Nothing Special   »   [go: up one dir, main page]

WO2021139210A1 - 一种光纤连接的检测方法以及相关设备 - Google Patents

一种光纤连接的检测方法以及相关设备 Download PDF

Info

Publication number
WO2021139210A1
WO2021139210A1 PCT/CN2020/116726 CN2020116726W WO2021139210A1 WO 2021139210 A1 WO2021139210 A1 WO 2021139210A1 CN 2020116726 W CN2020116726 W CN 2020116726W WO 2021139210 A1 WO2021139210 A1 WO 2021139210A1
Authority
WO
WIPO (PCT)
Prior art keywords
network device
optical interface
label information
interface
output optical
Prior art date
Application number
PCT/CN2020/116726
Other languages
English (en)
French (fr)
Inventor
廖志权
陈志强
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20912798.4A priority Critical patent/EP4068653A4/en
Publication of WO2021139210A1 publication Critical patent/WO2021139210A1/zh
Priority to US17/859,789 priority patent/US20220345800A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0256Optical medium access at the optical channel layer
    • H04J14/0258Wavelength identification or labelling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • H04B10/0773Network aspects, e.g. central monitoring of transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/564Power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0267Optical signaling or routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0254Optical medium access
    • H04J14/0272Transmission of OAMP information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing
    • H04J14/0202Arrangements therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0077Labelling aspects, e.g. multiprotocol label switching [MPLS], G-MPLS, MPAS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • H04Q2011/0083Testing; Monitoring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches

Definitions

  • This application relates to optical fiber communication, and in particular to a detection method of optical fiber connection and related equipment.
  • the optical fiber communication system is a communication system that uses light as the carrier wave, uses optical fiber as the transmission medium, and uses light to transmit information through photoelectric conversion.
  • the optical fiber communication system includes different network devices, and a large number of optical fibers are needed between different network devices to realize the transmission of optical signals.
  • the probability of error in the identified optical fiber connection relationship is relatively high.
  • a single-point four-dimensional reconfigurable optical add drop multiplexer has nearly 70 optical ports. Each optical port is connected to an optical fiber. If the optical fiber communication system includes many ROADMs, the workload of manually identifying the optical fiber connection relationship of each optical port in each ROADM will be very huge and cumbersome, which greatly reduces the efficiency of identifying optical fiber connections and reduces the identification of optical fibers. The accuracy of the connection relationship.
  • the present application provides a detection method and related equipment for optical fiber connection, which are used to solve the technical problem of how to automatically detect the optical fiber connection relationship between network devices.
  • an embodiment of the present invention provides a method for detecting an optical fiber connection.
  • the method includes: a first network device obtains first label information, where the first label information is used to indicate a target output optical interface, and the first network device Having at least one output optical interface, the target output optical interface is one of the at least one output optical interface; the first network device generates an optical signal, and the wavelength of the optical signal is within the wavelength range corresponding to the target output optical interface; the The first network device modulates the first label information onto the optical signal to generate a modulated optical signal; the first network device sends the modulated optical signal from the target output optical interface to the target input of the second network device The optical interface is used to detect the optical fiber connection relationship existing between the target output optical interface and the target input optical interface.
  • the first network device sends the modulated optical signal carrying the first label information to the second network device to realize the automatic optical fiber connection relationship between the target output optical interface and the target input optical interface.
  • manual participation is not required, which improves the efficiency and accuracy of optical fiber connection detection.
  • the generating of the optical signal by the first network device includes: the first network device acquiring wavelength indication information, where the wavelength indication information is used to indicate the wavelength range of the target output optical interface ; The first network device generates the optical signal according to the wavelength indication information.
  • the first network device generates the optical signal according to the wavelength indication information, and the wavelength of the optical signal is within the wavelength range of the target output optical interface, so that the optical signal can only be sent from the target output optical interface To the target input optical interface of the second network device, so as to detect the optical fiber connection relationship between the target output optical interface and the target input optical interface.
  • the first label information includes at least the wavelength indication information.
  • the first label information includes the wavelength indication information
  • the first network device may generate the optical signal based on the wavelength indication information included in the first label information, and modulate the first label information on the optical signal.
  • the efficiency of detecting the optical fiber connection relationship of the target output optical interface is improved.
  • the first network device is connected to a network management device, and acquiring the first label information by the first network device includes: the first network device receiving the first network device from the network management device One label information.
  • the network management device when the network management device determines that it is necessary to detect the optical fiber connection relationship of the target output optical interface of the first network device, the network management device sends the first label information to the first network device to facilitate the first network device.
  • the network device obtains the first label information, thereby effectively ensuring the realization of automatic detection of the optical fiber connection relationship.
  • the first network device is connected to a network management device, and before the first network device obtains the first tag information, the method further includes: the first network device receives from the The instruction information of the network management device, the instruction information is used to trigger the detection of the optical fiber connection of the first network device; the first network device acquiring the first label information includes: the first network device generates the first label according to the instruction information information.
  • the network management device sends the indication information to the first network device to trigger the first network device to determine the target output optical interface that needs to perform fiber connection relationship detection, which effectively reduces the need for the network management device to connect the fiber to the fiber.
  • the detection of the amount of information that needs to be processed improves the efficiency of optical fiber connection relationship detection.
  • the first network device generating the first label information according to the instruction information includes: the first network device detecting whether the target output optical interface is occupied by a service optical signal ; If the target output optical interface is not occupied by a service optical signal, the first network device generates the first label information according to the instruction information.
  • the first network device determines that the output optical interface is occupied by service optical signals, it can be known that the optical fiber connection relationship of the output optical interface has been stored in the network management device, and there is no need to detect the optical fiber connection relationship of the output optical interface , Avoiding the situation of performing fiber connection detection on the output optical interface, causing interference to the service optical signal transmitted by the output optical interface.
  • the first network device modulating the first tag information onto the optical signal to generate a modulated optical signal includes: the first network device according to the first tag The information changes the power intensity of the optical signal to generate the modulated optical signal.
  • the first network device modulates the first tag information onto the optical signal by changing the power intensity of the optical signal. Because in the optical fiber communication network, the first label information has a unique corresponding relationship with the target output optical interface, so that the optical fiber connection relationship of the target output optical interface can be accurately detected based on the first label information, and the target output optical interface can be accurately detected. Automatic detection of the optical fiber connection relationship of the output optical interface.
  • the first network device includes multiple output optical interfaces, and different output optical interfaces are coupled to different lasers
  • the first network device generating optical signals includes: The first network device determines the target laser coupled to the target output optical interface; the first network device generates the optical signal through the target laser.
  • the first network device includes multiple lasers, and different lasers are coupled to different output optical interfaces.
  • the optical signal can be output through a laser coupled to the target output optical interface.
  • the optical fiber connection relationship of multiple output optical interfaces can be detected at the same time, which effectively improves the efficiency of detecting the optical fiber connection relationship of the multiple output optical interfaces included in the first network device.
  • the method further includes: the first network device Receive fiber connection indication information, where the fiber connection indication information is used to indicate the optical fiber connection relationship existing between the target output optical interface and the target input optical interface of the second network device.
  • the first network device receives the fiber connection instruction information from the second network device, and the first network device can determine the optical fiber between the target output optical interface and the target input optical interface based on the fiber connection instruction information.
  • the connection relationship so that the first network device realizes at least part of the management functions of the network management device based on the optical fiber connection relationship, and reduces the load of the network management device.
  • the first label information includes a first field and a second field
  • the first field includes an identifier of the target output optical interface
  • the second field includes the first field.
  • an embodiment of the present invention provides a method for detecting an optical fiber connection.
  • the method includes: a second network device receives a modulated optical signal from a target output optical interface of the first network device from a target input optical interface, and the target The input optical interface is one of the at least one input optical interface that the second network device has; the second network device obtains first label information from the modulated optical signal, and the first label information is used to indicate the target output light Interface; the second network device obtains second label information, the second label information is used to indicate the target input optical interface, the first label information and the second label information are used to detect the target input optical interface and the target output The fiber connection relationship between optical interfaces.
  • the second network device obtains the second label information, so as to detect the optical fiber connection relationship between the target output optical interface and the target input optical interface through the first label information and the second label information, and detect In the process, no human involvement is required, which improves the efficiency and accuracy of optical fiber connection detection.
  • the second network device is connected to a network management device, and the method further includes: the second network device sends the first tag information and the second tag information to the Network management equipment.
  • the method further includes: the second network device detects the target input optical interface and the target output optical interface according to the first tag information and the second tag information The fiber connection relationship that exists between.
  • the method further includes: the second network device sends fiber connection indication information to the first network device, where the fiber connection indication information is used to instruct the target to input the optical interface The optical fiber connection relationship with the target output optical interface.
  • the second network device is connected to a network management device, and the method further includes: the second network device sends fiber connection instruction information to the network management device, and the fiber connection instruction information It is used to indicate the optical fiber connection relationship existing between the target input optical interface and the target output optical interface.
  • the second network device acquiring the first label information from the modulated optical signal includes: the second network device changes according to the power intensity of the modulated optical signal To obtain the first label information.
  • an embodiment of the present invention provides a method for detecting an optical fiber connection.
  • the method includes: a network management device receives first label information and second label information from a second network device, where the first label information is used for Indicate the target output optical interface of the first network device, the second label information is used to indicate the target input optical interface of the second network device; the network management device detects the target input according to the first label information and the second label information The optical fiber connection relationship between the optical interface and the target output optical interface.
  • the method before the network management device receives the first label information and the second label information from the second network device, the method further includes: The device sends the first label information.
  • the first label information includes wavelength indication information, and the wavelength indication information is used to indicate the wavelength range of the target output optical interface.
  • the method before the network management device receives the first label information and the second label information from the second network device, the method further includes: The device sends instruction information, where the instruction information is used to trigger the detection of the optical fiber connection of the first network device.
  • the method before the network management device sends the instruction information to the first network device, the method further includes: the network management device determines that the target output optical interface is not occupied by service optical signals.
  • an embodiment of the present invention provides a first network device, including a label loader, a laser, a demultiplexer, and at least one output optical interface that are sequentially coupled;
  • the label loader is used to obtain first label information, the first label information is used to indicate a target output optical interface, the first network device has at least one output optical interface, and the target output optical interface is one of the at least one output optical interface One;
  • the laser is used to generate an optical signal, the wavelength of the optical signal is within the wavelength range corresponding to the target output optical interface, and the laser is also used to modulate the first label information onto the optical signal to generate modulated light Signal;
  • the demultiplexer is used to send the modulated optical signal from the target output optical interface to the target input optical interface of the second network device, so as to detect the existence between the target output optical interface and the target input optical interface Optical fiber connection relationship.
  • the first network device further includes a control and communication interface, and the control and communication interface is used to obtain wavelength indication information, and the wavelength indication information is used to instruct the target to output light.
  • the wavelength range of the interface; the label loader is also used to generate the optical signal according to the wavelength indication information.
  • the first label information includes at least the wavelength indication information.
  • control and communication interface is further configured to receive the first tag information from the network management device.
  • control and communication interface is also used to receive instruction information from the network management device, where the instruction information is used to trigger the detection of the optical fiber connection of the first network device;
  • the tag loader is further configured to generate the first tag information according to the instruction information.
  • the label loader is also used to: detect whether the target output optical interface is occupied by service optical signals; if the target output optical interface is not occupied by service optical signals, The tag loader generates the first tag information according to the instruction information.
  • the tag loader is further configured to change the power intensity of the optical signal according to the first tag information to generate the modulated optical signal.
  • the label loader is further used to determine a target laser coupled to the target output optical interface; and used to generate the optical signal through the target laser.
  • control and communication interface is also used to receive fiber connection indication information, and the fiber connection indication information is used to indicate the target output optical interface and the target input of the second network device The fiber connection relationship between optical interfaces.
  • the first label information includes a first field and a second field
  • the first field includes the identifier of the target output optical interface
  • the second field includes the first field.
  • an embodiment of the present invention provides a second network device, which includes a plurality of input optical interfaces and a tag receiver that are sequentially coupled, and the tag receiver is configured to: receive from a target input optical interface from the first network device The target outputs the modulated optical signal of the optical interface, the target input optical interface is one of the at least one input optical interface, and first label information is obtained from the modulated optical signal, and the first label information is used to indicate the target output Optical interface; acquiring second label information, the second label information is used to indicate the target input optical interface, the first label information and the second label information are used to detect the target input optical interface and the target output optical interface between Existing optical fiber connection relationship.
  • the second network device further includes a control and communication interface, and the control and communication interface is used to send the first tag information and the second tag information to the network manager equipment.
  • the tag receiver is further configured to detect the connection between the target input optical interface and the target output optical interface according to the first tag information and the second tag information Existing optical fiber connection relationship.
  • control and communication interface is also used to send fiber connection indication information to the first network device, and the fiber connection indication information is used to indicate the target input optical interface and the The optical fiber connection relationship between the target output optical interfaces.
  • control and communication interface is also used to send fiber connection indication information to the network management device, and the fiber connection indication information is used to indicate the target input optical interface and the target output The fiber connection relationship between optical interfaces.
  • the tag receiver is further configured to obtain the first tag information according to the change in the power intensity of the modulated optical signal.
  • an embodiment of the present invention provides a network management device, including a network interface, a processor, and a memory sequentially connected via a bus; the network interface is used to receive first tag information and second tag information from a second network device, wherein, the first label information is used to indicate the target output optical interface of the first network device, the second label information is used to indicate the target input optical interface of the second network device; and the processor is used to indicate the target output optical interface of the first network device; The second label information detects the optical fiber connection relationship existing between the target input optical interface and the target output optical interface.
  • the network interface is further configured to send the first label information to the first network device.
  • the first label information includes wavelength indication information, and the wavelength indication information is used to indicate the wavelength range of the target output optical interface.
  • the network interface is further configured to send instruction information to the first network device, where the instruction information is used to trigger detection of the optical fiber connection of the first network device.
  • the processor is further configured to determine that the target output optical interface is not occupied by a service optical signal.
  • FIG. 1 is a diagram of the first structure example of the optical fiber communication system provided by this application.
  • FIG. 2 is a diagram showing an example of the second structure of the optical fiber communication system provided by this application.
  • 3A is a flowchart of the steps of the first embodiment of the method for detecting optical fiber connection provided by this application;
  • 3B is an example diagram of a scene of an optical signal generated by the first network device provided by this application.
  • Figure 5 is a diagram of a third structural example of the optical fiber communication system provided by this application.
  • FIG. 6 is a diagram of a fourth structural example of the optical fiber communication system provided by this application.
  • FIG. 7 is a flow chart of the steps of the third embodiment of the method for detecting optical fiber connection provided by this application.
  • FIG. 8 is a structural example diagram of the first embodiment of the first network device provided by this application.
  • FIG. 9 is a structural example diagram of the second embodiment of the first network device provided by this application.
  • FIG. 10 is a structural example diagram of a third embodiment of the first network device provided by this application.
  • FIG. 11 is a structural example diagram of an embodiment of a second network device provided by this application.
  • FIG. 12 is a structural example diagram of an embodiment of a network management device provided by this application.
  • the optical fiber communication system shown in this embodiment includes a network management device 101, a first network device 102, and a second network device 103.
  • the network management device 101 is connected to the first network device 102 and the second network device 103 as an example for exemplification.
  • the network management device 101 may only be connected to the first network device 102.
  • the network management device 101 may only be connected to the second network device 103.
  • connection shown in this embodiment can be a direct connection.
  • the network management device 101 can be directly connected to the first network device 102 through a physical method such as a network cable, or wirelessly. It is directly connected to the first network device 102 in a similar manner.
  • connection shown in this embodiment can also be an indirect connection.
  • the network management device 101 can be connected to the second network device via other network devices (such as the optical fiber communication system included in the optical fiber communication system).
  • the network devices 102 network devices that are different from each other are indirectly connected.
  • the first network device 102 and the second network device 103 are connected through an optical fiber 104.
  • the first network device 102, the second network device 103, and the network management device 101 may be located on the same communication device, or may be located on different communication devices, which are not specifically limited.
  • the communication device may be a box-type device or a frame-type device.
  • this embodiment does not limit the specific number of the first network device 102 and the second network device 103, as long as the first network device 102 and the second network device 103 are any part of the optical fiber communication system. A set of network equipment connected by optical fiber is sufficient.
  • the network management device 101 can implement the management function between the first network device 102 and the second network device 103 based on the optical fiber connection relationship existing between the first network device 102 and the second network device 103.
  • the management function may be to realize fault analysis, fault location, service distribution, etc., which is not specifically limited in this embodiment.
  • the first network device 102 may be a wavelength selective switch (WSS), and the second network device 103 may be a wavelength converter (optical transponder unit, OTU).
  • the first network device 102 may be a demultiplexer, and the second network device 103 may be a wavelength converter.
  • the first network device 102 has X output optical interfaces (that is, the output optical interface 210, the output optical interface 211 to the output optical interface 21X).
  • the second network device 103 has Y input optical interfaces (that is, the input optical interface 220, the input optical interface 221 to the input optical interface 21Y).
  • This embodiment does not limit the specific values of X and Y, as long as X and Y are both positive integers greater than or equal to 1. In the following, both X and Y are positive integers greater than 1 as an example for illustration.
  • the output optical interface 21X of the first network device has been connected to the input optical interface 22Y of the second network device 103 through the optical fiber 200 .
  • the service optical signal interaction has not yet been performed between the output optical interface 21X and the input optical interface 22Y.
  • the purpose of the optical fiber connection detection method provided in this application is how to automatically detect the output optical interface 21X of the first network device 102 and the second network without manual participation in multiple network devices included in the optical fiber communication network
  • Step 301 The first network device obtains first tag information.
  • the first label information is used to indicate the target output optical interface of the first network device.
  • the target output optical interface is one of at least one output optical interface of the first network device. For example, the output optical interface 21X shown in FIG. 2.
  • the first label information includes the identification of the target output optical interface.
  • the identification of the target output optical interface can be one or more of the following:
  • the port number of the target output optical interface or the attribute information of the target output optical interface is not limited.
  • the attribute information includes rate information and/or wavelength indication information.
  • the rate information is used to indicate the bearer rate corresponding to the target output optical interface.
  • the wavelength indication information is used to indicate the wavelength range of the target output optical interface.
  • the first label information includes the identification of the target output optical interface and the identification of the first network device.
  • the identifier of the first network device is one or more of the following:
  • the device number of the first network device the rack number of the first network device, the subrack number of the first network device, or the slot number of the first network device.
  • This embodiment does not limit the specific source of the first tag information. For example, if the network management device needs to detect the optical fiber connection relationship of the target output optical interface, the network management device sends the first label information to the first network device. For another example, if the first network device needs to detect the optical fiber connection relationship of the target output optical interface, the first network device generates the first label information.
  • Step 302 The first network device generates an optical signal.
  • different output optical interfaces correspond to different wavelength ranges.
  • the output optical interface 210 corresponds to the first wavelength range
  • the output optical interface 211 corresponds to the second wavelength range
  • the output optical interface 21X corresponds to the Xth wavelength range.
  • the first wavelength range, the second wavelength range, and the Xth wavelength range are different from each other.
  • the output optical interface 210 is only used to transmit optical signals with a wavelength in the first wavelength range
  • the output optical interface 21X is only used to transmit optical signals with a wavelength in the Xth wavelength range.
  • the obtained wavelength of the optical signal is within the wavelength range corresponding to the target output optical interface.
  • the wavelength of the optical signal is within the Xth wavelength range.
  • This embodiment does not limit the execution timing between step 301 and step 302.
  • Step 303 The first network device modulates the first label information onto the optical signal to generate a modulated optical signal.
  • the first label information when the first network device obtains the first label information and the optical signal, the first label information can be modulated onto the optical signal to generate a modulated optical signal. It can be seen that the wavelength of the modulated optical signal is within the wavelength range corresponding to the target output optical interface, and the modulated optical signal carries the first tag information.
  • the optical signal 320 shown on the left side of FIG. 3B is an optical signal to which the first tag information has not been loaded.
  • the first label information is loaded on the optical signal 320 to form the modulated optical signal 321 shown on the right side of FIG. 3B.
  • the modulated optical signal 321 as an example, the horizontal direction of the modulated optical signal 321 represents time, and the vertical direction represents power intensity.
  • the first network device changes the power intensity of the optical signal according to the first label information to generate the modulated optical signal. That is, the first tag information is carried by the change of the power intensity of the optical signal after modulation.
  • Step 304 The first network device sends the modulated optical signal from the target output optical interface to the target input optical interface.
  • the wavelength of the modulated optical signal is within the wavelength range corresponding to the target output optical interface. It can be seen that even if the first network device has multiple output optical interfaces, the modulated optical signal is only output from the first network device through the target output optical interface.
  • FIG. 2 it can be seen that there is an optical fiber connection relationship between the target output optical interface 21X and the target input optical interface 22Y.
  • the modulated optical signal output from the target output optical interface 21X is transmitted to the target input optical interface 22Y via the optical fiber 200.
  • Step 305 The second network device receives the modulated optical signal from the target output optical interface of the first network device from the target input optical interface.
  • the target input optical interface shown in this embodiment is one of at least one input optical interface of the second network device. And the target input optical interface and the target output optical interface are connected through an optical fiber.
  • Step 306 The second network device obtains the first tag information from the modulated optical signal.
  • the second network device splits the modulated optical signal to split the detected optical signal from the modulated optical signal. For example, 1% of the optical signal is split from the modulated optical signal as the detected optical signal.
  • the second network device performs photoelectric conversion on the detection light signal to form a detection electrical signal.
  • the second network device can obtain the first tag information according to the change in the power intensity of the detected electrical signal. For a specific description of the first label information, please refer to step 301 for details, and will not be repeated.
  • Step 307 The second network device obtains second tag information.
  • the second network device when the second network device receives the modulated optical signal from the target input optical interface, the second network device generates second label information according to the target input optical interface. Specifically, the second network device detects the input optical interface it has, and if it detects that the target input optical interface receives the modulated optical signal, the second network device can obtain instructions for the target input optical interface The second label information.
  • the second network device 103 pre-stores a tag list, and the tag list includes the correspondence between different input optical interfaces and different tag information.
  • the second network device 103 receives the modulated optical signal from the target input optical interface 22Y, the second network device 103 determines that the label information corresponding to the target input optical interface 22Y is the second label information according to the label list .
  • the second label information is used to indicate the target input optical interface.
