Nothing Special   »   [go: up one dir, main page]

WO2021241268A1 - Pll circuit - Google Patents

Pll circuit Download PDF

Info

Publication number
WO2021241268A1
WO2021241268A1 PCT/JP2021/018361 JP2021018361W WO2021241268A1 WO 2021241268 A1 WO2021241268 A1 WO 2021241268A1 JP 2021018361 W JP2021018361 W JP 2021018361W WO 2021241268 A1 WO2021241268 A1 WO 2021241268A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitor
pll
circuit
unit
oscillation circuit
Prior art date
Application number
PCT/JP2021/018361
Other languages
French (fr)
Japanese (ja)
Inventor
智宏 松本
健一 丸子
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021241268A1 publication Critical patent/WO2021241268A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03LAUTOMATIC CONTROL, STARTING, SYNCHRONISATION OR STABILISATION OF GENERATORS OF ELECTRONIC OSCILLATIONS OR PULSES
    • H03L1/00Stabilisation of generator output against variations of physical values, e.g. power supply
    • H03L1/02Stabilisation of generator output against variations of physical values, e.g. power supply against variations of temperature only

Definitions

  • This disclosure relates to a PLL circuit.
  • Non-Patent Document 1 proposes a method for correcting frequency deviation due to temperature fluctuation of a MEMS oscillation circuit.
  • the oscillation circuit is mounted on an electronic device such as a solid-state image sensor (image sensor). If the power supply of the semiconductor chip constituting the solid-state image sensor is used as the power supply of the oscillation circuit, it is considered that compact mounting is possible. However, the fluctuation of the power supply voltage causes a frequency shift in the oscillation circuit. This problem has not been examined in Non-Patent Document 1.
  • One aspect of the present disclosure is to provide a PLL circuit that can be compactly mounted on a solid-state image sensor.
  • the PLL circuit includes an oscillation circuit that operates using the power supply of the semiconductor chip constituting the solid-state imaging device, a PLL controlled by parameters, and a monitor unit that includes at least the voltage of the power supply for the monitoring target.
  • a correction unit that corrects parameters based on the monitor result of the monitoring unit, and a PLL is defined based on a reference clock signal obtained from an oscillation clock signal of an oscillation circuit and parameters corrected by the correction unit. Generate a clock signal.
  • FIG. 1 It is a figure which shows the example of the schematic structure of the solid-state image pickup apparatus which mounts the PLL circuit which concerns on embodiment. It is a figure which shows the example of the schematic structure of the PLL circuit. It is a figure which shows the example of the schematic structure of the oscillation circuit. It is a figure which shows the example of the schematic structure of the oscillation circuit. It is a figure which shows the example of the schematic structure of the oscillation circuit. It is a figure which shows the example of the schematic structure of the oscillation circuit. It is a figure which shows the example of the schematic structure of the digital PLL. It is a figure which shows typically the influence on the frequency by the voltage fluctuation of a power source.
  • a reference clock is indispensable.
  • the reference clock is mainly generated by using a crystal oscillator circuit (crystal oscillator).
  • the frequency accuracy of the crystal oscillator circuit is high, but the size (physical size) is large. Therefore, there is a demand for generating a reference clock using an oscillation circuit that is smaller than the crystal oscillation circuit.
  • the miniaturized oscillation circuit as described above, it is conceivable to use the power supply of the semiconductor chip as the power supply of the oscillation circuit. However, the frequency of the oscillation circuit deviates due to the fluctuation of the power supply voltage.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a solid-state image pickup device on which a PLL circuit according to an embodiment is mounted.
  • the clock signal generated by the PLL circuit is used in various parts of the solid-state image sensor.
  • the solid-state image sensor 3 exemplified in FIG. 1 is a CMOS image sensor.
  • the semiconductor chip 1 and the semiconductor chip 2 are laminated so as to constitute the solid-state image sensor 3.
  • the semiconductor chip 1 is a pixel chip.
  • a pixel array portion 1a (pixel portion) is formed on the semiconductor chip 1.
  • the pixel array unit 1a includes a plurality of pixels 1b arranged two-dimensionally. Each pixel 1b includes a photoelectric conversion element (not shown).
  • a pad portion 1c and a via portion 1d are provided on the peripheral portion of the semiconductor chip 1.
  • the pad portion 1c is used for electrical connection between the semiconductor chip 1 and the outside of the semiconductor chip 1.
  • the via portion 1d is used for electrical connection between the semiconductor chip 1 and the semiconductor chip 2.
  • a pixel signal here, an analog signal
  • the pad portion 1c is a pair of pad portions provided on both sides of the pixel array portion 1a.
  • the via portion 1d is a pair of via portions provided on both sides of the pixel array portion 1a. Even if a configuration is adopted in which a pad portion is provided on the semiconductor chip 2 to open the semiconductor chip 1 and bonded to the pad on the semiconductor chip 2 side, or a configuration is adopted in which the semiconductor chip 2 is mounted on a substrate by TSV (Through Silicon Via). good.
  • the semiconductor chip 2 may be a circuit chip.
  • peripheral circuit units such as a signal processing unit 2a, a memory unit 2b, a data processing unit 2c, an interface unit 2d, and a control unit 2e are formed. .. Power is supplied to each circuit from a power source (not shown in FIG. 1), and this power source is shown as a power supply VDD in FIG. 2 and the like described later.
  • the signal processing unit 2a processes the pixel signal of each pixel 1b.
  • the process includes AD conversion and the like.
  • the memory unit 2b stores a pixel signal (pixel data) processed by the signal processing unit 2a.
  • the data processing unit 2c reads the pixel data stored in the data processing unit 2c in order and sends it to the interface unit 2d.
  • the interface unit 2d may be a high-speed interface that outputs pixel data to the outside of the semiconductor chip 2 in a format according to a given standard.
  • the control unit 2e has the drive unit, the signal processing unit 2a, the memory unit 2b, and the data processing unit 2c described above based on the given horizontal synchronization signal XHS, vertical synchronization signal XVS, and reference clock such as the master clock MCK. And the operation of the interface unit 2d and the like is controlled while synchronizing with the circuit of the semiconductor chip 1 (pixel array unit 1a and the like).
  • the control unit 2e can also control the PLL circuit 4 (FIG. 2) described later.
  • the semiconductor chip 1 having a laminated structure of the semiconductor chip 1 and the semiconductor chip 2, the semiconductor chip 1 can be brought close to the size (area) of the pixel array portion 1a, and therefore the size of the entire semiconductor chip should be reduced. Can be done. Further, since a process suitable for forming the pixel 1b can be applied to the semiconductor chip 1 and a process suitable for forming peripheral circuits such as the signal processing unit 2a can be applied to the semiconductor chip 2, the process is optimized. You can also do it.
  • High-speed processing is realized by configuring peripheral circuit parts such as the signal processing unit 2a that performs processing such as AD conversion on the semiconductor chip 2 (on the same substrate).
  • peripheral circuit parts such as the signal processing unit 2a that performs processing such as AD conversion on the semiconductor chip 2 (on the same substrate).
  • the PLL circuit according to the embodiment is used to generate the reference clock supplied to the signal processing unit 2a, the interface unit 2d, the control unit 2e, etc. that perform the AD conversion processing described above.
  • the PLL circuit will be described with reference to FIGS. 2 and 2.
  • FIG. 2 is a diagram showing an example of a schematic configuration of a PLL circuit according to an embodiment.
  • the example PLL circuit 4 includes an oscillation circuit 5, a divider 6, a PLL 7 (Phase Locked Loop), a monitor unit 8, and a correction unit 9.
  • the oscillation circuit 5 corresponds to Genshin and operates based on the voltage of the power supply VDD.
  • the power supply VDD is a power supply for a chip (for example, the semiconductor chip 2 in FIG. 1) constituting the solid-state image sensor 3.
  • the oscillation circuit 5 has a small size so that the semiconductor chip 2 and the power supply can be used in common.
  • the oscillation circuit 5 is smaller than, for example, a crystal oscillation circuit.
  • the oscillation circuit 5 may be integrated in the semiconductor chip 2.
  • the oscillation circuit 5 can oscillate at a frequency higher than the crystal oscillation frequency (for example, on the order of GHz) by having a small circuit constant suitable for miniaturization.
  • the oscillation circuit 5 will be described as generating a clock signal.
  • the oscillation signal of the oscillation circuit 5 is referred to as a clock signal OSCLK and is shown in the figure.
  • 3 to 7 are diagrams showing an example of a schematic configuration of an oscillation circuit. Since the operating principle of the oscillation circuit itself is known, a detailed description will not be given below, but an example of the configuration will be briefly described.
  • FIGS. 3 to 5 illustrate an LC oscillation circuit.
  • the oscillation circuit 51 illustrated in FIG. 3 is a single-ended circuit that operates at the voltage of the power supply VDD.
  • the output end of the amplifier 511 is connected to the input end of the amplifier 511 via a coil 512 and a capacitor 513 connected in parallel with each other.
  • the oscillation circuit 52 exemplified in FIG. 4 is a differential circuit that operates based on the voltage of the power supply VDD.
  • the output end (drain in this example) of one of the transistors 521a and 521b (a pair of differential transistors) is the input end (in this example) of the other transistor via a coil 522 and a capacitor 523 connected in parallel with each other. It is connected to the gate).
  • the resistor 524 is connected between the other output end (source in this example) of the transistor 521a and the transistor 521b and ground.
  • the resistor 525 is connected between the power supply VDD and the coil 522.
  • the oscillation circuit 53 exemplified in FIG. 5 is different from the oscillation circuit 52 (FIG. 4) in that it does not have a resistor 524 and a resistor 525, but has a current source 536.
  • the current source 536 is connected between the transistor 521a and the transistor 521b and the ground so that a current flows from the source of the transistor 521a and the transistor 521b toward the ground.
  • FIG. 6 illustrates an RING (RC) oscillator circuit that operates based on the voltage of the power supply VDD.
  • the output ends of each of an odd number of longitudinally connected NOT circuits 541 are connected to the ground via capacitors 542 and resistors 543 provided in parallel with each other.
  • the power supply VDD of each NOT circuit 541 may be the same power supply (common power supply).
  • the oscillation circuit as described with reference to FIGS. 3 to 6 described above can be configured by, for example, on-chip circuit elements (coils, capacitors, resistors), and can eliminate the need for external components. Therefore, it can be made smaller than the crystal oscillator circuit. This merit becomes apparent as the area of the coil and the capacitor becomes smaller as the oscillation frequency becomes higher.
  • FIG. 7 exemplifies a MEMS oscillation circuit that operates based on the voltage of the power supply VDD.
  • the output end of the amplifier 551 is connected to the input end of the amplifier 551 via MEMS552.
  • the voltage of the power supply VDD is boosted by the charge pump 553 and then applied to the MEMS 552. This is because the voltage of the power supply VDD is only about 1V to 5V, for example, whereas the voltage of about 10V is required to drive the MEMS552.
  • the voltage boosted by the charge pump 553 is stepped down by the level shifter 554 and returned to the voltage of the power supply VDD again.
  • the voltage after step-down can be monitored as the voltage of the power supply VDD by the monitor unit 8 (FIG. 2) described later.
  • Such a MEMS oscillation circuit can also be made smaller than the crystal oscillation circuit, and may be provided in the vicinity of the semiconductor chip 2 (FIG. 1), for example.
  • oscillation circuit described with reference to FIGS. 3 to 7 is merely an example of the oscillation circuit 5, and other than these, oscillation circuits having various configurations may be used as the oscillation circuit 5.
  • the frequency divider 6 divides the clock signal OSCLK of the oscillation circuit 5.
  • the signal divided by the frequency divider 6 is referred to as a clock signal REFCLK and is shown in the figure.
  • the clock signal REFCLK is used as a reference clock for PLL7.
  • the clock signal OSCLK is divided by the frequency divider 6 because, as described above, the frequency of the clock signal OSCLK can be considerably higher than, for example, the crystal oscillation frequency. If there is no need for frequency division, the PLL circuit 4 may not include the frequency divider 6. In this case, the clock signal OSCLK itself of the oscillation circuit 5 becomes the clock signal REFCLK.
  • the PLL7 generates a clock signal PLLCLK.
  • the clock signal PLLCLK is determined based on the clock signal REFCLK and the FCW (Frequency Command Word) parameter.
  • the FCW parameter is a numerical value that specifies the ratio of the frequency of the clock signal PLLCLK to the frequency of the clock signal REFCLK.
  • FCW parameters are given from outside the PLL 7.
  • the FCW parameter is given, for example, by the control unit 2e of the solid-state image sensor 3.
  • the numerical range shown in the FCW parameter is determined according to the parameter length (number of bits) of the FCW parameter.
  • the FCW parameter when the PLL 7 is an analog PLL, the FCW parameter may have a parameter length of about 2 to 3 bits in order to improve the resolution by using ⁇ modulation.
  • the FCW parameter when the PLL 7 is a digital PLL, the FCW parameter may have a parameter length of about 20 bits, which is longer than the analog PLL. The larger the parameter length (the larger the number of bits), the better the frequency control resolution of the clock signal PLLCLK.
  • the PLL 7 is a digital PLL.
  • the Divider utilizing ⁇ used in the analog PLL becomes unnecessary. Therefore, unlike the analog PLL, it is not necessary to narrow the band of the PLL in order to reduce the high band noise generated in ⁇ , and the increase of the phase noise is suppressed.
  • An example of the configuration of the digital PLL will be described with reference to FIG.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a digital PLL.
  • the illustrated digital PLL 71 is also referred to as ADPLL (All Digital PLL) or the like, as shown in Non-Patent Document 2, for example, and only DCO (Digitally Controlled Oscillator) and TDC (Time to Digital Converter) are analog circuits. Others (ie, most) are digital circuits.
  • the digital PLL 71 generates a signal having a frequency obtained by multiplying the clock signal REFCLK by the FCW parameter as the clock signal PLLCLK.
  • Accumulator 1 and Accumulator 2 shown are synonymous with the Counter circuit.
  • Accumulator 1 is a low-speed accumulator to which FCW parameters are input.
  • the Accumulator 2 is a high-speed operation Accumulator to which a DCO clock (corresponding to a clock signal PLLCLK) is input. Both Accumulator 1 and Accumulator 2 output a digital code for each clock of the clock signal REFCLK.
  • Accumulator1 can set a value to count up for each clock, and the set value is an FCW parameter. Since the FCW parameter is a digital word, a value including a small number (for example, 4.25, etc.) can be set by having a wide bit width. Since it counts up at the frequency of the clock signal REFCLK, the output code of the Accumulator 1 becomes the reference phase information.
  • Accumulator 2 outputs the count value of the DCO clock for each clock signal REFCLK. Since the count is increased for each clock of the DCO, the Accumulator 2 detects the phase in units of one cycle of the DCO.
  • the TDC which can measure a finer time, plays a role in detecting a period (phase) of one period or less.
  • the code obtained by adding the output codes of Accumulator 2 and TDC is the phase information of DCO.
  • the code obtained by subtracting the output codes of the Accumulator 2 and the TDC from the output code of the Accumulator 1 becomes the phase error information between the clock signal REFCLK and the DCO clock. If the frequency of the DCO deviates from a desired frequency, the phase error becomes large, and feedback control is performed so that the phase error becomes small.
  • LoopFilter reduces the effect of quantization error.
  • the quantization error results from the TDC having a finite resolution.
  • the noise spectrum is uniformly generated from the low frequency to the high frequency, similar to the quantization error of the ADC.
  • Band limitation by LoopFiler reduces the effect of quantization error.
  • the output of LoopFilter is a noise-free code that makes the frequency of DCO a desired frequency.
  • the Loop Filter also has a role of controlling the stability of the feedback loop, and the values of zero and zero so that the loop becomes stable are set.
  • FCW parameter can be said to be a frequency expressed by a digital word standardized by the frequency of the clock signal REFCLK. It is also understood again that the output code of the Accumulator 1 that integrates the FCW parameter information becomes the reference phase information.
  • the TDC is composed of a delay element (Delay element) by an inverter or the like and a flip-flop circuit connected to each delay element.
  • the clock of the DCO is delayed by the delay element, and the data is taken into the flip-flop circuit at the rising timing of the clock signal REFCLK.
  • the edge position can be read from the read data of the flip-flop circuit.
  • the time resolution of the TDC is the delay time of the delay element.
  • the DCO is configured to control the value of the capacity bank according to the digital code, for example, as shown in Non-Patent Document 4.
  • a capacitance bank indicates a plurality of capacitors (capacitors) connected in parallel to a coil (inductor), controls a switch according to a digital code, and changes the number of capacitors connected in parallel. The frequency is controlled by the change of the capacitance value.
  • various frequency-controllable configurations may be used.
  • the digital PLL 71 shown in FIG. 8 is only an example of a digital PLL, and a digital PLL having various configurations other than this may be used as the PLL 7.
  • the frequency of the clock signal OSCLK of the oscillation circuit 5 changes under the influence of the voltage fluctuation of the power supply VDD and the temperature fluctuation of the oscillation circuit 5.
  • the frequency of the clock signal REFCLK and thus the frequency of the clock signal PLLCLK are also affected. This will be described with reference to FIGS. 9 and 10.
  • FIG. 9 is a diagram schematically showing the influence on the frequency due to the voltage fluctuation of the power supply.
  • the horizontal axis of the graph shows the voltage of the power supply VDD, and the vertical axis shows the frequency.
  • the frequency when the power supply VDD changes, the frequency also changes. That is, due to the voltage fluctuation of the power supply VDD, a frequency shift occurs in the clock signal OSCLK, the clock signal REFCLK, and eventually the clock signal PLLCLK (frequency error occurs).
  • FIG. 10 is a diagram schematically showing the influence on the frequency due to the temperature fluctuation of the oscillation circuit.
  • the horizontal axis of the graph shows the temperature of the oscillation circuit 5, and the vertical axis shows the frequency.
  • the frequency also changes. That is, due to the temperature fluctuation of the oscillation circuit 5, a frequency shift occurs in the clock signal OSCLK, the clock signal REFCLK, and eventually the clock signal PLLCLK.
  • the frequency deviation of the crystal oscillator circuit is about several tens of ppm, whereas the LC oscillator circuit (FIGS. 3 to 5, etc.) ) Is about several thousand ppm.
  • the frequency deviation of the clock signal PLLCLK due to voltage fluctuation and temperature fluctuation is reduced by the monitor unit 8 and the correction unit 9 described below.
  • the monitor unit 8 monitors various states of the oscillation circuit 5.
  • the monitor target of the monitor unit 8 includes the voltage of the power supply VDD and the temperature of the oscillation circuit 5.
  • the voltage of the monitored power supply VDD is referred to as a monitor voltage V and is shown in the figure.
  • the temperature of the monitored oscillation circuit 5 is referred to as a monitor temperature T and is shown in the figure.
  • the monitor unit 8 includes a switch 81, a filter 82, a temperature sensor 83, a switch 84, an AD converter 85, a selector 86, and a filter 87. , Includes a filter 88 and a NOT circuit 89.
  • the monitor voltage V and the monitor temperature T are acquired (detected) as digital voltage values by the AD converter 85.
  • the monitor voltage V is acquired by inputting the voltage of the power supply VDD to the AD converter 85 via the switch 81 and the filter 82.
  • the filter 82 (analog filter in this example) suppresses aliases generated by the inclusion of high frequency components in the voltage of the power supply VDD.
  • the monitor temperature T is acquired by inputting the output (analog value in this example) of the temperature sensor 83 provided for the oscillation circuit 5 to the AD converter 85 via the switch 84.
  • a filter (analog filter) (not shown) may also be provided between the temperature sensor 83 and the AD converter 85.
  • a digital filter (not shown) may be provided after the AD converter 85 so as to remove circuit noise (excluding noise in the vicinity of DC) that may be mixed.
  • the monitor voltage V acquired by the AD converter 85 is input to the correction unit 9 via the selector 86 and the filter 87.
  • the monitor temperature T is input to the correction unit 9 via the selector 86 and the filter 88.
  • the switch 81, the switch 84 and the selector 86 are controlled by the control signal CS1.
  • the control signal CS1 is given from the outside of the PLL circuit 4, for example, from the control unit 2e of the solid-state image pickup device 3.
  • the selector 86 is a multiplexer (MUX).
  • the control signal CS1 is directly supplied to the switch 84 and the selector 86.
  • the control signal CS1 is supplied to the switch 81 via the NOT circuit 89.
  • FIGS. 11 to 14 are diagrams showing an example of a time-division monitor.
  • the monitor period of the monitor voltage V and the monitor period of the monitor temperature T are set so that the monitors of the monitor voltage V and the monitor temperature T operate continuously.
  • the monitoring period of the monitor temperature T is shorter than the monitoring period of the monitor voltage V.
  • the monitor period of the monitor temperature T and the monitor period of the monitor voltage V may be set equally.
  • the monitor period of the monitor voltage V and the monitor period of the monitor temperature T are set so that the monitors of the monitor voltage V and the monitor temperature T operate intermittently.
  • FIG. 11 to 14 are diagrams showing an example of a time-division monitor.
  • the monitor period of the monitor voltage V and the monitor period of the monitor temperature T are set to operate intermittently alternately.
  • the time-division monitor as described above is possible because the fluctuation of the monitor temperature T is very slow, for example, about several Hz, and the monitor voltage V is also a voltage value close to DC. This is because it can be sufficiently obtained.
  • the band of temperature fluctuation is low and low rate monitoring is possible, and the power supply monitor is not an AC fluctuation monitor but the average frequency of the oscillator because the PLL acts as a low frequency pass type filter.
  • a low-rate monitor close to DC is sufficient for the purpose of suppressing fluctuations. Since there are cases where the voltage fluctuation of the power supply fluctuates greatly in terms of AC due to the operation of other circuits on the same chip, the monitor voltage V is monitored so as to avoid the timing when the AC fluctuation becomes large. It's okay.
  • the monitor voltage V and the monitor temperature T can be monitored by a single AD converter 85 (FIG. 2). Since it is not necessary to provide a plurality of AD converters corresponding to the monitor voltage V and the monitor temperature T, the PLL circuit 4 can be miniaturized.
  • the configuration of the monitor unit 8 shown in FIG. 2 is merely an example, and various configurations capable of monitoring the voltage of the power supply VDD and the temperature of the oscillation circuit 5 may be adopted.
  • the correction unit 9 corrects the FCW parameter based on the monitor result of the monitor unit 8.
  • the correction unit 9 includes a calculation unit 91, a calculation unit 92, a storage unit 95, a multiplication unit 96, and a multiplication unit 97.
  • the calculation unit 91 calculates the correction value CV1.
  • the correction value CV1 is a correction value (first correction value) corresponding to the monitor voltage V. More specifically, the correction value CV1 is a correction value for correcting the frequency deviation of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD.
  • the correction value CV1 is calculated, for example according to the following polynomial.
  • the correction coefficient ⁇ ( ⁇ 1 , ⁇ 2 , ⁇ 3 ) in the equation is a coefficient (voltage correction coefficient) for calculating the correction value CV1.
  • CV1 1 + ⁇ 1 (VV 0 ) + ⁇ 2 (VV 0 ) 2 + ⁇ 3 (VV 0 ) 3
  • the calculation unit 92 calculates the correction value CV2.
  • the correction value CV2 is a correction value (second correction value) corresponding to the monitor temperature T. More specifically, the correction value CV2 is a correction value for correcting the frequency deviation of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5. Assuming that the reference temperature (for example, type temperature) is the reference temperature T 0 , the correction value CV2 is calculated according to, for example, the following polynomial.
