成膜される。
 Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜した際の可視光反射率を20%以下とした場合には、金属配線膜11における可視光の反射を確実に抑えることが可能となる。
 なお、さらに金属配線膜11における可視光の反射を確実に抑えるためには、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜した際の可視光反射率は15%以下であることがより好ましく、10%以下であることがさらに好ましい。
Here, in the optical functional film 12 of the present embodiment, the visible light reflectance when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less is the reflectance of the Cu film (about 74). %) Is preferably smaller. Further, it is preferably 30% or less, and further preferably 20% or less. For example, the optical functional film 12 is formed on the Cu film in a thickness range of 25 nm or more and 75 nm or less.
When the visible light reflectance is 20% or less when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, the reflection of visible light on the metal wiring film 11 can be reliably suppressed. It will be possible.
Further, in order to surely suppress the reflection of visible light on the metal wiring film 11, the visible light reflectance is 15% or less when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less. It is more preferably present, and further preferably 10% or less.
 また、本実施形態である光学機能膜12は、厚さ50nmでのシート抵抗が10Ω/sq.以下とされていることが好ましい。これにより、光学機能膜12を介して金属配線膜11と、外部の配線との導通を行うことが可能となる。なお、厚さ50nmでのシート抵抗が10Ω/sq.を超える場合は、金属配線と外部とを導通させるために、低反射率膜や基板に孔を形成することで外部の配線との導通が可能となる。
 なお、厚さ50nmでのシート抵抗は10Ω/sq.以下とすることがより好ましく、10Ω/sq.以下とすることがさらに好ましい。
 厚さ50nmでのシート抵抗の下限は、好ましくは10Ω/sq.以上である。
Furthermore, the optical functional film 12 is this embodiment, the sheet resistance of a thickness 50nm is 10 6 Ω / sq. It is preferably as follows. This makes it possible to conduct conduction between the metal wiring film 11 and the external wiring via the optical functional film 12. In addition, the sheet resistance of a thickness of 50nm is 10 6 Ω / sq. If it exceeds, the metal wiring and the outside can be electrically connected to each other by forming a hole in the low reflectance film or the substrate.
The sheet resistance of the thick 50nm is 10 5 Ω / sq. More preferably to less, 10 4 Ω / sq. The following is more preferable.
The lower limit of the sheet resistance at a thickness of 50 nm is preferably 10 Ω / sq. That is all.
 さらに、本実施形態である光学機能膜12においては、過酸化水素エッチング液によるエッチングレートが、Cu膜のエッチングレート(5.8mm・sec.)以下であり、溶け残りの発生もない0.3mm/sec.以上5.8mm/sec.以下の範囲内であることが好ましい。
 これにより、金属配線膜11と積層した状態でエッチングすることで配線パターンを良好に形成することが可能となる。ここで、過酸化水素エッチング液としては、例えば、関東化学株式会社製の過酸化水素系エッチング液GHP-3を用いることができる。
 なお、過酸化水素エッチング液によるエッチングレートの下限は、0.4mm/sec.以上であることがより好ましく、0.5mm/sec.以上であることがさらに好ましい。一方、過酸化水素エッチング液によるエッチングレートの上限は、3.0mm/sec.以下であることがより好ましく、2.0mm/sec.以下であることがさらに好ましい。
Further, in the optical functional film 12 of the present embodiment, the etching rate of the hydrogen peroxide etching solution is 0.3 mm or less of the etching rate of the Cu film (5.8 mm · sec.), And no undissolved residue is generated. / Sec. Above 5.8 mm / sec. It is preferably within the following range.
This makes it possible to form a wiring pattern satisfactorily by etching in a state of being laminated with the metal wiring film 11. Here, as the hydrogen peroxide etching solution, for example, a hydrogen peroxide-based etching solution GHP-3 manufactured by Kanto Chemical Co., Inc. can be used.
The lower limit of the etching rate with the hydrogen peroxide etching solution is 0.4 mm / sec. The above is more preferable, and 0.5 mm / sec. The above is more preferable. On the other hand, the upper limit of the etching rate with the hydrogen peroxide etching solution is 3.0 mm / sec. It is more preferably 2.0 mm / sec. The following is more preferable.
 また、本実施形態である光学機能膜12は、膜厚dと可視光領域の屈折率nと可視光領域の消衰係数kの積n×k×dが40以上100以下の範囲内とされていることが好ましい。この光学機能膜12においては、可視光の吸収(消衰係数k)と干渉(膜厚d及び屈折率n)とによって、金属配線膜11の反射を抑制している。消衰係数kを調整することで可視光の全波長の反射を抑え、膜厚dおよび屈折率nを調整することで、反射光の波形及びピークを抑えている。
 なお、可視光領域は、波長が380~780nmの領域である。
Further, in the optical functional film 12 of the present embodiment, the product n × k × d of the film thickness d, the refractive index n in the visible light region, and the extinction coefficient k in the visible light region is within the range of 40 or more and 100 or less. Is preferable. In this optical functional film 12, reflection of the metal wiring film 11 is suppressed by absorption of visible light (extinction coefficient k) and interference (thickness d and refractive index n). By adjusting the extinction coefficient k, the reflection of all wavelengths of visible light is suppressed, and by adjusting the film thickness d and the refractive index n, the waveform and peak of the reflected light are suppressed.
The visible light region is a region having a wavelength of 380 to 780 nm.
 そして、膜厚dと可視光領域の屈折率nと可視光領域の消衰係数kの積n×k×dを上述の範囲内とすることで、可視光の吸収と干渉によって、可視光領域の反射をさらに確実に抑制することが可能となる。
 なお、d×n×kの下限は50以上とすることがより好ましく、60以上とすることがさらに好ましい。一方、d×n×kの上限は90以下とすることがより好ましく、80以下とすることがさらに好ましい。
Then, by setting the product n × k × d of the film thickness d, the refraction coefficient n in the visible light region, and the extinction coefficient k in the visible light region within the above range, the visible light region is absorbed and interfered with by the visible light region. It is possible to suppress the reflection of light more reliably.
The lower limit of d × n × k is more preferably 50 or more, and further preferably 60 or more. On the other hand, the upper limit of d × n × k is more preferably 90 or less, and further preferably 80 or less.
 ここで、本実施形態である光学機能膜12においては、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜し、400℃で10分間保持の熱処理後における可視光反射率が20%以下であることが好ましい。これにより、熱処理の実施後でも光学特性が劣化せず、耐熱性に確実に優れている。
 なお、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜し、400℃で10分間保持の熱処理後における可視光反射率は15%以下であることがより好ましく、10%以下であることがさらに好ましい。また、例えば、光学機能膜12は、Cu膜の上に厚さ25nm以上75nm以下の範囲内で成膜される。
Here, in the optical functional film 12 of the present embodiment, a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, and the visible light reflectance after heat treatment held at 400 ° C. for 10 minutes is high. It is preferably 20% or less. As a result, the optical characteristics do not deteriorate even after the heat treatment is performed, and the heat resistance is definitely excellent.
The visible light reflectance is more preferably 15% or less after heat treatment in which a film is formed on the surface in contact with the Cu film in a thickness of 25 nm or more and 75 nm or less and held at 400 ° C. for 10 minutes. Is more preferable. Further, for example, the optical functional film 12 is formed on the Cu film in a thickness range of 25 nm or more and 75 nm or less.
 次に、本実施形態であるスパッタリングターゲットについて説明する。本実施形態であるスパッタリングターゲットは、上述の光学機能膜12を成膜するために用いられるものである。 Next, the sputtering target according to the present embodiment will be described. The sputtering target of this embodiment is used for forming the above-mentioned optical functional film 12.