  • This embodiment does not limit the specific content included in the second label information, as long as the second label information has a unique corresponding relationship with the target input optical interface in the optical fiber communication network.
  • the second tag information includes the identification of the target input optical interface.
  • the identification of the target input optical interface can be one or more of the following:
  • the port number of the target input optical interface or the attribute information of the target input optical interface For the description of the port number and attribute information, please refer to step 301, which will not be repeated.
  • the second tag information includes the identification of the target input optical interface and the identification of the second network device.
  • the identifier of the second network device is one or more of the following:
  • the device number of the second network device the rack number of the second network device, the subrack number of the second network device, or the slot number of the second network device.
  • Step 308 The second network device sends the first label information and the second label information to the network management device.
  • the second network device in order to detect the optical fiber connection relationship between the target output optical interface and the target input optical interface, the second network device sends both the acquired first label information and the second label information to the network management device .
  • Step 309 The network management device receives the first label information and the second label information.
  • Step 310 The network management device detects the optical fiber connection relationship existing between the target input optical interface and the target output optical interface according to the first label information and the second label information.
  • the first label information is used to indicate the target output optical interface.
  • the second label information is used to indicate the target input optical interface.
  • the network management device can detect the optical fiber connection relationship existing between the target input optical interface and the target output optical interface based on the first label information and the second label information from the second network device.
  • the network management device 101 receives the first label information and the second label information from the second network device 103.
  • the first label information is used to indicate the output optical interface 21X
  • the second label information is used to indicate the input optical interface 22Y.
  • the network management device 101 can determine that there is an optical fiber connection relationship between the output optical interface 21X and the input optical interface 22Y.
  • the network management device can realize the network management function for the first network device 102 and the second network device 103 based on the optical fiber connection relationship.
  • the network management function please refer to FIG. 1 and will not be repeated.
  • the network management device may generate fiber connection indication information, where the fiber connection indication information is used to indicate the fiber connection relationship existing between the target output optical interface and the target input optical interface.
  • the network management device may send the fiber connection indication information to the first network device and/or the second network device.
  • the first network device and/or the second network device that received the fiber connection indication information can perform at least part of the network management function, thereby reducing the load of the network management device.
  • the network management device is responsible for detecting the optical fiber connection relationship existing between the target output optical interface and the target input optical interface as an example for illustration, which is not limited.
  • the second network device may also detect the optical fiber connection relationship existing between the target output optical interface and the target input optical interface according to the first label information and the second label information.
  • the fiber connection indication information is generated by the second network device.
  • the second network device may send the fiber connection indication information to the first network device and/or the network management device.
  • the first network device transmits the modulated optical signal carrying the first label information to the second network device to realize the optical fiber connection between the target output optical interface and the target input optical interface Automatic detection of the relationship, and no human involvement is required during the detection process, which improves the efficiency and accuracy of optical fiber connection detection.
  • the first network device automatically detects the optical fiber connection relationship existing between the target output optical interface and the target input optical interface.
  • the following is an explanation with reference to Figure 4, if the first label information is generated by the network management device, specifically how to realize the detection process of the optical fiber connection relationship:
  • Step 401 The network management device generates first label information.
  • the network management device determines the target output optical interface that needs to perform fiber connection relationship detection, and generates the first label information according to the target output optical interface.
  • the network management equipment can store the output optical interface list in advance.
  • the output optical interface list includes the identifiers of all output optical interfaces included in the first network device. As shown in FIG. 2, the output optical interface list includes the identification of the output optical interface 210, the identification of the output optical interface 211 to the identification of the output optical interface 21X.
  • the network management device may poll all the output optical interface identifiers included in the output optical interface list as the first label information and send to the first network device one by one. For example, the network management device may first send the identification of the output optical interface 210 as the first label information to the first network device. The first network device realizes the detection of the optical fiber connection relationship of the output optical interface 210 according to the first label information. By analogy, the network management device finally sends the identification of the output optical interface 21X as the first label information to the first network device. The first network device realizes the detection of the optical fiber connection relationship of the output optical interface 21X according to the first label information.
  • the network management device detects whether each output optical interface of the first network device is occupied by a service optical signal. As shown in FIG. 2, if the network management device determines that the output optical interface 21X is not occupied by service optical signals, the network management device can determine that the output optical interface 21X is a target output optical interface that needs to perform fiber connection relationship detection. The network management device generates first label information for indicating the output optical interface 21X.
  • the network management device stores the fiber connection list for different network devices. Taking the first network device as an example, the connection list includes fiber connection relationships of all output optical interfaces included in the first network device. If the fiber connection relationship of the target output optical interface is not stored in the fiber connection list, the network management device can generate the first label information for the target output optical interface.
  • the first tag information includes a first field.
  • the first field includes the identification of the target output optical interface.
  • the identification of the target output optical interface please refer to the embodiment shown in FIG. 3A for details, and will not be repeated.
  • the first label information includes a first field and a second field.
  • the first field please refer to content 1 for details, and will not be repeated.
  • the second field includes the identification of the first network device.
  • the identification of the first network device please refer to the embodiment shown in FIG. 3A, and will not be repeated.
  • Step 402 The network management device sends the first label information to the first network device.
  • Step 403 The first network device receives the first tag information from the network management device.
  • Step 404 The first network device generates an optical signal.
  • optical signal For a specific description of the optical signal, please refer to step 302 for details, and will not be repeated.
  • the first label information includes the wavelength indication information.
  • the wavelength indication information please refer to the above content 1 for details, and will not be repeated.
  • the first network device may extract the wavelength indication information from the first label information. Then send the wavelength indication information to the laser.
  • the description of the laser can be referred to as shown in FIG. 3A, and will not be repeated.
  • the laser can generate the optical signal according to the wavelength indication information.
  • the first network device directly sends the received first tag information to the laser.
  • the laser extracts the wavelength indication information from the first label information.
  • the laser generates the optical signal according to the extracted wavelength indication information.
  • the first label information shown in this manner does not include the wavelength indication information.
  • the first network device stores a list of wavelengths in advance.
  • the wavelength list includes the correspondence between different output optical interfaces of the first network device and different wavelength indication information.
  • the target output optical interface indicated by the first label information can be determined.
  • the first network device determines the wavelength indication information corresponding to the target output optical interface according to the wavelength list.
  • the first network device sends the wavelength indication information to the laser.
  • the laser can generate the optical signal according to the wavelength indication information.
  • the first label information shown in this manner does not include the wavelength indication information.
  • the first network device directly sends the first label information to the laser.
  • the laser generates an optical signal according to the pre-stored wavelength list and the first label information.
  • the specific process can be referred to as shown in mode 3, and will not be repeated.
  • the first network device includes a laser 501 for generating the optical signal.
  • the laser 501 generates optical signals used to detect the fiber connection relationship of different output optical interfaces.
  • For the process of generating the optical signal by the laser 501 please refer to the above-mentioned generation method 1 to the generation method 4, which will not be described in detail.
  • multiple lasers ie, laser 601, laser 602 to laser 60X
  • a plurality of lasers are respectively coupled with a plurality of output optical interfaces.
  • the first network device can generate the optical signal through the laser 60X coupled to the output optical interface 21X.
  • the generation process please refer to the above generation method 1 to generation Mode 4 is shown and will not be repeated.
  • Step 405 The first network device modulates the first label information onto the optical signal to generate a modulated optical signal.
  • the first network device sends the first label information to the laser, and the laser modulates the first label information onto the optical signal to generate the modulated optical signal.
  • the laser has a modulation function as an example for illustrative description. If the laser does not have a modulation function, a modulator is coupled to the laser. The modulator obtains the first tag information and the optical signal from the laser. The modulator is used to modulate the first label information onto the optical signal to generate a modulated optical signal.
  • Step 406 The first network device sends the modulated optical signal from the target output optical interface to the target input optical interface.
  • Step 407 The second network device receives the modulated optical signal from the target output optical interface of the first network device from the target input optical interface.
  • Step 408 The second network device obtains the first label information from the modulated optical signal.
  • Step 409 The second network device obtains the second tag information.
  • Step 410 The second network device sends the first label information and the second label information to the network management device.
  • Step 411 The network management device receives the first label information and the second label information.
  • Step 412 The network management device detects the optical fiber connection relationship existing between the target input optical interface and the target output optical interface according to the first label information and the second label information.
  • step 406 to step 412 in this embodiment please refer to step 304 to step 310 for details, and will not be repeated.
  • the network management device sends first label information to the first network device, and the first label information is used to indicate the target output optical interface that needs to perform fiber connection relationship detection.
  • the first network device can directly detect the optical fiber connection relationship based on the first label information. The amount of data processed by the first network device is effectively reduced, the burden of the first network device is reduced, and the automatic detection of the optical fiber connection relationship is realized, and the efficiency and accuracy of the optical fiber connection detection are improved.
  • the first network device has 40 output optical interfaces, and each output optical interface is connected to a different second network device. That is, the first network device is connected to 40 second network devices through the 40 output optical interface fibers.
  • each second network device reports the first label information and the second label information as shown above, so that the network management device can determine 40 second label information.
  • the output optical interface of the first network device respectively connected to the network devices, and the process only takes about 2 minutes. However, it takes about 1.5 hours to manually detect the optical fiber connection relationship in the same scenario. It can be seen that the method shown in this embodiment can improve the detection efficiency of the optical fiber connection relationship.
  • the network management device is responsible for generating the first label information.
  • the first label information is generated by the first network device, specifically how to realize the detection process of the optical fiber connection relationship:
  • Step 701 The network management device generates instruction information.
  • the network management device determines the first network device that needs to perform fiber connection relationship detection in the optical fiber communication system.
  • the specific detection of the optical fiber connection relationship of which output optical interface in the first network device is determined by the first network device itself.
  • the network management device determines the first network device that needs to perform fiber connection relationship detection, it can generate the indication information.
  • the indication information is used to trigger the detection of the optical fiber connection of the first network device.
  • the instruction information may be any information negotiated in advance between the network management device and the first network device, as long as the instruction information is in the network management device and the first network device, the content indicated is all triggers for the first network device. Detection of optical fiber connections.
  • the indication information may also be the identification of the first network device. In the case where the first network device receives the identifier of the first network device, the first network device can determine that the detection of the optical fiber connection relationship needs to be performed. For a specific description of the identification of the first network device, please refer to step 401 for details, and will not be repeated.
  • Step 702 The network management device sends instruction information to the first network device.
  • Step 703 The first network device receives the instruction information from the network management device.
  • Step 704 The first network device generates first tag information according to the instruction information.
  • the first network device when the first network device receives the instruction information, the first network device selects the target output optical interface that needs to perform fiber connection relationship detection, wherein the first network management device selects the target output optical interface
  • the first network management device selects the target output optical interface
  • the first network device pre-stores the output optical interface list.
  • the output optical interface list For a specific description of the output optical interface list, please refer to step 401, which will not be repeated.
  • the first network device may determine the identifiers of all output optical interfaces included in the output optical interface list as the target output optical interfaces by polling one by one.
  • the first network device detects whether each output optical interface is occupied by a service optical signal. As shown in FIG. 2, if the first network device determines that the output optical interface 21X is not occupied by service optical signals, the first network device can determine that the output optical interface 21X is a target output optical interface that needs to perform fiber connection detection.
  • the first network device stores the connected fiber list.
  • the fiber connection list please refer to step 401, which is not repeated here.
  • the first network device can determine that the output optical interface 210 is the target output optical interface.
  • the first network device determines the target output optical interface
  • the first network device can generate the first label information.
  • the specific content of the first label information please refer to step 401 for details. Go into details.
  • Step 705 The first network device generates an optical signal.
  • Step 706 The first network device modulates the first label information onto the optical signal to generate a modulated optical signal.
  • Step 707 The first network device sends the modulated optical signal from the target output optical interface to the target input optical interface.
  • Step 708 The second network device receives the modulated optical signal from the target output optical interface of the first network device from the target input optical interface.
  • Step 709 The second network device obtains the first label information from the modulated optical signal.
  • Step 710 The second network device obtains second tag information.
  • Step 711 The second network device sends the first label information and the second label information to the network management device.
  • Step 712 The network management device receives the first label information and the second label information.
  • Step 713 The network management device detects the optical fiber connection relationship existing between the target input optical interface and the target output optical interface according to the first label information and the second label information.
  • steps 705 to 713 in this embodiment please refer to steps 404 to 412 for details, and will not be repeated.
  • the first network device uses the method shown in this embodiment, the first network device generates first label information, and the optical fiber connection relationship of the target output optical interface is detected through the first label information.
  • the first network device can directly detect the optical fiber connection relationship based on the first label information, realizes the automatic detection of the optical fiber connection relationship, and improves the efficiency and accuracy of optical fiber connection detection.
  • the first network device includes a control and communication interface 801, a label loader 802, a laser 803, an optical coupler 804, a demultiplexer 805, and at least one output optical interface.
  • control and communication interface 801 is used to exchange information with the network management equipment.
  • the control and communication interface 801, the label loader 802, the laser 803, the optical coupler 804, the demultiplexer 805, and at least one output optical interface are sequentially coupled.
  • the first network device includes multiple output optical interfaces as an example.
  • the multiple output optical interfaces specifically include output optical interface 210, output optical interface 211 to output optical interface 21X.
  • output optical interface 210 specifically include output optical interface 210, output optical interface 211 to output optical interface 21X.
  • the tag loader 802 may be one or more field-programmable gate arrays (FPGA), application specific integrated circuit (ASIC), system on chip (SoC), Central processor unit (CPU), digital signal processing circuit (digital signal processor, DSP), microcontroller (microcontroller unit, MCU), programmable controller (programmable logic device, PLD) or other integrated chips, Or any combination of the above-mentioned chips or processors, etc.
  • FPGA field-programmable gate arrays
  • ASIC application specific integrated circuit
  • SoC system on chip
  • CPU Central processor unit
  • DSP digital signal processing circuit
  • microcontroller microcontroller unit, MCU
  • programmable controller programmable logic device, PLD
  • the label loader 802 is used to perform step 301, or the label loader 802 and the laser 803 perform step 301 together.
  • the laser 803 is used to perform step 302 to step 303.
  • the laser 803 is also used to send the output modulated optical signal to the optical coupler 804.
  • control and communication interface 801 is used to receive the first tag information from the network management device.
  • the control and communication interface 801 is used to receive instruction information from the network management device.
  • the control and communication interface 801 is used to send the first tag information or the instruction information to the tag loader 802.
  • the label loader 802 is configured to extract the wavelength indication information from the first label information.
  • the tag loader 802 is used to send the received first tag information to the laser 803.
  • the label loader 802 is used to determine the wavelength indication information corresponding to the target output optical interface according to the wavelength list.
  • the tag loader 802 is used to generate the first tag information.
  • the laser 803 is used to generate the optical signal.
  • the laser 803 is also used to modulate the first label information onto the optical signal to generate a modulated optical signal.
  • the laser 803 is also used to send the output modulated optical signal to the optical coupler 804.
  • the optical coupler 804 is used to receive the modulated optical signal and send it to the demultiplexer 805.
  • the optical coupler 804 receives a service optical signal
  • the service optical signal is an optical signal that already carries service data.
  • the optical coupler 804 is used to couple the service optical signal and the modulated optical signal to send the coupled optical signal to the demultiplexer 805.
  • This embodiment does not limit the source of the service optical signal.
  • the service optical signal may originate from outside the first network device.
  • the service optical signal originates from inside the first network device.
  • the demultiplexer 805 includes an input port, and the input port is coupled to the optical coupler 804.
  • the demultiplexer 805 also includes a plurality of output ports, and the plurality of output ports are respectively coupled to a plurality of output optical interfaces.
  • the demultiplexer 805 is used to obtain the optical signal from the optical coupler 804.
  • the demultiplexer 805 outputs to the corresponding output optical interface according to the wavelength of the optical signal.
  • the demultiplexer 805 has received and coupled the modulated optical signal and the service optical signal as an example. If the demultiplexer 805 determines that the wavelength of the modulated optical signal is within the wavelength range corresponding to the output optical interface 21, the demultiplexer 805 sends the modulated optical signal to the output optical interface 21X. The output optical interface 21X is used to send the modulated optical signal to the second network device via an optical fiber. For the specific sending process, refer to the above method embodiment, and will not be repeated. If the demultiplexer 805 determines that the wavelength of the service optical signal is within the wavelength range corresponding to the output optical interface 210, the demultiplexer 805 sends the service optical signal to the output optical interface 210. The output optical interface 210 is used to send the service optical signal to the second network device via an optical fiber.
  • the first network device may further include a modulator 901, which is used to obtain the first tag information from the tag loader 802 and modulate the first tag information to the laser 803 output optical signal.
  • a modulator 901 which is used to obtain the first tag information from the tag loader 802 and modulate the first tag information to the laser 803 output optical signal.
  • the first network device includes a laser as an example for exemplification: the following describes the structure of the first network device including multiple lasers shown in this embodiment with reference to FIG. 10:
  • the first network device includes a control and communication interface 801, a label loader 802, a plurality of lasers 803, a plurality of optical couplers 804, a demultiplexer 805, and a plurality of output optical interfaces.
  • the plurality of lasers may include lasers 1001, 1002 to 100X.
  • the multiple optical couplers include an optical coupler 1010, an optical coupler 1011 to an optical coupler 101X.
  • a plurality of lasers, a plurality of optical couplers, and a plurality of output optical interfaces are respectively coupled in order for exemplification.
  • the laser 1002, the optical coupler 1010, and the output optical interface 210 are coupled in sequence.
  • the laser 100X, the optical coupler 101X, and the output optical interface 21X are coupled in sequence.
  • the demultiplexer 805 is respectively coupled to the multiple lasers.
  • the control and communication interface 801 and the label loader 802 are respectively coupled to a plurality of lasers.
  • the demultiplexer 805 shown in this embodiment is further coupled to a plurality of optical couplers respectively.
  • one laser is coupled to one output optical interface via one optical coupler as an example for description.
  • one laser can also be coupled to multiple output optical interfaces via one or more optical couplers.
  • the first network device shown in this embodiment may also be provided with a modulator, and the description of the modulator can be referred to as shown in FIG. 9 and will not be repeated.
  • the label loader 802 determines the target output optical interface, and generates a modulated optical signal through a laser coupled to the target output optical interface. For example, if the label loader 802 determines the target output optical interface 21X, the label loader 802 generates a modulated optical signal through the laser 100X. Please refer to the foregoing method embodiment for the specific generation process, and will not be repeated.
  • the laser 100X sends the modulated optical signal to the optical coupler 101X.
  • the optical coupler 101X is used to send the modulated optical signal to the output optical interface 21X.
  • the output optical interface 21X sends the modulated optical signal to the second Network equipment sent.
  • the difference between the first network device shown in FIG. 10 and that shown in FIG. 8 is that the service optical signal is received by the demultiplexer 805, and the demultiplexer determines the service optical signal according to the wavelength of the service optical signal.
  • the signal is forwarded to the corresponding optical coupler. For example, if the demultiplexer 805 determines that the wavelength of the received service optical signal is within the wavelength range corresponding to the output optical interface 210, the demultiplexer 805 sends the service optical signal to the one coupled to the output optical interface 210.
  • the optical coupler 1010 sends the received service optical signal to the output optical interface 210.
  • the output optical interface 210 sends the service optical signal to the second network device.
  • the second network device includes a control and communication interface 1101, a tag receiver 1130, a converter 1103, multiple input optical interfaces, and multiple optical splitters.
  • the multiple optical splitters are respectively coupled to multiple input optical interfaces, that is, the input optical interface 220 is coupled to the optical splitter 1101, the input optical interface 221 is coupled to the optical splitter 1102, and the input optical interface 22Y is coupled to the optical splitter 110Y.
  • multiple input optical interfaces and multiple optical splitters are respectively coupled as an example for illustrative description. In other examples, multiple input optical interfaces may also be coupled to one optical splitter.
  • Multiple optical splitters are coupled to the tag receiver 1130.
  • the tag receiver 1130 is respectively coupled to the converter 1103 and the control and communication interface 1101.
  • control and communication interface 110 For the description of the control and communication interface 1101, please refer to the description of the control and communication interface 801 shown in Figure 8.
  • control and communication interface 801 For the description of the specific device form of the label receiver 1130, please refer to Figure 8 for the description of the label loader 802. The description of the device shape will not be repeated.
  • the target input optical interface is used to perform step 305.
  • the optical splitter is used to split the received optical signal to form a detection optical signal and an optical signal to be converted.
  • the optical splitter is used to send the detected light signal to the tag receiver 1130, and is used to send the light signal to be converted to the converter 1103.
  • the converter 1103 is used to convert the optical signal to be converted into a service optical signal.
  • the optical splitter 110Y is used to split the optical signal to form a detected optical signal and an optical signal to be converted.
  • the step 306 For a specific description of the spectroscopy, refer to the step 306, which will not be repeated.
  • the tag receiver 1130 is used to perform step 306 to step 307.
  • the tag receiver 1130 sends the first tag information and the second tag information to the control and communication interface 1101.
  • the control and communication interface 1101 is used to perform step 308.
  • the second network device shown in this embodiment may also be used in the method embodiment shown in FIG. 4 or FIG. 7.
  • the network management device includes a network interface 1202, a processor 1201, and a memory 1203 that are sequentially connected through a bus.
  • the network device 1201 is used to exchange information with the first network device and the second network device.
  • the processor 1201 may include one or more central processing units (CPU).
  • the memory 1203 is used to store a program.
  • the program may include one or more modules (not shown in the figure), and each module may include a series of command operations on the network management device. Furthermore, the processor 1201 executes a series of instruction operations in the memory 1203.
  • the network interface 1202 is used to perform step 309, and the network interface 1202 sends the received first tag information and second tag information to the processor 1201.
  • the processor 1201 is configured to execute step 310.
  • the processor 1201 is configured to perform step 401, and send the generated first tag information to the network interface 1202, and the network interface 1202 is configured to perform step 402.
  • the network interface 1202 is used to perform step 410.
  • the network interface 1202 sends the received first tag information and second tag information to the processor 1201.
  • the processor 1201 is configured to execute step 411.
  • the processor 1201 is configured to perform step 701 and send the generated instruction information to the network interface 1202, and the network interface 1202 is configured to perform step 702.
  • the network interface 1202 is used to perform step 711.
  • the network interface 1202 sends the received first tag information and second tag information to the processor 1201.
  • the processor 1201 is configured to execute step 712.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例公开了一种光纤连接的检测方法以及相关设备,用于对网络设备之间的光纤连接关系进行自动的检测,有效的提高光纤连接关系检测的效率。该方法包括:第一网络设备获取第一标签信息,该第一标签信息用于指示目标输出光接口,该目标输出光接口为第一网络设备的至少一个输出光接口中的一个;该第一网络设备生成光信号,该光信号的波长位于该目标输出光接口对应的波长范围内;该第一网络设备将该第一标签信息调制到该光信号上,以生成调制后光信号;该第一网络设备将该调制后光信号从该目标输出光接口发送到第二网络设备的目标输入光接口,以便于检测该目标输出光接口和该目标输入光接口之间存在的光纤连接关系。