  • the correction coefficient ⁇ ( ⁇ 1k , ⁇ 2k , ⁇ 3k ) in the equation is a coefficient (temperature correction coefficient) for calculating the correction value CV2.
  • CV2 1 + ⁇ 1k ( TT 0 ) + ⁇ 2k ( TT 0 ) 2 + ⁇ 3k ( TT 0 ) 3
  • the correction value may be a correction value in consideration of the dependency between the monitor target corresponding to the correction value and another monitor target.
  • the correction coefficient ⁇ used for calculating the above correction value CV2 may be a coefficient different depending on the voltage of the power supply VDD, not an independent coefficient determined only by the monitor temperature T.
  • a look-up table describing the dependency may be referred to.
  • the look-up table contains, for example, the following description.
  • Multiple voltage ranges are defined, such as less than, voltage V 2 and above, and voltage V less than 3.
  • the correction coefficient ⁇ is set to a different value depending on which voltage range of the plurality of voltage ranges includes the monitor voltage V. For example, when the monitor voltage V is equal to or more than the reference voltage V 0 and less than the voltage V 1 , the correction coefficient ⁇ is set to ⁇ 10 , ⁇ 20 , ⁇ 30, and the like.
  • the correction coefficient ⁇ is set to ⁇ 11 , ⁇ 21 , ⁇ 31, and the like.
  • the correction coefficients ⁇ are set to ⁇ 12 , ⁇ 22 , ⁇ 32, and the like.
  • the storage unit 95 stores the information necessary for the calculation of the calculation unit 91 and the calculation unit 92. Examples of information are the correction factors ⁇ and the correction factors ⁇ described above.
  • the correction coefficient ⁇ and the correction coefficient ⁇ may be stored in the storage unit 95 by writing to the non-volatile memory. In this case, the correction coefficient ⁇ and the correction coefficient ⁇ are always read and set when the power is turned on, when the operation is started, and the like.
  • the above-mentioned look-up table may be stored in the storage unit 95 in the same manner.
  • the correction coefficient ⁇ and the correction coefficient ⁇ may be acquired by using the evaluation data of a large number of samples of the PLL circuit 4. For example, for each of the mass-produced products acquired in the test before mass production shipment, the profile of the frequency deviation of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD and the temperature fluctuation of the oscillation circuit 5 is acquired, and fitting is performed to the profile. Thereby, the correction coefficient ⁇ and the correction coefficient ⁇ are determined. An example of a method for acquiring the correction coefficient ⁇ and the correction coefficient ⁇ will be described later with reference to FIG.
  • the multiplication unit 96 corrects the FCW parameter using the correction value CV1 calculated by the calculation unit 91.
  • the multiplication unit 96 corrects (changes) the numerical value of the FCW parameter by multiplying the correction value CV1 by the FCW parameter.
  • the frequency shift of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD is corrected (voltage compensation is performed).
  • the multiplication unit 97 corrects the FCW parameter using the correction value CV2 calculated by the calculation unit 92.
  • the multiplication unit 97 corrects (changes) the numerical value of the FCW parameter by multiplying the correction value CV2 by the FCW parameter.
  • the frequency shift of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5 is corrected (temperature compensation is performed).
  • FIGS. 15 to 17 are diagrams schematically showing the correction of frequency deviation.
  • the frequency shift of the clock signal PLLCLK occurs due to the voltage fluctuation of the power supply VDD.
  • a correction value CV1 that gives a frequency shift correction amount as shown in FIG. 16 is calculated by the calculation unit 91 so as to cancel this.
  • the frequency deviation of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD is reduced as shown in FIG.
  • the frequency deviation of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5 will be similarly described.
  • FIG. 18 is a flowchart showing an example of a method of acquiring a correction coefficient.
  • step S1 the PLL circuit is operated at the representative temperature and the representative voltage.
  • the representative temperature is, for example, the reference temperature T 0 (type temperature) of the above-mentioned oscillation circuit 5.
  • the representative voltage is, for example, the reference voltage V 0 (type voltage value) of the above-mentioned power supply VDD.
  • the accurate voltage and temperature are monitored as the monitor voltage V and the monitor temperature T by the monitor unit 8 during the operation of the PLL circuit 4.
  • step S2 the FCW parameter that becomes the desired clock frequency is calculated. This provides FCW parameters for the PLL 7 to generate a clock signal PLLCLK with a desired frequency at a reference temperature and a reference voltage.
  • step S3 the voltage fluctuation characteristic and the temperature fluctuation characteristic are acquired.
  • the voltage of the power supply VDD is changed (voltage sweep) while monitoring the frequency of the clock signal PLLCLK.
  • a voltage fluctuation characteristic showing the relationship between the voltage fluctuation of the power supply VDD and the frequency of the clock signal PLLCLK can be obtained.
  • the temperature of the oscillation circuit 5 is changed (temperature sweep) while monitoring the frequency of the clock signal PLLCLK.
  • a temperature fluctuation characteristic showing the relationship between the temperature fluctuation of the oscillation circuit 5 and the frequency of the clock signal PLLCLK can be obtained.
  • step S4 the correction coefficient is calculated.
  • the correction coefficient ⁇ for calculating the correction value CV1 that cancels the voltage fluctuation characteristic acquired in the previous step S3 is calculated by fitting.
  • the correction coefficient ⁇ for calculating the correction value CV2 that cancels the temperature fluctuation characteristic acquired in the previous step S3 is calculated by fitting.
  • the calculation result may also include the dependency between the coefficients (the description content of the above-mentioned look-up table).
  • step S5 the calculation result is stored. That is, the correction coefficient ⁇ and the correction coefficient ⁇ calculated in the previous step S4 are stored in the storage unit 95, for example, by writing to the non-volatile memory.
  • step S5 After the processing of step S5 is completed, the processing of the flowchart ends. For example, by the above processing, the correction coefficient ⁇ and the correction coefficient ⁇ are acquired.
  • the oscillation circuit is configured so that the oscillation frequency can be switched.
  • the correction value CV1 and the correction value CV2 are calculated according to the switching of the oscillation frequency. This will be described with reference to FIG.
  • FIG. 19 is a diagram showing an example of a schematic configuration of a PLL circuit.
  • the PLL circuit 4A shown in FIG. 19 includes an oscillation circuit 5A and a correction unit 9A instead of the oscillation circuit 5 and the correction unit 9, and further, the control signal CS2 is provided. It differs in that it is used.
  • the oscillation circuit 5A is configured so that the oscillation frequency can be switched.
  • the oscillation circuit 5A includes a configuration in which a capacitor 514 and a switch 515 are added to the oscillation circuit 51 described above with reference to FIG.
  • the capacitor 514 is connected in parallel to the capacitor 513 with the switch 515 connected in series.
  • the switch 515 is switched by the control signal CS2.
  • the control signal CS2 is given from the outside of the PLL circuit 4, for example, from the control unit 2e of the solid-state image pickup device 3.
  • the capacitance of the capacitor connected in parallel to the coil 512 is switched between the capacitance value of the capacitor 513 and the combined capacitance value of the capacitor 513 and the capacitor 514.
  • the oscillation frequency of the oscillation circuit 5A that is, the frequency of the clock signal OSCLK is switched.
  • the control signal CS2 is input to the correction unit 9A.
  • the calculation unit 91A and the calculation unit 92A calculate the correction value CV1 and the correction value CV2 according to the switching of the oscillation frequency of the oscillation circuit 5A.
  • the correction coefficient ⁇ and the correction coefficient ⁇ may be defined as a function of the oscillation frequency of the oscillation circuit 5A, that is, the correction coefficient ⁇ (f) and the correction coefficient ⁇ (f).
  • the correction coefficient ⁇ is switched between the correction coefficient ⁇ (f 0 ) and the correction coefficient ⁇ (f 1).
  • These correction coefficients ⁇ (f) and correction coefficients ⁇ (f) are stored in the storage unit 95A (for example, a non-volatile memory).
  • the values of the reference voltage Vo and the reference temperature To may also be changed according to the switching of the oscillation frequency of the oscillation circuit 5A.
  • EMI Electromagnetic Interface
  • the PLL circuit is used in an electronic device such as the solid-state image sensor 3 described above with reference to FIG.
  • Various configurations can be considered as an electronic device (system) having a built-in PLL circuit including an oscillation circuit.
  • An example of a system is a camera system with a built-in oscillation circuit.
  • the camera system is not limited to an image sensor system (solid-state image sensor) for image pickup, but also includes a TOF (Time Of Flight) system capable of measuring a distance.
  • TOF Time Of Flight
  • 20 to 25 are diagrams showing an example of a schematic configuration of an image sensor system.
  • the clock signal OSCLK of the oscillation circuit 5 is supplied to the ADC / DAC / CP circuit 21.
  • the ADC / DAC / CP circuit 21 points to at least one of an AD conversion process (ADC) circuit, a DA conversion process (DAC) circuit, and a charge pump (CP) circuit. This is because the ADC / DAC / CP circuit 21 has a relatively small influence of frequency fluctuations and can supply the clock signal OSCLK as it is.
  • the ADC / DAC / CP circuit 21 is included in, for example, the signal processing unit 2a, the data processing unit 2c, the control unit 2e, and the like described above with reference to FIG.
  • the clock signal PLLCLK in which the frequency deviation is reduced as described above is supplied to the high-speed IF circuit 22 that connects to the outside.
  • the high-speed IF circuit 22 is included in the interface unit 2d described above with reference to FIG. 1, for example.
  • the frequency of the clock signal OSCLK and the frequency of the clock signal PLLCLK may both be frequencies on the order of GHz.
  • the ADC / DAC / CP circuit 21 is often used together with a logic circuit (signal processing circuit) that performs various processing including clock-based counting processing.
  • a logic circuit signal processing circuit
  • the frame rate of imaging may fluctuate, for example.
  • the monitor result (monitor voltage V and monitor temperature T in this example) of the monitor unit 8 may be supplied to the ADC / DAC / CP circuit 21 so that this fluctuation can be corrected inside the circuit.
  • FIG. 21 illustrates a system including a CP circuit 212d, a DAC circuit 213d and an ADC circuit 214d, and a signal processing circuit 215d after the ADC circuit 214d.
  • setting unit 211 setting values corresponding to each process are set.
  • An example of the set value is Gain of the corresponding processing circuit.
  • the set value corresponding to the CP circuit 212d passes through the adjusting unit 212a and the adjusting unit 212b and is written to the register 212c.
  • the set value corresponding to the DAC circuit 213d is adjusted by the adjusting unit 213a and the adjusting unit 213b, and then written to the register 213c of the DAC circuit 213d.
  • the set value corresponding to the ADC circuit 214d is written to the register 214c after being adjusted by the adjusting unit 214a and the adjusting unit 214b.
  • the set value corresponding to the signal processing circuit 215d is adjusted by the adjusting unit 215a and the adjusting unit 215b, and then written to the register 215c of the signal processing circuit 215d.
  • the adjusting unit 212a, the adjusting unit 213a, the adjusting unit 214a, and the adjusting unit 215a adjust the set value based on the monitor voltage V.
  • the adjusting unit 212a, the adjusting unit 213a, the adjusting unit 214a, and the adjusting unit 215a have a function of scaling the value of the monitor voltage V, a function of correcting using a polynomial such as the calculation unit 91 and the calculation unit 92, a look-up table, and the like. You may be prepared.
  • the processing deviation (for example, Gain deviation) of the CP circuit 212d, the DAC circuit 213d, the ADC circuit 214d, and the signal processing circuit 215d due to the voltage fluctuation of the power supply VDD is corrected.
  • the adjusting unit 212b, the adjusting unit 213b, the adjusting unit 214b, and the adjusting unit 215b adjust the set value based on the monitor temperature T.
  • the adjusting unit 212b, the adjusting unit 213b, the adjusting unit 214b, and the adjusting unit 215b have a function of scaling the value of the monitor temperature T, a function of correcting using a polynomial such as the calculation unit 91 and the calculation unit 92, a look-up table, and the like. You may be prepared.
  • the processing deviation of the CP circuit 212d, the DAC circuit 213d, the ADC circuit 214d, and the signal processing circuit 215d due to the temperature fluctuation of the oscillation circuit 5 is corrected.
  • the clock signal PLLCLK of the PLL 7 may be supplied to the ADC / DAC / CP circuit 21 instead of the clock signal OSCLK of the oscillation circuit 5.
  • the clock with high frequency accuracy can be supplied to the ADC / DAC / CP circuit 21 as well.
  • PLL 7 is also provided between the frequency divider 6 and the ADC / DAC / CP circuit 21.
  • the PLL signal of the PLL 7 is supplied to the ADC / DAC / CP circuit 21.
  • the FCW parameters input to each of the illustrated PLL7s may be set to different values.
  • the monitor unit 8 and the correction unit 9 described so far are not shown. The same applies to FIGS. 23 to 25, which will be described later.
  • a frequency divider 6 is also provided between the PLL 7 and the ADC / DAC / CP circuit 21.
  • the PLL signal of the PLL 7 is divided by the divider 6 and then supplied to the ADC / DAC / CP circuit 21.
  • a clock having a frequency accuracy equivalent to that of the clock supplied to the high-speed IF circuit 22 and having a frequency lower than that of the clock can be supplied to the ADC / DAC / CP circuit 21.
  • the frequency division ratio of each of the illustrated frequency dividers 6 may be set to a different value, and this point is the same in FIGS. 24 and 25 described later.
  • a frequency divider 6 is also provided between the oscillation circuit 5 and the logic circuit 23.
  • the clock signal OSCLK of the oscillation circuit 5 can be divided into appropriate frequencies and supplied to the logic circuit 23.
  • a frequency divider 6 provided between the PLL 7 and the ADC / DAC / CP circuit 21 and a frequency divider 6 are further provided between the logic circuit 23.
  • the PLL signal of the PLL 7 is divided by the two dividers 6 and then supplied to the logic circuit 23.
  • the clock signal PLLCLK can be divided into appropriate frequencies other than the clock frequency supplied to the ADC / DAC / CP circuit 21 and supplied to the logic circuit 23.
  • FIG. 26 is a diagram showing an example of a schematic configuration of an oscillation circuit.
  • FIG. 26 schematically shows the transistor 511a and the current source 511b included in the amplifier 511 of the oscillation circuit 51 described above with reference to FIG.
  • the threshold voltage of the transistor 511a is referred to as a threshold voltage Vth and is shown in the figure.
  • the current flowing through the current source 511b is referred to as current Is and is shown in the figure. Fluctuations in the threshold voltage Vth and the current Is may also cause an oscillation frequency shift in the oscillation circuit 51. Therefore, the FCW parameter may be corrected in consideration of the monitor results of the threshold voltage Vth and the current Is. In this case, the monitor unit 8 (FIG.
  • the monitor is configured to include the threshold voltage Vth and the current Is as the monitoring target.
  • the monitor may be a monitor of the threshold voltage Vth of the transistor 511a itself included in the oscillation circuit 51, or a monitor of the threshold voltage (corresponding to the threshold voltage Vth) of the replica circuit from which the circuit portion of the transistor 511a is extracted. It is also good.
  • the size and current value of the transistor may be scaled.
  • the current Is may be a replica circuit or a scaled current value.
  • FIG. 27 is a diagram showing an example of a schematic configuration of a correction unit.
  • the exemplified correction unit 9C further includes a calculation unit 93, a calculation unit 94, a multiplication unit 98, and a multiplication unit 99 as compared with the correction unit 9 (FIG. 1), and includes a storage unit 95C in place of the storage unit 95. It differs in that.
  • the calculation unit 93 calculates a correction value CV3 (third correction value) for correcting the frequency deviation of the clock signal PLLCLK due to the fluctuation of the threshold voltage Vth.
  • the calculation unit 94 calculates a correction value CV4 (fourth correction value) for correcting the frequency deviation of the clock signal PLLCLK due to the fluctuation of the current Is. Since the calculation method of the correction value CV3 and the correction value CV4 is the same as the calculation method of the correction value CV1 and the correction value CV2 described so far, the description is not repeated here.
  • the multiplication unit 98 corrects the FCW parameter using the correction value CV3. As a result, the frequency shift of the clock signal PLLCLK due to the fluctuation of the threshold voltage Vth is corrected (process compensation is performed).
  • the multiplication unit 99 corrects the FCW parameter by using the correction value CV4. As a result, the frequency shift of the clock signal PLLCLK due to the fluctuation of the current Is is corrected (current compensation is performed).
  • the frequency accuracy of the clock signal PLLCLK is further improved by the frequency shift correction in consideration of the fluctuation of the threshold voltage Vth and the current Is.
  • the resistance value of the resistor included in the transmission circuit can also be mentioned.
  • the resistance value of the resistor 524 and the resistance value of the resistor 525 may be included in the monitoring target of the monitor unit 8.
  • the resistance value of the resistor 543 may be included in the monitor target of the monitor unit 8.
  • the resistance value monitor may be the resistance value monitor of the replica circuit, and the size may be scaled.
  • the FCW parameter has been described as an example of the correction symmetry of the correction unit 9.
  • any parameter whose frequency of the PLL 7 can be adjusted can be the correction symmetry of the correction unit 9.
  • the multiplication unit 96 to the multiplication unit 99 correct the FCW parameter by multiplying the correction value CV1 to the correction value CV4 by the FCW parameter.
  • the FCW parameter may be corrected in various modes including addition / subtraction, division, etc., not limited to multiplication.
  • the PLL circuit 4 may be applied to various mobile electronic devices (for example, laptops, smartphones, etc.) other than the solid-state image sensor 3.
  • the PLL circuit 4 includes an oscillation circuit 5, a PLL 7, a monitor unit 8, and a correction unit 9.
  • the oscillation circuit 5 operates using the power supply VDD of the semiconductor chip 2 constituting the solid-state image pickup device 3.
  • PLL7 is controlled by FCW parameters.
  • the monitor unit 8 includes at least the voltage of the power supply VDD (monitor voltage V) in the monitor target.
  • the correction unit 9 corrects the FCW parameter based on the monitor result of the monitor unit 8.
  • the PLL 7 generates a clock signal PLLCLK determined based on the reference clock signal REFCLK obtained from the oscillation clock signal OSCLK of the oscillation circuit 5 and the FCW parameter corrected by the correction unit 9.
  • the FCW parameter that controls the PLL 7 is corrected based on the monitor result of the voltage of the power supply VDD, so that the frequency deviation of the clock signal PLLCLK can be reduced. Further, by using the power supply VDD of the semiconductor chip 2 constituting the solid-state image pickup device 3 in the oscillation circuit 5, it becomes possible to compactly mount the semiconductor chip 2 on the solid-state image pickup device 3.
  • the FCW parameter is a numerical value indicating the ratio of the frequency of the clock signal PLLCLK to the frequency of the clock signal REFCLK, and the correction unit 9 may correct the numerical value. For example, in this way, the frequency deviation of the clock signal PLLCLK can be corrected.
  • the monitor target of the monitor unit 8 may also include the temperature of the oscillation circuit 5 (monitor temperature T). As a result, the frequency shift of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5 can also be corrected.
  • the correction unit 9 corrects the FCW parameter by using the correction values (for example, the correction value CV1 and the correction value CV2) corresponding to each of the monitoring targets (for example, the monitor voltage V and the monitor temperature T) included in the monitor result of the monitor unit 8. You can do it. As a result, the frequency shift of the clock signal PLLCLK can be corrected according to the monitor result of each monitor target.
  • the correction values for example, the correction value CV1 and the correction value CV2
  • the monitoring targets for example, the monitor voltage V and the monitor temperature T
  • At least one correction value is a correction value in consideration of the dependency between the corresponding monitor target (for example, monitor temperature T) and another monitor target (for example, monitor voltage V). good.
  • the correction unit 9 may refer to a look-up table that describes the dependency. As a result, even if there is a dependency between the monitored objects, the frequency deviation of the clock signal PLLCLK can be appropriately corrected.
  • the monitor unit 8 may monitor each of the monitored objects (for example, the monitor voltage V and the monitor temperature T) in a time-divided manner.
  • each monitor target can be performed by a single monitor device (for example, AD converter 85), so that it is not necessary to provide a plurality of monitor devices corresponding to each monitor target.
  • the PLL circuit 4 can be downsized by that amount.
  • the oscillation circuit 5 may be integrated in the semiconductor chip 2.
  • the oscillation circuit 5 may be, for example, an LC oscillation circuit such as an oscillation circuit 51, an oscillation circuit 52, and an oscillation circuit 53.
  • the oscillation circuit 5 may be an RC oscillation circuit such as an oscillation circuit 54, for example.
  • the oscillation circuit 5A may be configured so that the clock signal OSCLK can be switched. This facilitates EMI (Electromagnetic Interface) measures such as preventing interference with other circuits.
  • EMI Electromagnetic Interface
  • the oscillation circuit 51 may include the transistor 511a, and the monitor target of the monitor unit 8 may include the threshold voltage Vth of the transistor 511a. Thereby, the frequency deviation of the clock signal PLLCLK due to the fluctuation of the threshold voltage Vth can be corrected.
  • the oscillation circuit 51 may include the current source 511b, and the monitor target of the monitor unit 8 may include the current Is of the current source 511b. This makes it possible to correct the frequency shift of the clock signal PLLCLK due to the fluctuation of the current Is.
  • the resistance value of the resistor may be included in the monitor target of the monitor unit 8. This makes it possible to correct the frequency shift of the clock signal PLLCLK due to the fluctuation of the resistance value.
  • the PLL 7 may be a digital PLL. As a result, it is possible to realize a higher frequency control resolution than the analog PLL and suppress an increase in phase noise.
  • the present technology can also have the following configurations.
  • An oscillation circuit that operates using the power supply of the semiconductor chip that constitutes the solid-state image sensor, The PLL controlled by the parameters and A monitor unit that includes at least the voltage of the power supply as a monitor target, A correction unit that corrects the parameters based on the monitor result of the monitor unit, and a correction unit. Equipped with The PLL generates a PLL clock signal determined based on a reference clock signal obtained from the oscillation clock signal of the oscillation circuit and the parameter corrected by the correction unit. PLL circuit.
  • the parameter is a numerical value that specifies the ratio of the frequency of the PLL clock signal to the frequency of the reference clock signal.
  • the correction unit corrects the numerical value.
  • the PLL circuit according to (1).
  • the monitor target of the monitor unit includes the temperature of the oscillation circuit.
  • the correction unit corrects the parameter by using the correction value corresponding to each of the monitoring targets included in the monitor result of the monitor unit.
  • At least one of the correction values is a correction value in which the dependency between the corresponding monitor target and another monitor target is taken into consideration.
  • the correction unit refers to a look-up table that describes the dependency.
  • the monitor unit monitors each of the monitored objects in a time-division manner.
  • the oscillation circuit is integrated in the semiconductor chip.
  • the oscillation circuit is either an LC oscillation circuit or an RC oscillation circuit.
  • the oscillation circuit is configured so that the oscillation frequency can be switched.
  • the oscillation circuit includes a transistor and includes a transistor.
  • the monitor target of the monitor unit includes the threshold voltage of the transistor.
  • the oscillator circuit includes a current source.
  • the monitor target of the monitor unit includes a current flowing through the current source.
  • the oscillation circuit includes a resistor and includes a resistor.
  • the monitor target of the monitor unit includes the resistance value of the resistor.
  • the PLL is a digital PLL.