 本実施形態であるスパッタリングターゲットは、W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、第1成分内のW,Taの合計含有量が10原子%以上35原子%以下の範囲内とされている。 The sputtering target of this embodiment has a first component consisting of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W. It contains a second component composed of one or more kinds of oxides selected from the above, and the total content of W and Ta in the first component is within the range of 10 atomic% or more and 35 atomic% or less. There is.
 W,Taから選択される一種又は二種の炭化物からなる第1成分は、導電性を有しており、この第1成分によって、本実施形態であるスパッタリングターゲットの導電性が確保される。
 Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分は、第1成分に比べて焼結性に優れていることから、本実施形態であるスパッタリングターゲットの密度比が向上することになる。
 さらに、上述の組成とすることで、過酸化水素を含むエッチング液によって良好にエッチング処理することが可能な光学機能膜12を成膜することができる。
The first component composed of one or two kinds of carbides selected from W and Ta has conductivity, and the first component ensures the conductivity of the sputtering target of the present embodiment.
The second component, which consists of one or more oxides selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, and W, is more sinterable than the first component. Since it is excellent, the density ratio of the sputtering target according to the present embodiment is improved.
Further, by adopting the above-mentioned composition, it is possible to form an optical functional film 12 that can be satisfactorily etched with an etching solution containing hydrogen peroxide.
 スパッタリングターゲットの第1成分内のW,Taの合計含有量を10原子%以上35原子%以下の範囲内とすることで、第1成分内のW,Taの合計含有量が3原子%以上11原子%以下の範囲内とされた本実施形態の光学機能膜を成膜することができる。
 本実施形態のスパッタリングターゲットにおける第1成分内のW,Taの合計含有量の下限は、より好ましくは12.0原子%以上であり、さらに好ましくは14.0原子%以上である。第1成分内のW,Taの合計含有量の上限は、より好ましくは32.0原子%以下であり、さらに好ましくは29.0原子%以下である。
 第2成分内のSi,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wの合計含有量は、好ましくは7原子%以上41原子%以下の範囲内である。
 上述の第1成分内のW,Taの合計含有量、及び第2成分内のSi,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wの合計含有量は、O,Cを含む全ての元素の合計量を100原子%とした量である。
 上述の含有量が特定された元素以外の残部は、C,O,及び不可避不純物である。
By setting the total content of W and Ta in the first component of the sputtering target within the range of 10 atomic% or more and 35 atomic% or less, the total content of W and Ta in the first component is 3 atomic% or more and 11 The optical functional film of the present embodiment within the range of atomic% or less can be formed.
The lower limit of the total content of W and Ta in the first component in the sputtering target of the present embodiment is more preferably 12.0 atomic% or more, still more preferably 14.0 atomic% or more. The upper limit of the total content of W and Ta in the first component is more preferably 32.0 atomic% or less, still more preferably 29.0 atomic% or less.
The total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, and W in the second component is preferably in the range of 7 atomic% or more and 41 atomic% or less.
The total content of W and Ta in the first component and the total content of Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W in the second component are O, The total amount of all elements including C is 100 atomic%.
The rest other than the above-mentioned elements whose contents are specified are C, O, and unavoidable impurities.
 ここで、本実施形態であるスパッタリングターゲットにおいては、上述の酸化物の母相中に炭化物が島状に分散した組織とされており、前記炭化物の平均粒径が1μm以上150μm以下の範囲内とされていることが好ましい。
 ここで、炭化物の平均粒径は、円相当径の個数平均である。
 炭化物の平均粒径が1μm以上である場合には、スパッタリングターゲットの高密度化を図ることができる。また、炭化物の平均粒径が150μm以下である場合には、スパッタにより炭化物と酸化物が均一に混合した光学機能膜を安定して成膜することが可能となる。
 なお、炭化物の平均粒径の下限は2μm以上であることがより好ましく、8μm以上であることがさらに好ましい。炭化物の平均粒径の上限は120μm以下であることがより好ましく、80μm以下であることがさらに好ましい。なお、炭化物の平均粒径の上限は、30μm以下、又は15μm以下でもよい。
Here, in the sputtering target of the present embodiment, the structure is such that carbides are dispersed in an island shape in the matrix phase of the above-mentioned oxide, and the average particle size of the carbides is within the range of 1 μm or more and 150 μm or less. It is preferable that it is.
Here, the average particle size of the carbide is the average number of circle-equivalent diameters.
When the average particle size of the carbide is 1 μm or more, the density of the sputtering target can be increased. Further, when the average particle size of the carbide is 150 μm or less, it is possible to stably form an optical functional film in which the carbide and the oxide are uniformly mixed by sputtering.
The lower limit of the average particle size of the carbide is more preferably 2 μm or more, further preferably 8 μm or more. The upper limit of the average particle size of the carbide is more preferably 120 μm or less, and further preferably 80 μm or less. The upper limit of the average particle size of the carbide may be 30 μm or less, or 15 μm or less.
 また、本実施形態であるスパッタリングターゲットにおいては、密度比が90%以上とされていることが好ましい。密度比を90%以上とすることで、スパッタ時におけるパーティクルの発生を抑制することが可能となる。
 なお、本実施形態であるスパッタリングターゲットにおいては、密度比は92%以上とすることが好ましく、93%以上とすることがさらに好ましい。
 密度比の上限は、好ましくは100%以下である。
Further, in the sputtering target of the present embodiment, the density ratio is preferably 90% or more. By setting the density ratio to 90% or more, it is possible to suppress the generation of particles during sputtering.
In the sputtering target of the present embodiment, the density ratio is preferably 92% or more, more preferably 93% or more.
The upper limit of the density ratio is preferably 100% or less.
 また、本実施形態であるスパッタリングターゲットにおいては、比抵抗率が0.1Ω・cm以下とされていることが好ましい。比抵抗率を0.1Ω・cm以下とすることで、DCスパッタによって光学機能膜12を安定して成膜することが可能となる。
 なお、本実施形態であるスパッタリングターゲットにおいては、比抵抗率は5×10-2Ω・cm以下とすることが好ましく、1×10-2Ω・cm以下とすることがさらに好ましい。
 比抵抗率の下限は、好ましくは1×10-6Ω・cm以上である。
Further, in the sputtering target of the present embodiment, the resistivity is preferably 0.1 Ω · cm or less. By setting the resistivity to 0.1 Ω · cm or less, the optical functional film 12 can be stably formed by DC sputtering.
In the sputtering target of the present embodiment, the resistivity is preferably 5 × 10 −2 Ω · cm or less, and more preferably 1 × 10 − 2 Ω · cm or less.
The lower limit of the specific resistivity is preferably 1 × 10 -6 Ω · cm or more.
 次に、本実施形態に係るスパッタリングターゲットの製造方法について、図2を参照して説明する。 Next, a method for manufacturing a sputtering target according to the present embodiment will be described with reference to FIG.
(粉末混合工程S01)
 本実施形態においては、まず、図2に示すように、W,Taから選択される一種又は二種の炭化物からなる第1成分粉末と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分粉末と、を秤量して混合し、焼結原料粉末を得る。
 ここで、混合方法に特に制限はないが、本実施形態ではボールミル装置を用いている。
 また、W,Taから選択される一種又は二種の炭化物からなる第1成分粉末の平均粒径は、1μm以上150μm以下の範囲内であることが好ましい。Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分粉末の平均粒径は、0.05μm以上0.3μm以下の範囲内であることが好ましい。
 前述した第1成分粉末と第2成分粉末の平均粒径は、体積基準のD50径である。
(Powder mixing step S01)