Description

一种光纤连接的检测方法以及相关设备
本申请要求于2020年1月8日提交中国国家知识产权局、申请号为202010018687.7、发明名称为“一种光纤连接的检测方法以及相关设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光纤通信,尤其涉及一种光纤连接的检测方法以及相关设备。
背景技术
光纤通信系统是以光为载波,利用光纤作为传输媒介,通过光电变换,用光来传输信息的通信系统。光纤通信系统包括不同的网络设备,且不同的网络设备之间需要大量的光纤实现光信号的传输。
为实现对光纤通信系统的管理和维护,需要由人工识别不同的网络设备之间存在的光纤连接关系。再由人工将所识别的光纤连接关系输入至网管设备。
但是,通过人工识别光纤连接关系,造成识别的光纤连接关系出错的概率比较大。例如,一个单点的四维可重构光分插复用器(reconfigurable optical add drop multiplexer,ROADM),其具有用于近70个光口。每一个光口连接一路光纤。若光纤通信系统包括很多ROADM,则人工识别每个ROADM中的每个光口的光纤连接关系的工作量会非常的巨大和繁琐,极大的降低了识别光纤连接的效率,而且降低了识别光纤连接关系的准确性。
发明内容
本申请提供了一种光纤连接的检测方法以及相关设备,其用于解决如何对网络设备之间的光纤连接关系进行自动检测的技术问题。
第一方面,本发明实施例提供了一种光纤连接的检测方法,该方法包括:第一网络设备获取第一标签信息,该第一标签信息用于指示目标输出光接口,该第一网络设备具有至少一个输出光接口,该目标输出光接口为该至少一个输出光接口中的一个;该第一网络设备生成光信号,该光信号的波长位于该目标输出光接口对应的波长范围内;该第一网络设备将该第一标签信息调制到该光信号上,以生成调制后光信号;该第一网络设备将该调制后光信号从该目标输出光接口发送到第二网络设备的目标输入光接口,以便于检测该目标输出光接口和该目标输入光接口之间存在的光纤连接关系。
在该实施方式中,第一网络设备通过向第二网络设备发送携带有第一标签信息的调制后光信号的方式,实现目标输出光接口和目标输入光接口之间存在的光纤连接关系的自动检测,且检测过程中,无需人工的参与,提高了光纤连接检测的效率和准确性。
基于第一方面,在一种可选的实现方式中,该第一网络设备生成光信号包括:该第一网络设备获取波长指示信息,该波长指示信息用于指示该目标输出光接口的波长范围;该第一网络设备根据该波长指示信息生成该光信号。
在该实施方式中,该第一网络设备根据波长指示信息生成该光信号,该光信号的波长位于该目标输出光接口的波长范围内,以使该光信号仅能够从该目标输出光接口发送至该第二网络设备的目标输入光接口,以便于检测目标输出光接口和目标输入光接口之间的光 纤连接关系。
基于第一方面,在一种可选的实现方式中,该第一标签信息至少包括该波长指示信息。
在该实施方式中,该第一标签信息包括该波长指示信息,则第一网络设备可基于该第一标签信息所包括的波长指示信息生成该光信号,并将第一标签信息调制于该光信号上,提高了对目标输出光接口的光纤连接关系进行检测的效率。
基于第一方面,在一种可选的实现方式中,该第一网络设备与网管设备连接,该第一网络设备获取第一标签信息包括:该第一网络设备接收来自该网管设备的该第一标签信息。
在该实施方式中,在网管设备确定需要对第一网络设备的目标输出光接口的光纤连接关系进行检测的情况下,则网管设备向第一网络设备发送该第一标签信息,以便于第一网络设备获取该第一标签信息,从而有效的保障了对光纤连接关系进行自动检测的实现。
基于第一方面,在一种可选的实现方式中,该第一网络设备与网管设备连接,该第一网络设备获取第一标签信息之前,该方法还包括:该第一网络设备接收来自该网管设备的指示信息,该指示信息用于触发对该第一网络设备的光纤连接的检测;该第一网络设备获取第一标签信息包括:该第一网络设备根据该指示信息生成该第一标签信息。
在该实施方式中,网管设备通过向第一网络设备发送该指示信息,以触发该第一网络设备确定需要进行光纤连接关系检测的目标输出光接口,有效的降低了网管设备需要进行光纤连接光纤检测需要处理的信息量,提高了进行光纤连接关系检测的效率。
基于第一方面,在一种可选的实现方式中,该第一网络设备根据该指示信息生成该第一标签信息包括:该第一网络设备检测该目标输出光接口是否已被业务光信号占用;若该目标输出光接口未被业务光信号占用,该第一网络设备根据该指示信息生成该第一标签信息。
在该实施方式中,若第一网络设备确定输出光接口被业务光信号占用,则可知该输出光接口的光纤连接关系已存储至网管设备,则无需对该输出光接口的光纤连接关系进行检测,避免了对该输出光接口进行光纤连接检测的情况,造成对该输出光接口所传输的业务光信号造成干扰。
基于第一方面,在一种可选的实现方式中,该第一网络设备将该第一标签信息调制到该光信号上,以生成调制后光信号包括:该第一网络设备根据第一标签信息改变该光信号的功率强度,以生成该调制后光信号。
在该实施方式中,第一网络设备通过改变该光信号的功率强度的方式,将第一标签信息调制到光信号上。因在光纤通信网络中,该第一标签信息与该目标输出光接口具有唯一的对应关系,以便于基于该第一标签信息能够准确的检测到该目标输出光接口的光纤连接关系,实现对目标输出光接口的光纤连接关系的自动检测。
基于第一方面,在一种可选的实现方式中,该第一网络设备包括多个输出光接口,且不同的该输出光接口耦接不同的激光器,该第一网络设备生成光信号包括:该第一网络设备确定与该目标输出光接口耦接的目标激光器;该第一网络设备通过该目标激光器生成该光信号。
在该实施方式中,第一网络设备包括多个激光器,且不同的激光器耦接不同的输出光 接口。在需要对目标输出光接口的光纤连接关系进行检测的过程中,可通过与目标输出光接口耦接的激光器输出该光信号。在此种实施方式中,可同时对多个输出光接口的光纤连接关系进行检测,有效的提高了对第一网络设备所包括的多个输出光接口的光纤连接关系进行检测的效率。
基于第一方面,在一种可选的实现方式中,该第一网络设备将该调制后光信号从该目标输出光接口发送到目标输入光接口之后,该方法还包括:该第一网络设备接收连纤指示信息,该连纤指示信息用于指示该目标输出光接口和第二网络设备的目标输入光接口之间存在的光纤连接关系。
在该实施方式中,第一网络设备接收来自第二网络设备的连纤指示信息,第一网络设备基于该连纤指示信息,即可确定出目标输出光接口和目标输入光接口之间的光纤连接关系,以便于第一网络设备基于该光纤连接关系实现网管设备所具有的至少部分管理功能,降低了网管设备的负载。
基于第一方面,在一种可选的实现方式中,该第一标签信息包括第一字段和第二字段,该第一字段包括该目标输出光接口的标识,该第二字段包括该第一网络设备的标识。
第二方面,本发明实施例提供了一种光纤连接的检测方法,该方法包括:第二网络设备从目标输入光接口接收来自第一网络设备的目标输出光接口的调制后光信号,该目标输入光接口为该第二网络设备具有的至少一个输入光接口中的一个;该第二网络设备从该调制后光信号中获取第一标签信息,该第一标签信息用于指示该目标输出光接口;该第二网络设备获取第二标签信息,该第二标签信息用于指示该目标输入光接口,该第一标签信息和该第二标签信息用于检测该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
在该实施方式中,第二网络设备获取该第二标签信息,以便于通过该第一标签信息和该第二标签信息检测目标输出光接口和目标输入光接口之间的光纤连接关系,且检测过程中,无需人工的参与,提高了光纤连接检测的效率和准确性。
本方面所示的有益效果的说明,可参见上述第一方面所示,不做赘述。
基于第二方面,在一种可选的实现方式中,该第二网络设备与网管设备连接,该方法还包括:该第二网络设备将该第一标签信息和该第二标签信息发送给该网管设备。
基于第二方面,在一种可选的实现方式中,该方法还包括:该第二网络设备根据该第一标签信息和该第二标签信息,检测该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
基于第二方面,在一种可选的实现方式中,该方法还包括:该第二网络设备向该第一网络设备发送连纤指示信息,该连纤指示信息用于指示该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
基于第二方面,在一种可选的实现方式中,该第二网络设备与网管设备连接,该方法还包括:该第二网络设备向该网管设备发送连纤指示信息,该连纤指示信息用于指示该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
基于第二方面,在一种可选的实现方式中,该第二网络设备从该调制后光信号中获取 第一标签信息包括:该第二网络设备根据该调制后光信号的功率强度的变化,以获取该第一标签信息。
第三方面,本发明实施例提供了一种光纤连接的检测方法,该方法包括:网管设备接收来自第二网络设备的第一标签信息和第二标签信息,其中,该第一标签信息用于指示第一网络设备的目标输出光接口,该第二标签信息用于指示该第二网络设备的目标输入光接口;该网管设备根据该第一标签信息和该第二标签信息,检测该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
本方面所示的有益效果的说明,可参见上述第一方面所示,不做赘述。
基于第三方面,在一种可选的实现方式中,该网管设备接收来自该第二网络设备的第一标签信息和第二标签信息之前,该方法还包括:该网管设备向该第一网络设备发送该第一标签信息。
基于第三方面,在一种可选的实现方式中,该第一标签信息包括波长指示信息,该波长指示信息用于指示该目标输出光接口的波长范围。
基于第三方面,在一种可选的实现方式中,该网管设备接收来自该第二网络设备的第一标签信息和第二标签信息之前,该方法还包括:该网管设备向该第一网络设备发送指示信息,该指示信息用于触发对该第一网络设备的光纤连接的检测。
基于第三方面,在一种可选的实现方式中,该网管设备向该第一网络设备发送指示信息之前,该方法还包括:该网管设备确定该目标输出光接口未被业务光信号占用。
第四方面,本发明实施例提供了一种第一网络设备,包括依次耦接的标签加载器、激光器、解复用器以及至少一个输出光接口;
该标签加载器用于获取第一标签信息,该第一标签信息用于指示目标输出光接口,该第一网络设备具有至少一个输出光接口,该目标输出光接口为该至少一个输出光接口中的一个;该激光器用于生成光信号,该光信号的波长位于该目标输出光接口对应的波长范围内,该激光器还用于将该第一标签信息调制到该光信号上,以生成调制后光信号;该解复用器用于将该调制后光信号从该目标输出光接口发送到第二网络设备的目标输入光接口,以便于检测该目标输出光接口和该目标输入光接口之间存在的光纤连接关系。
本方面所示的有益效果的说明,可参见上述第一方面所示,不做赘述。
基于第四方面,在一种可选的实现方式中,该第一网络设备还包括控制与通信接口,该控制与通信接口用于获取波长指示信息,该波长指示信息用于指示该目标输出光接口的波长范围;该标签加载器还用于根据该波长指示信息生成该光信号。
基于第四方面,在一种可选的实现方式中,该第一标签信息至少包括该波长指示信息。
基于第四方面,在一种可选的实现方式中,该控制与通信接口还用于接收来自该网管设备的该第一标签信息。
基于第四方面,在一种可选的实现方式中,该控制与通信接口还用于接收来自该网管设备的指示信息,该指示信息用于触发对该第一网络设备的光纤连接的检测;该标签加载器还用于根据该指示信息生成该第一标签信息。
基于第四方面,在一种可选的实现方式中,该标签加载器还用于:检测该目标输出光 接口是否已被业务光信号占用;若该目标输出光接口未被业务光信号占用,该标签加载器根据该指示信息生成该第一标签信息。
基于第四方面,在一种可选的实现方式中,该标签加载器还用于,根据第一标签信息改变该光信号的功率强度,以生成该调制后光信号。
基于第四方面,在一种可选的实现方式中,该标签加载器还用于,确定与该目标输出光接口耦接的目标激光器;并用于通过该目标激光器生成该光信号。
基于第四方面,在一种可选的实现方式中,该控制与通信接口还用于接收连纤指示信息,该连纤指示信息用于指示该目标输出光接口和第二网络设备的目标输入光接口之间存在的光纤连接关系。
基于第四方面,在一种可选的实现方式中,该第一标签信息包括第一字段和第二字段,该第一字段包括该目标输出光接口的标识,该第二字段包括该第一网络设备的标识。
第五方面,本发明实施例提供了一种第二网络设备,包括依次耦接的多个输入光接口以及标签接收器,该标签接收器用于:从目标输入光接口接收来自第一网络设备的目标输出光接口的调制后光信号,该目标输入光接口为该至少一个输入光接口中的一个,从该调制后光信号中获取第一标签信息,该第一标签信息用于指示该目标输出光接口;获取第二标签信息,该第二标签信息用于指示该目标输入光接口,该第一标签信息和该第二标签信息用于检测该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
本方面所示的有益效果的说明,可参见上述第二方面所示,不做赘述。
基于第五方面,在一种可选的实现方式中,该第二网络设备还包括控制与通信接口,该控制与通信接口用于将该第一标签信息和该第二标签信息发送给该网管设备。
基于第五方面,在一种可选的实现方式中,该标签接收器还用于,根据该第一标签信息和该第二标签信息,检测该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
基于第五方面,在一种可选的实现方式中,该控制与通信接口还用于向该第一网络设备发送连纤指示信息,该连纤指示信息用于指示该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
基于第五方面,在一种可选的实现方式中,该控制与通信接口还用于向该网管设备发送连纤指示信息,该连纤指示信息用于指示该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
基于第五方面,在一种可选的实现方式中,该标签接收器还用于,根据该调制后光信号的功率强度的变化,以获取该第一标签信息。
第六方面,本发明实施例提供了一种网管设备,包括通过总线依次连接网络接口、处理器以及存储器;该网络接口用于接收来自第二网络设备的第一标签信息和第二标签信息,其中,该第一标签信息用于指示第一网络设备的目标输出光接口,该第二标签信息用于指示第二网络设备的目标输入光接口;该处理器用于根据该第一标签信息和该第二标签信息,检测该目标输入光接口和该目标输出光接口之间存在的光纤连接关系。
本方面所示的有益效果的说明,可参见上述第三方面所示,不做赘述。
基于第六方面,在一种可选的实现方式中,该网络接口还用于向该第一网络设备发送该第一标签信息。
基于第六方面,在一种可选的实现方式中,该第一标签信息包括波长指示信息,该波长指示信息用于指示该目标输出光接口的波长范围。
基于第六方面,在一种可选的实现方式中,该网络接口还用于向该第一网络设备发送指示信息,该指示信息用于触发对该第一网络设备的光纤连接的检测。
基于第六方面,在一种可选的实现方式中,该处理器还用于确定该目标输出光接口未被业务光信号占用。
附图说明
图1为本申请所提供的光纤通信系统的第一种结构示例图;
图2为本申请所提供的光纤通信系统的第二种结构示例图;
图3A为本申请所提供的光纤连接的检测方法的第一种实施例步骤流程图;
图3B为本申请所提供的第一网络设备所生成的光信号的一种场景示例图;
图4为本申请所提供的光纤连接的检测方法的第二种实施例步骤流程图;
图5为本申请所提供的光纤通信系统的第三种结构示例图;
图6为本申请所提供的光纤通信系统的第四种结构示例图;
图7为本申请所提供的光纤连接的检测方法的第三种实施例步骤流程图;
图8为本申请所提供的第一网络设备的第一种实施例结构示例图;
图9为本申请所提供的第一网络设备的第二种实施例结构示例图;
图10为本申请所提供的第一网络设备的第三种实施例结构示例图;
图11为本申请所提供的第二网络设备的一种实施例结构示例图;