Landscapes

  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

A PLL circuit (4) comprises: an oscillation circuit (5) that operates using a power source (VDD) of a semiconductor chip (2) making up a solid-state imaging device (3); a PLL (7) that provides control according to a parameter (FCW); a monitoring unit (8) that includes, in the monitoring target thereof, at least the voltage of the power source (VDD); and a correction unit (9) that corrects the parameter (FCW) on the basis of the monitoring result from the monitoring unit (8). The PLL (7) generates a PLL clock signal (PLLCLK), which is determined on the basis of the parameter (FCW) that was corrected by the correction unit (9) and a reference clock signal (REFCLK) that is obtained from an oscillation clock signal (OSCLK) of the oscillation circuit (5).

Description

PLL回路PLL circuit
 本開示は、PLL回路に関する。 This disclosure relates to a PLL circuit.
 非特許文献1は、MEMS発振回路の温度変動による周波数ずれを補正する手法を提案する。 Non-Patent Document 1 proposes a method for correcting frequency deviation due to temperature fluctuation of a MEMS oscillation circuit.
 発振回路は、例えば、固体撮像装置(イメージセンサ)等の電子機器に搭載される。発振回路の電源として、固体撮像装置を構成する半導体チップの電源を用いれば、コンパクトな搭載が可能になると考えられる。しかしながら、電源電圧の変動により、発振回路に周波数ずれが生じる。この問題について、非特許文献1では検討は行われていない。 The oscillation circuit is mounted on an electronic device such as a solid-state image sensor (image sensor). If the power supply of the semiconductor chip constituting the solid-state image sensor is used as the power supply of the oscillation circuit, it is considered that compact mounting is possible. However, the fluctuation of the power supply voltage causes a frequency shift in the oscillation circuit. This problem has not been examined in Non-Patent Document 1.
 本開示の一側面は、固体撮像装置へのコンパクトな搭載が可能なPLL回路を提供することを目的とする。 One aspect of the present disclosure is to provide a PLL circuit that can be compactly mounted on a solid-state image sensor.
 本開示の一側面に係るPLL回路は、固体撮像装置を構成する半導体チップの電源を用いて動作する発振回路と、パラメータによって制御されるPLLと、モニタ対象に少なくとも電源の電圧を含むモニタ部と、モニタ部のモニタ結果に基づいてパラメータを補正する補正部と、を備え、PLLは、発振回路の発振クロック信号から得られる基準クロック信号と補正部によって補正されたパラメータとに基づいて定められるPLLクロック信号を生成する。 The PLL circuit according to one aspect of the present disclosure includes an oscillation circuit that operates using the power supply of the semiconductor chip constituting the solid-state imaging device, a PLL controlled by parameters, and a monitor unit that includes at least the voltage of the power supply for the monitoring target. , A correction unit that corrects parameters based on the monitor result of the monitoring unit, and a PLL is defined based on a reference clock signal obtained from an oscillation clock signal of an oscillation circuit and parameters corrected by the correction unit. Generate a clock signal.
実施形態に係るPLL回路が搭載される固体撮像装置の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the solid-state image pickup apparatus which mounts the PLL circuit which concerns on embodiment. PLL回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the PLL circuit. 発振回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the oscillation circuit. 発振回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the oscillation circuit. 発振回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the oscillation circuit. 発振回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the oscillation circuit. 発振回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the oscillation circuit. ディジタルPLLの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the digital PLL. 電源の電圧変動による周波数への影響を模式的に示す図である。It is a figure which shows typically the influence on the frequency by the voltage fluctuation of a power source. 発振回路の温度変動による周波数への影響を模式的に示す図である。It is a figure which shows typically the influence on the frequency by the temperature fluctuation of an oscillation circuit. 時分割モニタの例を示す図である。It is a figure which shows the example of the time division monitor. 時分割モニタの例を示す図である。It is a figure which shows the example of the time division monitor. 時分割モニタの例を示す図である。It is a figure which shows the example of the time division monitor. 時分割モニタの例を示す図である。It is a figure which shows the example of the time division monitor. 周波数ずれの補正を模式的に示す図である。It is a figure which shows the correction of a frequency deviation schematically. 周波数ずれの補正を模式的に示す図である。It is a figure which shows the correction of a frequency deviation schematically. 周波数ずれの補正を模式的に示す図である。It is a figure which shows the correction of a frequency deviation schematically. 補正係数の取得方法の例を示すフローチャートである。It is a flowchart which shows the example of the acquisition method of the correction coefficient. PLL回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the PLL circuit. イメージセンサシステムの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the image sensor system. イメージセンサシステムの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the image sensor system. イメージセンサシステムの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the image sensor system. イメージセンサシステムの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the image sensor system. イメージセンサシステムの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the image sensor system. イメージセンサシステムの概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the image sensor system. 発振回路の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the oscillation circuit. 補正部の概略構成の例を示す図である。It is a figure which shows the example of the schematic structure of the correction part.
 以下に、本開示の実施形態について図面に基づいて詳細に説明する。同一の部位には同一の符号を付することにより重複する説明を省略する。 Hereinafter, embodiments of the present disclosure will be described in detail with reference to the drawings. By assigning the same reference numerals to the same parts, duplicate explanations will be omitted.
 以下に示す項目順序に従って本開示を説明する。
 1. はじめに
 2. 実施形態
 3. 効果
The present disclosure will be described according to the order of items shown below.
1. 1. Introduction 2. Embodiment 3. effect
1. はじめに
 例えば固体撮像装置のようなモバイル電子機器を構成するLSI等の半導体チップにおいては、基準クロックが必須である。一般に、基準クロックは、主に水晶発振回路(水晶発振器)を用いて生成される。水晶発振回路の周波数精度は高いが、サイズ(物理的な大きさ)が大きくなる。したがって、水晶発振回路よりも小型化された発振回路を用いて基準クロックを生成することへの要望が存在する。小型化された発振回路においては、先に述べたように、半導体チップの電源を発振回路の電源としても用いることが考えられる。ただし、電源電圧の変動により、発振回路の周波数にずれが生じる。
1. 1. Introduction In a semiconductor chip such as an LSI that constitutes a mobile electronic device such as a solid-state image sensor, a reference clock is indispensable. Generally, the reference clock is mainly generated by using a crystal oscillator circuit (crystal oscillator). The frequency accuracy of the crystal oscillator circuit is high, but the size (physical size) is large. Therefore, there is a demand for generating a reference clock using an oscillation circuit that is smaller than the crystal oscillation circuit. In the miniaturized oscillation circuit, as described above, it is conceivable to use the power supply of the semiconductor chip as the power supply of the oscillation circuit. However, the frequency of the oscillation circuit deviates due to the fluctuation of the power supply voltage.
 以上のことから、水晶発振回路よりも小型化された(例えばオンチップ構成の)発振回路において、電源電圧の変動による発振回路の周波数ずれを改善する技術が望まれる。 From the above, in an oscillating circuit that is smaller than a crystal oscillating circuit (for example, in an on-chip configuration), a technique for improving the frequency deviation of the oscillating circuit due to fluctuations in the power supply voltage is desired.
2. 実施形態
 図1は、実施形態に係るPLL回路が搭載される固体撮像装置の概略構成の例を示す図である。PLL回路が生成するクロック信号は、固体撮像装置のさまざまな箇所で用いられる。
2. 2. Embodiment FIG. 1 is a diagram showing an example of a schematic configuration of a solid-state image pickup device on which a PLL circuit according to an embodiment is mounted. The clock signal generated by the PLL circuit is used in various parts of the solid-state image sensor.
 図1に例示される固体撮像装置3は、CMOSイメージセンサである。固体撮像装置3は、半導体チップ1及び半導体チップ2は、固体撮像装置3を構成するように積層される。 The solid-state image sensor 3 exemplified in FIG. 1 is a CMOS image sensor. In the solid-state image sensor 3, the semiconductor chip 1 and the semiconductor chip 2 are laminated so as to constitute the solid-state image sensor 3.
 半導体チップ1は、画素チップである。半導体チップ1には、画素アレイ部1a(画素部)が形成される。画素アレイ部1aは、2次元配置された複数の画素1bを含む。各画素1bは、図示しない光電変換素子を含んで構成される。半導体チップ1の周縁部には、パッド部1c及びビア部1dが設けられる。パッド部1cは、半導体チップ1と半導体チップ1の外部との間の電気的接続に用いられる。ビア部1dは、半導体チップ1と半導体チップ2との間の電気的接続に用いられる。例えば、各画素1bから読み出される画素信号(ここではアナログ信号)が、ビア部1dを介して半導体チップ2に伝送される。図1に示される例では、パッド部1cは、画素アレイ部1aを挟んで両側に設けられる一対のパッド部である。ビア部1dは、画素アレイ部1aを挟んで両側に設けられる一対のビア部である。なお、半導体チップ2にパッド部を設けて半導体チップ1を開口し、半導体チップ2側のパッドへボンディングする構成、半導体チップ2からTSV(Through Silicon Via)により基板実装する構成等が採用されてもよい。 The semiconductor chip 1 is a pixel chip. A pixel array portion 1a (pixel portion) is formed on the semiconductor chip 1. The pixel array unit 1a includes a plurality of pixels 1b arranged two-dimensionally. Each pixel 1b includes a photoelectric conversion element (not shown). A pad portion 1c and a via portion 1d are provided on the peripheral portion of the semiconductor chip 1. The pad portion 1c is used for electrical connection between the semiconductor chip 1 and the outside of the semiconductor chip 1. The via portion 1d is used for electrical connection between the semiconductor chip 1 and the semiconductor chip 2. For example, a pixel signal (here, an analog signal) read from each pixel 1b is transmitted to the semiconductor chip 2 via the via portion 1d. In the example shown in FIG. 1, the pad portion 1c is a pair of pad portions provided on both sides of the pixel array portion 1a. The via portion 1d is a pair of via portions provided on both sides of the pixel array portion 1a. Even if a configuration is adopted in which a pad portion is provided on the semiconductor chip 2 to open the semiconductor chip 1 and bonded to the pad on the semiconductor chip 2 side, or a configuration is adopted in which the semiconductor chip 2 is mounted on a substrate by TSV (Through Silicon Via). good.
 半導体チップ2は、回路チップであってよい。半導体チップ2には、各画素1bを駆動する図示しない駆動部の他に、信号処理部2a、メモリ部2b、データ処理部2c、インタフェース部2d及び制御部2e等の周辺回路部が形成される。各回路には、図1には図示しない電源からの電力が供給され、この電源は、後述の図2等において電源VDDとして図示される。 The semiconductor chip 2 may be a circuit chip. In the semiconductor chip 2, in addition to a drive unit (not shown) that drives each pixel 1b, peripheral circuit units such as a signal processing unit 2a, a memory unit 2b, a data processing unit 2c, an interface unit 2d, and a control unit 2e are formed. .. Power is supplied to each circuit from a power source (not shown in FIG. 1), and this power source is shown as a power supply VDD in FIG. 2 and the like described later.
 信号処理部2aは、各画素1bの画素信号を処理する。処理には、AD変換等が含まれる。メモリ部2bは、信号処理部2aによって処理された画素信号(画素データ)を格納する。データ処理部2cは、データ処理部2cに格納された画素データを順に読出し、インタフェース部2dに送る。インタフェース部2dは、所与の規格に応じた形式で画素データを半導体チップ2外に出力する高速インタフェースであってよい。 The signal processing unit 2a processes the pixel signal of each pixel 1b. The process includes AD conversion and the like. The memory unit 2b stores a pixel signal (pixel data) processed by the signal processing unit 2a. The data processing unit 2c reads the pixel data stored in the data processing unit 2c in order and sends it to the interface unit 2d. The interface unit 2d may be a high-speed interface that outputs pixel data to the outside of the semiconductor chip 2 in a format according to a given standard.
 制御部2eは、与えられる水平同期信号XHS、垂直同期信号XVS、及び、マスタークロックMCK等の基準クロックに基づいて、これまで述べた駆動部、信号処理部2a、メモリ部2b、データ処理部2c及びインタフェース部2d等の動作を、半導体チップ1の回路(画素アレイ部1a等)との同期をとりながら制御する。制御部2eは、後述のPLL回路4(図2)の制御も行いうる。 The control unit 2e has the drive unit, the signal processing unit 2a, the memory unit 2b, and the data processing unit 2c described above based on the given horizontal synchronization signal XHS, vertical synchronization signal XVS, and reference clock such as the master clock MCK. And the operation of the interface unit 2d and the like is controlled while synchronizing with the circuit of the semiconductor chip 1 (pixel array unit 1a and the like). The control unit 2e can also control the PLL circuit 4 (FIG. 2) described later.
 半導体チップ1と半導体チップ2との積層構造を備える半導体チップ1においては、半導体チップ1は、画素アレイ部1aのサイズ(面積)に近づけることができ、したがって、半導体チップ全体のサイズを小さくすることができる。また、半導体チップ1において画素1bの形成に適したプロセスを適用し、半導体チップ2において信号処理部2a等の周辺回路の形成に適したプロセスを適用することができるので、プロセスの最適化を図ることもできる。 In the semiconductor chip 1 having a laminated structure of the semiconductor chip 1 and the semiconductor chip 2, the semiconductor chip 1 can be brought close to the size (area) of the pixel array portion 1a, and therefore the size of the entire semiconductor chip should be reduced. Can be done. Further, since a process suitable for forming the pixel 1b can be applied to the semiconductor chip 1 and a process suitable for forming peripheral circuits such as the signal processing unit 2a can be applied to the semiconductor chip 2, the process is optimized. You can also do it.
 AD変換等の処理を行う信号処理部2aをはじめとした周辺回路部分が半導体チップ2に(同一基板に)構成されることで、高速処理が実現される。別々の半導体チップ間でデジタルデータ伝送を行うと、寄生容量などの影響によるクロック遅延が発生して高速処理の妨げとなる可能性があるが、そのような問題も生じない。 High-speed processing is realized by configuring peripheral circuit parts such as the signal processing unit 2a that performs processing such as AD conversion on the semiconductor chip 2 (on the same substrate). When digital data is transmitted between different semiconductor chips, a clock delay due to the influence of parasitic capacitance or the like may occur, which may hinder high-speed processing, but such a problem does not occur.
 例えば以上説明したAD変換処理を行う信号処理部2a、インタフェース部2d及び制御部2e等に供給される基準クロックの生成に、実施形態に係るPLL回路が用いられる。PLL回路について、図2以降を参照して説明する。 For example, the PLL circuit according to the embodiment is used to generate the reference clock supplied to the signal processing unit 2a, the interface unit 2d, the control unit 2e, etc. that perform the AD conversion processing described above. The PLL circuit will be described with reference to FIGS. 2 and 2.
 図2は、実施系形態に係るPLL回路の概略構成の例を示す図である。例示されるPLL回路4は、発振回路5と、分周器6(Divider)と、PLL7(Phase Locked Loop)と、モニタ部8と、補正部9とを含む。 FIG. 2 is a diagram showing an example of a schematic configuration of a PLL circuit according to an embodiment. The example PLL circuit 4 includes an oscillation circuit 5, a divider 6, a PLL 7 (Phase Locked Loop), a monitor unit 8, and a correction unit 9.
 発振回路5は、源信に相当し、電源VDDの電圧に基づいて動作する。電源VDDは、固体撮像装置3を構成するチップ(例えば図1の半導体チップ2)の電源である。発振回路5は、半導体チップ2と電源を共通に用いることが可能な程度の小さなサイズを有する。発振回路5は、例えば水晶発振回路よりも小型である。発振回路5は、半導体チップ2に集積化されてもよい。発振回路5は、小型化に適した小さい回路定数を有することにより、水晶発振周波数よりも高い周波数(例えばGHzオーダ)で発振しうる。以下では、発振回路5はクロック信号を発生するものとして説明する。発振回路5の発振信号を、クロック信号OSCLKと称し図示する。発振回路5のいくつかの構成例について、図3~7を参照して説明する。 The oscillation circuit 5 corresponds to Genshin and operates based on the voltage of the power supply VDD. The power supply VDD is a power supply for a chip (for example, the semiconductor chip 2 in FIG. 1) constituting the solid-state image sensor 3. The oscillation circuit 5 has a small size so that the semiconductor chip 2 and the power supply can be used in common. The oscillation circuit 5 is smaller than, for example, a crystal oscillation circuit. The oscillation circuit 5 may be integrated in the semiconductor chip 2. The oscillation circuit 5 can oscillate at a frequency higher than the crystal oscillation frequency (for example, on the order of GHz) by having a small circuit constant suitable for miniaturization. Hereinafter, the oscillation circuit 5 will be described as generating a clock signal. The oscillation signal of the oscillation circuit 5 is referred to as a clock signal OSCLK and is shown in the figure. Some configuration examples of the oscillation circuit 5 will be described with reference to FIGS. 3 to 7.
 図3~図7は、発振回路の概略構成の例を示す図である。発振回路の動作原理自体は公知であるので、以下では詳細な説明は行わず、構成の例を端的に説明する。 3 to 7 are diagrams showing an example of a schematic configuration of an oscillation circuit. Since the operating principle of the oscillation circuit itself is known, a detailed description will not be given below, but an example of the configuration will be briefly described.
 図3~図5には、LC発振回路が例示される。図3に例示される発振回路51は、電源VDDの電圧で動作するシングルエンド回路である。増幅器511の出力端は、互いに並列接続されたコイル512及びコンデンサ513を介して、増幅器511の入力端に接続される。 FIGS. 3 to 5 illustrate an LC oscillation circuit. The oscillation circuit 51 illustrated in FIG. 3 is a single-ended circuit that operates at the voltage of the power supply VDD. The output end of the amplifier 511 is connected to the input end of the amplifier 511 via a coil 512 and a capacitor 513 connected in parallel with each other.
 図4に例示される発振回路52は、電源VDDの電圧に基づいて動作する差動回路である。トランジスタ521a及びトランジスタ521b(一対の差動トランジスタ)の一方トランジスタの出力端(この例ではドレイン)は、互いに並列接続されたコイル522及びコンデンサ523を介して、他方のトランジスタの入力端(この例ではゲート)に接続される。抵抗器524はトランジスタ521a及びトランジスタ521bの他方の出力端(この例ではソース)とグラウンドとの間に接続される。抵抗器525は、電源VDDとコイル522との間に接続される。 The oscillation circuit 52 exemplified in FIG. 4 is a differential circuit that operates based on the voltage of the power supply VDD. The output end (drain in this example) of one of the transistors 521a and 521b (a pair of differential transistors) is the input end (in this example) of the other transistor via a coil 522 and a capacitor 523 connected in parallel with each other. It is connected to the gate). The resistor 524 is connected between the other output end (source in this example) of the transistor 521a and the transistor 521b and ground. The resistor 525 is connected between the power supply VDD and the coil 522.
 図5に例示される発振回路53は、発振回路52(図4)と比較して、抵抗器524及び抵抗器525を備えない一方で、電流源536を備える点において相違する。電流源536は、トランジスタ521a及びトランジスタ521bのソースからグラウンドに向かって電流が流れるように、トランジスタ521a及びトランジスタ521bとグラウンドとの間に接続される。 The oscillation circuit 53 exemplified in FIG. 5 is different from the oscillation circuit 52 (FIG. 4) in that it does not have a resistor 524 and a resistor 525, but has a current source 536. The current source 536 is connected between the transistor 521a and the transistor 521b and the ground so that a current flows from the source of the transistor 521a and the transistor 521b toward the ground.
 図6には、電源VDDの電圧に基づいて動作するRING(RC)発振回路が例示される。縦続接続された奇数の数(この例では3個)のNOT回路541それぞれの出力端が、互いに並列に設けられたコンデンサ542及び抵抗器543を介して、グラウンドに接続される。なお、各NOT回路541の電源VDDは、同じ電源(共通電源)であってよい。 FIG. 6 illustrates an RING (RC) oscillator circuit that operates based on the voltage of the power supply VDD. The output ends of each of an odd number of longitudinally connected NOT circuits 541 (three in this example) are connected to the ground via capacitors 542 and resistors 543 provided in parallel with each other. The power supply VDD of each NOT circuit 541 may be the same power supply (common power supply).
 上述の図3~図6を参照して説明したような発振回路は、例えば、オンチップの回路素子(コイル、コンデンサ、抵抗器)で構成可能であり、外部部品を不要とすることができる。したがって、水晶発振回路よりも小型化が可能である。このメリットは、とくに発振周波数が高くなるほどコイル及びコンデンサの面積が小さくなるので、顕在化する。 The oscillation circuit as described with reference to FIGS. 3 to 6 described above can be configured by, for example, on-chip circuit elements (coils, capacitors, resistors), and can eliminate the need for external components. Therefore, it can be made smaller than the crystal oscillator circuit. This merit becomes apparent as the area of the coil and the capacitor becomes smaller as the oscillation frequency becomes higher.
 図7には、電源VDDの電圧に基づいて動作するMEMS発振回路が例示される。図7に例示される発振回路55では、増幅器551の出力端が、MEMS552を介して、増幅器551の入力端に接続される。電源VDDの電圧は、チャージポンプ553によって昇圧された後、MEMS552に印加される。電源VDDの電圧が例えば1V~5V程度しかないのに対し、MEMS552の駆動には例えば10V程度の電圧が必要だからである。チャージポンプ553によって昇圧された電圧は、レベルシフタ554によって降圧され、再び電源VDDの電圧に戻る。降圧後の電圧は、後述のモニタ部8(図2)によって電源VDDの電圧としてモニタされうる。このようなMEMS発振回路も、水晶発振回路よりも小型化が可能であり、例えば半導体チップ2(図1)の近傍に設けられてよい。 FIG. 7 exemplifies a MEMS oscillation circuit that operates based on the voltage of the power supply VDD. In the oscillation circuit 55 illustrated in FIG. 7, the output end of the amplifier 551 is connected to the input end of the amplifier 551 via MEMS552. The voltage of the power supply VDD is boosted by the charge pump 553 and then applied to the MEMS 552. This is because the voltage of the power supply VDD is only about 1V to 5V, for example, whereas the voltage of about 10V is required to drive the MEMS552. The voltage boosted by the charge pump 553 is stepped down by the level shifter 554 and returned to the voltage of the power supply VDD again. The voltage after step-down can be monitored as the voltage of the power supply VDD by the monitor unit 8 (FIG. 2) described later. Such a MEMS oscillation circuit can also be made smaller than the crystal oscillation circuit, and may be provided in the vicinity of the semiconductor chip 2 (FIG. 1), for example.
 図3~図7を参照して説明した発振回路は、発振回路5の例示に過ぎず、これら以外にも、さまざまな構成の発振回路が、発振回路5として用いられてよい。 The oscillation circuit described with reference to FIGS. 3 to 7 is merely an example of the oscillation circuit 5, and other than these, oscillation circuits having various configurations may be used as the oscillation circuit 5.
 図2に戻り、分周器6は、発振回路5のクロック信号OSCLKを分周する。分周器6によって分周された信号を、クロック信号REFCLKと称し図示する。クロック信号REFCLKは、PLL7の基準クロックとして用いられる。分周器6によってクロック信号OSCLKを分周するのは、先に述べた様に、クロック信号OSCLKの周波数が、例えば水晶発振周波数よりもかなり高い周波数でありうるからである。分周の必要がない場合には、PLL回路4は、分周器6を備えていなくてもよい。この場合には、発振回路5のクロック信号OSCLKそのものが、クロック信号REFCLKになる。 Returning to FIG. 2, the frequency divider 6 divides the clock signal OSCLK of the oscillation circuit 5. The signal divided by the frequency divider 6 is referred to as a clock signal REFCLK and is shown in the figure. The clock signal REFCLK is used as a reference clock for PLL7. The clock signal OSCLK is divided by the frequency divider 6 because, as described above, the frequency of the clock signal OSCLK can be considerably higher than, for example, the crystal oscillation frequency. If there is no need for frequency division, the PLL circuit 4 may not include the frequency divider 6. In this case, the clock signal OSCLK itself of the oscillation circuit 5 becomes the clock signal REFCLK.
