WO2021134272A1 - 丙烯酸雷公藤甲素酯、其制备方法及其应用 - Google Patents
丙烯酸雷公藤甲素酯、其制备方法及其应用 Download PDFInfo
- Publication number
- WO2021134272A1 WO2021134272A1 PCT/CN2019/130056 CN2019130056W WO2021134272A1 WO 2021134272 A1 WO2021134272 A1 WO 2021134272A1 CN 2019130056 W CN2019130056 W CN 2019130056W WO 2021134272 A1 WO2021134272 A1 WO 2021134272A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- triptolide
- acrylate
- preparing
- acrylate according
- cells
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/365—Lactones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07J—STEROIDS
- C07J73/00—Steroids in which the cyclopenta[a]hydrophenanthrene skeleton has been modified by substitution of one or two carbon atoms by hetero atoms
Definitions
- the invention belongs to the technical field of medicine, and specifically relates to a derivative of triptolide, its preparation method and its medical use.
- Triptolide also known as triptolide and triptolide
- Tripterygium Alkaloids such as Stemidine, Triptogrine, Triptogrine, Tripterygium wilfordine and Tripterygium wilfordine constitute the main active components of Tripterygium wilfordii extract, which are hardly soluble in water, but easily soluble in methanol and dimethyl Sulfoxide, absolute ethanol, ethyl acetate, chloroform, etc.
- Current studies have shown that it has anti-oxidation, anti-rheumatoid, anti-senile dementia, anti-cancer and other effects. Modern research shows that triptolide not only has anti-rheumatoid effects, but also has anti-senile dementia and anti-cancer effects.
- triptolide has good activity and strong toxicity
- clinical trials have shown that it is effective in digestive system, urinary system, cardiovascular system, blood system, allergic reaction, nervous system, reproductive system, etc. Shows strong side effects.
- reducing its toxicity is an important direction for the study of triptolide derivatives.
- Studies have shown that the toxicity of triptolide is related to the epoxy rings at positions 12 and 13, which can easily bind to a variety of proteins and produce a variety of biological effects.
- An object of the present invention is to provide a derivative of triptolide to solve at least one of the above technical problems. Further, the present invention also provides a method for preparing the above-mentioned compound and its medical use.
- Another object of the present invention is to provide a method for preparing a derivative of triptolide to solve at least one of the above technical problems.
- triptolide acrylate and a pharmaceutically acceptable salt thereof, and its structural formula is as shown in formula I.
- the synthetic route of triptolide acrylate of the present invention is:
- triptolide and acylating reagent (acryloyl chloride, acryloyl bromide, acrylic acid glycoside, acrylic acid or its equivalent 3-chloropropionyl chloride) into organic solvent (anhydrous dichloromethane, chloroform, tetrahydrofuran, ether ), with triethylamine, trimethylamine, pyridine, diisopropylethylamine (DITEA), 1,8-diazabicycloundec-7-ene (DBU), 2,6-dimethylamine Pyridine, 4-dimethylaminopyridine (DMAP) and other organic bases as acid binding agents, with 4-dimethylaminopyridine, dicyclohexylcarbodiimide (DCC), 1-hydroxy-7-azabenzene And triazole (HOAT), 1-hydroxybenzotriazole (HOBT), O-benzotriazole-tetramethylurea hexafluorophosphate (HBTU), O-benzotriazole-N
- dichloromethane or other Extraction with organic polar solvents that are not compatible with water.
- the water layer can be extracted twice with dichloromethane (or other organic polar solvents that are not compatible with water). Combine dichloromethane (or other organic polar solvents).
- Organic polar solvent with poor water compatibility extract wash most of the water in the extract with saturated sodium chloride aqueous solution, and then use desiccant (anhydrous sodium sulfate, anhydrous magnesium sulfate, anhydrous chlorinated One or more water-absorbing agents such as calcium) are dried, evaporated to dryness under reduced pressure, and purified by silica gel column chromatography to obtain the compound of formula I.
- desiccant anhydrous sodium sulfate, anhydrous magnesium sulfate, anhydrous chlorinated
- water-absorbing agents such as calcium
- triptolide acrylate and the pharmaceutically acceptable salt thereof of the present invention have anti-cancer activity, and animal in vivo experiments can effectively inhibit tumor growth in animals. Multiple in vitro experiments have proved that it can significantly increase the protein expression of p53, promote the apoptosis of tumor cells, effectively inhibit the growth of tumor cells, and have the effect of inhibiting the metastasis of cancer cells. More importantly, its toxicity to normal cells is less than triptolide.
- the present invention introduces a functional group with specific selectivity on the C14-hydroxyl group of triptolide.
- This functional group will preferentially bind to the target protein, thereby enhancing its selectivity and reducing its toxicity.
- the introduced functional group is a moderately sized rotatable flexible group, it will have a certain steric hindrance on the epoxy ring at the 12 and 13 positions, which can also increase its selectivity and reduce toxicity.
- Figure 1 is a 1 H NMR spectrum of triptolide acrylate
- Figure 2 is a 13 C NMR spectrum of triptolide acrylate
- Figure 3 shows the DEPT135 spectrum of triptolide acrylate
- Figure 4 is a graph of fluorescence signal in nude mice tumor
- Figure 5 shows the subcutaneous transplanted tumor observed on the skin surface of nude mice
- Figure 6 shows the tumor tissue taken after the nude mice were killed
- Figure 7 shows the effect of triptolide acrylate on the expression of important proteins related to apoptosis
- Figure 8 shows the toxic effects of different concentrations of drugs on LO2 cells
- Figure 9 shows the effect of different concentrations of drugs on the proliferation rate of liver cancer cells
- Figure 10 shows the inducing effect of different concentrations of triptolide acrylate on the apoptosis of liver cancer cells
- Figure 11 shows the inhibitory effect of triptolide acrylate on the migration of liver cancer cells.
- mice nude mice, males, 4-6 weeks old, weighing about 18-20g, the mice were purchased from Beijing Weitong Lihua Experimental Animal Technology Co., Ltd. (certificate number: 11400700270675).
- Multifunctional refrigerated centrifuge (5430R, eppendorf, China eppendorf Co., Ltd.), electrophoresis, transfer membrane device (Bio-Rad, USA), speed-adjustable oscillator (HS260, IKA Shanghai Shengke Instrument Equipment Co., Ltd.), constant temperature metal bath (Q872), gel imaging system (XR+) (Bio-Rad, Shanghai Labaratories Co., Ltd.), shaker (SK-L330-Pro).