图12为本申请所提供的网管设备的一种实施例结构示例图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
为更好的理解本申请所提供的光纤连接的检测方法,以下首先结合图1所示对光纤连接的检测方法所应用的光纤通信系统进行说明:
如图1所示,本实施例所示的光纤通信系统包括网管设备101、第一网络设备102以及第二网络设备103。本实施例以该网管设备101分别与第一网络设备102以及第二网络设备103连接为例进行示例性说明。在其他示例中,该网管设备101可仅与第一网络设备102连接。又如,该网管设备101可仅与第二网络设备103连接。
本实施例所示的连接可为直接连接,以网管设备101与第一网络设备102直接连接为例,则网管设备101可通过网线等物理方式与第一网络设备102直接连接,也可通过无线等方式与第一网络设备102直接连接。
本实施例所示的连接也可为间接连接,以网管设备101与第二网络设备103间接连接 为例,则网管设备101可经由其他网络设备(如该光纤通信系统所包括的与该第二网络设备102互不相同的网络设备)间接连接。
该第一网设备102和第二网络设备103之间通过光纤104进行连接。该第一网络设备102、第二网络设备103以及网管设备101可位于同一通信设备上,也可位于不同的通信设备上,具体不做限定。其中,该通信设备可为盒式设备或框式设备等。
需明确的是,本实施例对第一网络设备102和第二网络设备103的具体数量不做限定,只要该第一网络设备102和该第二网络设备103为该光纤通信系统所包括的任一组通过光纤连接的网络设备即可。
网管设备101基于第一网络设备102和第二网络设备103之间存在的光纤连接关系,能够实现对第一网络设备102和第二网络设备103之间的管理功能。该管理功能可为实现故障分析、故障定位、业务分配等,具体在本实施例中不做限定。
本实施例对该第一网络设备102和该第二网络设备103的设备类型不做限定。例如,第一网络设备102可为波长选择开关(wavelength selective switch,WSS),第二网络设备103可为波长转换器(optical transponder unit,OTU)。又如,第一网络设备102可为解复用器,第二网络设备103可为波长转换器。
以下结合图2所示对本申请所示的光纤连接的检测方法所应用的场景进行说明:
如图2所示,第一网络设备102具有X个输出光接口(即输出光接口210、输出光接口211至输出光接口21X)。该第二网络设备103具有Y个输入光接口(即输入光接口220、输入光接口221至输入光接口21Y)。本实施例对X以及Y的具体取值不做限定,只要X、Y均为大于或等于1的正整数即可。以下以X以及Y均为大于1的正整数为例进行示例性说明。
为实现第一网络设备102和第二网络设备103之间的业务光信号的交互,则第一网络设备的输出光接口21X已通过光纤200与第二网络设备103的输入光接口22Y进行了连接。且输出光接口21X和输入光接口22Y之间尚未进行业务光信号的交互。
本申请所提供的光纤连接的检测方法的目的在于,如何在光纤通信网络所包括的多个网络设备中,无需人工参与,即可自动检测第一网络设备102的输出光接口21X与第二网络设备103的输入光接口22Y之间存在的光纤连接关系。
以下结合图3A所示对本实施例所提供的光纤连接的检测方法的具体过程进行说明:
步骤301、第一网络设备获取第一标签信息。
该第一标签信息用于指示该第一网络设备的目标输出光接口。该目标输出光接口为该第一网络设备所具有的至少一个输出光接口中的一个。例如图2所示的输出光接口21X。
本实施例对该第一标签信息所包括的具体内容不做限定,只要在该光纤通信网络中,该第一标签信息与该目标输出光接口具有唯一的对应关系即可。以下对第一标签信息所包括的具体内容进行说明:例如,该第一标签信息包括目标输出光接口的标识。该目标输出光接口的标识可为如下所示的一项或多项:
目标输出光接口的端口编号或目标输出光接口的属性信息。
本实施例对该目标输出光接口的属性信息的具体内容不做限定,只要该属性信息能够 指示该目标输出光接口的至少部分属性即可。例如,该属性信息包括速率信息和/或波长指示信息。其中,该速率信息用于指示该目标输出光接口对应的承载速率。该波长指示信息用于指示该目标输出光接口的波长范围。
又如,该第一标签信息包括该目标输出光接口的标识以及该第一网络设备的标识。该第一网络设备的标识为如下所示的一项或多项:
第一网络设备的设备编号、第一网络设备的机架号、第一网络设备的子架号或第一网络设备的槽位号。
本实施例对该第一标签信息的具体来源不做限定。例如,若网管设备需要对目标输出光接口的光纤连接关系进行检测,则该网管设备将该第一标签信息发送给第一网络设备。又如,若第一网络设备需要对目标输出光接口的光纤连接关系进行检测,则该第一网络设备生成该第一标签信息。
步骤302、第一网络设备生成光信号。
继续以图2所示为例,为避免第一网络设备102中不同的输出光接口所传输的光信号之间出现串扰,则不同的输出光接口对应不同的波长范围。例如,输出光接口210对应第一波长范围,输出光接口211对应第二波长范围,输出光接口21X对应第X波长范围。且第一波长范围、第二波长范围以及第X波长范围互不相同。且输出光接口210仅用于传输波长位于该第一波长范围内的光信号,依次类推,输出光接口21X仅用于传输波长位于该第X波长范围内的光信号。
可见,若需要检测目标输出光接口的光纤连接关系,则所获取到的该光信号的波长位于该目标输出光接口对应的波长范围内。继续以输出光接口21X为例,为检测输出光接口21X的光纤连接关系,则光信号的波长位于第X波长范围内。
本实施例对步骤301和步骤302之间的执行时序,不做限定。
步骤303、第一网络设备将第一标签信息调制到光信号上,以生成调制后光信号。
本实施例中,在该第一网络设备获取到该第一标签信息和该光信号的情况下,即可将第一标签信息调制到该光信号上,以生成调制后光信号。可见,该调制后光信号的波长位于目标输出光接口对应的波长范围内,且该调制后光信号携带有该第一标签信息。
具体地,参见图3B所示,图3B左侧所示的光信号320,为尚未加载该第一标签信息的光信号。在光信号320上加载第一标签信息以形成图3B右侧所示的调制后光信号321。其中,以调制后光信号321为例,调制后光信号321的横向表示时间,纵向表示功率强度。对比于光信号320和调制后光信号321可知,该第一网络设备根据第一标签信息改变该光信号的功率强度,以生成该调制后光信号。即通过调制后光信号的功率强度的变化,以携带该第一标签信息。
步骤304、第一网络设备将调制后光信号从目标输出光接口发送到目标输入光接口。
调制后光信号的波长位于目标输出光接口对应的波长范围内,可知,即便第一网络设备具有多个输出光接口,该调制后光信号仅通过该目标输出光接口从第一网络设备输出。
由图2所示可知,该目标输出光接口21X和该目标输入光接口22Y之间已存在光纤连接关系。从目标输出光接口21X输出的该调制后光信号经由光纤200传输至该目标输入光 接口22Y。
步骤305、第二网络设备从目标输入光接口接收来自第一网络设备的目标输出光接口的调制后光信号。
本实施例所示的目标输入光接口为该第二网络设备所具有的至少一个输入光接口中的一个。且该目标输入光接口与该目标输出光接口之间通过光纤连接。
步骤306、第二网络设备从调制后光信号中获取第一标签信息。
本实施例中,该第二网络设备对该调制后光信号进行分光,以从调制后光信号中分光出检测光信号。例如,从调制后光信号中分光出1%的光信号作为该检测光信号。第二网络设备对该检测光信号进行光电转换以形成检测电信号。第二网络设备即可根据该检测电信号的功率强度的变化获取该第一标签信息。对第一标签信息的具体说明,请详见步骤301所示,不做赘述。
步骤307、第二网络设备获取第二标签信息。
本实施例中,在第二网络设备从目标输入光接口接收到该调制后光信号的情况下,该第二网络设备根据该目标输入光接口生成第二标签信息。具体地,该第二网络设备对其所具有的输入光接口进行检测,若检测到目标输入光接口接收到该调制后光信号,该第二网络设备即可获取用于指示该目标输入光接口的第二标签信息。
可选地,继续参加图2所示,第二网络设备103预先存储有标签列表,该标签列表包括不同的输入光接口和不同的标签信息的对应关系。在第二网络设备103从目标输入光接口22Y接收到该调制后光信号的情况下,该第二网络设备103根据该标签列表确定与该目标输入光接口22Y对应的标签信息为第二标签信息。
其中,该第二标签信息用于指示该目标输入光接口。本实施例对该第二标签信息所包括的具体内容不做限定,只要在该光纤通信网络中,该第二标签信息与该目标输入光接口具有唯一的对应关系即可。以下对第二标签信息所包括的具体内容进行说明:
例如,该第二标签信息包括目标输入光接口的标识。该目标输入光接口的标识可为如下所示的一项或多项:
目标输入光接口的端口编号或目标输入光接口的属性信息。对该端口编号和属性信息的说明,请参见步骤301所示,不做赘述。
又如,该第二标签信息包括该目标输入光接口的标识以及该第二网络设备的标识。该第二网络设备的标识为如下所示的一项或多项:
第二网络设备的设备编号、第二网络设备的机架号、第二网络设备的子架号或第二网络设备的槽位号。
步骤308、第二网络设备将第一标签信息和第二标签信息发送给网管设备。
本实施例中,为实现对目标输出光接口和目标输入光接口之间存在的光纤连接关系的检测,则第二网络设备将已获取的第一标签信息和第二标签信息均发送至网管设备。
步骤309、网管设备接收第一标签信息和第二标签信息。
步骤310、网管设备根据第一标签信息和第二标签信息,检测目标输入光接口和目标输出光接口之间存在的光纤连接关系。
由上述说明可知,第一标签信息用于指示目标输出光接口。第二标签信息用于指示目标输入光接口。网管设备即可根据来自该第二网络设备的该第一标签信息和第二标签信息,检测目标输入光接口和目标输出光接口之间存在的光纤连接关系。
继续参见图2所示,网管设备101从第二网络设备103接收到第一标签信息和第二标签信息。其中,该第一标签信息用于指示输出光接口21X,该第二标签信息用于指示输入光接口22Y。网管设备101即可确定出输出光接口21X和输入光接口22Y之间存在光纤连接关系。
该网管设备基于该光纤连接关系,即可对第一网络设备102和第二网络设备103实现网管功能,对该网管功能的说明,请参见图1所示,不做赘述。
可选地,网管设备可生成连纤指示信息,该连纤指示信息用于指示目标输出光接口和目标输入光接口之间存在的光纤连接关系。网管设备可向第一网络设备和/或第二网络设备发送该连纤指示信息。从而使得接收到该连纤指示信息的第一网络设备和/或第二网络设备可执行至少部分网管功能,从而降低了网管设备的负载。
本实施例以网管设备负责检测目标输出光接口和目标输入光接口之间存在的光纤连接关系为例进行示例性说明,不做限定。例如,在其他示例中,也可由第二网络设备根据第一标签信息和第二标签信息,检测目标输出光接口和目标输入光接口之间存在的光纤连接关系。第二网络设备执行光纤连接检测的过程,可参见步骤310所示网管设备执行光纤连接检测的过程,不做赘述。在此种示例下,由该第二网络设备生成该连纤指示信息。该第二网络设备可将该连纤指示信息向第一网络设备和/或网管设备发送。
采用本实施例所示的方法,第一网络设备通过向第二网络设备发送携带有第一标签信息的调制后光信号的方式,实现目标输出光接口和目标输入光接口之间存在的光纤连接关系的自动检测,且检测过程中,无需人工的参与,提高了光纤连接检测的效率和准确性。
由图3A所示的实施例可知,第一网络设备基于第一标签信息实现对目标输出光接口和目标输入光接口之间存在的光纤连接关系的自动检测。以下结合图4所示说明,若由网管设备生成该第一标签信息,具体是如何实现光纤连接关系的检测过程:
步骤401、网管设备生成第一标签信息。
本实施例中,由网管设备确定需要进行光纤连接关系检测的目标输出光接口,并根据该目标输出光接口生成该第一标签信息。以下对网管设备生成该第一标签信息的几种可选地方式进行说明:
方式1:
该网管设备可预先存储输出光接口列表。该输出光接口列表包括该第一网络设备所包括的所有输出光接口的标识。如图2所示,该输出光接口列表包括输出光接口210的标识、输出光接口211的标识至输出光接口21X的标识。
该网管设备可将该输出光接口列表所包括的所有输出光接口的标识,逐一轮询地作为第一标签信息向第一网络设备发送。例如,网管设备可首先将作为第一标签信息的输出光接口210的标识发送给第一网络设备。由第一网络设备根据该第一标签信息实现对输出光接口210的光纤连接关系的检测。依次类推,网管设备最后将作为第一标签信息的输出光 接口21X的标识发送给第一网络设备。由第一网络设备根据该第一标签信息实现对输出光接口21X的光纤连接关系的检测。
方式2:
该网管设备检测第一网络设备的各输出光接口是否已被业务光信号占用。如图2所示,若网管设备确定输出光接口21X未被业务光信号占用,则网管设备即可确定该输出光接口21X为需要进行光纤连接关系检测的目标输出光接口。网管设备生成用于指示输出光接口21X的第一标签信息。
方式3:
该网管设备针对不同的网络设备存储连纤列表。以第一网络设备为例,该连纤列表包括该第一网络设备所包括的所有输出光接口的光纤连接关系。若连纤列表中未存储目标输出光接口的光纤连接关系,则网管设备即可针对该目标输出光接口生成该第一标签信息。
以下对第一标签信息所包括的具体内容进行说明:
内容1:
该第一标签信息包括第一字段。该第一字段包括目标输出光接口的标识。对该目标输出光接口的标识的具体说明,请详见图3A所示的实施例,不做赘述。
内容2
第一标签信息包括第一字段和第二字段,对第一字段的说明,请详见内容1所示,不做赘述。第二字段包括该第一网络设备的标识。对该第一网络设备的标识的具体说明,请详见图3A所示的实施例,不做赘述。
步骤402、网管设备向第一网络设备发送第一标签信息。
步骤403、第一网络设备接收来自网管设备的第一标签信息。
步骤404、第一网络设备生成光信号。
对光信号的具体说明,请详见步骤302所示,不做赘述。以下对本实施例所示的生成光信号的几种可选的生成方式进行说明:
生成方式1:
第一标签信息包括该波长指示信息,对波长指示信息的具体说明,请详见上述内容1所示,不做赘述。
第一网络设备可从该第一标签信息中,提取出该波长指示信息。再将该波长指示信息发送至该激光器。该激光器的说明,可参见图3A所示,不做赘述。该激光器即可根据该波长指示信息生成该光信号。
生成方式2:
第一网络设备直接将已接收到的第一标签信息发送给激光器。由激光器从第一标签信息中提取出该波长指示信息。激光器根据已提取的波长指示信息生成该光信号。
生成方式3:
本方式所示的第一标签信息不包括该波长指示信息。该第一网络设备预先存储波长列表。该波长列表包括第一网络设备的不同的输出光接口和不同的波长指示信息的对应关系。
在第一网络设备接收到第一标签信息的情况下,即可确定出该第一标签信息所指示的 目标输出光接口。第一网络设备根据该波长列表确定出目标输出光接口对应的波长指示信息。第一网络设备将该波长指示信息发送至激光器。该激光器即可根据该波长指示信息生成该光信号。
生成方式4
本方式所示的第一标签信息不包括该波长指示信息。第一网络设备直接将该第一标签信息发送给激光器。由激光器根据预先存储的波长列表和第一标签信息生成光信号。具体过程可参见方式3所示,不做赘述。
以下对本实施例所示的负责生成该光信号的激光器的几种可选的设置方式进行说明:
设置方式1
如图5所示,该第一网络设备内包括用于生成该光信号的一个激光器501。该激光器501生成用于检测不同的输出光接口的光纤连接关系的光信号。该激光器501生成光信号的过程,请参见上述生成方式1至生成方式4所示,不做赘述。
设置方式2
如图6所示,该第一网络设备内设置有多个激光器(即激光器601、激光器602至激光器60X)。且多个激光器分别与多个输出光接口耦接。
例如,若需要对输出光接口21X的光纤连接关系进行检测,则第一网络设备可通过与输出光接口21X耦接的激光器60X生成该光信号,生成的过程,请参见上述生成方式1至生成方式4所示,不做赘述。