 PLL7は、クロック信号PLLCLKを生成する。クロック信号PLLCLKは、クロック信号REFCLKと、FCW(Frequency Command Word)パラメータとに基づいて定められる。FCWパラメータは、クロック信号REFCLKの周波数に対するクロック信号PLLCLKの周波数の比率を指定する数値である。FCWパラメータは、PLL7の外部から与えられる。PLL回路4が固体撮像装置3(図1)に適用される場合、FCWパラメータは、例えば固体撮像装置3の制御部2eから与えられる。FCWパラメータに示される数値範囲は、FCWパラメータのパラメータ長(ビット数)に応じて定められる。例えばPLL7がアナログPLLの場合、ΔΣ変調を用いて分解能を向上させるため、FCWパラメータは、2~3ビット程度のパラメータ長を有しうる。PLL7がディジタルPLLの場合、FCWパラメータは、アナログPLLよりも長い、20ビット程度のパラメータ長を有しうる。パラメータ長が大きいほど(ビット数が多いほど)、クロック信号PLLCLKの周波数制御分解能が向上する。 PLL7 generates a clock signal PLLCLK. The clock signal PLLCLK is determined based on the clock signal REFCLK and the FCW (Frequency Command Word) parameter. The FCW parameter is a numerical value that specifies the ratio of the frequency of the clock signal PLLCLK to the frequency of the clock signal REFCLK. FCW parameters are given from outside the PLL 7. When the PLL circuit 4 is applied to the solid-state image sensor 3 (FIG. 1), the FCW parameter is given, for example, by the control unit 2e of the solid-state image sensor 3. The numerical range shown in the FCW parameter is determined according to the parameter length (number of bits) of the FCW parameter. For example, when the PLL 7 is an analog PLL, the FCW parameter may have a parameter length of about 2 to 3 bits in order to improve the resolution by using ΔΣ modulation. When the PLL 7 is a digital PLL, the FCW parameter may have a parameter length of about 20 bits, which is longer than the analog PLL. The larger the parameter length (the larger the number of bits), the better the frequency control resolution of the clock signal PLLCLK.
 一実施形態において、PLL7は、ディジタルPLLである。ディジタルPLLにおいては、アナログPLLで使用されるΔΣを活用したDividerが不要になる。このため、アナログPLLのようにΔΣで発生する高帯域ノイズを低減するためにPLLの帯域を狭める必要が無く、位相ノイズの増加が抑制される。ディジタルPLLの構成の例について、図8を参照して説明する。 In one embodiment, the PLL 7 is a digital PLL. In the digital PLL, the Divider utilizing ΔΣ used in the analog PLL becomes unnecessary. Therefore, unlike the analog PLL, it is not necessary to narrow the band of the PLL in order to reduce the high band noise generated in ΔΣ, and the increase of the phase noise is suppressed. An example of the configuration of the digital PLL will be described with reference to FIG.
 図8は、ディジタルPLLの概略構成の例を示す図である。例示されるディジタルPLL71は、例えば非特許文献2に示されるように、ADPLL(All Digital PLL)等とも称され、DCO(Digitally Controlled Oscillator)及びTDC(Time to Digital Converter)のみがアナログ回路であり、その他(すなわち大部分)がディジタル回路である。ディジタルPLL71は、クロック信号REFCLKにFCWパラメータを乗じた周波数の信号を、クロック信号PLLCLKとして生成する。 FIG. 8 is a diagram showing an example of a schematic configuration of a digital PLL. The illustrated digital PLL 71 is also referred to as ADPLL (All Digital PLL) or the like, as shown in Non-Patent Document 2, for example, and only DCO (Digitally Controlled Oscillator) and TDC (Time to Digital Converter) are analog circuits. Others (ie, most) are digital circuits. The digital PLL 71 generates a signal having a frequency obtained by multiplying the clock signal REFCLK by the FCW parameter as the clock signal PLLCLK.
 図示されるAccumulator1及びAccumulator2は、Counter回路と同義である。Accumulator1は、FCWパラメータが入力される低速動作のAccumulatorである。Accumulator2は、DCOのクロック(クロック信号PLLCLKに相当)が入力される高速動作のAccumulatorである。Accumulator1及びAccumulator2は、いずれも、クロック信号REFCLKのクロックごとにディジタルコードを出力する。 Accumulator 1 and Accumulator 2 shown are synonymous with the Counter circuit. Accumulator 1 is a low-speed accumulator to which FCW parameters are input. The Accumulator 2 is a high-speed operation Accumulator to which a DCO clock (corresponding to a clock signal PLLCLK) is input. Both Accumulator 1 and Accumulator 2 output a digital code for each clock of the clock signal REFCLK.
 Accumulator1は、1クロックごとにカウントアップする値を設定でき、その設定値が、FCWパラメータである。FCWパラメータがディジタルワードであるので、bit幅を広く持つことで少数を含む値(例えば4.25等)も設定可能である。クロック信号REFCLKの周波数でカウントアップすることから、Accumulator1の出力コードは、基準となる位相情報となる。 Accumulator1 can set a value to count up for each clock, and the set value is an FCW parameter. Since the FCW parameter is a digital word, a value including a small number (for example, 4.25, etc.) can be set by having a wide bit width. Since it counts up at the frequency of the clock signal REFCLK, the output code of the Accumulator 1 becomes the reference phase information.
 Accumulator2は、クロック信号REFCLKごとにDCOクロックのカウント値を出力する。DCOの1クロックごとにカウントアップすることから、Accumulator2は、DCOの1周期単位で位相を検知する。1周期以下の周期(位相)の検知は、より細かい時間を計測可能なTDCが役割を担う。 Accumulator 2 outputs the count value of the DCO clock for each clock signal REFCLK. Since the count is increased for each clock of the DCO, the Accumulator 2 detects the phase in units of one cycle of the DCO. The TDC, which can measure a finer time, plays a role in detecting a period (phase) of one period or less.
 Accumulator2とTDCの出力コードを足し合わせたコードが、DCOの位相情報となる。Accumulator1の出力コードからAccumulator2及びTDCの出力コードを差し引いたコードが、クロック信号REFCLKとDCOクロックの間の位相誤差情報となる。DCOの周波数が所望の周波数からずれていれば位相誤差が大きくなるが、この位相誤差が小さくなるようにフィードバック制御が行われる。 The code obtained by adding the output codes of Accumulator 2 and TDC is the phase information of DCO. The code obtained by subtracting the output codes of the Accumulator 2 and the TDC from the output code of the Accumulator 1 becomes the phase error information between the clock signal REFCLK and the DCO clock. If the frequency of the DCO deviates from a desired frequency, the phase error becomes large, and feedback control is performed so that the phase error becomes small.
 LoopFilterは、量子化誤差の影響を低減する。量子化誤差は、TDCが有限の分解能を持つことから生じる。量子化誤差は、ADCの量子化誤差と同様に、ノイズスペクトルが低周波数から高周波数まで一様に発生する。LoopFilerによって帯域制限されることで、量子化誤差の影響が低減する。LoopFilterの出力は、DCOの周波数を所望の周波数になるようなノイズの少ないコードになる。LoopFilterにはフィードバックループの安定性を制御する役割もあり、ループが安定になるようなpoleやzeroの値が設定される。 LoopFilter reduces the effect of quantization error. The quantization error results from the TDC having a finite resolution. As for the quantization error, the noise spectrum is uniformly generated from the low frequency to the high frequency, similar to the quantization error of the ADC. Band limitation by LoopFiler reduces the effect of quantization error. The output of LoopFilter is a noise-free code that makes the frequency of DCO a desired frequency. The Loop Filter also has a role of controlling the stability of the feedback loop, and the values of zero and zero so that the loop becomes stable are set.
 クロック信号REFCLKの周波数をFREFとし、FCWパラメータの値をFCWとし、DCOクロックの周波数をFDCOとすると、FDCO=FCW×FREFという関係が成立する。このことから理解されるように、FCWパラメータは、クロック信号REFCLKの周波数で規格化されたディジタルワードで表現する周波数ともいえる。FCWパラメータの情報を積分するAccumulator1の出力コードが、基準となる位相情報になることも改めて理解される。 The frequency of the clock signal REFCLK and F REF, the value of the FCW parameters and FCW, when the frequency of the DCO clock and F DCO, relationship F DCO = FCW × F REF is established. As can be understood from this, the FCW parameter can be said to be a frequency expressed by a digital word standardized by the frequency of the clock signal REFCLK. It is also understood again that the output code of the Accumulator 1 that integrates the FCW parameter information becomes the reference phase information.
 最後に、TDC及びDCOの構成例について述べる。TDCは、例えば非特許文献3に示されるように、インバータなどによる遅延素子(Delay素子)と、遅延素子ごとに接続されるフリップフロップ回路から構成される。DCOのクロックを遅延素子で遅延させ、クロック信号REFCLKの立ち上がりのタイミングでフリップフロップ回路にデータが取り込まれる。フリップフロップ回路の読出しデータから、エッジの位置を読み出すことができる。TDCの時間分解能は、遅延素子の遅延時間となる。DCOは、例えば非特許文献4に示されるように、ディジタルコードに応じて容量バンクの値を制御するように構成される。容量バンクは、コイル(インダクタ)に並列に接続される複数のコンデンサ(キャパシタ)を示し、ディジタルコードに応じてスイッチを制御し、並列に接続されるコンデンサの数を変化させる。容量値の変化により、周波数が制御される。コイル及びコンデンサ以外にも、周波数制御可能なさまざまな構成が用いられてよい。 Finally, a configuration example of TDC and DCO will be described. As shown in Non-Patent Document 3, for example, the TDC is composed of a delay element (Delay element) by an inverter or the like and a flip-flop circuit connected to each delay element. The clock of the DCO is delayed by the delay element, and the data is taken into the flip-flop circuit at the rising timing of the clock signal REFCLK. The edge position can be read from the read data of the flip-flop circuit. The time resolution of the TDC is the delay time of the delay element. The DCO is configured to control the value of the capacity bank according to the digital code, for example, as shown in Non-Patent Document 4. A capacitance bank indicates a plurality of capacitors (capacitors) connected in parallel to a coil (inductor), controls a switch according to a digital code, and changes the number of capacitors connected in parallel. The frequency is controlled by the change of the capacitance value. In addition to the coil and the capacitor, various frequency-controllable configurations may be used.
 なお、図8に示されるディジタルPLL71はディジタルPLLの一例に過ぎず、これ以外のさまざまな構成のディジタルPLLがPLL7として用いられてよい。 The digital PLL 71 shown in FIG. 8 is only an example of a digital PLL, and a digital PLL having various configurations other than this may be used as the PLL 7.
 図2に戻り、発振回路5のクロック信号OSCLKの周波数は、電源VDDの電圧変動及び発振回路5の温度変動の影響を受けて変化する。クロック信号REFCLKの周波数、ひいてはクロック信号PLLCLKの周波数も影響を受ける。これについて、図9及び図10を参照して説明する。 Returning to FIG. 2, the frequency of the clock signal OSCLK of the oscillation circuit 5 changes under the influence of the voltage fluctuation of the power supply VDD and the temperature fluctuation of the oscillation circuit 5. The frequency of the clock signal REFCLK and thus the frequency of the clock signal PLLCLK are also affected. This will be described with reference to FIGS. 9 and 10.
 図9は、電源の電圧変動による周波数への影響を模式的に示す図である。グラフの横軸は電源VDDの電圧を示し、縦軸は周波数を示す。図9に示されるように、電源VDDが変化すると、周波数も変化する。すなわち、電源VDDの電圧変動により、クロック信号OSCLK、クロック信号REFCLK、ひいてはクロック信号PLLCLKに周波数ずれが生じる(周波数誤差が生じる)。 FIG. 9 is a diagram schematically showing the influence on the frequency due to the voltage fluctuation of the power supply. The horizontal axis of the graph shows the voltage of the power supply VDD, and the vertical axis shows the frequency. As shown in FIG. 9, when the power supply VDD changes, the frequency also changes. That is, due to the voltage fluctuation of the power supply VDD, a frequency shift occurs in the clock signal OSCLK, the clock signal REFCLK, and eventually the clock signal PLLCLK (frequency error occurs).
 図10は、発振回路の温度変動による周波数への影響を模式的に示す図である。グラフの横軸は発振回路5の温度を示し、縦軸は周波数を示す。図10に示されるように、発振回路5の温度が変化すると、周波数も変化する。すなわち、発振回路5の温度変動により、クロック信号OSCLK、クロック信号REFCLK、ひいてはクロック信号PLLCLKに周波数ずれが生じる。水晶発振回路との比較例について述べると、例えば-40℃~120℃の温度範囲において、水晶発振回路の周波数ずれが数十ppm程度であるのに対し、LC発振回路(図3~図5等)の周波数ずれは数千ppm程度である。 FIG. 10 is a diagram schematically showing the influence on the frequency due to the temperature fluctuation of the oscillation circuit. The horizontal axis of the graph shows the temperature of the oscillation circuit 5, and the vertical axis shows the frequency. As shown in FIG. 10, when the temperature of the oscillation circuit 5 changes, the frequency also changes. That is, due to the temperature fluctuation of the oscillation circuit 5, a frequency shift occurs in the clock signal OSCLK, the clock signal REFCLK, and eventually the clock signal PLLCLK. As a comparative example with the crystal oscillator circuit, for example, in the temperature range of -40 ° C to 120 ° C, the frequency deviation of the crystal oscillator circuit is about several tens of ppm, whereas the LC oscillator circuit (FIGS. 3 to 5, etc.) ) Is about several thousand ppm.
 電圧変動及び温度変動によるクロック信号PLLCLKの周波数ずれは、次に説明するモニタ部8及び補正部9によって低減される。 The frequency deviation of the clock signal PLLCLK due to voltage fluctuation and temperature fluctuation is reduced by the monitor unit 8 and the correction unit 9 described below.
 モニタ部8は、発振回路5のさまざまな状態をモニタする。図2に示される例では、モニタ部8のモニタ対象は、電源VDDの電圧及び発振回路5の温度を含む。モニタされる電源VDDの電圧を、モニタ電圧Vと称し図示する。モニタされる発振回路5の温度を、モニタ温度Tと称し図示する。モニタ電圧V及びモニタ温度Tをモニタするための構成として、モニタ部8は、スイッチ81と、フィルタ82と、温度センサ83と、スイッチ84と、AD変換器85と、セレクタ86と、フィルタ87と、フィルタ88と、NOT回路89とを含む。 The monitor unit 8 monitors various states of the oscillation circuit 5. In the example shown in FIG. 2, the monitor target of the monitor unit 8 includes the voltage of the power supply VDD and the temperature of the oscillation circuit 5. The voltage of the monitored power supply VDD is referred to as a monitor voltage V and is shown in the figure. The temperature of the monitored oscillation circuit 5 is referred to as a monitor temperature T and is shown in the figure. As a configuration for monitoring the monitor voltage V and the monitor temperature T, the monitor unit 8 includes a switch 81, a filter 82, a temperature sensor 83, a switch 84, an AD converter 85, a selector 86, and a filter 87. , Includes a filter 88 and a NOT circuit 89.
 モニタ電圧V及びモニタ温度Tは、AD変換器85によって、ディジタル電圧値として取得(検出)される。モニタ電圧Vは、電源VDDの電圧がスイッチ81及びフィルタ82を介してAD変換器85に入力されることにより、取得される。フィルタ82(この例ではアナログフィルタ)は、電源VDDの電圧に高周波成分が含まれることにより発生するエイリアスを抑制する。モニタ温度Tは、発振回路5に対して設けられた温度センサ83の出力(この例ではアナログ値)がスイッチ84を介してAD変換器85に入力されることにより、取得される。なお、温度センサ83とAD変換器85との間にも、図示しないフィルタ(アナログフィルタ)が設けられてよい。また、混入しうる回路ノイズ(DC付近のノイズを除く)を除去するように、図示しないディジタルフィルタがAD変換器85の後段に設けられてもよい。AD変換器85によって取得されたモニタ電圧Vは、セレクタ86及びフィルタ87を介して、補正部9に入力される。モニタ温度Tは、セレクタ86及びフィルタ88を介して、補正部9に入力される。 The monitor voltage V and the monitor temperature T are acquired (detected) as digital voltage values by the AD converter 85. The monitor voltage V is acquired by inputting the voltage of the power supply VDD to the AD converter 85 via the switch 81 and the filter 82. The filter 82 (analog filter in this example) suppresses aliases generated by the inclusion of high frequency components in the voltage of the power supply VDD. The monitor temperature T is acquired by inputting the output (analog value in this example) of the temperature sensor 83 provided for the oscillation circuit 5 to the AD converter 85 via the switch 84. A filter (analog filter) (not shown) may also be provided between the temperature sensor 83 and the AD converter 85. Further, a digital filter (not shown) may be provided after the AD converter 85 so as to remove circuit noise (excluding noise in the vicinity of DC) that may be mixed. The monitor voltage V acquired by the AD converter 85 is input to the correction unit 9 via the selector 86 and the filter 87. The monitor temperature T is input to the correction unit 9 via the selector 86 and the filter 88.
 スイッチ81、スイッチ84及びセレクタ86は、制御信号CS1によって制御される。制御信号CS1は、PLL回路4の外部、例えば固体撮像装置3の制御部2e等から与えられる。この例では、セレクタ86は、マルチプレクサ(MUX)である。スイッチ84及びセレクタ86には、制御信号CS1が直接供給される。スイッチ81には、制御信号CS1がNOT回路89を介して供給される。スイッチ81及びスイッチ84が排他的に切替わることにより、モニタ電圧V及びモニタ温度Tが時分割モニタされる。時分割モニタは、さまざまな態様で実施されてよい。いくつかの例について、図11~図14を参照して説明する。 The switch 81, the switch 84 and the selector 86 are controlled by the control signal CS1. The control signal CS1 is given from the outside of the PLL circuit 4, for example, from the control unit 2e of the solid-state image pickup device 3. In this example, the selector 86 is a multiplexer (MUX). The control signal CS1 is directly supplied to the switch 84 and the selector 86. The control signal CS1 is supplied to the switch 81 via the NOT circuit 89. By exclusively switching the switch 81 and the switch 84, the monitor voltage V and the monitor temperature T are time-division-monitored. The time division monitor may be implemented in various embodiments. Some examples will be described with reference to FIGS. 11-14.
 図11~図14は、時分割モニタの例を示す図である。図11及び図12に示される例では、モニタ電圧V及びモニタ温度Tのモニタが連続動作するように、モニタ電圧Vのモニタ期間及びモニタ温度Tのモニタ期間が設定される。図11に示される例では、モニタ温度Tのモニタ期間は、モニタ電圧Vのモニタ期間よりも短い。図12に示されるようにモニタ温度Tのモニタ期間とモニタ電圧Vのモニタ期間とが等しく設定されてもよい。図13に示される例では、モニタ電圧V及びモニタ温度Tのモニタが間欠動作するように、モニタ電圧Vのモニタ期間及びモニタ温度Tのモニタ期間が設定される。図14に示される例では、モニタ電圧Vのモニタ期間及びモニタ温度Tのモニタ期間が交互に間欠動作するように設定される。時分割モニタにおいては、モニタ電圧V及びモニタ温度Tがいずれもモニタされない期間(例えば図13及び図14を参照)が存在してよく、当該期間中のAD変換器85の動作は停止されてよい。これにより、消費電力が低減される。 11 to 14 are diagrams showing an example of a time-division monitor. In the example shown in FIGS. 11 and 12, the monitor period of the monitor voltage V and the monitor period of the monitor temperature T are set so that the monitors of the monitor voltage V and the monitor temperature T operate continuously. In the example shown in FIG. 11, the monitoring period of the monitor temperature T is shorter than the monitoring period of the monitor voltage V. As shown in FIG. 12, the monitor period of the monitor temperature T and the monitor period of the monitor voltage V may be set equally. In the example shown in FIG. 13, the monitor period of the monitor voltage V and the monitor period of the monitor temperature T are set so that the monitors of the monitor voltage V and the monitor temperature T operate intermittently. In the example shown in FIG. 14, the monitor period of the monitor voltage V and the monitor period of the monitor temperature T are set to operate intermittently alternately. In the time-divided monitor, there may be a period in which neither the monitor voltage V nor the monitor temperature T is monitored (see, for example, FIGS. 13 and 14), and the operation of the AD converter 85 may be stopped during the period. .. This reduces power consumption.
 上述のような時分割モニタが可能なのは、モニタ温度Tの変動が例えば数Hz程度と非常に遅く、また、モニタ電圧VもDCに近い電圧値であり、いずれも時分割モニタで所望の情報を十分に取得することができるからである。一般的に温度変動の帯域は低く低レートモニタが可能であり、また、電源モニタも、PLLが低域通過型のフィルタの役割を持つため、AC的変動モニタではなく、発振器の平均的な周波数変動を抑える目的のもと、DCに近い低レートモニタで足りる。なお、電源の電圧変動については、同一チップ上の他の回路が動作することでAC的に大きく変動するケースもあるので、AC変動が大きくなるタイミングを避けるようにモニタ電圧Vのモニタが行われてよい。 The time-division monitor as described above is possible because the fluctuation of the monitor temperature T is very slow, for example, about several Hz, and the monitor voltage V is also a voltage value close to DC. This is because it can be sufficiently obtained. Generally, the band of temperature fluctuation is low and low rate monitoring is possible, and the power supply monitor is not an AC fluctuation monitor but the average frequency of the oscillator because the PLL acts as a low frequency pass type filter. A low-rate monitor close to DC is sufficient for the purpose of suppressing fluctuations. Since there are cases where the voltage fluctuation of the power supply fluctuates greatly in terms of AC due to the operation of other circuits on the same chip, the monitor voltage V is monitored so as to avoid the timing when the AC fluctuation becomes large. It's okay.
 例えば以上説明したような時分割モニタを行うことによって、モニタ電圧V及びモニタ温度Tのモニタを単一のAD変換器85(図2)で行うことができる。モニタ電圧V及びモニタ温度Tそれぞれに対応した複数のAD変換器を備える必要が無い分、PLL回路4を小型化することができる。なお、図2に示されるモニタ部8の構成は例示に過ぎず、電源VDDの電圧及び発振回路5の温度をモニタ可能なさまざまな構成が採用されてよい。 For example, by performing the time division monitor as described above, the monitor voltage V and the monitor temperature T can be monitored by a single AD converter 85 (FIG. 2). Since it is not necessary to provide a plurality of AD converters corresponding to the monitor voltage V and the monitor temperature T, the PLL circuit 4 can be miniaturized. The configuration of the monitor unit 8 shown in FIG. 2 is merely an example, and various configurations capable of monitoring the voltage of the power supply VDD and the temperature of the oscillation circuit 5 may be adopted.
 図2に戻り、補正部9は、モニタ部8のモニタ結果に基づいて、FCWパラメータを補正する。この例では、補正部9は、算出部91と、算出部92と、記憶部95と、乗算部96と、乗算部97とを含む。 Returning to FIG. 2, the correction unit 9 corrects the FCW parameter based on the monitor result of the monitor unit 8. In this example, the correction unit 9 includes a calculation unit 91, a calculation unit 92, a storage unit 95, a multiplication unit 96, and a multiplication unit 97.
 算出部91は、補正値CV1を算出する。補正値CV1は、モニタ電圧Vに対応する補正値(第1の補正値)である。より具体的に、補正値CV1は、電源VDDの電圧変動によるクロック信号PLLCLKの周波数ずれを補正するための補正値である。基準電圧(例えば電源VDDのtyp電圧値)を基準電圧Vとすると、補正値CV1は、例えば以下の多項式に従って算出される。式中の補正係数α(α、α、α)は、補正値CV1を算出するための係数(電圧補正係数)である。
  CV1=1+α(V-V)+α(V-V+α(V-V
The calculation unit 91 calculates the correction value CV1. The correction value CV1 is a correction value (first correction value) corresponding to the monitor voltage V. More specifically, the correction value CV1 is a correction value for correcting the frequency deviation of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD. When the reference voltage (e.g., typ voltage value of the power supply VDD) and the reference voltage V 0, the correction value CV1 is calculated, for example according to the following polynomial. The correction coefficient α (α 1 , α 2 , α 3 ) in the equation is a coefficient (voltage correction coefficient) for calculating the correction value CV1.
CV1 = 1 + α 1 (VV 0 ) + α 2 (VV 0 ) 2 + α 3 (VV 0 ) 3
 算出部92は、補正値CV2を算出する。補正値CV2は、モニタ温度Tに対応する補正値(第2の補正値)である。より具体的に、補正値CV2は、発振回路5の温度変動によるクロック信号PLLCLKの周波数ずれを補正するための補正値である。基準温度(例えばtyp温度)を基準温度Tとすると、補正値CV2は、例えば以下の多項式に従って算出される。式中の補正係数β(β1k、β2k、β3k)は、補正値CV2を算出するための係数(温度補正係数)である。
  CV2=1+β1k(T-T)+β2k(T-T+β3k(T-T
The calculation unit 92 calculates the correction value CV2. The correction value CV2 is a correction value (second correction value) corresponding to the monitor temperature T. More specifically, the correction value CV2 is a correction value for correcting the frequency deviation of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5. Assuming that the reference temperature (for example, type temperature) is the reference temperature T 0 , the correction value CV2 is calculated according to, for example, the following polynomial. The correction coefficient β (β 1k , β 2k , β 3k ) in the equation is a coefficient (temperature correction coefficient) for calculating the correction value CV2.
CV2 = 1 + β 1k ( TT 0 ) + β 2k ( TT 0 ) 2 + β 3k ( TT 0 ) 3
 補正値は、その補正値に対応するモニタ対象とは別のモニタ対象との間の依存性が考慮された補正値であってよい。例えば、上記の補正値CV2を算出に用いられる補正係数βが、モニタ温度Tのみで定まる独立した係数ではなく、電源VDDの電圧によって異なる係数とされてよい。このような依存性が考慮された補正係数βを得るために、依存性を記述したルックアップテーブルが参照されてよい。ルックアップテーブルは、例えば以下の記述を含む。
  V<=V<V:β10、β20、β30・・・
  V<=V<V:β11、β21、β31・・・
  V<=V<V:β12、β22、β32・・・
The correction value may be a correction value in consideration of the dependency between the monitor target corresponding to the correction value and another monitor target. For example, the correction coefficient β used for calculating the above correction value CV2 may be a coefficient different depending on the voltage of the power supply VDD, not an independent coefficient determined only by the monitor temperature T. In order to obtain the correction coefficient β in which such a dependency is taken into consideration, a look-up table describing the dependency may be referred to. The look-up table contains, for example, the following description.
V 0 <= V <V 1 : β 10 , β 20 , β 30 ...
V 1 <= V <V 2 : β 11 , β 21 , β 31 ...
V 2 <= V <V 3 : β 12 , β 22 , β 32 ...