- HepG2-Luc cell line stably expressing luciferase HepG2 cells in logarithmic growth phase were plated into a 24-well plate at 1 ⁇ 10 5 /well, and cultured overnight to make the cells fully adherent. Replace the original medium with 2mL fresh medium containing 6 ⁇ g/mL polybrene. Add about 1 ⁇ 10 5 transfection units of recombinant lentiviral particles stably expressing Luciferase. After incubating at 37°C for 4h, add 2mL fresh medium to dilute the polybrene. . Continue to cultivate and replace the virus-containing medium with fresh medium. Continue to culture, replace puromycin (puromycin)-containing medium for resistance screening, pick resistant clones, continue to screen for two weeks, and finally obtain a cell line HepG2-Luc that can stably express luciferase.
- puromycin puromycin
- the HepG2-Luc cell line was used to construct rats: the cryopreserved HepG2-Luc cells were resuscitated to a 100cm 2 culture flask, cultured in vitro to the logarithmic growth phase, digested with 0.25% trypsin containing EDTA, collected the cells, and centrifuged at 1000rpm for 3min at room temperature , The supernatant was discarded, the cells were washed with serum-free DMEM medium, and the trypan blue exclusion test was used to detect the cell viability (the ratio of viable cells exceeded 95% to meet the experimental requirements). Add a little serum-free DMEM medium to resuspend the cells and count the cells.
- nude mice The back skin of nude mice was disinfected with 75% alcohol, and about 200 ⁇ L of 1 ⁇ 10 7 cell suspension was inoculated into the right anterior armpit of nude mice. They were kept for another week under aseptic conditions, and observed for any visible subcutaneous tumors.
- nude mice Subcutaneous masses were observed in all nude mice after 1 week, and the growth of tumor pairs was verified by small animal in vivo imaging technology. Therefore, the nude mice were sorted and numbered according to their weights, and 18 random numbers were generated by Excel software. The numbers correspond to the numbers of the nude mice. According to the random number, the nude mice are equally divided into the model group, the low-dose group (100 ⁇ g/kg), the medium-dose group (200 ⁇ g/kg) and the high-dose group (400 ⁇ g/kg). After random grouping, the nude mice were weighed and the tumor volume was measured. Statistical tests were used to test the differences in nude mice's weight and tumor volume between the groups. There was no difference between the groups. A better balance indicates that the grouping is correct.
- nude mice Routine observations of nude mice were carried out every day after medication, including mental state, activity, diet, skin color and fecal traits, etc.
- the nude mice’s weight was measured and recorded twice a week, the size of the transplanted tumor was measured, and intravital imaging was performed once a week. , Monitor tumor growth and distant metastasis for 3 consecutive weeks until the end of the administration.
- the animal was anesthetized, the cervical spine was dissected and sacrificed, the tumor was completely stripped, and the size of the tumor tissue was measured and recorded.
- tissue homogenization tube After the tumor tissue is thawed on ice, take 50 mg of the tissue homogenization tube, and add 500 ⁇ L of tissue lysate containing protease inhibitor and phosphatase inhibitor (the method of using Roche brand tablets: 1 tablet/10 mL). After high-speed homogenization, centrifuge at 12000rpm/min for 15min, take the supernatant, determine the protein concentration of the sample by BCA method, adjust the concentration of each sample to the same, add protein loading buffer 5x Loading buffer, denature at 100°C for 10min, store at -80°C .
- a hepatocellular carcinoma cell line HepG2-Luc that can stably express luciferase was established, and a nude mouse subcutaneous hepatocarcinoma implantation model was constructed using this cell.
- nude mice were randomly divided into four groups: model group (Model), low-dose group (TPO-L), medium-dose group (TPO-M) and high-dose group (TPO-H). After 13 days of continuous administration The nude mice were sacrificed and the tumor tissue and tissue specimens were obtained. In the experiment, small animal live imaging technology was used to monitor tumor growth. As shown in Figure 4, compared with the model group, the fluorescent signal in the tumor of nude mice in each dose group was significantly weakened, and it was dose-dependent; The dose group weakened more significantly, suggesting that triptolide acrylate (compound of formula I) can significantly inhibit the proliferation of liver cancer cells in the tumor.
- model group Model
- TPO-L low-dose group
- TPO-M medium-dose group
- TPO-H high-dose group
- the tumor volume of the drug-administered group (especially the high-dose group) is significantly smaller than that of the model group, and is dose-dependent.
- the tumor tissues stripped after the nude mice were sacrificed the tumor volume of the administration group was smaller than that of the model group, further verifying the anti-liver cancer effect of triptolide acrylate in vivo.
- p53 is a very important tumor suppressor gene, which has a variety of biological functions such as promoting gene repair, regulating cell cycle progression and inducing cell apoptosis. Among them, phosphorylation at the serine site can promote cell apoptosis.
- Caspase-8 and caspase-3 are at the core of the initiator and executor in the caspase cascade, respectively. They are the key steps in the occurrence of apoptosis and the common pathway of all apoptosis signals.
- the high-dose group can significantly increase the protein expression of p53, while the low-medium-dose group has no significant change.
- the middle dose group can significantly increase the protein expression of caspase-8, while the low and high doses can reduce its expression.
- the medium and high-dose groups can significantly increase the protein expression of caspase-3, while the low-dose group reduces its expression.
- the LO2, HepG2, Hep3B, SMMC-7721, BEL-7402 cells used in this experiment were all purchased from ATCC.
- the cells were cultured in DMEM complete medium containing 10% fetal bovine serum, 1 ⁇ 10 5 U ⁇ L-1 penicillin and 100 mg ⁇ L-1 streptomycin under 5% CO 2 , 37°C and saturated humidity.
- the single cell suspension is seeded on a 96-well plate at 1 ⁇ 10 4 cells per well.
- the blank group is DMEM medium containing 10% fetal bovine serum
- the control group is a solvent control (DMSO) cell group
- the experimental group is a cell group treated with drugs of different final concentrations (10, 25, 50, 100 nM).
- drugs of different final concentrations (10, 25, 50, 100 nM).