步骤405、第一网络设备将第一标签信息调制到光信号上,以生成调制后光信号。
本实施例中,第一网络设备将第一标签信息发送给激光器,由激光器将第一标签信息调制到光信号上,以生成调制后光信号。
本实施例以激光器具有调制功能为例进行示例性说明。若激光器不具有调制功能,则与该激光器耦接调制器。该调制器获取该第一标签信息以及来自激光器的光信号。该调制器用于将第一标签信息调制到光信号上,以生成调制后光信号。
步骤406、第一网络设备将调制后光信号从目标输出光接口发送到目标输入光接口。
步骤407、第二网络设备从目标输入光接口接收来自第一网络设备的目标输出光接口的调制后光信号。
步骤408、第二网络设备从调制后光信号中获取第一标签信息。
步骤409、第二网络设备获取第二标签信息。
步骤410、第二网络设备将第一标签信息和第二标签信息发送给网管设备。
步骤411、网管设备接收第一标签信息和第二标签信息。
步骤412、网管设备根据第一标签信息和第二标签信息,检测目标输入光接口和目标输出光接口之间存在的光纤连接关系。
本实施例所示的步骤406至步骤412所示的过程,请详见步骤304至步骤310所示,不做赘述。
采用本实施例所示的方法,由网管设备向第一网络设备发送第一标签信息,通过该第一标签信息指示需要进行光纤连接关系检测的目标输出光接口。第一网络设备接收到该第 一标签信息后,直接根据第一标签信息即可进行光纤连接关系的检测。有效的降低了第一网络设备所处理的数据量,降低了第一网络设备的负担,而且实现了光纤连接关系的自动检测,提高了光纤连接检测的效率和准确性。
例如,以第一网络设备具有40个输出光接口,且每个输出光接口连接不同的第二网络设备。即该第一网络设备通过该40个输出光接口光纤连接40个第二网络设备。在第一网络设备执行本实施例所示的方法的情况下,各第二网络设备通过上述所示的上报第一标签信息和第二标签信息的方式,以便于网管设备确定出40个第二网络设备分别所连接的第一网络设备的输出光接口,且过程仅需要约2分钟。而相同场景下由人工检测光纤连接关系却需要约1.5小时。可见,本实施例所示的方法能够提高光纤连接关系的检测效率。
图4所示的实施例中,由网管设备负责生成第一标签信息。以下结合图7所示说明,若由第一网络设备生成该第一标签信息,具体是如何实现光纤连接关系的检测过程:
步骤701、网管设备生成指示信息。
本实施例中,由网管设备在光纤通信系统中确定需要进行光纤连接关系检测的第一网络设备。而具体检测该第一网络设备内的哪个输出光接口的光纤连接关系由该第一网络设备自身决定。
具体地,在网管设备在确定出需要进行光纤连接关系检测的第一网络设备后,即可生成指示信息。其中,该指示信息用于触发对该第一网络设备的光纤连接的检测。
本实施例对该指示信息的具体内容不做限定。例如,该指示信息可为网管设备和第一网络设备之间预先协商的任意信息,只要该指示信息在网管设备和第一网络设备中,所指示的内容均为触发对该第一网络设备的光纤连接的检测。又如,该指示信息也可为第一网络设备的标识。在第一网络设备接收到第一网络设备的标识的情况下,第一网络设备即可确定出需要进行光纤连接关系的检测。对第一网络设备的标识的具体说明,请详见步骤401所示,不做赘述。
步骤702、网管设备向第一网络设备发送指示信息。
步骤703、第一网络设备接收来自网管设备的指示信息。
步骤704、第一网络设备根据指示信息生成第一标签信息。
本实施例中,在第一网络设备接收到该指示信息的情况下,该第一网络设备选定需要进行光纤连接关系检测的目标输出光接口,其中,第一网管设备选定目标输出光接口的具体过程,可参见下述可选地选定方式所示:
选定方式1
第一网络设备预先存储输出光接口列表,对输出光接口列表的具体说明,请参见步骤401所示,不做赘述。
第一网络设备可将该输出光接口列表所包括的所有输出光接口的标识,逐一轮询地确定为目标输出光接口。
选定方式2
该第一网络设备检测各输出光接口是否已被业务光信号占用。如图2所示,若第一网络设备确定输出光接口21X未被业务光信号占用,则第一网络设备即可确定该输出光接口 21X为需要进行光纤连接关系检测的目标输出光接口。
选定方式3
该第一网络设备存储连纤列表。对连纤列表的说明,请参见步骤401所示,不做赘述。如图2所示,若第一网络设备确定该连纤列表中未存储输出光接口210的光纤连接关系,则第一网络设备即可确定输出光接口210为目标输出光接口。
在该第一网络设备确定出目标输出光接口的情况下,该第一网络设备即可生成第一标签信息,对第一标签信息的具体内容的说明,请详见步骤401所示,不做赘述。
步骤705、第一网络设备生成光信号。
步骤706、第一网络设备将第一标签信息调制到光信号上,以生成调制后光信号。
步骤707、第一网络设备将调制后光信号从目标输出光接口发送到目标输入光接口。
步骤708、第二网络设备从目标输入光接口接收来自第一网络设备的目标输出光接口的调制后光信号。
步骤709、第二网络设备从调制后光信号中获取第一标签信息。
步骤710、第二网络设备获取第二标签信息。
步骤711、第二网络设备将第一标签信息和第二标签信息发送给网管设备。
步骤712、网管设备接收第一标签信息和第二标签信息。
步骤713、网管设备根据第一标签信息和第二标签信息,检测目标输入光接口和目标输出光接口之间存在的光纤连接关系。
本实施例步骤705至步骤713所示的过程,请详见步骤404至412所示,不做赘述。
采用本实施例所示的方法,由第一网络设备生成第一标签信息,通过该第一标签信息对目标输出光接口的光纤连接关系进行检测。第一网络设备直接根据第一标签信息即可进行光纤连接关系的检测,实现了光纤连接关系的自动检测,提高了光纤连接检测的效率和准确性。
以下结合图8所示对本申请所提供的第一网络设备的具体结构进行示例性说明:
如图8所示,该第一网络设备包括控制与通信接口801、标签加载器802、激光器803、光耦合器804、解复用器805以及至少一个输出光接口。
其中,该控制与通信接口801用于与网管设备进行信息交互。该控制与通信接口801、标签加载器802、激光器803、光耦合器804、解复用器805以及至少一个输出光接口依次耦接。本实施例以第一网络设备包括多个输出光接口为例,该多个输出光接口具体包括输出光接口210、输出光接口211至输出光接口21X,具体说明请详见图2所示,不做赘述。
本实施例对标签加载器802的器件形态不做限定。例如,该标签加载器802可以是一个或多个现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、数字信号处理电路(digital signal processor,DSP)、微控制器(micro controller unit,MCU),可编程控制器(programmable logic device,PLD)或其它集成芯片,或者上述芯片或者处理器的任意组合等。
例如,结合图3A所示的实施例,该标签加载器802用于执行步骤301,或该标签加载 器802和激光器803共同执行步骤301。该激光器803用于执行步骤302至步骤303。激光器803还用于将输出的调制后光信号发送至该光耦合器804。
又如,结合图4或图7所示的实施例,该控制与通信接口801用于接收来自网管设备的第一标签信息,具体过程参见图4所示的步骤403所示。或该控制与通信接口801用于接收来自网管设备的指示信息,具体过程参见图7所示的步骤703所示。该控制与通信接口801用于将该第一标签信息或该指示信息发送给标签加载器802。
结合步骤404所示的生成方式1所示,该标签加载器802用于从该第一标签信息中,提取出该波长指示信息。结合生成方式2或4所示,该标签加载器802用于将已接收到的第一标签信息发送给激光器803。结合生成方式3所示,该标签加载器802用于根据波长列表确定出目标输出光接口对应的波长指示信息。结合步骤704所示,该标签加载器802用于生成该第一标签信息。该激光器803用于生成该光信号,具体过程请详见步骤404所示,不做赘述。该激光器803还用于将第一标签信息调制到光信号上,以生成调制后光信号。具体过程的说明,请详见步骤405所示。激光器803还用于将输出的调制后光信号发送至该光耦合器804。
该光耦合器804用于接收该调制后光信号发送至解复用器805。
可选地,若该光耦合器804接收到业务光信号,该业务光信号为已承载业务数据的光信号。该光耦合器804用于对该业务光信号和该调制后光信号进行耦合以将和耦合后光信号发送至解复用器805。本实施例对该业务光信号的来源不做限定,例如,该业务光信号可来源于第一网络设备外部,又如,该业务光信号来源于第一网络设备内部。
该解复用器805包括一个输入端口,该输入端口与光耦合器804耦接。该解复用器805还包括多个输出端口,且多个输出端口分别与多个输出光接口耦接。该解复用器805用于获取来自光耦合器804的光信号。该解复用器805根据该光信号的波长输出至对应的输出光接口。
若以解复用器805已接收耦合有该调制后光信号和该业务光信号为例。若该解复用器805确定该调制后光信号的波长位于输出光接口21对应的波长范围内,则解复用器805将该调制后光信号发送至输出光接口21X。该输出光接口21X用于经由光纤将该调制后光信号发送至第二网络设备,具体发送过程可参见上述方法实施例所示,不做赘述。若该解复用器805确定该业务光信号的波长位于输出光接口210对应的波长范围内,则解复用器805将该业务光信号发送至输出光接口210。该输出光接口210用于经由光纤将该业务光信号发送至第二网络设备。
可选地,如图9所示,该第一网络设备还可包括调制器901,该调制器用于获取来自该标签加载器802的第一标签信息,并将该第一标签信息调制到该激光器803输出的光信号上。
图8或图9所示以第一网络设备包括一个激光器为例进行示例性说明:以下结合图10所示对本实施例所示的包括多个激光器的第一网络设备的结构进行说明:
如图10所示,第一网络设备包括控制与通信接口801、标签加载器802、多个激光器803、多个光耦合器804、解复用器805以及多个输出光接口。
具体地,该多个激光器可包括激光器1001、1002至100X。该多个光耦合器包括光耦合器1010、光耦合器1011至光耦合器101X。本实施例以多个激光器、多个光耦合器以及多个输出光接口分别依次耦接为例进行示例性说明,即激光器1001、光耦合器1010以及输出光接口210依次耦接。激光器1002、光耦合器1010以及输出光接口210依次耦接。激光器100X、光耦合器101X以及输出光接口21X依次耦接。该解复用器805分别与该多个激光器耦接。该控制与通信接口801、该标签加载器802分别与多个激光器耦接。为实现业务光信号的传输,本实施例所示的解复用器805还分别与多个光耦合器耦接。
可选地,本实施例以一个激光器经由一个光耦合器耦接一个输出光接口为例进行说明,在其他示例中,也可由一个激光器经由一个或多个光耦合器耦接多个输出光接口。可选地,本实施例所示的第一网络设备内还可设置有调制器,调制器的说明可参见图9所示,不做赘述。
本实施例所示的控制与通信接口801以及标签加载器802的具体作用的说明,请详见图8所示的实施例,不做赘述。本实施例中,标签加载器802确定目标输出光接口,并通过与该目标输出光接口耦接的激光器生成调制后光信号。例如,若标签加载器802确定目标输出光接口21X,则该标签加载器802通过激光器100X生成调制后光信号,生成的具体过程请详见上述方法实施例所示,不做赘述。该激光器100X将该调制后光信号发送至光耦合器101X,光耦合器101X用于将该调制后光信号发送至输出光接口21X,由该输出光接口21X将该调制后光信号向第二网络设备发送。
图10所示的第一网络设备相对于图8所示的区别还在于,由解复用器805接收业务光信号,并由该解复用器根据该业务光信号的波长,将该业务光信号转发至对应的光耦合器。例如,若解复用器805确定已接收到的业务光信号的波长位于输出光接口210对应的波长范围内,则解复用器805将该业务光信号发送至与输出光接口210耦接的光耦合器1010。光耦合器1010将已接收到的业务光信号发送至输出光接口210。并由该输出光接口210将业务光信号发送至第二网络设备。
以下结合图11所示对本申请所提供的第二网络设备的具体结构进行示例性说明:
如图11所示,该第二网络设备包括控制与通信接口1101、标签接收器1130、转换器1103、多个输入光接口以及多个分光器。
其中,多个输入光接口,即输入光接口220、输入光接口221以及输入光接口22Y的具体说明,请详见图2所示,不做赘述。多个分光器分别与多个输入光接口耦接,即输入光接口220与分光器1101耦接,输入光接口221与分光器1102耦接,输入光接口22Y与分光器110Y耦接。本实施例以多个输入光接口与多个分光器分别耦接为例进行示例性说明,在其他示例中,也可多个输入光接口耦接一个分光器。多个分光器与标签接收器1130耦接。标签接收器1130分别与转换器1103以及控制与通信接口1101耦接。
对该控制与通信接口1101的说明请详见图8所示对控制与通信接口801的说明,对标签接收器1130的具体器件形态的说明,请详见图8所示对标签加载器802的器件形态的说明,不做赘述。
例如,结合图3A所示,该目标输入光接口用于执行步骤305。该分光器用于对已接收 的光信号进行分光以形成检测光信号和待转换光信号。该分光器用于将该检测光信号发送至标签接收器1130,并用于将待转换光信号发送至转换器1103。该转换器1103用于将待转换光信号转换成业务光信号。具体例如,若输入光接口22Y接收到光信号,该分光器110Y用于对该光信号进行分光以形成检测光信号和待转换光信号。对分光的具体说明,可参见步骤306所示,不做赘述。
该标签接收器1130用于执行步骤306至步骤307。该标签接收器1130将第一标签信息和第二标签信息发送给控制与通信接口1101。该控制与通信接口1101用于执行步骤308。
本实施例所示的第二网络设备也可用于图4或图7所示的方法实施例中,具体说明请参见上述用于图3A所示的说明,不做赘述。
以下结合图12所示对本申请所提供的网管设备的具体结构进行说明:
如图12所示,该网管设备包括依次通过总线连接的网络接口1202、处理器1201以及存储器1203。其中,该网络设备1201用于与第一网络设备和第二网络设备之间进行信息交互。
该处理器1201可以包括一个或一个以上中央处理器(central processing units,CPU)。该存储器1203用于存储程序,该程序可以包括一个或一个以上模块(图示没标出),每个模块可以包括对网管设备中的一系列指令操作。更进一步地,处理器1201执行该存储器1203中的一系列指令操作。
结合图3A所示的实施例,该网络接口1202用于执行步骤309,该网络接口1202将已接收的第一标签信息和第二标签信息发送给处理器1201。该处理器1201用于执行步骤310。
结合图4所示的实施例,处理器1201用于执行步骤401,并将已生成的第一标签信息发送给网络接口1202,该网络接口1202用于执行步骤402。该网络接口1202用于执行步骤410,该网络接口1202将已接收的第一标签信息和第二标签信息发送给处理器1201。该处理器1201用于执行步骤411。
结合图7所示的实施例,处理器1201用于执行步骤701,并将已生成的指示信息发送给网络接口1202,该网络接口1202用于执行步骤702。该网络接口1202用于执行步骤711,该网络接口1202将已接收的第一标签信息和第二标签信息发送给处理器1201。该处理器1201用于执行步骤712。
本申请中出现的术语“和/或”,可以是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或模块的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或模块,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或模块。
以上所述,以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (24)