In the present embodiment, first, as shown in FIG. 2, a first component powder composed of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, A second component powder composed of one or more oxides selected from Al, B, Mo, and W is weighed and mixed to obtain a sintered raw material powder.
Here, the mixing method is not particularly limited, but in the present embodiment, a ball mill device is used.
Further, the average particle size of the first component powder composed of one or two kinds of carbides selected from W and Ta is preferably in the range of 1 μm or more and 150 μm or less. The average particle size of the second component powder consisting of one or more oxides selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W is 0.05 μm or more and 0. It is preferably within the range of .3 μm or less.
The average particle size of the first component powder and the second component powder described above is the volume-based D50 diameter.
(焼結工程S02)
 次に、上述の焼結原料粉末を、加圧しながら加熱することで焼結し、焼結体を得る。本実施形態では、ホットプレス装置または熱間等方圧加圧装置(HIP)を用いて、焼結を実施する。
 この焼結工程S02における焼結温度は650℃以上1000℃以下の範囲内、焼結温度での保持時間は0.5時間以上15時間以下の範囲内、加圧圧力は10MPa以上200MPa以下の範囲内とする。
(Sintering step S02)
Next, the above-mentioned sintered raw material powder is sintered by heating while pressurizing to obtain a sintered body. In this embodiment, sintering is performed using a hot press device or a hot isotropic pressure pressurizing device (HIP).
In this sintering step S02, the sintering temperature is in the range of 650 ° C. or higher and 1000 ° C. or lower, the holding time at the sintering temperature is in the range of 0.5 hours or more and 15 hours or less, and the pressurizing pressure is in the range of 10 MPa or more and 200 MPa or less. Be inside.
(機械加工工程S03)
 次に、得られた焼結体を所定の寸法となるように機械加工する。これにより、本実施形態であるスパッタリングターゲットが製造される。
(Machining process S03)
Next, the obtained sintered body is machined to have a predetermined size. As a result, the sputtering target according to the present embodiment is manufactured.
 以上のような構成とされた本実施形態であるスパッタリングターゲットによれば、W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、第1成分内のW,Taの合計含有量が10原子%以上35原子%以下の範囲内とされているので、耐熱性に優れ、かつ、過酸化水素を含むエッチング液によって良好にエッチング処理することが可能な光学機能膜12を成膜することができる。また、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜12を成膜することが可能となる。 According to the sputtering target of the present embodiment having the above configuration, the first component composed of one or two kinds of carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn. , Zr, Al, B, Mo, W contains a second component consisting of one or more oxides selected from, and the total content of W, Ta in the first component is 10 atomic% or more. Since it is within the range of 35 atomic% or less, it is possible to form an optical functional film 12 which is excellent in heat resistance and can be satisfactorily etched with an etching solution containing hydrogen peroxide. Further, it is possible to form an optical functional film 12 capable of sufficiently suppressing the reflection of light from a metal thin film or the like.
 本実施形態のスパッタリングターゲットにおいて、酸化物の母相中に粒状の炭化物が分散した組織とされ、炭化物の平均粒径が1μm以上150μm以下の範囲内とされている場合には、このスパッタリングターゲットの高密度化を図ることができるとともに、スパッタにより炭化物と酸化物が均一に混合した光学機能膜12を安定して成膜することが可能となる。 In the sputtering target of the present embodiment, when the structure is such that granular carbides are dispersed in the matrix of the oxide and the average particle size of the carbides is within the range of 1 μm or more and 150 μm or less, the sputtering target of this sputtering target. It is possible to increase the density and to stably form an optical functional film 12 in which carbides and oxides are uniformly mixed by sputtering.
 また、本実施形態のスパッタリングターゲットにおいて、密度比が90%以上である場合には、スパッタ時におけるパーティクルの発生を抑制することができ、安定して光学機能膜12をスパッタ成膜することができる。
 さらに、本実施形態のスパッタリングターゲットにおいて、比抵抗率が0.1Ω・cm以下とされている場合には、DCスパッタによって安定して成膜することができ、光学機能膜12を効率良く成膜することができる。
Further, in the sputtering target of the present embodiment, when the density ratio is 90% or more, the generation of particles at the time of sputtering can be suppressed, and the optical functional film 12 can be stably formed by sputtering. ..
Further, in the sputtering target of the present embodiment, when the specific resistivity is 0.1 Ω · cm or less, stable film formation can be performed by DC sputtering, and the optical functional film 12 can be efficiently formed. can do.
 本実施形態である光学機能膜12によれば、W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、第1成分内のW,Taの合計含有量が3原子%以上11原子%以下の範囲内とされているので、耐熱性に優れており、かつ、過酸化水素を含むエッチング液によって良好にエッチング処理することが可能となる。また、金属薄膜等からの光の反射を十分に抑制することが可能となる。 According to the optical functional film 12 of the present embodiment, the first component composed of one or two kinds of carbides selected from W and Ta, Si, In, Y, Nb, V, Zn, Zr, Al and B , Mo, W contains a second component consisting of one or more oxides selected from, and the total content of W, Ta in the first component is in the range of 3 atomic% or more and 11 atomic% or less. Since it is inside, it has excellent heat resistance and can be satisfactorily etched with an etching solution containing hydrogen peroxide. In addition, it is possible to sufficiently suppress the reflection of light from a metal thin film or the like.
 本実施形態の光学機能膜12において、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜した際の可視光反射率が20%以下である場合には、金属配線膜11からの光の反射を確実に抑制することが可能となる。
 また、本実施形態の光学機能膜12において、厚さ50nmでのシート抵抗が10Ω/sq.以下である場合には、導電性が確保されており、この光学機能膜12を介して通電を行うことができる。
In the optical functional film 12 of the present embodiment, when the visible light reflectance is 20% or less when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, the metal wiring film 11 is used. It is possible to reliably suppress the reflection of light.
In the optical functional film 12 of the present embodiment, the sheet resistance of a thickness 50nm is 10 6 Ω / sq. In the following cases, conductivity is ensured and energization can be performed through the optical functional film 12.
 さらに、本実施形態の光学機能膜12において、過酸化水素エッチング液によるエッチングレートが0.3mm/sec.以上5.8mm/sec.以下の範囲内である場合には、金属配線膜11の上に積層した際に、金属配線膜11とともに良好にエッチング処理することができ、パターニングを効率良く行うことが可能となる。 Further, in the optical functional film 12 of the present embodiment, the etching rate with the hydrogen peroxide etching solution is 0.3 mm / sec. Above 5.8 mm / sec. When it is within the following range, when it is laminated on the metal wiring film 11, it can be satisfactorily etched together with the metal wiring film 11, and patterning can be efficiently performed.
 また、本実施形態の光学機能膜12において、膜厚dと可視光領域の屈折率nと可視光領域の消衰係数kの積n×k×dが40以上100以下の範囲内とされている場合には、可視光の吸収と干渉によって、可視光の反射をさらに確実に抑制することが可能となる。
 さらに、本実施形態の光学機能膜12において、Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜し、400℃で10分間保持の熱処理後における可視光反射率が20%以下である場合には、熱処理を行っても光学特性が大きく変化せず、耐熱性に優れている。
