Nothing Special   »   [go: up one dir, main page]

WO2021138907A1 - Method and apparatus for geo-based sidelink communication - Google Patents

Method and apparatus for geo-based sidelink communication Download PDF

Info

Publication number
WO2021138907A1
WO2021138907A1 PCT/CN2020/071477 CN2020071477W WO2021138907A1 WO 2021138907 A1 WO2021138907 A1 WO 2021138907A1 CN 2020071477 W CN2020071477 W CN 2020071477W WO 2021138907 A1 WO2021138907 A1 WO 2021138907A1
Authority
WO
WIPO (PCT)
Prior art keywords
reception
sidelink
geographical
zone
user equipment
Prior art date
Application number
PCT/CN2020/071477
Other languages
French (fr)
Inventor
Xiaodong Yu
Zhennian SUN
Haipeng Lei
Xin Guo
Haiming Wang
Original Assignee
Lenovo (Beijing) Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lenovo (Beijing) Limited filed Critical Lenovo (Beijing) Limited
Priority to PCT/CN2020/071477 priority Critical patent/WO2021138907A1/en
Publication of WO2021138907A1 publication Critical patent/WO2021138907A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/02Services making use of location information
    • H04W4/021Services related to particular areas, e.g. point of interest [POI] services, venue services or geofences