- Cell proliferation inhibition rate [(control group A 450 -blank group A 450 )-(experimental group A 450 -blank group A 450 )/(control group A 450 -blank group A 450 )] ⁇ 100%.
- TPO triptolide acrylate
- TP-3-OH triptolide
- the cells were collected by 0.25% trypsin-free EDTA digestion, washed twice with pre-cooled PBS, and resuspended in 300 ⁇ L 1 ⁇ Binding Buffer.
- BEL-7402 cells in the logarithmic growth phase and inoculate 5 ⁇ 10 5 cells per well on a 12-well plate.
- Cells treated with TPO at a final concentration of 0, 50, 100 nM were used.
- the cells were collected and the lysis buffer was added, and the total protein was extracted after full lysis on ice.
- Loading buffer and boil at 100°C for 10 minutes add Loading buffer and boil at 100°C for 10 minutes to fully denature the protein.
- the denatured sample is electrophoresed on an SDS-PAGE gel and electrotransferred to a PVDF membrane.
- the transferred PVDF membrane was blocked with 5% BSA solution configured by TBST for 1 hour at room temperature, and then incubated overnight at 4°C with the corresponding primary antibody, washed with TBST, incubated with the secondary antibody at room temperature for 2 hours, washed again with TBST, and finally added with ECL chemiluminescent solution to make
- the film strips emit light, and the electrophoresis results are obtained by pressing, developing, and fixing photosensitive film, and observe the change trend of apoptosis-related proteins among different treatment groups.
- SPSS 16.0 software was used to analyze the results.
- the statistical data is expressed as mean ⁇ standard deviation (x ⁇ s).
- the data were first tested for normality and homogeneity of variance, and comparisons between groups were performed by one-way analysis of variance or t test, and P ⁇ 0.05 was considered statistically significant.
- FIG. 9 The results of the MTT experiment show that TPO has a significant inhibitory effect on the proliferation of HepG2, Hep3B, SMMC-7721, and BEL-7402, and shows a dose-dependent effect, indicating that TPO has an inhibitory effect on the proliferation of liver cancer cells.
- TP ⁇ 3 ⁇ OH has no obvious inhibitory effect on the proliferation of liver cancer cells.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Epidemiology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
本发明公开一种新的雷公藤甲素的衍生物,如式I所示。本发明还公开了该化合物的制备方法,以及其在制备抗癌药物上的医药用途。本发明的丙烯酸雷公藤甲素酯及其药学上可接受的盐,具有抗癌活性,动物体内实验能够有效抑制动物的肿瘤生长。多个体外实验证明其能够使p53的蛋白表达量显著增加,促进肿瘤细胞的凋亡,有效抑制肿瘤细胞生长,并具有抑制癌细胞转移的作用。更为重要的是,其对正常细胞的毒性小于雷公藤甲素。
Description
本发明属于医药技术领域,具体涉及一种雷公藤甲素的衍生物、其制备方法以及其医药用途。
雷公藤甲素又称雷公藤内酯、雷公藤内酯醇,是从卫矛科植物雷公藤的根、叶、花及果实中提取的一种环氧二萜内酯化合物,与雷公藤碱、雷公藤次碱、雷公藤晋碱、雷公藤春碱、雷公藤增碱和雷公藤明碱等生物碱构成了雷公藤提取物的主要活性成分,难溶于水,易溶于甲醇、二甲基亚砜、无水乙醇、乙酸乙酯、氯仿等。目前研究表明,它具有抗氧化,抗类风湿,抗老年性痴呆症、抗癌等功效。现代研究表明:雷公藤甲素不仅有抗类风湿作用,还有抗老年性痴呆症、抗癌作用。
但是,雷公藤甲素虽然具有较好的活性,也具有较强的毒性,临床试验表明,其在消化系统、泌尿系统、心血管系统、血液系统、过敏反应、神经系统、生殖系统等方面都表现出较强的毒副作用。在保证一定活性的基础上,减弱其毒性是雷公藤甲素衍生物研究的一个重要方向。有研究表明,雷公藤甲素的毒性与其12,13位的环氧环有关,该基团很容易和多种蛋白进行结合,产生多种生物学效应。
发明内容
本发明的一个目的在于提供一种雷公藤甲素的衍生物,以解决上述技术问题中的至少一个。进一步的,本发明还在于提供上述化合物的制备方法及其医药用途。
本发明的又一个目的在于提供一雷公藤甲素的衍生物的制备方法,以解决上述技术问题中的至少一个。
本发明提供的一种雷公藤甲素的衍生物,具体为丙烯酸雷公藤甲素酯及其药学上可接受的盐,其结构式如式I所示。
本发明的丙烯酸雷公藤甲素酯的合成路线为:
将雷公藤甲素与酰化试剂(丙烯酰氯、丙烯酰溴、丙烯酸苷、丙烯酸或其等价物3‐氯丙酰氯),加入到有机溶剂中(无水二氯甲烷、三氯甲烷、四氢呋喃、乙醚)中,以三乙胺、三甲胺、吡啶、二异丙基乙基胺(DITEA)、1,8‐二氮杂二环十一碳‐7‐烯(DBU)、2,6‐二甲基吡啶、4‐二甲基氨基吡啶(DMAP)等有机碱做缚酸剂,以4‐二甲基氨基吡啶、二环己基碳二亚胺(DCC)、1‐羟基‐7‐氮杂苯并三氮唑(HOAT)、1‐羟基苯并三唑(HOBT)、O‐苯并三氮唑‐四甲基脲六氟磷酸酯(HBTU)、O‐苯并三氮唑‐N,N,N',N'‐四甲基脲四氟硼酸(TBTU)等为催化剂,室温下搅拌1‐4h(具体可以是2h),用饱和碳酸氢钠水溶液淬灭反应,二氯甲烷(或其他与水相容性不好的有机极性溶剂)萃取,水层可以用二氯甲烷(或其他与水相容性不好的有机极性溶剂)再萃取两次,合并二氯甲烷(或其他与水相容性不好的有机极性溶剂)萃取液,用饱和氯化钠水溶液洗去萃取液中大部分水,再用干燥剂(无水硫酸钠、无水硫酸镁、无水氯化钙等一种或几种吸水剂)干燥,减压蒸干,经过硅胶柱层析纯化,得到式Ⅰ化合物。
本发明的丙烯酸雷公藤甲素酯及其药学上可接受的盐,具有抗癌活性,动物体内实验能够有效抑制动物的肿瘤生长。多个体外实验证明其能够使p53的蛋白表达量显著增加,促进肿瘤细胞的凋亡,有效抑制肿瘤细胞生长,并具有抑制癌细胞转移的作用。更为重要的是,其对正常细胞的毒性小于雷公藤甲素。
本发明在雷公藤甲素的C14‐羟基上引入具有特异选择性的官能团,这个官能团将优先同靶标蛋白结合,增强了其选择性,并减弱了其毒性。同时,由于引入的官能团是大小适中的可旋转的柔性基团,对12,13位的环氧环将产生一定的位阻效应,也可提高其选择性,减弱毒性。
图1为丙烯酸雷公藤甲素酯的
1H NMR谱图;
图2为丙烯酸雷公藤甲素酯的
13C NMR谱图;
图3为丙烯酸雷公藤甲素酯的DEPT135谱图;
图4为裸鼠瘤体内荧光信号图;
图5为裸鼠皮肤表面观察的皮下移植瘤;
图6为处死裸鼠后剥取的瘤体组织;
图7为丙烯酸雷公藤甲素酯对凋亡相关的重要蛋白表达的影响;
图8为不同浓度药物对LO2细胞的毒性作用;
图9为不同浓度药物对肝癌细胞增殖率的影响;
图10为不同浓度丙烯酸雷公藤甲素酯对肝癌细胞凋亡的诱导作用;
图11为丙烯酸雷公藤甲素酯对肝癌细胞迁移的抑制作用。
下面结合具体实施例和附图对本发明作进一步详细的说明。
取103.4mg(0.287mmol)雷公藤甲素与4‐二甲基氨基吡啶1.75mg(0.01435mmol)溶于5mL无水二氯甲烷中,加入319.5mg(3.157mmol)三乙胺,冰浴至约0℃,逐滴加入259.7mg(2.87mmol)丙烯酰氯,滴毕逐渐恢复至室温,搅拌反应2h,TLC检测反应完全,停止搅拌,用饱和碳酸氢钠水溶液淬灭反应,二氯甲烷萃取,水层用二氯甲烷再萃取两次,合并二氯甲烷萃取液,用饱和氯化钠水溶液洗去二氯甲烷萃取液中的大部分水,再无水硫酸钠干燥,减压蒸干,经制备薄层硅胶板分离,用石油醚‐乙酸乙酯(2:1‐1:1)作展开剂,得到无色透明油状物32.1mg,收率约为27.0%。经过检测,该化合物的结构式如式Ⅰ所示,即丙烯酸雷公藤甲素酯。
如图1‐3所示,式Ⅰ化合物,分子式C
23H
26O
7,ESI‐MS m/z:414.1679[M+H]
+(理论值)。
1H NMR(600MHz,CDCl3)δ6.54(d,J=16.1Hz,1H),6.23(dd,J=17.3,10.4Hz,1H),5.94(d,J=10.4Hz,1H),5.15(s,1H),4.77–4.61(m,2H),3.84(d,J=3.2 Hz,1H),3.52(dd,J=30.8,4.2Hz,2H),2.70(d,J=13.3Hz,1H),2.32(d,J=18.3Hz,1H),2.18(d,J=26.5Hz,2H),1.90(d,J=39.2Hz,2H),1.59(dd,J=4.8,16.0Hz,1H),1.24(m,1H),1.06(s,3H),0.97(d,J=7.0Hz,3H),0.85(d,J=6.9Hz,3H).
13C NMR(151MHz,CDCl3)δ173.24,165.52,159.98,132.46(CH
2),127.78,125.63,71.13,69.98(CH
2),63.64,63.40,61.11,59.78,55.36,55.09,40.40,35.71,29.86(CH
2),28.33,23.47(CH
2),17.58,17.08(CH
2),16.76,13.74.
一、丙烯酸雷公藤甲素酯对裸鼠HepG2皮下移植瘤的抑制试验
1实验材料
1.1实验动物:裸鼠,雄性,4‐6周,体重约18‐20g,该小鼠购自北京维通利华实验动物技术有限公司(合格证号:11400700270675)。
1.2细胞:HepG2细胞系;药物:上述实施例合成的丙烯酸雷公藤甲素。
1.3其他实验试剂及耗材:
无菌生理盐水,手术剪,镊子,显示读数游标卡尺(广州威佳科技有限公司),1mL的注射器,棉签。RPMI‐1640培养基、DMEM培养基(Gbico,USA);胎牛血清(Gibco,北美);青链霉素(双抗)、0.25%胰蛋白酶(含EDTA);细胞凋亡试剂盒、细胞周期试剂盒(杭州联科生物技术有限公司);细胞培养瓶、细胞培养皿(Coring,美国纽约);2mL冻存管(Coring,美国洛杉矶);96孔细胞培养板,6孔细胞培养板(Coring,美国洛杉矶)。RIPA裂解液(强)、PMSF蛋白酶抑制剂、磷酸酶蛋白复合抑制剂(广州鼎国生物技术公司);吐温20(ST825,碧云天,广州威佳科技有限公司),SDS‐PAGE凝胶试剂盒(碧云天,广州威佳科技有限公司),5×Loading Buffer(碧云天,广州威佳科技有限公司);Prism Protein Marker(Thermo,美国);ECL化学发光液(P0018A,碧云天,广州威佳科技有限公司);PVDF膜(碧云天,广州威佳科技有限公司);薄滤纸,海绵,1.5μm的薄板(Bio‐Rad,美国);甲醇(国药集团化学试剂有限公司);甘氨酸(青岛生工生物科技有限公司),SDS(北京拜尔迪生物技术有限公司),Tris Base(上海百研生物科技有限公司),TBS粉末(碧云天,广州威佳科技公司);脱脂奶粉(BD,UK)。
1.4实验仪器设备
万分之一天平(北京雷多利斯科学仪器有限公司),二氧化碳培养箱(上海博讯实业有限公司);细胞超净工作台(艺思高科技有限公司,新加坡);低速 台式离心机(DT5‐3,北京时代北利离心机有限公司);酶标仪VICTORX5型(美国,Perkinelmer);液氮罐(Locator PLUS,美国)。多功能冷冻离心机(5430R,eppendorf,中国eppendorf有限公司),电泳、转膜装置(Bio‐Rad,美国),调速振荡器(HS260,IKA上海圣科仪器设备有限公司),恒温金属浴锅(Q872),凝胶成像系统(XR+)(Bio‐Rad,上海Labaratories有限公司),摇床(SK‐L330‐Pro)。
2实验过程
2.1动物模型的建立
稳定表达荧光素酶的HepG2‐Luc细胞株的建立:取处于对数生长期的HepG2细胞以1×10
5/孔铺到24孔板中,过夜培养使细胞充分贴壁。用含有6μg/mL polybrene的2mL新鲜培养基替换原培养基加入稳定表达荧光素酶(Luciferase)的重组慢病毒颗粒约1×10
5转染单位,37℃孵育4h后加入2mL新鲜培养基稀释polybrene。继续培养,用新鲜培养基替换含有病毒的培养基。继续培养,更换含嘌呤霉素(puromycin)的培养基进行抗性筛选,挑取耐药克隆,继续筛选两周,最终获得能稳定表达荧光素酶的细胞株HepG2‐Luc。
利用HepG2‐Luc细胞株构建荷鼠:将冻存的HepG2‐Luc细胞复苏至100cm