Further, in the optical functional film 12 of the present embodiment, the product n × k × d of the film thickness d, the refractive index n in the visible light region, and the extinction coefficient k in the visible light region is set to be within the range of 40 or more and 100 or less. If so, the absorption and interference of visible light makes it possible to more reliably suppress the reflection of visible light.
Further, in the optical functional film 12 of the present embodiment, a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, and the visible light reflectance after heat treatment held at 400 ° C. for 10 minutes is 20% or less. In the case of, the optical characteristics do not change significantly even if the heat treatment is performed, and the heat resistance is excellent.
 さらに、本実施形態の光学機能膜12は、Al又はCuを含む金属配線膜11の上に、又は基板と該金属配線膜11との間に成膜される光学機能膜12であり、W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、厚さ25nm以上75nm以下の範囲内で成膜した際の可視光反射率が20%以下である、ことを特徴とする。 Further, the optical functional film 12 of the present embodiment is an optical functional film 12 formed on a metal wiring film 11 containing Al or Cu, or between a substrate and the metal wiring film 11, and W. The first component consisting of one or two carbides selected from Ta and the oxidation of one or more selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, W. It is characterized in that it contains a second component made of a substance and has a visible light reflectance of 20% or less when a film is formed in a thickness range of 25 nm or more and 75 nm or less.
 以上、本発明の実施形態について説明したが、本発明はこれに限定されることはなく、その発明の技術的要件を逸脱しない範囲で適宜変更可能である。
 例えば、本実施形態では、図1に示す構造の積層膜を例に挙げて説明したが、これに限定されることはなく、基板と金属配線との間に本実施形態の光学機能膜12が形成された、ガラス基板/光学機能膜/金属配線とした構造の積層膜であってもよい。この場合、ガラス基板からの光を反射することになる。また、この構造であれば、光学機能膜に導電性は不要となる。
Although the embodiments of the present invention have been described above, the present invention is not limited to this, and can be appropriately changed without departing from the technical requirements of the invention.
For example, in the present embodiment, the laminated film having the structure shown in FIG. 1 has been described as an example, but the present invention is not limited to this, and the optical functional film 12 of the present embodiment is formed between the substrate and the metal wiring. It may be a laminated film having a structure of a glass substrate / optical functional film / metal wiring formed. In this case, the light from the glass substrate will be reflected. Further, with this structure, the optical functional film does not need to have conductivity.
 以下に、本実施形態に係るスパッタリングターゲット、および、光学機能膜の作用効果について評価した評価試験の結果を説明する。 The results of the evaluation test for evaluating the action and effect of the sputtering target and the optical functional film according to the present embodiment will be described below.
 表1,2に示すように、W,Taから選択される一種又は二種の炭化物からなる第1成分粉末と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分粉末と、を秤量した。この秤量した原料粉1kgと、φ5mmのボール1.3kgを3Lポットに投入した。次いで、ボールミル装置にて原料粉を混合して焼結用原料粉末を得た。粉末はすべて純度99.9質量%以上のものを用いた。 As shown in Tables 1 and 2, the first component powder consisting of one or two carbides selected from W and Ta, and Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo, A second component powder consisting of one or more oxides selected from W was weighed. 1 kg of the weighed raw material powder and 1.3 kg of a φ5 mm ball were put into a 3 L pot. Next, the raw material powder was mixed with a ball mill device to obtain a raw material powder for sintering. All powders having a purity of 99.9% by mass or more were used.
 なお、第1成分粉末及び第2成分粉末の平均粒径は、以下のように測定した。
 ヘキサメタリン酸ナトリウム濃度0.2vol%の水溶液を100mL調製し、この水溶液に各原料粉末を10mg加え、レーザー回折散乱法(測定装置:日機装株式会社製、Microtrac MT3000)を用いて、粒子径分布(体積基準)を測定した。
 得られた粒子径分布(体積基準)から、第1成分粉末の平均粒径および第2成分粉末の平均粒径(D50径)を求めた。
The average particle size of the first component powder and the second component powder was measured as follows.
Prepare 100 mL of an aqueous solution having a sodium hexametaphosphate concentration of 0.2 vol%, add 10 mg of each raw material powder to this aqueous solution, and use a laser diffraction / scattering method (measuring device: Microtrac MT3000 manufactured by Nikkiso Co., Ltd.) to distribute the particle size (volume). Reference) was measured.
From the obtained particle size distribution (volume basis), the average particle size of the first component powder and the average particle size of the second component powder (D50 diameter) were determined.
 上述の焼結用原料粉末を用いて、ホットプレスまたはHIPによって焼結を行い、焼結体を得た。
 ホットプレスについては、焼結用原料粉末をカーボン製のホットプレスの型(φ135mm)に充填し、830℃、表1,2に記載の圧力で3時間、真空中にてホットプレスを行い、焼結体を作製した。
 HIPについては、まず、混合粉末(焼結用原料粉末)をφ225mmのゴム型に充填し、冷間静水圧加圧(CIP)装置で150MPa、5分間加圧成型し成型体を作製した。その後、SPCC(圧延鋼材)の缶に成型体をセットし、SPCCを溶接した。次いで、0.001Pa以下まで真空引きし、次いで缶を封じた。850℃、表1,2に記載の圧力で2時間焼結を行い、焼結体を作製した。
Using the above-mentioned raw material powder for sintering, sintering was performed by hot pressing or HIP to obtain a sintered body.
For the hot press, the raw material powder for sintering is filled in a carbon hot press mold (φ135 mm), and the hot press is performed at 830 ° C. at the pressures shown in Tables 1 and 2 for 3 hours in a vacuum to bake. A bunch was made.
For HIP, first, a mixed powder (raw material powder for sintering) was filled in a rubber mold having a diameter of 225 mm, and pressure-molded at 150 MPa with a cold hydrostatic pressure (CIP) device for 5 minutes to prepare a molded body. Then, the molded body was set in the can of SPCC (rolled steel material), and the SPCC was welded. Then, the vacuum was evacuated to 0.001 Pa or less, and then the can was sealed. Sintering was performed at 850 ° C. at the pressures shown in Tables 1 and 2 for 2 hours to prepare a sintered body.
 これらの焼結体を、直径:125mm、厚さ:5mmに機械加工し、次いでCu製のバッキングプレートにInはんだにて張り付けてスパッタリングターゲットを作製した。なお、不純物元素を低減させたい場合は、より純度の高い原料粉末を使用することが好ましい。また、酸化インジウム粉末と酸化亜鉛粉末は、ホットプレス時及びHIP時に還元されてそれぞれInとZnが析出する場合がある。このため、カーボン型と酸化インジウム粉末、酸化亜鉛粉末が直接触れないように、窒化ホウ素をカーボン型へ十分塗布することが好ましい。 These sintered bodies were machined to a diameter of 125 mm and a thickness of 5 mm, and then attached to a backing plate made of Cu with In solder to prepare a sputtering target. If it is desired to reduce impurity elements, it is preferable to use a raw material powder having a higher purity. Indium oxide powder and zinc oxide powder may be reduced during hot pressing and HIP to precipitate In and Zn, respectively. Therefore, it is preferable to sufficiently apply boron nitride to the carbon mold so that the carbon mold does not come into direct contact with the indium oxide powder and the zinc oxide powder.
 上述のようにして、得られたスパッタリングターゲット、及び、このスパッタリングターゲットを用いて成膜された光学機能膜について、以下の項目について評価した。 As described above, the obtained sputtering target and the optical functional film formed by using this sputtering target were evaluated for the following items.