 上記のルックアップテーブルによれば、基準電圧V、並びに、予め定められた電圧V、電圧V及び電圧Vによって、基準電圧V以上電圧V未満、電圧V以上電圧V未満、電圧V以上電圧V未満といった複数の電圧範囲が規定される。複数の電圧範囲のうちのいずれの電圧範囲にモニタ電圧Vが含まれるかによって、補正係数βが異なる値に設定される。例えば、モニタ電圧Vが基準電圧V以上且つ電圧V未満の場合、補正係数βは、β10、β20、β30等に設定される。モニタ電圧Vが電圧V以上且つ電圧V未満の場合、補正係数βは、β11、β21、β31等に設定される。モニタ電圧Vが電圧V2以上且つ電圧V3未満の場合、補正係数βは、β12、β22、β32等に設定される。 According to the lookup table, the reference voltage V 0, as well as the voltage V 1 predetermined by the voltage V 2 and the voltage V 3, the reference voltage greater than or equal to V 0 voltage V smaller than 1, the voltage V 1 or the voltage V 2 Multiple voltage ranges are defined, such as less than, voltage V 2 and above, and voltage V less than 3. The correction coefficient β is set to a different value depending on which voltage range of the plurality of voltage ranges includes the monitor voltage V. For example, when the monitor voltage V is equal to or more than the reference voltage V 0 and less than the voltage V 1 , the correction coefficient β is set to β 10 , β 20 , β 30, and the like. When the monitor voltage V is the voltage V 1 or more and the voltage V 2 or less, the correction coefficient β is set to β 11 , β 21 , β 31, and the like. When the monitor voltage V is equal to or greater than the voltage V2 and less than the voltage V3, the correction coefficients β are set to β 12 , β 22 , β 32, and the like.
 記憶部95は、算出部91及び算出部92の算出に必要な情報を記憶する。情報の例は、上述の補正係数α及び補正係数βである。補正係数α及び補正係数βは、不揮発性メモリへの書き込みよって、記憶部95に記憶されてよい。この場合、電源投入時、動作開始時等に、補正係数α及び補正係数βが常に読み出されて設定される。上述のルックアップテーブルも、同様にして記憶部95に記憶されてよい。 The storage unit 95 stores the information necessary for the calculation of the calculation unit 91 and the calculation unit 92. Examples of information are the correction factors α and the correction factors β described above. The correction coefficient α and the correction coefficient β may be stored in the storage unit 95 by writing to the non-volatile memory. In this case, the correction coefficient α and the correction coefficient β are always read and set when the power is turned on, when the operation is started, and the like. The above-mentioned look-up table may be stored in the storage unit 95 in the same manner.
 上述の補正係数α及び補正係数β(ルックアップテーブルを含む)は、PLL回路4の多数のサンプルの評価データを用いて取得されてよい。例えば、量産出荷前のテストで取得される量産品のそれぞれについて、電源VDDの電圧変動及び発振回路5の温度変動によるクロック信号PLLCLKの周波数ずれのプロファイルを取得し、当該プロファイルに対してフィッティングを行うことによって、補正係数α及び補正係数βが決定される。補正係数α及び補正係数βの取得方法の例については、後に図18を参照して改めて説明する。 The correction coefficient α and the correction coefficient β (including the look-up table) described above may be acquired by using the evaluation data of a large number of samples of the PLL circuit 4. For example, for each of the mass-produced products acquired in the test before mass production shipment, the profile of the frequency deviation of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD and the temperature fluctuation of the oscillation circuit 5 is acquired, and fitting is performed to the profile. Thereby, the correction coefficient α and the correction coefficient β are determined. An example of a method for acquiring the correction coefficient α and the correction coefficient β will be described later with reference to FIG.
 乗算部96は、算出部91によって算出された補正値CV1を用いて、FCWパラメータを補正する。この例では、乗算部96は、補正値CV1をFCWパラメータに乗ずることによって、FCWパラメータの数値を補正(変更)する。これにより、電源VDDの電圧変動によるクロック信号PLLCLKの周波数ずれが補正される(電圧補償がなされる)。 The multiplication unit 96 corrects the FCW parameter using the correction value CV1 calculated by the calculation unit 91. In this example, the multiplication unit 96 corrects (changes) the numerical value of the FCW parameter by multiplying the correction value CV1 by the FCW parameter. As a result, the frequency shift of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD is corrected (voltage compensation is performed).
 乗算部97は、算出部92によって算出された補正値CV2を用いて、FCWパラメータを補正する。この例では、乗算部97は、補正値CV2をFCWパラメータに乗ずることによって、FCWパラメータの数値を補正(変更)する。これにより、発振回路5の温度変動によるクロック信号PLLCLKの周波数ずれが補正される(温度補償がなされる)。 The multiplication unit 97 corrects the FCW parameter using the correction value CV2 calculated by the calculation unit 92. In this example, the multiplication unit 97 corrects (changes) the numerical value of the FCW parameter by multiplying the correction value CV2 by the FCW parameter. As a result, the frequency shift of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5 is corrected (temperature compensation is performed).
 以上説明したような補正値を用いたクロック信号PLLCLKの周波数ずれの補正について、図15~図17を参照して説明する。以下では、電源VDDの電圧変動によるクロック信号PLLCLKの周波数ずれの補正の概要について説明する。 The correction of the frequency deviation of the clock signal PLLCLK using the correction value as described above will be described with reference to FIGS. 15 to 17. The outline of the correction of the frequency deviation of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD will be described below.
 図15~図17は、周波数ずれの補正を模式的に示す図である。補正前の状態では、図15に示されるように、電源VDDの電圧変動によって、クロック信号PLLCLKの周波数ずれが発生する。これを打ち消すように、図16に示されるような周波数ずれ補正量を与える補正値CV1が、算出部91によって算出される。乗算部96が補正値CV1を用いてFCWパラメータを補正することにより、図17に示されるように、電源VDDの電圧変動によるクロック信号PLLCLKの周波数ずれが低減される。発振回路5の温度変動によるクロック信号PLLCLKの周波数ずれについても同様に説明される。 FIGS. 15 to 17 are diagrams schematically showing the correction of frequency deviation. In the state before the correction, as shown in FIG. 15, the frequency shift of the clock signal PLLCLK occurs due to the voltage fluctuation of the power supply VDD. A correction value CV1 that gives a frequency shift correction amount as shown in FIG. 16 is calculated by the calculation unit 91 so as to cancel this. By correcting the FCW parameter using the correction value CV1 by the multiplication unit 96, the frequency deviation of the clock signal PLLCLK due to the voltage fluctuation of the power supply VDD is reduced as shown in FIG. The frequency deviation of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5 will be similarly described.
 上述の補正係数α及び補正係数βのような係数の取得方法の例について、図18を参照して説明する。図18は、補正係数の取得方法の例を示すフローチャートである。 An example of a method for acquiring a coefficient such as the correction coefficient α and the correction coefficient β described above will be described with reference to FIG. FIG. 18 is a flowchart showing an example of a method of acquiring a correction coefficient.
 ステップS1において、代表温度及び代表電圧でPLL回路を動作させる。代表温度は、例えば上述の発振回路5の基準温度T(typ温度)である。代表電圧は、例えば上述の電源VDDの基準電圧V(typ電圧値)である。正確な電圧及び温度は、PLL回路4の動作時に、モニタ部8によってモニタ電圧V及びモニタ温度Tとしてモニタされる。 In step S1, the PLL circuit is operated at the representative temperature and the representative voltage. The representative temperature is, for example, the reference temperature T 0 (type temperature) of the above-mentioned oscillation circuit 5. The representative voltage is, for example, the reference voltage V 0 (type voltage value) of the above-mentioned power supply VDD. The accurate voltage and temperature are monitored as the monitor voltage V and the monitor temperature T by the monitor unit 8 during the operation of the PLL circuit 4.
 ステップS2において、所望のクロック周波数になるFCWパラメータを算出する。これにより、基準温度及び基準電圧においてPLL7が所望の周波数のクロック信号PLLCLKを生成するためのFCWパラメータが得られる。 In step S2, the FCW parameter that becomes the desired clock frequency is calculated. This provides FCW parameters for the PLL 7 to generate a clock signal PLLCLK with a desired frequency at a reference temperature and a reference voltage.
 ステップS3において、電圧変動特性及び温度変動特性を取得する。例えば、クロック信号PLLCLKの周波数をモニタしながら、電源VDDの電圧を変化させる(電圧スイープする)。これにより、電源VDDの電圧変動とクロック信号PLLCLKの周波数との関係を示す電圧変動特性が得られる。また、クロック信号PLLCLKの周波数をモニタしながら、発振回路5の温度を変化させる(温度スイープする)。これにより、発振回路5の温度変動とクロック信号PLLCLKの周波数との関係を示す温度変動特性が得られる。 In step S3, the voltage fluctuation characteristic and the temperature fluctuation characteristic are acquired. For example, the voltage of the power supply VDD is changed (voltage sweep) while monitoring the frequency of the clock signal PLLCLK. As a result, a voltage fluctuation characteristic showing the relationship between the voltage fluctuation of the power supply VDD and the frequency of the clock signal PLLCLK can be obtained. Further, the temperature of the oscillation circuit 5 is changed (temperature sweep) while monitoring the frequency of the clock signal PLLCLK. As a result, a temperature fluctuation characteristic showing the relationship between the temperature fluctuation of the oscillation circuit 5 and the frequency of the clock signal PLLCLK can be obtained.
 ステップS4において、補正係数を算出する。例えば、先のステップS3で取得した電圧変動特性を打ち消すような補正値CV1を算出するための補正係数αを、フィッティングにより算出する。また、先のステップS3で取得した温度変動特性を打ち消すような補正値CV2を算出するための補正係数βを、フィッティングにより算出する。算出結果には、係数間の依存性(上述のルックアップテーブルの記述内容)も含まれてよい。 In step S4, the correction coefficient is calculated. For example, the correction coefficient α for calculating the correction value CV1 that cancels the voltage fluctuation characteristic acquired in the previous step S3 is calculated by fitting. Further, the correction coefficient β for calculating the correction value CV2 that cancels the temperature fluctuation characteristic acquired in the previous step S3 is calculated by fitting. The calculation result may also include the dependency between the coefficients (the description content of the above-mentioned look-up table).
 ステップS5において、算出結果を記憶する。すなわち、先のステップS4で算出した補正係数α及び補正係数βが、例えば不揮発性メモリへの書き込みによって、記憶部95に記憶される。 In step S5, the calculation result is stored. That is, the correction coefficient α and the correction coefficient β calculated in the previous step S4 are stored in the storage unit 95, for example, by writing to the non-volatile memory.
 ステップS5の処理が完了した後、フローチャートの処理は終了する。例えば以上の処理により、補正係数α及び補正係数βが取得される。 After the processing of step S5 is completed, the processing of the flowchart ends. For example, by the above processing, the correction coefficient α and the correction coefficient β are acquired.
 一実施形態において、発振回路は、発振周波数が切替え可能に構成される。その場合、補正値CV1及び補正値CV2は、発振周波数の切替えに応じて算出される。これについて、図19を参照して説明する。 In one embodiment, the oscillation circuit is configured so that the oscillation frequency can be switched. In that case, the correction value CV1 and the correction value CV2 are calculated according to the switching of the oscillation frequency. This will be described with reference to FIG.
 図19は、PLL回路の概略構成の例を示す図である。図19に示されるPLL回路4Aは、PLL回路4(図2)と比較して、発振回路5及び補正部9に代えて、発振回路5A及び補正部9Aを備える点、さらに、制御信号CS2が用いられる点において相違する。 FIG. 19 is a diagram showing an example of a schematic configuration of a PLL circuit. Compared with the PLL circuit 4 (FIG. 2), the PLL circuit 4A shown in FIG. 19 includes an oscillation circuit 5A and a correction unit 9A instead of the oscillation circuit 5 and the correction unit 9, and further, the control signal CS2 is provided. It differs in that it is used.
 発振回路5Aは、発振周周波数が切替え可能に構成される。この例では、発振回路5Aは、先に図3を参照して説明した発振回路51にコンデンサ514及びスイッチ515が追加された構成を備える。コンデンサ514は、スイッチ515が直列接続された状態で、コンデンサ513に対して並列に接続される。スイッチ515は、制御信号CS2によって切替えられる。制御信号CS2は、PLL回路4の外部、例えば固体撮像装置3の制御部2e等から与えられる。これにより、コイル512に並列に接続されるコンデンサの容量が、コンデンサ513の容量値と、コンデンサ513及びコンデンサ514の合成容量値との間で切替わる。このような容量切替えにより、発振回路5Aの発振周波数、すなわちクロック信号OSCLKの周波数が切替わる。 The oscillation circuit 5A is configured so that the oscillation frequency can be switched. In this example, the oscillation circuit 5A includes a configuration in which a capacitor 514 and a switch 515 are added to the oscillation circuit 51 described above with reference to FIG. The capacitor 514 is connected in parallel to the capacitor 513 with the switch 515 connected in series. The switch 515 is switched by the control signal CS2. The control signal CS2 is given from the outside of the PLL circuit 4, for example, from the control unit 2e of the solid-state image pickup device 3. As a result, the capacitance of the capacitor connected in parallel to the coil 512 is switched between the capacitance value of the capacitor 513 and the combined capacitance value of the capacitor 513 and the capacitor 514. By such capacitance switching, the oscillation frequency of the oscillation circuit 5A, that is, the frequency of the clock signal OSCLK is switched.
 補正部9Aには、制御信号CS2が入力される。算出部91A及び算出部92Aは、発振回路5Aの発振周波数の切替えに応じた補正値CV1及び補正値CV2を算出する。補正係数α及び補正係数βは、発振回路5Aの発振周波数の関数、すなわち補正係数α(f)及び補正係数β(f)として定められてよい。発振回路5Aの発振周波数が発振周波数fと発振周波数fとの間で切替えられる場合、補正係数αは、補正係数α(f)と補正係数α(f)との間で切替えられる。補正係数βは、補正係数β(f)と補正係数β(f)との間で切替えられる。これらの補正係数α(f)及び補正係数β(f)は、記憶部95A(例えば不揮発性メモリ)に記憶される。なお、基準電圧Vo及び基準温度Toの値も、発振回路5Aの発振周波数の切替えに応じて変更されてよい。 The control signal CS2 is input to the correction unit 9A. The calculation unit 91A and the calculation unit 92A calculate the correction value CV1 and the correction value CV2 according to the switching of the oscillation frequency of the oscillation circuit 5A. The correction coefficient α and the correction coefficient β may be defined as a function of the oscillation frequency of the oscillation circuit 5A, that is, the correction coefficient α (f) and the correction coefficient β (f). When the oscillation frequency of the oscillation circuit 5A is switched between the oscillation frequency f 0 and the oscillation frequency f 1 , the correction coefficient α is switched between the correction coefficient α (f 0 ) and the correction coefficient α (f 1 ). .. The correction coefficient β is switched between the correction coefficient β (f 0 ) and the correction coefficient β (f 1). These correction coefficients α (f) and correction coefficients β (f) are stored in the storage unit 95A (for example, a non-volatile memory). The values of the reference voltage Vo and the reference temperature To may also be changed according to the switching of the oscillation frequency of the oscillation circuit 5A.
 PLL回路4Aのように容量バンクを持たせた発振回路5Aを用いて発振周波数を切替えることで、例えば他の回路との干渉を防ぐ等の、EMI(Electromagnetic Interface)対策が容易になる。なお、図9に示される発振回路5Aは例示に過ぎず、これ以外にも、発振周波数を切替えることが可能なさまざまな構成の発振回路が用いられてよい。 By switching the oscillation frequency using the oscillation circuit 5A having a capacitance bank like the PLL circuit 4A, EMI (Electromagnetic Interface) measures such as preventing interference with other circuits become easy. The oscillation circuit 5A shown in FIG. 9 is merely an example, and other than this, oscillation circuits having various configurations capable of switching the oscillation frequency may be used.
 PLL回路は、先に図1を参照して説明した固体撮像装置3等の電子機器に用いられる。発振回路を含めたPLL回路を内蔵した電子機器(システム)として、さまざまな構成が考えられる。システムの例は、発振回路を内蔵したカメラシステムである。カメラシステムは、撮像用のイメージセンサシステム(固体撮像装置)に限らず、測距可能なTOF(Time Of Flight)システム等も含む意味である。システム構成のいくつかの例を、図20~図25を参照して説明する。 The PLL circuit is used in an electronic device such as the solid-state image sensor 3 described above with reference to FIG. Various configurations can be considered as an electronic device (system) having a built-in PLL circuit including an oscillation circuit. An example of a system is a camera system with a built-in oscillation circuit. The camera system is not limited to an image sensor system (solid-state image sensor) for image pickup, but also includes a TOF (Time Of Flight) system capable of measuring a distance. Some examples of system configurations will be described with reference to FIGS. 20-25.
 図20~図25は、イメージセンサシステムの概略構成の例を示す図である。 20 to 25 are diagrams showing an example of a schematic configuration of an image sensor system.
 図20に例示されるシステム100では、発振回路5のクロック信号OSCLKは、ADC/DAC/CP回路21に供給される。ADC/DAC/CP回路21は、AD変換処理(ADC)回路、DA変換処理(DAC)回路及びチャージポンプ(CP)回路の少なくとも一つを指し示す。ADC/DAC/CP回路21は、周波数変動の影響が比較的小さく、クロック信号OSCLKをそのまま供給することが可能だからである。ADC/DAC/CP回路21は、例えば先に図1を参照して説明した信号処理部2a、データ処理部2c及び制御部2e等に含まれる。一方で、これまで説明したように周波数ずれが低減されたクロック信号PLLCLKは、外部との接続を行う高速IF回路22に供給される。高速IF回路22は、周波数変動の影響が比較的大きく、高い周波数精度が要求されるからである。高速IF回路22は、例えば先に図1を参照して説明したインタフェース部2dに含まれる。システム100において、クロック信号OSCLKの周波数及びクロック信号PLLCLKの周波数は、いずれもGHzオーダの周波数であってよい。 In the system 100 exemplified in FIG. 20, the clock signal OSCLK of the oscillation circuit 5 is supplied to the ADC / DAC / CP circuit 21. The ADC / DAC / CP circuit 21 points to at least one of an AD conversion process (ADC) circuit, a DA conversion process (DAC) circuit, and a charge pump (CP) circuit. This is because the ADC / DAC / CP circuit 21 has a relatively small influence of frequency fluctuations and can supply the clock signal OSCLK as it is. The ADC / DAC / CP circuit 21 is included in, for example, the signal processing unit 2a, the data processing unit 2c, the control unit 2e, and the like described above with reference to FIG. On the other hand, the clock signal PLLCLK in which the frequency deviation is reduced as described above is supplied to the high-speed IF circuit 22 that connects to the outside. This is because the high-speed IF circuit 22 is relatively greatly affected by frequency fluctuations and requires high frequency accuracy. The high-speed IF circuit 22 is included in the interface unit 2d described above with reference to FIG. 1, for example. In the system 100, the frequency of the clock signal OSCLK and the frequency of the clock signal PLLCLK may both be frequencies on the order of GHz.
 ここで、ADC/DAC/CP回路21は、クロックに基づくカウント処理等を含むさまざまな処理を行うロジック回路(信号処理回路)とともに用いられる事も少なくない。この場合にクロック周波数にずれが発生すると、例えば撮像のフレームレートが変動する可能性がある。この変動を回路内部で補正できるように、モニタ部8のモニタ結果(この例ではモニタ電圧V及びモニタ温度T)がADC/DAC/CP回路21にも供給されてよい。 Here, the ADC / DAC / CP circuit 21 is often used together with a logic circuit (signal processing circuit) that performs various processing including clock-based counting processing. In this case, if a deviation occurs in the clock frequency, the frame rate of imaging may fluctuate, for example. The monitor result (monitor voltage V and monitor temperature T in this example) of the monitor unit 8 may be supplied to the ADC / DAC / CP circuit 21 so that this fluctuation can be corrected inside the circuit.
 図21には、CP回路212d、DAC回路213d及びADC回路214d、並びにADC回路214d後の信号処理回路215dを含むシステムが例示される。設定部211において、各処理に対応する設定値が設定される。設定値の例は、対応する処理回路のGainである。 FIG. 21 illustrates a system including a CP circuit 212d, a DAC circuit 213d and an ADC circuit 214d, and a signal processing circuit 215d after the ADC circuit 214d. In the setting unit 211, setting values corresponding to each process are set. An example of the set value is Gain of the corresponding processing circuit.
 CP回路212dに対応する設定値は、調整部212a及び調整部212bを通り、レジスタ212cに書込まれる。DAC回路213dに対応する設定値は、調整部213a及び調整部213bによって調整された後、DAC回路213dのレジスタ213cに書込まれる。ADC回路214dに対応する設定値は、調整部214a及び調整部214bによって調整された後、レジスタ214cに書込まれる。信号処理回路215dに対応する設定値は、調整部215a及び調整部215bによって調整された後、信号処理回路215dのレジスタ215cに書込まれる。 The set value corresponding to the CP circuit 212d passes through the adjusting unit 212a and the adjusting unit 212b and is written to the register 212c. The set value corresponding to the DAC circuit 213d is adjusted by the adjusting unit 213a and the adjusting unit 213b, and then written to the register 213c of the DAC circuit 213d. The set value corresponding to the ADC circuit 214d is written to the register 214c after being adjusted by the adjusting unit 214a and the adjusting unit 214b. The set value corresponding to the signal processing circuit 215d is adjusted by the adjusting unit 215a and the adjusting unit 215b, and then written to the register 215c of the signal processing circuit 215d.
 調整部212a、調整部213a、調整部214a及び調整部215aは、モニタ電圧Vに基づいて、設定値を調整する。調整部212a、調整部213a、調整部214a及び調整部215aは、モニタ電圧Vの値のスケーリング機能、算出部91及び算出部92のような多項式、ルックアップテーブル等を用いて補正する機能等を備えてよい。これにより、電源VDDの電圧変動によるCP回路212d、DAC回路213d、ADC回路214d及び信号処理回路215dの処理のずれ(例えばGainのずれ)が補正される。調整部212b、調整部213b、調整部214b及び調整部215bは、モニタ温度Tに基づいて、設定値を調整する。調整部212b、調整部213b、調整部214b及び調整部215bは、モニタ温度Tの値のスケーリング機能、算出部91及び算出部92のような多項式、ルックアップテーブル等を用いて補正する機能等を備えてよい。これにより、発振回路5の温度変動によるCP回路212d、DAC回路213d、ADC回路214d及び信号処理回路215dの処理のずれが補正される。 The adjusting unit 212a, the adjusting unit 213a, the adjusting unit 214a, and the adjusting unit 215a adjust the set value based on the monitor voltage V. The adjusting unit 212a, the adjusting unit 213a, the adjusting unit 214a, and the adjusting unit 215a have a function of scaling the value of the monitor voltage V, a function of correcting using a polynomial such as the calculation unit 91 and the calculation unit 92, a look-up table, and the like. You may be prepared. As a result, the processing deviation (for example, Gain deviation) of the CP circuit 212d, the DAC circuit 213d, the ADC circuit 214d, and the signal processing circuit 215d due to the voltage fluctuation of the power supply VDD is corrected. The adjusting unit 212b, the adjusting unit 213b, the adjusting unit 214b, and the adjusting unit 215b adjust the set value based on the monitor temperature T. The adjusting unit 212b, the adjusting unit 213b, the adjusting unit 214b, and the adjusting unit 215b have a function of scaling the value of the monitor temperature T, a function of correcting using a polynomial such as the calculation unit 91 and the calculation unit 92, a look-up table, and the like. You may be prepared. As a result, the processing deviation of the CP circuit 212d, the DAC circuit 213d, the ADC circuit 214d, and the signal processing circuit 215d due to the temperature fluctuation of the oscillation circuit 5 is corrected.
 発振回路5のクロック信号OSCLKではなく、PLL7のクロック信号PLLCLKがADC/DAC/CP回路21に供給されてもよい。これにより、ADC/DAC/CP回路21にも、高い周波数精度のクロックを供給することができる。 The clock signal PLLCLK of the PLL 7 may be supplied to the ADC / DAC / CP circuit 21 instead of the clock signal OSCLK of the oscillation circuit 5. As a result, the clock with high frequency accuracy can be supplied to the ADC / DAC / CP circuit 21 as well.
 図22に例示されるシステム100Aでは、分周器6とADC/DAC/CP回路21との間にもPLL7が設けられる。PLL7のPLL信号は、ADC/DAC/CP回路21に供給される。なお、図示される各PLL7に入力されるFCWパラメータは、異なる値に設定されてよい。図22において、これまで説明したモニタ部8及び補正部9は、図示を省略している。後述の図23~図25においても同様である。 In the system 100A exemplified in FIG. 22, PLL 7 is also provided between the frequency divider 6 and the ADC / DAC / CP circuit 21. The PLL signal of the PLL 7 is supplied to the ADC / DAC / CP circuit 21. The FCW parameters input to each of the illustrated PLL7s may be set to different values. In FIG. 22, the monitor unit 8 and the correction unit 9 described so far are not shown. The same applies to FIGS. 23 to 25, which will be described later.
 図23に例示されるシステム100Bでは、PLL7とADC/DAC/CP回路21との間にも、分周器6が設けられる。PLL7のPLL信号は、分周器6によって分周された後、ADC/DAC/CP回路21に供給される。これにより、高速IF回路22に供給されるクロックと同等の周波数精度を有し、かつ、そのクロックよりも低周波数のクロックを、ADC/DAC/CP回路21に供給することができる。なお、図示される各分周器6の分周比は、異なる値に設定されてよく、この点は、後述の図24及び図25においても同様である。 In the system 100B exemplified in FIG. 23, a frequency divider 6 is also provided between the PLL 7 and the ADC / DAC / CP circuit 21. The PLL signal of the PLL 7 is divided by the divider 6 and then supplied to the ADC / DAC / CP circuit 21. As a result, a clock having a frequency accuracy equivalent to that of the clock supplied to the high-speed IF circuit 22 and having a frequency lower than that of the clock can be supplied to the ADC / DAC / CP circuit 21. The frequency division ratio of each of the illustrated frequency dividers 6 may be set to a different value, and this point is the same in FIGS. 24 and 25 described later.