2培养瓶,体外培养至对数生长期以含EDTA的0.25%胰蛋白酶消化,收集细胞,于室温1000rpm离心3min,弃上清,以无血清DMEM培养基洗涤细胞,台盼蓝拒染实验检测细胞存活率(活细胞比例超过95%方满足实验要求)。加入少许无血清DMEM培养基重悬细胞,细胞计数。用75%酒精消毒裸鼠背部皮肤,取含1×10
7细胞悬液约200μL接种于裸鼠右前腋下,无菌条件下继续饲养周,观察有无肉眼可见皮下种植瘤。
利用小动物活体成像系统检测瘤体生长:每只裸鼠腹腔注射150μL 30mg/kg荧光素底物,观察15min,感应箱内乙醚麻醉裸鼠5min,快速将麻醉好的裸鼠转移至观察箱中,将裸鼠头部对准并固定于锥形鼻塞内,设置参数进行荧光成像(如果有瘤体生长则可在相应位置检测到强度不等的荧光信号),成像结束后重新将裸鼠转移至感应箱内,打开氧气阀以复苏裸鼠。
2.2动物分组及给药
分组:1周后所有裸鼠均观察到皮下肿块,并以小动物活体成像技术验证了瘤体对生长,故按照体重大小将裸鼠排序、编号,利用Excel软件产生18个随机数,将随机数与裸鼠编号分别一一对应,按照随机数大小将裸鼠等分为模型组,低剂量组(100μg/kg),中剂量组(200μg/kg)和高剂量组(400μg/kg)。随机分组后对裸鼠称重及测量肿瘤体积,用统计学检验,检验裸鼠体重和肿瘤体积在各组间的差异,各组间无差异,均衡性较好说明分组正确。
给药:腹腔注射给药,使用一次性无菌注射器进行腹腔注射丙烯酸雷公藤甲素溶液。模型组裸鼠给予生理盐水,给药组按照的剂量给予丙烯酸雷公藤甲 素溶液。每日1次,连续给药13日。
2.3观察和记录
用药后每天对裸鼠进行常规观察,包括精神状态、活动情况、饮食情况、皮肤色泽和粪便性状等,每周2次测量并记录裸鼠体重,测量移植瘤大小,每周1次进行活体成像,监测瘤体生长及远处转移情况,连续3周直至给药结束。
2.4取材
给药结束后,动物麻醉,颈椎离断处死,完整剥离瘤体,测量肿瘤组织大小并记录。
2.5 Western Blot
肿瘤组织于冰上解冻后,取50mg于组织匀浆管中,并加入含蛋白酶抑制剂和磷酸酶抑制剂的组织裂解液500μL(罗氏品牌的片剂使用方法为:1片/10mL)。高速匀浆后,12000rpm/min离心15min,取上清,BCA法测定样品蛋白浓度,将各个样品浓度调成一致后,加入蛋白上样缓冲液5x Loading buffer,100℃变性10min,‐80℃保存。
选择适合品牌的10%预混聚丙烯酰胺凝胶配制液,然后根据使用说明将实验中所使用的凝胶配制好(包括分离胶和积层胶,大概需时约2h);在等胶凝固的过程中需要提前配好SDS‐PAGE凝胶电泳液,将配好的胶放在电泳槽中,然后加入电泳液,每孔加样槽中加上10‐30μL的样品,80V低压使样品跑过积层胶后,调整电压为100V使样品跑完整块胶,完成SDS‐PAGE凝胶电泳操作;其次,进行转膜操作(PVDF膜,提前在甲醇中预润湿5min),转膜条件为:300mA,120‐150min(对应分子量为100kDa的分界线时间选择,其中所分离的蛋白分子量小于100kDa的选择转膜时间为120min,分子量大于100kDa的选择转膜时间为150min);转膜结束之后,用5%脱脂牛奶封闭2h按照相应的条带4℃冰箱中过夜孵育一抗;次日用TBST洗液将未结合的一抗洗去(清洗5遍,每遍5min);二抗37℃孵育2h,TBST洗液将未结合的二抗洗去(清洗5遍,每遍5min);ECL发光液作为底物曝光目的条带,分析记录并统计结果。
3结果与分析
3.1本实验建立了能够稳定表达荧光素酶的肝癌细胞株HepG2‐Luc,利用该种细胞构建了裸鼠皮下肝癌种植瘤模型。
实验中,随机将裸鼠分为四组:模型组(Model),低剂量组(TPO‐L),中剂量组(TPO‐M)及高剂量组(TPO‐H),连续给药13天后处死裸鼠并获取种植瘤组织及组织标本。实验中,利用小动物活体成像技术监测瘤体生长情况,如图4所示,相较于模型组,各剂量给药组裸鼠瘤体内荧光信号均显著减弱,且呈剂量依赖性;并且高剂量组减弱更明显,提示丙烯酸雷公藤甲素酯(式Ⅰ化合物)能够显著抑制瘤体内肝癌细胞的增殖。如图5所示,裸鼠皮下移植瘤与皮肤表 面可以看到,给药组(尤其是高剂量组)的瘤体体积明显小于模型组,且呈剂量相关性。同样,如图6所示,处死裸鼠后剥取的瘤体组织,给药组瘤体体积均小于模型组,进一步验证了丙烯酸雷公藤甲素酯的体内抗肝癌效应。
3.2本实验中还观察了丙烯酸雷公藤甲素酯对凋亡相关的重要蛋白表达的影响。
p53是一种非常重要的抑癌基因,具有促进基因修复、调节细胞周期进展和诱导细胞凋亡等多种生物学功能,其中发生在丝氨酸位点的磷酸化具有促进细胞凋亡的作用。Caspase‐8和caspase‐3在caspase级联反应中分别在起始者和执行者的上处于核心位置,是细胞凋亡发生的关键步骤及一切凋亡信号的共同通路。如图7所示,高剂量组可使p53的蛋白表达量显著增加,而低中剂量组无明显变化。中剂量组可显著升高caspase‐8的蛋白表达量,而低及高剂量又可降低其表达量。中、高剂量组可显著升高caspase‐3的蛋白表达量,低剂量组则降低其表达量。
二、丙烯酸雷公藤甲素酯对肝癌细胞增殖凋亡的作用
1实验材料
1.1细胞株和药物
本实验所用到的LO2、HepG2、Hep3B、SMMC‐7721、BEL‐7402细胞均购自于ATCC。细胞使用含10%胎牛血清、1×10
5U·L‐1青霉素和100mg·L‐1链霉素的DMEM完全培养基,于5%CO
2,37℃以及饱和湿度下培养。
1.2试剂
胎牛血清,DMEM培养基,青霉素、链霉素双抗(美国Gibco公司);AnnexinV‐FITC/PI凋亡检测试剂盒,ECL检测试剂盒(凯基生物);MMT试剂盒,BCA蛋白浓度测定试剂盒,SDS‐PAGE蛋白上样缓冲液,PMSF,NP40裂解液(碧云天);β‐actin,Caspase‐3、cleaved‐Caspase‐3、PARP、cleaved‐PARP抗体以及二抗(美国CST公司)。
1.3仪器Heal Force生物安全柜、NEW Brunswick二氧化碳培养箱、Roche生化分析仪、倒置显微镜、BD流式细胞仪、Bio‐rad蛋白电泳系统、BioTek Epoch酶标仪等。
2实验方法
2.1细胞毒性实验
取对数生长的LO2细胞,以每孔1×10
4个接种于96孔板。分别使用终浓度为0,10,50,100nM的药物处理的细胞,24小时后收集培养上清,使用Roche生化分析仪检测培养上清LDH活性。
2.2 MMT法检测细胞增殖
待肝癌细胞生长至对数期时,将单细胞悬液以每孔1×10
4个接种于96孔板。空白组为含10%胎牛血清的DMEM培养基,对照组为加入溶剂对照(DMSO)细胞组,实验组为不同终浓度(10,25,50,100nM)的药物处理的细胞组。处理24小时后,小心吸掉培养基上清,每孔加入用培养基稀释的终浓度为0.5mg·L
‐1的MTT溶液100μL,培养细胞4小时后,弃培养基,每孔加入150μL的DMSO溶液,避光置摇床上低速摇10分钟,待结晶物充分溶解后,用酶标仪在490nm处检测每孔的吸光度(A)。细胞增殖抑制率=[(对照组A
450‐空白组A
450)‐(实验组A
450‐空白组A
450)/(对照组A
450‐空白组A
450)]×100%。
2.3流式细胞术检测细胞凋亡
取对数生长期的肝癌细胞,以每孔5×10