(スパッタリングターゲットの組成)
 EPMA装置の定量分析により、各金属成分とC,O成分の定量を実施して定量結果を得て、原料配合時の組成から大きな変動がないことを確認した。Wの炭化物とWの酸化物の両方を含むものについてはXPS分析を行うことでWの炭化物とWの酸化物の比を求め、求めた比と定量結果とを用いて第1成分内のWと第2成分内のWの量をそれぞれ求めた。
(Composition of sputtering target)
Quantitative analysis of the EPMA device was performed to quantify each metal component and C and O components, and quantification results were obtained. It was confirmed that there was no significant change in the composition at the time of blending the raw materials. For those containing both the carbide of W and the oxide of W, the ratio of the carbide of W and the oxide of W was obtained by performing XPS analysis, and the W in the first component was obtained using the obtained ratio and the quantitative result. And the amount of W in the second component were determined respectively.
(スパッタリングターゲットの密度比)
 得られた加工済のスパッタリングターゲットの寸法からスパッタリングターゲットの体積を算出し、測定した重量の値を体積で割ることでスパッタリングターゲットの寸法密度を計算した。寸法密度を計算密度で割った割合を、「密度比」として表3,4に記載した。なお、計算密度は下記の式に従って算出した。
 計算密度(g/cm)=100/{第1成分仕込み量(mass%)/第1成分理論密度(g/cm)+第2成分仕込み量(mass%)/第2成分理論密度(g/cm)}
(Density ratio of sputtering target)
The volume of the sputtering target was calculated from the dimensions of the obtained processed sputtering target, and the dimensional density of the sputtering target was calculated by dividing the measured weight value by the volume. The ratio of the dimensional density divided by the calculated density is shown in Tables 3 and 4 as the "density ratio". The calculated density was calculated according to the following formula.
Calculated density (g / cm 3 ) = 100 / {first component charge amount (mass%) / first component theoretical density (g / cm 3 ) + second component charge amount (mass%) / second component theoretical density (g / cm 3) g / cm 3 )}
(スパッタリングターゲットの組織)
 得られたスパッタリングターゲットから観察試料を採取し、これをエポキシ樹脂に埋め込み、研磨処理を行った。次いで、電子プローブマイクロアナライザ(EPMA)装置を用いて倍率3000倍にて36μm×28μmの範囲に対して元素マッピングを行った。
 第1成分に含まれる金属のマッピング像と、第2成分に含まれる金属のマッピング像から、第1成分と第2成分の組織構成を観察した。そして、炭化物の平均粒径(円相当径の個数平均)を算出し、表3,4に記載した。
 ここで、図3に本発明例1の観察結果を示し、図4に本発明例2の観察結果を示す。
(Sputtering target structure)
An observation sample was collected from the obtained sputtering target, embedded in an epoxy resin, and polished. Then, using an electron probe microanalyzer (EPMA) device, element mapping was performed for a range of 36 μm × 28 μm at a magnification of 3000 times.
From the mapping image of the metal contained in the first component and the mapping image of the metal contained in the second component, the tissue composition of the first component and the second component was observed. Then, the average particle size of the carbide (the average number of circle-equivalent diameters) was calculated and shown in Tables 3 and 4.
Here, FIG. 3 shows the observation results of Example 1 of the present invention, and FIG. 4 shows the observation results of Example 2 of the present invention.
(スパッタリングターゲットの比抵抗)
 得られたスパッタリングターゲットのスパッタ面の中心部に対して、三菱化学株式会社製の低抵抗率計(Loresta-GP)を用い、四探針法で測定した値を表に記載した。測定時の温度は23±5℃(18℃~28℃)、湿度は50±20%(30%~70%)にて測定した。なお、測定時のプローブはASPプローブを用いた。
(Specific resistance of sputtering target)
The values measured by the four-probe method using a low resistivity meter (Loresta-GP) manufactured by Mitsubishi Chemical Corporation for the center of the sputtered surface of the obtained sputtering target are shown in the table. The temperature at the time of measurement was 23 ± 5 ° C. (18 ° C. to 28 ° C.), and the humidity was 50 ± 20% (30% to 70%). An ASP probe was used as the probe at the time of measurement.
(異常放電回数の測定)
 スパッタチャンバー内にArを50sccmで流し、チャンバー内全圧が0.67Paの状態で、DCで、T-S距離を70mmとして、5.0W/cmで、1時間スパッタを行った。このスパッタの際の異常放電回数を記録した。電源は、mks社製DC電源装置RPG-50を用いた。
(Measurement of abnormal discharge frequency)
Ar was flown into the sputter chamber at 50 sccm, and sputtering was performed at 5.0 W / cm 2 at DC with a total pressure of 0.67 Pa and a TS distance of 70 mm for 1 hour. The number of abnormal discharges during this spatter was recorded. As a power source, a DC power supply device RPG-50 manufactured by mks was used.
(単膜の評価)
 得られたスパッタリングターゲットにおいて、スパッタチャンバー内にArを50sccmで流し、チャンバー内全圧が0.67Paの状態で、DCで、T-S距離を70mmとして、表5、6に記載の出力で20mm角のSi基板上に厚さ50nmの膜の成膜を行った。事前に上記条件で成膜を行い、膜の付着速度を算出した。そして、目標膜厚(50nm)が得られる成膜時間を求めた。膜厚は、事前に成膜した際に算出した目標膜厚(50nm)となる成膜時間の間成膜することで管理した。得られた膜について、下記の(1)~(4)の評価を実施した。
(Evaluation of single membrane)
In the obtained sputtering target, Ar was flowed in the sputtering chamber at 50 sccm, the total pressure in the chamber was 0.67 Pa, the TS distance was 70 mm at DC, and the output shown in Tables 5 and 6 was 20 mm. A film having a thickness of 50 nm was formed on the corner Si substrate. A film was formed in advance under the above conditions, and the adhesion rate of the film was calculated. Then, the film forming time for obtaining the target film thickness (50 nm) was determined. The film thickness was controlled by forming the film for a film forming time of the target film thickness (50 nm) calculated in advance. The obtained films were evaluated in the following (1) to (4).
(1)膜組成の分析
 EPMA装置の定量分析により、各金属成分とC,O成分の定量を行って定量結果を得た。Wの炭化物とWの酸化物の両方を含むものについてはXPS分析を行うことでWの炭化物とWの酸化物の比を求め、求めた比と定量結果とを用いて第1成分内のWと第2成分内のWの量をそれぞれ求めた。得られた結果から、検出された金属成分とC,O成分の合計値を100原子%とした際の各成分の割合を計算した。また、比較例4においては、各金属成分とC,O,N成分の定量を行い、金属成分とC,O,N成分の合計値を100原子%とした際の各成分の割合を計算した。
(1) Analysis of film composition By quantitative analysis of the EPMA device, each metal component and C and O components were quantified and quantification results were obtained. For those containing both the carbide of W and the oxide of W, the ratio of the carbide of W and the oxide of W was obtained by performing XPS analysis, and the W in the first component was obtained using the obtained ratio and the quantitative result. And the amount of W in the second component were determined respectively. From the obtained results, the ratio of each component was calculated when the total value of the detected metal component and the C and O components was 100 atomic%. Further, in Comparative Example 4, each metal component and the C, O, N components were quantified, and the ratio of each component was calculated when the total value of the metal component and the C, O, N components was 100 atomic%. ..
(2)屈折率・消衰係数の測定
 膜厚50nmの成膜サンプルについて、UVISEL-HR320(堀場製作所社製分光エリプソメトリー)を用い、可視光領域(380~780nmの波長領域)の屈折率と消衰係数を測定、計算した。
(2) Measurement of refractive index and extinction coefficient For a film-formed sample with a film thickness of 50 nm, UVISEL-HR320 (spectral ellipsometry manufactured by Horiba Seisakusho) was used to determine the refractive index in the visible light region (wavelength region of 380 to 780 nm). The extinction index was measured and calculated.
(3)比抵抗の測定
 Loresta-GP(三菱化学アナリティック社製)を用い、四探針法で測定した値を表7,8に記載した。測定時の温度は23±5℃(18℃~28℃)、湿度は50±20%(30%~70%)にて測定した。なお、測定時のプローブはPSPプローブを用いた。