  1. 一种光纤连接的检测方法,其特征在于,所述方法包括:
    第一网络设备获取第一标签信息,所述第一标签信息用于指示目标输出光接口,所述第一网络设备具有至少一个输出光接口,所述目标输出光接口为所述至少一个输出光接口中的一个;
    所述第一网络设备生成光信号,所述光信号的波长位于所述目标输出光接口对应的波长范围内;
    所述第一网络设备将所述第一标签信息调制到所述光信号上,以生成调制后光信号;
    所述第一网络设备将所述调制后光信号从所述目标输出光接口发送到第二网络设备的目标输入光接口,以便于检测所述目标输出光接口和所述目标输入光接口之间存在的光纤连接关系。
  2. 根据权利要求1所述的方法,其特征在于,所述第一网络设备生成光信号包括:
    所述第一网络设备获取波长指示信息,所述波长指示信息用于指示所述目标输出光接口的波长范围;
    所述第一网络设备根据所述波长指示信息生成所述光信号。
  3. 根据权利要求2所述的方法,其特征在于,所述第一标签信息至少包括所述波长指示信息。
  4. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一网络设备与网管设备连接,所述第一网络设备获取第一标签信息包括:
    所述第一网络设备接收来自所述网管设备的所述第一标签信息。
  5. 根据权利要求1至3任一项所述的方法,其特征在于,所述第一网络设备与网管设备连接,所述第一网络设备获取第一标签信息之前,所述方法还包括:
    所述第一网络设备接收来自所述网管设备的指示信息,所述指示信息用于触发对所述第一网络设备的光纤连接的检测;
    所述第一网络设备获取第一标签信息包括:
    所述第一网络设备根据所述指示信息生成所述第一标签信息。
  6. 根据权利要求5所述的方法,其特征在于,所述第一网络设备根据所述指示信息生成所述第一标签信息包括:
    所述第一网络设备检测所述目标输出光接口是否已被业务光信号占用;
    若所述目标输出光接口未被业务光信号占用,所述第一网络设备根据所述指示信息生成所述第一标签信息。
  7. 根据权利要求1至6任一项所述的方法,其特征在于,所述第一网络设备将所述第一标签信息调制到所述光信号上,以生成调制后光信号包括:
    所述第一网络设备根据第一标签信息改变所述光信号的功率强度,以生成所述调制后光信号。
  8. 根据权利要求1至7任一项所述的方法,其特征在于,所述第一网络设备包括多个输出光接口,且不同的所述输出光接口耦接不同的激光器,所述第一网络设备生成光信号 包括:
    所述第一网络设备确定与所述目标输出光接口耦接的目标激光器;
    所述第一网络设备通过所述目标激光器生成所述光信号。
  9. 根据权利要求1至8任一项所述的方法,其特征在于,所述第一网络设备将所述调制后光信号从所述目标输出光接口发送到目标输入光接口之后,所述方法还包括:
    所述第一网络设备接收连纤指示信息,所述连纤指示信息用于指示所述目标输出光接口和第二网络设备的目标输入光接口之间存在的光纤连接关系。
  10. 根据权利要求1至9任一项所述的方法,其特征在于,所述第一标签信息包括第一字段和第二字段,所述第一字段包括所述目标输出光接口的标识,所述第二字段包括所述第一网络设备的标识。
  11. 一种光纤连接的检测方法,其特征在于,所述方法包括:
    第二网络设备从目标输入光接口接收来自第一网络设备的目标输出光接口的调制后光信号,所述目标输入光接口为所述第二网络设备具有的至少一个输入光接口中的一个;
    所述第二网络设备从所述调制后光信号中获取第一标签信息,所述第一标签信息用于指示所述目标输出光接口;
    所述第二网络设备获取第二标签信息,所述第二标签信息用于指示所述目标输入光接口,所述第一标签信息和所述第二标签信息用于检测所述目标输入光接口和所述目标输出光接口之间存在的光纤连接关系。
  12. 根据权利要求11所述的方法,其特征在于,所述第二网络设备与网管设备连接,所述方法还包括:
    所述第二网络设备将所述第一标签信息和所述第二标签信息发送给所述网管设备。
  13. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备根据所述第一标签信息和所述第二标签信息,检测所述目标输入光接口和所述目标输出光接口之间存在的光纤连接关系。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    所述第二网络设备向所述第一网络设备发送连纤指示信息,所述连纤指示信息用于指示所述目标输入光接口和所述目标输出光接口之间存在的光纤连接关系。
  15. 根据权利要求13所述的方法,其特征在于,所述第二网络设备与网管设备连接,所述方法还包括:
    所述第二网络设备向所述网管设备发送连纤指示信息,所述连纤指示信息用于指示所述目标输入光接口和所述目标输出光接口之间存在的光纤连接关系。
  16. 根据权利要求11至15任一项所述的方法,其特征在于,所述第二网络设备从所述调制后光信号中获取第一标签信息包括:
    所述第二网络设备根据所述调制后光信号的功率强度的变化,以获取所述第一标签信息。
  17. 一种光纤连接的检测方法,其特征在于,所述方法包括:
    网管设备接收来自第二网络设备的第一标签信息和第二标签信息,其中,所述第一标 签信息用于指示第一网络设备的目标输出光接口,所述第二标签信息用于指示所述第二网络设备的目标输入光接口;
    所述网管设备根据所述第一标签信息和所述第二标签信息,检测所述目标输入光接口和所述目标输出光接口之间存在的光纤连接关系。
  18. 根据权利要求17所述的方法,其特征在于,所述网管设备接收来自第二网络设备的第一标签信息和第二标签信息之前,所述方法还包括:
    所述网管设备向所述第一网络设备发送所述第一标签信息。
  19. 根据权利要求18所述的方法,其特征在于,所述第一标签信息包括波长指示信息,所述波长指示信息用于指示所述目标输出光接口的波长范围。
  20. 根据权利要求17所述的方法,其特征在于,所述网管设备接收来自第二网络设备的第一标签信息和第二标签信息之前,所述方法还包括:
    所述网管设备向所述第一网络设备发送指示信息,所述指示信息用于触发对所述第一网络设备的光纤连接的检测。
  21. 根据权利要求18所述的方法,其特征在于,所述网管设备向所述第一网络设备发送指示信息之前,所述方法还包括:
    所述网管设备确定所述目标输出光接口未被业务光信号占用。
  22. 一种第一网络设备,其特征在于,包括依次耦接的标签加载器、激光器、解复用器以及至少一个输出光接口;
    所述标签加载器用于获取第一标签信息,所述第一标签信息用于指示目标输出光接口,所述目标输出光接口为所述至少一个输出光接口中的一个;
    所述激光器用于生成光信号,所述光信号的波长位于所述目标输出光接口对应的波长范围内,所述激光器还用于将所述第一标签信息调制到所述光信号上,以生成调制后光信号;
    所述解复用器用于将所述调制后光信号从所述目标输出光接口发送到第二网络设备的目标输入光接口,以便于检测所述目标输出光接口和所述目标输入光接口之间存在的光纤连接关系。
  23. 一种第二网络设备,其特征在于,包括依次耦接的多个输入光接口以及标签接收器,所述标签接收器用于:
    从目标输入光接口接收来自第一网络设备的目标输出光接口的调制后光信号,所述目标输入光接口为所述第二网络设备具有的至少一个输入光接口中的一个;
    从所述调制后光信号中获取第一标签信息,所述第一标签信息用于指示所述目标输出光接口;
    获取第二标签信息,所述第二标签信息用于指示所述目标输入光接口,所述第一标签信息和所述第二标签信息用于检测所述目标输入光接口和所述目标输出光接口之间存在的光纤连接关系。
  24. 一种网管设备,其特征在于,包括通过总线依次连接网络接口、处理器以及存储器;
    所述网络接口用于接收来自第二网络设备的第一标签信息和第二标签信息,其中,所述第一标签信息用于指示第一网络设备的目标输出光接口,所述第二标签信息用于指示所述第二网络设备的目标输入光接口;
    所述处理器用于根据所述第一标签信息和所述第二标签信息,检测所述目标输入光接口和所述目标输出光接口之间存在的光纤连接关系。
PCT/CN2020/116726 2020-01-08 2020-09-22 一种光纤连接的检测方法以及相关设备 WO2021139210A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20912798.4A EP4068653A4 (en) 2020-01-08 2020-09-22 OPTICAL FIBER CONNECTION TEST METHOD AND RELATED APPARATUS
US17/859,789 US20220345800A1 (en) 2020-01-08 2022-07-07 Optical Fiber Connection Detection Method and Related Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010018687.7A CN113099322B (zh) 2020-01-08 2020-01-08 一种光纤连接的检测方法以及相关设备
CN202010018687.7 2020-01-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/859,789 Continuation US20220345800A1 (en) 2020-01-08 2022-07-07 Optical Fiber Connection Detection Method and Related Device