5个接种于12孔板。使用终浓度为0,50,100nM的丙烯酸雷公藤甲素酯(以下简称TPO)和雷公藤内酯三醇(以下简称TP‐3‐OH)处理的细胞。处理24小时后,使用0.25%的无EDTA胰酶消化收集细胞,用预冷的PBS洗涤2次,并用300μL 1×Binding Buffer重悬细胞。每管细胞悬液加入5μL FITC Annexin V和5μL PI,室温避光孵育5分钟,1小时内使用流式细胞仪检测。
2.4 Western blot检测凋亡相关蛋白
取对数生长期的BEL‐7402细胞,以每孔5×10
5个接种于12孔板。使用终浓度为0,50,100nM的TPO处理的细胞。处理24小时后,收集细胞后加入裂解液,冰上充分裂解后提取总蛋白。使用BCA法测定蛋白浓度后,加入Loading buffer并于100℃煮沸10分钟使蛋白充分变性。变性后的样品经过SDS‐PAGE凝胶电泳,并电转移至PVDF膜。转移后的PVDF膜使用TBST配置的5%BSA溶液室温封闭1小时,再经过相应的一抗4℃孵育过夜、TBST洗涤、二抗室温孵育2小时、TBST再次洗涤,最后加入ECL化学发光液使膜条发光,并使用感光胶片压片、显影、定影得出电泳结果,并观察不同处理组之间凋亡相关蛋白的变化趋势。
2.5划痕实验
取对数生长期的Huh7细胞,以每孔5×10
5个接种于24孔板。待长满后,用无菌枪头进行划痕,划痕后用PBS洗细胞3次,去除划下的细胞,并加入含50nM TPO的无血清培养基继续培养24、48小时,并进行拍照。使用Image J软件对划痕照片进行分析,计算划痕距离,评价划痕愈合情况。
3结果处理与分析
3.1统计学分析
采用SPSS 16.0软件进行结果分析。统计数据以均值±标准差(x±s)表示。数据先进行正态性检验和方差齐性检验,组间比较采用单因素方差分析或t检 验,取P<0.05具有统计学意义。
3.2 TPL(雷公藤甲素)、TP‐3‐OH、TPO对正常肝细胞毒性的比较
图8的细胞毒性实验结果显示,TPL处理的LO2细胞培养上清的LDH活性显著增加,而TP‐3‐OH、TPO处理组上清LDH活性明显低于TPL处理组,说明TP‐3‐OH、TPO对肝细胞的毒性明显低于雷公藤甲素。
3.3 TP‐3‐OH、TPO对肝癌细胞增殖的抑制作用
图9MTT实验结果显示,TPO对HepG2、Hep3B、SMMC‐7721、BEL‐7402四种肝癌细胞的增殖有明显抑制作用,且呈剂量依赖效应,说明TPO对肝癌细胞的增殖具有抑制作用。TP‐3‐OH对肝癌细胞的增殖没有明显抑制作用。
3.4 TPO对肝癌细胞凋亡的诱导作用
图10流式结果显示,TPO处理后,Hep3B和BEL‐7402两种肝癌细胞的AnnexinV和PI阳性细胞比例明显增加(A);图10western blot结果显示,TPO处理后,BEL‐7402细胞Caspase‐3和PARP的剪切明显增加(B),说明TPO具有诱导肝癌细胞凋亡的作用。TP‐3‐OH对肝癌细胞凋亡的诱导作用不明显(结果未显示)。
3.5 TPO对肝癌细胞迁移的抑制作用
图11划痕实验结果显示,TPO能够明显抑制Huh7细胞的迁移,且差异具有统计学意义(P<0.05),提示TPO可能具有抑制肝癌细胞转移的作用。
以上所述的仅是本发明的一些实施方式。对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
Claims (10)
- 根据权利要求1所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,包括以下步骤:(1)将雷公藤甲素、酰化试剂加入到有机溶剂中,以4‐二甲基氨基吡啶为催化剂,以三乙胺为缚酸剂,室温下搅拌1‐4h,用饱和碳酸氢钠水溶液淬灭反应;(2)二氯甲烷萃取,萃取液用饱和氯化钠水溶液洗涤,再用干燥剂干燥,减压蒸干,经过硅胶柱层析纯化,得到丙烯酸雷公藤甲素酯。
- 根据权利要求2所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,步骤(1)可以是:将雷公藤甲素、4‐二甲基氨基吡啶溶于有机溶剂中,加入三乙胺,冰浴至约0℃,滴加酰化试剂,滴加完毕后恢复至室温,搅拌1‐4h,TLC检测反应完全,停止搅拌,用饱和碳酸氢钠水溶液淬灭反应。
- 根据权利要求2所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,步骤(2)可以是:二氯甲烷萃取,水层用二氯甲烷再萃取两次,合并三次所得的二氯甲烷萃取液,用饱和氯化钠水溶液洗涤,再用干燥剂干燥,减压蒸干,经过硅胶柱层析纯化,得到丙烯酸雷公藤甲素酯。
- 根据权利要求2‐4中任一项所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,所述的酰化试剂是丙烯酰氯、丙烯酰溴、丙烯酸苷、丙烯酸或者3‐氯丙酰氯中的一种或两种以上。
- 根据权利要求5所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,所述的有机溶剂是无水二氯甲烷、三氯甲烷、四氢呋喃或乙醚。
- 根据权利要求6所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,所述的缚酸剂是三乙胺、三甲胺、吡啶、DITEA、DBU、2,6‐二甲基吡啶和4‐二甲基氨基吡啶中的一种或两种以上。
- 根据权利要求7所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,所述的催化剂是4‐二甲基氨基吡啶、DCC、HOAT、HOBT、HBTU和TBTU中的一种或两种以上。
- 根据权利要求8所述的丙烯酸雷公藤甲素酯的制备方法,其特征在于,所述的干燥剂是无水硫酸钠、无水硫酸镁和无水氯化钙中的一种或两种以上。
- 根据权利要求1所述的丙烯酸雷公藤甲素酯在制备抗癌药物上的应用。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/790,049 US11660285B2 (en) | 2019-12-30 | 2019-12-30 | Triptolide acrylate, preparation method therefor and use thereof |
JP2022540749A JP7353500B2 (ja) | 2019-12-30 | 2019-12-30 | アクリル酸トリプトリド、その調製方法および用途 |
PCT/CN2019/130056 WO2021134272A1 (zh) | 2019-12-30 | 2019-12-30 | 丙烯酸雷公藤甲素酯、其制备方法及其应用 |
EP19958234.7A EP4086271B1 (en) | 2019-12-30 | 2019-12-30 | Triptolide acrylate, preparation method therefor and use thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/130056 WO2021134272A1 (zh) | 2019-12-30 | 2019-12-30 | 丙烯酸雷公藤甲素酯、其制备方法及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021134272A1 true WO2021134272A1 (zh) | 2021-07-08 |
Family
ID=76686094