 図24に例示されるシステム100Cでは、発振回路5とロジック回路23との間にも、分周器6が設けられる。これにより、発振回路5のクロック信号OSCLKを適切な周波数に分周し、ロジック回路23に供給することができる。 In the system 100C exemplified in FIG. 24, a frequency divider 6 is also provided between the oscillation circuit 5 and the logic circuit 23. As a result, the clock signal OSCLK of the oscillation circuit 5 can be divided into appropriate frequencies and supplied to the logic circuit 23.
 図25に例示されるシステム100Dでは、PLL7とADC/DAC/CP回路21との間に設けられた分周器6と、ロジック回路23との間に、さらに分周器6が設けられる。PLL7のPLL信号は、2つの分周器6によって分周された後、ロジック回路23に供給される。これにより、クロック信号PLLCLKを、ADC/DAC/CP回路21に供給されるクロック周波数とは別の適切な周波数に分周し、ロジック回路23に供給することができる。 In the system 100D exemplified in FIG. 25, a frequency divider 6 provided between the PLL 7 and the ADC / DAC / CP circuit 21 and a frequency divider 6 are further provided between the logic circuit 23. The PLL signal of the PLL 7 is divided by the two dividers 6 and then supplied to the logic circuit 23. As a result, the clock signal PLLCLK can be divided into appropriate frequencies other than the clock frequency supplied to the ADC / DAC / CP circuit 21 and supplied to the logic circuit 23.
 図20~図25を参照して説明したシステム構成は例示に過ぎず、これら以外にも、さまざまなシステム構成に、実施形態に係るPLL回路が適用されてよい。 The system configurations described with reference to FIGS. 20 to 25 are merely examples, and the PLL circuit according to the embodiment may be applied to various system configurations other than these.
 上記実施形態では、発振回路の電源電圧及び温度という2つのパラメータ変動よるクロック信号PLLCLKの周波数ずれを補正する例について説明した。ただし、これら以外にも、発振回路に関するさまざまなパラメータによる周波数ずれが補正されてもよい。他のパラメータの例は、プロセス及び電流である。プロセスの例は、トランジスタの閾値電圧である。これについて、図26及び図27を参照して説明する。 In the above embodiment, an example of correcting the frequency deviation of the clock signal PLLCLK due to the fluctuation of two parameters, the power supply voltage and the temperature of the oscillation circuit, has been described. However, in addition to these, frequency deviations due to various parameters related to the oscillation circuit may be corrected. Examples of other parameters are process and current. An example of the process is the threshold voltage of the transistor. This will be described with reference to FIGS. 26 and 27.
 図26は、発振回路の概略構成の例を示す図である。図26には、先に図3を参照して説明した発振回路51の増幅器511に含まれるトランジスタ511a及び電流源511bも模式的に示される。トランジスタ511aの閾値電圧を、閾値電圧Vthと称し図示する。電流源511bを流れる電流を、電流Isと称し図示する。これら閾値電圧Vth及び電流Isの変動によっても、発振回路51の発振周波数ずれが生じうる。したがって、閾値電圧Vth及び電流Isのモニタ結果をも考慮して、FCWパラメータが補正されてよい。この場合、モニタ部8(図2)は、閾値電圧Vth及び電流Isもモニタ対象に含むように構成される。モニタは、発振回路51に含まれるトランジスタ511aそのものの閾値電圧Vthのモニタであってもよいし、トランジスタ511aの回路部分を抜き出したレプリカ回路の閾値電圧(閾値電圧Vthに相当)のモニタであってもよい。レプリカ回路の消費電力削減のために、トランジスタのサイズ、電流値をスケーリングしてもよい。電流Isについても同様にレプリカ回路や電流値をスケーリングしたものでよい。このようなモニタ部のモニタ結果に基づいてFCWパラメータを補正するための補正部の構成の例について、図27を参照して説明する。 FIG. 26 is a diagram showing an example of a schematic configuration of an oscillation circuit. FIG. 26 schematically shows the transistor 511a and the current source 511b included in the amplifier 511 of the oscillation circuit 51 described above with reference to FIG. The threshold voltage of the transistor 511a is referred to as a threshold voltage Vth and is shown in the figure. The current flowing through the current source 511b is referred to as current Is and is shown in the figure. Fluctuations in the threshold voltage Vth and the current Is may also cause an oscillation frequency shift in the oscillation circuit 51. Therefore, the FCW parameter may be corrected in consideration of the monitor results of the threshold voltage Vth and the current Is. In this case, the monitor unit 8 (FIG. 2) is configured to include the threshold voltage Vth and the current Is as the monitoring target. The monitor may be a monitor of the threshold voltage Vth of the transistor 511a itself included in the oscillation circuit 51, or a monitor of the threshold voltage (corresponding to the threshold voltage Vth) of the replica circuit from which the circuit portion of the transistor 511a is extracted. It is also good. In order to reduce the power consumption of the replica circuit, the size and current value of the transistor may be scaled. Similarly, the current Is may be a replica circuit or a scaled current value. An example of the configuration of the correction unit for correcting the FCW parameter based on the monitor result of the monitor unit will be described with reference to FIG. 27.
 図27は、補正部の概略構成の例を示す図である。例示される補正部9Cは、補正部9(図1)と比較して、算出部93、算出部94、乗算部98及び乗算部99をさらに含み、記憶部95に代えて記憶部95Cを含む点において相違する。 FIG. 27 is a diagram showing an example of a schematic configuration of a correction unit. The exemplified correction unit 9C further includes a calculation unit 93, a calculation unit 94, a multiplication unit 98, and a multiplication unit 99 as compared with the correction unit 9 (FIG. 1), and includes a storage unit 95C in place of the storage unit 95. It differs in that.
 算出部93は、閾値電圧Vthの変動によるクロック信号PLLCLKの周波数ずれを補正する補正値CV3(第3の補正値)を算出する。算出部94は、電流Isの変動によるクロック信号PLLCLKの周波数ずれを補正する補正値CV4(第4の補正値)を算出する。補正値CV3及び補正値CV4の算出手法は、これまで説明した補正値CV1及び補正値CV2の算出手法と同様であるので、ここでは説明は繰り返さない。 The calculation unit 93 calculates a correction value CV3 (third correction value) for correcting the frequency deviation of the clock signal PLLCLK due to the fluctuation of the threshold voltage Vth. The calculation unit 94 calculates a correction value CV4 (fourth correction value) for correcting the frequency deviation of the clock signal PLLCLK due to the fluctuation of the current Is. Since the calculation method of the correction value CV3 and the correction value CV4 is the same as the calculation method of the correction value CV1 and the correction value CV2 described so far, the description is not repeated here.
 乗算部98は、補正値CV3を用いて、FCWパラメータを補正する。これにより、閾値電圧Vthの変動によるクロック信号PLLCLKの周波数ずれが補正される(プロセス補償がなされる)。乗算部99は、補正値CV4を用いて、FCWパラメータを補正する。これにより、電流Isの変動によるクロック信号PLLCLKの周波数ずれが補正される(電流補償がなされる)。閾値電圧Vth及び電流Isの変動をも考慮した周波数ずれ補正により、クロック信号PLLCLKの周波数精度がさらに向上する。 The multiplication unit 98 corrects the FCW parameter using the correction value CV3. As a result, the frequency shift of the clock signal PLLCLK due to the fluctuation of the threshold voltage Vth is corrected (process compensation is performed). The multiplication unit 99 corrects the FCW parameter by using the correction value CV4. As a result, the frequency shift of the clock signal PLLCLK due to the fluctuation of the current Is is corrected (current compensation is performed). The frequency accuracy of the clock signal PLLCLK is further improved by the frequency shift correction in consideration of the fluctuation of the threshold voltage Vth and the current Is.
 他のパラメータの例として、発信回路に含まれる抵抗器の抵抗値も挙げられる。例えば、先に図2を参照して説明した発振回路52の場合、抵抗器524の抵抗値、抵抗器525の抵抗値が、モニタ部8のモニタ対象に含まれてよい。先に図6を参照して説明した発振回路54の場合、抵抗器543の抵抗値が、モニタ部8のモニタ対象に含まれてよい。抵抗値のモニタは、レプリカ回路の抵抗値のモニタでもよく、サイズもスケーリングしてよい。 As an example of other parameters, the resistance value of the resistor included in the transmission circuit can also be mentioned. For example, in the case of the oscillation circuit 52 described above with reference to FIG. 2, the resistance value of the resistor 524 and the resistance value of the resistor 525 may be included in the monitoring target of the monitor unit 8. In the case of the oscillation circuit 54 described above with reference to FIG. 6, the resistance value of the resistor 543 may be included in the monitor target of the monitor unit 8. The resistance value monitor may be the resistance value monitor of the replica circuit, and the size may be scaled.
 上記実施形態では、補正部9の補正対称として、FCWパラメータを例に挙げて説明した。ただし、FCWパラメータに限らず、PLL7の周波数を調整可能なあらゆるパラメータが、補正部9の補正対称となりうる。 In the above embodiment, the FCW parameter has been described as an example of the correction symmetry of the correction unit 9. However, not limited to the FCW parameter, any parameter whose frequency of the PLL 7 can be adjusted can be the correction symmetry of the correction unit 9.
 上記実施形態では、乗算部96~乗算部99が、補正値CV1~補正値CV4をFCWパラメータに乗ずることによって、FCWパラメータを補正する例について説明した。ただし、乗算に限らず、加減算、除算等を含め、さまざまな態様でFCWパラメータが補正されてよい。 In the above embodiment, an example in which the multiplication unit 96 to the multiplication unit 99 correct the FCW parameter by multiplying the correction value CV1 to the correction value CV4 by the FCW parameter has been described. However, the FCW parameter may be corrected in various modes including addition / subtraction, division, etc., not limited to multiplication.
 上記実施形態では、PLL回路4が固体撮像装置3に適用される例について説明した。ただし、固体撮像装置3以外のさまざまなモバイル電子機器(例えばラップトップ、スマートフォン等)に、PLL回路4が適用されてよい。 In the above embodiment, an example in which the PLL circuit 4 is applied to the solid-state image sensor 3 has been described. However, the PLL circuit 4 may be applied to various mobile electronic devices (for example, laptops, smartphones, etc.) other than the solid-state image sensor 3.
3. 効果
 以上説明したPLL回路は、例えば次のように特定される。図1及び図2等を参照して説明したように、PLL回路4は、発振回路5と、PLL7と、モニタ部8と、補正部9とを備える。発振回路5は、固体撮像装置3を構成する半導体チップ2の電源VDDを用いて動作する。PLL7は、FCWパラメータによって制御される。モニタ部8は、モニタ対象に少なくとも電源VDDの電圧(モニタ電圧V)を含む。補正部9は、モニタ部8のモニタ結果に基づいて、FCWパラメータを補正する。PLL7は、発振回路5の発振クロック信号OSCLKから得られる基準クロック信号REFCLKと補正部9によって補正されたFCWパラメータとに基づいて定められるクロック信号PLLCLKを生成する。
3. 3. Effect The PLL circuit described above is specified as follows, for example. As described with reference to FIGS. 1 and 2, the PLL circuit 4 includes an oscillation circuit 5, a PLL 7, a monitor unit 8, and a correction unit 9. The oscillation circuit 5 operates using the power supply VDD of the semiconductor chip 2 constituting the solid-state image pickup device 3. PLL7 is controlled by FCW parameters. The monitor unit 8 includes at least the voltage of the power supply VDD (monitor voltage V) in the monitor target. The correction unit 9 corrects the FCW parameter based on the monitor result of the monitor unit 8. The PLL 7 generates a clock signal PLLCLK determined based on the reference clock signal REFCLK obtained from the oscillation clock signal OSCLK of the oscillation circuit 5 and the FCW parameter corrected by the correction unit 9.
 上記のPLL回路4によれば、PLL7を制御するFCWパラメータが、電源VDDの電圧のモニタ結果に基づいて補正されるので、クロック信号PLLCLKの周波数ずれを低減することができる。また、発振回路5が固体撮像装置3を構成する半導体チップ2の電源VDDを用いることにより、固体撮像装置3へのコンパクトな搭載が可能になる。 According to the PLL circuit 4 described above, the FCW parameter that controls the PLL 7 is corrected based on the monitor result of the voltage of the power supply VDD, so that the frequency deviation of the clock signal PLLCLK can be reduced. Further, by using the power supply VDD of the semiconductor chip 2 constituting the solid-state image pickup device 3 in the oscillation circuit 5, it becomes possible to compactly mount the semiconductor chip 2 on the solid-state image pickup device 3.
 FCWパラメータは、クロック信号REFCLKの周波数に対するクロック信号PLLCLKの周波数の比率を示す数値であり、補正部9は、その数値を補正してよい。例えばこのようにして、クロック信号PLLCLKの周波数ずれを補正することができる。 The FCW parameter is a numerical value indicating the ratio of the frequency of the clock signal PLLCLK to the frequency of the clock signal REFCLK, and the correction unit 9 may correct the numerical value. For example, in this way, the frequency deviation of the clock signal PLLCLK can be corrected.
 モニタ部8のモニタ対象は、発振回路5の温度(モニタ温度T)も含んでよい。これにより、発振回路5の温度変動によるクロック信号PLLCLKの周波数ずれも補正することができる。 The monitor target of the monitor unit 8 may also include the temperature of the oscillation circuit 5 (monitor temperature T). As a result, the frequency shift of the clock signal PLLCLK due to the temperature fluctuation of the oscillation circuit 5 can also be corrected.
 補正部9は、モニタ部8のモニタ結果に含まれるモニタ対象(例えばモニタ電圧V及びモニタ温度T)それぞれに対応する補正値(例えば補正値CV1及び補正値CV2)を用いて、FCWパラメータを補正してよい。これにより、モニタ対象それぞれのモニタ結果に応じてクロック信号PLLCLKの周波数ずれを補正することができる。 The correction unit 9 corrects the FCW parameter by using the correction values (for example, the correction value CV1 and the correction value CV2) corresponding to each of the monitoring targets (for example, the monitor voltage V and the monitor temperature T) included in the monitor result of the monitor unit 8. You can do it. As a result, the frequency shift of the clock signal PLLCLK can be corrected according to the monitor result of each monitor target.
 少なくとも一つの補正値(例えば補正値CV2)は、対応するモニタ対象(例えばモニタ温度T)とは別のモニタ対象(例えばモニタ電圧V)との間の依存性が考慮された補正値であってよい。この場合、補正部9は、依存性を記述するルックアップテーブルを参照してよい。これにより、モニタ対象どうしの間に依存性が存在する場合でも、クロック信号PLLCLKの周波数ずれを適切に補正することができる。 At least one correction value (for example, correction value CV2) is a correction value in consideration of the dependency between the corresponding monitor target (for example, monitor temperature T) and another monitor target (for example, monitor voltage V). good. In this case, the correction unit 9 may refer to a look-up table that describes the dependency. As a result, even if there is a dependency between the monitored objects, the frequency deviation of the clock signal PLLCLK can be appropriately corrected.
 図11~図14等を参照して説明したように、モニタ部8は、モニタ対象それぞれ(例えばモニタ電圧V及びモニタ温度T)を時分割モニタしてよい。これにより、各モニタ対象を単一のモニタ器(例えばAD変換器85)で行うことができるので、モニタ対象それぞれに対応した複数のモニタ器を備える必要が無い。その分、PLL回路4を小型化することができる。 As described with reference to FIGS. 11 to 14, the monitor unit 8 may monitor each of the monitored objects (for example, the monitor voltage V and the monitor temperature T) in a time-divided manner. As a result, each monitor target can be performed by a single monitor device (for example, AD converter 85), so that it is not necessary to provide a plurality of monitor devices corresponding to each monitor target. The PLL circuit 4 can be downsized by that amount.
 発振回路5は、半導体チップ2に集積化されてよい。この場合、図3~図5等を参照して説明したように、発振回路5は、例えば発振回路51、発振回路52及び発振回路53等のLC発振回路であってよい。図6等を参照して説明したように、発振回路5は、例えば発振回路54等のRC発振回路であってもよい。このような構成の発振回路を用いることにより、PLL回路4を半導体チップ2に容易に集積化(オンチップ化)することができる。その結果、PLL回路4の固体撮像装置3への実装が容易になり、また、固体撮像装置3の容積を低減することもできる。 The oscillation circuit 5 may be integrated in the semiconductor chip 2. In this case, as described with reference to FIGS. 3 to 5, the oscillation circuit 5 may be, for example, an LC oscillation circuit such as an oscillation circuit 51, an oscillation circuit 52, and an oscillation circuit 53. As described with reference to FIG. 6 and the like, the oscillation circuit 5 may be an RC oscillation circuit such as an oscillation circuit 54, for example. By using the oscillation circuit having such a configuration, the PLL circuit 4 can be easily integrated (on-chip) in the semiconductor chip 2. As a result, the PLL circuit 4 can be easily mounted on the solid-state image sensor 3, and the volume of the solid-state image sensor 3 can be reduced.
 図19を参照して説明したように、発振回路5Aは、クロック信号OSCLKが切替え可能に構成されてよい。これにより、例えば他の回路との干渉を防ぐ等のEMI(Electromagnetic Interface)対策が容易になる。 As described with reference to FIG. 19, the oscillation circuit 5A may be configured so that the clock signal OSCLK can be switched. This facilitates EMI (Electromagnetic Interface) measures such as preventing interference with other circuits.
 図26及び図27等を参照して説明したように、発振回路51は、トランジスタ511aを含み、モニタ部8のモニタ対象は、トランジスタ511aの閾値電圧Vthを含んでよい。これにより、閾値電圧Vthの変動によるクロック信号PLLCLKの周波数ずれを補正することができる。発振回路51は、電流源511bを含み、モニタ部8のモニタ対象は、電流源511bの電流Isを含んでよい。これにより、電流Isの変動によるクロック信号PLLCLKの周波数ずれを補正することができる。図4及び図6等に示されるような抵抗器を含む発振回路の場合には、抵抗器の抵抗値がモニタ部8のモニタ対象に含まれてよい。これにより、抵抗値の変動によるクロック信号PLLCLKの周波数ずれを補正することができる。 As described with reference to FIGS. 26 and 27, the oscillation circuit 51 may include the transistor 511a, and the monitor target of the monitor unit 8 may include the threshold voltage Vth of the transistor 511a. Thereby, the frequency deviation of the clock signal PLLCLK due to the fluctuation of the threshold voltage Vth can be corrected. The oscillation circuit 51 may include the current source 511b, and the monitor target of the monitor unit 8 may include the current Is of the current source 511b. This makes it possible to correct the frequency shift of the clock signal PLLCLK due to the fluctuation of the current Is. In the case of an oscillation circuit including a resistor as shown in FIGS. 4 and 6, the resistance value of the resistor may be included in the monitor target of the monitor unit 8. This makes it possible to correct the frequency shift of the clock signal PLLCLK due to the fluctuation of the resistance value.
 図8等を参照して説明したように、PLL7は、ディジタルPLLであってよい。これにより、アナログPLLよりも、高い周波数制御分解能を実現し、且つ、位相ノイズの増加を抑制することができる。 As described with reference to FIG. 8 and the like, the PLL 7 may be a digital PLL. As a result, it is possible to realize a higher frequency control resolution than the analog PLL and suppress an increase in phase noise.
 なお、本開示に記載された効果は、あくまで例示であって、開示された内容に限定されない。他の効果があってもよい。 Note that the effects described in this disclosure are merely examples and are not limited to the disclosed contents. There may be other effects.
 以上、本開示の実施形態について説明したが、本開示の技術的範囲は、上述の実施形態そのままに限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更が可能である。また、異なる実施形態及び変形例にわたる構成要素を適宜組み合わせてもよい。 Although the embodiments of the present disclosure have been described above, the technical scope of the present disclosure is not limited to the above-described embodiments as they are, and various changes can be made without departing from the gist of the present disclosure. In addition, components spanning different embodiments and modifications may be combined as appropriate.
 また、本明細書に記載された各実施形態における効果はあくまで例示であって限定されるものでは無く、他の効果があってもよい。 Further, the effects in each embodiment described in the present specification are merely examples and are not limited, and other effects may be obtained.
 なお、本技術は以下のような構成も取ることができる。
(1)
 固体撮像装置を構成する半導体チップの電源を用いて動作する発振回路と、
 パラメータによって制御されるPLLと、
 モニタ対象に少なくとも前記電源の電圧を含むモニタ部と、
 前記モニタ部のモニタ結果に基づいて前記パラメータを補正する補正部と、
 を備え、
 前記PLLは、前記発振回路の発振クロック信号から得られる基準クロック信号と、前記補正部によって補正された前記パラメータとに基づいて定められるPLLクロック信号を生成する、
 PLL回路。
(2)
 前記パラメータは、前記基準クロック信号の周波数に対する前記PLLクロック信号の周波数の比率を指定する数値であり、
 前記補正部は、前記数値を補正する、
(1)に記載のPLL回路。
(3)
 前記モニタ部のモニタ対象は、前記発振回路の温度を含む、
 (1)又は(2)に記載のPLL回路。
(4)
 前記補正部は、前記モニタ部のモニタ結果に含まれるモニタ対象それぞれに対応する補正値を用いて、前記パラメータを補正する、
 (3)に記載のPLL回路。
(5)
 少なくとも一つの前記補正値は、対応する前記モニタ対象とは別のモニタ対象との間の依存性が考慮された補正値である、
 (4)に記載のPLL回路。
(6)
 前記補正部は、前記依存性を記述するルックアップテーブルを参照する、
 (5)に記載のPLL回路。
(7)
 前記モニタ部は、モニタ対象それぞれを時分割モニタする、
 (2)~(6)のいずれかに記載のPLL回路。
(8)
 前記発振回路は、前記半導体チップに集積化されている、
 (1)~(7)のいずれかに記載のPLL回路。
(9)
 前記発振回路は、LC発振回路及びRC発振回路のいずれかの発振回路である、
 (8)に記載のPLL回路。
(10)
 前記発振回路は、発振周波数が切替え可能に構成される、
 (1)~(9)のいずれかに記載のPLL回路。
(11)
 前記発振回路は、トランジスタを含み、
 前記モニタ部のモニタ対象は、前記トランジスタの閾値電圧を含む、
 (1)~(10)のいずれかに記載のPLL回路。
(12)
 前記発振回路は、電流源を含み、
 前記モニタ部のモニタ対象は、前記電流源を流れる電流を含む、
 (1)~(11)のいずれかに記載のPLL回路。
(13)
 前記発振回路は、抵抗器を含み、
 前記モニタ部のモニタ対象は、前記抵抗器の抵抗値を含む、
 (1)~(12)のいずれかに記載のPLL回路。
(14)
 前記PLLは、ディジタルPLLである、
 (1)~(13)のいずれかに記載のPLL回路。
The present technology can also have the following configurations.
(1)
An oscillation circuit that operates using the power supply of the semiconductor chip that constitutes the solid-state image sensor,
The PLL controlled by the parameters and
A monitor unit that includes at least the voltage of the power supply as a monitor target,
A correction unit that corrects the parameters based on the monitor result of the monitor unit, and a correction unit.
Equipped with
The PLL generates a PLL clock signal determined based on a reference clock signal obtained from the oscillation clock signal of the oscillation circuit and the parameter corrected by the correction unit.
PLL circuit.
(2)
The parameter is a numerical value that specifies the ratio of the frequency of the PLL clock signal to the frequency of the reference clock signal.
The correction unit corrects the numerical value.
The PLL circuit according to (1).
(3)
The monitor target of the monitor unit includes the temperature of the oscillation circuit.
The PLL circuit according to (1) or (2).
(4)
The correction unit corrects the parameter by using the correction value corresponding to each of the monitoring targets included in the monitor result of the monitor unit.
The PLL circuit according to (3).
(5)
At least one of the correction values is a correction value in which the dependency between the corresponding monitor target and another monitor target is taken into consideration.
The PLL circuit according to (4).
(6)
The correction unit refers to a look-up table that describes the dependency.
The PLL circuit according to (5).
(7)
The monitor unit monitors each of the monitored objects in a time-division manner.
The PLL circuit according to any one of (2) to (6).
(8)
The oscillation circuit is integrated in the semiconductor chip.
The PLL circuit according to any one of (1) to (7).
(9)
The oscillation circuit is either an LC oscillation circuit or an RC oscillation circuit.
The PLL circuit according to (8).
(10)
The oscillation circuit is configured so that the oscillation frequency can be switched.
The PLL circuit according to any one of (1) to (9).
(11)
The oscillation circuit includes a transistor and includes a transistor.
The monitor target of the monitor unit includes the threshold voltage of the transistor.
The PLL circuit according to any one of (1) to (10).
(12)
The oscillator circuit includes a current source.
The monitor target of the monitor unit includes a current flowing through the current source.
The PLL circuit according to any one of (1) to (11).
(13)
The oscillation circuit includes a resistor and includes a resistor.
The monitor target of the monitor unit includes the resistance value of the resistor.
The PLL circuit according to any one of (1) to (12).
(14)
The PLL is a digital PLL.
The PLL circuit according to any one of (1) to (13).
  1 半導体チップ
  2 半導体チップ
  3 固体撮像装置
  4 PLL回路
  5 発振回路
  6 分周器
  7 PLL
  8 モニタ部
  9 補正部
 71 ディジタルPLL
 83 温度センサ
 91 算出部
 92 算出部
 93 算出部
 94 算出部
 95 記憶部
 96 乗算部
 97 乗算部
 98 乗算部
 99 乗算部
100 システム
 Is 電流
  T モニタ温度
  V モニタ電圧
VDD 電源
Vth 閾値電圧
1 Semiconductor chip 2 Semiconductor chip 3 Solid-state imager 4 PLL circuit 5 Oscillator circuit 6 Divider 7 PLL
8 Monitor unit 9 Correction unit 71 Digital PLL
83 Temperature sensor 91 Calculation unit 92 Calculation unit 93 Calculation unit 94 Calculation unit 95 Storage unit 96 Multiplication unit 97 Multiplication unit 98 Multiplication unit 99 Multiplication unit 100 System Is Current T Monitor temperature V Monitor voltage VDD Power supply Vth Threshold voltage