Definitions

  • V2X communication includes communication between a vehicle and all objects such as Vehicle-to-Network (V2N) communication, Vehicle-to-Vehicle (V2V) communication, Vehicle-to-Infrastructure (V2I) communication, and Vehicle-to-Pedestrian (V2P) communication.
  • V2N Vehicle-to-Network
  • V2V Vehicle-to-Vehicle
  • V2I Vehicle-to-Infrastructure
  • V2P Vehicle-to-Pedestrian
  • FIG. 5 illustrates an exemplary zone configuration according to an embodiment of the present disclosure
  • FIG. 7 illustrates an exemplary block diagram of an apparatus according to another embodiment of the present disclosure.
  • the UE 104 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network
  • the UE 104 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like.
  • the UE 104 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
  • the UE 104 may access the BS 102 to receive data packets from the BS 102 via a downlink channel and/or transmit data packets to the BS 102 via an uplink channel.
  • the UE 104 since the UE 104 does not know when the BS 102 will transmit data packets to it, the UE 104 has to be awake all the time to monitor the downlink channel (e.g., a Physical Downlink Control Channel (PDCCH) ) to get ready for receiving data packets from the BS 102.
  • the UE 104 keeps monitoring the downlink channel all the time even when there is no traffic between the BS 102 and the UE 104, it would result in significant power waste, which is problematic to a power limited or power sensitive UE.
  • PDCCH Physical Downlink Control Channel
  • DRX parameters may indicate to the UE when and how long it should be awake to monitor the downlink channel.
  • Table 1 shows some exemplary DRX parameters and their respective meanings.
  • FIG. 2A illustrates a scenario where only long DRX cycle type is configured for a UE (two exemplary long DRX cycles are shown) , and no PDCCH is received during the shown DRX cycles.
  • a first DRX cycle is from t1 to t3, and a second DRX cycle is from t3 to t5.
  • the ON duration is from t1 to t2, in which the UE remains in the ON state to monitor and receive PDCCH if any; and the OFF duration is from t2 to t3, in which the UE remains in the OFF state to save power.
  • the ON duration is from t3 to t4, and the OFF duration is from t4 to t5.
  • a DRX Inactivity Timer is initiated.
  • the configured period of the DRX Inactivity Timer i.e., DRX Inactivity Time
  • DRX Inactivity Time is from t6 to t7. That is, the UE will remain in the ON state until the DRX Inactivity Timer expires at t7.
  • the real "ON time” may be extended into the period which would be the "OFF period” if no PDCCH were not received, i.e., the period from t4 to t5.
  • FIG. 2C illustrates a scenario where only long DRX cycle type is configured for a UE (two exemplary long DRX cycles are shown) , and a PDCCH and a DRX command medium access control (MAC) control element (CE) are received during one DRX cycle.
  • a first DRX cycle is from t1 to t3
  • a second DRX cycle is from t3 to t5.
  • the ON duration is from t1 to t2, in which the UE remains in the ON state to monitor and receive PDCCH if any
  • the OFF duration is from t2 to t3, in which the UE remains in the OFF state to save power.
  • the ON duration is from t3 to t4.
  • a DRX Inactivity Timer with a configured period, i.e. DRX Inactivity Time, is initiated.
  • the DRX Inactivity Timer would expire at t7 according to the configured DRX Inactivity Time.
  • the UE receives a DRX command MAC CE at t8, which indicates both the DRX Inactivity Timer and the ON Duration Timer to stop, thereby causing the UE to get into the OFF state.
  • the real "ON time” may be shortened depending on when the DRX command MAC CE is received.
  • FIG. 2D illustrates a scenario where both long DRC cycle type (e.g., 10 subframes) and short DRX cycle type (e.g., 5 subframes) are configured for a UE.
  • long DRC cycle type e.g., 10 subframes
  • short DRX cycle type e.g., 5 subframes
  • FIG. 2D upon receiving a PDCCH in subframe 0 of System Frame Number (SFN) 0, a DRX Inactivity Timer starts and the UE remains in the ON state until the DRX Inactivity Timer expires (e.g., 3 subframes) . After the DRX Inactivity Timer expires and the short DRX cycle condition meets, the short DRX cycle starts and a DRX Short Cycle Timer starts from subframe 5 of SFN 0.
  • SFN System Frame Number
  • the DRX parameters are configured by the BS for the UE. Accordingly, the BS well knows the reception state of the UE and can transmit data to the UE via a downlink channel during the ON duration of the UE.
  • the BS may configure DRX parameters for each UE, but there is no mechanism to ensure that the Tx UE performs sidelink transmission during the ON duration of the Rx UE. In other words, a mechanism is needed so that the Tx UE can know when the Rx UE can perform sidelink reception.
  • a BS may configure a geographical area to be a plurality of geographical zones, and each geographical zone has an associated zone identifier (ID) , which can be calculated based on the zone configuration and a corresponding calculation method.
  • the BS may configure a transmitting resource pool (Tx resource pool) and/or a receiving resource pool (Rx resource pool) associated with each geographical zone.
  • Tx resource pool transmitting resource pool
  • Rx resource pool receiving resource pool
  • Each resource pool may include resources in time domain, frequency domain, etc.
  • the V-UE When the V-UE is in a configured geographical zone, it may perform sidelink transmission on a transmitting resource selected from the Tx resource pool associated with the configured geographical zone and/or perform sidelink reception on a receiving resource selected from the Rx resource pool associated with the configured geographical zone.
  • a BS may transmit information indicating the geo-based resource configuration to a V-UE in a radio resource control (RRC) signalling.
  • RRC radio resource control
  • the geo-based resource configuration may be contained in a system information block (SIB) transmitted in a Physical Downlink Shared Channel (PDSCH) .
  • SIB system information block
  • PDSCH Physical Downlink Shared Channel
  • Embodiments of methods for configuring and performing geo-based sidelink communication will be specifically described below.
  • FIG. 3 illustrates a flow chart of a method 300 for geo-based sidelink communication according to an embodiment of the present disclosure. Although described with respect to a BS, it should be understood that other devices with similar function may be configured to perform a method similar to that of FIG. 3.
  • the BS may, in step 304, configure at least one of the plurality of geographical zones to be a set of reception zones for a UE in sidelink, in which the UE can perform sidelink reception in a reception state.
  • the reception state is an always-reception state that sidelink reception can be performed in each configured time period, e.g., the time period in the Rx resource pool configured by the BS for the UE.
  • the BS may configure for the UE a list of zone IDs corresponding to the set of reception zones.
  • the UE When the UE moves into a geographical zone corresponding to a zone ID contained in the list of zone IDs configured for the UE, the UE will perform sidelink reception on the Rx resource pool.
  • the UE moves into a geographical zone corresponding to a zone ID that is not contained in the list of zone IDs configured for the UE, the UE will not perform sidelink reception.
  • the reception state is a DRX ON duration reception state that sidelink reception can be performed in a time period which is an ON duration of DRX.
  • the time period is in the Rx resource pool configured by the BS for the UE.
  • the BS may configure geo-based DRX parameters for the UE. That is, for each reception zone of the UE, the BS may configure a set of associated DRX parameters, which includes the DRX parameters listed in Table 1 and further includes zone information or a zone ID corresponding to the reception zone.
  • the UE may be configured with a plurality of Rx resource pools, and the reception state of the UE in each geographical zone may be configured per resource pool for sidelink communication.
  • the UE is configured with Rx resource pools 1 and 2.
  • the BS may configure the zone ID corresponding to the geographical zone to be included in the list of zone IDs for Rx resource pool 1 and not to be included in the list of zone IDs for Rx resource pool 2. In this way, when the UE moves into the particular geographical zone, it will perform sidelink reception on Rx resource pool 1, and will not perform sidelink reception on Rx resource pool 2.
  • the geo-based DRX parameters may be configured per resource pool.
  • the reception state or the geo-based DRX parameters may be configured per moving direction of the UE, moving speed of the UE, or altitude of the UE.
  • the BS may further configure a time threshold or a distance threshold for the reception state.
  • the UE When the UE moves out of a reception zone, the UE will not turn to a reception off state in sidelink until the time threshold or the distance threshold is reached.
  • the BS may transmit configuration information indicating the plurality of geographical zones and the set of reception zones configured in steps 302 and 304, respectively.
  • the configuration information may include any additional configuration as described above.
  • the configuration information may be transmitted via higher layer signaling.
  • the configuration information may be transmitted in a common RRC signaling.
  • the configuration information may be transmitted in a dedicated RRC signaling.
  • the configuration information may include any additional configuration as described above.
  • FIG. 4 illustrates a flow chart of a method 400 for geo-based sidelink communication according to an embodiment of the present disclosure. Although described with respect to a UE, it should be understood that other devices may be configured to perform a method similar to that of FIG. 4.
  • the geographical area is configured to be the plurality of geographical zones based on at least one off length of a geographical zone; width of the geographical zone; a total number of geographical zones based on longitude; and a total number of geographical zones based on latitude.
  • the plurality of geographical zones have respective zone IDs, which can be calculated based on the zone configuration.
  • the set of reception zones corresponds to at least one of the plurality of geographical zones.
  • the reception state is an always-reception state that sidelink reception can be performed in each configured time period, e.g., the time period in the Rx resource pool configured by a BS for the UE.
  • the configuration information may include a list of zone IDs corresponding to the set of reception zones. When the UE moves into a geographical zone corresponding to a zone ID contained in the list of zone IDs configured for the UE, the UE will determine to perform sidelink reception on the Rx resource pool. When the UE moves into a geographical zone corresponding to a zone ID that is not contained in the list of zone IDs configured for the UE, the UE will determine not to perform sidelink reception.
  • the reception state is a DRX ON duration reception state that sidelink reception can be performed in a time period which is an ON duration of DRX.
  • the time period is in the Rx resource pool configured by the BS for the UE.
  • the configuration information may include geo-based DRX parameters for the UE. That is, for each reception zone of the UE, the configuration information may include a set of associated DRX parameters, which includes the DRX parameters listed in Table 1 and further includes zone information or a zone ID corresponding to the reception zone.
  • the UE may be configured with a plurality of Rx resource pools, and the reception state of the UE in each geographical zone may be configured per resource pool for sidelink communication.
  • the UE is configured with Rx resource pools 1 and 2.
  • the zone ID corresponding to the geographical zone may be included in the list of zone IDs configured for Rx resource pool 1 but not included in the list of zone IDs configured for Rx resource pool 2. In this way, when the UE moves into the particular geographical zone, it will decide to perform sidelink reception on Rx resource pool 1, and will decide to not perform sidelink reception on Rx resource pool 2.
  • the geo-based DRX parameters may be configured per resource pool.
  • the reception state or the geo-based DRX parameters may be configured per moving direction of the UE, moving speed of the UE, or altitude of the UE.
  • the configuration information may further include a time threshold or a distance threshold for the reception state.
  • the UE moves out of a reception zone, the UE will not turn to a reception off state in sidelink until the time threshold or the distance threshold is reached.
  • FIG. 5 illustrates an exemplary zone configuration according to an embodiment of the present disclosure.
  • a geographical area is configured to be thirty-six (36) geographical zones, i.e., zone 1 ⁇ zone 36, according to the methods described with respect to FIGS. 3 and 4.
  • Road 502 intersects with road 506 in zone 21, and road 504 intersects with road 506 in zone 24.
  • a P-UE only needs to perform sidelink reception at the cross of roads.
  • zone 21 and zone 24 are configured to be reception zones for the P-UE in sidelink according to the methods described with respect to FIGS. 3 and 4.
  • the P-UE When the P-UE moves into zone 21 or zone 24, the P-UE performs sidelink reception, i.e., monitoring sidelink control information on physical sidelink control channel (PSCCH) and/or physical sidelink shared channel (PSSCH) , and decoding associated data transmission on PSSCH.
  • sidelink reception i.e., monitoring sidelink control information on physical sidelink control channel (PSCCH) and/or physical sidelink shared channel (PSSCH)
  • PSSCH physical sidelink shared channel
  • FIG. 6 illustrates an exemplary block diagram of an apparatus 600 according to an embodiment of the present disclosure.
  • the apparatus 600 may be a base station (e.g., gNB) , which can at least perform the method illustrated in FIG. 3.
  • gNB base station
  • the apparatus 600 may include at least one receiver 602, at least one transmitter 604, at least one non-transitory computer-readable medium 606, and at least one processor 608 coupled to the at least one receiver 602, the at least one transmitter 604, and the at least one non-transitory computer-readable medium 606.
  • the at least one receiver 602 and the at least one transmitter 604 are combined into a single device, such as a transceiver.
  • the apparatus 600 may further include an input device, a memory, and/or other components.
  • the at least one non-transitory computer-readable medium 606 may have stored thereon computer-executable instructions which are programmed to implement the steps of the methods, for example as described in view of FIG. 3, with the at least one receiver 602, the at least one transmitter 604, and the at least one processor 608.
  • the apparatus 700 may include at least one receiver 702, at least one transmitter 704, at least one non-transitory computer-readable medium 706, and at least one processor 708 coupled to the at least one receiver 702, the at least one transmitter 704, and the at least one non-transitory computer-readable medium 706.
  • the at least one receiver 702 and the at least one transmitter 704 are combined into a single device, such as a transceiver.
  • the apparatus 700 may further include an input device, a memory, and/or other components.
  • the at least one non-transitory computer-readable medium 706 may have stored thereon computer-executable instructions which are programmed to implement the steps of the methods, for example as described in view of FIG. 4, with the at least one receiver 702, the at least one transmitter 704, and the at least one processor 708.
  • a software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • the steps of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
  • the terms “includes, “ “including, “ or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
  • An element proceeded by “a, “ “an, “ or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element.
  • the term “another” is defined as at least a second or more.
  • the term “having” and the like, as used herein, are defined as “including. "