(3) Measurement of resistivity The values measured by the four-probe method using Loresta-GP (manufactured by Mitsubishi Chemical Analytical Co., Ltd.) are shown in Tables 7 and 8. The temperature at the time of measurement was 23 ± 5 ° C. (18 ° C. to 28 ° C.), and the humidity was 50 ± 20% (30% to 70%). A PSP probe was used as the probe at the time of measurement.
(4)エッチングレートの測定
 市販の過酸化水素系エッチング液GHP-3(関東化学社製)に膜厚50nmの成膜サンプルを浸漬し、膜が溶ける時間を計測した。その時間の値を膜厚の値で割ることでエッチングレートを得た。測定時は上記エッチング液の温度を40±5℃(35℃~45℃)とした。
(4) Measurement of Etching Rate A film-forming sample having a film thickness of 50 nm was immersed in a commercially available hydrogen peroxide-based etching solution GHP-3 (manufactured by Kanto Chemical Co., Inc.), and the time required for the film to melt was measured. The etching rate was obtained by dividing the time value by the film thickness value. At the time of measurement, the temperature of the etching solution was set to 40 ± 5 ° C. (35 ° C. to 45 ° C.).
(反射率の測定)
 ガラス基板上に、厚さ200nmのCu膜を成膜した。
 そして、Cu膜に接する面に、上述の光学機能膜をそれぞれ適正な膜厚d(25nm以上75nm以下)になるように、スパッタチャンバー内にArを50sccmで流し、チャンバー内全圧が0.67Paの状態で、DCで、T-S距離を70mmとして、表5、6に記載の出力で成膜し、積層膜を作製した。次に、上記のようにガラス基板上に形成された積層膜について、反射率を測定した。この測定では、分光光度計(日立製U-4100)を用い、成膜した膜側から380~780nmの波長において測定した。
(Measurement of reflectance)
A Cu film having a thickness of 200 nm was formed on a glass substrate.
Then, Ar is flowed in the sputtering chamber at 50 sccm so that the above-mentioned optical functional film has an appropriate film thickness d (25 nm or more and 75 nm or less) on the surface in contact with the Cu film, and the total pressure in the chamber is 0.67 Pa. In this state, a film was formed with the outputs shown in Tables 5 and 6 at DC with a TS distance of 70 mm to prepare a laminated film. Next, the reflectance of the laminated film formed on the glass substrate as described above was measured. In this measurement, a spectrophotometer (U-4100 manufactured by Hitachi, Ltd.) was used, and the measurement was performed at a wavelength of 380 to 780 nm from the film-forming film side.
(耐熱試験)
 反射率の測定で作製した積層膜を400℃、窒素雰囲気で10分加熱処理した。熱処理後の反射率を、成膜直後と同様に測定した。
(Heat resistance test)
The laminated film prepared by measuring the reflectance was heat-treated at 400 ° C. in a nitrogen atmosphere for 10 minutes. The reflectance after the heat treatment was measured in the same manner as immediately after the film formation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 比較例1においては、スパッタリングターゲットが、第1成分であるWCおよび第2成分であるZnO,Yを含有するが、Wの含有量が8.0原子%とされており、成膜された光学機能膜におけるWの含有量が2.8原子%となった。この光学機能膜においては、400℃での熱処理後に反射率が大きく上昇しており、耐熱性が不十分であった。 In Comparative Example 1, the sputtering target, ZnO is WC and the second component is a first component, but contains Y 2 O 3, the content of W are 8.0 atomic%, the deposition The W content in the obtained optical functional film was 2.8 atomic%. In this optical functional film, the reflectance was greatly increased after the heat treatment at 400 ° C., and the heat resistance was insufficient.
 比較例2においては、スパッタリングターゲットが、第1成分であるWCおよび第2成分であるYを含有するが、Wの含有量が39.0原子%とされており、成膜された光学機能膜におけるWの含有量が13.6原子%となった。この光学機能膜においては、熱処理前の反射率が35%と比較的大きく、金属薄膜の可視光の反射を十分に抑制することができなかった。 In Comparative Example 2, the sputtering target contained WC as the first component and Y 2 O 3 as the second component, but the W content was 39.0 atomic%, and the film was formed. The W content in the optical functional film was 13.6 atomic%. In this optical functional film, the reflectance before heat treatment was relatively large at 35%, and the reflection of visible light of the metal thin film could not be sufficiently suppressed.
 比較例3においては、スパッタリングターゲットが金属Cuで構成されており、スパッタ時に酸素導入することで酸化銅(CuO)からなる光学機能膜を成膜した。この光学機能膜においては、400℃での熱処理後に反射率が大きく上昇しており、耐熱性が不十分であった。 In Comparative Example 3, the sputtering target was made of metallic Cu, and oxygen was introduced during sputtering to form an optical functional film made of copper oxide (CuO). In this optical functional film, the reflectance was greatly increased after the heat treatment at 400 ° C., and the heat resistance was insufficient.
 比較例4においては、スパッタリングターゲットが金属Cuで構成されており、スパッタ時に窒素および酸素導入することで酸窒化銅(CuNO)からなる光学機能膜を成膜した。この光学機能膜においては、シート抵抗が非常に高くなった。また、過酸化水素エッチング液に不溶であり、エッチングすることができなかった。 In Comparative Example 4, the sputtering target was made of metallic Cu, and an optical functional film made of copper oxynitride (CuNO) was formed by introducing nitrogen and oxygen during sputtering. In this optical functional film, the sheet resistance became very high. In addition, it was insoluble in the hydrogen peroxide etching solution and could not be etched.
 これに対して、本発明例1~33においては、スパッタリングターゲットが、第1成分及び第2成分を含み、第1成分内のW,Taの合計含有量が10原子%以上35原子%以下の範囲内とされており、成膜された光学機能膜における第1成分内のW,Taの合計含有量が3原子%以上11原子%以下の範囲内となった。これらの光学機能膜においては、熱処理前の可視光の反射率が低く、金属薄膜の可視光の反射を十分に抑制することができた。また、熱処理後においても可視光の反射率が大きく変化せず 、耐熱性に優れていた。さらに、過酸化水素エッチング液によって良好にエッチング処理することができた。 On the other hand, in Examples 1 to 33 of the present invention, the sputtering target contains the first component and the second component, and the total content of W and Ta in the first component is 10 atomic% or more and 35 atomic% or less. It is within the range, and the total content of W and Ta in the first component in the formed optical functional film is within the range of 3 atomic% or more and 11 atomic% or less. In these optical functional films, the reflectance of visible light before the heat treatment was low, and the reflection of visible light of the metal thin film could be sufficiently suppressed. In addition, the reflectance of visible light did not change significantly even after the heat treatment, and the heat resistance was excellent. Further, the etching treatment could be performed satisfactorily with the hydrogen peroxide etching solution.
 以上のことから、本発明例によれば、過酸化水素を含むエッチング液によるエッチング性および耐熱性に優れ、金属薄膜等からの光の反射を十分に抑制することが可能な光学機能膜を成膜するスパッタリングターゲット、および、光学機能膜を提供できることが確認された。 From the above, according to the example of the present invention, an optical functional film having excellent etching properties and heat resistance due to an etching solution containing hydrogen peroxide and capable of sufficiently suppressing reflection of light from a metal thin film or the like is formed. It was confirmed that it is possible to provide a sputtering target to be filmed and an optical functional film.
 本実施形態のスパッタリングターゲットは、投影型静電容量方式のタッチパネルにおけるセンシング用の電極(金属膜)に設けられる低反射率膜や、フラットパネルディスプレイにおけるブラックマトリクスを形成する工程に好適に適用される。 The sputtering target of the present embodiment is suitably applied to a step of forming a low reflectance film provided on an electrode (metal film) for sensing in a projected capacitive touch panel and a black matrix in a flat panel display. ..
 12 光学機能膜 12 Optical functional film