Claims (14)

  1.  固体撮像装置を構成する半導体チップの電源を用いて動作する発振回路と、
     パラメータによって制御されるPLLと、
     モニタ対象に少なくとも前記電源の電圧を含むモニタ部と、
     前記モニタ部のモニタ結果に基づいて前記パラメータを補正する補正部と、
     を備え、
     前記PLLは、前記発振回路の発振クロック信号から得られる基準クロック信号と前記補正部によって補正された前記パラメータとに基づいて定められるPLLクロック信号を生成する、
     PLL回路。
    An oscillation circuit that operates using the power supply of the semiconductor chip that constitutes the solid-state image sensor,
    The PLL controlled by the parameters and
    A monitor unit that includes at least the voltage of the power supply as a monitor target,
    A correction unit that corrects the parameters based on the monitor result of the monitor unit, and a correction unit.
    Equipped with
    The PLL generates a PLL clock signal determined based on a reference clock signal obtained from the oscillation clock signal of the oscillation circuit and the parameter corrected by the correction unit.
    PLL circuit.
  2.  前記パラメータは、前記基準クロック信号の周波数に対する前記PLLクロック信号の周波数の比率を指定する数値であり、
     前記補正部は、前記数値を補正する、
     請求項1に記載のPLL回路。
    The parameter is a numerical value that specifies the ratio of the frequency of the PLL clock signal to the frequency of the reference clock signal.
    The correction unit corrects the numerical value.
    The PLL circuit according to claim 1.
  3.  前記モニタ部のモニタ対象は、前記発振回路の温度を含む、
     請求項1に記載のPLL回路。
    The monitor target of the monitor unit includes the temperature of the oscillation circuit.
    The PLL circuit according to claim 1.
  4.  前記補正部は、前記モニタ部のモニタ結果に含まれるモニタ対象それぞれに対応する補正値を用いて、前記パラメータを補正する、
     請求項3に記載のPLL回路。
    The correction unit corrects the parameter by using the correction value corresponding to each of the monitoring targets included in the monitor result of the monitor unit.
    The PLL circuit according to claim 3.
  5.  少なくとも一つの前記補正値は、対応する前記モニタ対象とは別のモニタ対象との間の依存性が考慮された補正値である、
     請求項4に記載のPLL回路。
    At least one of the correction values is a correction value in which the dependency between the corresponding monitor target and another monitor target is taken into consideration.
    The PLL circuit according to claim 4.
  6.  前記補正部は、前記依存性を記述するルックアップテーブルを参照する、
     請求項5に記載のPLL回路。
    The correction unit refers to a look-up table that describes the dependency.
    The PLL circuit according to claim 5.
  7.  前記モニタ部は、モニタ対象それぞれを時分割モニタする、
     請求項2に記載のPLL回路。
    The monitor unit monitors each of the monitored objects in a time-division manner.
    The PLL circuit according to claim 2.
  8.  前記発振回路は、前記半導体チップに集積化されている、
     請求項1に記載のPLL回路。
    The oscillation circuit is integrated in the semiconductor chip.
    The PLL circuit according to claim 1.
  9.  前記発振回路は、LC発振回路及びRC発振回路のいずれかの発振回路である、
     請求項8に記載のPLL回路。
    The oscillation circuit is either an LC oscillation circuit or an RC oscillation circuit.
    The PLL circuit according to claim 8.
  10.  前記発振回路は、発振周波数が切替え可能に構成される、
     請求項1に記載のPLL回路。
    The oscillation circuit is configured so that the oscillation frequency can be switched.
    The PLL circuit according to claim 1.
  11.  前記発振回路は、トランジスタを含み、
     前記モニタ部のモニタ対象は、前記トランジスタの閾値電圧を含む、
     請求項1に記載のPLL回路。
    The oscillation circuit includes a transistor and includes a transistor.
    The monitor target of the monitor unit includes the threshold voltage of the transistor.
    The PLL circuit according to claim 1.
  12.  前記発振回路は、電流源を含み、
     前記モニタ部のモニタ対象は、前記電流源を流れる電流を含む、
     請求項1に記載のPLL回路。
    The oscillator circuit includes a current source.
    The monitor target of the monitor unit includes a current flowing through the current source.
    The PLL circuit according to claim 1.
  13.  前記発振回路は、抵抗器を含み、
     前記モニタ部のモニタ対象は、前記抵抗器の抵抗値を含む、
     請求項1に記載のPLL回路。
    The oscillation circuit includes a resistor and includes a resistor.
    The monitor target of the monitor unit includes the resistance value of the resistor.
    The PLL circuit according to claim 1.
  14.  前記PLLは、ディジタルPLLである、
     請求項1に記載のPLL回路。
    The PLL is a digital PLL.
    The PLL circuit according to claim 1.
PCT/JP2021/018361 2020-05-27 2021-05-14 Pll circuit WO2021241268A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020092720A JP2021190779A (en) 2020-05-27 2020-05-27 PLL circuit
JP2020-092720 2020-05-27