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods and apparatuses for methods and apparatuses for geo-based sidelink communication. According to an embodiment of the present disclosure, a method includes: configuring a geographical area to be a plurality of geographical zones; configuring at least one of the plurality of geographical zones to be a set of reception zones for a user equipment in sidelink, in which the user equipment can perform sidelink reception in a reception state; and transmitting configuration information indicating the plurality of geographical zones and the set of reception zones.

Description

METHOD AND APPARATUS FOR GEO-BASED SIDELINK COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure are related to wireless communication technology, and more particularly, related to methods and apparatuses for geo-based sidelink communication.
BACKGROUND
In a wireless communication system, a user equipment (UE) , e.g. mobile device, may communicate with another UE via a data path supported by an operator′snetwork, e.g. a cellular or a Wi-Fi network infrastructure. The data path supported by the operator′snetwork may include a base station (BS) and multiple gateways.
In the case that both UEs are relatively close to each other, a radio link or a sidelink can be established between both UEs to provide Device-to-Device (D2D) communication and without going through a direct link to the BS. The term "sidelink" may refer to a direct radio link established for communicating among devices, e.g. UEs, as opposed to communicating via the cellular infrastructure (uplink and downlink) as discussed above. In this case, the "sidelink" is also referred to as a D2D communication link. The D2D communication link may be used in any suitable telecommunication network in accordance with various standards, where the telecommunication network may configure a resource pool to be used by UEs during such D2D communication.
D2D communication may provide various advantages, for example, a relatively high transfer rate, a relatively low delay, etc. Moreover, during the D2D communication, traffic concentrated at a base station can be distributed.  Furthermore, a UE supporting D2D communication, e.g. D2D UE, may function as a relay node to extend coverage of a base station that the UE is in communication with.
D2D communication has evolved into a vehicle-to-everything (V2X) communication in the Long Term Evolution (LTE) sidelink standard. The V2X communication technology encompasses communication involving vehicles as message sources or destinations. In a new radio (NR) communication system, both a unicast and a groupcast communication have been introduced as part of the V2X communication standard, so as to further improve the transmission efficiency on the sidelink between, for example, UEs. During the unicast communication, data on the sidelink is only sent to a specific V2X UE and cannot be decoded by other UEs. In the groupcast communication, data on the sidelink is sent to a group ofV2X UEs and can be decoded by each receiving UE within the group.
V2X communication includes communication between a vehicle and all objects such as Vehicle-to-Network (V2N) communication, Vehicle-to-Vehicle (V2V) communication, Vehicle-to-Infrastructure (V2I) communication, and Vehicle-to-Pedestrian (V2P) communication.
Among the objects involved in V2X communications, a pedestrian UE (P-UE) , e.g., a mobile phone, is more power limited or power sensitive than a vehicle UE (V-UE) , e.g., a car. Accordingly, how to save power for a P-UE in sidelink communication is an importance issue to be considered in V2P communication.
SUMMARY OF THE DISCLOSURE
One object of embodiments of the present disclosure is to provide a novel power saving mechanism in sidelink communication.
According to an embodiment of the present disclosure, a method may include: configuring a geographical area to be a plurality of geographical zones; configuring at  least one of the plurality of geographical zones to be a set of reception zones for a user equipment in sidelink, in which the user equipment can perform sidelink reception in a reception state; and transmitting configuration information indicating the plurality of geographical zones and the set of reception zones.
According to another embodiment of the present disclosure, a method may include: receiving configuration information, wherein the configuration information indicates: a plurality of geographical zones corresponding to a geographical area; and a set of reception zones for a user equipment in sidelink, in which the user equipment can perform sidelink reception in a reception state; and determining whether to perform sidelink reception based on the configuration information.
According to yet another embodiment of the present disclosure, an apparatus includes: at least one non-transitory computer-readable medium having computer executable instructions stored therein; at least one receiver; at least one transmitter; and at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiver and the at least one transmitter. The computer executable instructions are programmed to implement a method according to an embodiment of the present disclosure with the at least one receiver, the at least one transmitter and the at least one processor.
The details of one or more examples are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
In order to describe the manner in which advantages and features of the present disclosure can be obtained, a description of the present disclosure is rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. These drawings depict only exemplary embodiments of the present  disclosure and are not therefore intended to limit the scope of the present disclosure.
FIG. 1 illustrates an architectural diagram of a communication system;
FIGS. 2A-2D illustrate respectively example timing diagrams of different types of DRX cycles;
FIG. 3 illustrates a flow chart of a method for geo-based sidelink communication according to an embodiment of the present disclosure;
FIG. 4 illustrates a flow chart of a method for geo-based sidelink communication according to another embodiment of the present disclosure;
FIG. 5 illustrates an exemplary zone configuration according to an embodiment of the present disclosure;
FIG. 6 illustrates an exemplary block diagram of an apparatus according to an embodiment of the present disclosure; and
FIG. 7 illustrates an exemplary block diagram of an apparatus according to another embodiment of the present disclosure.
DETAILED DESCRIPTION
The detailed description of the appended drawings is intended as a description of the currently preferred embodiments of the present disclosure and is not intended to represent the only form in which the present disclosure may be practiced. It is to be understood that the same or equivalent functions may be accomplished by different embodiments that are intended to be encompassed within the spirit and scope of the present disclosure.
FIG. 1 illustrates an architectural diagram of a wireless communication  system 100. As shown in FIG. 1, the wireless communication system 100 includes a BS 102 and a UE 104. Although merely, for simplicity, one BS is illustrated in FIG. 1, it is contemplated that the wireless communication system 100 may include more BSs in some other embodiments of the present disclosure. Similarly, although merely one UE is illustrated in FIG. 1 for simplicity, it is contemplated that the wireless communication system 100 may include more UEs in some other embodiments of the present disclosure.
The UE 104 may include computing devices, such as desktop computers, laptop computers, personal digital assistants (PDAs) , tablet computers, smart televisions (e.g., televisions connected to the Internet) , set-top boxes, game consoles, security systems (including security cameras) , vehicle on-board computers, network devices (e.g., routers, switches, and modems) , or the like. According to an embodiment of the present disclosure, the UE 104 may include a portable wireless communication device, a smart phone, a cellular telephone, a flip phone, a device having a subscriber identity module, a personal computer, a selective call receiver, or any other device that is capable of sending and receiving communication signals on a wireless network, In some embodiments, the UE 104 may include wearable devices, such as smart watches, fitness bands, optical head-mounted displays, or the like. Moreover, the UE 104 may be referred to as a subscriber unit, a mobile, a mobile station, a user, a terminal, a mobile terminal, a wireless terminal, a fixed terminal, a subscriber station, a user terminal, or a device, or described using other terminology used in the art.