Claims (10)

  1.  W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、
     前記第1成分内のW,Taの合計含有量が10原子%以上35原子%以下の範囲内とされていることを特徴とするスパッタリングターゲット。
    The first component consisting of one or two carbides selected from W and Ta, and one or more selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W. Containing a second component consisting of the oxide of
    A sputtering target characterized in that the total content of W and Ta in the first component is in the range of 10 atomic% or more and 35 atomic% or less.
  2.  前記酸化物の母相中に粒状の前記炭化物が分散した組織とされており、前記炭化物の平均粒径が1μm以上150μm以下の範囲内とされていることを特徴とする請求項1に記載のスパッタリングターゲット。 The first aspect of the present invention is characterized in that the structure is such that the granular carbides are dispersed in the matrix of the oxide, and the average particle size of the carbides is in the range of 1 μm or more and 150 μm or less. Sputtering target.
  3.  密度比が90%以上であることを特徴とする請求項1又は請求項2に記載のスパッタリングターゲット。 The sputtering target according to claim 1 or 2, wherein the density ratio is 90% or more.
  4.  比抵抗率が0.1Ω・cm以下とされていることを特徴とする請求項1から請求項3のいずれか一項に記載のスパッタリングターゲット。 The sputtering target according to any one of claims 1 to 3, wherein the resistivity is 0.1 Ω · cm or less.
  5.  W,Taから選択される一種又は二種の炭化物からなる第1成分と、Si,In,Y,Nb,V,Zn,Zr,Al,B,Mo,Wから選択される一種又は二種以上の酸化物からなる第2成分と、を含有し、
     前記第1成分内のW,Taの合計含有量が3原子%以上11原子%以下の範囲内とされていることを特徴とする光学機能膜。
    The first component consisting of one or two carbides selected from W and Ta, and one or more selected from Si, In, Y, Nb, V, Zn, Zr, Al, B, Mo and W. Containing a second component consisting of the oxide of
    An optical functional film characterized in that the total content of W and Ta in the first component is in the range of 3 atomic% or more and 11 atomic% or less.
  6.  Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜した際の可視光反射率が20%以下であることを特徴とする請求項5に記載の光学機能膜。 The optical functional film according to claim 5, wherein the visible light reflectance is 20% or less when a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less.
  7.  厚さ50nmでのシート抵抗が10Ω/sq.以下であることを特徴とする請求項5又は請求項6に記載の光学機能膜。 The sheet resistance of a thickness of 50nm is 10 6 Ω / sq. The optical functional film according to claim 5 or 6, wherein the optical functional film is as follows.
  8.  過酸化水素エッチング液によるエッチングレートが0.3mm/sec.以上5.8mm/sec.以下の範囲内であることを特徴とする請求項5から請求項7のいずれか一項に記載の光学機能膜。 Etching rate with hydrogen peroxide etching solution is 0.3 mm / sec. Above 5.8 mm / sec. The optical functional film according to any one of claims 5 to 7, wherein the optical functional film is within the following range.
  9.  膜厚dと可視光領域の屈折率nと可視光領域の消衰係数kの積n×k×dが40以上100以下の範囲内とされていることを特徴とする請求項5から請求項8のいずれか一項に記載の光学機能膜。 Claim 5 to claim that the product n × k × d of the film thickness d, the refractive index n in the visible light region, and the extinction coefficient k in the visible light region is in the range of 40 or more and 100 or less. 8. The optical functional film according to any one of 8.
  10.  Cu膜と接する面に厚さ25nm以上75nm以下の範囲内で成膜し、400℃で10分保持の熱処理後における可視光反射率が20%以下であることを特徴とする請求項5から請求項9のいずれか一項に記載の光学機能膜。 Claimed from claim 5, wherein a film is formed on the surface in contact with the Cu film within a thickness range of 25 nm or more and 75 nm or less, and the visible light reflectance after heat treatment held at 400 ° C. for 10 minutes is 20% or less. Item 9. The optical functional film according to any one of Items 9.
PCT/JP2021/020200 2020-05-28 2021-05-27 Sputtering target and optical functional film WO2021241687A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-093236 2020-05-28
JP2020093236 2020-05-28
JP2021-086830 2021-05-24
JP2021086830A JP2021188133A (en) 2020-05-28 2021-05-24 Sputtering target and optical function film