Publications (1)

Publication Number Publication Date
WO2021241268A1 true WO2021241268A1 (en) 2021-12-02

Family

ID=78744043

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018361 WO2021241268A1 (en) 2020-05-27 2021-05-14 Pll circuit

Country Status (2)

Country Link
JP (1) JP2021190779A (en)
WO (1) WO2021241268A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575445A (en) * 1991-07-30 1993-03-26 Ricoh Co Ltd Device and method for correcting fluctuation of oscillation frequency of cpu
WO2012101774A1 (en) * 2011-01-26 2012-08-02 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2014017804A (en) * 2012-06-13 2014-01-30 Toshiba Corp Oscillation frequency adjustment circuit
JP2014052969A (en) * 2012-09-10 2014-03-20 Renesas Electronics Corp Clock frequency controller and semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0575445A (en) * 1991-07-30 1993-03-26 Ricoh Co Ltd Device and method for correcting fluctuation of oscillation frequency of cpu
WO2012101774A1 (en) * 2011-01-26 2012-08-02 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2014017804A (en) * 2012-06-13 2014-01-30 Toshiba Corp Oscillation frequency adjustment circuit
JP2014052969A (en) * 2012-09-10 2014-03-20 Renesas Electronics Corp Clock frequency controller and semiconductor device

Also Published As

Publication number Publication date
JP2021190779A (en) 2021-12-13

Similar Documents

Publication Publication Date Title
US10911054B2 (en) Digital-to-time converter (DTC) assisted all digital phase locked loop (ADPLL) circuit
US10141941B2 (en) Differential PLL with charge pump chopping
US7884655B2 (en) Control circuitry
JP4649362B2 (en) Oscillator control device
US9344065B2 (en) Frequency divider, clock generating apparatus, and method capable of calibrating frequency drift of oscillator
US8570107B2 (en) Clock generating apparatus and frequency calibrating method of the clock generating apparatus
JP4991193B2 (en) Variable frequency oscillator
US10419008B2 (en) System and method for voltage-controlled oscillator calibration
US9024693B2 (en) Crystal-less clock generator and operation method thereof
EP3269040B1 (en) Phase locked loop (pll) architecture
JP5347534B2 (en) Phase comparator, PLL circuit, and phase comparator control method
US20100259332A1 (en) Compensation circuit for voltage controlled oscillator
WO2011001652A1 (en) Pll circuit, and radio communication device equipped therewith
US7298219B2 (en) Phase-locked loop circuit
TWI499199B (en) Automatic calibrated oscillation method and apparatus using the same
KR101065818B1 (en) Fluctuation correction method, pll circuit and semiconductor integrated circuit
CN103095290B (en) Agitator
WO2021241268A1 (en) Pll circuit
KR101390393B1 (en) Method and apparatus for calibrating current characteristic of charge pump and frequency synthesizer using the same
US7342461B1 (en) Feedback circuit for minimizing VCO sensitivity
Mukherjee et al. A 0.5-to-400MHz Programmable BAW Oscillator with Fractional Output Divider Achieving 4ppm Frequency Stability over Temperature and< 95fs Jitter
JP6848966B2 (en) Oscillation circuit, oscillation method, and PLL circuit
KR101419834B1 (en) Frequency synthesizer using voltage controlled oscillator
TW202223585A (en) System-on-chip device, spread spectrum clock generator and discrete-time loop filtering method thereof
JP2013016995A (en) Pll circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21814166

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21814166

Country of ref document: EP

Kind code of ref document: A1