The BS 102 may also be referred to as an access point, an access terminal, a base, a macro cell, a node-B, an enhanced node B (eNB) , a gNB, a home node-B, a relay node, or a device, or described using other terminology used in the art. The BS 102 is generally part of a radio access network that may include a controller communicably coupled to the BS 102.
The wireless communication system 100 is compatible with any type of  network that is capable of sending and receiving wireless communication signals. For example, the wireless communication system 100 is compatible with a wireless communication network, a cellular telephone network, a time division multiple access (TDMA) -based network, a code division multiple access (CDMA) -based network, an orthogonal frequency division multiple access (OFDMA) -based network, an LTE network, a 3rd generation partnership project (3GPP) -based network, a 3GPP 5G network, a satellite communications network, a high altitude platform network, and/or other communications networks.
The UE 104 may access the BS 102 to receive data packets from the BS 102 via a downlink channel and/or transmit data packets to the BS 102 via an uplink channel. In normal operation, since the UE 104 does not know when the BS 102 will transmit data packets to it, the UE 104 has to be awake all the time to monitor the downlink channel (e.g., a Physical Downlink Control Channel (PDCCH) ) to get ready for receiving data packets from the BS 102. However, if the UE 104 keeps monitoring the downlink channel all the time even when there is no traffic between the BS 102 and the UE 104, it would result in significant power waste, which is problematic to a power limited or power sensitive UE.
Discontinuous reception (DRX) can be used to resolve the above issue. DRX is a mechanism in which a UE gets into a sleep mode for a certain period of time (which is referred to as "OFF time, " "OFF period, " or "OFF duration" interchangeably herein) , wakes up for another period of time (which is referred to as "ON time, " "ON period, " or "ON duration" interchangeably herein) , and periodically repeats this cycle. When the UE gets into the sleep mode, the UE is in an OFF state. When the UE wakes up, the UE is in an ON state. To synchronize the UE-wakeup timing with the transmission timing of the BS for the UE, the BS may configure DRX parameters for the UE and signal the DRX parameters to the UE using a Radio Resource Control (RRC) message.
DRX parameters may indicate to the UE when and how long it should be  awake to monitor the downlink channel. The following Table 1 shows some exemplary DRX parameters and their respective meanings.
Table 1
Figure PCTCN2020071477-appb-000001
FIGS. 2A-2D respectively illustrate example timing diagrams of different types of DRX cycles.
Specifically, FIG. 2A illustrates a scenario where only long DRX cycle type  is configured for a UE (two exemplary long DRX cycles are shown) , and no PDCCH is received during the shown DRX cycles. As shown in FIG. 2A, a first DRX cycle is from t1 to t3, and a second DRX cycle is from t3 to t5. In the first DRX cycle, the ON duration is from t1 to t2, in which the UE remains in the ON state to monitor and receive PDCCH if any; and the OFF duration is from t2 to t3, in which the UE remains in the OFF state to save power. Similarly, in the second DRX cycle, the ON duration is from t3 to t4, and the OFF duration is from t4 to t5.
FIG. 2B illustrates a scenario where only long DRX cycle type is configured for a UE (two exemplary long DRX cycles are shown) , and a PDCCH is received during one DRX cycle. As shown in FIG. 2B, a first DRX cycle is from t1 to t3, and a second DRX cycle is from t3 to t5. In the first DRX cycle, the ON duration is from t1 to t2, in which the UE remains in the ON state to monitor and receive PDCCH if any; and the OFF duration is from t2 to t3, in which the UE remains in the OFF state to save power. Similarly, in the second DRX cycle, the ON duration is from t3 to t4. However, upon receiving a PDCCH at t6 during the ON duration of the second DRX cycle, a DRX Inactivity Timer is initiated. The configured period of the DRX Inactivity Timer, i.e., DRX Inactivity Time, is from t6 to t7. That is, the UE will remain in the ON state until the DRX Inactivity Timer expires at t7. In this case, depending on the configured DRX Inactivity Time, the real "ON time" may be extended into the period which would be the "OFF period" if no PDCCH were not received, i.e., the period from t4 to t5.
FIG. 2C illustrates a scenario where only long DRX cycle type is configured for a UE (two exemplary long DRX cycles are shown) , and a PDCCH and a DRX command medium access control (MAC) control element (CE) are received during one DRX cycle. As shown in FIG. 2C, a first DRX cycle is from t1 to t3, and a second DRX cycle is from t3 to t5. In the first DRX cycle, the ON duration is from t1 to t2, in which the UE remains in the ON state to monitor and receive PDCCH if any, and the OFF duration is from t2 to t3, in which the UE remains in the OFF state  to save power. Similarly, in the second DRX cycle, the ON duration is from t3 to t4. Similar to the case shown in FIG. 2B, upon receiving a PDCCH at t6 during the ON duration of the second DRX cycle, a DRX Inactivity Timer with a configured period, i.e. DRX Inactivity Time, is initiated. The DRX Inactivity Timer would expire at t7 according to the configured DRX Inactivity Time. However, the UE receives a DRX command MAC CE at t8, which indicates both the DRX Inactivity Timer and the ON Duration Timer to stop, thereby causing the UE to get into the OFF state. In this case, the real "ON time" may be shortened depending on when the DRX command MAC CE is received.
FIG. 2D illustrates a scenario where both long DRC cycle type (e.g., 10 subframes) and short DRX cycle type (e.g., 5 subframes) are configured for a UE. As shown in FIG. 2D, upon receiving a PDCCH in subframe 0 of System Frame Number (SFN) 0, a DRX Inactivity Timer starts and the UE remains in the ON state until the DRX Inactivity Timer expires (e.g., 3 subframes) . After the DRX Inactivity Timer expires and the short DRX cycle condition meets, the short DRX cycle starts and a DRX Short Cycle Timer starts from subframe 5 of SFN 0. In response to no PDCCH being received before the DRX Short Cycle Timer expires (e.g., 3 short DRX cycles) , the long DRX cycle starts from subframe 0 of SFN 2. In response to a PDCCH being received in subframe 0 of SFN 3, which is in the ON duration (e.g., 2 frames) of the long DRX cycle, the DRX Inactivity Timer starts again. After the DRX Inactivity Timer expires and the short DRX cycle condition meets, the short DRX cycle starts again from subframe 5 of SFN 3. If any PDCCH is received in the ON duration of a short DRX cycle, the DRX Inactivity Timer will also start.
The cases of DRC cycles in FIGS. 2A-2D are provided only for illustration purposes. Those skilled in the art will understand that there can be an infinite number of different combinations of these cases.
As discussed above, in the legacy DRX mechanism, the DRX parameters are configured by the BS for the UE. Accordingly, the BS well knows the reception  state of the UE and can transmit data to the UE via a downlink channel during the ON duration of the UE. When the DRX mechanism is applied to sidelink communication between a transmitting UE (Tx UE) and a receiving UE (Rx UE) , the BS may configure DRX parameters for each UE, but there is no mechanism to ensure that the Tx UE performs sidelink transmission during the ON duration of the Rx UE. In other words, a mechanism is needed so that the Tx UE can know when the Rx UE can perform sidelink reception.
The mechanism of geo-based sidelink resource configuration, which will be described below, may be combined with the DRX mechanism to implement sidelink DRX.
To implement the geo-based sidelink resource configuration, a BS may configure a geographical area to be a plurality of geographical zones, and each geographical zone has an associated zone identifier (ID) , which can be calculated based on the zone configuration and a corresponding calculation method. For each V-UE, the BS may configure a transmitting resource pool (Tx resource pool) and/or a receiving resource pool (Rx resource pool) associated with each geographical zone. Each resource pool may include resources in time domain, frequency domain, etc. When the V-UE is in a configured geographical zone, it may perform sidelink transmission on a transmitting resource selected from the Tx resource pool associated with the configured geographical zone and/or perform sidelink reception on a receiving resource selected from the Rx resource pool associated with the configured geographical zone.
A BS may transmit information indicating the geo-based resource configuration to a V-UE in a radio resource control (RRC) signalling. For example, the geo-based resource configuration may be contained in a system information block (SIB) transmitted in a Physical Downlink Shared Channel (PDSCH) .