Publications (1)

Publication Number Publication Date
WO2021139210A1 true WO2021139210A1 (zh) 2021-07-15

Family

ID=76663310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/116726 WO2021139210A1 (zh) 2020-01-08 2020-09-22 一种光纤连接的检测方法以及相关设备

Country Status (4)

Country Link
US (1) US20220345800A1 (zh)
EP (1) EP4068653A4 (zh)
CN (1) CN113099322B (zh)
WO (1) WO2021139210A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115967445B (zh) * 2022-06-29 2024-03-19 中兴通讯股份有限公司 光网络拓扑的生成方法、设备和系统

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030058790A1 (en) * 2001-09-21 2003-03-27 Kazuaki Nagamine Ring switching method and node apparatus using the same
CN1507765A (zh) * 2001-03-06 2004-06-23 �����Ӣ��֪ʶ��Ȩ���޹�˾ 通信网络
US20050286893A1 (en) * 2004-06-29 2005-12-29 Yukio Horiuchi Method to provide caller's location in IP phone system, optical transmission system, optical connector, and optical network unit
CN101192968A (zh) * 2006-11-22 2008-06-04 中兴通讯股份有限公司 一种光网络连接关系自动获取的方法
CN101345584A (zh) * 2008-08-22 2009-01-14 中兴通讯股份有限公司 一种光纤通信设备间光纤连接状况的自动检测方法
CN102396172A (zh) * 2011-08-23 2012-03-28 华为技术有限公司 获取光纤连接关系的方法、节点设备及光网络系统
CN103248420A (zh) * 2012-02-14 2013-08-14 华为技术有限公司 检测光纤连接的方法、标识光纤连接的方法及系统和装置
CN103368643A (zh) * 2012-04-01 2013-10-23 华为技术有限公司 光纤链路检测方法、系统和装置
CN104348644A (zh) * 2013-07-31 2015-02-11 中兴通讯股份有限公司 一种线路与设备的管理方法、装置及系统
CN107846298A (zh) * 2016-09-21 2018-03-27 中国电信股份有限公司 网络连接自动发现方法和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7031606B2 (en) * 2001-11-23 2006-04-18 Tropic Networks Inc. Method and system for monitoring performance of optical network
US8655172B2 (en) * 2006-10-05 2014-02-18 Verizon Patent And Licensing Inc. System and method for obtaining optical signal information
CN101459487A (zh) * 2007-06-20 2009-06-17 华为技术有限公司 一种光标识及调制、解调方法及装置
CN101834663B (zh) * 2010-04-08 2015-05-20 中兴通讯股份有限公司 光纤连接的检测方法和系统
WO2014022972A1 (zh) * 2012-08-07 2014-02-13 华为技术有限公司 获取可重构光分插复用设备内部连纤关系的方法及装置
CN104579459B (zh) * 2013-10-25 2018-03-16 华为技术有限公司 一种光纤链路识别的方法、设备和系统
KR102045866B1 (ko) * 2015-01-30 2019-11-18 한국전자통신연구원 광 전달 망의 관리 방법 및 이를 수행하는 네트워크 장비
CN109698758B (zh) * 2017-10-20 2022-03-29 中国移动通信集团广东有限公司 一种网络资源信息核查方法及系统
US11349571B2 (en) * 2018-03-30 2022-05-31 Nec Corporation Optical transponder
CN115462012A (zh) * 2020-05-06 2022-12-09 阿里巴巴集团控股有限公司 用于自动检测光纤连接性的系统和方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507765A (zh) * 2001-03-06 2004-06-23 �����Ӣ��֪ʶ��Ȩ���޹�˾ 通信网络
US20030058790A1 (en) * 2001-09-21 2003-03-27 Kazuaki Nagamine Ring switching method and node apparatus using the same
US20050286893A1 (en) * 2004-06-29 2005-12-29 Yukio Horiuchi Method to provide caller's location in IP phone system, optical transmission system, optical connector, and optical network unit
CN101192968A (zh) * 2006-11-22 2008-06-04 中兴通讯股份有限公司 一种光网络连接关系自动获取的方法
CN101345584A (zh) * 2008-08-22 2009-01-14 中兴通讯股份有限公司 一种光纤通信设备间光纤连接状况的自动检测方法
CN102396172A (zh) * 2011-08-23 2012-03-28 华为技术有限公司 获取光纤连接关系的方法、节点设备及光网络系统
CN103248420A (zh) * 2012-02-14 2013-08-14 华为技术有限公司 检测光纤连接的方法、标识光纤连接的方法及系统和装置
CN103368643A (zh) * 2012-04-01 2013-10-23 华为技术有限公司 光纤链路检测方法、系统和装置
CN104348644A (zh) * 2013-07-31 2015-02-11 中兴通讯股份有限公司 一种线路与设备的管理方法、装置及系统
CN107846298A (zh) * 2016-09-21 2018-03-27 中国电信股份有限公司 网络连接自动发现方法和系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4068653A4

Also Published As

Publication number Publication date
CN113099322B (zh) 2022-07-29
EP4068653A1 (en) 2022-10-05
US20220345800A1 (en) 2022-10-27
CN113099322A (zh) 2021-07-09
EP4068653A4 (en) 2023-05-10

Similar Documents

Publication Publication Date Title
US9203512B2 (en) Distinguishing light in single fiber transceivers
US20120328239A1 (en) Method for automatic configuration of an optical network element
US10715410B2 (en) Connectivity verification testing and topology discovery
US20160315701A1 (en) Optical transmission device, method for verifying connection, and wavelength selective switch card
US10405361B2 (en) Switching-on method, base station, base station controller, switching-on system and storage medium
EP4214860B1 (en) Reducing connection validation (cv) time in an optical node
CN105812051A (zh) Roadm内部连接光纤的检测方法、系统及roadm
WO2021139210A1 (zh) 一种光纤连接的检测方法以及相关设备
CN103759760B (zh) 测试的方法与装置
CN103840879B (zh) 一种光纤局向识别方法、装置和系统
CN103997371B (zh) 光信号的检测方法、装置和系统
CN110224781A (zh) 一种端口匹配方法及装置
KR20230029894A (ko) 구성 방법, 바인딩 방법, 장치, 설비, 송신 노드, 수신 노드 및 매체
RU2815416C1 (ru) Способ обнаружения оптоволоконного соединения и соответствующее устройство
CN105049239B (zh) 接口连接关系的识别方法和系统
US11784742B2 (en) Optical module, management and control information processing method, and communication system
JP7180298B2 (ja) 光伝送システム及び非使用経路確認方法
CN113630181A (zh) 跨网络数据传输方法、装置、系统、电子设备及介质
Jin et al. Industrial PON application innovation pilot based on 50G-PON and XG-PON hybrid architecture
CN114598945A (zh) 波分复用应用中的保护倒换方法、装置、系统和电子设备
CN106817162B (zh) 一种信号处理方法及源端设备
US20230412298A1 (en) Wavelength configuration apparatus and system, and wavelength configuration method
CN203883841U (zh) 双波长同步测试的插损回损测试仪
CN115333984B (zh) 一种安全协议通信性能测试系统及方法
WO2024021917A1 (zh) 一种信号传输方法、相关模块、设备和网络

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912798

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020912798

Country of ref document: EP

Effective date: 20220701

NENP Non-entry into the national phase

Ref country code: DE