Publications (1)

Publication Number Publication Date
WO2021241687A1 true WO2021241687A1 (en) 2021-12-02

Family

ID=78744928

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020200 WO2021241687A1 (en) 2020-05-28 2021-05-27 Sputtering target and optical functional film

Country Status (2)

Country Link
TW (1) TW202200816A (en)
WO (1) WO2021241687A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321771A (en) * 2002-02-28 2003-11-14 Tosoh Corp Sputtering target and production method thereof
JP2005068507A (en) * 2003-08-26 2005-03-17 Toshiba Corp Sputtering target for oxide film formation and production method of oxide film using the same
JP2005247664A (en) * 2004-03-05 2005-09-15 Nippon Sheet Glass Co Ltd Mirror and its manufacturing method
WO2013005690A1 (en) * 2011-07-01 2013-01-10 宇部マテリアルズ株式会社 MgO TARGET FOR SPUTTERING
WO2019223959A1 (en) * 2018-05-23 2019-11-28 Hartmetall-Werkzeugfabrik Paul Horn Gmbh Magnetron sputtering device
JP2020041217A (en) * 2018-09-07 2020-03-19 三菱マテリアル株式会社 Optical functional film, sputtering target, and method for manufacturing sputtering target

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003321771A (en) * 2002-02-28 2003-11-14 Tosoh Corp Sputtering target and production method thereof
JP2005068507A (en) * 2003-08-26 2005-03-17 Toshiba Corp Sputtering target for oxide film formation and production method of oxide film using the same
JP2005247664A (en) * 2004-03-05 2005-09-15 Nippon Sheet Glass Co Ltd Mirror and its manufacturing method
WO2013005690A1 (en) * 2011-07-01 2013-01-10 宇部マテリアルズ株式会社 MgO TARGET FOR SPUTTERING
WO2019223959A1 (en) * 2018-05-23 2019-11-28 Hartmetall-Werkzeugfabrik Paul Horn Gmbh Magnetron sputtering device
JP2020041217A (en) * 2018-09-07 2020-03-19 三菱マテリアル株式会社 Optical functional film, sputtering target, and method for manufacturing sputtering target

Also Published As

Publication number Publication date
TW202200816A (en) 2022-01-01

Similar Documents

Publication Publication Date Title
CN105143931B (en) Light absorbing layer and containing system, layer system manufacturing method and the applicable sputter target layer by layer
TWI506154B (en) Light-absorbing layer system and production of and suitable sputtering target for said layer system
TWI553136B (en) Laminated wiring film and method for producing the same and nickel alloy sputtering target
TWI700382B (en) Oxide thin film and oxide sintered body for sputtering target for manufacturing the thin film
JP6997945B2 (en) Laminated wiring film and its manufacturing method and Mo alloy sputtering target material
CN104212997B (en) The film build method of Cu Mn alloy films and Cu Mn alloy sputtering targets and Cu Mn alloy films
JP2015502452A (en) Sputter target and use thereof
WO2020044796A1 (en) Sputtering target and method for producing sputtering target
CN103849842B (en) Sputtering target and conductive metal oxide film
JP2007314812A (en) Sputtering target and film-forming method
JP5675896B2 (en) Light absorbing layer structure
WO2021241687A1 (en) Sputtering target and optical functional film
JP2020041217A (en) Optical functional film, sputtering target, and method for manufacturing sputtering target
JP2021188133A (en) Sputtering target and optical function film
WO2020050421A1 (en) Optical functional film, sputtering target, and method for manufacturing sputtering target
WO2022097635A1 (en) Sputtering target, method for producing sputtering target, and optical functional film
TW201710522A (en) Sputtering target material, method of producing the same, and optical functional film
WO2021090662A1 (en) Sputtering target, optical function film, and method for manufacturing sputtering target
WO2021251094A1 (en) Sputtering target, method for producing sputtering target and optical functional film
JP2022075552A (en) Sputtering target, manufacturing method of sputtering target, and optical film
JP2022143917A (en) Sputtering target, method for manufacturing the same, and optical function film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814553

Country of ref document: EP

Kind code of ref document: A1