Embodiments of methods for configuring and performing geo-based sidelink  communication will be specifically described below.
FIG. 3 illustrates a flow chart of a method 300 for geo-based sidelink communication according to an embodiment of the present disclosure. Although described with respect to a BS, it should be understood that other devices with similar function may be configured to perform a method similar to that of FIG. 3.
As shown in FIG. 3, in step 302, the BS may configure a geographical area to be a plurality of geographical zones, and each geographical zone has an associated zone ID. The geographical zones can also be referred to as DRX zones. According to some embodiments of the present disclosure, the plurality of geographical zones are configured based on at least one off length of a geographical zone, e.g., 5 meters or 10 meters; width of the geographical zone, e.g., 5 meters or 10 meters; a total number of geographical zones based on longitude; and a total number of geographical zones based on latitude. The zone ID can be calculated based on the zone configuration. In an embodiment of the present disclosure, the zone configuration may be indicated by a new information element SL-DRXZoneConfig, which may be defined as follows:
Figure PCTCN2020071477-appb-000002
Each field in the information element "SL-DRXZoneConfig" may be defined as follows:
Figure PCTCN2020071477-appb-000003
Figure PCTCN2020071477-appb-000004
After configuring the plurality of geographical zones, the BS may, in step 304, configure at least one of the plurality of geographical zones to be a set of reception zones for a UE in sidelink, in which the UE can perform sidelink reception in a reception state.
According to some embodiments of the present disclosure, the reception state is an always-reception state that sidelink reception can be performed in each configured time period, e.g., the time period in the Rx resource pool configured by the BS for the UE. In such embodiments, the BS may configure for the UE a list of zone IDs corresponding to the set of reception zones. When the UE moves into a geographical zone corresponding to a zone ID contained in the list of zone IDs configured for the UE, the UE will perform sidelink reception on the Rx resource pool. When the UE moves into a geographical zone corresponding to a zone ID that is not contained in the list of zone IDs configured for the UE, the UE will not perform sidelink reception.
According to some other embodiments of the present disclosure, the reception state is a DRX ON duration reception state that sidelink reception can be performed in a time period which is an ON duration of DRX. Also, the time period is in the Rx resource pool configured by the BS for the UE. In such embodiments, the BS may configure geo-based DRX parameters for the UE. That is, for each reception zone of the UE, the BS may configure a set of associated DRX parameters, which includes the DRX parameters listed in Table 1 and further includes zone information or a zone ID corresponding to the reception zone. When the UE moves  into a geographical zone corresponding to the zone information or zone ID contained in the geo-based DRX parameters configured for the UE, the UE will perform DRX on the Rx resource pool according to the DRX parameters associated with the geographical zone, e.g., the UE will perform sidelink reception in the ON duration indicated by the associated DRX parameters. When the UE moves into a geographical zone corresponding to zone information or a zone ID that is not contained in the geo-based DRX parameters configured for the UE, the UE will not perform sidelink reception.
According to some embodiments of the present disclosure, the UE may be configured with a plurality of Rx resource pools, and the reception state of the UE in each geographical zone may be configured per resource pool for sidelink communication. For example, the UE is configured with  Rx resource pools  1 and 2. For a particular geographical zone, the BS may configure the zone ID corresponding to the geographical zone to be included in the list of zone IDs for Rx resource pool 1 and not to be included in the list of zone IDs for Rx resource pool 2. In this way, when the UE moves into the particular geographical zone, it will perform sidelink reception on Rx resource pool 1, and will not perform sidelink reception on Rx resource pool 2. In some embodiments of the present disclosure, the geo-based DRX parameters may be configured per resource pool.
According to some other embodiments of the present disclosure, the reception state or the geo-based DRX parameters may be configured per moving direction of the UE, moving speed of the UE, or altitude of the UE.
According to some embodiments of the present disclosure, to avoid unnecessarily frequent switches between the reception state and the reception off state of a UE, the BS may further configure a time threshold or a distance threshold for the reception state. When the UE moves out of a reception zone, the UE will not turn to a reception off state in sidelink until the time threshold or the distance threshold is reached.
Referring back to FIG. 3, after configuring the reception zones, in step 306, the BS may transmit configuration information indicating the plurality of geographical zones and the set of reception zones configured in  steps  302 and 304, respectively. The configuration information may include any additional configuration as described above. The configuration information may be transmitted via higher layer signaling. According to an embodiment of the present disclosure, the configuration information may be transmitted in a common RRC signaling. According to another embodiment of the present disclosure, the configuration information may be transmitted in a dedicated RRC signaling. The configuration information may include any additional configuration as described above.
FIG. 4 illustrates a flow chart of a method 400 for geo-based sidelink communication according to an embodiment of the present disclosure. Although described with respect to a UE, it should be understood that other devices may be configured to perform a method similar to that of FIG. 4.
As shown in FIG. 4, in step 402, the UE may receive configuration information indicating a plurality of geographical zones corresponding to a geographical area, and a set of reception zones for the UE in sidelink, in which the UE can perform sidelink reception in a reception state. According to an embodiment of the present disclosure, the configuration information may be received in a common RRC signaling. According to another embodiment of the present disclosure, the configuration information may be received in a dedicated RRC signaling. The configuration information may be transmitted from a BS.
According to some embodiments of the present disclosure, the geographical area is configured to be the plurality of geographical zones based on at least one off length of a geographical zone; width of the geographical zone; a total number of geographical zones based on longitude; and a total number of geographical zones based on latitude. The plurality of geographical zones have respective zone IDs, which can be calculated based on the zone configuration. The set of reception zones  corresponds to at least one of the plurality of geographical zones.
In step 404, the UE may determine whether to perform sidelink reception based on the configuration information.
According to some embodiments of the present disclosure, the reception state is an always-reception state that sidelink reception can be performed in each configured time period, e.g., the time period in the Rx resource pool configured by a BS for the UE. In such embodiments, the configuration information may include a list of zone IDs corresponding to the set of reception zones. When the UE moves into a geographical zone corresponding to a zone ID contained in the list of zone IDs configured for the UE, the UE will determine to perform sidelink reception on the Rx resource pool. When the UE moves into a geographical zone corresponding to a zone ID that is not contained in the list of zone IDs configured for the UE, the UE will determine not to perform sidelink reception.