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/130056 WO2021134272A1 (zh) | 2019-12-30 | 2019-12-30 | 丙烯酸雷公藤甲素酯、其制备方法及其应用 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11660285B2 (zh) |
EP (1) | EP4086271B1 (zh) |
JP (1) | JP7353500B2 (zh) |
WO (1) | WO2021134272A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115227829A (zh) * | 2022-02-22 | 2022-10-25 | 成都中医药大学 | 新型酸敏感性适配体雷公藤甲素偶联物及应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101235041A (zh) * | 2007-10-26 | 2008-08-06 | 北京美迪克斯生物技术有限公司 | 四种雷公藤甲素衍生物及其制剂的制备方法 |
CN102786576A (zh) * | 2012-07-18 | 2012-11-21 | 中国医学科学院药物研究所 | 雷公藤甲素衍生物、其制法和其药物组合物与用途 |
CN106928312A (zh) * | 2017-03-28 | 2017-07-07 | 南方科技大学 | 一种雷公藤内酯醇衍生物、其制备方法和用途 |
CN106946975A (zh) * | 2017-03-16 | 2017-07-14 | 上海天氏利医药科技有限公司 | 一种雷公藤甲素衍生物及其制备方法与制剂 |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE245145T1 (de) * | 1998-09-02 | 2003-08-15 | Pharmagenesis Inc | Gut wasserlösliche triptolid-prodrugs |
WO2000048619A1 (en) * | 1999-02-16 | 2000-08-24 | The Board Of Trustees Of The Leland Stanford Junior University | Combined therapy of diterpenoid triepoxides and trail for synergistic killing of tumor cells |
US6294546B1 (en) | 1999-08-30 | 2001-09-25 | The Broad Of Trustees Of The Leland Stanford Junior University | Uses of diterpenoid triepoxides as an anti-proliferative agent |
US6569893B2 (en) * | 2001-03-15 | 2003-05-27 | Pharmagenesis, Inc. | Amino acid derivatives of triptolide compounds as immune modulators and anticancer agents |
EP1946758A1 (en) * | 2007-01-18 | 2008-07-23 | Pierre Fabre Medicament | Treatment of acute myeloid leukemia |
CN102286065B (zh) | 2010-06-18 | 2012-11-14 | 中国科学院上海药物研究所 | 松香烷型二萜衍生物、其制备方法和应用 |
CN104513290B (zh) | 2013-10-08 | 2019-01-01 | 中国医学科学院药物研究所 | 雷醇内酯衍生物及其应用 |
WO2016181312A1 (en) | 2015-05-11 | 2016-11-17 | Versitech Limited | Polycyclic epoxides and compositions thereof with anti-cancer activities |
CN106589049B (zh) | 2015-10-19 | 2019-02-01 | 中国中医科学院中医临床基础医学研究所 | 一种改进的雷公藤甲素-适配子偶合物的合成方法 |
WO2017136739A1 (en) | 2016-02-04 | 2017-08-10 | The Johns Hopkins University | Glucose conjugates of triptolide, analogs and uses thereof |
CN106994129A (zh) * | 2017-05-15 | 2017-08-01 | 王晓辉 | 雷公藤甲素及其衍生物在制备治疗和/或预防肺损伤疾病的药物中的应用 |
-
2019
- 2019-12-30 WO PCT/CN2019/130056 patent/WO2021134272A1/zh unknown
- 2019-12-30 EP EP19958234.7A patent/EP4086271B1/en active Active
- 2019-12-30 JP JP2022540749A patent/JP7353500B2/ja active Active
- 2019-12-30 US US17/790,049 patent/US11660285B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101235041A (zh) * | 2007-10-26 | 2008-08-06 | 北京美迪克斯生物技术有限公司 | 四种雷公藤甲素衍生物及其制剂的制备方法 |
CN102786576A (zh) * | 2012-07-18 | 2012-11-21 | 中国医学科学院药物研究所 | 雷公藤甲素衍生物、其制法和其药物组合物与用途 |
CN106946975A (zh) * | 2017-03-16 | 2017-07-14 | 上海天氏利医药科技有限公司 | 一种雷公藤甲素衍生物及其制备方法与制剂 |
CN106928312A (zh) * | 2017-03-28 | 2017-07-07 | 南方科技大学 | 一种雷公藤内酯醇衍生物、其制备方法和用途 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115227829A (zh) * | 2022-02-22 | 2022-10-25 | 成都中医药大学 | 新型酸敏感性适配体雷公藤甲素偶联物及应用 |
CN115227829B (zh) * | 2022-02-22 | 2023-10-13 | 成都中医药大学 | 酸敏感性适配体雷公藤甲素偶联物及应用 |
Also Published As
Publication number | Publication date |
---|---|
US11660285B2 (en) | 2023-05-30 |
EP4086271A1 (en) | 2022-11-09 |
EP4086271A4 (en) | 2022-11-09 |
JP2023503530A (ja) | 2023-01-30 |
JP7353500B2 (ja) | 2023-09-29 |
US20230064939A1 (en) | 2023-03-02 |