According to some other embodiments of the present disclosure, the reception state is a DRX ON duration reception state that sidelink reception can be performed in a time period which is an ON duration of DRX. Also, the time period is in the Rx resource pool configured by the BS for the UE. In such embodiments, the configuration information may include geo-based DRX parameters for the UE. That is, for each reception zone of the UE, the configuration information may include a set of associated DRX parameters, which includes the DRX parameters listed in Table 1 and further includes zone information or a zone ID corresponding to the reception zone. When the UE moves into a geographical zone corresponding to the zone information or zone ID contained in the geo-based DRX parameters configured for the UE, the UE will determine to perform DRX on the Rx resource pool according to the DRX parameters associated with the geographical zone, e.g., the UE will determine to perform sidelink reception in the ON duration indicated by the associated DRX parameters. When the UE moves into a geographical zone corresponding to zone information or a zone ID that is not contained in the geo-based  DRX parameters configured for the UE, the UE will determine not to perform sidelink reception.
According to some embodiments of the present disclosure, the UE may be configured with a plurality of Rx resource pools, and the reception state of the UE in each geographical zone may be configured per resource pool for sidelink communication. For example, the UE is configured with  Rx resource pools  1 and 2. For a particular geographical zone, the zone ID corresponding to the geographical zone may be included in the list of zone IDs configured for Rx resource pool 1 but not included in the list of zone IDs configured for Rx resource pool 2. In this way, when the UE moves into the particular geographical zone, it will decide to perform sidelink reception on Rx resource pool 1, and will decide to not perform sidelink reception on Rx resource pool 2. In some embodiments of the present disclosure, the geo-based DRX parameters may be configured per resource pool.
According to some other embodiments of the present disclosure, the reception state or the geo-based DRX parameters may be configured per moving direction of the UE, moving speed of the UE, or altitude of the UE.
According to some embodiments of the present disclosure, to avoid unnecessarily frequent switches between the reception state and the reception off state of a UE, the configuration information may further include a time threshold or a distance threshold for the reception state. When the UE moves out of a reception zone, the UE will not turn to a reception off state in sidelink until the time threshold or the distance threshold is reached.
According to some embodiments of the present disclosure, after a V-UE, e.g., a head UE in a groupcast case, receives the configuration information from the BS, it may relay the configuration information to another UE, e.g., a P-UE in the same groupcast.
With the methods described above with respect to FIGS. 3 and 4, a Tx UE will be able to determine whether an Rx UE is in the reception state or the reception off state based on the geographical location of the Rx UE, and perform sidelink transmission to the Rx UE accordingly.
FIG. 5 illustrates an exemplary zone configuration according to an embodiment of the present disclosure.
As shown in FIG. 5, a geographical area is configured to be thirty-six (36) geographical zones, i.e., zone 1 ~ zone 36, according to the methods described with respect to FIGS. 3 and 4. There are three roads in this geographical area. Road 502 intersects with road 506 in zone 21, and road 504 intersects with road 506 in zone 24. In an embodiment of the present disclosure, a P-UE only needs to perform sidelink reception at the cross of roads. Thus, zone 21 and zone 24 are configured to be reception zones for the P-UE in sidelink according to the methods described with respect to FIGS. 3 and 4. When the P-UE moves into zone 21 or zone 24, the P-UE performs sidelink reception, i.e., monitoring sidelink control information on physical sidelink control channel (PSCCH) and/or physical sidelink shared channel (PSSCH) , and decoding associated data transmission on PSSCH. When the P-UE moves out of zone 21 and zone 24, the P-UE enters the reception off state, i.e., stopping monitoring sidelink control information on PSCCH for power saving purpose.
FIG. 6 illustrates an exemplary block diagram of an apparatus 600 according to an embodiment of the present disclosure. In some embodiments of the present disclosure, the apparatus 600 may be a base station (e.g., gNB) , which can at least perform the method illustrated in FIG. 3.
As shown in FIG. 6, the apparatus 600 may include at least one receiver 602, at least one transmitter 604, at least one non-transitory computer-readable medium 606, and at least one processor 608 coupled to the at least one receiver 602, the at least one transmitter 604, and the at least one non-transitory computer-readable  medium 606.
Although in FIG. 6, elements such as receiver 602, transmitter 604, non-transitory computer-readable medium 606, and processor 608 are described in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. In some embodiments of the present disclosure, the at least one receiver 602 and the at least one transmitter 604 are combined into a single device, such as a transceiver. In certain embodiments of the present disclosure, the apparatus 600 may further include an input device, a memory, and/or other components.
In some embodiments of the present disclosure, the at least one non-transitory computer-readable medium 606 may have stored thereon computer-executable instructions which are programmed to implement the steps of the methods, for example as described in view of FIG. 3, with the at least one receiver 602, the at least one transmitter 604, and the at least one processor 608.
FIG. 7 illustrates an exemplary block diagram of an apparatus 700 according to another embodiment of the present disclosure, In some embodiments of the present disclosure, the apparatus 700 may be a UE (e.g., P-UE) , which can at least perform the method illustrated in FIG. 4.
As shown in FIG. 7, the apparatus 700 may include at least one receiver 702, at least one transmitter 704, at least one non-transitory computer-readable medium 706, and at least one processor 708 coupled to the at least one receiver 702, the at least one transmitter 704, and the at least one non-transitory computer-readable medium 706.
Although in FIG. 7, elements such as receiver 702, transmitter 704, non-transitory computer-readable medium 706, and processor 708 are described in the singular, the plural is contemplated unless limitation to the singular is explicitly stated. In some embodiments of the present disclosure, the at least one receiver 702 and the  at least one transmitter 704 are combined into a single device, such as a transceiver. In certain embodiments of the present disclosure, the apparatus 700 may further include an input device, a memory, and/or other components.
In some embodiments of the present disclosure, the at least one non-transitory computer-readable medium 706 may have stored thereon computer-executable instructions which are programmed to implement the steps of the methods, for example as described in view of FIG. 4, with the at least one receiver 702, the at least one transmitter 704, and the at least one processor 708.
Those having ordinary skills in the art would understand that the steps of a method described in connection with the aspects disclosed herein may be embodied directly in hardware, in a software module executed by a processor, or in a combination of the two. A software module may reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. Additionally, in some aspects, the steps of a method may reside as one or any combination or set of codes and/or instructions on a non-transitory computer-readable medium, which may be incorporated into a computer program product.
While this disclosure has been described with specific embodiments thereof, it is evident that many alternatives, modifications, and variations may be apparent to those skilled in the art. For example, various components of the embodiments may be interchanged, added, or substituted in the other embodiments. Also, all of the elements of each figure are not necessary for operation of the disclosed embodiments. For example, those having ordinary skills in the art would be enabled to make and use the teachings of the disclosure by simply employing the elements of the independent claims. Accordingly, embodiments of the disclosure as set forth herein are intended to be illustrative, not limiting. Various changes may be made without departing from the spirit and scope of the disclosure.
In this document, the terms "includes, " "including, " or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that includes a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by "a, " "an, " or the like does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that includes the element. Also, the term "another" is defined as at least a second or more. The term "having" and the like, as used herein, are defined as "including. "

Claims (25)

  1. A method, comprising:
    configuring a geographical area to be a plurality of geographical zones;
    configuring at least one of the plurality of geographical zones to be a set of reception zones for a user equipment in sidelink, in which the user equipment can perform sidelink reception in a reception state; and
    transmitting configuration information indicating the plurality of geographical zones and the set of reception zones.
  2. The method of Claim 1, wherein the configuration information comprises a list of identifiers of the set of geographical zones.
  3. The method of Claim 1, wherein the configuration information is transmitted in a common radio resource control (RRC) signaling or a dedicated RRC signaling.
  4. The method of Claim 1, wherein the plurality of geographical zones are configured based on at least one of the following:
    length of a geographical zone;
    width of the geographical zone;
    a total number of geographical zones based on longitude; and
    a total number of geographical zones based on latitude.
  5. The method of Claim 1, wherein the reception state is an always-reception state that sidelink reception can be performed in each configured time period.
  6. The method of Claim 1, wherein the reception state is a discontinuous reception on duration reception state that sidelink reception can be performed in a time period which is on duration of discontinuous reception.
  7. The method of Claim 1, wherein the reception state is configured per resource pool for sidelink communication.
  8. The method of Claim 6, wherein the on duration of the discontinuous reception is specific for a geographical zone.
  9. The method of Claim 6, wherein the on duration of the discontinuous reception is configured per moving direction of the user equipment, moving speed of the user equipment, or altitude of the user equipment.
  10. The method of Claim 1, wherein the configuration information comprises:
    a time threshold for the reception state, after reaching that the user equipment will turn to a reception off state in sidelink when moving out from a reception zone.
  11. The method of Claim 1, wherein the configuration information comprises:
    a distance threshold for the reception state, after reaching that the user equipment will turn to a reception off state in sidelink when moving out from a reception zone.
  12. A method, comprising:
    receiving configuration information, wherein the configuration information indicates:
    a plurality of geographical zones corresponding to a geographical area; and
    a set of reception zones for a user equipment in sidelink, in which the user equipment can perform sidelink reception in a reception state; and
    determining whether to perform sidelink reception based on the configuration information.
  13. The method of Claim 12, wherein the configuration information comprises a list of identifiers of the set of geographical zones.
  14. The method of Claim 12, wherein the configuration information is received in a common radio resource control (RRC) signaling or a dedicated RRC signaling.
  15. The method of Claim 12, wherein the plurality of geographical zones are configured based on at least one of the following:
    length of a geographical zone;
    width of the geographical zone;
    a total number of geographical zones based on longitude; and
    a total number of geographical zones based on latitude.
  16. The method of Claim 12, wherein the reception state is an always-reception state that sidelink reception can be performed in each configured time period.
  17. The method of Claim 12, wherein the reception state is a discontinuous reception on duration reception state that sidelink reception can be performed in a time period which is on duration of discontinuous reception.
  18. The method of Claim 12, wherein the reception state is configured per resource pool for sidelink communication.
  19. The method of Claim 17, wherein the on duration of the discontinuous reception is specific for a geographical zone.
  20. The method of Claim 17, wherein the on duration of the discontinuous reception is configured per moving direction of the user equipment, moving speed of the user equipment, or altitude of the user equipment.
  21. The method of Claim 12, wherein the configuration information comprises:
    a time threshold for the reception state, after reaching that the user equipment will turn to a reception off state in sidelink when moving out from a reception zone.
  22. The method of Claim 12, wherein the configuration information comprises:
    a distance threshold for the reception state, after reaching that the user equipment will turn to a reception off state in sidelink when moving out from a reception zone.
  23. The method of Claim 12, further comprising relaying the configuration information to another user equipment.
  24. An apparatus, comprising:
    at least one non-transitory computer-readable medium having computer executable instructions stored therein;
    at least one receiver;
    at least one transmitter; and
    at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiver, and the at least one transmitter;
    wherein the computer executable instructions are programmed to implement a method according to any one of Claims 1-11 with the at least one receiver, the at least one transmitter, and the at least one processor.
  25. An apparatus, comprising:
    at least one non-transitory computer-readable medium having computer executable instructions stored therein;
    at least one receiver;
    at least one transmitter; and
    at least one processor coupled to the at least one non-transitory computer-readable medium, the at least one receiver, and the at least one transmitter;
    wherein the computer executable instructions are programmed to implement a method according to any one of Claims 12-23 with the at least one receiver, the at least one transmitter, and the at least one processor.
PCT/CN2020/071477 2020-01-10 2020-01-10 Method and apparatus for geo-based sidelink communication WO2021138907A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071477 WO2021138907A1 (en) 2020-01-10 2020-01-10 Method and apparatus for geo-based sidelink communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/071477 WO2021138907A1 (en) 2020-01-10 2020-01-10 Method and apparatus for geo-based sidelink communication