EP4086271B1 (en) | 2023-12-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sun et al. | Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats | |
Liu et al. | Cytotoxic and pro-apoptotic effects of novel ganoderic acid derivatives on human cervical cancer cells in vitro | |
Antoszczak et al. | Biological activity of doubly modified salinomycin analogs–Evaluation in vitro and ex vivo | |
Guo et al. | Ginsenoside Rb1, a novel activator of the TMEM16A chloride channel, augments the contraction of guinea pig ileum | |
Zhong et al. | Progallin A isolated from the acetic ether part of the leaves of Phyllanthus emblica L. induces apoptosis of human hepatocellular carcinoma BEL-7404 cells by up-regulation of Bax expression and down-regulation of Bcl-2 expression | |
Liu et al. | Leonurine-cysteine analog conjugates as a new class of multifunctional anti-myocardial ischemia agent | |
Xu et al. | Therapeutic mechanism of ginkgo biloba exocarp polysaccharides on gastric cancer | |
US8884027B2 (en) | Melampomagnolide B derivatives as antileukemic and cytotoxic agents | |
Wu et al. | Anticancer and anti-angiogenic activities of extract from Actinidia eriantha Benth root | |
CN107383048B (zh) | 一种青蒿素类衍生物、其合成及应用 | |
Yang et al. | Anti-lung cancer activity and inhibitory mechanisms of a novel Calothrixin A derivative | |
Yang et al. | Design and synthesis of novel anti-proliferative emodin derivatives and studies on their cell cycle arrest, apoptosis pathway and migration | |
Yeh et al. | Therapeutic effects of cantharidin analogues without bridging ether oxygen on human hepatocellular carcinoma cells | |
RU2507211C2 (ru) | Производные стерина и их синтез и применение | |
WO2021134272A1 (zh) | 丙烯酸雷公藤甲素酯、其制备方法及其应用 | |
San Nicolás-Hernández et al. | Multi-target withaferin-A analogues as promising anti-kinetoplastid agents through the programmed cell death | |
Sakthivel et al. | Natural product-inspired rational design, synthesis and biological evaluation of 2, 3-dihydropyrano [2, 3-f] chromen-4 (8H)-one based hybrids as potential mitochondrial apoptosis inducers | |
Wang et al. | Synthesis of new sarsasapogenin derivatives with antiproliferative and apoptotic effects in MCF-7 cells | |
CN112358527B (zh) | 丙烯酸雷公藤甲素酯、其制备方法及其应用 | |
Nyein et al. | Synthesis and anti-glioblastoma effects of artemisinin-isothiocyanate derivatives | |
Dong et al. | Ptehoosines A and B: Two new sesamin-type sesquilignans with antiangiogenic activity from Pterocephalus hookeri (CB Clarke) Höeck | |
Wang et al. | New daphnane diterpenoidal 1, 3, 4-oxdiazole derivatives as potential anti-hepatoma agents: Synthesis, biological evaluation and molecular modeling studies | |
Lu et al. | Danthron induced apoptosis through mitochondria-and caspase-3-dependent pathways in human brain glioblastoma multiforms GBM 8401 cells | |
US8227512B2 (en) | Pharmaceutical composition containing daurinol for the prevention and treatment of cancers | |
CN103635088B (zh) | 米格拉他汀类(Migrastatins)和其用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19958234 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022540749 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019958234 Country of ref document: EP Effective date: 20220801 |