Publications (1)

Publication Number Publication Date
WO2021138907A1 true WO2021138907A1 (en) 2021-07-15

Family

ID=76788456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/071477 WO2021138907A1 (en) 2020-01-10 2020-01-10 Method and apparatus for geo-based sidelink communication

Country Status (1)

Country Link
WO (1) WO2021138907A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180049129A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Clear-to-send (cts) power control in sidelink
US20180279267A1 (en) * 2015-09-24 2018-09-27 Ntt Docomo, Inc. User apparatus, base station, communication method, and indication method
WO2019096705A1 (en) * 2017-11-16 2019-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Resource allocation for sidelink communications in a wireless communication network
CN110326312A (en) * 2019-05-20 2019-10-11 北京小米移动软件有限公司 Measurement method, device, equipment and the storage medium of direct-connected communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180279267A1 (en) * 2015-09-24 2018-09-27 Ntt Docomo, Inc. User apparatus, base station, communication method, and indication method
US20180049129A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Clear-to-send (cts) power control in sidelink
WO2019096705A1 (en) * 2017-11-16 2019-05-23 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Resource allocation for sidelink communications in a wireless communication network
CN110326312A (en) * 2019-05-20 2019-10-11 北京小米移动软件有限公司 Measurement method, device, equipment and the storage medium of direct-connected communication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE ET.AL.: "CR on V2X Miscellaneous RRC Corrections", 3GPP TSG RAN WG2 #98 R2-1704626, 19 May 2017 (2017-05-19), XP051263818 *

Similar Documents

Publication Publication Date Title
WO2021032026A1 (en) Discontinuous reception method, related device, and system
WO2018076956A1 (en) Grant-free transmission method, terminal device and network device
US11101939B2 (en) Efficient sparse network resource usage and connection release
CN113382379B (en) Wireless communication method and communication device
KR102240644B1 (en) Data transmission/reception apparatus and method, and communication system
US20230084999A1 (en) Nr sidelink discontinuous reception resource allocation
CN115152282B (en) Synchronization priority for side-chain wireless communication
US20220078715A1 (en) Methods and apparatuses for using power-saving signal pattern, device and system
EP4229906A1 (en) Method and apparatus for multicast and broadcast services
WO2021043416A1 (en) Idle state small data transmissions for wireless networks
CN111698767B (en) Method and equipment for requesting system information
CN113647126A (en) Discontinuous reception method, electronic equipment and storage medium
CN115150908A (en) Paging method and device
US20240172118A1 (en) Methods and apparatuses for power saving for a sidelink ue
CN113473590B (en) Communication method and device
WO2021138907A1 (en) Method and apparatus for geo-based sidelink communication
WO2022011588A1 (en) Methods and apparatuses for a sidelink transmission in a drx mechanism
WO2022082522A1 (en) Method and apparatus for subsequent data transmission
CN116530160A (en) Method for switching search space set packet SSSG by terminal equipment, terminal equipment and network equipment
CN116569644A (en) Wireless communication method and terminal equipment
WO2023124823A1 (en) Communication method and apparatus
US20240244710A1 (en) Method and apparatus for inactivity timer handling
WO2024027739A1 (en) Communication method, and apparatus
US20230422151A1 (en) Method for sidelink communication, first terminal device, and second terminal device
WO2023130433A1 (en) Methods and apparatuses for sidelink positioning

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20912459

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20912459

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 08.02.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20912459

Country of ref document: EP

Kind code of ref document: A1